1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit. That's
11 // done by RewriteStatepointsForGC.
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call. A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call. Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable. The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector. In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops. We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites. This is not
30 // because the poll itself is expensive in the generated code; it's not. Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
34 // We also need to make most call sites parseable. The callee might execute a
35 // poll (or otherwise be inspected by the GC). If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
44 // We do not currently support return statepoints, but adding them would not
45 // be hard. They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them. Patches welcome.
48 //===----------------------------------------------------------------------===//
50 #include "llvm/Pass.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/CFG.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LegacyPassManager.h"
61 #include "llvm/IR/Statepoint.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
68 #define DEBUG_TYPE "safepoint-placement"
70 STATISTIC(NumEntrySafepoints
, "Number of entry safepoints inserted");
71 STATISTIC(NumBackedgeSafepoints
, "Number of backedge safepoints inserted");
74 "Number of loops without safepoints due to calls in loop");
75 STATISTIC(FiniteExecution
,
76 "Number of loops without safepoints finite execution");
80 // Ignore opportunities to avoid placing safepoints on backedges, useful for
82 static cl::opt
<bool> AllBackedges("spp-all-backedges", cl::Hidden
,
85 /// How narrow does the trip count of a loop have to be to have to be considered
86 /// "counted"? Counted loops do not get safepoints at backedges.
87 static cl::opt
<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
88 cl::Hidden
, cl::init(32));
90 // If true, split the backedge of a loop when placing the safepoint, otherwise
91 // split the latch block itself. Both are useful to support for
92 // experimentation, but in practice, it looks like splitting the backedge
94 static cl::opt
<bool> SplitBackedge("spp-split-backedge", cl::Hidden
,
99 /// An analysis pass whose purpose is to identify each of the backedges in
100 /// the function which require a safepoint poll to be inserted.
101 struct PlaceBackedgeSafepointsImpl
: public FunctionPass
{
104 /// The output of the pass - gives a list of each backedge (described by
105 /// pointing at the branch) which need a poll inserted.
106 std::vector
<Instruction
*> PollLocations
;
108 /// True unless we're running spp-no-calls in which case we need to disable
109 /// the call-dependent placement opts.
110 bool CallSafepointsEnabled
;
112 ScalarEvolution
*SE
= nullptr;
113 DominatorTree
*DT
= nullptr;
114 LoopInfo
*LI
= nullptr;
115 TargetLibraryInfo
*TLI
= nullptr;
117 PlaceBackedgeSafepointsImpl(bool CallSafepoints
= false)
118 : FunctionPass(ID
), CallSafepointsEnabled(CallSafepoints
) {
119 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
122 bool runOnLoop(Loop
*);
123 void runOnLoopAndSubLoops(Loop
*L
) {
124 // Visit all the subloops
126 runOnLoopAndSubLoops(I
);
130 bool runOnFunction(Function
&F
) override
{
131 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
132 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
133 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
134 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
135 for (Loop
*I
: *LI
) {
136 runOnLoopAndSubLoops(I
);
141 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
142 AU
.addRequired
<DominatorTreeWrapperPass
>();
143 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
144 AU
.addRequired
<LoopInfoWrapperPass
>();
145 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
146 // We no longer modify the IR at all in this pass. Thus all
147 // analysis are preserved.
148 AU
.setPreservesAll();
153 static cl::opt
<bool> NoEntry("spp-no-entry", cl::Hidden
, cl::init(false));
154 static cl::opt
<bool> NoCall("spp-no-call", cl::Hidden
, cl::init(false));
155 static cl::opt
<bool> NoBackedge("spp-no-backedge", cl::Hidden
, cl::init(false));
158 struct PlaceSafepoints
: public FunctionPass
{
159 static char ID
; // Pass identification, replacement for typeid
161 PlaceSafepoints() : FunctionPass(ID
) {
162 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
164 bool runOnFunction(Function
&F
) override
;
166 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
167 // We modify the graph wholesale (inlining, block insertion, etc). We
168 // preserve nothing at the moment. We could potentially preserve dom tree
169 // if that was worth doing
170 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
175 // Insert a safepoint poll immediately before the given instruction. Does
176 // not handle the parsability of state at the runtime call, that's the
179 InsertSafepointPoll(Instruction
*InsertBefore
,
180 std::vector
<CallBase
*> &ParsePointsNeeded
/*rval*/,
181 const TargetLibraryInfo
&TLI
);
183 static bool needsStatepoint(CallBase
*Call
, const TargetLibraryInfo
&TLI
) {
184 if (callsGCLeafFunction(Call
, TLI
))
186 if (auto *CI
= dyn_cast
<CallInst
>(Call
)) {
187 if (CI
->isInlineAsm())
191 return !(isStatepoint(Call
) || isGCRelocate(Call
) || isGCResult(Call
));
194 /// Returns true if this loop is known to contain a call safepoint which
195 /// must unconditionally execute on any iteration of the loop which returns
196 /// to the loop header via an edge from Pred. Returns a conservative correct
197 /// answer; i.e. false is always valid.
198 static bool containsUnconditionalCallSafepoint(Loop
*L
, BasicBlock
*Header
,
201 const TargetLibraryInfo
&TLI
) {
202 // In general, we're looking for any cut of the graph which ensures
203 // there's a call safepoint along every edge between Header and Pred.
204 // For the moment, we look only for the 'cuts' that consist of a single call
205 // instruction in a block which is dominated by the Header and dominates the
206 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
207 // of such dominating blocks gets substantially more occurrences than just
208 // checking the Pred and Header blocks themselves. This may be due to the
209 // density of loop exit conditions caused by range and null checks.
210 // TODO: structure this as an analysis pass, cache the result for subloops,
211 // avoid dom tree recalculations
212 assert(DT
.dominates(Header
, Pred
) && "loop latch not dominated by header?");
214 BasicBlock
*Current
= Pred
;
216 for (Instruction
&I
: *Current
) {
217 if (auto *Call
= dyn_cast
<CallBase
>(&I
))
218 // Note: Technically, needing a safepoint isn't quite the right
219 // condition here. We should instead be checking if the target method
221 // unconditional poll. In practice, this is only a theoretical concern
222 // since we don't have any methods with conditional-only safepoint
224 if (needsStatepoint(Call
, TLI
))
228 if (Current
== Header
)
230 Current
= DT
.getNode(Current
)->getIDom()->getBlock();
236 /// Returns true if this loop is known to terminate in a finite number of
237 /// iterations. Note that this function may return false for a loop which
238 /// does actual terminate in a finite constant number of iterations due to
239 /// conservatism in the analysis.
240 static bool mustBeFiniteCountedLoop(Loop
*L
, ScalarEvolution
*SE
,
242 // A conservative bound on the loop as a whole.
243 const SCEV
*MaxTrips
= SE
->getConstantMaxBackedgeTakenCount(L
);
244 if (MaxTrips
!= SE
->getCouldNotCompute() &&
245 SE
->getUnsignedRange(MaxTrips
).getUnsignedMax().isIntN(
246 CountedLoopTripWidth
))
249 // If this is a conditional branch to the header with the alternate path
250 // being outside the loop, we can ask questions about the execution frequency
251 // of the exit block.
252 if (L
->isLoopExiting(Pred
)) {
253 // This returns an exact expression only. TODO: We really only need an
254 // upper bound here, but SE doesn't expose that.
255 const SCEV
*MaxExec
= SE
->getExitCount(L
, Pred
);
256 if (MaxExec
!= SE
->getCouldNotCompute() &&
257 SE
->getUnsignedRange(MaxExec
).getUnsignedMax().isIntN(
258 CountedLoopTripWidth
))
262 return /* not finite */ false;
265 static void scanOneBB(Instruction
*Start
, Instruction
*End
,
266 std::vector
<CallInst
*> &Calls
,
267 DenseSet
<BasicBlock
*> &Seen
,
268 std::vector
<BasicBlock
*> &Worklist
) {
269 for (BasicBlock::iterator
BBI(Start
), BBE0
= Start
->getParent()->end(),
270 BBE1
= BasicBlock::iterator(End
);
271 BBI
!= BBE0
&& BBI
!= BBE1
; BBI
++) {
272 if (CallInst
*CI
= dyn_cast
<CallInst
>(&*BBI
))
275 // FIXME: This code does not handle invokes
276 assert(!isa
<InvokeInst
>(&*BBI
) &&
277 "support for invokes in poll code needed");
279 // Only add the successor blocks if we reach the terminator instruction
280 // without encountering end first
281 if (BBI
->isTerminator()) {
282 BasicBlock
*BB
= BBI
->getParent();
283 for (BasicBlock
*Succ
: successors(BB
)) {
284 if (Seen
.insert(Succ
).second
) {
285 Worklist
.push_back(Succ
);
292 static void scanInlinedCode(Instruction
*Start
, Instruction
*End
,
293 std::vector
<CallInst
*> &Calls
,
294 DenseSet
<BasicBlock
*> &Seen
) {
296 std::vector
<BasicBlock
*> Worklist
;
297 Seen
.insert(Start
->getParent());
298 scanOneBB(Start
, End
, Calls
, Seen
, Worklist
);
299 while (!Worklist
.empty()) {
300 BasicBlock
*BB
= Worklist
.back();
302 scanOneBB(&*BB
->begin(), End
, Calls
, Seen
, Worklist
);
306 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop
*L
) {
307 // Loop through all loop latches (branches controlling backedges). We need
308 // to place a safepoint on every backedge (potentially).
309 // Note: In common usage, there will be only one edge due to LoopSimplify
310 // having run sometime earlier in the pipeline, but this code must be correct
311 // w.r.t. loops with multiple backedges.
312 BasicBlock
*Header
= L
->getHeader();
313 SmallVector
<BasicBlock
*, 16> LoopLatches
;
314 L
->getLoopLatches(LoopLatches
);
315 for (BasicBlock
*Pred
: LoopLatches
) {
316 assert(L
->contains(Pred
));
318 // Make a policy decision about whether this loop needs a safepoint or
319 // not. Note that this is about unburdening the optimizer in loops, not
320 // avoiding the runtime cost of the actual safepoint.
322 if (mustBeFiniteCountedLoop(L
, SE
, Pred
)) {
323 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
327 if (CallSafepointsEnabled
&&
328 containsUnconditionalCallSafepoint(L
, Header
, Pred
, *DT
, *TLI
)) {
329 // Note: This is only semantically legal since we won't do any further
330 // IPO or inlining before the actual call insertion.. If we hadn't, we
331 // might latter loose this call safepoint.
334 << "skipping safepoint placement due to unconditional call\n");
340 // TODO: We can create an inner loop which runs a finite number of
341 // iterations with an outer loop which contains a safepoint. This would
342 // not help runtime performance that much, but it might help our ability to
343 // optimize the inner loop.
345 // Safepoint insertion would involve creating a new basic block (as the
346 // target of the current backedge) which does the safepoint (of all live
347 // variables) and branches to the true header
348 Instruction
*Term
= Pred
->getTerminator();
350 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term
);
352 PollLocations
.push_back(Term
);
358 /// Returns true if an entry safepoint is not required before this callsite in
359 /// the caller function.
360 static bool doesNotRequireEntrySafepointBefore(CallBase
*Call
) {
361 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Call
)) {
362 switch (II
->getIntrinsicID()) {
363 case Intrinsic::experimental_gc_statepoint
:
364 case Intrinsic::experimental_patchpoint_void
:
365 case Intrinsic::experimental_patchpoint_i64
:
366 // The can wrap an actual call which may grow the stack by an unbounded
367 // amount or run forever.
370 // Most LLVM intrinsics are things which do not expand to actual calls, or
371 // at least if they do, are leaf functions that cause only finite stack
372 // growth. In particular, the optimizer likes to form things like memsets
373 // out of stores in the original IR. Another important example is
374 // llvm.localescape which must occur in the entry block. Inserting a
375 // safepoint before it is not legal since it could push the localescape
376 // out of the entry block.
383 static Instruction
*findLocationForEntrySafepoint(Function
&F
,
386 // Conceptually, this poll needs to be on method entry, but in
387 // practice, we place it as late in the entry block as possible. We
388 // can place it as late as we want as long as it dominates all calls
389 // that can grow the stack. This, combined with backedge polls,
390 // give us all the progress guarantees we need.
392 // hasNextInstruction and nextInstruction are used to iterate
393 // through a "straight line" execution sequence.
395 auto HasNextInstruction
= [](Instruction
*I
) {
396 if (!I
->isTerminator())
399 BasicBlock
*nextBB
= I
->getParent()->getUniqueSuccessor();
400 return nextBB
&& (nextBB
->getUniquePredecessor() != nullptr);
403 auto NextInstruction
= [&](Instruction
*I
) {
404 assert(HasNextInstruction(I
) &&
405 "first check if there is a next instruction!");
407 if (I
->isTerminator())
408 return &I
->getParent()->getUniqueSuccessor()->front();
409 return &*++I
->getIterator();
412 Instruction
*Cursor
= nullptr;
413 for (Cursor
= &F
.getEntryBlock().front(); HasNextInstruction(Cursor
);
414 Cursor
= NextInstruction(Cursor
)) {
416 // We need to ensure a safepoint poll occurs before any 'real' call. The
417 // easiest way to ensure finite execution between safepoints in the face of
418 // recursive and mutually recursive functions is to enforce that each take
419 // a safepoint. Additionally, we need to ensure a poll before any call
420 // which can grow the stack by an unbounded amount. This isn't required
421 // for GC semantics per se, but is a common requirement for languages
422 // which detect stack overflow via guard pages and then throw exceptions.
423 if (auto *Call
= dyn_cast
<CallBase
>(Cursor
)) {
424 if (doesNotRequireEntrySafepointBefore(Call
))
430 assert((HasNextInstruction(Cursor
) || Cursor
->isTerminator()) &&
431 "either we stopped because of a call, or because of terminator");
436 static const char *const GCSafepointPollName
= "gc.safepoint_poll";
438 static bool isGCSafepointPoll(Function
&F
) {
439 return F
.getName().equals(GCSafepointPollName
);
442 /// Returns true if this function should be rewritten to include safepoint
443 /// polls and parseable call sites. The main point of this function is to be
444 /// an extension point for custom logic.
445 static bool shouldRewriteFunction(Function
&F
) {
446 // TODO: This should check the GCStrategy
448 const auto &FunctionGCName
= F
.getGC();
449 const StringRef
StatepointExampleName("statepoint-example");
450 const StringRef
CoreCLRName("coreclr");
451 return (StatepointExampleName
== FunctionGCName
) ||
452 (CoreCLRName
== FunctionGCName
);
457 // TODO: These should become properties of the GCStrategy, possibly with
458 // command line overrides.
459 static bool enableEntrySafepoints(Function
&F
) { return !NoEntry
; }
460 static bool enableBackedgeSafepoints(Function
&F
) { return !NoBackedge
; }
461 static bool enableCallSafepoints(Function
&F
) { return !NoCall
; }
463 bool PlaceSafepoints::runOnFunction(Function
&F
) {
464 if (F
.isDeclaration() || F
.empty()) {
465 // This is a declaration, nothing to do. Must exit early to avoid crash in
466 // dom tree calculation
470 if (isGCSafepointPoll(F
)) {
471 // Given we're inlining this inside of safepoint poll insertion, this
472 // doesn't make any sense. Note that we do make any contained calls
473 // parseable after we inline a poll.
477 if (!shouldRewriteFunction(F
))
480 const TargetLibraryInfo
&TLI
=
481 getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
483 bool Modified
= false;
485 // In various bits below, we rely on the fact that uses are reachable from
486 // defs. When there are basic blocks unreachable from the entry, dominance
487 // and reachablity queries return non-sensical results. Thus, we preprocess
488 // the function to ensure these properties hold.
489 Modified
|= removeUnreachableBlocks(F
);
491 // STEP 1 - Insert the safepoint polling locations. We do not need to
492 // actually insert parse points yet. That will be done for all polls and
493 // calls in a single pass.
498 SmallVector
<Instruction
*, 16> PollsNeeded
;
499 std::vector
<CallBase
*> ParsePointNeeded
;
501 if (enableBackedgeSafepoints(F
)) {
502 // Construct a pass manager to run the LoopPass backedge logic. We
503 // need the pass manager to handle scheduling all the loop passes
504 // appropriately. Doing this by hand is painful and just not worth messing
505 // with for the moment.
506 legacy::FunctionPassManager
FPM(F
.getParent());
507 bool CanAssumeCallSafepoints
= enableCallSafepoints(F
);
508 auto *PBS
= new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints
);
512 // We preserve dominance information when inserting the poll, otherwise
513 // we'd have to recalculate this on every insert
516 auto &PollLocations
= PBS
->PollLocations
;
518 auto OrderByBBName
= [](Instruction
*a
, Instruction
*b
) {
519 return a
->getParent()->getName() < b
->getParent()->getName();
521 // We need the order of list to be stable so that naming ends up stable
522 // when we split edges. This makes test cases much easier to write.
523 llvm::sort(PollLocations
, OrderByBBName
);
525 // We can sometimes end up with duplicate poll locations. This happens if
526 // a single loop is visited more than once. The fact this happens seems
527 // wrong, but it does happen for the split-backedge.ll test case.
528 PollLocations
.erase(std::unique(PollLocations
.begin(),
529 PollLocations
.end()),
530 PollLocations
.end());
532 // Insert a poll at each point the analysis pass identified
533 // The poll location must be the terminator of a loop latch block.
534 for (Instruction
*Term
: PollLocations
) {
535 // We are inserting a poll, the function is modified
539 // Split the backedge of the loop and insert the poll within that new
540 // basic block. This creates a loop with two latches per original
541 // latch (which is non-ideal), but this appears to be easier to
542 // optimize in practice than inserting the poll immediately before the
545 // Since this is a latch, at least one of the successors must dominate
546 // it. Its possible that we have a) duplicate edges to the same header
547 // and b) edges to distinct loop headers. We need to insert pools on
549 SetVector
<BasicBlock
*> Headers
;
550 for (unsigned i
= 0; i
< Term
->getNumSuccessors(); i
++) {
551 BasicBlock
*Succ
= Term
->getSuccessor(i
);
552 if (DT
.dominates(Succ
, Term
->getParent())) {
553 Headers
.insert(Succ
);
556 assert(!Headers
.empty() && "poll location is not a loop latch?");
558 // The split loop structure here is so that we only need to recalculate
559 // the dominator tree once. Alternatively, we could just keep it up to
560 // date and use a more natural merged loop.
561 SetVector
<BasicBlock
*> SplitBackedges
;
562 for (BasicBlock
*Header
: Headers
) {
563 BasicBlock
*NewBB
= SplitEdge(Term
->getParent(), Header
, &DT
);
564 PollsNeeded
.push_back(NewBB
->getTerminator());
565 NumBackedgeSafepoints
++;
568 // Split the latch block itself, right before the terminator.
569 PollsNeeded
.push_back(Term
);
570 NumBackedgeSafepoints
++;
575 if (enableEntrySafepoints(F
)) {
576 if (Instruction
*Location
= findLocationForEntrySafepoint(F
, DT
)) {
577 PollsNeeded
.push_back(Location
);
579 NumEntrySafepoints
++;
581 // TODO: else we should assert that there was, in fact, a policy choice to
582 // not insert a entry safepoint poll.
585 // Now that we've identified all the needed safepoint poll locations, insert
586 // safepoint polls themselves.
587 for (Instruction
*PollLocation
: PollsNeeded
) {
588 std::vector
<CallBase
*> RuntimeCalls
;
589 InsertSafepointPoll(PollLocation
, RuntimeCalls
, TLI
);
590 ParsePointNeeded
.insert(ParsePointNeeded
.end(), RuntimeCalls
.begin(),
597 char PlaceBackedgeSafepointsImpl::ID
= 0;
598 char PlaceSafepoints::ID
= 0;
600 FunctionPass
*llvm::createPlaceSafepointsPass() {
601 return new PlaceSafepoints();
604 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl
,
605 "place-backedge-safepoints-impl",
606 "Place Backedge Safepoints", false, false)
607 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
608 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
609 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
610 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl
,
611 "place-backedge-safepoints-impl",
612 "Place Backedge Safepoints", false, false)
614 INITIALIZE_PASS_BEGIN(PlaceSafepoints
, "place-safepoints", "Place Safepoints",
616 INITIALIZE_PASS_END(PlaceSafepoints
, "place-safepoints", "Place Safepoints",
620 InsertSafepointPoll(Instruction
*InsertBefore
,
621 std::vector
<CallBase
*> &ParsePointsNeeded
/*rval*/,
622 const TargetLibraryInfo
&TLI
) {
623 BasicBlock
*OrigBB
= InsertBefore
->getParent();
624 Module
*M
= InsertBefore
->getModule();
625 assert(M
&& "must be part of a module");
627 // Inline the safepoint poll implementation - this will get all the branch,
628 // control flow, etc.. Most importantly, it will introduce the actual slow
629 // path call - where we need to insert a safepoint (parsepoint).
631 auto *F
= M
->getFunction(GCSafepointPollName
);
632 assert(F
&& "gc.safepoint_poll function is missing");
633 assert(F
->getValueType() ==
634 FunctionType::get(Type::getVoidTy(M
->getContext()), false) &&
635 "gc.safepoint_poll declared with wrong type");
636 assert(!F
->empty() && "gc.safepoint_poll must be a non-empty function");
637 CallInst
*PollCall
= CallInst::Create(F
, "", InsertBefore
);
639 // Record some information about the call site we're replacing
640 BasicBlock::iterator
Before(PollCall
), After(PollCall
);
641 bool IsBegin
= false;
642 if (Before
== OrigBB
->begin())
648 assert(After
!= OrigBB
->end() && "must have successor");
650 // Do the actual inlining
651 InlineFunctionInfo IFI
;
652 bool InlineStatus
= InlineFunction(PollCall
, IFI
);
653 assert(InlineStatus
&& "inline must succeed");
654 (void)InlineStatus
; // suppress warning in release-asserts
656 // Check post-conditions
657 assert(IFI
.StaticAllocas
.empty() && "can't have allocs");
659 std::vector
<CallInst
*> Calls
; // new calls
660 DenseSet
<BasicBlock
*> BBs
; // new BBs + insertee
662 // Include only the newly inserted instructions, Note: begin may not be valid
663 // if we inserted to the beginning of the basic block
664 BasicBlock::iterator Start
= IsBegin
? OrigBB
->begin() : std::next(Before
);
666 // If your poll function includes an unreachable at the end, that's not
667 // valid. Bugpoint likes to create this, so check for it.
668 assert(isPotentiallyReachable(&*Start
, &*After
) &&
669 "malformed poll function");
671 scanInlinedCode(&*Start
, &*After
, Calls
, BBs
);
672 assert(!Calls
.empty() && "slow path not found for safepoint poll");
674 // Record the fact we need a parsable state at the runtime call contained in
675 // the poll function. This is required so that the runtime knows how to
676 // parse the last frame when we actually take the safepoint (i.e. execute
678 assert(ParsePointsNeeded
.empty());
679 for (auto *CI
: Calls
) {
680 // No safepoint needed or wanted
681 if (!needsStatepoint(CI
, TLI
))
684 // These are likely runtime calls. Should we assert that via calling
685 // convention or something?
686 ParsePointsNeeded
.push_back(CI
);
688 assert(ParsePointsNeeded
.size() <= Calls
.size());