[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / SROA.cpp
blob2aa8ae239bf563646104d0e0dc745ada1f2a489b
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantFolder.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DIBuilder.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GetElementPtrTypeIterator.h"
57 #include "llvm/IR/GlobalAlias.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstVisitor.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <chrono>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstring>
90 #include <iterator>
91 #include <string>
92 #include <tuple>
93 #include <utility>
94 #include <vector>
96 #ifndef NDEBUG
97 // We only use this for a debug check.
98 #include <random>
99 #endif
101 using namespace llvm;
102 using namespace llvm::sroa;
104 #define DEBUG_TYPE "sroa"
106 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
107 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
108 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
109 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
110 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
111 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
112 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
113 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
114 STATISTIC(NumDeleted, "Number of instructions deleted");
115 STATISTIC(NumVectorized, "Number of vectorized aggregates");
117 /// Hidden option to enable randomly shuffling the slices to help uncover
118 /// instability in their order.
119 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
120 cl::init(false), cl::Hidden);
122 /// Hidden option to experiment with completely strict handling of inbounds
123 /// GEPs.
124 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
125 cl::Hidden);
127 namespace {
129 /// A custom IRBuilder inserter which prefixes all names, but only in
130 /// Assert builds.
131 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
132 std::string Prefix;
134 const Twine getNameWithPrefix(const Twine &Name) const {
135 return Name.isTriviallyEmpty() ? Name : Prefix + Name;
138 public:
139 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
141 protected:
142 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
143 BasicBlock::iterator InsertPt) const {
144 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
145 InsertPt);
149 /// Provide a type for IRBuilder that drops names in release builds.
150 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
152 /// A used slice of an alloca.
154 /// This structure represents a slice of an alloca used by some instruction. It
155 /// stores both the begin and end offsets of this use, a pointer to the use
156 /// itself, and a flag indicating whether we can classify the use as splittable
157 /// or not when forming partitions of the alloca.
158 class Slice {
159 /// The beginning offset of the range.
160 uint64_t BeginOffset = 0;
162 /// The ending offset, not included in the range.
163 uint64_t EndOffset = 0;
165 /// Storage for both the use of this slice and whether it can be
166 /// split.
167 PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
169 public:
170 Slice() = default;
172 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
173 : BeginOffset(BeginOffset), EndOffset(EndOffset),
174 UseAndIsSplittable(U, IsSplittable) {}
176 uint64_t beginOffset() const { return BeginOffset; }
177 uint64_t endOffset() const { return EndOffset; }
179 bool isSplittable() const { return UseAndIsSplittable.getInt(); }
180 void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
182 Use *getUse() const { return UseAndIsSplittable.getPointer(); }
184 bool isDead() const { return getUse() == nullptr; }
185 void kill() { UseAndIsSplittable.setPointer(nullptr); }
187 /// Support for ordering ranges.
189 /// This provides an ordering over ranges such that start offsets are
190 /// always increasing, and within equal start offsets, the end offsets are
191 /// decreasing. Thus the spanning range comes first in a cluster with the
192 /// same start position.
193 bool operator<(const Slice &RHS) const {
194 if (beginOffset() < RHS.beginOffset())
195 return true;
196 if (beginOffset() > RHS.beginOffset())
197 return false;
198 if (isSplittable() != RHS.isSplittable())
199 return !isSplittable();
200 if (endOffset() > RHS.endOffset())
201 return true;
202 return false;
205 /// Support comparison with a single offset to allow binary searches.
206 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
207 uint64_t RHSOffset) {
208 return LHS.beginOffset() < RHSOffset;
210 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
211 const Slice &RHS) {
212 return LHSOffset < RHS.beginOffset();
215 bool operator==(const Slice &RHS) const {
216 return isSplittable() == RHS.isSplittable() &&
217 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
219 bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
222 } // end anonymous namespace
224 /// Representation of the alloca slices.
226 /// This class represents the slices of an alloca which are formed by its
227 /// various uses. If a pointer escapes, we can't fully build a representation
228 /// for the slices used and we reflect that in this structure. The uses are
229 /// stored, sorted by increasing beginning offset and with unsplittable slices
230 /// starting at a particular offset before splittable slices.
231 class llvm::sroa::AllocaSlices {
232 public:
233 /// Construct the slices of a particular alloca.
234 AllocaSlices(const DataLayout &DL, AllocaInst &AI);
236 /// Test whether a pointer to the allocation escapes our analysis.
238 /// If this is true, the slices are never fully built and should be
239 /// ignored.
240 bool isEscaped() const { return PointerEscapingInstr; }
242 /// Support for iterating over the slices.
243 /// @{
244 using iterator = SmallVectorImpl<Slice>::iterator;
245 using range = iterator_range<iterator>;
247 iterator begin() { return Slices.begin(); }
248 iterator end() { return Slices.end(); }
250 using const_iterator = SmallVectorImpl<Slice>::const_iterator;
251 using const_range = iterator_range<const_iterator>;
253 const_iterator begin() const { return Slices.begin(); }
254 const_iterator end() const { return Slices.end(); }
255 /// @}
257 /// Erase a range of slices.
258 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
260 /// Insert new slices for this alloca.
262 /// This moves the slices into the alloca's slices collection, and re-sorts
263 /// everything so that the usual ordering properties of the alloca's slices
264 /// hold.
265 void insert(ArrayRef<Slice> NewSlices) {
266 int OldSize = Slices.size();
267 Slices.append(NewSlices.begin(), NewSlices.end());
268 auto SliceI = Slices.begin() + OldSize;
269 llvm::sort(SliceI, Slices.end());
270 std::inplace_merge(Slices.begin(), SliceI, Slices.end());
273 // Forward declare the iterator and range accessor for walking the
274 // partitions.
275 class partition_iterator;
276 iterator_range<partition_iterator> partitions();
278 /// Access the dead users for this alloca.
279 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
281 /// Access the dead operands referring to this alloca.
283 /// These are operands which have cannot actually be used to refer to the
284 /// alloca as they are outside its range and the user doesn't correct for
285 /// that. These mostly consist of PHI node inputs and the like which we just
286 /// need to replace with undef.
287 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
289 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
290 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
291 void printSlice(raw_ostream &OS, const_iterator I,
292 StringRef Indent = " ") const;
293 void printUse(raw_ostream &OS, const_iterator I,
294 StringRef Indent = " ") const;
295 void print(raw_ostream &OS) const;
296 void dump(const_iterator I) const;
297 void dump() const;
298 #endif
300 private:
301 template <typename DerivedT, typename RetT = void> class BuilderBase;
302 class SliceBuilder;
304 friend class AllocaSlices::SliceBuilder;
306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307 /// Handle to alloca instruction to simplify method interfaces.
308 AllocaInst &AI;
309 #endif
311 /// The instruction responsible for this alloca not having a known set
312 /// of slices.
314 /// When an instruction (potentially) escapes the pointer to the alloca, we
315 /// store a pointer to that here and abort trying to form slices of the
316 /// alloca. This will be null if the alloca slices are analyzed successfully.
317 Instruction *PointerEscapingInstr;
319 /// The slices of the alloca.
321 /// We store a vector of the slices formed by uses of the alloca here. This
322 /// vector is sorted by increasing begin offset, and then the unsplittable
323 /// slices before the splittable ones. See the Slice inner class for more
324 /// details.
325 SmallVector<Slice, 8> Slices;
327 /// Instructions which will become dead if we rewrite the alloca.
329 /// Note that these are not separated by slice. This is because we expect an
330 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
331 /// all these instructions can simply be removed and replaced with undef as
332 /// they come from outside of the allocated space.
333 SmallVector<Instruction *, 8> DeadUsers;
335 /// Operands which will become dead if we rewrite the alloca.
337 /// These are operands that in their particular use can be replaced with
338 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
339 /// to PHI nodes and the like. They aren't entirely dead (there might be
340 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
341 /// want to swap this particular input for undef to simplify the use lists of
342 /// the alloca.
343 SmallVector<Use *, 8> DeadOperands;
346 /// A partition of the slices.
348 /// An ephemeral representation for a range of slices which can be viewed as
349 /// a partition of the alloca. This range represents a span of the alloca's
350 /// memory which cannot be split, and provides access to all of the slices
351 /// overlapping some part of the partition.
353 /// Objects of this type are produced by traversing the alloca's slices, but
354 /// are only ephemeral and not persistent.
355 class llvm::sroa::Partition {
356 private:
357 friend class AllocaSlices;
358 friend class AllocaSlices::partition_iterator;
360 using iterator = AllocaSlices::iterator;
362 /// The beginning and ending offsets of the alloca for this
363 /// partition.
364 uint64_t BeginOffset, EndOffset;
366 /// The start and end iterators of this partition.
367 iterator SI, SJ;
369 /// A collection of split slice tails overlapping the partition.
370 SmallVector<Slice *, 4> SplitTails;
372 /// Raw constructor builds an empty partition starting and ending at
373 /// the given iterator.
374 Partition(iterator SI) : SI(SI), SJ(SI) {}
376 public:
377 /// The start offset of this partition.
379 /// All of the contained slices start at or after this offset.
380 uint64_t beginOffset() const { return BeginOffset; }
382 /// The end offset of this partition.
384 /// All of the contained slices end at or before this offset.
385 uint64_t endOffset() const { return EndOffset; }
387 /// The size of the partition.
389 /// Note that this can never be zero.
390 uint64_t size() const {
391 assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
392 return EndOffset - BeginOffset;
395 /// Test whether this partition contains no slices, and merely spans
396 /// a region occupied by split slices.
397 bool empty() const { return SI == SJ; }
399 /// \name Iterate slices that start within the partition.
400 /// These may be splittable or unsplittable. They have a begin offset >= the
401 /// partition begin offset.
402 /// @{
403 // FIXME: We should probably define a "concat_iterator" helper and use that
404 // to stitch together pointee_iterators over the split tails and the
405 // contiguous iterators of the partition. That would give a much nicer
406 // interface here. We could then additionally expose filtered iterators for
407 // split, unsplit, and unsplittable splices based on the usage patterns.
408 iterator begin() const { return SI; }
409 iterator end() const { return SJ; }
410 /// @}
412 /// Get the sequence of split slice tails.
414 /// These tails are of slices which start before this partition but are
415 /// split and overlap into the partition. We accumulate these while forming
416 /// partitions.
417 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
420 /// An iterator over partitions of the alloca's slices.
422 /// This iterator implements the core algorithm for partitioning the alloca's
423 /// slices. It is a forward iterator as we don't support backtracking for
424 /// efficiency reasons, and re-use a single storage area to maintain the
425 /// current set of split slices.
427 /// It is templated on the slice iterator type to use so that it can operate
428 /// with either const or non-const slice iterators.
429 class AllocaSlices::partition_iterator
430 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
431 Partition> {
432 friend class AllocaSlices;
434 /// Most of the state for walking the partitions is held in a class
435 /// with a nice interface for examining them.
436 Partition P;
438 /// We need to keep the end of the slices to know when to stop.
439 AllocaSlices::iterator SE;
441 /// We also need to keep track of the maximum split end offset seen.
442 /// FIXME: Do we really?
443 uint64_t MaxSplitSliceEndOffset = 0;
445 /// Sets the partition to be empty at given iterator, and sets the
446 /// end iterator.
447 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
448 : P(SI), SE(SE) {
449 // If not already at the end, advance our state to form the initial
450 // partition.
451 if (SI != SE)
452 advance();
455 /// Advance the iterator to the next partition.
457 /// Requires that the iterator not be at the end of the slices.
458 void advance() {
459 assert((P.SI != SE || !P.SplitTails.empty()) &&
460 "Cannot advance past the end of the slices!");
462 // Clear out any split uses which have ended.
463 if (!P.SplitTails.empty()) {
464 if (P.EndOffset >= MaxSplitSliceEndOffset) {
465 // If we've finished all splits, this is easy.
466 P.SplitTails.clear();
467 MaxSplitSliceEndOffset = 0;
468 } else {
469 // Remove the uses which have ended in the prior partition. This
470 // cannot change the max split slice end because we just checked that
471 // the prior partition ended prior to that max.
472 P.SplitTails.erase(llvm::remove_if(P.SplitTails,
473 [&](Slice *S) {
474 return S->endOffset() <=
475 P.EndOffset;
477 P.SplitTails.end());
478 assert(llvm::any_of(P.SplitTails,
479 [&](Slice *S) {
480 return S->endOffset() == MaxSplitSliceEndOffset;
481 }) &&
482 "Could not find the current max split slice offset!");
483 assert(llvm::all_of(P.SplitTails,
484 [&](Slice *S) {
485 return S->endOffset() <= MaxSplitSliceEndOffset;
486 }) &&
487 "Max split slice end offset is not actually the max!");
491 // If P.SI is already at the end, then we've cleared the split tail and
492 // now have an end iterator.
493 if (P.SI == SE) {
494 assert(P.SplitTails.empty() && "Failed to clear the split slices!");
495 return;
498 // If we had a non-empty partition previously, set up the state for
499 // subsequent partitions.
500 if (P.SI != P.SJ) {
501 // Accumulate all the splittable slices which started in the old
502 // partition into the split list.
503 for (Slice &S : P)
504 if (S.isSplittable() && S.endOffset() > P.EndOffset) {
505 P.SplitTails.push_back(&S);
506 MaxSplitSliceEndOffset =
507 std::max(S.endOffset(), MaxSplitSliceEndOffset);
510 // Start from the end of the previous partition.
511 P.SI = P.SJ;
513 // If P.SI is now at the end, we at most have a tail of split slices.
514 if (P.SI == SE) {
515 P.BeginOffset = P.EndOffset;
516 P.EndOffset = MaxSplitSliceEndOffset;
517 return;
520 // If the we have split slices and the next slice is after a gap and is
521 // not splittable immediately form an empty partition for the split
522 // slices up until the next slice begins.
523 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
524 !P.SI->isSplittable()) {
525 P.BeginOffset = P.EndOffset;
526 P.EndOffset = P.SI->beginOffset();
527 return;
531 // OK, we need to consume new slices. Set the end offset based on the
532 // current slice, and step SJ past it. The beginning offset of the
533 // partition is the beginning offset of the next slice unless we have
534 // pre-existing split slices that are continuing, in which case we begin
535 // at the prior end offset.
536 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
537 P.EndOffset = P.SI->endOffset();
538 ++P.SJ;
540 // There are two strategies to form a partition based on whether the
541 // partition starts with an unsplittable slice or a splittable slice.
542 if (!P.SI->isSplittable()) {
543 // When we're forming an unsplittable region, it must always start at
544 // the first slice and will extend through its end.
545 assert(P.BeginOffset == P.SI->beginOffset());
547 // Form a partition including all of the overlapping slices with this
548 // unsplittable slice.
549 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
550 if (!P.SJ->isSplittable())
551 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
552 ++P.SJ;
555 // We have a partition across a set of overlapping unsplittable
556 // partitions.
557 return;
560 // If we're starting with a splittable slice, then we need to form
561 // a synthetic partition spanning it and any other overlapping splittable
562 // splices.
563 assert(P.SI->isSplittable() && "Forming a splittable partition!");
565 // Collect all of the overlapping splittable slices.
566 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
567 P.SJ->isSplittable()) {
568 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
569 ++P.SJ;
572 // Back upiP.EndOffset if we ended the span early when encountering an
573 // unsplittable slice. This synthesizes the early end offset of
574 // a partition spanning only splittable slices.
575 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
576 assert(!P.SJ->isSplittable());
577 P.EndOffset = P.SJ->beginOffset();
581 public:
582 bool operator==(const partition_iterator &RHS) const {
583 assert(SE == RHS.SE &&
584 "End iterators don't match between compared partition iterators!");
586 // The observed positions of partitions is marked by the P.SI iterator and
587 // the emptiness of the split slices. The latter is only relevant when
588 // P.SI == SE, as the end iterator will additionally have an empty split
589 // slices list, but the prior may have the same P.SI and a tail of split
590 // slices.
591 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
592 assert(P.SJ == RHS.P.SJ &&
593 "Same set of slices formed two different sized partitions!");
594 assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
595 "Same slice position with differently sized non-empty split "
596 "slice tails!");
597 return true;
599 return false;
602 partition_iterator &operator++() {
603 advance();
604 return *this;
607 Partition &operator*() { return P; }
610 /// A forward range over the partitions of the alloca's slices.
612 /// This accesses an iterator range over the partitions of the alloca's
613 /// slices. It computes these partitions on the fly based on the overlapping
614 /// offsets of the slices and the ability to split them. It will visit "empty"
615 /// partitions to cover regions of the alloca only accessed via split
616 /// slices.
617 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
618 return make_range(partition_iterator(begin(), end()),
619 partition_iterator(end(), end()));
622 static Value *foldSelectInst(SelectInst &SI) {
623 // If the condition being selected on is a constant or the same value is
624 // being selected between, fold the select. Yes this does (rarely) happen
625 // early on.
626 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
627 return SI.getOperand(1 + CI->isZero());
628 if (SI.getOperand(1) == SI.getOperand(2))
629 return SI.getOperand(1);
631 return nullptr;
634 /// A helper that folds a PHI node or a select.
635 static Value *foldPHINodeOrSelectInst(Instruction &I) {
636 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
637 // If PN merges together the same value, return that value.
638 return PN->hasConstantValue();
640 return foldSelectInst(cast<SelectInst>(I));
643 /// Builder for the alloca slices.
645 /// This class builds a set of alloca slices by recursively visiting the uses
646 /// of an alloca and making a slice for each load and store at each offset.
647 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
648 friend class PtrUseVisitor<SliceBuilder>;
649 friend class InstVisitor<SliceBuilder>;
651 using Base = PtrUseVisitor<SliceBuilder>;
653 const uint64_t AllocSize;
654 AllocaSlices &AS;
656 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
657 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
659 /// Set to de-duplicate dead instructions found in the use walk.
660 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
662 public:
663 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
664 : PtrUseVisitor<SliceBuilder>(DL),
665 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
667 private:
668 void markAsDead(Instruction &I) {
669 if (VisitedDeadInsts.insert(&I).second)
670 AS.DeadUsers.push_back(&I);
673 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
674 bool IsSplittable = false) {
675 // Completely skip uses which have a zero size or start either before or
676 // past the end of the allocation.
677 if (Size == 0 || Offset.uge(AllocSize)) {
678 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
679 << Offset
680 << " which has zero size or starts outside of the "
681 << AllocSize << " byte alloca:\n"
682 << " alloca: " << AS.AI << "\n"
683 << " use: " << I << "\n");
684 return markAsDead(I);
687 uint64_t BeginOffset = Offset.getZExtValue();
688 uint64_t EndOffset = BeginOffset + Size;
690 // Clamp the end offset to the end of the allocation. Note that this is
691 // formulated to handle even the case where "BeginOffset + Size" overflows.
692 // This may appear superficially to be something we could ignore entirely,
693 // but that is not so! There may be widened loads or PHI-node uses where
694 // some instructions are dead but not others. We can't completely ignore
695 // them, and so have to record at least the information here.
696 assert(AllocSize >= BeginOffset); // Established above.
697 if (Size > AllocSize - BeginOffset) {
698 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
699 << Offset << " to remain within the " << AllocSize
700 << " byte alloca:\n"
701 << " alloca: " << AS.AI << "\n"
702 << " use: " << I << "\n");
703 EndOffset = AllocSize;
706 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
709 void visitBitCastInst(BitCastInst &BC) {
710 if (BC.use_empty())
711 return markAsDead(BC);
713 return Base::visitBitCastInst(BC);
716 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
717 if (ASC.use_empty())
718 return markAsDead(ASC);
720 return Base::visitAddrSpaceCastInst(ASC);
723 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
724 if (GEPI.use_empty())
725 return markAsDead(GEPI);
727 if (SROAStrictInbounds && GEPI.isInBounds()) {
728 // FIXME: This is a manually un-factored variant of the basic code inside
729 // of GEPs with checking of the inbounds invariant specified in the
730 // langref in a very strict sense. If we ever want to enable
731 // SROAStrictInbounds, this code should be factored cleanly into
732 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
733 // by writing out the code here where we have the underlying allocation
734 // size readily available.
735 APInt GEPOffset = Offset;
736 const DataLayout &DL = GEPI.getModule()->getDataLayout();
737 for (gep_type_iterator GTI = gep_type_begin(GEPI),
738 GTE = gep_type_end(GEPI);
739 GTI != GTE; ++GTI) {
740 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
741 if (!OpC)
742 break;
744 // Handle a struct index, which adds its field offset to the pointer.
745 if (StructType *STy = GTI.getStructTypeOrNull()) {
746 unsigned ElementIdx = OpC->getZExtValue();
747 const StructLayout *SL = DL.getStructLayout(STy);
748 GEPOffset +=
749 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
750 } else {
751 // For array or vector indices, scale the index by the size of the
752 // type.
753 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
754 GEPOffset += Index * APInt(Offset.getBitWidth(),
755 DL.getTypeAllocSize(GTI.getIndexedType()));
758 // If this index has computed an intermediate pointer which is not
759 // inbounds, then the result of the GEP is a poison value and we can
760 // delete it and all uses.
761 if (GEPOffset.ugt(AllocSize))
762 return markAsDead(GEPI);
766 return Base::visitGetElementPtrInst(GEPI);
769 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
770 uint64_t Size, bool IsVolatile) {
771 // We allow splitting of non-volatile loads and stores where the type is an
772 // integer type. These may be used to implement 'memcpy' or other "transfer
773 // of bits" patterns.
774 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
776 insertUse(I, Offset, Size, IsSplittable);
779 void visitLoadInst(LoadInst &LI) {
780 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
781 "All simple FCA loads should have been pre-split");
783 if (!IsOffsetKnown)
784 return PI.setAborted(&LI);
786 if (LI.isVolatile() &&
787 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
788 return PI.setAborted(&LI);
790 uint64_t Size = DL.getTypeStoreSize(LI.getType());
791 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
794 void visitStoreInst(StoreInst &SI) {
795 Value *ValOp = SI.getValueOperand();
796 if (ValOp == *U)
797 return PI.setEscapedAndAborted(&SI);
798 if (!IsOffsetKnown)
799 return PI.setAborted(&SI);
801 if (SI.isVolatile() &&
802 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
803 return PI.setAborted(&SI);
805 uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
807 // If this memory access can be shown to *statically* extend outside the
808 // bounds of the allocation, it's behavior is undefined, so simply
809 // ignore it. Note that this is more strict than the generic clamping
810 // behavior of insertUse. We also try to handle cases which might run the
811 // risk of overflow.
812 // FIXME: We should instead consider the pointer to have escaped if this
813 // function is being instrumented for addressing bugs or race conditions.
814 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
815 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
816 << Offset << " which extends past the end of the "
817 << AllocSize << " byte alloca:\n"
818 << " alloca: " << AS.AI << "\n"
819 << " use: " << SI << "\n");
820 return markAsDead(SI);
823 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
824 "All simple FCA stores should have been pre-split");
825 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
828 void visitMemSetInst(MemSetInst &II) {
829 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
830 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
831 if ((Length && Length->getValue() == 0) ||
832 (IsOffsetKnown && Offset.uge(AllocSize)))
833 // Zero-length mem transfer intrinsics can be ignored entirely.
834 return markAsDead(II);
836 if (!IsOffsetKnown)
837 return PI.setAborted(&II);
839 // Don't replace this with a store with a different address space. TODO:
840 // Use a store with the casted new alloca?
841 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
842 return PI.setAborted(&II);
844 insertUse(II, Offset, Length ? Length->getLimitedValue()
845 : AllocSize - Offset.getLimitedValue(),
846 (bool)Length);
849 void visitMemTransferInst(MemTransferInst &II) {
850 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
851 if (Length && Length->getValue() == 0)
852 // Zero-length mem transfer intrinsics can be ignored entirely.
853 return markAsDead(II);
855 // Because we can visit these intrinsics twice, also check to see if the
856 // first time marked this instruction as dead. If so, skip it.
857 if (VisitedDeadInsts.count(&II))
858 return;
860 if (!IsOffsetKnown)
861 return PI.setAborted(&II);
863 // Don't replace this with a load/store with a different address space.
864 // TODO: Use a store with the casted new alloca?
865 if (II.isVolatile() &&
866 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
867 II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
868 return PI.setAborted(&II);
870 // This side of the transfer is completely out-of-bounds, and so we can
871 // nuke the entire transfer. However, we also need to nuke the other side
872 // if already added to our partitions.
873 // FIXME: Yet another place we really should bypass this when
874 // instrumenting for ASan.
875 if (Offset.uge(AllocSize)) {
876 SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
877 MemTransferSliceMap.find(&II);
878 if (MTPI != MemTransferSliceMap.end())
879 AS.Slices[MTPI->second].kill();
880 return markAsDead(II);
883 uint64_t RawOffset = Offset.getLimitedValue();
884 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
886 // Check for the special case where the same exact value is used for both
887 // source and dest.
888 if (*U == II.getRawDest() && *U == II.getRawSource()) {
889 // For non-volatile transfers this is a no-op.
890 if (!II.isVolatile())
891 return markAsDead(II);
893 return insertUse(II, Offset, Size, /*IsSplittable=*/false);
896 // If we have seen both source and destination for a mem transfer, then
897 // they both point to the same alloca.
898 bool Inserted;
899 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
900 std::tie(MTPI, Inserted) =
901 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
902 unsigned PrevIdx = MTPI->second;
903 if (!Inserted) {
904 Slice &PrevP = AS.Slices[PrevIdx];
906 // Check if the begin offsets match and this is a non-volatile transfer.
907 // In that case, we can completely elide the transfer.
908 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
909 PrevP.kill();
910 return markAsDead(II);
913 // Otherwise we have an offset transfer within the same alloca. We can't
914 // split those.
915 PrevP.makeUnsplittable();
918 // Insert the use now that we've fixed up the splittable nature.
919 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
921 // Check that we ended up with a valid index in the map.
922 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
923 "Map index doesn't point back to a slice with this user.");
926 // Disable SRoA for any intrinsics except for lifetime invariants.
927 // FIXME: What about debug intrinsics? This matches old behavior, but
928 // doesn't make sense.
929 void visitIntrinsicInst(IntrinsicInst &II) {
930 if (!IsOffsetKnown)
931 return PI.setAborted(&II);
933 if (II.isLifetimeStartOrEnd()) {
934 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
935 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
936 Length->getLimitedValue());
937 insertUse(II, Offset, Size, true);
938 return;
941 Base::visitIntrinsicInst(II);
944 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
945 // We consider any PHI or select that results in a direct load or store of
946 // the same offset to be a viable use for slicing purposes. These uses
947 // are considered unsplittable and the size is the maximum loaded or stored
948 // size.
949 SmallPtrSet<Instruction *, 4> Visited;
950 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
951 Visited.insert(Root);
952 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
953 const DataLayout &DL = Root->getModule()->getDataLayout();
954 // If there are no loads or stores, the access is dead. We mark that as
955 // a size zero access.
956 Size = 0;
957 do {
958 Instruction *I, *UsedI;
959 std::tie(UsedI, I) = Uses.pop_back_val();
961 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
962 Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
963 continue;
965 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
966 Value *Op = SI->getOperand(0);
967 if (Op == UsedI)
968 return SI;
969 Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
970 continue;
973 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
974 if (!GEP->hasAllZeroIndices())
975 return GEP;
976 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
977 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
978 return I;
981 for (User *U : I->users())
982 if (Visited.insert(cast<Instruction>(U)).second)
983 Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
984 } while (!Uses.empty());
986 return nullptr;
989 void visitPHINodeOrSelectInst(Instruction &I) {
990 assert(isa<PHINode>(I) || isa<SelectInst>(I));
991 if (I.use_empty())
992 return markAsDead(I);
994 // TODO: We could use SimplifyInstruction here to fold PHINodes and
995 // SelectInsts. However, doing so requires to change the current
996 // dead-operand-tracking mechanism. For instance, suppose neither loading
997 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
998 // trap either. However, if we simply replace %U with undef using the
999 // current dead-operand-tracking mechanism, "load (select undef, undef,
1000 // %other)" may trap because the select may return the first operand
1001 // "undef".
1002 if (Value *Result = foldPHINodeOrSelectInst(I)) {
1003 if (Result == *U)
1004 // If the result of the constant fold will be the pointer, recurse
1005 // through the PHI/select as if we had RAUW'ed it.
1006 enqueueUsers(I);
1007 else
1008 // Otherwise the operand to the PHI/select is dead, and we can replace
1009 // it with undef.
1010 AS.DeadOperands.push_back(U);
1012 return;
1015 if (!IsOffsetKnown)
1016 return PI.setAborted(&I);
1018 // See if we already have computed info on this node.
1019 uint64_t &Size = PHIOrSelectSizes[&I];
1020 if (!Size) {
1021 // This is a new PHI/Select, check for an unsafe use of it.
1022 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1023 return PI.setAborted(UnsafeI);
1026 // For PHI and select operands outside the alloca, we can't nuke the entire
1027 // phi or select -- the other side might still be relevant, so we special
1028 // case them here and use a separate structure to track the operands
1029 // themselves which should be replaced with undef.
1030 // FIXME: This should instead be escaped in the event we're instrumenting
1031 // for address sanitization.
1032 if (Offset.uge(AllocSize)) {
1033 AS.DeadOperands.push_back(U);
1034 return;
1037 insertUse(I, Offset, Size);
1040 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1042 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1044 /// Disable SROA entirely if there are unhandled users of the alloca.
1045 void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1048 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1050 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1051 AI(AI),
1052 #endif
1053 PointerEscapingInstr(nullptr) {
1054 SliceBuilder PB(DL, AI, *this);
1055 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1056 if (PtrI.isEscaped() || PtrI.isAborted()) {
1057 // FIXME: We should sink the escape vs. abort info into the caller nicely,
1058 // possibly by just storing the PtrInfo in the AllocaSlices.
1059 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1060 : PtrI.getAbortingInst();
1061 assert(PointerEscapingInstr && "Did not track a bad instruction");
1062 return;
1065 Slices.erase(
1066 llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1067 Slices.end());
1069 #ifndef NDEBUG
1070 if (SROARandomShuffleSlices) {
1071 std::mt19937 MT(static_cast<unsigned>(
1072 std::chrono::system_clock::now().time_since_epoch().count()));
1073 std::shuffle(Slices.begin(), Slices.end(), MT);
1075 #endif
1077 // Sort the uses. This arranges for the offsets to be in ascending order,
1078 // and the sizes to be in descending order.
1079 llvm::sort(Slices);
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1084 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1085 StringRef Indent) const {
1086 printSlice(OS, I, Indent);
1087 OS << "\n";
1088 printUse(OS, I, Indent);
1091 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1092 StringRef Indent) const {
1093 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1094 << " slice #" << (I - begin())
1095 << (I->isSplittable() ? " (splittable)" : "");
1098 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1099 StringRef Indent) const {
1100 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
1103 void AllocaSlices::print(raw_ostream &OS) const {
1104 if (PointerEscapingInstr) {
1105 OS << "Can't analyze slices for alloca: " << AI << "\n"
1106 << " A pointer to this alloca escaped by:\n"
1107 << " " << *PointerEscapingInstr << "\n";
1108 return;
1111 OS << "Slices of alloca: " << AI << "\n";
1112 for (const_iterator I = begin(), E = end(); I != E; ++I)
1113 print(OS, I);
1116 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1117 print(dbgs(), I);
1119 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1121 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1123 /// Walk the range of a partitioning looking for a common type to cover this
1124 /// sequence of slices.
1125 static Type *findCommonType(AllocaSlices::const_iterator B,
1126 AllocaSlices::const_iterator E,
1127 uint64_t EndOffset) {
1128 Type *Ty = nullptr;
1129 bool TyIsCommon = true;
1130 IntegerType *ITy = nullptr;
1132 // Note that we need to look at *every* alloca slice's Use to ensure we
1133 // always get consistent results regardless of the order of slices.
1134 for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1135 Use *U = I->getUse();
1136 if (isa<IntrinsicInst>(*U->getUser()))
1137 continue;
1138 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1139 continue;
1141 Type *UserTy = nullptr;
1142 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1143 UserTy = LI->getType();
1144 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1145 UserTy = SI->getValueOperand()->getType();
1148 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1149 // If the type is larger than the partition, skip it. We only encounter
1150 // this for split integer operations where we want to use the type of the
1151 // entity causing the split. Also skip if the type is not a byte width
1152 // multiple.
1153 if (UserITy->getBitWidth() % 8 != 0 ||
1154 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1155 continue;
1157 // Track the largest bitwidth integer type used in this way in case there
1158 // is no common type.
1159 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1160 ITy = UserITy;
1163 // To avoid depending on the order of slices, Ty and TyIsCommon must not
1164 // depend on types skipped above.
1165 if (!UserTy || (Ty && Ty != UserTy))
1166 TyIsCommon = false; // Give up on anything but an iN type.
1167 else
1168 Ty = UserTy;
1171 return TyIsCommon ? Ty : ITy;
1174 /// PHI instructions that use an alloca and are subsequently loaded can be
1175 /// rewritten to load both input pointers in the pred blocks and then PHI the
1176 /// results, allowing the load of the alloca to be promoted.
1177 /// From this:
1178 /// %P2 = phi [i32* %Alloca, i32* %Other]
1179 /// %V = load i32* %P2
1180 /// to:
1181 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1182 /// ...
1183 /// %V2 = load i32* %Other
1184 /// ...
1185 /// %V = phi [i32 %V1, i32 %V2]
1187 /// We can do this to a select if its only uses are loads and if the operands
1188 /// to the select can be loaded unconditionally.
1190 /// FIXME: This should be hoisted into a generic utility, likely in
1191 /// Transforms/Util/Local.h
1192 static bool isSafePHIToSpeculate(PHINode &PN) {
1193 const DataLayout &DL = PN.getModule()->getDataLayout();
1195 // For now, we can only do this promotion if the load is in the same block
1196 // as the PHI, and if there are no stores between the phi and load.
1197 // TODO: Allow recursive phi users.
1198 // TODO: Allow stores.
1199 BasicBlock *BB = PN.getParent();
1200 unsigned MaxAlign = 0;
1201 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1202 APInt MaxSize(APWidth, 0);
1203 bool HaveLoad = false;
1204 for (User *U : PN.users()) {
1205 LoadInst *LI = dyn_cast<LoadInst>(U);
1206 if (!LI || !LI->isSimple())
1207 return false;
1209 // For now we only allow loads in the same block as the PHI. This is
1210 // a common case that happens when instcombine merges two loads through
1211 // a PHI.
1212 if (LI->getParent() != BB)
1213 return false;
1215 // Ensure that there are no instructions between the PHI and the load that
1216 // could store.
1217 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1218 if (BBI->mayWriteToMemory())
1219 return false;
1221 uint64_t Size = DL.getTypeStoreSize(LI->getType());
1222 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1223 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1224 HaveLoad = true;
1227 if (!HaveLoad)
1228 return false;
1230 // We can only transform this if it is safe to push the loads into the
1231 // predecessor blocks. The only thing to watch out for is that we can't put
1232 // a possibly trapping load in the predecessor if it is a critical edge.
1233 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1234 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1235 Value *InVal = PN.getIncomingValue(Idx);
1237 // If the value is produced by the terminator of the predecessor (an
1238 // invoke) or it has side-effects, there is no valid place to put a load
1239 // in the predecessor.
1240 if (TI == InVal || TI->mayHaveSideEffects())
1241 return false;
1243 // If the predecessor has a single successor, then the edge isn't
1244 // critical.
1245 if (TI->getNumSuccessors() == 1)
1246 continue;
1248 // If this pointer is always safe to load, or if we can prove that there
1249 // is already a load in the block, then we can move the load to the pred
1250 // block.
1251 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1252 continue;
1254 return false;
1257 return true;
1260 static void speculatePHINodeLoads(PHINode &PN) {
1261 LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
1263 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1264 Type *LoadTy = SomeLoad->getType();
1265 IRBuilderTy PHIBuilder(&PN);
1266 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1267 PN.getName() + ".sroa.speculated");
1269 // Get the AA tags and alignment to use from one of the loads. It doesn't
1270 // matter which one we get and if any differ.
1271 AAMDNodes AATags;
1272 SomeLoad->getAAMetadata(AATags);
1273 unsigned Align = SomeLoad->getAlignment();
1275 // Rewrite all loads of the PN to use the new PHI.
1276 while (!PN.use_empty()) {
1277 LoadInst *LI = cast<LoadInst>(PN.user_back());
1278 LI->replaceAllUsesWith(NewPN);
1279 LI->eraseFromParent();
1282 // Inject loads into all of the pred blocks.
1283 DenseMap<BasicBlock*, Value*> InjectedLoads;
1284 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1285 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1286 Value *InVal = PN.getIncomingValue(Idx);
1288 // A PHI node is allowed to have multiple (duplicated) entries for the same
1289 // basic block, as long as the value is the same. So if we already injected
1290 // a load in the predecessor, then we should reuse the same load for all
1291 // duplicated entries.
1292 if (Value* V = InjectedLoads.lookup(Pred)) {
1293 NewPN->addIncoming(V, Pred);
1294 continue;
1297 Instruction *TI = Pred->getTerminator();
1298 IRBuilderTy PredBuilder(TI);
1300 LoadInst *Load = PredBuilder.CreateLoad(
1301 LoadTy, InVal,
1302 (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1303 ++NumLoadsSpeculated;
1304 Load->setAlignment(Align);
1305 if (AATags)
1306 Load->setAAMetadata(AATags);
1307 NewPN->addIncoming(Load, Pred);
1308 InjectedLoads[Pred] = Load;
1311 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1312 PN.eraseFromParent();
1315 /// Select instructions that use an alloca and are subsequently loaded can be
1316 /// rewritten to load both input pointers and then select between the result,
1317 /// allowing the load of the alloca to be promoted.
1318 /// From this:
1319 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1320 /// %V = load i32* %P2
1321 /// to:
1322 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1323 /// %V2 = load i32* %Other
1324 /// %V = select i1 %cond, i32 %V1, i32 %V2
1326 /// We can do this to a select if its only uses are loads and if the operand
1327 /// to the select can be loaded unconditionally.
1328 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1329 Value *TValue = SI.getTrueValue();
1330 Value *FValue = SI.getFalseValue();
1331 const DataLayout &DL = SI.getModule()->getDataLayout();
1333 for (User *U : SI.users()) {
1334 LoadInst *LI = dyn_cast<LoadInst>(U);
1335 if (!LI || !LI->isSimple())
1336 return false;
1338 // Both operands to the select need to be dereferenceable, either
1339 // absolutely (e.g. allocas) or at this point because we can see other
1340 // accesses to it.
1341 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), LI->getAlignment(),
1342 DL, LI))
1343 return false;
1344 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), LI->getAlignment(),
1345 DL, LI))
1346 return false;
1349 return true;
1352 static void speculateSelectInstLoads(SelectInst &SI) {
1353 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
1355 IRBuilderTy IRB(&SI);
1356 Value *TV = SI.getTrueValue();
1357 Value *FV = SI.getFalseValue();
1358 // Replace the loads of the select with a select of two loads.
1359 while (!SI.use_empty()) {
1360 LoadInst *LI = cast<LoadInst>(SI.user_back());
1361 assert(LI->isSimple() && "We only speculate simple loads");
1363 IRB.SetInsertPoint(LI);
1364 LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1365 LI->getName() + ".sroa.speculate.load.true");
1366 LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1367 LI->getName() + ".sroa.speculate.load.false");
1368 NumLoadsSpeculated += 2;
1370 // Transfer alignment and AA info if present.
1371 TL->setAlignment(LI->getAlignment());
1372 FL->setAlignment(LI->getAlignment());
1374 AAMDNodes Tags;
1375 LI->getAAMetadata(Tags);
1376 if (Tags) {
1377 TL->setAAMetadata(Tags);
1378 FL->setAAMetadata(Tags);
1381 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1382 LI->getName() + ".sroa.speculated");
1384 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n");
1385 LI->replaceAllUsesWith(V);
1386 LI->eraseFromParent();
1388 SI.eraseFromParent();
1391 /// Build a GEP out of a base pointer and indices.
1393 /// This will return the BasePtr if that is valid, or build a new GEP
1394 /// instruction using the IRBuilder if GEP-ing is needed.
1395 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1396 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1397 if (Indices.empty())
1398 return BasePtr;
1400 // A single zero index is a no-op, so check for this and avoid building a GEP
1401 // in that case.
1402 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1403 return BasePtr;
1405 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1406 BasePtr, Indices, NamePrefix + "sroa_idx");
1409 /// Get a natural GEP off of the BasePtr walking through Ty toward
1410 /// TargetTy without changing the offset of the pointer.
1412 /// This routine assumes we've already established a properly offset GEP with
1413 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1414 /// zero-indices down through type layers until we find one the same as
1415 /// TargetTy. If we can't find one with the same type, we at least try to use
1416 /// one with the same size. If none of that works, we just produce the GEP as
1417 /// indicated by Indices to have the correct offset.
1418 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1419 Value *BasePtr, Type *Ty, Type *TargetTy,
1420 SmallVectorImpl<Value *> &Indices,
1421 Twine NamePrefix) {
1422 if (Ty == TargetTy)
1423 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1425 // Offset size to use for the indices.
1426 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1428 // See if we can descend into a struct and locate a field with the correct
1429 // type.
1430 unsigned NumLayers = 0;
1431 Type *ElementTy = Ty;
1432 do {
1433 if (ElementTy->isPointerTy())
1434 break;
1436 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1437 ElementTy = ArrayTy->getElementType();
1438 Indices.push_back(IRB.getIntN(OffsetSize, 0));
1439 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1440 ElementTy = VectorTy->getElementType();
1441 Indices.push_back(IRB.getInt32(0));
1442 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1443 if (STy->element_begin() == STy->element_end())
1444 break; // Nothing left to descend into.
1445 ElementTy = *STy->element_begin();
1446 Indices.push_back(IRB.getInt32(0));
1447 } else {
1448 break;
1450 ++NumLayers;
1451 } while (ElementTy != TargetTy);
1452 if (ElementTy != TargetTy)
1453 Indices.erase(Indices.end() - NumLayers, Indices.end());
1455 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1458 /// Recursively compute indices for a natural GEP.
1460 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1461 /// element types adding appropriate indices for the GEP.
1462 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1463 Value *Ptr, Type *Ty, APInt &Offset,
1464 Type *TargetTy,
1465 SmallVectorImpl<Value *> &Indices,
1466 Twine NamePrefix) {
1467 if (Offset == 0)
1468 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1469 NamePrefix);
1471 // We can't recurse through pointer types.
1472 if (Ty->isPointerTy())
1473 return nullptr;
1475 // We try to analyze GEPs over vectors here, but note that these GEPs are
1476 // extremely poorly defined currently. The long-term goal is to remove GEPing
1477 // over a vector from the IR completely.
1478 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1479 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1480 if (ElementSizeInBits % 8 != 0) {
1481 // GEPs over non-multiple of 8 size vector elements are invalid.
1482 return nullptr;
1484 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1485 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1486 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1487 return nullptr;
1488 Offset -= NumSkippedElements * ElementSize;
1489 Indices.push_back(IRB.getInt(NumSkippedElements));
1490 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1491 Offset, TargetTy, Indices, NamePrefix);
1494 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1495 Type *ElementTy = ArrTy->getElementType();
1496 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1497 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1498 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1499 return nullptr;
1501 Offset -= NumSkippedElements * ElementSize;
1502 Indices.push_back(IRB.getInt(NumSkippedElements));
1503 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1504 Indices, NamePrefix);
1507 StructType *STy = dyn_cast<StructType>(Ty);
1508 if (!STy)
1509 return nullptr;
1511 const StructLayout *SL = DL.getStructLayout(STy);
1512 uint64_t StructOffset = Offset.getZExtValue();
1513 if (StructOffset >= SL->getSizeInBytes())
1514 return nullptr;
1515 unsigned Index = SL->getElementContainingOffset(StructOffset);
1516 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1517 Type *ElementTy = STy->getElementType(Index);
1518 if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1519 return nullptr; // The offset points into alignment padding.
1521 Indices.push_back(IRB.getInt32(Index));
1522 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1523 Indices, NamePrefix);
1526 /// Get a natural GEP from a base pointer to a particular offset and
1527 /// resulting in a particular type.
1529 /// The goal is to produce a "natural" looking GEP that works with the existing
1530 /// composite types to arrive at the appropriate offset and element type for
1531 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1532 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1533 /// Indices, and setting Ty to the result subtype.
1535 /// If no natural GEP can be constructed, this function returns null.
1536 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1537 Value *Ptr, APInt Offset, Type *TargetTy,
1538 SmallVectorImpl<Value *> &Indices,
1539 Twine NamePrefix) {
1540 PointerType *Ty = cast<PointerType>(Ptr->getType());
1542 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1543 // an i8.
1544 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1545 return nullptr;
1547 Type *ElementTy = Ty->getElementType();
1548 if (!ElementTy->isSized())
1549 return nullptr; // We can't GEP through an unsized element.
1550 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1551 if (ElementSize == 0)
1552 return nullptr; // Zero-length arrays can't help us build a natural GEP.
1553 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1555 Offset -= NumSkippedElements * ElementSize;
1556 Indices.push_back(IRB.getInt(NumSkippedElements));
1557 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1558 Indices, NamePrefix);
1561 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1562 /// resulting pointer has PointerTy.
1564 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1565 /// and produces the pointer type desired. Where it cannot, it will try to use
1566 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1567 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1568 /// bitcast to the type.
1570 /// The strategy for finding the more natural GEPs is to peel off layers of the
1571 /// pointer, walking back through bit casts and GEPs, searching for a base
1572 /// pointer from which we can compute a natural GEP with the desired
1573 /// properties. The algorithm tries to fold as many constant indices into
1574 /// a single GEP as possible, thus making each GEP more independent of the
1575 /// surrounding code.
1576 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1577 APInt Offset, Type *PointerTy, Twine NamePrefix) {
1578 // Even though we don't look through PHI nodes, we could be called on an
1579 // instruction in an unreachable block, which may be on a cycle.
1580 SmallPtrSet<Value *, 4> Visited;
1581 Visited.insert(Ptr);
1582 SmallVector<Value *, 4> Indices;
1584 // We may end up computing an offset pointer that has the wrong type. If we
1585 // never are able to compute one directly that has the correct type, we'll
1586 // fall back to it, so keep it and the base it was computed from around here.
1587 Value *OffsetPtr = nullptr;
1588 Value *OffsetBasePtr;
1590 // Remember any i8 pointer we come across to re-use if we need to do a raw
1591 // byte offset.
1592 Value *Int8Ptr = nullptr;
1593 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1595 PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1596 Type *TargetTy = TargetPtrTy->getElementType();
1598 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1599 // address space from the expected `PointerTy` (the pointer to be used).
1600 // Adjust the pointer type based the original storage pointer.
1601 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1602 PointerTy = TargetTy->getPointerTo(AS);
1604 do {
1605 // First fold any existing GEPs into the offset.
1606 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1607 APInt GEPOffset(Offset.getBitWidth(), 0);
1608 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1609 break;
1610 Offset += GEPOffset;
1611 Ptr = GEP->getPointerOperand();
1612 if (!Visited.insert(Ptr).second)
1613 break;
1616 // See if we can perform a natural GEP here.
1617 Indices.clear();
1618 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1619 Indices, NamePrefix)) {
1620 // If we have a new natural pointer at the offset, clear out any old
1621 // offset pointer we computed. Unless it is the base pointer or
1622 // a non-instruction, we built a GEP we don't need. Zap it.
1623 if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1624 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1625 assert(I->use_empty() && "Built a GEP with uses some how!");
1626 I->eraseFromParent();
1628 OffsetPtr = P;
1629 OffsetBasePtr = Ptr;
1630 // If we also found a pointer of the right type, we're done.
1631 if (P->getType() == PointerTy)
1632 break;
1635 // Stash this pointer if we've found an i8*.
1636 if (Ptr->getType()->isIntegerTy(8)) {
1637 Int8Ptr = Ptr;
1638 Int8PtrOffset = Offset;
1641 // Peel off a layer of the pointer and update the offset appropriately.
1642 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1643 Ptr = cast<Operator>(Ptr)->getOperand(0);
1644 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1645 if (GA->isInterposable())
1646 break;
1647 Ptr = GA->getAliasee();
1648 } else {
1649 break;
1651 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1652 } while (Visited.insert(Ptr).second);
1654 if (!OffsetPtr) {
1655 if (!Int8Ptr) {
1656 Int8Ptr = IRB.CreateBitCast(
1657 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1658 NamePrefix + "sroa_raw_cast");
1659 Int8PtrOffset = Offset;
1662 OffsetPtr = Int8PtrOffset == 0
1663 ? Int8Ptr
1664 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1665 IRB.getInt(Int8PtrOffset),
1666 NamePrefix + "sroa_raw_idx");
1668 Ptr = OffsetPtr;
1670 // On the off chance we were targeting i8*, guard the bitcast here.
1671 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1672 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1673 TargetPtrTy,
1674 NamePrefix + "sroa_cast");
1677 return Ptr;
1680 /// Compute the adjusted alignment for a load or store from an offset.
1681 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1682 const DataLayout &DL) {
1683 unsigned Alignment;
1684 Type *Ty;
1685 if (auto *LI = dyn_cast<LoadInst>(I)) {
1686 Alignment = LI->getAlignment();
1687 Ty = LI->getType();
1688 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1689 Alignment = SI->getAlignment();
1690 Ty = SI->getValueOperand()->getType();
1691 } else {
1692 llvm_unreachable("Only loads and stores are allowed!");
1695 if (!Alignment)
1696 Alignment = DL.getABITypeAlignment(Ty);
1698 return MinAlign(Alignment, Offset);
1701 /// Test whether we can convert a value from the old to the new type.
1703 /// This predicate should be used to guard calls to convertValue in order to
1704 /// ensure that we only try to convert viable values. The strategy is that we
1705 /// will peel off single element struct and array wrappings to get to an
1706 /// underlying value, and convert that value.
1707 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1708 if (OldTy == NewTy)
1709 return true;
1711 // For integer types, we can't handle any bit-width differences. This would
1712 // break both vector conversions with extension and introduce endianness
1713 // issues when in conjunction with loads and stores.
1714 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1715 assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1716 cast<IntegerType>(NewTy)->getBitWidth() &&
1717 "We can't have the same bitwidth for different int types");
1718 return false;
1721 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1722 return false;
1723 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1724 return false;
1726 // We can convert pointers to integers and vice-versa. Same for vectors
1727 // of pointers and integers.
1728 OldTy = OldTy->getScalarType();
1729 NewTy = NewTy->getScalarType();
1730 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1731 if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1732 return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1733 cast<PointerType>(OldTy)->getPointerAddressSpace();
1736 // We can convert integers to integral pointers, but not to non-integral
1737 // pointers.
1738 if (OldTy->isIntegerTy())
1739 return !DL.isNonIntegralPointerType(NewTy);
1741 // We can convert integral pointers to integers, but non-integral pointers
1742 // need to remain pointers.
1743 if (!DL.isNonIntegralPointerType(OldTy))
1744 return NewTy->isIntegerTy();
1746 return false;
1749 return true;
1752 /// Generic routine to convert an SSA value to a value of a different
1753 /// type.
1755 /// This will try various different casting techniques, such as bitcasts,
1756 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1757 /// two types for viability with this routine.
1758 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1759 Type *NewTy) {
1760 Type *OldTy = V->getType();
1761 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1763 if (OldTy == NewTy)
1764 return V;
1766 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1767 "Integer types must be the exact same to convert.");
1769 // See if we need inttoptr for this type pair. A cast involving both scalars
1770 // and vectors requires and additional bitcast.
1771 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1772 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1773 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1774 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1775 NewTy);
1777 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1778 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1779 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1780 NewTy);
1782 return IRB.CreateIntToPtr(V, NewTy);
1785 // See if we need ptrtoint for this type pair. A cast involving both scalars
1786 // and vectors requires and additional bitcast.
1787 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1788 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1789 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1790 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1791 NewTy);
1793 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1794 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1795 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1796 NewTy);
1798 return IRB.CreatePtrToInt(V, NewTy);
1801 return IRB.CreateBitCast(V, NewTy);
1804 /// Test whether the given slice use can be promoted to a vector.
1806 /// This function is called to test each entry in a partition which is slated
1807 /// for a single slice.
1808 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1809 VectorType *Ty,
1810 uint64_t ElementSize,
1811 const DataLayout &DL) {
1812 // First validate the slice offsets.
1813 uint64_t BeginOffset =
1814 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1815 uint64_t BeginIndex = BeginOffset / ElementSize;
1816 if (BeginIndex * ElementSize != BeginOffset ||
1817 BeginIndex >= Ty->getNumElements())
1818 return false;
1819 uint64_t EndOffset =
1820 std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1821 uint64_t EndIndex = EndOffset / ElementSize;
1822 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1823 return false;
1825 assert(EndIndex > BeginIndex && "Empty vector!");
1826 uint64_t NumElements = EndIndex - BeginIndex;
1827 Type *SliceTy = (NumElements == 1)
1828 ? Ty->getElementType()
1829 : VectorType::get(Ty->getElementType(), NumElements);
1831 Type *SplitIntTy =
1832 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1834 Use *U = S.getUse();
1836 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1837 if (MI->isVolatile())
1838 return false;
1839 if (!S.isSplittable())
1840 return false; // Skip any unsplittable intrinsics.
1841 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1842 if (!II->isLifetimeStartOrEnd())
1843 return false;
1844 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1845 // Disable vector promotion when there are loads or stores of an FCA.
1846 return false;
1847 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1848 if (LI->isVolatile())
1849 return false;
1850 Type *LTy = LI->getType();
1851 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1852 assert(LTy->isIntegerTy());
1853 LTy = SplitIntTy;
1855 if (!canConvertValue(DL, SliceTy, LTy))
1856 return false;
1857 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1858 if (SI->isVolatile())
1859 return false;
1860 Type *STy = SI->getValueOperand()->getType();
1861 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1862 assert(STy->isIntegerTy());
1863 STy = SplitIntTy;
1865 if (!canConvertValue(DL, STy, SliceTy))
1866 return false;
1867 } else {
1868 return false;
1871 return true;
1874 /// Test whether the given alloca partitioning and range of slices can be
1875 /// promoted to a vector.
1877 /// This is a quick test to check whether we can rewrite a particular alloca
1878 /// partition (and its newly formed alloca) into a vector alloca with only
1879 /// whole-vector loads and stores such that it could be promoted to a vector
1880 /// SSA value. We only can ensure this for a limited set of operations, and we
1881 /// don't want to do the rewrites unless we are confident that the result will
1882 /// be promotable, so we have an early test here.
1883 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1884 // Collect the candidate types for vector-based promotion. Also track whether
1885 // we have different element types.
1886 SmallVector<VectorType *, 4> CandidateTys;
1887 Type *CommonEltTy = nullptr;
1888 bool HaveCommonEltTy = true;
1889 auto CheckCandidateType = [&](Type *Ty) {
1890 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1891 CandidateTys.push_back(VTy);
1892 if (!CommonEltTy)
1893 CommonEltTy = VTy->getElementType();
1894 else if (CommonEltTy != VTy->getElementType())
1895 HaveCommonEltTy = false;
1898 // Consider any loads or stores that are the exact size of the slice.
1899 for (const Slice &S : P)
1900 if (S.beginOffset() == P.beginOffset() &&
1901 S.endOffset() == P.endOffset()) {
1902 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1903 CheckCandidateType(LI->getType());
1904 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1905 CheckCandidateType(SI->getValueOperand()->getType());
1908 // If we didn't find a vector type, nothing to do here.
1909 if (CandidateTys.empty())
1910 return nullptr;
1912 // Remove non-integer vector types if we had multiple common element types.
1913 // FIXME: It'd be nice to replace them with integer vector types, but we can't
1914 // do that until all the backends are known to produce good code for all
1915 // integer vector types.
1916 if (!HaveCommonEltTy) {
1917 CandidateTys.erase(
1918 llvm::remove_if(CandidateTys,
1919 [](VectorType *VTy) {
1920 return !VTy->getElementType()->isIntegerTy();
1922 CandidateTys.end());
1924 // If there were no integer vector types, give up.
1925 if (CandidateTys.empty())
1926 return nullptr;
1928 // Rank the remaining candidate vector types. This is easy because we know
1929 // they're all integer vectors. We sort by ascending number of elements.
1930 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1931 (void)DL;
1932 assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1933 "Cannot have vector types of different sizes!");
1934 assert(RHSTy->getElementType()->isIntegerTy() &&
1935 "All non-integer types eliminated!");
1936 assert(LHSTy->getElementType()->isIntegerTy() &&
1937 "All non-integer types eliminated!");
1938 return RHSTy->getNumElements() < LHSTy->getNumElements();
1940 llvm::sort(CandidateTys, RankVectorTypes);
1941 CandidateTys.erase(
1942 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1943 CandidateTys.end());
1944 } else {
1945 // The only way to have the same element type in every vector type is to
1946 // have the same vector type. Check that and remove all but one.
1947 #ifndef NDEBUG
1948 for (VectorType *VTy : CandidateTys) {
1949 assert(VTy->getElementType() == CommonEltTy &&
1950 "Unaccounted for element type!");
1951 assert(VTy == CandidateTys[0] &&
1952 "Different vector types with the same element type!");
1954 #endif
1955 CandidateTys.resize(1);
1958 // Try each vector type, and return the one which works.
1959 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1960 uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1962 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1963 // that aren't byte sized.
1964 if (ElementSize % 8)
1965 return false;
1966 assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1967 "vector size not a multiple of element size?");
1968 ElementSize /= 8;
1970 for (const Slice &S : P)
1971 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1972 return false;
1974 for (const Slice *S : P.splitSliceTails())
1975 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1976 return false;
1978 return true;
1980 for (VectorType *VTy : CandidateTys)
1981 if (CheckVectorTypeForPromotion(VTy))
1982 return VTy;
1984 return nullptr;
1987 /// Test whether a slice of an alloca is valid for integer widening.
1989 /// This implements the necessary checking for the \c isIntegerWideningViable
1990 /// test below on a single slice of the alloca.
1991 static bool isIntegerWideningViableForSlice(const Slice &S,
1992 uint64_t AllocBeginOffset,
1993 Type *AllocaTy,
1994 const DataLayout &DL,
1995 bool &WholeAllocaOp) {
1996 uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1998 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1999 uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2001 // We can't reasonably handle cases where the load or store extends past
2002 // the end of the alloca's type and into its padding.
2003 if (RelEnd > Size)
2004 return false;
2006 Use *U = S.getUse();
2008 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2009 if (LI->isVolatile())
2010 return false;
2011 // We can't handle loads that extend past the allocated memory.
2012 if (DL.getTypeStoreSize(LI->getType()) > Size)
2013 return false;
2014 // So far, AllocaSliceRewriter does not support widening split slice tails
2015 // in rewriteIntegerLoad.
2016 if (S.beginOffset() < AllocBeginOffset)
2017 return false;
2018 // Note that we don't count vector loads or stores as whole-alloca
2019 // operations which enable integer widening because we would prefer to use
2020 // vector widening instead.
2021 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2022 WholeAllocaOp = true;
2023 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2024 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2025 return false;
2026 } else if (RelBegin != 0 || RelEnd != Size ||
2027 !canConvertValue(DL, AllocaTy, LI->getType())) {
2028 // Non-integer loads need to be convertible from the alloca type so that
2029 // they are promotable.
2030 return false;
2032 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2033 Type *ValueTy = SI->getValueOperand()->getType();
2034 if (SI->isVolatile())
2035 return false;
2036 // We can't handle stores that extend past the allocated memory.
2037 if (DL.getTypeStoreSize(ValueTy) > Size)
2038 return false;
2039 // So far, AllocaSliceRewriter does not support widening split slice tails
2040 // in rewriteIntegerStore.
2041 if (S.beginOffset() < AllocBeginOffset)
2042 return false;
2043 // Note that we don't count vector loads or stores as whole-alloca
2044 // operations which enable integer widening because we would prefer to use
2045 // vector widening instead.
2046 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2047 WholeAllocaOp = true;
2048 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2049 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2050 return false;
2051 } else if (RelBegin != 0 || RelEnd != Size ||
2052 !canConvertValue(DL, ValueTy, AllocaTy)) {
2053 // Non-integer stores need to be convertible to the alloca type so that
2054 // they are promotable.
2055 return false;
2057 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2058 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2059 return false;
2060 if (!S.isSplittable())
2061 return false; // Skip any unsplittable intrinsics.
2062 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2063 if (!II->isLifetimeStartOrEnd())
2064 return false;
2065 } else {
2066 return false;
2069 return true;
2072 /// Test whether the given alloca partition's integer operations can be
2073 /// widened to promotable ones.
2075 /// This is a quick test to check whether we can rewrite the integer loads and
2076 /// stores to a particular alloca into wider loads and stores and be able to
2077 /// promote the resulting alloca.
2078 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2079 const DataLayout &DL) {
2080 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2081 // Don't create integer types larger than the maximum bitwidth.
2082 if (SizeInBits > IntegerType::MAX_INT_BITS)
2083 return false;
2085 // Don't try to handle allocas with bit-padding.
2086 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2087 return false;
2089 // We need to ensure that an integer type with the appropriate bitwidth can
2090 // be converted to the alloca type, whatever that is. We don't want to force
2091 // the alloca itself to have an integer type if there is a more suitable one.
2092 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2093 if (!canConvertValue(DL, AllocaTy, IntTy) ||
2094 !canConvertValue(DL, IntTy, AllocaTy))
2095 return false;
2097 // While examining uses, we ensure that the alloca has a covering load or
2098 // store. We don't want to widen the integer operations only to fail to
2099 // promote due to some other unsplittable entry (which we may make splittable
2100 // later). However, if there are only splittable uses, go ahead and assume
2101 // that we cover the alloca.
2102 // FIXME: We shouldn't consider split slices that happen to start in the
2103 // partition here...
2104 bool WholeAllocaOp =
2105 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2107 for (const Slice &S : P)
2108 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2109 WholeAllocaOp))
2110 return false;
2112 for (const Slice *S : P.splitSliceTails())
2113 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2114 WholeAllocaOp))
2115 return false;
2117 return WholeAllocaOp;
2120 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2121 IntegerType *Ty, uint64_t Offset,
2122 const Twine &Name) {
2123 LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
2124 IntegerType *IntTy = cast<IntegerType>(V->getType());
2125 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2126 "Element extends past full value");
2127 uint64_t ShAmt = 8 * Offset;
2128 if (DL.isBigEndian())
2129 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2130 if (ShAmt) {
2131 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2132 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
2134 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2135 "Cannot extract to a larger integer!");
2136 if (Ty != IntTy) {
2137 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2138 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n");
2140 return V;
2143 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2144 Value *V, uint64_t Offset, const Twine &Name) {
2145 IntegerType *IntTy = cast<IntegerType>(Old->getType());
2146 IntegerType *Ty = cast<IntegerType>(V->getType());
2147 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2148 "Cannot insert a larger integer!");
2149 LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
2150 if (Ty != IntTy) {
2151 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2152 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n");
2154 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2155 "Element store outside of alloca store");
2156 uint64_t ShAmt = 8 * Offset;
2157 if (DL.isBigEndian())
2158 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2159 if (ShAmt) {
2160 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2161 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
2164 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2165 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2166 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2167 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n");
2168 V = IRB.CreateOr(Old, V, Name + ".insert");
2169 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n");
2171 return V;
2174 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2175 unsigned EndIndex, const Twine &Name) {
2176 VectorType *VecTy = cast<VectorType>(V->getType());
2177 unsigned NumElements = EndIndex - BeginIndex;
2178 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2180 if (NumElements == VecTy->getNumElements())
2181 return V;
2183 if (NumElements == 1) {
2184 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2185 Name + ".extract");
2186 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n");
2187 return V;
2190 SmallVector<Constant *, 8> Mask;
2191 Mask.reserve(NumElements);
2192 for (unsigned i = BeginIndex; i != EndIndex; ++i)
2193 Mask.push_back(IRB.getInt32(i));
2194 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2195 ConstantVector::get(Mask), Name + ".extract");
2196 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
2197 return V;
2200 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2201 unsigned BeginIndex, const Twine &Name) {
2202 VectorType *VecTy = cast<VectorType>(Old->getType());
2203 assert(VecTy && "Can only insert a vector into a vector");
2205 VectorType *Ty = dyn_cast<VectorType>(V->getType());
2206 if (!Ty) {
2207 // Single element to insert.
2208 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2209 Name + ".insert");
2210 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n");
2211 return V;
2214 assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2215 "Too many elements!");
2216 if (Ty->getNumElements() == VecTy->getNumElements()) {
2217 assert(V->getType() == VecTy && "Vector type mismatch");
2218 return V;
2220 unsigned EndIndex = BeginIndex + Ty->getNumElements();
2222 // When inserting a smaller vector into the larger to store, we first
2223 // use a shuffle vector to widen it with undef elements, and then
2224 // a second shuffle vector to select between the loaded vector and the
2225 // incoming vector.
2226 SmallVector<Constant *, 8> Mask;
2227 Mask.reserve(VecTy->getNumElements());
2228 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2229 if (i >= BeginIndex && i < EndIndex)
2230 Mask.push_back(IRB.getInt32(i - BeginIndex));
2231 else
2232 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2233 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2234 ConstantVector::get(Mask), Name + ".expand");
2235 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
2237 Mask.clear();
2238 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2239 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2241 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2243 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n");
2244 return V;
2247 /// Visitor to rewrite instructions using p particular slice of an alloca
2248 /// to use a new alloca.
2250 /// Also implements the rewriting to vector-based accesses when the partition
2251 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2252 /// lives here.
2253 class llvm::sroa::AllocaSliceRewriter
2254 : public InstVisitor<AllocaSliceRewriter, bool> {
2255 // Befriend the base class so it can delegate to private visit methods.
2256 friend class InstVisitor<AllocaSliceRewriter, bool>;
2258 using Base = InstVisitor<AllocaSliceRewriter, bool>;
2260 const DataLayout &DL;
2261 AllocaSlices &AS;
2262 SROA &Pass;
2263 AllocaInst &OldAI, &NewAI;
2264 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2265 Type *NewAllocaTy;
2267 // This is a convenience and flag variable that will be null unless the new
2268 // alloca's integer operations should be widened to this integer type due to
2269 // passing isIntegerWideningViable above. If it is non-null, the desired
2270 // integer type will be stored here for easy access during rewriting.
2271 IntegerType *IntTy;
2273 // If we are rewriting an alloca partition which can be written as pure
2274 // vector operations, we stash extra information here. When VecTy is
2275 // non-null, we have some strict guarantees about the rewritten alloca:
2276 // - The new alloca is exactly the size of the vector type here.
2277 // - The accesses all either map to the entire vector or to a single
2278 // element.
2279 // - The set of accessing instructions is only one of those handled above
2280 // in isVectorPromotionViable. Generally these are the same access kinds
2281 // which are promotable via mem2reg.
2282 VectorType *VecTy;
2283 Type *ElementTy;
2284 uint64_t ElementSize;
2286 // The original offset of the slice currently being rewritten relative to
2287 // the original alloca.
2288 uint64_t BeginOffset = 0;
2289 uint64_t EndOffset = 0;
2291 // The new offsets of the slice currently being rewritten relative to the
2292 // original alloca.
2293 uint64_t NewBeginOffset, NewEndOffset;
2295 uint64_t SliceSize;
2296 bool IsSplittable = false;
2297 bool IsSplit = false;
2298 Use *OldUse = nullptr;
2299 Instruction *OldPtr = nullptr;
2301 // Track post-rewrite users which are PHI nodes and Selects.
2302 SmallSetVector<PHINode *, 8> &PHIUsers;
2303 SmallSetVector<SelectInst *, 8> &SelectUsers;
2305 // Utility IR builder, whose name prefix is setup for each visited use, and
2306 // the insertion point is set to point to the user.
2307 IRBuilderTy IRB;
2309 public:
2310 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2311 AllocaInst &OldAI, AllocaInst &NewAI,
2312 uint64_t NewAllocaBeginOffset,
2313 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2314 VectorType *PromotableVecTy,
2315 SmallSetVector<PHINode *, 8> &PHIUsers,
2316 SmallSetVector<SelectInst *, 8> &SelectUsers)
2317 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2318 NewAllocaBeginOffset(NewAllocaBeginOffset),
2319 NewAllocaEndOffset(NewAllocaEndOffset),
2320 NewAllocaTy(NewAI.getAllocatedType()),
2321 IntTy(IsIntegerPromotable
2322 ? Type::getIntNTy(
2323 NewAI.getContext(),
2324 DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2325 : nullptr),
2326 VecTy(PromotableVecTy),
2327 ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2328 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2329 PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2330 IRB(NewAI.getContext(), ConstantFolder()) {
2331 if (VecTy) {
2332 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2333 "Only multiple-of-8 sized vector elements are viable");
2334 ++NumVectorized;
2336 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2339 bool visit(AllocaSlices::const_iterator I) {
2340 bool CanSROA = true;
2341 BeginOffset = I->beginOffset();
2342 EndOffset = I->endOffset();
2343 IsSplittable = I->isSplittable();
2344 IsSplit =
2345 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2346 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
2347 LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2348 LLVM_DEBUG(dbgs() << "\n");
2350 // Compute the intersecting offset range.
2351 assert(BeginOffset < NewAllocaEndOffset);
2352 assert(EndOffset > NewAllocaBeginOffset);
2353 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2354 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2356 SliceSize = NewEndOffset - NewBeginOffset;
2358 OldUse = I->getUse();
2359 OldPtr = cast<Instruction>(OldUse->get());
2361 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2362 IRB.SetInsertPoint(OldUserI);
2363 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2364 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2366 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2367 if (VecTy || IntTy)
2368 assert(CanSROA);
2369 return CanSROA;
2372 private:
2373 // Make sure the other visit overloads are visible.
2374 using Base::visit;
2376 // Every instruction which can end up as a user must have a rewrite rule.
2377 bool visitInstruction(Instruction &I) {
2378 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2379 llvm_unreachable("No rewrite rule for this instruction!");
2382 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2383 // Note that the offset computation can use BeginOffset or NewBeginOffset
2384 // interchangeably for unsplit slices.
2385 assert(IsSplit || BeginOffset == NewBeginOffset);
2386 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2388 #ifndef NDEBUG
2389 StringRef OldName = OldPtr->getName();
2390 // Skip through the last '.sroa.' component of the name.
2391 size_t LastSROAPrefix = OldName.rfind(".sroa.");
2392 if (LastSROAPrefix != StringRef::npos) {
2393 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2394 // Look for an SROA slice index.
2395 size_t IndexEnd = OldName.find_first_not_of("0123456789");
2396 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2397 // Strip the index and look for the offset.
2398 OldName = OldName.substr(IndexEnd + 1);
2399 size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2400 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2401 // Strip the offset.
2402 OldName = OldName.substr(OffsetEnd + 1);
2405 // Strip any SROA suffixes as well.
2406 OldName = OldName.substr(0, OldName.find(".sroa_"));
2407 #endif
2409 return getAdjustedPtr(IRB, DL, &NewAI,
2410 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2411 PointerTy,
2412 #ifndef NDEBUG
2413 Twine(OldName) + "."
2414 #else
2415 Twine()
2416 #endif
2420 /// Compute suitable alignment to access this slice of the *new*
2421 /// alloca.
2423 /// You can optionally pass a type to this routine and if that type's ABI
2424 /// alignment is itself suitable, this will return zero.
2425 unsigned getSliceAlign(Type *Ty = nullptr) {
2426 unsigned NewAIAlign = NewAI.getAlignment();
2427 if (!NewAIAlign)
2428 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2429 unsigned Align =
2430 MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2431 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2434 unsigned getIndex(uint64_t Offset) {
2435 assert(VecTy && "Can only call getIndex when rewriting a vector");
2436 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2437 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2438 uint32_t Index = RelOffset / ElementSize;
2439 assert(Index * ElementSize == RelOffset);
2440 return Index;
2443 void deleteIfTriviallyDead(Value *V) {
2444 Instruction *I = cast<Instruction>(V);
2445 if (isInstructionTriviallyDead(I))
2446 Pass.DeadInsts.insert(I);
2449 Value *rewriteVectorizedLoadInst() {
2450 unsigned BeginIndex = getIndex(NewBeginOffset);
2451 unsigned EndIndex = getIndex(NewEndOffset);
2452 assert(EndIndex > BeginIndex && "Empty vector!");
2454 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2455 NewAI.getAlignment(), "load");
2456 return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2459 Value *rewriteIntegerLoad(LoadInst &LI) {
2460 assert(IntTy && "We cannot insert an integer to the alloca");
2461 assert(!LI.isVolatile());
2462 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2463 NewAI.getAlignment(), "load");
2464 V = convertValue(DL, IRB, V, IntTy);
2465 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2466 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2467 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2468 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2469 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2471 // It is possible that the extracted type is not the load type. This
2472 // happens if there is a load past the end of the alloca, and as
2473 // a consequence the slice is narrower but still a candidate for integer
2474 // lowering. To handle this case, we just zero extend the extracted
2475 // integer.
2476 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2477 "Can only handle an extract for an overly wide load");
2478 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2479 V = IRB.CreateZExt(V, LI.getType());
2480 return V;
2483 bool visitLoadInst(LoadInst &LI) {
2484 LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
2485 Value *OldOp = LI.getOperand(0);
2486 assert(OldOp == OldPtr);
2488 AAMDNodes AATags;
2489 LI.getAAMetadata(AATags);
2491 unsigned AS = LI.getPointerAddressSpace();
2493 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2494 : LI.getType();
2495 const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2496 bool IsPtrAdjusted = false;
2497 Value *V;
2498 if (VecTy) {
2499 V = rewriteVectorizedLoadInst();
2500 } else if (IntTy && LI.getType()->isIntegerTy()) {
2501 V = rewriteIntegerLoad(LI);
2502 } else if (NewBeginOffset == NewAllocaBeginOffset &&
2503 NewEndOffset == NewAllocaEndOffset &&
2504 (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2505 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2506 TargetTy->isIntegerTy()))) {
2507 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2508 NewAI.getAlignment(),
2509 LI.isVolatile(), LI.getName());
2510 if (AATags)
2511 NewLI->setAAMetadata(AATags);
2512 if (LI.isVolatile())
2513 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2515 // Any !nonnull metadata or !range metadata on the old load is also valid
2516 // on the new load. This is even true in some cases even when the loads
2517 // are different types, for example by mapping !nonnull metadata to
2518 // !range metadata by modeling the null pointer constant converted to the
2519 // integer type.
2520 // FIXME: Add support for range metadata here. Currently the utilities
2521 // for this don't propagate range metadata in trivial cases from one
2522 // integer load to another, don't handle non-addrspace-0 null pointers
2523 // correctly, and don't have any support for mapping ranges as the
2524 // integer type becomes winder or narrower.
2525 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2526 copyNonnullMetadata(LI, N, *NewLI);
2528 // Try to preserve nonnull metadata
2529 V = NewLI;
2531 // If this is an integer load past the end of the slice (which means the
2532 // bytes outside the slice are undef or this load is dead) just forcibly
2533 // fix the integer size with correct handling of endianness.
2534 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2535 if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2536 if (AITy->getBitWidth() < TITy->getBitWidth()) {
2537 V = IRB.CreateZExt(V, TITy, "load.ext");
2538 if (DL.isBigEndian())
2539 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2540 "endian_shift");
2542 } else {
2543 Type *LTy = TargetTy->getPointerTo(AS);
2544 LoadInst *NewLI = IRB.CreateAlignedLoad(
2545 TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(TargetTy),
2546 LI.isVolatile(), LI.getName());
2547 if (AATags)
2548 NewLI->setAAMetadata(AATags);
2549 if (LI.isVolatile())
2550 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2552 V = NewLI;
2553 IsPtrAdjusted = true;
2555 V = convertValue(DL, IRB, V, TargetTy);
2557 if (IsSplit) {
2558 assert(!LI.isVolatile());
2559 assert(LI.getType()->isIntegerTy() &&
2560 "Only integer type loads and stores are split");
2561 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2562 "Split load isn't smaller than original load");
2563 assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2564 "Non-byte-multiple bit width");
2565 // Move the insertion point just past the load so that we can refer to it.
2566 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2567 // Create a placeholder value with the same type as LI to use as the
2568 // basis for the new value. This allows us to replace the uses of LI with
2569 // the computed value, and then replace the placeholder with LI, leaving
2570 // LI only used for this computation.
2571 Value *Placeholder = new LoadInst(
2572 LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)));
2573 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2574 "insert");
2575 LI.replaceAllUsesWith(V);
2576 Placeholder->replaceAllUsesWith(&LI);
2577 Placeholder->deleteValue();
2578 } else {
2579 LI.replaceAllUsesWith(V);
2582 Pass.DeadInsts.insert(&LI);
2583 deleteIfTriviallyDead(OldOp);
2584 LLVM_DEBUG(dbgs() << " to: " << *V << "\n");
2585 return !LI.isVolatile() && !IsPtrAdjusted;
2588 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2589 AAMDNodes AATags) {
2590 if (V->getType() != VecTy) {
2591 unsigned BeginIndex = getIndex(NewBeginOffset);
2592 unsigned EndIndex = getIndex(NewEndOffset);
2593 assert(EndIndex > BeginIndex && "Empty vector!");
2594 unsigned NumElements = EndIndex - BeginIndex;
2595 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2596 Type *SliceTy = (NumElements == 1)
2597 ? ElementTy
2598 : VectorType::get(ElementTy, NumElements);
2599 if (V->getType() != SliceTy)
2600 V = convertValue(DL, IRB, V, SliceTy);
2602 // Mix in the existing elements.
2603 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2604 NewAI.getAlignment(), "load");
2605 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2607 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2608 if (AATags)
2609 Store->setAAMetadata(AATags);
2610 Pass.DeadInsts.insert(&SI);
2612 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
2613 return true;
2616 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2617 assert(IntTy && "We cannot extract an integer from the alloca");
2618 assert(!SI.isVolatile());
2619 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2620 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2621 NewAI.getAlignment(), "oldload");
2622 Old = convertValue(DL, IRB, Old, IntTy);
2623 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2624 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2625 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2627 V = convertValue(DL, IRB, V, NewAllocaTy);
2628 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2629 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2630 LLVMContext::MD_access_group});
2631 if (AATags)
2632 Store->setAAMetadata(AATags);
2633 Pass.DeadInsts.insert(&SI);
2634 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
2635 return true;
2638 bool visitStoreInst(StoreInst &SI) {
2639 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
2640 Value *OldOp = SI.getOperand(1);
2641 assert(OldOp == OldPtr);
2643 AAMDNodes AATags;
2644 SI.getAAMetadata(AATags);
2646 Value *V = SI.getValueOperand();
2648 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2649 // alloca that should be re-examined after promoting this alloca.
2650 if (V->getType()->isPointerTy())
2651 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2652 Pass.PostPromotionWorklist.insert(AI);
2654 if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2655 assert(!SI.isVolatile());
2656 assert(V->getType()->isIntegerTy() &&
2657 "Only integer type loads and stores are split");
2658 assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2659 "Non-byte-multiple bit width");
2660 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2661 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2662 "extract");
2665 if (VecTy)
2666 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2667 if (IntTy && V->getType()->isIntegerTy())
2668 return rewriteIntegerStore(V, SI, AATags);
2670 const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2671 StoreInst *NewSI;
2672 if (NewBeginOffset == NewAllocaBeginOffset &&
2673 NewEndOffset == NewAllocaEndOffset &&
2674 (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2675 (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2676 V->getType()->isIntegerTy()))) {
2677 // If this is an integer store past the end of slice (and thus the bytes
2678 // past that point are irrelevant or this is unreachable), truncate the
2679 // value prior to storing.
2680 if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2681 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2682 if (VITy->getBitWidth() > AITy->getBitWidth()) {
2683 if (DL.isBigEndian())
2684 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2685 "endian_shift");
2686 V = IRB.CreateTrunc(V, AITy, "load.trunc");
2689 V = convertValue(DL, IRB, V, NewAllocaTy);
2690 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2691 SI.isVolatile());
2692 } else {
2693 unsigned AS = SI.getPointerAddressSpace();
2694 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2695 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2696 SI.isVolatile());
2698 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2699 LLVMContext::MD_access_group});
2700 if (AATags)
2701 NewSI->setAAMetadata(AATags);
2702 if (SI.isVolatile())
2703 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2704 Pass.DeadInsts.insert(&SI);
2705 deleteIfTriviallyDead(OldOp);
2707 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n");
2708 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2711 /// Compute an integer value from splatting an i8 across the given
2712 /// number of bytes.
2714 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2715 /// call this routine.
2716 /// FIXME: Heed the advice above.
2718 /// \param V The i8 value to splat.
2719 /// \param Size The number of bytes in the output (assuming i8 is one byte)
2720 Value *getIntegerSplat(Value *V, unsigned Size) {
2721 assert(Size > 0 && "Expected a positive number of bytes.");
2722 IntegerType *VTy = cast<IntegerType>(V->getType());
2723 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2724 if (Size == 1)
2725 return V;
2727 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2728 V = IRB.CreateMul(
2729 IRB.CreateZExt(V, SplatIntTy, "zext"),
2730 ConstantExpr::getUDiv(
2731 Constant::getAllOnesValue(SplatIntTy),
2732 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2733 SplatIntTy)),
2734 "isplat");
2735 return V;
2738 /// Compute a vector splat for a given element value.
2739 Value *getVectorSplat(Value *V, unsigned NumElements) {
2740 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2741 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n");
2742 return V;
2745 bool visitMemSetInst(MemSetInst &II) {
2746 LLVM_DEBUG(dbgs() << " original: " << II << "\n");
2747 assert(II.getRawDest() == OldPtr);
2749 AAMDNodes AATags;
2750 II.getAAMetadata(AATags);
2752 // If the memset has a variable size, it cannot be split, just adjust the
2753 // pointer to the new alloca.
2754 if (!isa<Constant>(II.getLength())) {
2755 assert(!IsSplit);
2756 assert(NewBeginOffset == BeginOffset);
2757 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2758 II.setDestAlignment(getSliceAlign());
2760 deleteIfTriviallyDead(OldPtr);
2761 return false;
2764 // Record this instruction for deletion.
2765 Pass.DeadInsts.insert(&II);
2767 Type *AllocaTy = NewAI.getAllocatedType();
2768 Type *ScalarTy = AllocaTy->getScalarType();
2770 const bool CanContinue = [&]() {
2771 if (VecTy || IntTy)
2772 return true;
2773 if (BeginOffset > NewAllocaBeginOffset ||
2774 EndOffset < NewAllocaEndOffset)
2775 return false;
2776 auto *C = cast<ConstantInt>(II.getLength());
2777 if (C->getBitWidth() > 64)
2778 return false;
2779 const auto Len = C->getZExtValue();
2780 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2781 auto *SrcTy = VectorType::get(Int8Ty, Len);
2782 return canConvertValue(DL, SrcTy, AllocaTy) &&
2783 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy));
2784 }();
2786 // If this doesn't map cleanly onto the alloca type, and that type isn't
2787 // a single value type, just emit a memset.
2788 if (!CanContinue) {
2789 Type *SizeTy = II.getLength()->getType();
2790 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2791 CallInst *New = IRB.CreateMemSet(
2792 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2793 getSliceAlign(), II.isVolatile());
2794 if (AATags)
2795 New->setAAMetadata(AATags);
2796 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
2797 return false;
2800 // If we can represent this as a simple value, we have to build the actual
2801 // value to store, which requires expanding the byte present in memset to
2802 // a sensible representation for the alloca type. This is essentially
2803 // splatting the byte to a sufficiently wide integer, splatting it across
2804 // any desired vector width, and bitcasting to the final type.
2805 Value *V;
2807 if (VecTy) {
2808 // If this is a memset of a vectorized alloca, insert it.
2809 assert(ElementTy == ScalarTy);
2811 unsigned BeginIndex = getIndex(NewBeginOffset);
2812 unsigned EndIndex = getIndex(NewEndOffset);
2813 assert(EndIndex > BeginIndex && "Empty vector!");
2814 unsigned NumElements = EndIndex - BeginIndex;
2815 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2817 Value *Splat =
2818 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2819 Splat = convertValue(DL, IRB, Splat, ElementTy);
2820 if (NumElements > 1)
2821 Splat = getVectorSplat(Splat, NumElements);
2823 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2824 NewAI.getAlignment(), "oldload");
2825 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2826 } else if (IntTy) {
2827 // If this is a memset on an alloca where we can widen stores, insert the
2828 // set integer.
2829 assert(!II.isVolatile());
2831 uint64_t Size = NewEndOffset - NewBeginOffset;
2832 V = getIntegerSplat(II.getValue(), Size);
2834 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2835 EndOffset != NewAllocaBeginOffset)) {
2836 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2837 NewAI.getAlignment(), "oldload");
2838 Old = convertValue(DL, IRB, Old, IntTy);
2839 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2840 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2841 } else {
2842 assert(V->getType() == IntTy &&
2843 "Wrong type for an alloca wide integer!");
2845 V = convertValue(DL, IRB, V, AllocaTy);
2846 } else {
2847 // Established these invariants above.
2848 assert(NewBeginOffset == NewAllocaBeginOffset);
2849 assert(NewEndOffset == NewAllocaEndOffset);
2851 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2852 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2853 V = getVectorSplat(V, AllocaVecTy->getNumElements());
2855 V = convertValue(DL, IRB, V, AllocaTy);
2858 StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2859 II.isVolatile());
2860 if (AATags)
2861 New->setAAMetadata(AATags);
2862 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
2863 return !II.isVolatile();
2866 bool visitMemTransferInst(MemTransferInst &II) {
2867 // Rewriting of memory transfer instructions can be a bit tricky. We break
2868 // them into two categories: split intrinsics and unsplit intrinsics.
2870 LLVM_DEBUG(dbgs() << " original: " << II << "\n");
2872 AAMDNodes AATags;
2873 II.getAAMetadata(AATags);
2875 bool IsDest = &II.getRawDestUse() == OldUse;
2876 assert((IsDest && II.getRawDest() == OldPtr) ||
2877 (!IsDest && II.getRawSource() == OldPtr));
2879 unsigned SliceAlign = getSliceAlign();
2881 // For unsplit intrinsics, we simply modify the source and destination
2882 // pointers in place. This isn't just an optimization, it is a matter of
2883 // correctness. With unsplit intrinsics we may be dealing with transfers
2884 // within a single alloca before SROA ran, or with transfers that have
2885 // a variable length. We may also be dealing with memmove instead of
2886 // memcpy, and so simply updating the pointers is the necessary for us to
2887 // update both source and dest of a single call.
2888 if (!IsSplittable) {
2889 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2890 if (IsDest) {
2891 II.setDest(AdjustedPtr);
2892 II.setDestAlignment(SliceAlign);
2894 else {
2895 II.setSource(AdjustedPtr);
2896 II.setSourceAlignment(SliceAlign);
2899 LLVM_DEBUG(dbgs() << " to: " << II << "\n");
2900 deleteIfTriviallyDead(OldPtr);
2901 return false;
2903 // For split transfer intrinsics we have an incredibly useful assurance:
2904 // the source and destination do not reside within the same alloca, and at
2905 // least one of them does not escape. This means that we can replace
2906 // memmove with memcpy, and we don't need to worry about all manner of
2907 // downsides to splitting and transforming the operations.
2909 // If this doesn't map cleanly onto the alloca type, and that type isn't
2910 // a single value type, just emit a memcpy.
2911 bool EmitMemCpy =
2912 !VecTy && !IntTy &&
2913 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2914 SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2915 !NewAI.getAllocatedType()->isSingleValueType());
2917 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2918 // size hasn't been shrunk based on analysis of the viable range, this is
2919 // a no-op.
2920 if (EmitMemCpy && &OldAI == &NewAI) {
2921 // Ensure the start lines up.
2922 assert(NewBeginOffset == BeginOffset);
2924 // Rewrite the size as needed.
2925 if (NewEndOffset != EndOffset)
2926 II.setLength(ConstantInt::get(II.getLength()->getType(),
2927 NewEndOffset - NewBeginOffset));
2928 return false;
2930 // Record this instruction for deletion.
2931 Pass.DeadInsts.insert(&II);
2933 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2934 // alloca that should be re-examined after rewriting this instruction.
2935 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2936 if (AllocaInst *AI =
2937 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2938 assert(AI != &OldAI && AI != &NewAI &&
2939 "Splittable transfers cannot reach the same alloca on both ends.");
2940 Pass.Worklist.insert(AI);
2943 Type *OtherPtrTy = OtherPtr->getType();
2944 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2946 // Compute the relative offset for the other pointer within the transfer.
2947 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2948 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2949 unsigned OtherAlign =
2950 IsDest ? II.getSourceAlignment() : II.getDestAlignment();
2951 OtherAlign = MinAlign(OtherAlign ? OtherAlign : 1,
2952 OtherOffset.zextOrTrunc(64).getZExtValue());
2954 if (EmitMemCpy) {
2955 // Compute the other pointer, folding as much as possible to produce
2956 // a single, simple GEP in most cases.
2957 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2958 OtherPtr->getName() + ".");
2960 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2961 Type *SizeTy = II.getLength()->getType();
2962 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2964 Value *DestPtr, *SrcPtr;
2965 unsigned DestAlign, SrcAlign;
2966 // Note: IsDest is true iff we're copying into the new alloca slice
2967 if (IsDest) {
2968 DestPtr = OurPtr;
2969 DestAlign = SliceAlign;
2970 SrcPtr = OtherPtr;
2971 SrcAlign = OtherAlign;
2972 } else {
2973 DestPtr = OtherPtr;
2974 DestAlign = OtherAlign;
2975 SrcPtr = OurPtr;
2976 SrcAlign = SliceAlign;
2978 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2979 Size, II.isVolatile());
2980 if (AATags)
2981 New->setAAMetadata(AATags);
2982 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
2983 return false;
2986 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2987 NewEndOffset == NewAllocaEndOffset;
2988 uint64_t Size = NewEndOffset - NewBeginOffset;
2989 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2990 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2991 unsigned NumElements = EndIndex - BeginIndex;
2992 IntegerType *SubIntTy =
2993 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2995 // Reset the other pointer type to match the register type we're going to
2996 // use, but using the address space of the original other pointer.
2997 Type *OtherTy;
2998 if (VecTy && !IsWholeAlloca) {
2999 if (NumElements == 1)
3000 OtherTy = VecTy->getElementType();
3001 else
3002 OtherTy = VectorType::get(VecTy->getElementType(), NumElements);
3003 } else if (IntTy && !IsWholeAlloca) {
3004 OtherTy = SubIntTy;
3005 } else {
3006 OtherTy = NewAllocaTy;
3008 OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3010 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3011 OtherPtr->getName() + ".");
3012 unsigned SrcAlign = OtherAlign;
3013 Value *DstPtr = &NewAI;
3014 unsigned DstAlign = SliceAlign;
3015 if (!IsDest) {
3016 std::swap(SrcPtr, DstPtr);
3017 std::swap(SrcAlign, DstAlign);
3020 Value *Src;
3021 if (VecTy && !IsWholeAlloca && !IsDest) {
3022 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3023 NewAI.getAlignment(), "load");
3024 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3025 } else if (IntTy && !IsWholeAlloca && !IsDest) {
3026 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3027 NewAI.getAlignment(), "load");
3028 Src = convertValue(DL, IRB, Src, IntTy);
3029 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3030 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3031 } else {
3032 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3033 II.isVolatile(), "copyload");
3034 if (AATags)
3035 Load->setAAMetadata(AATags);
3036 Src = Load;
3039 if (VecTy && !IsWholeAlloca && IsDest) {
3040 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3041 NewAI.getAlignment(), "oldload");
3042 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3043 } else if (IntTy && !IsWholeAlloca && IsDest) {
3044 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3045 NewAI.getAlignment(), "oldload");
3046 Old = convertValue(DL, IRB, Old, IntTy);
3047 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3048 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3049 Src = convertValue(DL, IRB, Src, NewAllocaTy);
3052 StoreInst *Store = cast<StoreInst>(
3053 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3054 if (AATags)
3055 Store->setAAMetadata(AATags);
3056 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
3057 return !II.isVolatile();
3060 bool visitIntrinsicInst(IntrinsicInst &II) {
3061 assert(II.isLifetimeStartOrEnd());
3062 LLVM_DEBUG(dbgs() << " original: " << II << "\n");
3063 assert(II.getArgOperand(1) == OldPtr);
3065 // Record this instruction for deletion.
3066 Pass.DeadInsts.insert(&II);
3068 // Lifetime intrinsics are only promotable if they cover the whole alloca.
3069 // Therefore, we drop lifetime intrinsics which don't cover the whole
3070 // alloca.
3071 // (In theory, intrinsics which partially cover an alloca could be
3072 // promoted, but PromoteMemToReg doesn't handle that case.)
3073 // FIXME: Check whether the alloca is promotable before dropping the
3074 // lifetime intrinsics?
3075 if (NewBeginOffset != NewAllocaBeginOffset ||
3076 NewEndOffset != NewAllocaEndOffset)
3077 return true;
3079 ConstantInt *Size =
3080 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3081 NewEndOffset - NewBeginOffset);
3082 // Lifetime intrinsics always expect an i8* so directly get such a pointer
3083 // for the new alloca slice.
3084 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3085 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3086 Value *New;
3087 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3088 New = IRB.CreateLifetimeStart(Ptr, Size);
3089 else
3090 New = IRB.CreateLifetimeEnd(Ptr, Size);
3092 (void)New;
3093 LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
3095 return true;
3098 void fixLoadStoreAlign(Instruction &Root) {
3099 // This algorithm implements the same visitor loop as
3100 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3101 // or store found.
3102 SmallPtrSet<Instruction *, 4> Visited;
3103 SmallVector<Instruction *, 4> Uses;
3104 Visited.insert(&Root);
3105 Uses.push_back(&Root);
3106 do {
3107 Instruction *I = Uses.pop_back_val();
3109 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3110 unsigned LoadAlign = LI->getAlignment();
3111 if (!LoadAlign)
3112 LoadAlign = DL.getABITypeAlignment(LI->getType());
3113 LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
3114 continue;
3116 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3117 unsigned StoreAlign = SI->getAlignment();
3118 if (!StoreAlign) {
3119 Value *Op = SI->getOperand(0);
3120 StoreAlign = DL.getABITypeAlignment(Op->getType());
3122 SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
3123 continue;
3126 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3127 isa<PHINode>(I) || isa<SelectInst>(I) ||
3128 isa<GetElementPtrInst>(I));
3129 for (User *U : I->users())
3130 if (Visited.insert(cast<Instruction>(U)).second)
3131 Uses.push_back(cast<Instruction>(U));
3132 } while (!Uses.empty());
3135 bool visitPHINode(PHINode &PN) {
3136 LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
3137 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3138 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3140 // We would like to compute a new pointer in only one place, but have it be
3141 // as local as possible to the PHI. To do that, we re-use the location of
3142 // the old pointer, which necessarily must be in the right position to
3143 // dominate the PHI.
3144 IRBuilderTy PtrBuilder(IRB);
3145 if (isa<PHINode>(OldPtr))
3146 PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3147 else
3148 PtrBuilder.SetInsertPoint(OldPtr);
3149 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3151 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3152 // Replace the operands which were using the old pointer.
3153 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3155 LLVM_DEBUG(dbgs() << " to: " << PN << "\n");
3156 deleteIfTriviallyDead(OldPtr);
3158 // Fix the alignment of any loads or stores using this PHI node.
3159 fixLoadStoreAlign(PN);
3161 // PHIs can't be promoted on their own, but often can be speculated. We
3162 // check the speculation outside of the rewriter so that we see the
3163 // fully-rewritten alloca.
3164 PHIUsers.insert(&PN);
3165 return true;
3168 bool visitSelectInst(SelectInst &SI) {
3169 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
3170 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3171 "Pointer isn't an operand!");
3172 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3173 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3175 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3176 // Replace the operands which were using the old pointer.
3177 if (SI.getOperand(1) == OldPtr)
3178 SI.setOperand(1, NewPtr);
3179 if (SI.getOperand(2) == OldPtr)
3180 SI.setOperand(2, NewPtr);
3182 LLVM_DEBUG(dbgs() << " to: " << SI << "\n");
3183 deleteIfTriviallyDead(OldPtr);
3185 // Fix the alignment of any loads or stores using this select.
3186 fixLoadStoreAlign(SI);
3188 // Selects can't be promoted on their own, but often can be speculated. We
3189 // check the speculation outside of the rewriter so that we see the
3190 // fully-rewritten alloca.
3191 SelectUsers.insert(&SI);
3192 return true;
3196 namespace {
3198 /// Visitor to rewrite aggregate loads and stores as scalar.
3200 /// This pass aggressively rewrites all aggregate loads and stores on
3201 /// a particular pointer (or any pointer derived from it which we can identify)
3202 /// with scalar loads and stores.
3203 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3204 // Befriend the base class so it can delegate to private visit methods.
3205 friend class InstVisitor<AggLoadStoreRewriter, bool>;
3207 /// Queue of pointer uses to analyze and potentially rewrite.
3208 SmallVector<Use *, 8> Queue;
3210 /// Set to prevent us from cycling with phi nodes and loops.
3211 SmallPtrSet<User *, 8> Visited;
3213 /// The current pointer use being rewritten. This is used to dig up the used
3214 /// value (as opposed to the user).
3215 Use *U;
3217 /// Used to calculate offsets, and hence alignment, of subobjects.
3218 const DataLayout &DL;
3220 public:
3221 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3223 /// Rewrite loads and stores through a pointer and all pointers derived from
3224 /// it.
3225 bool rewrite(Instruction &I) {
3226 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3227 enqueueUsers(I);
3228 bool Changed = false;
3229 while (!Queue.empty()) {
3230 U = Queue.pop_back_val();
3231 Changed |= visit(cast<Instruction>(U->getUser()));
3233 return Changed;
3236 private:
3237 /// Enqueue all the users of the given instruction for further processing.
3238 /// This uses a set to de-duplicate users.
3239 void enqueueUsers(Instruction &I) {
3240 for (Use &U : I.uses())
3241 if (Visited.insert(U.getUser()).second)
3242 Queue.push_back(&U);
3245 // Conservative default is to not rewrite anything.
3246 bool visitInstruction(Instruction &I) { return false; }
3248 /// Generic recursive split emission class.
3249 template <typename Derived> class OpSplitter {
3250 protected:
3251 /// The builder used to form new instructions.
3252 IRBuilderTy IRB;
3254 /// The indices which to be used with insert- or extractvalue to select the
3255 /// appropriate value within the aggregate.
3256 SmallVector<unsigned, 4> Indices;
3258 /// The indices to a GEP instruction which will move Ptr to the correct slot
3259 /// within the aggregate.
3260 SmallVector<Value *, 4> GEPIndices;
3262 /// The base pointer of the original op, used as a base for GEPing the
3263 /// split operations.
3264 Value *Ptr;
3266 /// The base pointee type being GEPed into.
3267 Type *BaseTy;
3269 /// Known alignment of the base pointer.
3270 unsigned BaseAlign;
3272 /// To calculate offset of each component so we can correctly deduce
3273 /// alignments.
3274 const DataLayout &DL;
3276 /// Initialize the splitter with an insertion point, Ptr and start with a
3277 /// single zero GEP index.
3278 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3279 unsigned BaseAlign, const DataLayout &DL)
3280 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3281 BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3283 public:
3284 /// Generic recursive split emission routine.
3286 /// This method recursively splits an aggregate op (load or store) into
3287 /// scalar or vector ops. It splits recursively until it hits a single value
3288 /// and emits that single value operation via the template argument.
3290 /// The logic of this routine relies on GEPs and insertvalue and
3291 /// extractvalue all operating with the same fundamental index list, merely
3292 /// formatted differently (GEPs need actual values).
3294 /// \param Ty The type being split recursively into smaller ops.
3295 /// \param Agg The aggregate value being built up or stored, depending on
3296 /// whether this is splitting a load or a store respectively.
3297 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3298 if (Ty->isSingleValueType()) {
3299 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3300 return static_cast<Derived *>(this)->emitFunc(
3301 Ty, Agg, MinAlign(BaseAlign, Offset), Name);
3304 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3305 unsigned OldSize = Indices.size();
3306 (void)OldSize;
3307 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3308 ++Idx) {
3309 assert(Indices.size() == OldSize && "Did not return to the old size");
3310 Indices.push_back(Idx);
3311 GEPIndices.push_back(IRB.getInt32(Idx));
3312 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3313 GEPIndices.pop_back();
3314 Indices.pop_back();
3316 return;
3319 if (StructType *STy = dyn_cast<StructType>(Ty)) {
3320 unsigned OldSize = Indices.size();
3321 (void)OldSize;
3322 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3323 ++Idx) {
3324 assert(Indices.size() == OldSize && "Did not return to the old size");
3325 Indices.push_back(Idx);
3326 GEPIndices.push_back(IRB.getInt32(Idx));
3327 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3328 GEPIndices.pop_back();
3329 Indices.pop_back();
3331 return;
3334 llvm_unreachable("Only arrays and structs are aggregate loadable types");
3338 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3339 AAMDNodes AATags;
3341 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3342 AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
3343 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3344 DL), AATags(AATags) {}
3346 /// Emit a leaf load of a single value. This is called at the leaves of the
3347 /// recursive emission to actually load values.
3348 void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
3349 assert(Ty->isSingleValueType());
3350 // Load the single value and insert it using the indices.
3351 Value *GEP =
3352 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3353 LoadInst *Load = IRB.CreateAlignedLoad(Ty, GEP, Align, Name + ".load");
3354 if (AATags)
3355 Load->setAAMetadata(AATags);
3356 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3357 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n");
3361 bool visitLoadInst(LoadInst &LI) {
3362 assert(LI.getPointerOperand() == *U);
3363 if (!LI.isSimple() || LI.getType()->isSingleValueType())
3364 return false;
3366 // We have an aggregate being loaded, split it apart.
3367 LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
3368 AAMDNodes AATags;
3369 LI.getAAMetadata(AATags);
3370 LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3371 getAdjustedAlignment(&LI, 0, DL), DL);
3372 Value *V = UndefValue::get(LI.getType());
3373 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3374 LI.replaceAllUsesWith(V);
3375 LI.eraseFromParent();
3376 return true;
3379 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3380 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3381 AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
3382 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3383 DL),
3384 AATags(AATags) {}
3385 AAMDNodes AATags;
3386 /// Emit a leaf store of a single value. This is called at the leaves of the
3387 /// recursive emission to actually produce stores.
3388 void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
3389 assert(Ty->isSingleValueType());
3390 // Extract the single value and store it using the indices.
3392 // The gep and extractvalue values are factored out of the CreateStore
3393 // call to make the output independent of the argument evaluation order.
3394 Value *ExtractValue =
3395 IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3396 Value *InBoundsGEP =
3397 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3398 StoreInst *Store =
3399 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Align);
3400 if (AATags)
3401 Store->setAAMetadata(AATags);
3402 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
3406 bool visitStoreInst(StoreInst &SI) {
3407 if (!SI.isSimple() || SI.getPointerOperand() != *U)
3408 return false;
3409 Value *V = SI.getValueOperand();
3410 if (V->getType()->isSingleValueType())
3411 return false;
3413 // We have an aggregate being stored, split it apart.
3414 LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
3415 AAMDNodes AATags;
3416 SI.getAAMetadata(AATags);
3417 StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3418 getAdjustedAlignment(&SI, 0, DL), DL);
3419 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3420 SI.eraseFromParent();
3421 return true;
3424 bool visitBitCastInst(BitCastInst &BC) {
3425 enqueueUsers(BC);
3426 return false;
3429 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3430 enqueueUsers(ASC);
3431 return false;
3434 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3435 enqueueUsers(GEPI);
3436 return false;
3439 bool visitPHINode(PHINode &PN) {
3440 enqueueUsers(PN);
3441 return false;
3444 bool visitSelectInst(SelectInst &SI) {
3445 enqueueUsers(SI);
3446 return false;
3450 } // end anonymous namespace
3452 /// Strip aggregate type wrapping.
3454 /// This removes no-op aggregate types wrapping an underlying type. It will
3455 /// strip as many layers of types as it can without changing either the type
3456 /// size or the allocated size.
3457 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3458 if (Ty->isSingleValueType())
3459 return Ty;
3461 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3462 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3464 Type *InnerTy;
3465 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3466 InnerTy = ArrTy->getElementType();
3467 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3468 const StructLayout *SL = DL.getStructLayout(STy);
3469 unsigned Index = SL->getElementContainingOffset(0);
3470 InnerTy = STy->getElementType(Index);
3471 } else {
3472 return Ty;
3475 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3476 TypeSize > DL.getTypeSizeInBits(InnerTy))
3477 return Ty;
3479 return stripAggregateTypeWrapping(DL, InnerTy);
3482 /// Try to find a partition of the aggregate type passed in for a given
3483 /// offset and size.
3485 /// This recurses through the aggregate type and tries to compute a subtype
3486 /// based on the offset and size. When the offset and size span a sub-section
3487 /// of an array, it will even compute a new array type for that sub-section,
3488 /// and the same for structs.
3490 /// Note that this routine is very strict and tries to find a partition of the
3491 /// type which produces the *exact* right offset and size. It is not forgiving
3492 /// when the size or offset cause either end of type-based partition to be off.
3493 /// Also, this is a best-effort routine. It is reasonable to give up and not
3494 /// return a type if necessary.
3495 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3496 uint64_t Size) {
3497 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3498 return stripAggregateTypeWrapping(DL, Ty);
3499 if (Offset > DL.getTypeAllocSize(Ty) ||
3500 (DL.getTypeAllocSize(Ty) - Offset) < Size)
3501 return nullptr;
3503 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3504 Type *ElementTy = SeqTy->getElementType();
3505 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3506 uint64_t NumSkippedElements = Offset / ElementSize;
3507 if (NumSkippedElements >= SeqTy->getNumElements())
3508 return nullptr;
3509 Offset -= NumSkippedElements * ElementSize;
3511 // First check if we need to recurse.
3512 if (Offset > 0 || Size < ElementSize) {
3513 // Bail if the partition ends in a different array element.
3514 if ((Offset + Size) > ElementSize)
3515 return nullptr;
3516 // Recurse through the element type trying to peel off offset bytes.
3517 return getTypePartition(DL, ElementTy, Offset, Size);
3519 assert(Offset == 0);
3521 if (Size == ElementSize)
3522 return stripAggregateTypeWrapping(DL, ElementTy);
3523 assert(Size > ElementSize);
3524 uint64_t NumElements = Size / ElementSize;
3525 if (NumElements * ElementSize != Size)
3526 return nullptr;
3527 return ArrayType::get(ElementTy, NumElements);
3530 StructType *STy = dyn_cast<StructType>(Ty);
3531 if (!STy)
3532 return nullptr;
3534 const StructLayout *SL = DL.getStructLayout(STy);
3535 if (Offset >= SL->getSizeInBytes())
3536 return nullptr;
3537 uint64_t EndOffset = Offset + Size;
3538 if (EndOffset > SL->getSizeInBytes())
3539 return nullptr;
3541 unsigned Index = SL->getElementContainingOffset(Offset);
3542 Offset -= SL->getElementOffset(Index);
3544 Type *ElementTy = STy->getElementType(Index);
3545 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3546 if (Offset >= ElementSize)
3547 return nullptr; // The offset points into alignment padding.
3549 // See if any partition must be contained by the element.
3550 if (Offset > 0 || Size < ElementSize) {
3551 if ((Offset + Size) > ElementSize)
3552 return nullptr;
3553 return getTypePartition(DL, ElementTy, Offset, Size);
3555 assert(Offset == 0);
3557 if (Size == ElementSize)
3558 return stripAggregateTypeWrapping(DL, ElementTy);
3560 StructType::element_iterator EI = STy->element_begin() + Index,
3561 EE = STy->element_end();
3562 if (EndOffset < SL->getSizeInBytes()) {
3563 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3564 if (Index == EndIndex)
3565 return nullptr; // Within a single element and its padding.
3567 // Don't try to form "natural" types if the elements don't line up with the
3568 // expected size.
3569 // FIXME: We could potentially recurse down through the last element in the
3570 // sub-struct to find a natural end point.
3571 if (SL->getElementOffset(EndIndex) != EndOffset)
3572 return nullptr;
3574 assert(Index < EndIndex);
3575 EE = STy->element_begin() + EndIndex;
3578 // Try to build up a sub-structure.
3579 StructType *SubTy =
3580 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3581 const StructLayout *SubSL = DL.getStructLayout(SubTy);
3582 if (Size != SubSL->getSizeInBytes())
3583 return nullptr; // The sub-struct doesn't have quite the size needed.
3585 return SubTy;
3588 /// Pre-split loads and stores to simplify rewriting.
3590 /// We want to break up the splittable load+store pairs as much as
3591 /// possible. This is important to do as a preprocessing step, as once we
3592 /// start rewriting the accesses to partitions of the alloca we lose the
3593 /// necessary information to correctly split apart paired loads and stores
3594 /// which both point into this alloca. The case to consider is something like
3595 /// the following:
3597 /// %a = alloca [12 x i8]
3598 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3599 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3600 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3601 /// %iptr1 = bitcast i8* %gep1 to i64*
3602 /// %iptr2 = bitcast i8* %gep2 to i64*
3603 /// %fptr1 = bitcast i8* %gep1 to float*
3604 /// %fptr2 = bitcast i8* %gep2 to float*
3605 /// %fptr3 = bitcast i8* %gep3 to float*
3606 /// store float 0.0, float* %fptr1
3607 /// store float 1.0, float* %fptr2
3608 /// %v = load i64* %iptr1
3609 /// store i64 %v, i64* %iptr2
3610 /// %f1 = load float* %fptr2
3611 /// %f2 = load float* %fptr3
3613 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3614 /// promote everything so we recover the 2 SSA values that should have been
3615 /// there all along.
3617 /// \returns true if any changes are made.
3618 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3619 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3621 // Track the loads and stores which are candidates for pre-splitting here, in
3622 // the order they first appear during the partition scan. These give stable
3623 // iteration order and a basis for tracking which loads and stores we
3624 // actually split.
3625 SmallVector<LoadInst *, 4> Loads;
3626 SmallVector<StoreInst *, 4> Stores;
3628 // We need to accumulate the splits required of each load or store where we
3629 // can find them via a direct lookup. This is important to cross-check loads
3630 // and stores against each other. We also track the slice so that we can kill
3631 // all the slices that end up split.
3632 struct SplitOffsets {
3633 Slice *S;
3634 std::vector<uint64_t> Splits;
3636 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3638 // Track loads out of this alloca which cannot, for any reason, be pre-split.
3639 // This is important as we also cannot pre-split stores of those loads!
3640 // FIXME: This is all pretty gross. It means that we can be more aggressive
3641 // in pre-splitting when the load feeding the store happens to come from
3642 // a separate alloca. Put another way, the effectiveness of SROA would be
3643 // decreased by a frontend which just concatenated all of its local allocas
3644 // into one big flat alloca. But defeating such patterns is exactly the job
3645 // SROA is tasked with! Sadly, to not have this discrepancy we would have
3646 // change store pre-splitting to actually force pre-splitting of the load
3647 // that feeds it *and all stores*. That makes pre-splitting much harder, but
3648 // maybe it would make it more principled?
3649 SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3651 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n");
3652 for (auto &P : AS.partitions()) {
3653 for (Slice &S : P) {
3654 Instruction *I = cast<Instruction>(S.getUse()->getUser());
3655 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3656 // If this is a load we have to track that it can't participate in any
3657 // pre-splitting. If this is a store of a load we have to track that
3658 // that load also can't participate in any pre-splitting.
3659 if (auto *LI = dyn_cast<LoadInst>(I))
3660 UnsplittableLoads.insert(LI);
3661 else if (auto *SI = dyn_cast<StoreInst>(I))
3662 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3663 UnsplittableLoads.insert(LI);
3664 continue;
3666 assert(P.endOffset() > S.beginOffset() &&
3667 "Empty or backwards partition!");
3669 // Determine if this is a pre-splittable slice.
3670 if (auto *LI = dyn_cast<LoadInst>(I)) {
3671 assert(!LI->isVolatile() && "Cannot split volatile loads!");
3673 // The load must be used exclusively to store into other pointers for
3674 // us to be able to arbitrarily pre-split it. The stores must also be
3675 // simple to avoid changing semantics.
3676 auto IsLoadSimplyStored = [](LoadInst *LI) {
3677 for (User *LU : LI->users()) {
3678 auto *SI = dyn_cast<StoreInst>(LU);
3679 if (!SI || !SI->isSimple())
3680 return false;
3682 return true;
3684 if (!IsLoadSimplyStored(LI)) {
3685 UnsplittableLoads.insert(LI);
3686 continue;
3689 Loads.push_back(LI);
3690 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3691 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3692 // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3693 continue;
3694 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3695 if (!StoredLoad || !StoredLoad->isSimple())
3696 continue;
3697 assert(!SI->isVolatile() && "Cannot split volatile stores!");
3699 Stores.push_back(SI);
3700 } else {
3701 // Other uses cannot be pre-split.
3702 continue;
3705 // Record the initial split.
3706 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n");
3707 auto &Offsets = SplitOffsetsMap[I];
3708 assert(Offsets.Splits.empty() &&
3709 "Should not have splits the first time we see an instruction!");
3710 Offsets.S = &S;
3711 Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3714 // Now scan the already split slices, and add a split for any of them which
3715 // we're going to pre-split.
3716 for (Slice *S : P.splitSliceTails()) {
3717 auto SplitOffsetsMapI =
3718 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3719 if (SplitOffsetsMapI == SplitOffsetsMap.end())
3720 continue;
3721 auto &Offsets = SplitOffsetsMapI->second;
3723 assert(Offsets.S == S && "Found a mismatched slice!");
3724 assert(!Offsets.Splits.empty() &&
3725 "Cannot have an empty set of splits on the second partition!");
3726 assert(Offsets.Splits.back() ==
3727 P.beginOffset() - Offsets.S->beginOffset() &&
3728 "Previous split does not end where this one begins!");
3730 // Record each split. The last partition's end isn't needed as the size
3731 // of the slice dictates that.
3732 if (S->endOffset() > P.endOffset())
3733 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3737 // We may have split loads where some of their stores are split stores. For
3738 // such loads and stores, we can only pre-split them if their splits exactly
3739 // match relative to their starting offset. We have to verify this prior to
3740 // any rewriting.
3741 Stores.erase(
3742 llvm::remove_if(Stores,
3743 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3744 // Lookup the load we are storing in our map of split
3745 // offsets.
3746 auto *LI = cast<LoadInst>(SI->getValueOperand());
3747 // If it was completely unsplittable, then we're done,
3748 // and this store can't be pre-split.
3749 if (UnsplittableLoads.count(LI))
3750 return true;
3752 auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3753 if (LoadOffsetsI == SplitOffsetsMap.end())
3754 return false; // Unrelated loads are definitely safe.
3755 auto &LoadOffsets = LoadOffsetsI->second;
3757 // Now lookup the store's offsets.
3758 auto &StoreOffsets = SplitOffsetsMap[SI];
3760 // If the relative offsets of each split in the load and
3761 // store match exactly, then we can split them and we
3762 // don't need to remove them here.
3763 if (LoadOffsets.Splits == StoreOffsets.Splits)
3764 return false;
3766 LLVM_DEBUG(
3767 dbgs()
3768 << " Mismatched splits for load and store:\n"
3769 << " " << *LI << "\n"
3770 << " " << *SI << "\n");
3772 // We've found a store and load that we need to split
3773 // with mismatched relative splits. Just give up on them
3774 // and remove both instructions from our list of
3775 // candidates.
3776 UnsplittableLoads.insert(LI);
3777 return true;
3779 Stores.end());
3780 // Now we have to go *back* through all the stores, because a later store may
3781 // have caused an earlier store's load to become unsplittable and if it is
3782 // unsplittable for the later store, then we can't rely on it being split in
3783 // the earlier store either.
3784 Stores.erase(llvm::remove_if(Stores,
3785 [&UnsplittableLoads](StoreInst *SI) {
3786 auto *LI =
3787 cast<LoadInst>(SI->getValueOperand());
3788 return UnsplittableLoads.count(LI);
3790 Stores.end());
3791 // Once we've established all the loads that can't be split for some reason,
3792 // filter any that made it into our list out.
3793 Loads.erase(llvm::remove_if(Loads,
3794 [&UnsplittableLoads](LoadInst *LI) {
3795 return UnsplittableLoads.count(LI);
3797 Loads.end());
3799 // If no loads or stores are left, there is no pre-splitting to be done for
3800 // this alloca.
3801 if (Loads.empty() && Stores.empty())
3802 return false;
3804 // From here on, we can't fail and will be building new accesses, so rig up
3805 // an IR builder.
3806 IRBuilderTy IRB(&AI);
3808 // Collect the new slices which we will merge into the alloca slices.
3809 SmallVector<Slice, 4> NewSlices;
3811 // Track any allocas we end up splitting loads and stores for so we iterate
3812 // on them.
3813 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3815 // At this point, we have collected all of the loads and stores we can
3816 // pre-split, and the specific splits needed for them. We actually do the
3817 // splitting in a specific order in order to handle when one of the loads in
3818 // the value operand to one of the stores.
3820 // First, we rewrite all of the split loads, and just accumulate each split
3821 // load in a parallel structure. We also build the slices for them and append
3822 // them to the alloca slices.
3823 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3824 std::vector<LoadInst *> SplitLoads;
3825 const DataLayout &DL = AI.getModule()->getDataLayout();
3826 for (LoadInst *LI : Loads) {
3827 SplitLoads.clear();
3829 IntegerType *Ty = cast<IntegerType>(LI->getType());
3830 uint64_t LoadSize = Ty->getBitWidth() / 8;
3831 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3833 auto &Offsets = SplitOffsetsMap[LI];
3834 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3835 "Slice size should always match load size exactly!");
3836 uint64_t BaseOffset = Offsets.S->beginOffset();
3837 assert(BaseOffset + LoadSize > BaseOffset &&
3838 "Cannot represent alloca access size using 64-bit integers!");
3840 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3841 IRB.SetInsertPoint(LI);
3843 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
3845 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3846 int Idx = 0, Size = Offsets.Splits.size();
3847 for (;;) {
3848 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3849 auto AS = LI->getPointerAddressSpace();
3850 auto *PartPtrTy = PartTy->getPointerTo(AS);
3851 LoadInst *PLoad = IRB.CreateAlignedLoad(
3852 PartTy,
3853 getAdjustedPtr(IRB, DL, BasePtr,
3854 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3855 PartPtrTy, BasePtr->getName() + "."),
3856 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3857 LI->getName());
3858 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3859 LLVMContext::MD_access_group});
3861 // Append this load onto the list of split loads so we can find it later
3862 // to rewrite the stores.
3863 SplitLoads.push_back(PLoad);
3865 // Now build a new slice for the alloca.
3866 NewSlices.push_back(
3867 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3868 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3869 /*IsSplittable*/ false));
3870 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
3871 << ", " << NewSlices.back().endOffset()
3872 << "): " << *PLoad << "\n");
3874 // See if we've handled all the splits.
3875 if (Idx >= Size)
3876 break;
3878 // Setup the next partition.
3879 PartOffset = Offsets.Splits[Idx];
3880 ++Idx;
3881 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3884 // Now that we have the split loads, do the slow walk over all uses of the
3885 // load and rewrite them as split stores, or save the split loads to use
3886 // below if the store is going to be split there anyways.
3887 bool DeferredStores = false;
3888 for (User *LU : LI->users()) {
3889 StoreInst *SI = cast<StoreInst>(LU);
3890 if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3891 DeferredStores = true;
3892 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI
3893 << "\n");
3894 continue;
3897 Value *StoreBasePtr = SI->getPointerOperand();
3898 IRB.SetInsertPoint(SI);
3900 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
3902 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3903 LoadInst *PLoad = SplitLoads[Idx];
3904 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3905 auto *PartPtrTy =
3906 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3908 auto AS = SI->getPointerAddressSpace();
3909 StoreInst *PStore = IRB.CreateAlignedStore(
3910 PLoad,
3911 getAdjustedPtr(IRB, DL, StoreBasePtr,
3912 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3913 PartPtrTy, StoreBasePtr->getName() + "."),
3914 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3915 PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3916 LLVMContext::MD_access_group});
3917 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
3920 // We want to immediately iterate on any allocas impacted by splitting
3921 // this store, and we have to track any promotable alloca (indicated by
3922 // a direct store) as needing to be resplit because it is no longer
3923 // promotable.
3924 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3925 ResplitPromotableAllocas.insert(OtherAI);
3926 Worklist.insert(OtherAI);
3927 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3928 StoreBasePtr->stripInBoundsOffsets())) {
3929 Worklist.insert(OtherAI);
3932 // Mark the original store as dead.
3933 DeadInsts.insert(SI);
3936 // Save the split loads if there are deferred stores among the users.
3937 if (DeferredStores)
3938 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3940 // Mark the original load as dead and kill the original slice.
3941 DeadInsts.insert(LI);
3942 Offsets.S->kill();
3945 // Second, we rewrite all of the split stores. At this point, we know that
3946 // all loads from this alloca have been split already. For stores of such
3947 // loads, we can simply look up the pre-existing split loads. For stores of
3948 // other loads, we split those loads first and then write split stores of
3949 // them.
3950 for (StoreInst *SI : Stores) {
3951 auto *LI = cast<LoadInst>(SI->getValueOperand());
3952 IntegerType *Ty = cast<IntegerType>(LI->getType());
3953 uint64_t StoreSize = Ty->getBitWidth() / 8;
3954 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3956 auto &Offsets = SplitOffsetsMap[SI];
3957 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3958 "Slice size should always match load size exactly!");
3959 uint64_t BaseOffset = Offsets.S->beginOffset();
3960 assert(BaseOffset + StoreSize > BaseOffset &&
3961 "Cannot represent alloca access size using 64-bit integers!");
3963 Value *LoadBasePtr = LI->getPointerOperand();
3964 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3966 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
3968 // Check whether we have an already split load.
3969 auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3970 std::vector<LoadInst *> *SplitLoads = nullptr;
3971 if (SplitLoadsMapI != SplitLoadsMap.end()) {
3972 SplitLoads = &SplitLoadsMapI->second;
3973 assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3974 "Too few split loads for the number of splits in the store!");
3975 } else {
3976 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n");
3979 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3980 int Idx = 0, Size = Offsets.Splits.size();
3981 for (;;) {
3982 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3983 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3984 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3986 // Either lookup a split load or create one.
3987 LoadInst *PLoad;
3988 if (SplitLoads) {
3989 PLoad = (*SplitLoads)[Idx];
3990 } else {
3991 IRB.SetInsertPoint(LI);
3992 auto AS = LI->getPointerAddressSpace();
3993 PLoad = IRB.CreateAlignedLoad(
3994 PartTy,
3995 getAdjustedPtr(IRB, DL, LoadBasePtr,
3996 APInt(DL.getIndexSizeInBits(AS), PartOffset),
3997 LoadPartPtrTy, LoadBasePtr->getName() + "."),
3998 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3999 LI->getName());
4002 // And store this partition.
4003 IRB.SetInsertPoint(SI);
4004 auto AS = SI->getPointerAddressSpace();
4005 StoreInst *PStore = IRB.CreateAlignedStore(
4006 PLoad,
4007 getAdjustedPtr(IRB, DL, StoreBasePtr,
4008 APInt(DL.getIndexSizeInBits(AS), PartOffset),
4009 StorePartPtrTy, StoreBasePtr->getName() + "."),
4010 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
4012 // Now build a new slice for the alloca.
4013 NewSlices.push_back(
4014 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4015 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4016 /*IsSplittable*/ false));
4017 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
4018 << ", " << NewSlices.back().endOffset()
4019 << "): " << *PStore << "\n");
4020 if (!SplitLoads) {
4021 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
4024 // See if we've finished all the splits.
4025 if (Idx >= Size)
4026 break;
4028 // Setup the next partition.
4029 PartOffset = Offsets.Splits[Idx];
4030 ++Idx;
4031 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4034 // We want to immediately iterate on any allocas impacted by splitting
4035 // this load, which is only relevant if it isn't a load of this alloca and
4036 // thus we didn't already split the loads above. We also have to keep track
4037 // of any promotable allocas we split loads on as they can no longer be
4038 // promoted.
4039 if (!SplitLoads) {
4040 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4041 assert(OtherAI != &AI && "We can't re-split our own alloca!");
4042 ResplitPromotableAllocas.insert(OtherAI);
4043 Worklist.insert(OtherAI);
4044 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4045 LoadBasePtr->stripInBoundsOffsets())) {
4046 assert(OtherAI != &AI && "We can't re-split our own alloca!");
4047 Worklist.insert(OtherAI);
4051 // Mark the original store as dead now that we've split it up and kill its
4052 // slice. Note that we leave the original load in place unless this store
4053 // was its only use. It may in turn be split up if it is an alloca load
4054 // for some other alloca, but it may be a normal load. This may introduce
4055 // redundant loads, but where those can be merged the rest of the optimizer
4056 // should handle the merging, and this uncovers SSA splits which is more
4057 // important. In practice, the original loads will almost always be fully
4058 // split and removed eventually, and the splits will be merged by any
4059 // trivial CSE, including instcombine.
4060 if (LI->hasOneUse()) {
4061 assert(*LI->user_begin() == SI && "Single use isn't this store!");
4062 DeadInsts.insert(LI);
4064 DeadInsts.insert(SI);
4065 Offsets.S->kill();
4068 // Remove the killed slices that have ben pre-split.
4069 AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
4070 AS.end());
4072 // Insert our new slices. This will sort and merge them into the sorted
4073 // sequence.
4074 AS.insert(NewSlices);
4076 LLVM_DEBUG(dbgs() << " Pre-split slices:\n");
4077 #ifndef NDEBUG
4078 for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4079 LLVM_DEBUG(AS.print(dbgs(), I, " "));
4080 #endif
4082 // Finally, don't try to promote any allocas that new require re-splitting.
4083 // They have already been added to the worklist above.
4084 PromotableAllocas.erase(
4085 llvm::remove_if(
4086 PromotableAllocas,
4087 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4088 PromotableAllocas.end());
4090 return true;
4093 /// Rewrite an alloca partition's users.
4095 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4096 /// to rewrite uses of an alloca partition to be conducive for SSA value
4097 /// promotion. If the partition needs a new, more refined alloca, this will
4098 /// build that new alloca, preserving as much type information as possible, and
4099 /// rewrite the uses of the old alloca to point at the new one and have the
4100 /// appropriate new offsets. It also evaluates how successful the rewrite was
4101 /// at enabling promotion and if it was successful queues the alloca to be
4102 /// promoted.
4103 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4104 Partition &P) {
4105 // Try to compute a friendly type for this partition of the alloca. This
4106 // won't always succeed, in which case we fall back to a legal integer type
4107 // or an i8 array of an appropriate size.
4108 Type *SliceTy = nullptr;
4109 const DataLayout &DL = AI.getModule()->getDataLayout();
4110 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4111 if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
4112 SliceTy = CommonUseTy;
4113 if (!SliceTy)
4114 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4115 P.beginOffset(), P.size()))
4116 SliceTy = TypePartitionTy;
4117 if ((!SliceTy || (SliceTy->isArrayTy() &&
4118 SliceTy->getArrayElementType()->isIntegerTy())) &&
4119 DL.isLegalInteger(P.size() * 8))
4120 SliceTy = Type::getIntNTy(*C, P.size() * 8);
4121 if (!SliceTy)
4122 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4123 assert(DL.getTypeAllocSize(SliceTy) >= P.size());
4125 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4127 VectorType *VecTy =
4128 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4129 if (VecTy)
4130 SliceTy = VecTy;
4132 // Check for the case where we're going to rewrite to a new alloca of the
4133 // exact same type as the original, and with the same access offsets. In that
4134 // case, re-use the existing alloca, but still run through the rewriter to
4135 // perform phi and select speculation.
4136 // P.beginOffset() can be non-zero even with the same type in a case with
4137 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4138 AllocaInst *NewAI;
4139 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4140 NewAI = &AI;
4141 // FIXME: We should be able to bail at this point with "nothing changed".
4142 // FIXME: We might want to defer PHI speculation until after here.
4143 // FIXME: return nullptr;
4144 } else {
4145 unsigned Alignment = AI.getAlignment();
4146 if (!Alignment) {
4147 // The minimum alignment which users can rely on when the explicit
4148 // alignment is omitted or zero is that required by the ABI for this
4149 // type.
4150 Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
4152 Alignment = MinAlign(Alignment, P.beginOffset());
4153 // If we will get at least this much alignment from the type alone, leave
4154 // the alloca's alignment unconstrained.
4155 if (Alignment <= DL.getABITypeAlignment(SliceTy))
4156 Alignment = 0;
4157 NewAI = new AllocaInst(
4158 SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment,
4159 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4160 // Copy the old AI debug location over to the new one.
4161 NewAI->setDebugLoc(AI.getDebugLoc());
4162 ++NumNewAllocas;
4165 LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4166 << "[" << P.beginOffset() << "," << P.endOffset()
4167 << ") to: " << *NewAI << "\n");
4169 // Track the high watermark on the worklist as it is only relevant for
4170 // promoted allocas. We will reset it to this point if the alloca is not in
4171 // fact scheduled for promotion.
4172 unsigned PPWOldSize = PostPromotionWorklist.size();
4173 unsigned NumUses = 0;
4174 SmallSetVector<PHINode *, 8> PHIUsers;
4175 SmallSetVector<SelectInst *, 8> SelectUsers;
4177 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4178 P.endOffset(), IsIntegerPromotable, VecTy,
4179 PHIUsers, SelectUsers);
4180 bool Promotable = true;
4181 for (Slice *S : P.splitSliceTails()) {
4182 Promotable &= Rewriter.visit(S);
4183 ++NumUses;
4185 for (Slice &S : P) {
4186 Promotable &= Rewriter.visit(&S);
4187 ++NumUses;
4190 NumAllocaPartitionUses += NumUses;
4191 MaxUsesPerAllocaPartition.updateMax(NumUses);
4193 // Now that we've processed all the slices in the new partition, check if any
4194 // PHIs or Selects would block promotion.
4195 for (PHINode *PHI : PHIUsers)
4196 if (!isSafePHIToSpeculate(*PHI)) {
4197 Promotable = false;
4198 PHIUsers.clear();
4199 SelectUsers.clear();
4200 break;
4203 for (SelectInst *Sel : SelectUsers)
4204 if (!isSafeSelectToSpeculate(*Sel)) {
4205 Promotable = false;
4206 PHIUsers.clear();
4207 SelectUsers.clear();
4208 break;
4211 if (Promotable) {
4212 if (PHIUsers.empty() && SelectUsers.empty()) {
4213 // Promote the alloca.
4214 PromotableAllocas.push_back(NewAI);
4215 } else {
4216 // If we have either PHIs or Selects to speculate, add them to those
4217 // worklists and re-queue the new alloca so that we promote in on the
4218 // next iteration.
4219 for (PHINode *PHIUser : PHIUsers)
4220 SpeculatablePHIs.insert(PHIUser);
4221 for (SelectInst *SelectUser : SelectUsers)
4222 SpeculatableSelects.insert(SelectUser);
4223 Worklist.insert(NewAI);
4225 } else {
4226 // Drop any post-promotion work items if promotion didn't happen.
4227 while (PostPromotionWorklist.size() > PPWOldSize)
4228 PostPromotionWorklist.pop_back();
4230 // We couldn't promote and we didn't create a new partition, nothing
4231 // happened.
4232 if (NewAI == &AI)
4233 return nullptr;
4235 // If we can't promote the alloca, iterate on it to check for new
4236 // refinements exposed by splitting the current alloca. Don't iterate on an
4237 // alloca which didn't actually change and didn't get promoted.
4238 Worklist.insert(NewAI);
4241 return NewAI;
4244 /// Walks the slices of an alloca and form partitions based on them,
4245 /// rewriting each of their uses.
4246 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4247 if (AS.begin() == AS.end())
4248 return false;
4250 unsigned NumPartitions = 0;
4251 bool Changed = false;
4252 const DataLayout &DL = AI.getModule()->getDataLayout();
4254 // First try to pre-split loads and stores.
4255 Changed |= presplitLoadsAndStores(AI, AS);
4257 // Now that we have identified any pre-splitting opportunities,
4258 // mark loads and stores unsplittable except for the following case.
4259 // We leave a slice splittable if all other slices are disjoint or fully
4260 // included in the slice, such as whole-alloca loads and stores.
4261 // If we fail to split these during pre-splitting, we want to force them
4262 // to be rewritten into a partition.
4263 bool IsSorted = true;
4265 uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
4266 const uint64_t MaxBitVectorSize = 1024;
4267 if (AllocaSize <= MaxBitVectorSize) {
4268 // If a byte boundary is included in any load or store, a slice starting or
4269 // ending at the boundary is not splittable.
4270 SmallBitVector SplittableOffset(AllocaSize + 1, true);
4271 for (Slice &S : AS)
4272 for (unsigned O = S.beginOffset() + 1;
4273 O < S.endOffset() && O < AllocaSize; O++)
4274 SplittableOffset.reset(O);
4276 for (Slice &S : AS) {
4277 if (!S.isSplittable())
4278 continue;
4280 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4281 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4282 continue;
4284 if (isa<LoadInst>(S.getUse()->getUser()) ||
4285 isa<StoreInst>(S.getUse()->getUser())) {
4286 S.makeUnsplittable();
4287 IsSorted = false;
4291 else {
4292 // We only allow whole-alloca splittable loads and stores
4293 // for a large alloca to avoid creating too large BitVector.
4294 for (Slice &S : AS) {
4295 if (!S.isSplittable())
4296 continue;
4298 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4299 continue;
4301 if (isa<LoadInst>(S.getUse()->getUser()) ||
4302 isa<StoreInst>(S.getUse()->getUser())) {
4303 S.makeUnsplittable();
4304 IsSorted = false;
4309 if (!IsSorted)
4310 llvm::sort(AS);
4312 /// Describes the allocas introduced by rewritePartition in order to migrate
4313 /// the debug info.
4314 struct Fragment {
4315 AllocaInst *Alloca;
4316 uint64_t Offset;
4317 uint64_t Size;
4318 Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4319 : Alloca(AI), Offset(O), Size(S) {}
4321 SmallVector<Fragment, 4> Fragments;
4323 // Rewrite each partition.
4324 for (auto &P : AS.partitions()) {
4325 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4326 Changed = true;
4327 if (NewAI != &AI) {
4328 uint64_t SizeOfByte = 8;
4329 uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4330 // Don't include any padding.
4331 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4332 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4335 ++NumPartitions;
4338 NumAllocaPartitions += NumPartitions;
4339 MaxPartitionsPerAlloca.updateMax(NumPartitions);
4341 // Migrate debug information from the old alloca to the new alloca(s)
4342 // and the individual partitions.
4343 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4344 if (!DbgDeclares.empty()) {
4345 auto *Var = DbgDeclares.front()->getVariable();
4346 auto *Expr = DbgDeclares.front()->getExpression();
4347 auto VarSize = Var->getSizeInBits();
4348 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4349 uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
4350 for (auto Fragment : Fragments) {
4351 // Create a fragment expression describing the new partition or reuse AI's
4352 // expression if there is only one partition.
4353 auto *FragmentExpr = Expr;
4354 if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4355 // If this alloca is already a scalar replacement of a larger aggregate,
4356 // Fragment.Offset describes the offset inside the scalar.
4357 auto ExprFragment = Expr->getFragmentInfo();
4358 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4359 uint64_t Start = Offset + Fragment.Offset;
4360 uint64_t Size = Fragment.Size;
4361 if (ExprFragment) {
4362 uint64_t AbsEnd =
4363 ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4364 if (Start >= AbsEnd)
4365 // No need to describe a SROAed padding.
4366 continue;
4367 Size = std::min(Size, AbsEnd - Start);
4369 // The new, smaller fragment is stenciled out from the old fragment.
4370 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4371 assert(Start >= OrigFragment->OffsetInBits &&
4372 "new fragment is outside of original fragment");
4373 Start -= OrigFragment->OffsetInBits;
4376 // The alloca may be larger than the variable.
4377 if (VarSize) {
4378 if (Size > *VarSize)
4379 Size = *VarSize;
4380 if (Size == 0 || Start + Size > *VarSize)
4381 continue;
4384 // Avoid creating a fragment expression that covers the entire variable.
4385 if (!VarSize || *VarSize != Size) {
4386 if (auto E =
4387 DIExpression::createFragmentExpression(Expr, Start, Size))
4388 FragmentExpr = *E;
4389 else
4390 continue;
4394 // Remove any existing intrinsics describing the same alloca.
4395 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4396 OldDII->eraseFromParent();
4398 DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4399 DbgDeclares.front()->getDebugLoc(), &AI);
4402 return Changed;
4405 /// Clobber a use with undef, deleting the used value if it becomes dead.
4406 void SROA::clobberUse(Use &U) {
4407 Value *OldV = U;
4408 // Replace the use with an undef value.
4409 U = UndefValue::get(OldV->getType());
4411 // Check for this making an instruction dead. We have to garbage collect
4412 // all the dead instructions to ensure the uses of any alloca end up being
4413 // minimal.
4414 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4415 if (isInstructionTriviallyDead(OldI)) {
4416 DeadInsts.insert(OldI);
4420 /// Analyze an alloca for SROA.
4422 /// This analyzes the alloca to ensure we can reason about it, builds
4423 /// the slices of the alloca, and then hands it off to be split and
4424 /// rewritten as needed.
4425 bool SROA::runOnAlloca(AllocaInst &AI) {
4426 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4427 ++NumAllocasAnalyzed;
4429 // Special case dead allocas, as they're trivial.
4430 if (AI.use_empty()) {
4431 AI.eraseFromParent();
4432 return true;
4434 const DataLayout &DL = AI.getModule()->getDataLayout();
4436 // Skip alloca forms that this analysis can't handle.
4437 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4438 DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4439 return false;
4441 bool Changed = false;
4443 // First, split any FCA loads and stores touching this alloca to promote
4444 // better splitting and promotion opportunities.
4445 AggLoadStoreRewriter AggRewriter(DL);
4446 Changed |= AggRewriter.rewrite(AI);
4448 // Build the slices using a recursive instruction-visiting builder.
4449 AllocaSlices AS(DL, AI);
4450 LLVM_DEBUG(AS.print(dbgs()));
4451 if (AS.isEscaped())
4452 return Changed;
4454 // Delete all the dead users of this alloca before splitting and rewriting it.
4455 for (Instruction *DeadUser : AS.getDeadUsers()) {
4456 // Free up everything used by this instruction.
4457 for (Use &DeadOp : DeadUser->operands())
4458 clobberUse(DeadOp);
4460 // Now replace the uses of this instruction.
4461 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4463 // And mark it for deletion.
4464 DeadInsts.insert(DeadUser);
4465 Changed = true;
4467 for (Use *DeadOp : AS.getDeadOperands()) {
4468 clobberUse(*DeadOp);
4469 Changed = true;
4472 // No slices to split. Leave the dead alloca for a later pass to clean up.
4473 if (AS.begin() == AS.end())
4474 return Changed;
4476 Changed |= splitAlloca(AI, AS);
4478 LLVM_DEBUG(dbgs() << " Speculating PHIs\n");
4479 while (!SpeculatablePHIs.empty())
4480 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4482 LLVM_DEBUG(dbgs() << " Speculating Selects\n");
4483 while (!SpeculatableSelects.empty())
4484 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4486 return Changed;
4489 /// Delete the dead instructions accumulated in this run.
4491 /// Recursively deletes the dead instructions we've accumulated. This is done
4492 /// at the very end to maximize locality of the recursive delete and to
4493 /// minimize the problems of invalidated instruction pointers as such pointers
4494 /// are used heavily in the intermediate stages of the algorithm.
4496 /// We also record the alloca instructions deleted here so that they aren't
4497 /// subsequently handed to mem2reg to promote.
4498 bool SROA::deleteDeadInstructions(
4499 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4500 bool Changed = false;
4501 while (!DeadInsts.empty()) {
4502 Instruction *I = DeadInsts.pop_back_val();
4503 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4505 // If the instruction is an alloca, find the possible dbg.declare connected
4506 // to it, and remove it too. We must do this before calling RAUW or we will
4507 // not be able to find it.
4508 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4509 DeletedAllocas.insert(AI);
4510 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4511 OldDII->eraseFromParent();
4514 I->replaceAllUsesWith(UndefValue::get(I->getType()));
4516 for (Use &Operand : I->operands())
4517 if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4518 // Zero out the operand and see if it becomes trivially dead.
4519 Operand = nullptr;
4520 if (isInstructionTriviallyDead(U))
4521 DeadInsts.insert(U);
4524 ++NumDeleted;
4525 I->eraseFromParent();
4526 Changed = true;
4528 return Changed;
4531 /// Promote the allocas, using the best available technique.
4533 /// This attempts to promote whatever allocas have been identified as viable in
4534 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4535 /// This function returns whether any promotion occurred.
4536 bool SROA::promoteAllocas(Function &F) {
4537 if (PromotableAllocas.empty())
4538 return false;
4540 NumPromoted += PromotableAllocas.size();
4542 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4543 PromoteMemToReg(PromotableAllocas, *DT, AC);
4544 PromotableAllocas.clear();
4545 return true;
4548 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4549 AssumptionCache &RunAC) {
4550 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4551 C = &F.getContext();
4552 DT = &RunDT;
4553 AC = &RunAC;
4555 BasicBlock &EntryBB = F.getEntryBlock();
4556 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4557 I != E; ++I) {
4558 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4559 Worklist.insert(AI);
4562 bool Changed = false;
4563 // A set of deleted alloca instruction pointers which should be removed from
4564 // the list of promotable allocas.
4565 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4567 do {
4568 while (!Worklist.empty()) {
4569 Changed |= runOnAlloca(*Worklist.pop_back_val());
4570 Changed |= deleteDeadInstructions(DeletedAllocas);
4572 // Remove the deleted allocas from various lists so that we don't try to
4573 // continue processing them.
4574 if (!DeletedAllocas.empty()) {
4575 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4576 Worklist.remove_if(IsInSet);
4577 PostPromotionWorklist.remove_if(IsInSet);
4578 PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4579 PromotableAllocas.end());
4580 DeletedAllocas.clear();
4584 Changed |= promoteAllocas(F);
4586 Worklist = PostPromotionWorklist;
4587 PostPromotionWorklist.clear();
4588 } while (!Worklist.empty());
4590 if (!Changed)
4591 return PreservedAnalyses::all();
4593 PreservedAnalyses PA;
4594 PA.preserveSet<CFGAnalyses>();
4595 PA.preserve<GlobalsAA>();
4596 return PA;
4599 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4600 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4601 AM.getResult<AssumptionAnalysis>(F));
4604 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4606 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4607 /// SROA pass.
4608 class llvm::sroa::SROALegacyPass : public FunctionPass {
4609 /// The SROA implementation.
4610 SROA Impl;
4612 public:
4613 static char ID;
4615 SROALegacyPass() : FunctionPass(ID) {
4616 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4619 bool runOnFunction(Function &F) override {
4620 if (skipFunction(F))
4621 return false;
4623 auto PA = Impl.runImpl(
4624 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4625 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4626 return !PA.areAllPreserved();
4629 void getAnalysisUsage(AnalysisUsage &AU) const override {
4630 AU.addRequired<AssumptionCacheTracker>();
4631 AU.addRequired<DominatorTreeWrapperPass>();
4632 AU.addPreserved<GlobalsAAWrapperPass>();
4633 AU.setPreservesCFG();
4636 StringRef getPassName() const override { return "SROA"; }
4639 char SROALegacyPass::ID = 0;
4641 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4643 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4644 "Scalar Replacement Of Aggregates", false, false)
4645 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4646 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4647 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4648 false, false)