[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / PlaceSafepoints.cpp
blob817c957fca5cabc07ec1e29ba450527f170e598d
1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit. That's
11 // done by RewriteStatepointsForGC.
13 // Terminology:
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call. A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call. Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable. The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector. In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops. We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites. This is not
30 // because the poll itself is expensive in the generated code; it's not. Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
34 // We also need to make most call sites parseable. The callee might execute a
35 // poll (or otherwise be inspected by the GC). If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
44 // We do not currently support return statepoints, but adding them would not
45 // be hard. They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them. Patches welcome.
48 //===----------------------------------------------------------------------===//
50 #include "llvm/Pass.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/CFG.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LegacyPassManager.h"
61 #include "llvm/IR/Statepoint.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
68 #define DEBUG_TYPE "safepoint-placement"
70 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
71 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73 STATISTIC(CallInLoop,
74 "Number of loops without safepoints due to calls in loop");
75 STATISTIC(FiniteExecution,
76 "Number of loops without safepoints finite execution");
78 using namespace llvm;
80 // Ignore opportunities to avoid placing safepoints on backedges, useful for
81 // validation
82 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
83 cl::init(false));
85 /// How narrow does the trip count of a loop have to be to have to be considered
86 /// "counted"? Counted loops do not get safepoints at backedges.
87 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
88 cl::Hidden, cl::init(32));
90 // If true, split the backedge of a loop when placing the safepoint, otherwise
91 // split the latch block itself. Both are useful to support for
92 // experimentation, but in practice, it looks like splitting the backedge
93 // optimizes better.
94 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
95 cl::init(false));
97 namespace {
99 /// An analysis pass whose purpose is to identify each of the backedges in
100 /// the function which require a safepoint poll to be inserted.
101 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
102 static char ID;
104 /// The output of the pass - gives a list of each backedge (described by
105 /// pointing at the branch) which need a poll inserted.
106 std::vector<Instruction *> PollLocations;
108 /// True unless we're running spp-no-calls in which case we need to disable
109 /// the call-dependent placement opts.
110 bool CallSafepointsEnabled;
112 ScalarEvolution *SE = nullptr;
113 DominatorTree *DT = nullptr;
114 LoopInfo *LI = nullptr;
115 TargetLibraryInfo *TLI = nullptr;
117 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
118 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
119 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
122 bool runOnLoop(Loop *);
123 void runOnLoopAndSubLoops(Loop *L) {
124 // Visit all the subloops
125 for (Loop *I : *L)
126 runOnLoopAndSubLoops(I);
127 runOnLoop(L);
130 bool runOnFunction(Function &F) override {
131 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
132 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
133 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
134 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
135 for (Loop *I : *LI) {
136 runOnLoopAndSubLoops(I);
138 return false;
141 void getAnalysisUsage(AnalysisUsage &AU) const override {
142 AU.addRequired<DominatorTreeWrapperPass>();
143 AU.addRequired<ScalarEvolutionWrapperPass>();
144 AU.addRequired<LoopInfoWrapperPass>();
145 AU.addRequired<TargetLibraryInfoWrapperPass>();
146 // We no longer modify the IR at all in this pass. Thus all
147 // analysis are preserved.
148 AU.setPreservesAll();
153 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
154 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
155 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
157 namespace {
158 struct PlaceSafepoints : public FunctionPass {
159 static char ID; // Pass identification, replacement for typeid
161 PlaceSafepoints() : FunctionPass(ID) {
162 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
164 bool runOnFunction(Function &F) override;
166 void getAnalysisUsage(AnalysisUsage &AU) const override {
167 // We modify the graph wholesale (inlining, block insertion, etc). We
168 // preserve nothing at the moment. We could potentially preserve dom tree
169 // if that was worth doing
170 AU.addRequired<TargetLibraryInfoWrapperPass>();
175 // Insert a safepoint poll immediately before the given instruction. Does
176 // not handle the parsability of state at the runtime call, that's the
177 // callers job.
178 static void
179 InsertSafepointPoll(Instruction *InsertBefore,
180 std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
181 const TargetLibraryInfo &TLI);
183 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
184 if (callsGCLeafFunction(Call, TLI))
185 return false;
186 if (auto *CI = dyn_cast<CallInst>(Call)) {
187 if (CI->isInlineAsm())
188 return false;
191 return !(isStatepoint(Call) || isGCRelocate(Call) || isGCResult(Call));
194 /// Returns true if this loop is known to contain a call safepoint which
195 /// must unconditionally execute on any iteration of the loop which returns
196 /// to the loop header via an edge from Pred. Returns a conservative correct
197 /// answer; i.e. false is always valid.
198 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
199 BasicBlock *Pred,
200 DominatorTree &DT,
201 const TargetLibraryInfo &TLI) {
202 // In general, we're looking for any cut of the graph which ensures
203 // there's a call safepoint along every edge between Header and Pred.
204 // For the moment, we look only for the 'cuts' that consist of a single call
205 // instruction in a block which is dominated by the Header and dominates the
206 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
207 // of such dominating blocks gets substantially more occurrences than just
208 // checking the Pred and Header blocks themselves. This may be due to the
209 // density of loop exit conditions caused by range and null checks.
210 // TODO: structure this as an analysis pass, cache the result for subloops,
211 // avoid dom tree recalculations
212 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
214 BasicBlock *Current = Pred;
215 while (true) {
216 for (Instruction &I : *Current) {
217 if (auto *Call = dyn_cast<CallBase>(&I))
218 // Note: Technically, needing a safepoint isn't quite the right
219 // condition here. We should instead be checking if the target method
220 // has an
221 // unconditional poll. In practice, this is only a theoretical concern
222 // since we don't have any methods with conditional-only safepoint
223 // polls.
224 if (needsStatepoint(Call, TLI))
225 return true;
228 if (Current == Header)
229 break;
230 Current = DT.getNode(Current)->getIDom()->getBlock();
233 return false;
236 /// Returns true if this loop is known to terminate in a finite number of
237 /// iterations. Note that this function may return false for a loop which
238 /// does actual terminate in a finite constant number of iterations due to
239 /// conservatism in the analysis.
240 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
241 BasicBlock *Pred) {
242 // A conservative bound on the loop as a whole.
243 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
244 if (MaxTrips != SE->getCouldNotCompute() &&
245 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
246 CountedLoopTripWidth))
247 return true;
249 // If this is a conditional branch to the header with the alternate path
250 // being outside the loop, we can ask questions about the execution frequency
251 // of the exit block.
252 if (L->isLoopExiting(Pred)) {
253 // This returns an exact expression only. TODO: We really only need an
254 // upper bound here, but SE doesn't expose that.
255 const SCEV *MaxExec = SE->getExitCount(L, Pred);
256 if (MaxExec != SE->getCouldNotCompute() &&
257 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
258 CountedLoopTripWidth))
259 return true;
262 return /* not finite */ false;
265 static void scanOneBB(Instruction *Start, Instruction *End,
266 std::vector<CallInst *> &Calls,
267 DenseSet<BasicBlock *> &Seen,
268 std::vector<BasicBlock *> &Worklist) {
269 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
270 BBE1 = BasicBlock::iterator(End);
271 BBI != BBE0 && BBI != BBE1; BBI++) {
272 if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
273 Calls.push_back(CI);
275 // FIXME: This code does not handle invokes
276 assert(!isa<InvokeInst>(&*BBI) &&
277 "support for invokes in poll code needed");
279 // Only add the successor blocks if we reach the terminator instruction
280 // without encountering end first
281 if (BBI->isTerminator()) {
282 BasicBlock *BB = BBI->getParent();
283 for (BasicBlock *Succ : successors(BB)) {
284 if (Seen.insert(Succ).second) {
285 Worklist.push_back(Succ);
292 static void scanInlinedCode(Instruction *Start, Instruction *End,
293 std::vector<CallInst *> &Calls,
294 DenseSet<BasicBlock *> &Seen) {
295 Calls.clear();
296 std::vector<BasicBlock *> Worklist;
297 Seen.insert(Start->getParent());
298 scanOneBB(Start, End, Calls, Seen, Worklist);
299 while (!Worklist.empty()) {
300 BasicBlock *BB = Worklist.back();
301 Worklist.pop_back();
302 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
306 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
307 // Loop through all loop latches (branches controlling backedges). We need
308 // to place a safepoint on every backedge (potentially).
309 // Note: In common usage, there will be only one edge due to LoopSimplify
310 // having run sometime earlier in the pipeline, but this code must be correct
311 // w.r.t. loops with multiple backedges.
312 BasicBlock *Header = L->getHeader();
313 SmallVector<BasicBlock*, 16> LoopLatches;
314 L->getLoopLatches(LoopLatches);
315 for (BasicBlock *Pred : LoopLatches) {
316 assert(L->contains(Pred));
318 // Make a policy decision about whether this loop needs a safepoint or
319 // not. Note that this is about unburdening the optimizer in loops, not
320 // avoiding the runtime cost of the actual safepoint.
321 if (!AllBackedges) {
322 if (mustBeFiniteCountedLoop(L, SE, Pred)) {
323 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
324 FiniteExecution++;
325 continue;
327 if (CallSafepointsEnabled &&
328 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
329 // Note: This is only semantically legal since we won't do any further
330 // IPO or inlining before the actual call insertion.. If we hadn't, we
331 // might latter loose this call safepoint.
332 LLVM_DEBUG(
333 dbgs()
334 << "skipping safepoint placement due to unconditional call\n");
335 CallInLoop++;
336 continue;
340 // TODO: We can create an inner loop which runs a finite number of
341 // iterations with an outer loop which contains a safepoint. This would
342 // not help runtime performance that much, but it might help our ability to
343 // optimize the inner loop.
345 // Safepoint insertion would involve creating a new basic block (as the
346 // target of the current backedge) which does the safepoint (of all live
347 // variables) and branches to the true header
348 Instruction *Term = Pred->getTerminator();
350 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
352 PollLocations.push_back(Term);
355 return false;
358 /// Returns true if an entry safepoint is not required before this callsite in
359 /// the caller function.
360 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
361 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
362 switch (II->getIntrinsicID()) {
363 case Intrinsic::experimental_gc_statepoint:
364 case Intrinsic::experimental_patchpoint_void:
365 case Intrinsic::experimental_patchpoint_i64:
366 // The can wrap an actual call which may grow the stack by an unbounded
367 // amount or run forever.
368 return false;
369 default:
370 // Most LLVM intrinsics are things which do not expand to actual calls, or
371 // at least if they do, are leaf functions that cause only finite stack
372 // growth. In particular, the optimizer likes to form things like memsets
373 // out of stores in the original IR. Another important example is
374 // llvm.localescape which must occur in the entry block. Inserting a
375 // safepoint before it is not legal since it could push the localescape
376 // out of the entry block.
377 return true;
380 return false;
383 static Instruction *findLocationForEntrySafepoint(Function &F,
384 DominatorTree &DT) {
386 // Conceptually, this poll needs to be on method entry, but in
387 // practice, we place it as late in the entry block as possible. We
388 // can place it as late as we want as long as it dominates all calls
389 // that can grow the stack. This, combined with backedge polls,
390 // give us all the progress guarantees we need.
392 // hasNextInstruction and nextInstruction are used to iterate
393 // through a "straight line" execution sequence.
395 auto HasNextInstruction = [](Instruction *I) {
396 if (!I->isTerminator())
397 return true;
399 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
400 return nextBB && (nextBB->getUniquePredecessor() != nullptr);
403 auto NextInstruction = [&](Instruction *I) {
404 assert(HasNextInstruction(I) &&
405 "first check if there is a next instruction!");
407 if (I->isTerminator())
408 return &I->getParent()->getUniqueSuccessor()->front();
409 return &*++I->getIterator();
412 Instruction *Cursor = nullptr;
413 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
414 Cursor = NextInstruction(Cursor)) {
416 // We need to ensure a safepoint poll occurs before any 'real' call. The
417 // easiest way to ensure finite execution between safepoints in the face of
418 // recursive and mutually recursive functions is to enforce that each take
419 // a safepoint. Additionally, we need to ensure a poll before any call
420 // which can grow the stack by an unbounded amount. This isn't required
421 // for GC semantics per se, but is a common requirement for languages
422 // which detect stack overflow via guard pages and then throw exceptions.
423 if (auto *Call = dyn_cast<CallBase>(Cursor)) {
424 if (doesNotRequireEntrySafepointBefore(Call))
425 continue;
426 break;
430 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
431 "either we stopped because of a call, or because of terminator");
433 return Cursor;
436 static const char *const GCSafepointPollName = "gc.safepoint_poll";
438 static bool isGCSafepointPoll(Function &F) {
439 return F.getName().equals(GCSafepointPollName);
442 /// Returns true if this function should be rewritten to include safepoint
443 /// polls and parseable call sites. The main point of this function is to be
444 /// an extension point for custom logic.
445 static bool shouldRewriteFunction(Function &F) {
446 // TODO: This should check the GCStrategy
447 if (F.hasGC()) {
448 const auto &FunctionGCName = F.getGC();
449 const StringRef StatepointExampleName("statepoint-example");
450 const StringRef CoreCLRName("coreclr");
451 return (StatepointExampleName == FunctionGCName) ||
452 (CoreCLRName == FunctionGCName);
453 } else
454 return false;
457 // TODO: These should become properties of the GCStrategy, possibly with
458 // command line overrides.
459 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
460 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
461 static bool enableCallSafepoints(Function &F) { return !NoCall; }
463 bool PlaceSafepoints::runOnFunction(Function &F) {
464 if (F.isDeclaration() || F.empty()) {
465 // This is a declaration, nothing to do. Must exit early to avoid crash in
466 // dom tree calculation
467 return false;
470 if (isGCSafepointPoll(F)) {
471 // Given we're inlining this inside of safepoint poll insertion, this
472 // doesn't make any sense. Note that we do make any contained calls
473 // parseable after we inline a poll.
474 return false;
477 if (!shouldRewriteFunction(F))
478 return false;
480 const TargetLibraryInfo &TLI =
481 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
483 bool Modified = false;
485 // In various bits below, we rely on the fact that uses are reachable from
486 // defs. When there are basic blocks unreachable from the entry, dominance
487 // and reachablity queries return non-sensical results. Thus, we preprocess
488 // the function to ensure these properties hold.
489 Modified |= removeUnreachableBlocks(F);
491 // STEP 1 - Insert the safepoint polling locations. We do not need to
492 // actually insert parse points yet. That will be done for all polls and
493 // calls in a single pass.
495 DominatorTree DT;
496 DT.recalculate(F);
498 SmallVector<Instruction *, 16> PollsNeeded;
499 std::vector<CallBase *> ParsePointNeeded;
501 if (enableBackedgeSafepoints(F)) {
502 // Construct a pass manager to run the LoopPass backedge logic. We
503 // need the pass manager to handle scheduling all the loop passes
504 // appropriately. Doing this by hand is painful and just not worth messing
505 // with for the moment.
506 legacy::FunctionPassManager FPM(F.getParent());
507 bool CanAssumeCallSafepoints = enableCallSafepoints(F);
508 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
509 FPM.add(PBS);
510 FPM.run(F);
512 // We preserve dominance information when inserting the poll, otherwise
513 // we'd have to recalculate this on every insert
514 DT.recalculate(F);
516 auto &PollLocations = PBS->PollLocations;
518 auto OrderByBBName = [](Instruction *a, Instruction *b) {
519 return a->getParent()->getName() < b->getParent()->getName();
521 // We need the order of list to be stable so that naming ends up stable
522 // when we split edges. This makes test cases much easier to write.
523 llvm::sort(PollLocations, OrderByBBName);
525 // We can sometimes end up with duplicate poll locations. This happens if
526 // a single loop is visited more than once. The fact this happens seems
527 // wrong, but it does happen for the split-backedge.ll test case.
528 PollLocations.erase(std::unique(PollLocations.begin(),
529 PollLocations.end()),
530 PollLocations.end());
532 // Insert a poll at each point the analysis pass identified
533 // The poll location must be the terminator of a loop latch block.
534 for (Instruction *Term : PollLocations) {
535 // We are inserting a poll, the function is modified
536 Modified = true;
538 if (SplitBackedge) {
539 // Split the backedge of the loop and insert the poll within that new
540 // basic block. This creates a loop with two latches per original
541 // latch (which is non-ideal), but this appears to be easier to
542 // optimize in practice than inserting the poll immediately before the
543 // latch test.
545 // Since this is a latch, at least one of the successors must dominate
546 // it. Its possible that we have a) duplicate edges to the same header
547 // and b) edges to distinct loop headers. We need to insert pools on
548 // each.
549 SetVector<BasicBlock *> Headers;
550 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
551 BasicBlock *Succ = Term->getSuccessor(i);
552 if (DT.dominates(Succ, Term->getParent())) {
553 Headers.insert(Succ);
556 assert(!Headers.empty() && "poll location is not a loop latch?");
558 // The split loop structure here is so that we only need to recalculate
559 // the dominator tree once. Alternatively, we could just keep it up to
560 // date and use a more natural merged loop.
561 SetVector<BasicBlock *> SplitBackedges;
562 for (BasicBlock *Header : Headers) {
563 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
564 PollsNeeded.push_back(NewBB->getTerminator());
565 NumBackedgeSafepoints++;
567 } else {
568 // Split the latch block itself, right before the terminator.
569 PollsNeeded.push_back(Term);
570 NumBackedgeSafepoints++;
575 if (enableEntrySafepoints(F)) {
576 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
577 PollsNeeded.push_back(Location);
578 Modified = true;
579 NumEntrySafepoints++;
581 // TODO: else we should assert that there was, in fact, a policy choice to
582 // not insert a entry safepoint poll.
585 // Now that we've identified all the needed safepoint poll locations, insert
586 // safepoint polls themselves.
587 for (Instruction *PollLocation : PollsNeeded) {
588 std::vector<CallBase *> RuntimeCalls;
589 InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
590 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
591 RuntimeCalls.end());
594 return Modified;
597 char PlaceBackedgeSafepointsImpl::ID = 0;
598 char PlaceSafepoints::ID = 0;
600 FunctionPass *llvm::createPlaceSafepointsPass() {
601 return new PlaceSafepoints();
604 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
605 "place-backedge-safepoints-impl",
606 "Place Backedge Safepoints", false, false)
607 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
608 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
609 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
610 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
611 "place-backedge-safepoints-impl",
612 "Place Backedge Safepoints", false, false)
614 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
615 false, false)
616 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
617 false, false)
619 static void
620 InsertSafepointPoll(Instruction *InsertBefore,
621 std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
622 const TargetLibraryInfo &TLI) {
623 BasicBlock *OrigBB = InsertBefore->getParent();
624 Module *M = InsertBefore->getModule();
625 assert(M && "must be part of a module");
627 // Inline the safepoint poll implementation - this will get all the branch,
628 // control flow, etc.. Most importantly, it will introduce the actual slow
629 // path call - where we need to insert a safepoint (parsepoint).
631 auto *F = M->getFunction(GCSafepointPollName);
632 assert(F && "gc.safepoint_poll function is missing");
633 assert(F->getValueType() ==
634 FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
635 "gc.safepoint_poll declared with wrong type");
636 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
637 CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
639 // Record some information about the call site we're replacing
640 BasicBlock::iterator Before(PollCall), After(PollCall);
641 bool IsBegin = false;
642 if (Before == OrigBB->begin())
643 IsBegin = true;
644 else
645 Before--;
647 After++;
648 assert(After != OrigBB->end() && "must have successor");
650 // Do the actual inlining
651 InlineFunctionInfo IFI;
652 bool InlineStatus = InlineFunction(PollCall, IFI);
653 assert(InlineStatus && "inline must succeed");
654 (void)InlineStatus; // suppress warning in release-asserts
656 // Check post-conditions
657 assert(IFI.StaticAllocas.empty() && "can't have allocs");
659 std::vector<CallInst *> Calls; // new calls
660 DenseSet<BasicBlock *> BBs; // new BBs + insertee
662 // Include only the newly inserted instructions, Note: begin may not be valid
663 // if we inserted to the beginning of the basic block
664 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
666 // If your poll function includes an unreachable at the end, that's not
667 // valid. Bugpoint likes to create this, so check for it.
668 assert(isPotentiallyReachable(&*Start, &*After) &&
669 "malformed poll function");
671 scanInlinedCode(&*Start, &*After, Calls, BBs);
672 assert(!Calls.empty() && "slow path not found for safepoint poll");
674 // Record the fact we need a parsable state at the runtime call contained in
675 // the poll function. This is required so that the runtime knows how to
676 // parse the last frame when we actually take the safepoint (i.e. execute
677 // the slow path)
678 assert(ParsePointsNeeded.empty());
679 for (auto *CI : Calls) {
680 // No safepoint needed or wanted
681 if (!needsStatepoint(CI, TLI))
682 continue;
684 // These are likely runtime calls. Should we assert that via calling
685 // convention or something?
686 ParsePointsNeeded.push_back(CI);
688 assert(ParsePointsNeeded.size() <= Calls.size());