1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
23 //===----------------------------------------------------------------------===//
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantFolder.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DIBuilder.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GetElementPtrTypeIterator.h"
57 #include "llvm/IR/GlobalAlias.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstVisitor.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
97 // We only use this for a debug check.
101 using namespace llvm
;
102 using namespace llvm::sroa
;
104 #define DEBUG_TYPE "sroa"
106 STATISTIC(NumAllocasAnalyzed
, "Number of allocas analyzed for replacement");
107 STATISTIC(NumAllocaPartitions
, "Number of alloca partitions formed");
108 STATISTIC(MaxPartitionsPerAlloca
, "Maximum number of partitions per alloca");
109 STATISTIC(NumAllocaPartitionUses
, "Number of alloca partition uses rewritten");
110 STATISTIC(MaxUsesPerAllocaPartition
, "Maximum number of uses of a partition");
111 STATISTIC(NumNewAllocas
, "Number of new, smaller allocas introduced");
112 STATISTIC(NumPromoted
, "Number of allocas promoted to SSA values");
113 STATISTIC(NumLoadsSpeculated
, "Number of loads speculated to allow promotion");
114 STATISTIC(NumDeleted
, "Number of instructions deleted");
115 STATISTIC(NumVectorized
, "Number of vectorized aggregates");
117 /// Hidden option to enable randomly shuffling the slices to help uncover
118 /// instability in their order.
119 static cl::opt
<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
120 cl::init(false), cl::Hidden
);
122 /// Hidden option to experiment with completely strict handling of inbounds
124 static cl::opt
<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
129 /// A custom IRBuilder inserter which prefixes all names, but only in
131 class IRBuilderPrefixedInserter
: public IRBuilderDefaultInserter
{
134 const Twine
getNameWithPrefix(const Twine
&Name
) const {
135 return Name
.isTriviallyEmpty() ? Name
: Prefix
+ Name
;
139 void SetNamePrefix(const Twine
&P
) { Prefix
= P
.str(); }
142 void InsertHelper(Instruction
*I
, const Twine
&Name
, BasicBlock
*BB
,
143 BasicBlock::iterator InsertPt
) const {
144 IRBuilderDefaultInserter::InsertHelper(I
, getNameWithPrefix(Name
), BB
,
149 /// Provide a type for IRBuilder that drops names in release builds.
150 using IRBuilderTy
= IRBuilder
<ConstantFolder
, IRBuilderPrefixedInserter
>;
152 /// A used slice of an alloca.
154 /// This structure represents a slice of an alloca used by some instruction. It
155 /// stores both the begin and end offsets of this use, a pointer to the use
156 /// itself, and a flag indicating whether we can classify the use as splittable
157 /// or not when forming partitions of the alloca.
159 /// The beginning offset of the range.
160 uint64_t BeginOffset
= 0;
162 /// The ending offset, not included in the range.
163 uint64_t EndOffset
= 0;
165 /// Storage for both the use of this slice and whether it can be
167 PointerIntPair
<Use
*, 1, bool> UseAndIsSplittable
;
172 Slice(uint64_t BeginOffset
, uint64_t EndOffset
, Use
*U
, bool IsSplittable
)
173 : BeginOffset(BeginOffset
), EndOffset(EndOffset
),
174 UseAndIsSplittable(U
, IsSplittable
) {}
176 uint64_t beginOffset() const { return BeginOffset
; }
177 uint64_t endOffset() const { return EndOffset
; }
179 bool isSplittable() const { return UseAndIsSplittable
.getInt(); }
180 void makeUnsplittable() { UseAndIsSplittable
.setInt(false); }
182 Use
*getUse() const { return UseAndIsSplittable
.getPointer(); }
184 bool isDead() const { return getUse() == nullptr; }
185 void kill() { UseAndIsSplittable
.setPointer(nullptr); }
187 /// Support for ordering ranges.
189 /// This provides an ordering over ranges such that start offsets are
190 /// always increasing, and within equal start offsets, the end offsets are
191 /// decreasing. Thus the spanning range comes first in a cluster with the
192 /// same start position.
193 bool operator<(const Slice
&RHS
) const {
194 if (beginOffset() < RHS
.beginOffset())
196 if (beginOffset() > RHS
.beginOffset())
198 if (isSplittable() != RHS
.isSplittable())
199 return !isSplittable();
200 if (endOffset() > RHS
.endOffset())
205 /// Support comparison with a single offset to allow binary searches.
206 friend LLVM_ATTRIBUTE_UNUSED
bool operator<(const Slice
&LHS
,
207 uint64_t RHSOffset
) {
208 return LHS
.beginOffset() < RHSOffset
;
210 friend LLVM_ATTRIBUTE_UNUSED
bool operator<(uint64_t LHSOffset
,
212 return LHSOffset
< RHS
.beginOffset();
215 bool operator==(const Slice
&RHS
) const {
216 return isSplittable() == RHS
.isSplittable() &&
217 beginOffset() == RHS
.beginOffset() && endOffset() == RHS
.endOffset();
219 bool operator!=(const Slice
&RHS
) const { return !operator==(RHS
); }
222 } // end anonymous namespace
224 /// Representation of the alloca slices.
226 /// This class represents the slices of an alloca which are formed by its
227 /// various uses. If a pointer escapes, we can't fully build a representation
228 /// for the slices used and we reflect that in this structure. The uses are
229 /// stored, sorted by increasing beginning offset and with unsplittable slices
230 /// starting at a particular offset before splittable slices.
231 class llvm::sroa::AllocaSlices
{
233 /// Construct the slices of a particular alloca.
234 AllocaSlices(const DataLayout
&DL
, AllocaInst
&AI
);
236 /// Test whether a pointer to the allocation escapes our analysis.
238 /// If this is true, the slices are never fully built and should be
240 bool isEscaped() const { return PointerEscapingInstr
; }
242 /// Support for iterating over the slices.
244 using iterator
= SmallVectorImpl
<Slice
>::iterator
;
245 using range
= iterator_range
<iterator
>;
247 iterator
begin() { return Slices
.begin(); }
248 iterator
end() { return Slices
.end(); }
250 using const_iterator
= SmallVectorImpl
<Slice
>::const_iterator
;
251 using const_range
= iterator_range
<const_iterator
>;
253 const_iterator
begin() const { return Slices
.begin(); }
254 const_iterator
end() const { return Slices
.end(); }
257 /// Erase a range of slices.
258 void erase(iterator Start
, iterator Stop
) { Slices
.erase(Start
, Stop
); }
260 /// Insert new slices for this alloca.
262 /// This moves the slices into the alloca's slices collection, and re-sorts
263 /// everything so that the usual ordering properties of the alloca's slices
265 void insert(ArrayRef
<Slice
> NewSlices
) {
266 int OldSize
= Slices
.size();
267 Slices
.append(NewSlices
.begin(), NewSlices
.end());
268 auto SliceI
= Slices
.begin() + OldSize
;
269 llvm::sort(SliceI
, Slices
.end());
270 std::inplace_merge(Slices
.begin(), SliceI
, Slices
.end());
273 // Forward declare the iterator and range accessor for walking the
275 class partition_iterator
;
276 iterator_range
<partition_iterator
> partitions();
278 /// Access the dead users for this alloca.
279 ArrayRef
<Instruction
*> getDeadUsers() const { return DeadUsers
; }
281 /// Access the dead operands referring to this alloca.
283 /// These are operands which have cannot actually be used to refer to the
284 /// alloca as they are outside its range and the user doesn't correct for
285 /// that. These mostly consist of PHI node inputs and the like which we just
286 /// need to replace with undef.
287 ArrayRef
<Use
*> getDeadOperands() const { return DeadOperands
; }
289 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
290 void print(raw_ostream
&OS
, const_iterator I
, StringRef Indent
= " ") const;
291 void printSlice(raw_ostream
&OS
, const_iterator I
,
292 StringRef Indent
= " ") const;
293 void printUse(raw_ostream
&OS
, const_iterator I
,
294 StringRef Indent
= " ") const;
295 void print(raw_ostream
&OS
) const;
296 void dump(const_iterator I
) const;
301 template <typename DerivedT
, typename RetT
= void> class BuilderBase
;
304 friend class AllocaSlices::SliceBuilder
;
306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307 /// Handle to alloca instruction to simplify method interfaces.
311 /// The instruction responsible for this alloca not having a known set
314 /// When an instruction (potentially) escapes the pointer to the alloca, we
315 /// store a pointer to that here and abort trying to form slices of the
316 /// alloca. This will be null if the alloca slices are analyzed successfully.
317 Instruction
*PointerEscapingInstr
;
319 /// The slices of the alloca.
321 /// We store a vector of the slices formed by uses of the alloca here. This
322 /// vector is sorted by increasing begin offset, and then the unsplittable
323 /// slices before the splittable ones. See the Slice inner class for more
325 SmallVector
<Slice
, 8> Slices
;
327 /// Instructions which will become dead if we rewrite the alloca.
329 /// Note that these are not separated by slice. This is because we expect an
330 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
331 /// all these instructions can simply be removed and replaced with undef as
332 /// they come from outside of the allocated space.
333 SmallVector
<Instruction
*, 8> DeadUsers
;
335 /// Operands which will become dead if we rewrite the alloca.
337 /// These are operands that in their particular use can be replaced with
338 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
339 /// to PHI nodes and the like. They aren't entirely dead (there might be
340 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
341 /// want to swap this particular input for undef to simplify the use lists of
343 SmallVector
<Use
*, 8> DeadOperands
;
346 /// A partition of the slices.
348 /// An ephemeral representation for a range of slices which can be viewed as
349 /// a partition of the alloca. This range represents a span of the alloca's
350 /// memory which cannot be split, and provides access to all of the slices
351 /// overlapping some part of the partition.
353 /// Objects of this type are produced by traversing the alloca's slices, but
354 /// are only ephemeral and not persistent.
355 class llvm::sroa::Partition
{
357 friend class AllocaSlices
;
358 friend class AllocaSlices::partition_iterator
;
360 using iterator
= AllocaSlices::iterator
;
362 /// The beginning and ending offsets of the alloca for this
364 uint64_t BeginOffset
, EndOffset
;
366 /// The start and end iterators of this partition.
369 /// A collection of split slice tails overlapping the partition.
370 SmallVector
<Slice
*, 4> SplitTails
;
372 /// Raw constructor builds an empty partition starting and ending at
373 /// the given iterator.
374 Partition(iterator SI
) : SI(SI
), SJ(SI
) {}
377 /// The start offset of this partition.
379 /// All of the contained slices start at or after this offset.
380 uint64_t beginOffset() const { return BeginOffset
; }
382 /// The end offset of this partition.
384 /// All of the contained slices end at or before this offset.
385 uint64_t endOffset() const { return EndOffset
; }
387 /// The size of the partition.
389 /// Note that this can never be zero.
390 uint64_t size() const {
391 assert(BeginOffset
< EndOffset
&& "Partitions must span some bytes!");
392 return EndOffset
- BeginOffset
;
395 /// Test whether this partition contains no slices, and merely spans
396 /// a region occupied by split slices.
397 bool empty() const { return SI
== SJ
; }
399 /// \name Iterate slices that start within the partition.
400 /// These may be splittable or unsplittable. They have a begin offset >= the
401 /// partition begin offset.
403 // FIXME: We should probably define a "concat_iterator" helper and use that
404 // to stitch together pointee_iterators over the split tails and the
405 // contiguous iterators of the partition. That would give a much nicer
406 // interface here. We could then additionally expose filtered iterators for
407 // split, unsplit, and unsplittable splices based on the usage patterns.
408 iterator
begin() const { return SI
; }
409 iterator
end() const { return SJ
; }
412 /// Get the sequence of split slice tails.
414 /// These tails are of slices which start before this partition but are
415 /// split and overlap into the partition. We accumulate these while forming
417 ArrayRef
<Slice
*> splitSliceTails() const { return SplitTails
; }
420 /// An iterator over partitions of the alloca's slices.
422 /// This iterator implements the core algorithm for partitioning the alloca's
423 /// slices. It is a forward iterator as we don't support backtracking for
424 /// efficiency reasons, and re-use a single storage area to maintain the
425 /// current set of split slices.
427 /// It is templated on the slice iterator type to use so that it can operate
428 /// with either const or non-const slice iterators.
429 class AllocaSlices::partition_iterator
430 : public iterator_facade_base
<partition_iterator
, std::forward_iterator_tag
,
432 friend class AllocaSlices
;
434 /// Most of the state for walking the partitions is held in a class
435 /// with a nice interface for examining them.
438 /// We need to keep the end of the slices to know when to stop.
439 AllocaSlices::iterator SE
;
441 /// We also need to keep track of the maximum split end offset seen.
442 /// FIXME: Do we really?
443 uint64_t MaxSplitSliceEndOffset
= 0;
445 /// Sets the partition to be empty at given iterator, and sets the
447 partition_iterator(AllocaSlices::iterator SI
, AllocaSlices::iterator SE
)
449 // If not already at the end, advance our state to form the initial
455 /// Advance the iterator to the next partition.
457 /// Requires that the iterator not be at the end of the slices.
459 assert((P
.SI
!= SE
|| !P
.SplitTails
.empty()) &&
460 "Cannot advance past the end of the slices!");
462 // Clear out any split uses which have ended.
463 if (!P
.SplitTails
.empty()) {
464 if (P
.EndOffset
>= MaxSplitSliceEndOffset
) {
465 // If we've finished all splits, this is easy.
466 P
.SplitTails
.clear();
467 MaxSplitSliceEndOffset
= 0;
469 // Remove the uses which have ended in the prior partition. This
470 // cannot change the max split slice end because we just checked that
471 // the prior partition ended prior to that max.
472 P
.SplitTails
.erase(llvm::remove_if(P
.SplitTails
,
474 return S
->endOffset() <=
478 assert(llvm::any_of(P
.SplitTails
,
480 return S
->endOffset() == MaxSplitSliceEndOffset
;
482 "Could not find the current max split slice offset!");
483 assert(llvm::all_of(P
.SplitTails
,
485 return S
->endOffset() <= MaxSplitSliceEndOffset
;
487 "Max split slice end offset is not actually the max!");
491 // If P.SI is already at the end, then we've cleared the split tail and
492 // now have an end iterator.
494 assert(P
.SplitTails
.empty() && "Failed to clear the split slices!");
498 // If we had a non-empty partition previously, set up the state for
499 // subsequent partitions.
501 // Accumulate all the splittable slices which started in the old
502 // partition into the split list.
504 if (S
.isSplittable() && S
.endOffset() > P
.EndOffset
) {
505 P
.SplitTails
.push_back(&S
);
506 MaxSplitSliceEndOffset
=
507 std::max(S
.endOffset(), MaxSplitSliceEndOffset
);
510 // Start from the end of the previous partition.
513 // If P.SI is now at the end, we at most have a tail of split slices.
515 P
.BeginOffset
= P
.EndOffset
;
516 P
.EndOffset
= MaxSplitSliceEndOffset
;
520 // If the we have split slices and the next slice is after a gap and is
521 // not splittable immediately form an empty partition for the split
522 // slices up until the next slice begins.
523 if (!P
.SplitTails
.empty() && P
.SI
->beginOffset() != P
.EndOffset
&&
524 !P
.SI
->isSplittable()) {
525 P
.BeginOffset
= P
.EndOffset
;
526 P
.EndOffset
= P
.SI
->beginOffset();
531 // OK, we need to consume new slices. Set the end offset based on the
532 // current slice, and step SJ past it. The beginning offset of the
533 // partition is the beginning offset of the next slice unless we have
534 // pre-existing split slices that are continuing, in which case we begin
535 // at the prior end offset.
536 P
.BeginOffset
= P
.SplitTails
.empty() ? P
.SI
->beginOffset() : P
.EndOffset
;
537 P
.EndOffset
= P
.SI
->endOffset();
540 // There are two strategies to form a partition based on whether the
541 // partition starts with an unsplittable slice or a splittable slice.
542 if (!P
.SI
->isSplittable()) {
543 // When we're forming an unsplittable region, it must always start at
544 // the first slice and will extend through its end.
545 assert(P
.BeginOffset
== P
.SI
->beginOffset());
547 // Form a partition including all of the overlapping slices with this
548 // unsplittable slice.
549 while (P
.SJ
!= SE
&& P
.SJ
->beginOffset() < P
.EndOffset
) {
550 if (!P
.SJ
->isSplittable())
551 P
.EndOffset
= std::max(P
.EndOffset
, P
.SJ
->endOffset());
555 // We have a partition across a set of overlapping unsplittable
560 // If we're starting with a splittable slice, then we need to form
561 // a synthetic partition spanning it and any other overlapping splittable
563 assert(P
.SI
->isSplittable() && "Forming a splittable partition!");
565 // Collect all of the overlapping splittable slices.
566 while (P
.SJ
!= SE
&& P
.SJ
->beginOffset() < P
.EndOffset
&&
567 P
.SJ
->isSplittable()) {
568 P
.EndOffset
= std::max(P
.EndOffset
, P
.SJ
->endOffset());
572 // Back upiP.EndOffset if we ended the span early when encountering an
573 // unsplittable slice. This synthesizes the early end offset of
574 // a partition spanning only splittable slices.
575 if (P
.SJ
!= SE
&& P
.SJ
->beginOffset() < P
.EndOffset
) {
576 assert(!P
.SJ
->isSplittable());
577 P
.EndOffset
= P
.SJ
->beginOffset();
582 bool operator==(const partition_iterator
&RHS
) const {
583 assert(SE
== RHS
.SE
&&
584 "End iterators don't match between compared partition iterators!");
586 // The observed positions of partitions is marked by the P.SI iterator and
587 // the emptiness of the split slices. The latter is only relevant when
588 // P.SI == SE, as the end iterator will additionally have an empty split
589 // slices list, but the prior may have the same P.SI and a tail of split
591 if (P
.SI
== RHS
.P
.SI
&& P
.SplitTails
.empty() == RHS
.P
.SplitTails
.empty()) {
592 assert(P
.SJ
== RHS
.P
.SJ
&&
593 "Same set of slices formed two different sized partitions!");
594 assert(P
.SplitTails
.size() == RHS
.P
.SplitTails
.size() &&
595 "Same slice position with differently sized non-empty split "
602 partition_iterator
&operator++() {
607 Partition
&operator*() { return P
; }
610 /// A forward range over the partitions of the alloca's slices.
612 /// This accesses an iterator range over the partitions of the alloca's
613 /// slices. It computes these partitions on the fly based on the overlapping
614 /// offsets of the slices and the ability to split them. It will visit "empty"
615 /// partitions to cover regions of the alloca only accessed via split
617 iterator_range
<AllocaSlices::partition_iterator
> AllocaSlices::partitions() {
618 return make_range(partition_iterator(begin(), end()),
619 partition_iterator(end(), end()));
622 static Value
*foldSelectInst(SelectInst
&SI
) {
623 // If the condition being selected on is a constant or the same value is
624 // being selected between, fold the select. Yes this does (rarely) happen
626 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
.getCondition()))
627 return SI
.getOperand(1 + CI
->isZero());
628 if (SI
.getOperand(1) == SI
.getOperand(2))
629 return SI
.getOperand(1);
634 /// A helper that folds a PHI node or a select.
635 static Value
*foldPHINodeOrSelectInst(Instruction
&I
) {
636 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
637 // If PN merges together the same value, return that value.
638 return PN
->hasConstantValue();
640 return foldSelectInst(cast
<SelectInst
>(I
));
643 /// Builder for the alloca slices.
645 /// This class builds a set of alloca slices by recursively visiting the uses
646 /// of an alloca and making a slice for each load and store at each offset.
647 class AllocaSlices::SliceBuilder
: public PtrUseVisitor
<SliceBuilder
> {
648 friend class PtrUseVisitor
<SliceBuilder
>;
649 friend class InstVisitor
<SliceBuilder
>;
651 using Base
= PtrUseVisitor
<SliceBuilder
>;
653 const uint64_t AllocSize
;
656 SmallDenseMap
<Instruction
*, unsigned> MemTransferSliceMap
;
657 SmallDenseMap
<Instruction
*, uint64_t> PHIOrSelectSizes
;
659 /// Set to de-duplicate dead instructions found in the use walk.
660 SmallPtrSet
<Instruction
*, 4> VisitedDeadInsts
;
663 SliceBuilder(const DataLayout
&DL
, AllocaInst
&AI
, AllocaSlices
&AS
)
664 : PtrUseVisitor
<SliceBuilder
>(DL
),
665 AllocSize(DL
.getTypeAllocSize(AI
.getAllocatedType())), AS(AS
) {}
668 void markAsDead(Instruction
&I
) {
669 if (VisitedDeadInsts
.insert(&I
).second
)
670 AS
.DeadUsers
.push_back(&I
);
673 void insertUse(Instruction
&I
, const APInt
&Offset
, uint64_t Size
,
674 bool IsSplittable
= false) {
675 // Completely skip uses which have a zero size or start either before or
676 // past the end of the allocation.
677 if (Size
== 0 || Offset
.uge(AllocSize
)) {
678 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size
<< " byte use @"
680 << " which has zero size or starts outside of the "
681 << AllocSize
<< " byte alloca:\n"
682 << " alloca: " << AS
.AI
<< "\n"
683 << " use: " << I
<< "\n");
684 return markAsDead(I
);
687 uint64_t BeginOffset
= Offset
.getZExtValue();
688 uint64_t EndOffset
= BeginOffset
+ Size
;
690 // Clamp the end offset to the end of the allocation. Note that this is
691 // formulated to handle even the case where "BeginOffset + Size" overflows.
692 // This may appear superficially to be something we could ignore entirely,
693 // but that is not so! There may be widened loads or PHI-node uses where
694 // some instructions are dead but not others. We can't completely ignore
695 // them, and so have to record at least the information here.
696 assert(AllocSize
>= BeginOffset
); // Established above.
697 if (Size
> AllocSize
- BeginOffset
) {
698 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size
<< " byte use @"
699 << Offset
<< " to remain within the " << AllocSize
701 << " alloca: " << AS
.AI
<< "\n"
702 << " use: " << I
<< "\n");
703 EndOffset
= AllocSize
;
706 AS
.Slices
.push_back(Slice(BeginOffset
, EndOffset
, U
, IsSplittable
));
709 void visitBitCastInst(BitCastInst
&BC
) {
711 return markAsDead(BC
);
713 return Base::visitBitCastInst(BC
);
716 void visitAddrSpaceCastInst(AddrSpaceCastInst
&ASC
) {
718 return markAsDead(ASC
);
720 return Base::visitAddrSpaceCastInst(ASC
);
723 void visitGetElementPtrInst(GetElementPtrInst
&GEPI
) {
724 if (GEPI
.use_empty())
725 return markAsDead(GEPI
);
727 if (SROAStrictInbounds
&& GEPI
.isInBounds()) {
728 // FIXME: This is a manually un-factored variant of the basic code inside
729 // of GEPs with checking of the inbounds invariant specified in the
730 // langref in a very strict sense. If we ever want to enable
731 // SROAStrictInbounds, this code should be factored cleanly into
732 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
733 // by writing out the code here where we have the underlying allocation
734 // size readily available.
735 APInt GEPOffset
= Offset
;
736 const DataLayout
&DL
= GEPI
.getModule()->getDataLayout();
737 for (gep_type_iterator GTI
= gep_type_begin(GEPI
),
738 GTE
= gep_type_end(GEPI
);
740 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GTI
.getOperand());
744 // Handle a struct index, which adds its field offset to the pointer.
745 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
746 unsigned ElementIdx
= OpC
->getZExtValue();
747 const StructLayout
*SL
= DL
.getStructLayout(STy
);
749 APInt(Offset
.getBitWidth(), SL
->getElementOffset(ElementIdx
));
751 // For array or vector indices, scale the index by the size of the
753 APInt Index
= OpC
->getValue().sextOrTrunc(Offset
.getBitWidth());
754 GEPOffset
+= Index
* APInt(Offset
.getBitWidth(),
755 DL
.getTypeAllocSize(GTI
.getIndexedType()));
758 // If this index has computed an intermediate pointer which is not
759 // inbounds, then the result of the GEP is a poison value and we can
760 // delete it and all uses.
761 if (GEPOffset
.ugt(AllocSize
))
762 return markAsDead(GEPI
);
766 return Base::visitGetElementPtrInst(GEPI
);
769 void handleLoadOrStore(Type
*Ty
, Instruction
&I
, const APInt
&Offset
,
770 uint64_t Size
, bool IsVolatile
) {
771 // We allow splitting of non-volatile loads and stores where the type is an
772 // integer type. These may be used to implement 'memcpy' or other "transfer
773 // of bits" patterns.
774 bool IsSplittable
= Ty
->isIntegerTy() && !IsVolatile
;
776 insertUse(I
, Offset
, Size
, IsSplittable
);
779 void visitLoadInst(LoadInst
&LI
) {
780 assert((!LI
.isSimple() || LI
.getType()->isSingleValueType()) &&
781 "All simple FCA loads should have been pre-split");
784 return PI
.setAborted(&LI
);
786 if (LI
.isVolatile() &&
787 LI
.getPointerAddressSpace() != DL
.getAllocaAddrSpace())
788 return PI
.setAborted(&LI
);
790 uint64_t Size
= DL
.getTypeStoreSize(LI
.getType());
791 return handleLoadOrStore(LI
.getType(), LI
, Offset
, Size
, LI
.isVolatile());
794 void visitStoreInst(StoreInst
&SI
) {
795 Value
*ValOp
= SI
.getValueOperand();
797 return PI
.setEscapedAndAborted(&SI
);
799 return PI
.setAborted(&SI
);
801 if (SI
.isVolatile() &&
802 SI
.getPointerAddressSpace() != DL
.getAllocaAddrSpace())
803 return PI
.setAborted(&SI
);
805 uint64_t Size
= DL
.getTypeStoreSize(ValOp
->getType());
807 // If this memory access can be shown to *statically* extend outside the
808 // bounds of the allocation, it's behavior is undefined, so simply
809 // ignore it. Note that this is more strict than the generic clamping
810 // behavior of insertUse. We also try to handle cases which might run the
812 // FIXME: We should instead consider the pointer to have escaped if this
813 // function is being instrumented for addressing bugs or race conditions.
814 if (Size
> AllocSize
|| Offset
.ugt(AllocSize
- Size
)) {
815 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size
<< " byte store @"
816 << Offset
<< " which extends past the end of the "
817 << AllocSize
<< " byte alloca:\n"
818 << " alloca: " << AS
.AI
<< "\n"
819 << " use: " << SI
<< "\n");
820 return markAsDead(SI
);
823 assert((!SI
.isSimple() || ValOp
->getType()->isSingleValueType()) &&
824 "All simple FCA stores should have been pre-split");
825 handleLoadOrStore(ValOp
->getType(), SI
, Offset
, Size
, SI
.isVolatile());
828 void visitMemSetInst(MemSetInst
&II
) {
829 assert(II
.getRawDest() == *U
&& "Pointer use is not the destination?");
830 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(II
.getLength());
831 if ((Length
&& Length
->getValue() == 0) ||
832 (IsOffsetKnown
&& Offset
.uge(AllocSize
)))
833 // Zero-length mem transfer intrinsics can be ignored entirely.
834 return markAsDead(II
);
837 return PI
.setAborted(&II
);
839 // Don't replace this with a store with a different address space. TODO:
840 // Use a store with the casted new alloca?
841 if (II
.isVolatile() && II
.getDestAddressSpace() != DL
.getAllocaAddrSpace())
842 return PI
.setAborted(&II
);
844 insertUse(II
, Offset
, Length
? Length
->getLimitedValue()
845 : AllocSize
- Offset
.getLimitedValue(),
849 void visitMemTransferInst(MemTransferInst
&II
) {
850 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(II
.getLength());
851 if (Length
&& Length
->getValue() == 0)
852 // Zero-length mem transfer intrinsics can be ignored entirely.
853 return markAsDead(II
);
855 // Because we can visit these intrinsics twice, also check to see if the
856 // first time marked this instruction as dead. If so, skip it.
857 if (VisitedDeadInsts
.count(&II
))
861 return PI
.setAborted(&II
);
863 // Don't replace this with a load/store with a different address space.
864 // TODO: Use a store with the casted new alloca?
865 if (II
.isVolatile() &&
866 (II
.getDestAddressSpace() != DL
.getAllocaAddrSpace() ||
867 II
.getSourceAddressSpace() != DL
.getAllocaAddrSpace()))
868 return PI
.setAborted(&II
);
870 // This side of the transfer is completely out-of-bounds, and so we can
871 // nuke the entire transfer. However, we also need to nuke the other side
872 // if already added to our partitions.
873 // FIXME: Yet another place we really should bypass this when
874 // instrumenting for ASan.
875 if (Offset
.uge(AllocSize
)) {
876 SmallDenseMap
<Instruction
*, unsigned>::iterator MTPI
=
877 MemTransferSliceMap
.find(&II
);
878 if (MTPI
!= MemTransferSliceMap
.end())
879 AS
.Slices
[MTPI
->second
].kill();
880 return markAsDead(II
);
883 uint64_t RawOffset
= Offset
.getLimitedValue();
884 uint64_t Size
= Length
? Length
->getLimitedValue() : AllocSize
- RawOffset
;
886 // Check for the special case where the same exact value is used for both
888 if (*U
== II
.getRawDest() && *U
== II
.getRawSource()) {
889 // For non-volatile transfers this is a no-op.
890 if (!II
.isVolatile())
891 return markAsDead(II
);
893 return insertUse(II
, Offset
, Size
, /*IsSplittable=*/false);
896 // If we have seen both source and destination for a mem transfer, then
897 // they both point to the same alloca.
899 SmallDenseMap
<Instruction
*, unsigned>::iterator MTPI
;
900 std::tie(MTPI
, Inserted
) =
901 MemTransferSliceMap
.insert(std::make_pair(&II
, AS
.Slices
.size()));
902 unsigned PrevIdx
= MTPI
->second
;
904 Slice
&PrevP
= AS
.Slices
[PrevIdx
];
906 // Check if the begin offsets match and this is a non-volatile transfer.
907 // In that case, we can completely elide the transfer.
908 if (!II
.isVolatile() && PrevP
.beginOffset() == RawOffset
) {
910 return markAsDead(II
);
913 // Otherwise we have an offset transfer within the same alloca. We can't
915 PrevP
.makeUnsplittable();
918 // Insert the use now that we've fixed up the splittable nature.
919 insertUse(II
, Offset
, Size
, /*IsSplittable=*/Inserted
&& Length
);
921 // Check that we ended up with a valid index in the map.
922 assert(AS
.Slices
[PrevIdx
].getUse()->getUser() == &II
&&
923 "Map index doesn't point back to a slice with this user.");
926 // Disable SRoA for any intrinsics except for lifetime invariants.
927 // FIXME: What about debug intrinsics? This matches old behavior, but
928 // doesn't make sense.
929 void visitIntrinsicInst(IntrinsicInst
&II
) {
931 return PI
.setAborted(&II
);
933 if (II
.isLifetimeStartOrEnd()) {
934 ConstantInt
*Length
= cast
<ConstantInt
>(II
.getArgOperand(0));
935 uint64_t Size
= std::min(AllocSize
- Offset
.getLimitedValue(),
936 Length
->getLimitedValue());
937 insertUse(II
, Offset
, Size
, true);
941 Base::visitIntrinsicInst(II
);
944 Instruction
*hasUnsafePHIOrSelectUse(Instruction
*Root
, uint64_t &Size
) {
945 // We consider any PHI or select that results in a direct load or store of
946 // the same offset to be a viable use for slicing purposes. These uses
947 // are considered unsplittable and the size is the maximum loaded or stored
949 SmallPtrSet
<Instruction
*, 4> Visited
;
950 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 4> Uses
;
951 Visited
.insert(Root
);
952 Uses
.push_back(std::make_pair(cast
<Instruction
>(*U
), Root
));
953 const DataLayout
&DL
= Root
->getModule()->getDataLayout();
954 // If there are no loads or stores, the access is dead. We mark that as
955 // a size zero access.
958 Instruction
*I
, *UsedI
;
959 std::tie(UsedI
, I
) = Uses
.pop_back_val();
961 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
962 Size
= std::max(Size
, DL
.getTypeStoreSize(LI
->getType()));
965 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
966 Value
*Op
= SI
->getOperand(0);
969 Size
= std::max(Size
, DL
.getTypeStoreSize(Op
->getType()));
973 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
974 if (!GEP
->hasAllZeroIndices())
976 } else if (!isa
<BitCastInst
>(I
) && !isa
<PHINode
>(I
) &&
977 !isa
<SelectInst
>(I
) && !isa
<AddrSpaceCastInst
>(I
)) {
981 for (User
*U
: I
->users())
982 if (Visited
.insert(cast
<Instruction
>(U
)).second
)
983 Uses
.push_back(std::make_pair(I
, cast
<Instruction
>(U
)));
984 } while (!Uses
.empty());
989 void visitPHINodeOrSelectInst(Instruction
&I
) {
990 assert(isa
<PHINode
>(I
) || isa
<SelectInst
>(I
));
992 return markAsDead(I
);
994 // TODO: We could use SimplifyInstruction here to fold PHINodes and
995 // SelectInsts. However, doing so requires to change the current
996 // dead-operand-tracking mechanism. For instance, suppose neither loading
997 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
998 // trap either. However, if we simply replace %U with undef using the
999 // current dead-operand-tracking mechanism, "load (select undef, undef,
1000 // %other)" may trap because the select may return the first operand
1002 if (Value
*Result
= foldPHINodeOrSelectInst(I
)) {
1004 // If the result of the constant fold will be the pointer, recurse
1005 // through the PHI/select as if we had RAUW'ed it.
1008 // Otherwise the operand to the PHI/select is dead, and we can replace
1010 AS
.DeadOperands
.push_back(U
);
1016 return PI
.setAborted(&I
);
1018 // See if we already have computed info on this node.
1019 uint64_t &Size
= PHIOrSelectSizes
[&I
];
1021 // This is a new PHI/Select, check for an unsafe use of it.
1022 if (Instruction
*UnsafeI
= hasUnsafePHIOrSelectUse(&I
, Size
))
1023 return PI
.setAborted(UnsafeI
);
1026 // For PHI and select operands outside the alloca, we can't nuke the entire
1027 // phi or select -- the other side might still be relevant, so we special
1028 // case them here and use a separate structure to track the operands
1029 // themselves which should be replaced with undef.
1030 // FIXME: This should instead be escaped in the event we're instrumenting
1031 // for address sanitization.
1032 if (Offset
.uge(AllocSize
)) {
1033 AS
.DeadOperands
.push_back(U
);
1037 insertUse(I
, Offset
, Size
);
1040 void visitPHINode(PHINode
&PN
) { visitPHINodeOrSelectInst(PN
); }
1042 void visitSelectInst(SelectInst
&SI
) { visitPHINodeOrSelectInst(SI
); }
1044 /// Disable SROA entirely if there are unhandled users of the alloca.
1045 void visitInstruction(Instruction
&I
) { PI
.setAborted(&I
); }
1048 AllocaSlices::AllocaSlices(const DataLayout
&DL
, AllocaInst
&AI
)
1050 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1053 PointerEscapingInstr(nullptr) {
1054 SliceBuilder
PB(DL
, AI
, *this);
1055 SliceBuilder::PtrInfo PtrI
= PB
.visitPtr(AI
);
1056 if (PtrI
.isEscaped() || PtrI
.isAborted()) {
1057 // FIXME: We should sink the escape vs. abort info into the caller nicely,
1058 // possibly by just storing the PtrInfo in the AllocaSlices.
1059 PointerEscapingInstr
= PtrI
.getEscapingInst() ? PtrI
.getEscapingInst()
1060 : PtrI
.getAbortingInst();
1061 assert(PointerEscapingInstr
&& "Did not track a bad instruction");
1066 llvm::remove_if(Slices
, [](const Slice
&S
) { return S
.isDead(); }),
1070 if (SROARandomShuffleSlices
) {
1071 std::mt19937
MT(static_cast<unsigned>(
1072 std::chrono::system_clock::now().time_since_epoch().count()));
1073 std::shuffle(Slices
.begin(), Slices
.end(), MT
);
1077 // Sort the uses. This arranges for the offsets to be in ascending order,
1078 // and the sizes to be in descending order.
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1084 void AllocaSlices::print(raw_ostream
&OS
, const_iterator I
,
1085 StringRef Indent
) const {
1086 printSlice(OS
, I
, Indent
);
1088 printUse(OS
, I
, Indent
);
1091 void AllocaSlices::printSlice(raw_ostream
&OS
, const_iterator I
,
1092 StringRef Indent
) const {
1093 OS
<< Indent
<< "[" << I
->beginOffset() << "," << I
->endOffset() << ")"
1094 << " slice #" << (I
- begin())
1095 << (I
->isSplittable() ? " (splittable)" : "");
1098 void AllocaSlices::printUse(raw_ostream
&OS
, const_iterator I
,
1099 StringRef Indent
) const {
1100 OS
<< Indent
<< " used by: " << *I
->getUse()->getUser() << "\n";
1103 void AllocaSlices::print(raw_ostream
&OS
) const {
1104 if (PointerEscapingInstr
) {
1105 OS
<< "Can't analyze slices for alloca: " << AI
<< "\n"
1106 << " A pointer to this alloca escaped by:\n"
1107 << " " << *PointerEscapingInstr
<< "\n";
1111 OS
<< "Slices of alloca: " << AI
<< "\n";
1112 for (const_iterator I
= begin(), E
= end(); I
!= E
; ++I
)
1116 LLVM_DUMP_METHOD
void AllocaSlices::dump(const_iterator I
) const {
1119 LLVM_DUMP_METHOD
void AllocaSlices::dump() const { print(dbgs()); }
1121 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1123 /// Walk the range of a partitioning looking for a common type to cover this
1124 /// sequence of slices.
1125 static Type
*findCommonType(AllocaSlices::const_iterator B
,
1126 AllocaSlices::const_iterator E
,
1127 uint64_t EndOffset
) {
1129 bool TyIsCommon
= true;
1130 IntegerType
*ITy
= nullptr;
1132 // Note that we need to look at *every* alloca slice's Use to ensure we
1133 // always get consistent results regardless of the order of slices.
1134 for (AllocaSlices::const_iterator I
= B
; I
!= E
; ++I
) {
1135 Use
*U
= I
->getUse();
1136 if (isa
<IntrinsicInst
>(*U
->getUser()))
1138 if (I
->beginOffset() != B
->beginOffset() || I
->endOffset() != EndOffset
)
1141 Type
*UserTy
= nullptr;
1142 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
->getUser())) {
1143 UserTy
= LI
->getType();
1144 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
1145 UserTy
= SI
->getValueOperand()->getType();
1148 if (IntegerType
*UserITy
= dyn_cast_or_null
<IntegerType
>(UserTy
)) {
1149 // If the type is larger than the partition, skip it. We only encounter
1150 // this for split integer operations where we want to use the type of the
1151 // entity causing the split. Also skip if the type is not a byte width
1153 if (UserITy
->getBitWidth() % 8 != 0 ||
1154 UserITy
->getBitWidth() / 8 > (EndOffset
- B
->beginOffset()))
1157 // Track the largest bitwidth integer type used in this way in case there
1158 // is no common type.
1159 if (!ITy
|| ITy
->getBitWidth() < UserITy
->getBitWidth())
1163 // To avoid depending on the order of slices, Ty and TyIsCommon must not
1164 // depend on types skipped above.
1165 if (!UserTy
|| (Ty
&& Ty
!= UserTy
))
1166 TyIsCommon
= false; // Give up on anything but an iN type.
1171 return TyIsCommon
? Ty
: ITy
;
1174 /// PHI instructions that use an alloca and are subsequently loaded can be
1175 /// rewritten to load both input pointers in the pred blocks and then PHI the
1176 /// results, allowing the load of the alloca to be promoted.
1178 /// %P2 = phi [i32* %Alloca, i32* %Other]
1179 /// %V = load i32* %P2
1181 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1183 /// %V2 = load i32* %Other
1185 /// %V = phi [i32 %V1, i32 %V2]
1187 /// We can do this to a select if its only uses are loads and if the operands
1188 /// to the select can be loaded unconditionally.
1190 /// FIXME: This should be hoisted into a generic utility, likely in
1191 /// Transforms/Util/Local.h
1192 static bool isSafePHIToSpeculate(PHINode
&PN
) {
1193 const DataLayout
&DL
= PN
.getModule()->getDataLayout();
1195 // For now, we can only do this promotion if the load is in the same block
1196 // as the PHI, and if there are no stores between the phi and load.
1197 // TODO: Allow recursive phi users.
1198 // TODO: Allow stores.
1199 BasicBlock
*BB
= PN
.getParent();
1200 unsigned MaxAlign
= 0;
1201 uint64_t APWidth
= DL
.getIndexTypeSizeInBits(PN
.getType());
1202 APInt
MaxSize(APWidth
, 0);
1203 bool HaveLoad
= false;
1204 for (User
*U
: PN
.users()) {
1205 LoadInst
*LI
= dyn_cast
<LoadInst
>(U
);
1206 if (!LI
|| !LI
->isSimple())
1209 // For now we only allow loads in the same block as the PHI. This is
1210 // a common case that happens when instcombine merges two loads through
1212 if (LI
->getParent() != BB
)
1215 // Ensure that there are no instructions between the PHI and the load that
1217 for (BasicBlock::iterator
BBI(PN
); &*BBI
!= LI
; ++BBI
)
1218 if (BBI
->mayWriteToMemory())
1221 uint64_t Size
= DL
.getTypeStoreSize(LI
->getType());
1222 MaxAlign
= std::max(MaxAlign
, LI
->getAlignment());
1223 MaxSize
= MaxSize
.ult(Size
) ? APInt(APWidth
, Size
) : MaxSize
;
1230 // We can only transform this if it is safe to push the loads into the
1231 // predecessor blocks. The only thing to watch out for is that we can't put
1232 // a possibly trapping load in the predecessor if it is a critical edge.
1233 for (unsigned Idx
= 0, Num
= PN
.getNumIncomingValues(); Idx
!= Num
; ++Idx
) {
1234 Instruction
*TI
= PN
.getIncomingBlock(Idx
)->getTerminator();
1235 Value
*InVal
= PN
.getIncomingValue(Idx
);
1237 // If the value is produced by the terminator of the predecessor (an
1238 // invoke) or it has side-effects, there is no valid place to put a load
1239 // in the predecessor.
1240 if (TI
== InVal
|| TI
->mayHaveSideEffects())
1243 // If the predecessor has a single successor, then the edge isn't
1245 if (TI
->getNumSuccessors() == 1)
1248 // If this pointer is always safe to load, or if we can prove that there
1249 // is already a load in the block, then we can move the load to the pred
1251 if (isSafeToLoadUnconditionally(InVal
, MaxAlign
, MaxSize
, DL
, TI
))
1260 static void speculatePHINodeLoads(PHINode
&PN
) {
1261 LLVM_DEBUG(dbgs() << " original: " << PN
<< "\n");
1263 LoadInst
*SomeLoad
= cast
<LoadInst
>(PN
.user_back());
1264 Type
*LoadTy
= SomeLoad
->getType();
1265 IRBuilderTy
PHIBuilder(&PN
);
1266 PHINode
*NewPN
= PHIBuilder
.CreatePHI(LoadTy
, PN
.getNumIncomingValues(),
1267 PN
.getName() + ".sroa.speculated");
1269 // Get the AA tags and alignment to use from one of the loads. It doesn't
1270 // matter which one we get and if any differ.
1272 SomeLoad
->getAAMetadata(AATags
);
1273 unsigned Align
= SomeLoad
->getAlignment();
1275 // Rewrite all loads of the PN to use the new PHI.
1276 while (!PN
.use_empty()) {
1277 LoadInst
*LI
= cast
<LoadInst
>(PN
.user_back());
1278 LI
->replaceAllUsesWith(NewPN
);
1279 LI
->eraseFromParent();
1282 // Inject loads into all of the pred blocks.
1283 DenseMap
<BasicBlock
*, Value
*> InjectedLoads
;
1284 for (unsigned Idx
= 0, Num
= PN
.getNumIncomingValues(); Idx
!= Num
; ++Idx
) {
1285 BasicBlock
*Pred
= PN
.getIncomingBlock(Idx
);
1286 Value
*InVal
= PN
.getIncomingValue(Idx
);
1288 // A PHI node is allowed to have multiple (duplicated) entries for the same
1289 // basic block, as long as the value is the same. So if we already injected
1290 // a load in the predecessor, then we should reuse the same load for all
1291 // duplicated entries.
1292 if (Value
* V
= InjectedLoads
.lookup(Pred
)) {
1293 NewPN
->addIncoming(V
, Pred
);
1297 Instruction
*TI
= Pred
->getTerminator();
1298 IRBuilderTy
PredBuilder(TI
);
1300 LoadInst
*Load
= PredBuilder
.CreateLoad(
1302 (PN
.getName() + ".sroa.speculate.load." + Pred
->getName()));
1303 ++NumLoadsSpeculated
;
1304 Load
->setAlignment(Align
);
1306 Load
->setAAMetadata(AATags
);
1307 NewPN
->addIncoming(Load
, Pred
);
1308 InjectedLoads
[Pred
] = Load
;
1311 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN
<< "\n");
1312 PN
.eraseFromParent();
1315 /// Select instructions that use an alloca and are subsequently loaded can be
1316 /// rewritten to load both input pointers and then select between the result,
1317 /// allowing the load of the alloca to be promoted.
1319 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1320 /// %V = load i32* %P2
1322 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1323 /// %V2 = load i32* %Other
1324 /// %V = select i1 %cond, i32 %V1, i32 %V2
1326 /// We can do this to a select if its only uses are loads and if the operand
1327 /// to the select can be loaded unconditionally.
1328 static bool isSafeSelectToSpeculate(SelectInst
&SI
) {
1329 Value
*TValue
= SI
.getTrueValue();
1330 Value
*FValue
= SI
.getFalseValue();
1331 const DataLayout
&DL
= SI
.getModule()->getDataLayout();
1333 for (User
*U
: SI
.users()) {
1334 LoadInst
*LI
= dyn_cast
<LoadInst
>(U
);
1335 if (!LI
|| !LI
->isSimple())
1338 // Both operands to the select need to be dereferenceable, either
1339 // absolutely (e.g. allocas) or at this point because we can see other
1341 if (!isSafeToLoadUnconditionally(TValue
, LI
->getType(), LI
->getAlignment(),
1344 if (!isSafeToLoadUnconditionally(FValue
, LI
->getType(), LI
->getAlignment(),
1352 static void speculateSelectInstLoads(SelectInst
&SI
) {
1353 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
1355 IRBuilderTy
IRB(&SI
);
1356 Value
*TV
= SI
.getTrueValue();
1357 Value
*FV
= SI
.getFalseValue();
1358 // Replace the loads of the select with a select of two loads.
1359 while (!SI
.use_empty()) {
1360 LoadInst
*LI
= cast
<LoadInst
>(SI
.user_back());
1361 assert(LI
->isSimple() && "We only speculate simple loads");
1363 IRB
.SetInsertPoint(LI
);
1364 LoadInst
*TL
= IRB
.CreateLoad(LI
->getType(), TV
,
1365 LI
->getName() + ".sroa.speculate.load.true");
1366 LoadInst
*FL
= IRB
.CreateLoad(LI
->getType(), FV
,
1367 LI
->getName() + ".sroa.speculate.load.false");
1368 NumLoadsSpeculated
+= 2;
1370 // Transfer alignment and AA info if present.
1371 TL
->setAlignment(LI
->getAlignment());
1372 FL
->setAlignment(LI
->getAlignment());
1375 LI
->getAAMetadata(Tags
);
1377 TL
->setAAMetadata(Tags
);
1378 FL
->setAAMetadata(Tags
);
1381 Value
*V
= IRB
.CreateSelect(SI
.getCondition(), TL
, FL
,
1382 LI
->getName() + ".sroa.speculated");
1384 LLVM_DEBUG(dbgs() << " speculated to: " << *V
<< "\n");
1385 LI
->replaceAllUsesWith(V
);
1386 LI
->eraseFromParent();
1388 SI
.eraseFromParent();
1391 /// Build a GEP out of a base pointer and indices.
1393 /// This will return the BasePtr if that is valid, or build a new GEP
1394 /// instruction using the IRBuilder if GEP-ing is needed.
1395 static Value
*buildGEP(IRBuilderTy
&IRB
, Value
*BasePtr
,
1396 SmallVectorImpl
<Value
*> &Indices
, Twine NamePrefix
) {
1397 if (Indices
.empty())
1400 // A single zero index is a no-op, so check for this and avoid building a GEP
1402 if (Indices
.size() == 1 && cast
<ConstantInt
>(Indices
.back())->isZero())
1405 return IRB
.CreateInBoundsGEP(BasePtr
->getType()->getPointerElementType(),
1406 BasePtr
, Indices
, NamePrefix
+ "sroa_idx");
1409 /// Get a natural GEP off of the BasePtr walking through Ty toward
1410 /// TargetTy without changing the offset of the pointer.
1412 /// This routine assumes we've already established a properly offset GEP with
1413 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1414 /// zero-indices down through type layers until we find one the same as
1415 /// TargetTy. If we can't find one with the same type, we at least try to use
1416 /// one with the same size. If none of that works, we just produce the GEP as
1417 /// indicated by Indices to have the correct offset.
1418 static Value
*getNaturalGEPWithType(IRBuilderTy
&IRB
, const DataLayout
&DL
,
1419 Value
*BasePtr
, Type
*Ty
, Type
*TargetTy
,
1420 SmallVectorImpl
<Value
*> &Indices
,
1423 return buildGEP(IRB
, BasePtr
, Indices
, NamePrefix
);
1425 // Offset size to use for the indices.
1426 unsigned OffsetSize
= DL
.getIndexTypeSizeInBits(BasePtr
->getType());
1428 // See if we can descend into a struct and locate a field with the correct
1430 unsigned NumLayers
= 0;
1431 Type
*ElementTy
= Ty
;
1433 if (ElementTy
->isPointerTy())
1436 if (ArrayType
*ArrayTy
= dyn_cast
<ArrayType
>(ElementTy
)) {
1437 ElementTy
= ArrayTy
->getElementType();
1438 Indices
.push_back(IRB
.getIntN(OffsetSize
, 0));
1439 } else if (VectorType
*VectorTy
= dyn_cast
<VectorType
>(ElementTy
)) {
1440 ElementTy
= VectorTy
->getElementType();
1441 Indices
.push_back(IRB
.getInt32(0));
1442 } else if (StructType
*STy
= dyn_cast
<StructType
>(ElementTy
)) {
1443 if (STy
->element_begin() == STy
->element_end())
1444 break; // Nothing left to descend into.
1445 ElementTy
= *STy
->element_begin();
1446 Indices
.push_back(IRB
.getInt32(0));
1451 } while (ElementTy
!= TargetTy
);
1452 if (ElementTy
!= TargetTy
)
1453 Indices
.erase(Indices
.end() - NumLayers
, Indices
.end());
1455 return buildGEP(IRB
, BasePtr
, Indices
, NamePrefix
);
1458 /// Recursively compute indices for a natural GEP.
1460 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1461 /// element types adding appropriate indices for the GEP.
1462 static Value
*getNaturalGEPRecursively(IRBuilderTy
&IRB
, const DataLayout
&DL
,
1463 Value
*Ptr
, Type
*Ty
, APInt
&Offset
,
1465 SmallVectorImpl
<Value
*> &Indices
,
1468 return getNaturalGEPWithType(IRB
, DL
, Ptr
, Ty
, TargetTy
, Indices
,
1471 // We can't recurse through pointer types.
1472 if (Ty
->isPointerTy())
1475 // We try to analyze GEPs over vectors here, but note that these GEPs are
1476 // extremely poorly defined currently. The long-term goal is to remove GEPing
1477 // over a vector from the IR completely.
1478 if (VectorType
*VecTy
= dyn_cast
<VectorType
>(Ty
)) {
1479 unsigned ElementSizeInBits
= DL
.getTypeSizeInBits(VecTy
->getScalarType());
1480 if (ElementSizeInBits
% 8 != 0) {
1481 // GEPs over non-multiple of 8 size vector elements are invalid.
1484 APInt
ElementSize(Offset
.getBitWidth(), ElementSizeInBits
/ 8);
1485 APInt NumSkippedElements
= Offset
.sdiv(ElementSize
);
1486 if (NumSkippedElements
.ugt(VecTy
->getNumElements()))
1488 Offset
-= NumSkippedElements
* ElementSize
;
1489 Indices
.push_back(IRB
.getInt(NumSkippedElements
));
1490 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, VecTy
->getElementType(),
1491 Offset
, TargetTy
, Indices
, NamePrefix
);
1494 if (ArrayType
*ArrTy
= dyn_cast
<ArrayType
>(Ty
)) {
1495 Type
*ElementTy
= ArrTy
->getElementType();
1496 APInt
ElementSize(Offset
.getBitWidth(), DL
.getTypeAllocSize(ElementTy
));
1497 APInt NumSkippedElements
= Offset
.sdiv(ElementSize
);
1498 if (NumSkippedElements
.ugt(ArrTy
->getNumElements()))
1501 Offset
-= NumSkippedElements
* ElementSize
;
1502 Indices
.push_back(IRB
.getInt(NumSkippedElements
));
1503 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, ElementTy
, Offset
, TargetTy
,
1504 Indices
, NamePrefix
);
1507 StructType
*STy
= dyn_cast
<StructType
>(Ty
);
1511 const StructLayout
*SL
= DL
.getStructLayout(STy
);
1512 uint64_t StructOffset
= Offset
.getZExtValue();
1513 if (StructOffset
>= SL
->getSizeInBytes())
1515 unsigned Index
= SL
->getElementContainingOffset(StructOffset
);
1516 Offset
-= APInt(Offset
.getBitWidth(), SL
->getElementOffset(Index
));
1517 Type
*ElementTy
= STy
->getElementType(Index
);
1518 if (Offset
.uge(DL
.getTypeAllocSize(ElementTy
)))
1519 return nullptr; // The offset points into alignment padding.
1521 Indices
.push_back(IRB
.getInt32(Index
));
1522 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, ElementTy
, Offset
, TargetTy
,
1523 Indices
, NamePrefix
);
1526 /// Get a natural GEP from a base pointer to a particular offset and
1527 /// resulting in a particular type.
1529 /// The goal is to produce a "natural" looking GEP that works with the existing
1530 /// composite types to arrive at the appropriate offset and element type for
1531 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1532 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1533 /// Indices, and setting Ty to the result subtype.
1535 /// If no natural GEP can be constructed, this function returns null.
1536 static Value
*getNaturalGEPWithOffset(IRBuilderTy
&IRB
, const DataLayout
&DL
,
1537 Value
*Ptr
, APInt Offset
, Type
*TargetTy
,
1538 SmallVectorImpl
<Value
*> &Indices
,
1540 PointerType
*Ty
= cast
<PointerType
>(Ptr
->getType());
1542 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1544 if (Ty
== IRB
.getInt8PtrTy(Ty
->getAddressSpace()) && TargetTy
->isIntegerTy(8))
1547 Type
*ElementTy
= Ty
->getElementType();
1548 if (!ElementTy
->isSized())
1549 return nullptr; // We can't GEP through an unsized element.
1550 APInt
ElementSize(Offset
.getBitWidth(), DL
.getTypeAllocSize(ElementTy
));
1551 if (ElementSize
== 0)
1552 return nullptr; // Zero-length arrays can't help us build a natural GEP.
1553 APInt NumSkippedElements
= Offset
.sdiv(ElementSize
);
1555 Offset
-= NumSkippedElements
* ElementSize
;
1556 Indices
.push_back(IRB
.getInt(NumSkippedElements
));
1557 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, ElementTy
, Offset
, TargetTy
,
1558 Indices
, NamePrefix
);
1561 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1562 /// resulting pointer has PointerTy.
1564 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1565 /// and produces the pointer type desired. Where it cannot, it will try to use
1566 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1567 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1568 /// bitcast to the type.
1570 /// The strategy for finding the more natural GEPs is to peel off layers of the
1571 /// pointer, walking back through bit casts and GEPs, searching for a base
1572 /// pointer from which we can compute a natural GEP with the desired
1573 /// properties. The algorithm tries to fold as many constant indices into
1574 /// a single GEP as possible, thus making each GEP more independent of the
1575 /// surrounding code.
1576 static Value
*getAdjustedPtr(IRBuilderTy
&IRB
, const DataLayout
&DL
, Value
*Ptr
,
1577 APInt Offset
, Type
*PointerTy
, Twine NamePrefix
) {
1578 // Even though we don't look through PHI nodes, we could be called on an
1579 // instruction in an unreachable block, which may be on a cycle.
1580 SmallPtrSet
<Value
*, 4> Visited
;
1581 Visited
.insert(Ptr
);
1582 SmallVector
<Value
*, 4> Indices
;
1584 // We may end up computing an offset pointer that has the wrong type. If we
1585 // never are able to compute one directly that has the correct type, we'll
1586 // fall back to it, so keep it and the base it was computed from around here.
1587 Value
*OffsetPtr
= nullptr;
1588 Value
*OffsetBasePtr
;
1590 // Remember any i8 pointer we come across to re-use if we need to do a raw
1592 Value
*Int8Ptr
= nullptr;
1593 APInt
Int8PtrOffset(Offset
.getBitWidth(), 0);
1595 PointerType
*TargetPtrTy
= cast
<PointerType
>(PointerTy
);
1596 Type
*TargetTy
= TargetPtrTy
->getElementType();
1598 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1599 // address space from the expected `PointerTy` (the pointer to be used).
1600 // Adjust the pointer type based the original storage pointer.
1601 auto AS
= cast
<PointerType
>(Ptr
->getType())->getAddressSpace();
1602 PointerTy
= TargetTy
->getPointerTo(AS
);
1605 // First fold any existing GEPs into the offset.
1606 while (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
1607 APInt
GEPOffset(Offset
.getBitWidth(), 0);
1608 if (!GEP
->accumulateConstantOffset(DL
, GEPOffset
))
1610 Offset
+= GEPOffset
;
1611 Ptr
= GEP
->getPointerOperand();
1612 if (!Visited
.insert(Ptr
).second
)
1616 // See if we can perform a natural GEP here.
1618 if (Value
*P
= getNaturalGEPWithOffset(IRB
, DL
, Ptr
, Offset
, TargetTy
,
1619 Indices
, NamePrefix
)) {
1620 // If we have a new natural pointer at the offset, clear out any old
1621 // offset pointer we computed. Unless it is the base pointer or
1622 // a non-instruction, we built a GEP we don't need. Zap it.
1623 if (OffsetPtr
&& OffsetPtr
!= OffsetBasePtr
)
1624 if (Instruction
*I
= dyn_cast
<Instruction
>(OffsetPtr
)) {
1625 assert(I
->use_empty() && "Built a GEP with uses some how!");
1626 I
->eraseFromParent();
1629 OffsetBasePtr
= Ptr
;
1630 // If we also found a pointer of the right type, we're done.
1631 if (P
->getType() == PointerTy
)
1635 // Stash this pointer if we've found an i8*.
1636 if (Ptr
->getType()->isIntegerTy(8)) {
1638 Int8PtrOffset
= Offset
;
1641 // Peel off a layer of the pointer and update the offset appropriately.
1642 if (Operator::getOpcode(Ptr
) == Instruction::BitCast
) {
1643 Ptr
= cast
<Operator
>(Ptr
)->getOperand(0);
1644 } else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(Ptr
)) {
1645 if (GA
->isInterposable())
1647 Ptr
= GA
->getAliasee();
1651 assert(Ptr
->getType()->isPointerTy() && "Unexpected operand type!");
1652 } while (Visited
.insert(Ptr
).second
);
1656 Int8Ptr
= IRB
.CreateBitCast(
1657 Ptr
, IRB
.getInt8PtrTy(PointerTy
->getPointerAddressSpace()),
1658 NamePrefix
+ "sroa_raw_cast");
1659 Int8PtrOffset
= Offset
;
1662 OffsetPtr
= Int8PtrOffset
== 0
1664 : IRB
.CreateInBoundsGEP(IRB
.getInt8Ty(), Int8Ptr
,
1665 IRB
.getInt(Int8PtrOffset
),
1666 NamePrefix
+ "sroa_raw_idx");
1670 // On the off chance we were targeting i8*, guard the bitcast here.
1671 if (cast
<PointerType
>(Ptr
->getType()) != TargetPtrTy
) {
1672 Ptr
= IRB
.CreatePointerBitCastOrAddrSpaceCast(Ptr
,
1674 NamePrefix
+ "sroa_cast");
1680 /// Compute the adjusted alignment for a load or store from an offset.
1681 static unsigned getAdjustedAlignment(Instruction
*I
, uint64_t Offset
,
1682 const DataLayout
&DL
) {
1685 if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
1686 Alignment
= LI
->getAlignment();
1688 } else if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
1689 Alignment
= SI
->getAlignment();
1690 Ty
= SI
->getValueOperand()->getType();
1692 llvm_unreachable("Only loads and stores are allowed!");
1696 Alignment
= DL
.getABITypeAlignment(Ty
);
1698 return MinAlign(Alignment
, Offset
);
1701 /// Test whether we can convert a value from the old to the new type.
1703 /// This predicate should be used to guard calls to convertValue in order to
1704 /// ensure that we only try to convert viable values. The strategy is that we
1705 /// will peel off single element struct and array wrappings to get to an
1706 /// underlying value, and convert that value.
1707 static bool canConvertValue(const DataLayout
&DL
, Type
*OldTy
, Type
*NewTy
) {
1711 // For integer types, we can't handle any bit-width differences. This would
1712 // break both vector conversions with extension and introduce endianness
1713 // issues when in conjunction with loads and stores.
1714 if (isa
<IntegerType
>(OldTy
) && isa
<IntegerType
>(NewTy
)) {
1715 assert(cast
<IntegerType
>(OldTy
)->getBitWidth() !=
1716 cast
<IntegerType
>(NewTy
)->getBitWidth() &&
1717 "We can't have the same bitwidth for different int types");
1721 if (DL
.getTypeSizeInBits(NewTy
) != DL
.getTypeSizeInBits(OldTy
))
1723 if (!NewTy
->isSingleValueType() || !OldTy
->isSingleValueType())
1726 // We can convert pointers to integers and vice-versa. Same for vectors
1727 // of pointers and integers.
1728 OldTy
= OldTy
->getScalarType();
1729 NewTy
= NewTy
->getScalarType();
1730 if (NewTy
->isPointerTy() || OldTy
->isPointerTy()) {
1731 if (NewTy
->isPointerTy() && OldTy
->isPointerTy()) {
1732 return cast
<PointerType
>(NewTy
)->getPointerAddressSpace() ==
1733 cast
<PointerType
>(OldTy
)->getPointerAddressSpace();
1736 // We can convert integers to integral pointers, but not to non-integral
1738 if (OldTy
->isIntegerTy())
1739 return !DL
.isNonIntegralPointerType(NewTy
);
1741 // We can convert integral pointers to integers, but non-integral pointers
1742 // need to remain pointers.
1743 if (!DL
.isNonIntegralPointerType(OldTy
))
1744 return NewTy
->isIntegerTy();
1752 /// Generic routine to convert an SSA value to a value of a different
1755 /// This will try various different casting techniques, such as bitcasts,
1756 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1757 /// two types for viability with this routine.
1758 static Value
*convertValue(const DataLayout
&DL
, IRBuilderTy
&IRB
, Value
*V
,
1760 Type
*OldTy
= V
->getType();
1761 assert(canConvertValue(DL
, OldTy
, NewTy
) && "Value not convertable to type");
1766 assert(!(isa
<IntegerType
>(OldTy
) && isa
<IntegerType
>(NewTy
)) &&
1767 "Integer types must be the exact same to convert.");
1769 // See if we need inttoptr for this type pair. A cast involving both scalars
1770 // and vectors requires and additional bitcast.
1771 if (OldTy
->isIntOrIntVectorTy() && NewTy
->isPtrOrPtrVectorTy()) {
1772 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1773 if (OldTy
->isVectorTy() && !NewTy
->isVectorTy())
1774 return IRB
.CreateIntToPtr(IRB
.CreateBitCast(V
, DL
.getIntPtrType(NewTy
)),
1777 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1778 if (!OldTy
->isVectorTy() && NewTy
->isVectorTy())
1779 return IRB
.CreateIntToPtr(IRB
.CreateBitCast(V
, DL
.getIntPtrType(NewTy
)),
1782 return IRB
.CreateIntToPtr(V
, NewTy
);
1785 // See if we need ptrtoint for this type pair. A cast involving both scalars
1786 // and vectors requires and additional bitcast.
1787 if (OldTy
->isPtrOrPtrVectorTy() && NewTy
->isIntOrIntVectorTy()) {
1788 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1789 if (OldTy
->isVectorTy() && !NewTy
->isVectorTy())
1790 return IRB
.CreateBitCast(IRB
.CreatePtrToInt(V
, DL
.getIntPtrType(OldTy
)),
1793 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1794 if (!OldTy
->isVectorTy() && NewTy
->isVectorTy())
1795 return IRB
.CreateBitCast(IRB
.CreatePtrToInt(V
, DL
.getIntPtrType(OldTy
)),
1798 return IRB
.CreatePtrToInt(V
, NewTy
);
1801 return IRB
.CreateBitCast(V
, NewTy
);
1804 /// Test whether the given slice use can be promoted to a vector.
1806 /// This function is called to test each entry in a partition which is slated
1807 /// for a single slice.
1808 static bool isVectorPromotionViableForSlice(Partition
&P
, const Slice
&S
,
1810 uint64_t ElementSize
,
1811 const DataLayout
&DL
) {
1812 // First validate the slice offsets.
1813 uint64_t BeginOffset
=
1814 std::max(S
.beginOffset(), P
.beginOffset()) - P
.beginOffset();
1815 uint64_t BeginIndex
= BeginOffset
/ ElementSize
;
1816 if (BeginIndex
* ElementSize
!= BeginOffset
||
1817 BeginIndex
>= Ty
->getNumElements())
1819 uint64_t EndOffset
=
1820 std::min(S
.endOffset(), P
.endOffset()) - P
.beginOffset();
1821 uint64_t EndIndex
= EndOffset
/ ElementSize
;
1822 if (EndIndex
* ElementSize
!= EndOffset
|| EndIndex
> Ty
->getNumElements())
1825 assert(EndIndex
> BeginIndex
&& "Empty vector!");
1826 uint64_t NumElements
= EndIndex
- BeginIndex
;
1827 Type
*SliceTy
= (NumElements
== 1)
1828 ? Ty
->getElementType()
1829 : VectorType::get(Ty
->getElementType(), NumElements
);
1832 Type::getIntNTy(Ty
->getContext(), NumElements
* ElementSize
* 8);
1834 Use
*U
= S
.getUse();
1836 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
->getUser())) {
1837 if (MI
->isVolatile())
1839 if (!S
.isSplittable())
1840 return false; // Skip any unsplittable intrinsics.
1841 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
->getUser())) {
1842 if (!II
->isLifetimeStartOrEnd())
1844 } else if (U
->get()->getType()->getPointerElementType()->isStructTy()) {
1845 // Disable vector promotion when there are loads or stores of an FCA.
1847 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
->getUser())) {
1848 if (LI
->isVolatile())
1850 Type
*LTy
= LI
->getType();
1851 if (P
.beginOffset() > S
.beginOffset() || P
.endOffset() < S
.endOffset()) {
1852 assert(LTy
->isIntegerTy());
1855 if (!canConvertValue(DL
, SliceTy
, LTy
))
1857 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
1858 if (SI
->isVolatile())
1860 Type
*STy
= SI
->getValueOperand()->getType();
1861 if (P
.beginOffset() > S
.beginOffset() || P
.endOffset() < S
.endOffset()) {
1862 assert(STy
->isIntegerTy());
1865 if (!canConvertValue(DL
, STy
, SliceTy
))
1874 /// Test whether the given alloca partitioning and range of slices can be
1875 /// promoted to a vector.
1877 /// This is a quick test to check whether we can rewrite a particular alloca
1878 /// partition (and its newly formed alloca) into a vector alloca with only
1879 /// whole-vector loads and stores such that it could be promoted to a vector
1880 /// SSA value. We only can ensure this for a limited set of operations, and we
1881 /// don't want to do the rewrites unless we are confident that the result will
1882 /// be promotable, so we have an early test here.
1883 static VectorType
*isVectorPromotionViable(Partition
&P
, const DataLayout
&DL
) {
1884 // Collect the candidate types for vector-based promotion. Also track whether
1885 // we have different element types.
1886 SmallVector
<VectorType
*, 4> CandidateTys
;
1887 Type
*CommonEltTy
= nullptr;
1888 bool HaveCommonEltTy
= true;
1889 auto CheckCandidateType
= [&](Type
*Ty
) {
1890 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
)) {
1891 CandidateTys
.push_back(VTy
);
1893 CommonEltTy
= VTy
->getElementType();
1894 else if (CommonEltTy
!= VTy
->getElementType())
1895 HaveCommonEltTy
= false;
1898 // Consider any loads or stores that are the exact size of the slice.
1899 for (const Slice
&S
: P
)
1900 if (S
.beginOffset() == P
.beginOffset() &&
1901 S
.endOffset() == P
.endOffset()) {
1902 if (auto *LI
= dyn_cast
<LoadInst
>(S
.getUse()->getUser()))
1903 CheckCandidateType(LI
->getType());
1904 else if (auto *SI
= dyn_cast
<StoreInst
>(S
.getUse()->getUser()))
1905 CheckCandidateType(SI
->getValueOperand()->getType());
1908 // If we didn't find a vector type, nothing to do here.
1909 if (CandidateTys
.empty())
1912 // Remove non-integer vector types if we had multiple common element types.
1913 // FIXME: It'd be nice to replace them with integer vector types, but we can't
1914 // do that until all the backends are known to produce good code for all
1915 // integer vector types.
1916 if (!HaveCommonEltTy
) {
1918 llvm::remove_if(CandidateTys
,
1919 [](VectorType
*VTy
) {
1920 return !VTy
->getElementType()->isIntegerTy();
1922 CandidateTys
.end());
1924 // If there were no integer vector types, give up.
1925 if (CandidateTys
.empty())
1928 // Rank the remaining candidate vector types. This is easy because we know
1929 // they're all integer vectors. We sort by ascending number of elements.
1930 auto RankVectorTypes
= [&DL
](VectorType
*RHSTy
, VectorType
*LHSTy
) {
1932 assert(DL
.getTypeSizeInBits(RHSTy
) == DL
.getTypeSizeInBits(LHSTy
) &&
1933 "Cannot have vector types of different sizes!");
1934 assert(RHSTy
->getElementType()->isIntegerTy() &&
1935 "All non-integer types eliminated!");
1936 assert(LHSTy
->getElementType()->isIntegerTy() &&
1937 "All non-integer types eliminated!");
1938 return RHSTy
->getNumElements() < LHSTy
->getNumElements();
1940 llvm::sort(CandidateTys
, RankVectorTypes
);
1942 std::unique(CandidateTys
.begin(), CandidateTys
.end(), RankVectorTypes
),
1943 CandidateTys
.end());
1945 // The only way to have the same element type in every vector type is to
1946 // have the same vector type. Check that and remove all but one.
1948 for (VectorType
*VTy
: CandidateTys
) {
1949 assert(VTy
->getElementType() == CommonEltTy
&&
1950 "Unaccounted for element type!");
1951 assert(VTy
== CandidateTys
[0] &&
1952 "Different vector types with the same element type!");
1955 CandidateTys
.resize(1);
1958 // Try each vector type, and return the one which works.
1959 auto CheckVectorTypeForPromotion
= [&](VectorType
*VTy
) {
1960 uint64_t ElementSize
= DL
.getTypeSizeInBits(VTy
->getElementType());
1962 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1963 // that aren't byte sized.
1964 if (ElementSize
% 8)
1966 assert((DL
.getTypeSizeInBits(VTy
) % 8) == 0 &&
1967 "vector size not a multiple of element size?");
1970 for (const Slice
&S
: P
)
1971 if (!isVectorPromotionViableForSlice(P
, S
, VTy
, ElementSize
, DL
))
1974 for (const Slice
*S
: P
.splitSliceTails())
1975 if (!isVectorPromotionViableForSlice(P
, *S
, VTy
, ElementSize
, DL
))
1980 for (VectorType
*VTy
: CandidateTys
)
1981 if (CheckVectorTypeForPromotion(VTy
))
1987 /// Test whether a slice of an alloca is valid for integer widening.
1989 /// This implements the necessary checking for the \c isIntegerWideningViable
1990 /// test below on a single slice of the alloca.
1991 static bool isIntegerWideningViableForSlice(const Slice
&S
,
1992 uint64_t AllocBeginOffset
,
1994 const DataLayout
&DL
,
1995 bool &WholeAllocaOp
) {
1996 uint64_t Size
= DL
.getTypeStoreSize(AllocaTy
);
1998 uint64_t RelBegin
= S
.beginOffset() - AllocBeginOffset
;
1999 uint64_t RelEnd
= S
.endOffset() - AllocBeginOffset
;
2001 // We can't reasonably handle cases where the load or store extends past
2002 // the end of the alloca's type and into its padding.
2006 Use
*U
= S
.getUse();
2008 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
->getUser())) {
2009 if (LI
->isVolatile())
2011 // We can't handle loads that extend past the allocated memory.
2012 if (DL
.getTypeStoreSize(LI
->getType()) > Size
)
2014 // So far, AllocaSliceRewriter does not support widening split slice tails
2015 // in rewriteIntegerLoad.
2016 if (S
.beginOffset() < AllocBeginOffset
)
2018 // Note that we don't count vector loads or stores as whole-alloca
2019 // operations which enable integer widening because we would prefer to use
2020 // vector widening instead.
2021 if (!isa
<VectorType
>(LI
->getType()) && RelBegin
== 0 && RelEnd
== Size
)
2022 WholeAllocaOp
= true;
2023 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(LI
->getType())) {
2024 if (ITy
->getBitWidth() < DL
.getTypeStoreSizeInBits(ITy
))
2026 } else if (RelBegin
!= 0 || RelEnd
!= Size
||
2027 !canConvertValue(DL
, AllocaTy
, LI
->getType())) {
2028 // Non-integer loads need to be convertible from the alloca type so that
2029 // they are promotable.
2032 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
2033 Type
*ValueTy
= SI
->getValueOperand()->getType();
2034 if (SI
->isVolatile())
2036 // We can't handle stores that extend past the allocated memory.
2037 if (DL
.getTypeStoreSize(ValueTy
) > Size
)
2039 // So far, AllocaSliceRewriter does not support widening split slice tails
2040 // in rewriteIntegerStore.
2041 if (S
.beginOffset() < AllocBeginOffset
)
2043 // Note that we don't count vector loads or stores as whole-alloca
2044 // operations which enable integer widening because we would prefer to use
2045 // vector widening instead.
2046 if (!isa
<VectorType
>(ValueTy
) && RelBegin
== 0 && RelEnd
== Size
)
2047 WholeAllocaOp
= true;
2048 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(ValueTy
)) {
2049 if (ITy
->getBitWidth() < DL
.getTypeStoreSizeInBits(ITy
))
2051 } else if (RelBegin
!= 0 || RelEnd
!= Size
||
2052 !canConvertValue(DL
, ValueTy
, AllocaTy
)) {
2053 // Non-integer stores need to be convertible to the alloca type so that
2054 // they are promotable.
2057 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
->getUser())) {
2058 if (MI
->isVolatile() || !isa
<Constant
>(MI
->getLength()))
2060 if (!S
.isSplittable())
2061 return false; // Skip any unsplittable intrinsics.
2062 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
->getUser())) {
2063 if (!II
->isLifetimeStartOrEnd())
2072 /// Test whether the given alloca partition's integer operations can be
2073 /// widened to promotable ones.
2075 /// This is a quick test to check whether we can rewrite the integer loads and
2076 /// stores to a particular alloca into wider loads and stores and be able to
2077 /// promote the resulting alloca.
2078 static bool isIntegerWideningViable(Partition
&P
, Type
*AllocaTy
,
2079 const DataLayout
&DL
) {
2080 uint64_t SizeInBits
= DL
.getTypeSizeInBits(AllocaTy
);
2081 // Don't create integer types larger than the maximum bitwidth.
2082 if (SizeInBits
> IntegerType::MAX_INT_BITS
)
2085 // Don't try to handle allocas with bit-padding.
2086 if (SizeInBits
!= DL
.getTypeStoreSizeInBits(AllocaTy
))
2089 // We need to ensure that an integer type with the appropriate bitwidth can
2090 // be converted to the alloca type, whatever that is. We don't want to force
2091 // the alloca itself to have an integer type if there is a more suitable one.
2092 Type
*IntTy
= Type::getIntNTy(AllocaTy
->getContext(), SizeInBits
);
2093 if (!canConvertValue(DL
, AllocaTy
, IntTy
) ||
2094 !canConvertValue(DL
, IntTy
, AllocaTy
))
2097 // While examining uses, we ensure that the alloca has a covering load or
2098 // store. We don't want to widen the integer operations only to fail to
2099 // promote due to some other unsplittable entry (which we may make splittable
2100 // later). However, if there are only splittable uses, go ahead and assume
2101 // that we cover the alloca.
2102 // FIXME: We shouldn't consider split slices that happen to start in the
2103 // partition here...
2104 bool WholeAllocaOp
=
2105 P
.begin() != P
.end() ? false : DL
.isLegalInteger(SizeInBits
);
2107 for (const Slice
&S
: P
)
2108 if (!isIntegerWideningViableForSlice(S
, P
.beginOffset(), AllocaTy
, DL
,
2112 for (const Slice
*S
: P
.splitSliceTails())
2113 if (!isIntegerWideningViableForSlice(*S
, P
.beginOffset(), AllocaTy
, DL
,
2117 return WholeAllocaOp
;
2120 static Value
*extractInteger(const DataLayout
&DL
, IRBuilderTy
&IRB
, Value
*V
,
2121 IntegerType
*Ty
, uint64_t Offset
,
2122 const Twine
&Name
) {
2123 LLVM_DEBUG(dbgs() << " start: " << *V
<< "\n");
2124 IntegerType
*IntTy
= cast
<IntegerType
>(V
->getType());
2125 assert(DL
.getTypeStoreSize(Ty
) + Offset
<= DL
.getTypeStoreSize(IntTy
) &&
2126 "Element extends past full value");
2127 uint64_t ShAmt
= 8 * Offset
;
2128 if (DL
.isBigEndian())
2129 ShAmt
= 8 * (DL
.getTypeStoreSize(IntTy
) - DL
.getTypeStoreSize(Ty
) - Offset
);
2131 V
= IRB
.CreateLShr(V
, ShAmt
, Name
+ ".shift");
2132 LLVM_DEBUG(dbgs() << " shifted: " << *V
<< "\n");
2134 assert(Ty
->getBitWidth() <= IntTy
->getBitWidth() &&
2135 "Cannot extract to a larger integer!");
2137 V
= IRB
.CreateTrunc(V
, Ty
, Name
+ ".trunc");
2138 LLVM_DEBUG(dbgs() << " trunced: " << *V
<< "\n");
2143 static Value
*insertInteger(const DataLayout
&DL
, IRBuilderTy
&IRB
, Value
*Old
,
2144 Value
*V
, uint64_t Offset
, const Twine
&Name
) {
2145 IntegerType
*IntTy
= cast
<IntegerType
>(Old
->getType());
2146 IntegerType
*Ty
= cast
<IntegerType
>(V
->getType());
2147 assert(Ty
->getBitWidth() <= IntTy
->getBitWidth() &&
2148 "Cannot insert a larger integer!");
2149 LLVM_DEBUG(dbgs() << " start: " << *V
<< "\n");
2151 V
= IRB
.CreateZExt(V
, IntTy
, Name
+ ".ext");
2152 LLVM_DEBUG(dbgs() << " extended: " << *V
<< "\n");
2154 assert(DL
.getTypeStoreSize(Ty
) + Offset
<= DL
.getTypeStoreSize(IntTy
) &&
2155 "Element store outside of alloca store");
2156 uint64_t ShAmt
= 8 * Offset
;
2157 if (DL
.isBigEndian())
2158 ShAmt
= 8 * (DL
.getTypeStoreSize(IntTy
) - DL
.getTypeStoreSize(Ty
) - Offset
);
2160 V
= IRB
.CreateShl(V
, ShAmt
, Name
+ ".shift");
2161 LLVM_DEBUG(dbgs() << " shifted: " << *V
<< "\n");
2164 if (ShAmt
|| Ty
->getBitWidth() < IntTy
->getBitWidth()) {
2165 APInt Mask
= ~Ty
->getMask().zext(IntTy
->getBitWidth()).shl(ShAmt
);
2166 Old
= IRB
.CreateAnd(Old
, Mask
, Name
+ ".mask");
2167 LLVM_DEBUG(dbgs() << " masked: " << *Old
<< "\n");
2168 V
= IRB
.CreateOr(Old
, V
, Name
+ ".insert");
2169 LLVM_DEBUG(dbgs() << " inserted: " << *V
<< "\n");
2174 static Value
*extractVector(IRBuilderTy
&IRB
, Value
*V
, unsigned BeginIndex
,
2175 unsigned EndIndex
, const Twine
&Name
) {
2176 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
2177 unsigned NumElements
= EndIndex
- BeginIndex
;
2178 assert(NumElements
<= VecTy
->getNumElements() && "Too many elements!");
2180 if (NumElements
== VecTy
->getNumElements())
2183 if (NumElements
== 1) {
2184 V
= IRB
.CreateExtractElement(V
, IRB
.getInt32(BeginIndex
),
2186 LLVM_DEBUG(dbgs() << " extract: " << *V
<< "\n");
2190 SmallVector
<Constant
*, 8> Mask
;
2191 Mask
.reserve(NumElements
);
2192 for (unsigned i
= BeginIndex
; i
!= EndIndex
; ++i
)
2193 Mask
.push_back(IRB
.getInt32(i
));
2194 V
= IRB
.CreateShuffleVector(V
, UndefValue::get(V
->getType()),
2195 ConstantVector::get(Mask
), Name
+ ".extract");
2196 LLVM_DEBUG(dbgs() << " shuffle: " << *V
<< "\n");
2200 static Value
*insertVector(IRBuilderTy
&IRB
, Value
*Old
, Value
*V
,
2201 unsigned BeginIndex
, const Twine
&Name
) {
2202 VectorType
*VecTy
= cast
<VectorType
>(Old
->getType());
2203 assert(VecTy
&& "Can only insert a vector into a vector");
2205 VectorType
*Ty
= dyn_cast
<VectorType
>(V
->getType());
2207 // Single element to insert.
2208 V
= IRB
.CreateInsertElement(Old
, V
, IRB
.getInt32(BeginIndex
),
2210 LLVM_DEBUG(dbgs() << " insert: " << *V
<< "\n");
2214 assert(Ty
->getNumElements() <= VecTy
->getNumElements() &&
2215 "Too many elements!");
2216 if (Ty
->getNumElements() == VecTy
->getNumElements()) {
2217 assert(V
->getType() == VecTy
&& "Vector type mismatch");
2220 unsigned EndIndex
= BeginIndex
+ Ty
->getNumElements();
2222 // When inserting a smaller vector into the larger to store, we first
2223 // use a shuffle vector to widen it with undef elements, and then
2224 // a second shuffle vector to select between the loaded vector and the
2226 SmallVector
<Constant
*, 8> Mask
;
2227 Mask
.reserve(VecTy
->getNumElements());
2228 for (unsigned i
= 0; i
!= VecTy
->getNumElements(); ++i
)
2229 if (i
>= BeginIndex
&& i
< EndIndex
)
2230 Mask
.push_back(IRB
.getInt32(i
- BeginIndex
));
2232 Mask
.push_back(UndefValue::get(IRB
.getInt32Ty()));
2233 V
= IRB
.CreateShuffleVector(V
, UndefValue::get(V
->getType()),
2234 ConstantVector::get(Mask
), Name
+ ".expand");
2235 LLVM_DEBUG(dbgs() << " shuffle: " << *V
<< "\n");
2238 for (unsigned i
= 0; i
!= VecTy
->getNumElements(); ++i
)
2239 Mask
.push_back(IRB
.getInt1(i
>= BeginIndex
&& i
< EndIndex
));
2241 V
= IRB
.CreateSelect(ConstantVector::get(Mask
), V
, Old
, Name
+ "blend");
2243 LLVM_DEBUG(dbgs() << " blend: " << *V
<< "\n");
2247 /// Visitor to rewrite instructions using p particular slice of an alloca
2248 /// to use a new alloca.
2250 /// Also implements the rewriting to vector-based accesses when the partition
2251 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2253 class llvm::sroa::AllocaSliceRewriter
2254 : public InstVisitor
<AllocaSliceRewriter
, bool> {
2255 // Befriend the base class so it can delegate to private visit methods.
2256 friend class InstVisitor
<AllocaSliceRewriter
, bool>;
2258 using Base
= InstVisitor
<AllocaSliceRewriter
, bool>;
2260 const DataLayout
&DL
;
2263 AllocaInst
&OldAI
, &NewAI
;
2264 const uint64_t NewAllocaBeginOffset
, NewAllocaEndOffset
;
2267 // This is a convenience and flag variable that will be null unless the new
2268 // alloca's integer operations should be widened to this integer type due to
2269 // passing isIntegerWideningViable above. If it is non-null, the desired
2270 // integer type will be stored here for easy access during rewriting.
2273 // If we are rewriting an alloca partition which can be written as pure
2274 // vector operations, we stash extra information here. When VecTy is
2275 // non-null, we have some strict guarantees about the rewritten alloca:
2276 // - The new alloca is exactly the size of the vector type here.
2277 // - The accesses all either map to the entire vector or to a single
2279 // - The set of accessing instructions is only one of those handled above
2280 // in isVectorPromotionViable. Generally these are the same access kinds
2281 // which are promotable via mem2reg.
2284 uint64_t ElementSize
;
2286 // The original offset of the slice currently being rewritten relative to
2287 // the original alloca.
2288 uint64_t BeginOffset
= 0;
2289 uint64_t EndOffset
= 0;
2291 // The new offsets of the slice currently being rewritten relative to the
2293 uint64_t NewBeginOffset
, NewEndOffset
;
2296 bool IsSplittable
= false;
2297 bool IsSplit
= false;
2298 Use
*OldUse
= nullptr;
2299 Instruction
*OldPtr
= nullptr;
2301 // Track post-rewrite users which are PHI nodes and Selects.
2302 SmallSetVector
<PHINode
*, 8> &PHIUsers
;
2303 SmallSetVector
<SelectInst
*, 8> &SelectUsers
;
2305 // Utility IR builder, whose name prefix is setup for each visited use, and
2306 // the insertion point is set to point to the user.
2310 AllocaSliceRewriter(const DataLayout
&DL
, AllocaSlices
&AS
, SROA
&Pass
,
2311 AllocaInst
&OldAI
, AllocaInst
&NewAI
,
2312 uint64_t NewAllocaBeginOffset
,
2313 uint64_t NewAllocaEndOffset
, bool IsIntegerPromotable
,
2314 VectorType
*PromotableVecTy
,
2315 SmallSetVector
<PHINode
*, 8> &PHIUsers
,
2316 SmallSetVector
<SelectInst
*, 8> &SelectUsers
)
2317 : DL(DL
), AS(AS
), Pass(Pass
), OldAI(OldAI
), NewAI(NewAI
),
2318 NewAllocaBeginOffset(NewAllocaBeginOffset
),
2319 NewAllocaEndOffset(NewAllocaEndOffset
),
2320 NewAllocaTy(NewAI
.getAllocatedType()),
2321 IntTy(IsIntegerPromotable
2324 DL
.getTypeSizeInBits(NewAI
.getAllocatedType()))
2326 VecTy(PromotableVecTy
),
2327 ElementTy(VecTy
? VecTy
->getElementType() : nullptr),
2328 ElementSize(VecTy
? DL
.getTypeSizeInBits(ElementTy
) / 8 : 0),
2329 PHIUsers(PHIUsers
), SelectUsers(SelectUsers
),
2330 IRB(NewAI
.getContext(), ConstantFolder()) {
2332 assert((DL
.getTypeSizeInBits(ElementTy
) % 8) == 0 &&
2333 "Only multiple-of-8 sized vector elements are viable");
2336 assert((!IntTy
&& !VecTy
) || (IntTy
&& !VecTy
) || (!IntTy
&& VecTy
));
2339 bool visit(AllocaSlices::const_iterator I
) {
2340 bool CanSROA
= true;
2341 BeginOffset
= I
->beginOffset();
2342 EndOffset
= I
->endOffset();
2343 IsSplittable
= I
->isSplittable();
2345 BeginOffset
< NewAllocaBeginOffset
|| EndOffset
> NewAllocaEndOffset
;
2346 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit
? "split " : ""));
2347 LLVM_DEBUG(AS
.printSlice(dbgs(), I
, ""));
2348 LLVM_DEBUG(dbgs() << "\n");
2350 // Compute the intersecting offset range.
2351 assert(BeginOffset
< NewAllocaEndOffset
);
2352 assert(EndOffset
> NewAllocaBeginOffset
);
2353 NewBeginOffset
= std::max(BeginOffset
, NewAllocaBeginOffset
);
2354 NewEndOffset
= std::min(EndOffset
, NewAllocaEndOffset
);
2356 SliceSize
= NewEndOffset
- NewBeginOffset
;
2358 OldUse
= I
->getUse();
2359 OldPtr
= cast
<Instruction
>(OldUse
->get());
2361 Instruction
*OldUserI
= cast
<Instruction
>(OldUse
->getUser());
2362 IRB
.SetInsertPoint(OldUserI
);
2363 IRB
.SetCurrentDebugLocation(OldUserI
->getDebugLoc());
2364 IRB
.SetNamePrefix(Twine(NewAI
.getName()) + "." + Twine(BeginOffset
) + ".");
2366 CanSROA
&= visit(cast
<Instruction
>(OldUse
->getUser()));
2373 // Make sure the other visit overloads are visible.
2376 // Every instruction which can end up as a user must have a rewrite rule.
2377 bool visitInstruction(Instruction
&I
) {
2378 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I
<< "\n");
2379 llvm_unreachable("No rewrite rule for this instruction!");
2382 Value
*getNewAllocaSlicePtr(IRBuilderTy
&IRB
, Type
*PointerTy
) {
2383 // Note that the offset computation can use BeginOffset or NewBeginOffset
2384 // interchangeably for unsplit slices.
2385 assert(IsSplit
|| BeginOffset
== NewBeginOffset
);
2386 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
2389 StringRef OldName
= OldPtr
->getName();
2390 // Skip through the last '.sroa.' component of the name.
2391 size_t LastSROAPrefix
= OldName
.rfind(".sroa.");
2392 if (LastSROAPrefix
!= StringRef::npos
) {
2393 OldName
= OldName
.substr(LastSROAPrefix
+ strlen(".sroa."));
2394 // Look for an SROA slice index.
2395 size_t IndexEnd
= OldName
.find_first_not_of("0123456789");
2396 if (IndexEnd
!= StringRef::npos
&& OldName
[IndexEnd
] == '.') {
2397 // Strip the index and look for the offset.
2398 OldName
= OldName
.substr(IndexEnd
+ 1);
2399 size_t OffsetEnd
= OldName
.find_first_not_of("0123456789");
2400 if (OffsetEnd
!= StringRef::npos
&& OldName
[OffsetEnd
] == '.')
2401 // Strip the offset.
2402 OldName
= OldName
.substr(OffsetEnd
+ 1);
2405 // Strip any SROA suffixes as well.
2406 OldName
= OldName
.substr(0, OldName
.find(".sroa_"));
2409 return getAdjustedPtr(IRB
, DL
, &NewAI
,
2410 APInt(DL
.getIndexTypeSizeInBits(PointerTy
), Offset
),
2413 Twine(OldName
) + "."
2420 /// Compute suitable alignment to access this slice of the *new*
2423 /// You can optionally pass a type to this routine and if that type's ABI
2424 /// alignment is itself suitable, this will return zero.
2425 unsigned getSliceAlign(Type
*Ty
= nullptr) {
2426 unsigned NewAIAlign
= NewAI
.getAlignment();
2428 NewAIAlign
= DL
.getABITypeAlignment(NewAI
.getAllocatedType());
2430 MinAlign(NewAIAlign
, NewBeginOffset
- NewAllocaBeginOffset
);
2431 return (Ty
&& Align
== DL
.getABITypeAlignment(Ty
)) ? 0 : Align
;
2434 unsigned getIndex(uint64_t Offset
) {
2435 assert(VecTy
&& "Can only call getIndex when rewriting a vector");
2436 uint64_t RelOffset
= Offset
- NewAllocaBeginOffset
;
2437 assert(RelOffset
/ ElementSize
< UINT32_MAX
&& "Index out of bounds");
2438 uint32_t Index
= RelOffset
/ ElementSize
;
2439 assert(Index
* ElementSize
== RelOffset
);
2443 void deleteIfTriviallyDead(Value
*V
) {
2444 Instruction
*I
= cast
<Instruction
>(V
);
2445 if (isInstructionTriviallyDead(I
))
2446 Pass
.DeadInsts
.insert(I
);
2449 Value
*rewriteVectorizedLoadInst() {
2450 unsigned BeginIndex
= getIndex(NewBeginOffset
);
2451 unsigned EndIndex
= getIndex(NewEndOffset
);
2452 assert(EndIndex
> BeginIndex
&& "Empty vector!");
2454 Value
*V
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2455 NewAI
.getAlignment(), "load");
2456 return extractVector(IRB
, V
, BeginIndex
, EndIndex
, "vec");
2459 Value
*rewriteIntegerLoad(LoadInst
&LI
) {
2460 assert(IntTy
&& "We cannot insert an integer to the alloca");
2461 assert(!LI
.isVolatile());
2462 Value
*V
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2463 NewAI
.getAlignment(), "load");
2464 V
= convertValue(DL
, IRB
, V
, IntTy
);
2465 assert(NewBeginOffset
>= NewAllocaBeginOffset
&& "Out of bounds offset");
2466 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
2467 if (Offset
> 0 || NewEndOffset
< NewAllocaEndOffset
) {
2468 IntegerType
*ExtractTy
= Type::getIntNTy(LI
.getContext(), SliceSize
* 8);
2469 V
= extractInteger(DL
, IRB
, V
, ExtractTy
, Offset
, "extract");
2471 // It is possible that the extracted type is not the load type. This
2472 // happens if there is a load past the end of the alloca, and as
2473 // a consequence the slice is narrower but still a candidate for integer
2474 // lowering. To handle this case, we just zero extend the extracted
2476 assert(cast
<IntegerType
>(LI
.getType())->getBitWidth() >= SliceSize
* 8 &&
2477 "Can only handle an extract for an overly wide load");
2478 if (cast
<IntegerType
>(LI
.getType())->getBitWidth() > SliceSize
* 8)
2479 V
= IRB
.CreateZExt(V
, LI
.getType());
2483 bool visitLoadInst(LoadInst
&LI
) {
2484 LLVM_DEBUG(dbgs() << " original: " << LI
<< "\n");
2485 Value
*OldOp
= LI
.getOperand(0);
2486 assert(OldOp
== OldPtr
);
2489 LI
.getAAMetadata(AATags
);
2491 unsigned AS
= LI
.getPointerAddressSpace();
2493 Type
*TargetTy
= IsSplit
? Type::getIntNTy(LI
.getContext(), SliceSize
* 8)
2495 const bool IsLoadPastEnd
= DL
.getTypeStoreSize(TargetTy
) > SliceSize
;
2496 bool IsPtrAdjusted
= false;
2499 V
= rewriteVectorizedLoadInst();
2500 } else if (IntTy
&& LI
.getType()->isIntegerTy()) {
2501 V
= rewriteIntegerLoad(LI
);
2502 } else if (NewBeginOffset
== NewAllocaBeginOffset
&&
2503 NewEndOffset
== NewAllocaEndOffset
&&
2504 (canConvertValue(DL
, NewAllocaTy
, TargetTy
) ||
2505 (IsLoadPastEnd
&& NewAllocaTy
->isIntegerTy() &&
2506 TargetTy
->isIntegerTy()))) {
2507 LoadInst
*NewLI
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2508 NewAI
.getAlignment(),
2509 LI
.isVolatile(), LI
.getName());
2511 NewLI
->setAAMetadata(AATags
);
2512 if (LI
.isVolatile())
2513 NewLI
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
2515 // Any !nonnull metadata or !range metadata on the old load is also valid
2516 // on the new load. This is even true in some cases even when the loads
2517 // are different types, for example by mapping !nonnull metadata to
2518 // !range metadata by modeling the null pointer constant converted to the
2520 // FIXME: Add support for range metadata here. Currently the utilities
2521 // for this don't propagate range metadata in trivial cases from one
2522 // integer load to another, don't handle non-addrspace-0 null pointers
2523 // correctly, and don't have any support for mapping ranges as the
2524 // integer type becomes winder or narrower.
2525 if (MDNode
*N
= LI
.getMetadata(LLVMContext::MD_nonnull
))
2526 copyNonnullMetadata(LI
, N
, *NewLI
);
2528 // Try to preserve nonnull metadata
2531 // If this is an integer load past the end of the slice (which means the
2532 // bytes outside the slice are undef or this load is dead) just forcibly
2533 // fix the integer size with correct handling of endianness.
2534 if (auto *AITy
= dyn_cast
<IntegerType
>(NewAllocaTy
))
2535 if (auto *TITy
= dyn_cast
<IntegerType
>(TargetTy
))
2536 if (AITy
->getBitWidth() < TITy
->getBitWidth()) {
2537 V
= IRB
.CreateZExt(V
, TITy
, "load.ext");
2538 if (DL
.isBigEndian())
2539 V
= IRB
.CreateShl(V
, TITy
->getBitWidth() - AITy
->getBitWidth(),
2543 Type
*LTy
= TargetTy
->getPointerTo(AS
);
2544 LoadInst
*NewLI
= IRB
.CreateAlignedLoad(
2545 TargetTy
, getNewAllocaSlicePtr(IRB
, LTy
), getSliceAlign(TargetTy
),
2546 LI
.isVolatile(), LI
.getName());
2548 NewLI
->setAAMetadata(AATags
);
2549 if (LI
.isVolatile())
2550 NewLI
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
2553 IsPtrAdjusted
= true;
2555 V
= convertValue(DL
, IRB
, V
, TargetTy
);
2558 assert(!LI
.isVolatile());
2559 assert(LI
.getType()->isIntegerTy() &&
2560 "Only integer type loads and stores are split");
2561 assert(SliceSize
< DL
.getTypeStoreSize(LI
.getType()) &&
2562 "Split load isn't smaller than original load");
2563 assert(DL
.typeSizeEqualsStoreSize(LI
.getType()) &&
2564 "Non-byte-multiple bit width");
2565 // Move the insertion point just past the load so that we can refer to it.
2566 IRB
.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI
)));
2567 // Create a placeholder value with the same type as LI to use as the
2568 // basis for the new value. This allows us to replace the uses of LI with
2569 // the computed value, and then replace the placeholder with LI, leaving
2570 // LI only used for this computation.
2571 Value
*Placeholder
= new LoadInst(
2572 LI
.getType(), UndefValue::get(LI
.getType()->getPointerTo(AS
)));
2573 V
= insertInteger(DL
, IRB
, Placeholder
, V
, NewBeginOffset
- BeginOffset
,
2575 LI
.replaceAllUsesWith(V
);
2576 Placeholder
->replaceAllUsesWith(&LI
);
2577 Placeholder
->deleteValue();
2579 LI
.replaceAllUsesWith(V
);
2582 Pass
.DeadInsts
.insert(&LI
);
2583 deleteIfTriviallyDead(OldOp
);
2584 LLVM_DEBUG(dbgs() << " to: " << *V
<< "\n");
2585 return !LI
.isVolatile() && !IsPtrAdjusted
;
2588 bool rewriteVectorizedStoreInst(Value
*V
, StoreInst
&SI
, Value
*OldOp
,
2590 if (V
->getType() != VecTy
) {
2591 unsigned BeginIndex
= getIndex(NewBeginOffset
);
2592 unsigned EndIndex
= getIndex(NewEndOffset
);
2593 assert(EndIndex
> BeginIndex
&& "Empty vector!");
2594 unsigned NumElements
= EndIndex
- BeginIndex
;
2595 assert(NumElements
<= VecTy
->getNumElements() && "Too many elements!");
2596 Type
*SliceTy
= (NumElements
== 1)
2598 : VectorType::get(ElementTy
, NumElements
);
2599 if (V
->getType() != SliceTy
)
2600 V
= convertValue(DL
, IRB
, V
, SliceTy
);
2602 // Mix in the existing elements.
2603 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2604 NewAI
.getAlignment(), "load");
2605 V
= insertVector(IRB
, Old
, V
, BeginIndex
, "vec");
2607 StoreInst
*Store
= IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlignment());
2609 Store
->setAAMetadata(AATags
);
2610 Pass
.DeadInsts
.insert(&SI
);
2612 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
2616 bool rewriteIntegerStore(Value
*V
, StoreInst
&SI
, AAMDNodes AATags
) {
2617 assert(IntTy
&& "We cannot extract an integer from the alloca");
2618 assert(!SI
.isVolatile());
2619 if (DL
.getTypeSizeInBits(V
->getType()) != IntTy
->getBitWidth()) {
2620 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2621 NewAI
.getAlignment(), "oldload");
2622 Old
= convertValue(DL
, IRB
, Old
, IntTy
);
2623 assert(BeginOffset
>= NewAllocaBeginOffset
&& "Out of bounds offset");
2624 uint64_t Offset
= BeginOffset
- NewAllocaBeginOffset
;
2625 V
= insertInteger(DL
, IRB
, Old
, SI
.getValueOperand(), Offset
, "insert");
2627 V
= convertValue(DL
, IRB
, V
, NewAllocaTy
);
2628 StoreInst
*Store
= IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlignment());
2629 Store
->copyMetadata(SI
, {LLVMContext::MD_mem_parallel_loop_access
,
2630 LLVMContext::MD_access_group
});
2632 Store
->setAAMetadata(AATags
);
2633 Pass
.DeadInsts
.insert(&SI
);
2634 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
2638 bool visitStoreInst(StoreInst
&SI
) {
2639 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
2640 Value
*OldOp
= SI
.getOperand(1);
2641 assert(OldOp
== OldPtr
);
2644 SI
.getAAMetadata(AATags
);
2646 Value
*V
= SI
.getValueOperand();
2648 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2649 // alloca that should be re-examined after promoting this alloca.
2650 if (V
->getType()->isPointerTy())
2651 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
->stripInBoundsOffsets()))
2652 Pass
.PostPromotionWorklist
.insert(AI
);
2654 if (SliceSize
< DL
.getTypeStoreSize(V
->getType())) {
2655 assert(!SI
.isVolatile());
2656 assert(V
->getType()->isIntegerTy() &&
2657 "Only integer type loads and stores are split");
2658 assert(DL
.typeSizeEqualsStoreSize(V
->getType()) &&
2659 "Non-byte-multiple bit width");
2660 IntegerType
*NarrowTy
= Type::getIntNTy(SI
.getContext(), SliceSize
* 8);
2661 V
= extractInteger(DL
, IRB
, V
, NarrowTy
, NewBeginOffset
- BeginOffset
,
2666 return rewriteVectorizedStoreInst(V
, SI
, OldOp
, AATags
);
2667 if (IntTy
&& V
->getType()->isIntegerTy())
2668 return rewriteIntegerStore(V
, SI
, AATags
);
2670 const bool IsStorePastEnd
= DL
.getTypeStoreSize(V
->getType()) > SliceSize
;
2672 if (NewBeginOffset
== NewAllocaBeginOffset
&&
2673 NewEndOffset
== NewAllocaEndOffset
&&
2674 (canConvertValue(DL
, V
->getType(), NewAllocaTy
) ||
2675 (IsStorePastEnd
&& NewAllocaTy
->isIntegerTy() &&
2676 V
->getType()->isIntegerTy()))) {
2677 // If this is an integer store past the end of slice (and thus the bytes
2678 // past that point are irrelevant or this is unreachable), truncate the
2679 // value prior to storing.
2680 if (auto *VITy
= dyn_cast
<IntegerType
>(V
->getType()))
2681 if (auto *AITy
= dyn_cast
<IntegerType
>(NewAllocaTy
))
2682 if (VITy
->getBitWidth() > AITy
->getBitWidth()) {
2683 if (DL
.isBigEndian())
2684 V
= IRB
.CreateLShr(V
, VITy
->getBitWidth() - AITy
->getBitWidth(),
2686 V
= IRB
.CreateTrunc(V
, AITy
, "load.trunc");
2689 V
= convertValue(DL
, IRB
, V
, NewAllocaTy
);
2690 NewSI
= IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlignment(),
2693 unsigned AS
= SI
.getPointerAddressSpace();
2694 Value
*NewPtr
= getNewAllocaSlicePtr(IRB
, V
->getType()->getPointerTo(AS
));
2695 NewSI
= IRB
.CreateAlignedStore(V
, NewPtr
, getSliceAlign(V
->getType()),
2698 NewSI
->copyMetadata(SI
, {LLVMContext::MD_mem_parallel_loop_access
,
2699 LLVMContext::MD_access_group
});
2701 NewSI
->setAAMetadata(AATags
);
2702 if (SI
.isVolatile())
2703 NewSI
->setAtomic(SI
.getOrdering(), SI
.getSyncScopeID());
2704 Pass
.DeadInsts
.insert(&SI
);
2705 deleteIfTriviallyDead(OldOp
);
2707 LLVM_DEBUG(dbgs() << " to: " << *NewSI
<< "\n");
2708 return NewSI
->getPointerOperand() == &NewAI
&& !SI
.isVolatile();
2711 /// Compute an integer value from splatting an i8 across the given
2712 /// number of bytes.
2714 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2715 /// call this routine.
2716 /// FIXME: Heed the advice above.
2718 /// \param V The i8 value to splat.
2719 /// \param Size The number of bytes in the output (assuming i8 is one byte)
2720 Value
*getIntegerSplat(Value
*V
, unsigned Size
) {
2721 assert(Size
> 0 && "Expected a positive number of bytes.");
2722 IntegerType
*VTy
= cast
<IntegerType
>(V
->getType());
2723 assert(VTy
->getBitWidth() == 8 && "Expected an i8 value for the byte");
2727 Type
*SplatIntTy
= Type::getIntNTy(VTy
->getContext(), Size
* 8);
2729 IRB
.CreateZExt(V
, SplatIntTy
, "zext"),
2730 ConstantExpr::getUDiv(
2731 Constant::getAllOnesValue(SplatIntTy
),
2732 ConstantExpr::getZExt(Constant::getAllOnesValue(V
->getType()),
2738 /// Compute a vector splat for a given element value.
2739 Value
*getVectorSplat(Value
*V
, unsigned NumElements
) {
2740 V
= IRB
.CreateVectorSplat(NumElements
, V
, "vsplat");
2741 LLVM_DEBUG(dbgs() << " splat: " << *V
<< "\n");
2745 bool visitMemSetInst(MemSetInst
&II
) {
2746 LLVM_DEBUG(dbgs() << " original: " << II
<< "\n");
2747 assert(II
.getRawDest() == OldPtr
);
2750 II
.getAAMetadata(AATags
);
2752 // If the memset has a variable size, it cannot be split, just adjust the
2753 // pointer to the new alloca.
2754 if (!isa
<Constant
>(II
.getLength())) {
2756 assert(NewBeginOffset
== BeginOffset
);
2757 II
.setDest(getNewAllocaSlicePtr(IRB
, OldPtr
->getType()));
2758 II
.setDestAlignment(getSliceAlign());
2760 deleteIfTriviallyDead(OldPtr
);
2764 // Record this instruction for deletion.
2765 Pass
.DeadInsts
.insert(&II
);
2767 Type
*AllocaTy
= NewAI
.getAllocatedType();
2768 Type
*ScalarTy
= AllocaTy
->getScalarType();
2770 const bool CanContinue
= [&]() {
2773 if (BeginOffset
> NewAllocaBeginOffset
||
2774 EndOffset
< NewAllocaEndOffset
)
2776 auto *C
= cast
<ConstantInt
>(II
.getLength());
2777 if (C
->getBitWidth() > 64)
2779 const auto Len
= C
->getZExtValue();
2780 auto *Int8Ty
= IntegerType::getInt8Ty(NewAI
.getContext());
2781 auto *SrcTy
= VectorType::get(Int8Ty
, Len
);
2782 return canConvertValue(DL
, SrcTy
, AllocaTy
) &&
2783 DL
.isLegalInteger(DL
.getTypeSizeInBits(ScalarTy
));
2786 // If this doesn't map cleanly onto the alloca type, and that type isn't
2787 // a single value type, just emit a memset.
2789 Type
*SizeTy
= II
.getLength()->getType();
2790 Constant
*Size
= ConstantInt::get(SizeTy
, NewEndOffset
- NewBeginOffset
);
2791 CallInst
*New
= IRB
.CreateMemSet(
2792 getNewAllocaSlicePtr(IRB
, OldPtr
->getType()), II
.getValue(), Size
,
2793 getSliceAlign(), II
.isVolatile());
2795 New
->setAAMetadata(AATags
);
2796 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
2800 // If we can represent this as a simple value, we have to build the actual
2801 // value to store, which requires expanding the byte present in memset to
2802 // a sensible representation for the alloca type. This is essentially
2803 // splatting the byte to a sufficiently wide integer, splatting it across
2804 // any desired vector width, and bitcasting to the final type.
2808 // If this is a memset of a vectorized alloca, insert it.
2809 assert(ElementTy
== ScalarTy
);
2811 unsigned BeginIndex
= getIndex(NewBeginOffset
);
2812 unsigned EndIndex
= getIndex(NewEndOffset
);
2813 assert(EndIndex
> BeginIndex
&& "Empty vector!");
2814 unsigned NumElements
= EndIndex
- BeginIndex
;
2815 assert(NumElements
<= VecTy
->getNumElements() && "Too many elements!");
2818 getIntegerSplat(II
.getValue(), DL
.getTypeSizeInBits(ElementTy
) / 8);
2819 Splat
= convertValue(DL
, IRB
, Splat
, ElementTy
);
2820 if (NumElements
> 1)
2821 Splat
= getVectorSplat(Splat
, NumElements
);
2823 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2824 NewAI
.getAlignment(), "oldload");
2825 V
= insertVector(IRB
, Old
, Splat
, BeginIndex
, "vec");
2827 // If this is a memset on an alloca where we can widen stores, insert the
2829 assert(!II
.isVolatile());
2831 uint64_t Size
= NewEndOffset
- NewBeginOffset
;
2832 V
= getIntegerSplat(II
.getValue(), Size
);
2834 if (IntTy
&& (BeginOffset
!= NewAllocaBeginOffset
||
2835 EndOffset
!= NewAllocaBeginOffset
)) {
2836 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2837 NewAI
.getAlignment(), "oldload");
2838 Old
= convertValue(DL
, IRB
, Old
, IntTy
);
2839 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
2840 V
= insertInteger(DL
, IRB
, Old
, V
, Offset
, "insert");
2842 assert(V
->getType() == IntTy
&&
2843 "Wrong type for an alloca wide integer!");
2845 V
= convertValue(DL
, IRB
, V
, AllocaTy
);
2847 // Established these invariants above.
2848 assert(NewBeginOffset
== NewAllocaBeginOffset
);
2849 assert(NewEndOffset
== NewAllocaEndOffset
);
2851 V
= getIntegerSplat(II
.getValue(), DL
.getTypeSizeInBits(ScalarTy
) / 8);
2852 if (VectorType
*AllocaVecTy
= dyn_cast
<VectorType
>(AllocaTy
))
2853 V
= getVectorSplat(V
, AllocaVecTy
->getNumElements());
2855 V
= convertValue(DL
, IRB
, V
, AllocaTy
);
2858 StoreInst
*New
= IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlignment(),
2861 New
->setAAMetadata(AATags
);
2862 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
2863 return !II
.isVolatile();
2866 bool visitMemTransferInst(MemTransferInst
&II
) {
2867 // Rewriting of memory transfer instructions can be a bit tricky. We break
2868 // them into two categories: split intrinsics and unsplit intrinsics.
2870 LLVM_DEBUG(dbgs() << " original: " << II
<< "\n");
2873 II
.getAAMetadata(AATags
);
2875 bool IsDest
= &II
.getRawDestUse() == OldUse
;
2876 assert((IsDest
&& II
.getRawDest() == OldPtr
) ||
2877 (!IsDest
&& II
.getRawSource() == OldPtr
));
2879 unsigned SliceAlign
= getSliceAlign();
2881 // For unsplit intrinsics, we simply modify the source and destination
2882 // pointers in place. This isn't just an optimization, it is a matter of
2883 // correctness. With unsplit intrinsics we may be dealing with transfers
2884 // within a single alloca before SROA ran, or with transfers that have
2885 // a variable length. We may also be dealing with memmove instead of
2886 // memcpy, and so simply updating the pointers is the necessary for us to
2887 // update both source and dest of a single call.
2888 if (!IsSplittable
) {
2889 Value
*AdjustedPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
2891 II
.setDest(AdjustedPtr
);
2892 II
.setDestAlignment(SliceAlign
);
2895 II
.setSource(AdjustedPtr
);
2896 II
.setSourceAlignment(SliceAlign
);
2899 LLVM_DEBUG(dbgs() << " to: " << II
<< "\n");
2900 deleteIfTriviallyDead(OldPtr
);
2903 // For split transfer intrinsics we have an incredibly useful assurance:
2904 // the source and destination do not reside within the same alloca, and at
2905 // least one of them does not escape. This means that we can replace
2906 // memmove with memcpy, and we don't need to worry about all manner of
2907 // downsides to splitting and transforming the operations.
2909 // If this doesn't map cleanly onto the alloca type, and that type isn't
2910 // a single value type, just emit a memcpy.
2913 (BeginOffset
> NewAllocaBeginOffset
|| EndOffset
< NewAllocaEndOffset
||
2914 SliceSize
!= DL
.getTypeStoreSize(NewAI
.getAllocatedType()) ||
2915 !NewAI
.getAllocatedType()->isSingleValueType());
2917 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2918 // size hasn't been shrunk based on analysis of the viable range, this is
2920 if (EmitMemCpy
&& &OldAI
== &NewAI
) {
2921 // Ensure the start lines up.
2922 assert(NewBeginOffset
== BeginOffset
);
2924 // Rewrite the size as needed.
2925 if (NewEndOffset
!= EndOffset
)
2926 II
.setLength(ConstantInt::get(II
.getLength()->getType(),
2927 NewEndOffset
- NewBeginOffset
));
2930 // Record this instruction for deletion.
2931 Pass
.DeadInsts
.insert(&II
);
2933 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2934 // alloca that should be re-examined after rewriting this instruction.
2935 Value
*OtherPtr
= IsDest
? II
.getRawSource() : II
.getRawDest();
2936 if (AllocaInst
*AI
=
2937 dyn_cast
<AllocaInst
>(OtherPtr
->stripInBoundsOffsets())) {
2938 assert(AI
!= &OldAI
&& AI
!= &NewAI
&&
2939 "Splittable transfers cannot reach the same alloca on both ends.");
2940 Pass
.Worklist
.insert(AI
);
2943 Type
*OtherPtrTy
= OtherPtr
->getType();
2944 unsigned OtherAS
= OtherPtrTy
->getPointerAddressSpace();
2946 // Compute the relative offset for the other pointer within the transfer.
2947 unsigned OffsetWidth
= DL
.getIndexSizeInBits(OtherAS
);
2948 APInt
OtherOffset(OffsetWidth
, NewBeginOffset
- BeginOffset
);
2949 unsigned OtherAlign
=
2950 IsDest
? II
.getSourceAlignment() : II
.getDestAlignment();
2951 OtherAlign
= MinAlign(OtherAlign
? OtherAlign
: 1,
2952 OtherOffset
.zextOrTrunc(64).getZExtValue());
2955 // Compute the other pointer, folding as much as possible to produce
2956 // a single, simple GEP in most cases.
2957 OtherPtr
= getAdjustedPtr(IRB
, DL
, OtherPtr
, OtherOffset
, OtherPtrTy
,
2958 OtherPtr
->getName() + ".");
2960 Value
*OurPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
2961 Type
*SizeTy
= II
.getLength()->getType();
2962 Constant
*Size
= ConstantInt::get(SizeTy
, NewEndOffset
- NewBeginOffset
);
2964 Value
*DestPtr
, *SrcPtr
;
2965 unsigned DestAlign
, SrcAlign
;
2966 // Note: IsDest is true iff we're copying into the new alloca slice
2969 DestAlign
= SliceAlign
;
2971 SrcAlign
= OtherAlign
;
2974 DestAlign
= OtherAlign
;
2976 SrcAlign
= SliceAlign
;
2978 CallInst
*New
= IRB
.CreateMemCpy(DestPtr
, DestAlign
, SrcPtr
, SrcAlign
,
2979 Size
, II
.isVolatile());
2981 New
->setAAMetadata(AATags
);
2982 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
2986 bool IsWholeAlloca
= NewBeginOffset
== NewAllocaBeginOffset
&&
2987 NewEndOffset
== NewAllocaEndOffset
;
2988 uint64_t Size
= NewEndOffset
- NewBeginOffset
;
2989 unsigned BeginIndex
= VecTy
? getIndex(NewBeginOffset
) : 0;
2990 unsigned EndIndex
= VecTy
? getIndex(NewEndOffset
) : 0;
2991 unsigned NumElements
= EndIndex
- BeginIndex
;
2992 IntegerType
*SubIntTy
=
2993 IntTy
? Type::getIntNTy(IntTy
->getContext(), Size
* 8) : nullptr;
2995 // Reset the other pointer type to match the register type we're going to
2996 // use, but using the address space of the original other pointer.
2998 if (VecTy
&& !IsWholeAlloca
) {
2999 if (NumElements
== 1)
3000 OtherTy
= VecTy
->getElementType();
3002 OtherTy
= VectorType::get(VecTy
->getElementType(), NumElements
);
3003 } else if (IntTy
&& !IsWholeAlloca
) {
3006 OtherTy
= NewAllocaTy
;
3008 OtherPtrTy
= OtherTy
->getPointerTo(OtherAS
);
3010 Value
*SrcPtr
= getAdjustedPtr(IRB
, DL
, OtherPtr
, OtherOffset
, OtherPtrTy
,
3011 OtherPtr
->getName() + ".");
3012 unsigned SrcAlign
= OtherAlign
;
3013 Value
*DstPtr
= &NewAI
;
3014 unsigned DstAlign
= SliceAlign
;
3016 std::swap(SrcPtr
, DstPtr
);
3017 std::swap(SrcAlign
, DstAlign
);
3021 if (VecTy
&& !IsWholeAlloca
&& !IsDest
) {
3022 Src
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3023 NewAI
.getAlignment(), "load");
3024 Src
= extractVector(IRB
, Src
, BeginIndex
, EndIndex
, "vec");
3025 } else if (IntTy
&& !IsWholeAlloca
&& !IsDest
) {
3026 Src
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3027 NewAI
.getAlignment(), "load");
3028 Src
= convertValue(DL
, IRB
, Src
, IntTy
);
3029 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
3030 Src
= extractInteger(DL
, IRB
, Src
, SubIntTy
, Offset
, "extract");
3032 LoadInst
*Load
= IRB
.CreateAlignedLoad(OtherTy
, SrcPtr
, SrcAlign
,
3033 II
.isVolatile(), "copyload");
3035 Load
->setAAMetadata(AATags
);
3039 if (VecTy
&& !IsWholeAlloca
&& IsDest
) {
3040 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3041 NewAI
.getAlignment(), "oldload");
3042 Src
= insertVector(IRB
, Old
, Src
, BeginIndex
, "vec");
3043 } else if (IntTy
&& !IsWholeAlloca
&& IsDest
) {
3044 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3045 NewAI
.getAlignment(), "oldload");
3046 Old
= convertValue(DL
, IRB
, Old
, IntTy
);
3047 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
3048 Src
= insertInteger(DL
, IRB
, Old
, Src
, Offset
, "insert");
3049 Src
= convertValue(DL
, IRB
, Src
, NewAllocaTy
);
3052 StoreInst
*Store
= cast
<StoreInst
>(
3053 IRB
.CreateAlignedStore(Src
, DstPtr
, DstAlign
, II
.isVolatile()));
3055 Store
->setAAMetadata(AATags
);
3056 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
3057 return !II
.isVolatile();
3060 bool visitIntrinsicInst(IntrinsicInst
&II
) {
3061 assert(II
.isLifetimeStartOrEnd());
3062 LLVM_DEBUG(dbgs() << " original: " << II
<< "\n");
3063 assert(II
.getArgOperand(1) == OldPtr
);
3065 // Record this instruction for deletion.
3066 Pass
.DeadInsts
.insert(&II
);
3068 // Lifetime intrinsics are only promotable if they cover the whole alloca.
3069 // Therefore, we drop lifetime intrinsics which don't cover the whole
3071 // (In theory, intrinsics which partially cover an alloca could be
3072 // promoted, but PromoteMemToReg doesn't handle that case.)
3073 // FIXME: Check whether the alloca is promotable before dropping the
3074 // lifetime intrinsics?
3075 if (NewBeginOffset
!= NewAllocaBeginOffset
||
3076 NewEndOffset
!= NewAllocaEndOffset
)
3080 ConstantInt::get(cast
<IntegerType
>(II
.getArgOperand(0)->getType()),
3081 NewEndOffset
- NewBeginOffset
);
3082 // Lifetime intrinsics always expect an i8* so directly get such a pointer
3083 // for the new alloca slice.
3084 Type
*PointerTy
= IRB
.getInt8PtrTy(OldPtr
->getType()->getPointerAddressSpace());
3085 Value
*Ptr
= getNewAllocaSlicePtr(IRB
, PointerTy
);
3087 if (II
.getIntrinsicID() == Intrinsic::lifetime_start
)
3088 New
= IRB
.CreateLifetimeStart(Ptr
, Size
);
3090 New
= IRB
.CreateLifetimeEnd(Ptr
, Size
);
3093 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
3098 void fixLoadStoreAlign(Instruction
&Root
) {
3099 // This algorithm implements the same visitor loop as
3100 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3102 SmallPtrSet
<Instruction
*, 4> Visited
;
3103 SmallVector
<Instruction
*, 4> Uses
;
3104 Visited
.insert(&Root
);
3105 Uses
.push_back(&Root
);
3107 Instruction
*I
= Uses
.pop_back_val();
3109 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
3110 unsigned LoadAlign
= LI
->getAlignment();
3112 LoadAlign
= DL
.getABITypeAlignment(LI
->getType());
3113 LI
->setAlignment(std::min(LoadAlign
, getSliceAlign()));
3116 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
3117 unsigned StoreAlign
= SI
->getAlignment();
3119 Value
*Op
= SI
->getOperand(0);
3120 StoreAlign
= DL
.getABITypeAlignment(Op
->getType());
3122 SI
->setAlignment(std::min(StoreAlign
, getSliceAlign()));
3126 assert(isa
<BitCastInst
>(I
) || isa
<AddrSpaceCastInst
>(I
) ||
3127 isa
<PHINode
>(I
) || isa
<SelectInst
>(I
) ||
3128 isa
<GetElementPtrInst
>(I
));
3129 for (User
*U
: I
->users())
3130 if (Visited
.insert(cast
<Instruction
>(U
)).second
)
3131 Uses
.push_back(cast
<Instruction
>(U
));
3132 } while (!Uses
.empty());
3135 bool visitPHINode(PHINode
&PN
) {
3136 LLVM_DEBUG(dbgs() << " original: " << PN
<< "\n");
3137 assert(BeginOffset
>= NewAllocaBeginOffset
&& "PHIs are unsplittable");
3138 assert(EndOffset
<= NewAllocaEndOffset
&& "PHIs are unsplittable");
3140 // We would like to compute a new pointer in only one place, but have it be
3141 // as local as possible to the PHI. To do that, we re-use the location of
3142 // the old pointer, which necessarily must be in the right position to
3143 // dominate the PHI.
3144 IRBuilderTy
PtrBuilder(IRB
);
3145 if (isa
<PHINode
>(OldPtr
))
3146 PtrBuilder
.SetInsertPoint(&*OldPtr
->getParent()->getFirstInsertionPt());
3148 PtrBuilder
.SetInsertPoint(OldPtr
);
3149 PtrBuilder
.SetCurrentDebugLocation(OldPtr
->getDebugLoc());
3151 Value
*NewPtr
= getNewAllocaSlicePtr(PtrBuilder
, OldPtr
->getType());
3152 // Replace the operands which were using the old pointer.
3153 std::replace(PN
.op_begin(), PN
.op_end(), cast
<Value
>(OldPtr
), NewPtr
);
3155 LLVM_DEBUG(dbgs() << " to: " << PN
<< "\n");
3156 deleteIfTriviallyDead(OldPtr
);
3158 // Fix the alignment of any loads or stores using this PHI node.
3159 fixLoadStoreAlign(PN
);
3161 // PHIs can't be promoted on their own, but often can be speculated. We
3162 // check the speculation outside of the rewriter so that we see the
3163 // fully-rewritten alloca.
3164 PHIUsers
.insert(&PN
);
3168 bool visitSelectInst(SelectInst
&SI
) {
3169 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
3170 assert((SI
.getTrueValue() == OldPtr
|| SI
.getFalseValue() == OldPtr
) &&
3171 "Pointer isn't an operand!");
3172 assert(BeginOffset
>= NewAllocaBeginOffset
&& "Selects are unsplittable");
3173 assert(EndOffset
<= NewAllocaEndOffset
&& "Selects are unsplittable");
3175 Value
*NewPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
3176 // Replace the operands which were using the old pointer.
3177 if (SI
.getOperand(1) == OldPtr
)
3178 SI
.setOperand(1, NewPtr
);
3179 if (SI
.getOperand(2) == OldPtr
)
3180 SI
.setOperand(2, NewPtr
);
3182 LLVM_DEBUG(dbgs() << " to: " << SI
<< "\n");
3183 deleteIfTriviallyDead(OldPtr
);
3185 // Fix the alignment of any loads or stores using this select.
3186 fixLoadStoreAlign(SI
);
3188 // Selects can't be promoted on their own, but often can be speculated. We
3189 // check the speculation outside of the rewriter so that we see the
3190 // fully-rewritten alloca.
3191 SelectUsers
.insert(&SI
);
3198 /// Visitor to rewrite aggregate loads and stores as scalar.
3200 /// This pass aggressively rewrites all aggregate loads and stores on
3201 /// a particular pointer (or any pointer derived from it which we can identify)
3202 /// with scalar loads and stores.
3203 class AggLoadStoreRewriter
: public InstVisitor
<AggLoadStoreRewriter
, bool> {
3204 // Befriend the base class so it can delegate to private visit methods.
3205 friend class InstVisitor
<AggLoadStoreRewriter
, bool>;
3207 /// Queue of pointer uses to analyze and potentially rewrite.
3208 SmallVector
<Use
*, 8> Queue
;
3210 /// Set to prevent us from cycling with phi nodes and loops.
3211 SmallPtrSet
<User
*, 8> Visited
;
3213 /// The current pointer use being rewritten. This is used to dig up the used
3214 /// value (as opposed to the user).
3217 /// Used to calculate offsets, and hence alignment, of subobjects.
3218 const DataLayout
&DL
;
3221 AggLoadStoreRewriter(const DataLayout
&DL
) : DL(DL
) {}
3223 /// Rewrite loads and stores through a pointer and all pointers derived from
3225 bool rewrite(Instruction
&I
) {
3226 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3228 bool Changed
= false;
3229 while (!Queue
.empty()) {
3230 U
= Queue
.pop_back_val();
3231 Changed
|= visit(cast
<Instruction
>(U
->getUser()));
3237 /// Enqueue all the users of the given instruction for further processing.
3238 /// This uses a set to de-duplicate users.
3239 void enqueueUsers(Instruction
&I
) {
3240 for (Use
&U
: I
.uses())
3241 if (Visited
.insert(U
.getUser()).second
)
3242 Queue
.push_back(&U
);
3245 // Conservative default is to not rewrite anything.
3246 bool visitInstruction(Instruction
&I
) { return false; }
3248 /// Generic recursive split emission class.
3249 template <typename Derived
> class OpSplitter
{
3251 /// The builder used to form new instructions.
3254 /// The indices which to be used with insert- or extractvalue to select the
3255 /// appropriate value within the aggregate.
3256 SmallVector
<unsigned, 4> Indices
;
3258 /// The indices to a GEP instruction which will move Ptr to the correct slot
3259 /// within the aggregate.
3260 SmallVector
<Value
*, 4> GEPIndices
;
3262 /// The base pointer of the original op, used as a base for GEPing the
3263 /// split operations.
3266 /// The base pointee type being GEPed into.
3269 /// Known alignment of the base pointer.
3272 /// To calculate offset of each component so we can correctly deduce
3274 const DataLayout
&DL
;
3276 /// Initialize the splitter with an insertion point, Ptr and start with a
3277 /// single zero GEP index.
3278 OpSplitter(Instruction
*InsertionPoint
, Value
*Ptr
, Type
*BaseTy
,
3279 unsigned BaseAlign
, const DataLayout
&DL
)
3280 : IRB(InsertionPoint
), GEPIndices(1, IRB
.getInt32(0)), Ptr(Ptr
),
3281 BaseTy(BaseTy
), BaseAlign(BaseAlign
), DL(DL
) {}
3284 /// Generic recursive split emission routine.
3286 /// This method recursively splits an aggregate op (load or store) into
3287 /// scalar or vector ops. It splits recursively until it hits a single value
3288 /// and emits that single value operation via the template argument.
3290 /// The logic of this routine relies on GEPs and insertvalue and
3291 /// extractvalue all operating with the same fundamental index list, merely
3292 /// formatted differently (GEPs need actual values).
3294 /// \param Ty The type being split recursively into smaller ops.
3295 /// \param Agg The aggregate value being built up or stored, depending on
3296 /// whether this is splitting a load or a store respectively.
3297 void emitSplitOps(Type
*Ty
, Value
*&Agg
, const Twine
&Name
) {
3298 if (Ty
->isSingleValueType()) {
3299 unsigned Offset
= DL
.getIndexedOffsetInType(BaseTy
, GEPIndices
);
3300 return static_cast<Derived
*>(this)->emitFunc(
3301 Ty
, Agg
, MinAlign(BaseAlign
, Offset
), Name
);
3304 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
3305 unsigned OldSize
= Indices
.size();
3307 for (unsigned Idx
= 0, Size
= ATy
->getNumElements(); Idx
!= Size
;
3309 assert(Indices
.size() == OldSize
&& "Did not return to the old size");
3310 Indices
.push_back(Idx
);
3311 GEPIndices
.push_back(IRB
.getInt32(Idx
));
3312 emitSplitOps(ATy
->getElementType(), Agg
, Name
+ "." + Twine(Idx
));
3313 GEPIndices
.pop_back();
3319 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
3320 unsigned OldSize
= Indices
.size();
3322 for (unsigned Idx
= 0, Size
= STy
->getNumElements(); Idx
!= Size
;
3324 assert(Indices
.size() == OldSize
&& "Did not return to the old size");
3325 Indices
.push_back(Idx
);
3326 GEPIndices
.push_back(IRB
.getInt32(Idx
));
3327 emitSplitOps(STy
->getElementType(Idx
), Agg
, Name
+ "." + Twine(Idx
));
3328 GEPIndices
.pop_back();
3334 llvm_unreachable("Only arrays and structs are aggregate loadable types");
3338 struct LoadOpSplitter
: public OpSplitter
<LoadOpSplitter
> {
3341 LoadOpSplitter(Instruction
*InsertionPoint
, Value
*Ptr
, Type
*BaseTy
,
3342 AAMDNodes AATags
, unsigned BaseAlign
, const DataLayout
&DL
)
3343 : OpSplitter
<LoadOpSplitter
>(InsertionPoint
, Ptr
, BaseTy
, BaseAlign
,
3344 DL
), AATags(AATags
) {}
3346 /// Emit a leaf load of a single value. This is called at the leaves of the
3347 /// recursive emission to actually load values.
3348 void emitFunc(Type
*Ty
, Value
*&Agg
, unsigned Align
, const Twine
&Name
) {
3349 assert(Ty
->isSingleValueType());
3350 // Load the single value and insert it using the indices.
3352 IRB
.CreateInBoundsGEP(BaseTy
, Ptr
, GEPIndices
, Name
+ ".gep");
3353 LoadInst
*Load
= IRB
.CreateAlignedLoad(Ty
, GEP
, Align
, Name
+ ".load");
3355 Load
->setAAMetadata(AATags
);
3356 Agg
= IRB
.CreateInsertValue(Agg
, Load
, Indices
, Name
+ ".insert");
3357 LLVM_DEBUG(dbgs() << " to: " << *Load
<< "\n");
3361 bool visitLoadInst(LoadInst
&LI
) {
3362 assert(LI
.getPointerOperand() == *U
);
3363 if (!LI
.isSimple() || LI
.getType()->isSingleValueType())
3366 // We have an aggregate being loaded, split it apart.
3367 LLVM_DEBUG(dbgs() << " original: " << LI
<< "\n");
3369 LI
.getAAMetadata(AATags
);
3370 LoadOpSplitter
Splitter(&LI
, *U
, LI
.getType(), AATags
,
3371 getAdjustedAlignment(&LI
, 0, DL
), DL
);
3372 Value
*V
= UndefValue::get(LI
.getType());
3373 Splitter
.emitSplitOps(LI
.getType(), V
, LI
.getName() + ".fca");
3374 LI
.replaceAllUsesWith(V
);
3375 LI
.eraseFromParent();
3379 struct StoreOpSplitter
: public OpSplitter
<StoreOpSplitter
> {
3380 StoreOpSplitter(Instruction
*InsertionPoint
, Value
*Ptr
, Type
*BaseTy
,
3381 AAMDNodes AATags
, unsigned BaseAlign
, const DataLayout
&DL
)
3382 : OpSplitter
<StoreOpSplitter
>(InsertionPoint
, Ptr
, BaseTy
, BaseAlign
,
3386 /// Emit a leaf store of a single value. This is called at the leaves of the
3387 /// recursive emission to actually produce stores.
3388 void emitFunc(Type
*Ty
, Value
*&Agg
, unsigned Align
, const Twine
&Name
) {
3389 assert(Ty
->isSingleValueType());
3390 // Extract the single value and store it using the indices.
3392 // The gep and extractvalue values are factored out of the CreateStore
3393 // call to make the output independent of the argument evaluation order.
3394 Value
*ExtractValue
=
3395 IRB
.CreateExtractValue(Agg
, Indices
, Name
+ ".extract");
3396 Value
*InBoundsGEP
=
3397 IRB
.CreateInBoundsGEP(BaseTy
, Ptr
, GEPIndices
, Name
+ ".gep");
3399 IRB
.CreateAlignedStore(ExtractValue
, InBoundsGEP
, Align
);
3401 Store
->setAAMetadata(AATags
);
3402 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
3406 bool visitStoreInst(StoreInst
&SI
) {
3407 if (!SI
.isSimple() || SI
.getPointerOperand() != *U
)
3409 Value
*V
= SI
.getValueOperand();
3410 if (V
->getType()->isSingleValueType())
3413 // We have an aggregate being stored, split it apart.
3414 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
3416 SI
.getAAMetadata(AATags
);
3417 StoreOpSplitter
Splitter(&SI
, *U
, V
->getType(), AATags
,
3418 getAdjustedAlignment(&SI
, 0, DL
), DL
);
3419 Splitter
.emitSplitOps(V
->getType(), V
, V
->getName() + ".fca");
3420 SI
.eraseFromParent();
3424 bool visitBitCastInst(BitCastInst
&BC
) {
3429 bool visitAddrSpaceCastInst(AddrSpaceCastInst
&ASC
) {
3434 bool visitGetElementPtrInst(GetElementPtrInst
&GEPI
) {
3439 bool visitPHINode(PHINode
&PN
) {
3444 bool visitSelectInst(SelectInst
&SI
) {
3450 } // end anonymous namespace
3452 /// Strip aggregate type wrapping.
3454 /// This removes no-op aggregate types wrapping an underlying type. It will
3455 /// strip as many layers of types as it can without changing either the type
3456 /// size or the allocated size.
3457 static Type
*stripAggregateTypeWrapping(const DataLayout
&DL
, Type
*Ty
) {
3458 if (Ty
->isSingleValueType())
3461 uint64_t AllocSize
= DL
.getTypeAllocSize(Ty
);
3462 uint64_t TypeSize
= DL
.getTypeSizeInBits(Ty
);
3465 if (ArrayType
*ArrTy
= dyn_cast
<ArrayType
>(Ty
)) {
3466 InnerTy
= ArrTy
->getElementType();
3467 } else if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
3468 const StructLayout
*SL
= DL
.getStructLayout(STy
);
3469 unsigned Index
= SL
->getElementContainingOffset(0);
3470 InnerTy
= STy
->getElementType(Index
);
3475 if (AllocSize
> DL
.getTypeAllocSize(InnerTy
) ||
3476 TypeSize
> DL
.getTypeSizeInBits(InnerTy
))
3479 return stripAggregateTypeWrapping(DL
, InnerTy
);
3482 /// Try to find a partition of the aggregate type passed in for a given
3483 /// offset and size.
3485 /// This recurses through the aggregate type and tries to compute a subtype
3486 /// based on the offset and size. When the offset and size span a sub-section
3487 /// of an array, it will even compute a new array type for that sub-section,
3488 /// and the same for structs.
3490 /// Note that this routine is very strict and tries to find a partition of the
3491 /// type which produces the *exact* right offset and size. It is not forgiving
3492 /// when the size or offset cause either end of type-based partition to be off.
3493 /// Also, this is a best-effort routine. It is reasonable to give up and not
3494 /// return a type if necessary.
3495 static Type
*getTypePartition(const DataLayout
&DL
, Type
*Ty
, uint64_t Offset
,
3497 if (Offset
== 0 && DL
.getTypeAllocSize(Ty
) == Size
)
3498 return stripAggregateTypeWrapping(DL
, Ty
);
3499 if (Offset
> DL
.getTypeAllocSize(Ty
) ||
3500 (DL
.getTypeAllocSize(Ty
) - Offset
) < Size
)
3503 if (SequentialType
*SeqTy
= dyn_cast
<SequentialType
>(Ty
)) {
3504 Type
*ElementTy
= SeqTy
->getElementType();
3505 uint64_t ElementSize
= DL
.getTypeAllocSize(ElementTy
);
3506 uint64_t NumSkippedElements
= Offset
/ ElementSize
;
3507 if (NumSkippedElements
>= SeqTy
->getNumElements())
3509 Offset
-= NumSkippedElements
* ElementSize
;
3511 // First check if we need to recurse.
3512 if (Offset
> 0 || Size
< ElementSize
) {
3513 // Bail if the partition ends in a different array element.
3514 if ((Offset
+ Size
) > ElementSize
)
3516 // Recurse through the element type trying to peel off offset bytes.
3517 return getTypePartition(DL
, ElementTy
, Offset
, Size
);
3519 assert(Offset
== 0);
3521 if (Size
== ElementSize
)
3522 return stripAggregateTypeWrapping(DL
, ElementTy
);
3523 assert(Size
> ElementSize
);
3524 uint64_t NumElements
= Size
/ ElementSize
;
3525 if (NumElements
* ElementSize
!= Size
)
3527 return ArrayType::get(ElementTy
, NumElements
);
3530 StructType
*STy
= dyn_cast
<StructType
>(Ty
);
3534 const StructLayout
*SL
= DL
.getStructLayout(STy
);
3535 if (Offset
>= SL
->getSizeInBytes())
3537 uint64_t EndOffset
= Offset
+ Size
;
3538 if (EndOffset
> SL
->getSizeInBytes())
3541 unsigned Index
= SL
->getElementContainingOffset(Offset
);
3542 Offset
-= SL
->getElementOffset(Index
);
3544 Type
*ElementTy
= STy
->getElementType(Index
);
3545 uint64_t ElementSize
= DL
.getTypeAllocSize(ElementTy
);
3546 if (Offset
>= ElementSize
)
3547 return nullptr; // The offset points into alignment padding.
3549 // See if any partition must be contained by the element.
3550 if (Offset
> 0 || Size
< ElementSize
) {
3551 if ((Offset
+ Size
) > ElementSize
)
3553 return getTypePartition(DL
, ElementTy
, Offset
, Size
);
3555 assert(Offset
== 0);
3557 if (Size
== ElementSize
)
3558 return stripAggregateTypeWrapping(DL
, ElementTy
);
3560 StructType::element_iterator EI
= STy
->element_begin() + Index
,
3561 EE
= STy
->element_end();
3562 if (EndOffset
< SL
->getSizeInBytes()) {
3563 unsigned EndIndex
= SL
->getElementContainingOffset(EndOffset
);
3564 if (Index
== EndIndex
)
3565 return nullptr; // Within a single element and its padding.
3567 // Don't try to form "natural" types if the elements don't line up with the
3569 // FIXME: We could potentially recurse down through the last element in the
3570 // sub-struct to find a natural end point.
3571 if (SL
->getElementOffset(EndIndex
) != EndOffset
)
3574 assert(Index
< EndIndex
);
3575 EE
= STy
->element_begin() + EndIndex
;
3578 // Try to build up a sub-structure.
3580 StructType::get(STy
->getContext(), makeArrayRef(EI
, EE
), STy
->isPacked());
3581 const StructLayout
*SubSL
= DL
.getStructLayout(SubTy
);
3582 if (Size
!= SubSL
->getSizeInBytes())
3583 return nullptr; // The sub-struct doesn't have quite the size needed.
3588 /// Pre-split loads and stores to simplify rewriting.
3590 /// We want to break up the splittable load+store pairs as much as
3591 /// possible. This is important to do as a preprocessing step, as once we
3592 /// start rewriting the accesses to partitions of the alloca we lose the
3593 /// necessary information to correctly split apart paired loads and stores
3594 /// which both point into this alloca. The case to consider is something like
3597 /// %a = alloca [12 x i8]
3598 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3599 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3600 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3601 /// %iptr1 = bitcast i8* %gep1 to i64*
3602 /// %iptr2 = bitcast i8* %gep2 to i64*
3603 /// %fptr1 = bitcast i8* %gep1 to float*
3604 /// %fptr2 = bitcast i8* %gep2 to float*
3605 /// %fptr3 = bitcast i8* %gep3 to float*
3606 /// store float 0.0, float* %fptr1
3607 /// store float 1.0, float* %fptr2
3608 /// %v = load i64* %iptr1
3609 /// store i64 %v, i64* %iptr2
3610 /// %f1 = load float* %fptr2
3611 /// %f2 = load float* %fptr3
3613 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3614 /// promote everything so we recover the 2 SSA values that should have been
3615 /// there all along.
3617 /// \returns true if any changes are made.
3618 bool SROA::presplitLoadsAndStores(AllocaInst
&AI
, AllocaSlices
&AS
) {
3619 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3621 // Track the loads and stores which are candidates for pre-splitting here, in
3622 // the order they first appear during the partition scan. These give stable
3623 // iteration order and a basis for tracking which loads and stores we
3625 SmallVector
<LoadInst
*, 4> Loads
;
3626 SmallVector
<StoreInst
*, 4> Stores
;
3628 // We need to accumulate the splits required of each load or store where we
3629 // can find them via a direct lookup. This is important to cross-check loads
3630 // and stores against each other. We also track the slice so that we can kill
3631 // all the slices that end up split.
3632 struct SplitOffsets
{
3634 std::vector
<uint64_t> Splits
;
3636 SmallDenseMap
<Instruction
*, SplitOffsets
, 8> SplitOffsetsMap
;
3638 // Track loads out of this alloca which cannot, for any reason, be pre-split.
3639 // This is important as we also cannot pre-split stores of those loads!
3640 // FIXME: This is all pretty gross. It means that we can be more aggressive
3641 // in pre-splitting when the load feeding the store happens to come from
3642 // a separate alloca. Put another way, the effectiveness of SROA would be
3643 // decreased by a frontend which just concatenated all of its local allocas
3644 // into one big flat alloca. But defeating such patterns is exactly the job
3645 // SROA is tasked with! Sadly, to not have this discrepancy we would have
3646 // change store pre-splitting to actually force pre-splitting of the load
3647 // that feeds it *and all stores*. That makes pre-splitting much harder, but
3648 // maybe it would make it more principled?
3649 SmallPtrSet
<LoadInst
*, 8> UnsplittableLoads
;
3651 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n");
3652 for (auto &P
: AS
.partitions()) {
3653 for (Slice
&S
: P
) {
3654 Instruction
*I
= cast
<Instruction
>(S
.getUse()->getUser());
3655 if (!S
.isSplittable() || S
.endOffset() <= P
.endOffset()) {
3656 // If this is a load we have to track that it can't participate in any
3657 // pre-splitting. If this is a store of a load we have to track that
3658 // that load also can't participate in any pre-splitting.
3659 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
3660 UnsplittableLoads
.insert(LI
);
3661 else if (auto *SI
= dyn_cast
<StoreInst
>(I
))
3662 if (auto *LI
= dyn_cast
<LoadInst
>(SI
->getValueOperand()))
3663 UnsplittableLoads
.insert(LI
);
3666 assert(P
.endOffset() > S
.beginOffset() &&
3667 "Empty or backwards partition!");
3669 // Determine if this is a pre-splittable slice.
3670 if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
3671 assert(!LI
->isVolatile() && "Cannot split volatile loads!");
3673 // The load must be used exclusively to store into other pointers for
3674 // us to be able to arbitrarily pre-split it. The stores must also be
3675 // simple to avoid changing semantics.
3676 auto IsLoadSimplyStored
= [](LoadInst
*LI
) {
3677 for (User
*LU
: LI
->users()) {
3678 auto *SI
= dyn_cast
<StoreInst
>(LU
);
3679 if (!SI
|| !SI
->isSimple())
3684 if (!IsLoadSimplyStored(LI
)) {
3685 UnsplittableLoads
.insert(LI
);
3689 Loads
.push_back(LI
);
3690 } else if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
3691 if (S
.getUse() != &SI
->getOperandUse(SI
->getPointerOperandIndex()))
3692 // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3694 auto *StoredLoad
= dyn_cast
<LoadInst
>(SI
->getValueOperand());
3695 if (!StoredLoad
|| !StoredLoad
->isSimple())
3697 assert(!SI
->isVolatile() && "Cannot split volatile stores!");
3699 Stores
.push_back(SI
);
3701 // Other uses cannot be pre-split.
3705 // Record the initial split.
3706 LLVM_DEBUG(dbgs() << " Candidate: " << *I
<< "\n");
3707 auto &Offsets
= SplitOffsetsMap
[I
];
3708 assert(Offsets
.Splits
.empty() &&
3709 "Should not have splits the first time we see an instruction!");
3711 Offsets
.Splits
.push_back(P
.endOffset() - S
.beginOffset());
3714 // Now scan the already split slices, and add a split for any of them which
3715 // we're going to pre-split.
3716 for (Slice
*S
: P
.splitSliceTails()) {
3717 auto SplitOffsetsMapI
=
3718 SplitOffsetsMap
.find(cast
<Instruction
>(S
->getUse()->getUser()));
3719 if (SplitOffsetsMapI
== SplitOffsetsMap
.end())
3721 auto &Offsets
= SplitOffsetsMapI
->second
;
3723 assert(Offsets
.S
== S
&& "Found a mismatched slice!");
3724 assert(!Offsets
.Splits
.empty() &&
3725 "Cannot have an empty set of splits on the second partition!");
3726 assert(Offsets
.Splits
.back() ==
3727 P
.beginOffset() - Offsets
.S
->beginOffset() &&
3728 "Previous split does not end where this one begins!");
3730 // Record each split. The last partition's end isn't needed as the size
3731 // of the slice dictates that.
3732 if (S
->endOffset() > P
.endOffset())
3733 Offsets
.Splits
.push_back(P
.endOffset() - Offsets
.S
->beginOffset());
3737 // We may have split loads where some of their stores are split stores. For
3738 // such loads and stores, we can only pre-split them if their splits exactly
3739 // match relative to their starting offset. We have to verify this prior to
3742 llvm::remove_if(Stores
,
3743 [&UnsplittableLoads
, &SplitOffsetsMap
](StoreInst
*SI
) {
3744 // Lookup the load we are storing in our map of split
3746 auto *LI
= cast
<LoadInst
>(SI
->getValueOperand());
3747 // If it was completely unsplittable, then we're done,
3748 // and this store can't be pre-split.
3749 if (UnsplittableLoads
.count(LI
))
3752 auto LoadOffsetsI
= SplitOffsetsMap
.find(LI
);
3753 if (LoadOffsetsI
== SplitOffsetsMap
.end())
3754 return false; // Unrelated loads are definitely safe.
3755 auto &LoadOffsets
= LoadOffsetsI
->second
;
3757 // Now lookup the store's offsets.
3758 auto &StoreOffsets
= SplitOffsetsMap
[SI
];
3760 // If the relative offsets of each split in the load and
3761 // store match exactly, then we can split them and we
3762 // don't need to remove them here.
3763 if (LoadOffsets
.Splits
== StoreOffsets
.Splits
)
3768 << " Mismatched splits for load and store:\n"
3769 << " " << *LI
<< "\n"
3770 << " " << *SI
<< "\n");
3772 // We've found a store and load that we need to split
3773 // with mismatched relative splits. Just give up on them
3774 // and remove both instructions from our list of
3776 UnsplittableLoads
.insert(LI
);
3780 // Now we have to go *back* through all the stores, because a later store may
3781 // have caused an earlier store's load to become unsplittable and if it is
3782 // unsplittable for the later store, then we can't rely on it being split in
3783 // the earlier store either.
3784 Stores
.erase(llvm::remove_if(Stores
,
3785 [&UnsplittableLoads
](StoreInst
*SI
) {
3787 cast
<LoadInst
>(SI
->getValueOperand());
3788 return UnsplittableLoads
.count(LI
);
3791 // Once we've established all the loads that can't be split for some reason,
3792 // filter any that made it into our list out.
3793 Loads
.erase(llvm::remove_if(Loads
,
3794 [&UnsplittableLoads
](LoadInst
*LI
) {
3795 return UnsplittableLoads
.count(LI
);
3799 // If no loads or stores are left, there is no pre-splitting to be done for
3801 if (Loads
.empty() && Stores
.empty())
3804 // From here on, we can't fail and will be building new accesses, so rig up
3806 IRBuilderTy
IRB(&AI
);
3808 // Collect the new slices which we will merge into the alloca slices.
3809 SmallVector
<Slice
, 4> NewSlices
;
3811 // Track any allocas we end up splitting loads and stores for so we iterate
3813 SmallPtrSet
<AllocaInst
*, 4> ResplitPromotableAllocas
;
3815 // At this point, we have collected all of the loads and stores we can
3816 // pre-split, and the specific splits needed for them. We actually do the
3817 // splitting in a specific order in order to handle when one of the loads in
3818 // the value operand to one of the stores.
3820 // First, we rewrite all of the split loads, and just accumulate each split
3821 // load in a parallel structure. We also build the slices for them and append
3822 // them to the alloca slices.
3823 SmallDenseMap
<LoadInst
*, std::vector
<LoadInst
*>, 1> SplitLoadsMap
;
3824 std::vector
<LoadInst
*> SplitLoads
;
3825 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
3826 for (LoadInst
*LI
: Loads
) {
3829 IntegerType
*Ty
= cast
<IntegerType
>(LI
->getType());
3830 uint64_t LoadSize
= Ty
->getBitWidth() / 8;
3831 assert(LoadSize
> 0 && "Cannot have a zero-sized integer load!");
3833 auto &Offsets
= SplitOffsetsMap
[LI
];
3834 assert(LoadSize
== Offsets
.S
->endOffset() - Offsets
.S
->beginOffset() &&
3835 "Slice size should always match load size exactly!");
3836 uint64_t BaseOffset
= Offsets
.S
->beginOffset();
3837 assert(BaseOffset
+ LoadSize
> BaseOffset
&&
3838 "Cannot represent alloca access size using 64-bit integers!");
3840 Instruction
*BasePtr
= cast
<Instruction
>(LI
->getPointerOperand());
3841 IRB
.SetInsertPoint(LI
);
3843 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI
<< "\n");
3845 uint64_t PartOffset
= 0, PartSize
= Offsets
.Splits
.front();
3846 int Idx
= 0, Size
= Offsets
.Splits
.size();
3848 auto *PartTy
= Type::getIntNTy(Ty
->getContext(), PartSize
* 8);
3849 auto AS
= LI
->getPointerAddressSpace();
3850 auto *PartPtrTy
= PartTy
->getPointerTo(AS
);
3851 LoadInst
*PLoad
= IRB
.CreateAlignedLoad(
3853 getAdjustedPtr(IRB
, DL
, BasePtr
,
3854 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
3855 PartPtrTy
, BasePtr
->getName() + "."),
3856 getAdjustedAlignment(LI
, PartOffset
, DL
), /*IsVolatile*/ false,
3858 PLoad
->copyMetadata(*LI
, {LLVMContext::MD_mem_parallel_loop_access
,
3859 LLVMContext::MD_access_group
});
3861 // Append this load onto the list of split loads so we can find it later
3862 // to rewrite the stores.
3863 SplitLoads
.push_back(PLoad
);
3865 // Now build a new slice for the alloca.
3866 NewSlices
.push_back(
3867 Slice(BaseOffset
+ PartOffset
, BaseOffset
+ PartOffset
+ PartSize
,
3868 &PLoad
->getOperandUse(PLoad
->getPointerOperandIndex()),
3869 /*IsSplittable*/ false));
3870 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices
.back().beginOffset()
3871 << ", " << NewSlices
.back().endOffset()
3872 << "): " << *PLoad
<< "\n");
3874 // See if we've handled all the splits.
3878 // Setup the next partition.
3879 PartOffset
= Offsets
.Splits
[Idx
];
3881 PartSize
= (Idx
< Size
? Offsets
.Splits
[Idx
] : LoadSize
) - PartOffset
;
3884 // Now that we have the split loads, do the slow walk over all uses of the
3885 // load and rewrite them as split stores, or save the split loads to use
3886 // below if the store is going to be split there anyways.
3887 bool DeferredStores
= false;
3888 for (User
*LU
: LI
->users()) {
3889 StoreInst
*SI
= cast
<StoreInst
>(LU
);
3890 if (!Stores
.empty() && SplitOffsetsMap
.count(SI
)) {
3891 DeferredStores
= true;
3892 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI
3897 Value
*StoreBasePtr
= SI
->getPointerOperand();
3898 IRB
.SetInsertPoint(SI
);
3900 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI
<< "\n");
3902 for (int Idx
= 0, Size
= SplitLoads
.size(); Idx
< Size
; ++Idx
) {
3903 LoadInst
*PLoad
= SplitLoads
[Idx
];
3904 uint64_t PartOffset
= Idx
== 0 ? 0 : Offsets
.Splits
[Idx
- 1];
3906 PLoad
->getType()->getPointerTo(SI
->getPointerAddressSpace());
3908 auto AS
= SI
->getPointerAddressSpace();
3909 StoreInst
*PStore
= IRB
.CreateAlignedStore(
3911 getAdjustedPtr(IRB
, DL
, StoreBasePtr
,
3912 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
3913 PartPtrTy
, StoreBasePtr
->getName() + "."),
3914 getAdjustedAlignment(SI
, PartOffset
, DL
), /*IsVolatile*/ false);
3915 PStore
->copyMetadata(*LI
, {LLVMContext::MD_mem_parallel_loop_access
,
3916 LLVMContext::MD_access_group
});
3917 LLVM_DEBUG(dbgs() << " +" << PartOffset
<< ":" << *PStore
<< "\n");
3920 // We want to immediately iterate on any allocas impacted by splitting
3921 // this store, and we have to track any promotable alloca (indicated by
3922 // a direct store) as needing to be resplit because it is no longer
3924 if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(StoreBasePtr
)) {
3925 ResplitPromotableAllocas
.insert(OtherAI
);
3926 Worklist
.insert(OtherAI
);
3927 } else if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(
3928 StoreBasePtr
->stripInBoundsOffsets())) {
3929 Worklist
.insert(OtherAI
);
3932 // Mark the original store as dead.
3933 DeadInsts
.insert(SI
);
3936 // Save the split loads if there are deferred stores among the users.
3938 SplitLoadsMap
.insert(std::make_pair(LI
, std::move(SplitLoads
)));
3940 // Mark the original load as dead and kill the original slice.
3941 DeadInsts
.insert(LI
);
3945 // Second, we rewrite all of the split stores. At this point, we know that
3946 // all loads from this alloca have been split already. For stores of such
3947 // loads, we can simply look up the pre-existing split loads. For stores of
3948 // other loads, we split those loads first and then write split stores of
3950 for (StoreInst
*SI
: Stores
) {
3951 auto *LI
= cast
<LoadInst
>(SI
->getValueOperand());
3952 IntegerType
*Ty
= cast
<IntegerType
>(LI
->getType());
3953 uint64_t StoreSize
= Ty
->getBitWidth() / 8;
3954 assert(StoreSize
> 0 && "Cannot have a zero-sized integer store!");
3956 auto &Offsets
= SplitOffsetsMap
[SI
];
3957 assert(StoreSize
== Offsets
.S
->endOffset() - Offsets
.S
->beginOffset() &&
3958 "Slice size should always match load size exactly!");
3959 uint64_t BaseOffset
= Offsets
.S
->beginOffset();
3960 assert(BaseOffset
+ StoreSize
> BaseOffset
&&
3961 "Cannot represent alloca access size using 64-bit integers!");
3963 Value
*LoadBasePtr
= LI
->getPointerOperand();
3964 Instruction
*StoreBasePtr
= cast
<Instruction
>(SI
->getPointerOperand());
3966 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI
<< "\n");
3968 // Check whether we have an already split load.
3969 auto SplitLoadsMapI
= SplitLoadsMap
.find(LI
);
3970 std::vector
<LoadInst
*> *SplitLoads
= nullptr;
3971 if (SplitLoadsMapI
!= SplitLoadsMap
.end()) {
3972 SplitLoads
= &SplitLoadsMapI
->second
;
3973 assert(SplitLoads
->size() == Offsets
.Splits
.size() + 1 &&
3974 "Too few split loads for the number of splits in the store!");
3976 LLVM_DEBUG(dbgs() << " of load: " << *LI
<< "\n");
3979 uint64_t PartOffset
= 0, PartSize
= Offsets
.Splits
.front();
3980 int Idx
= 0, Size
= Offsets
.Splits
.size();
3982 auto *PartTy
= Type::getIntNTy(Ty
->getContext(), PartSize
* 8);
3983 auto *LoadPartPtrTy
= PartTy
->getPointerTo(LI
->getPointerAddressSpace());
3984 auto *StorePartPtrTy
= PartTy
->getPointerTo(SI
->getPointerAddressSpace());
3986 // Either lookup a split load or create one.
3989 PLoad
= (*SplitLoads
)[Idx
];
3991 IRB
.SetInsertPoint(LI
);
3992 auto AS
= LI
->getPointerAddressSpace();
3993 PLoad
= IRB
.CreateAlignedLoad(
3995 getAdjustedPtr(IRB
, DL
, LoadBasePtr
,
3996 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
3997 LoadPartPtrTy
, LoadBasePtr
->getName() + "."),
3998 getAdjustedAlignment(LI
, PartOffset
, DL
), /*IsVolatile*/ false,
4002 // And store this partition.
4003 IRB
.SetInsertPoint(SI
);
4004 auto AS
= SI
->getPointerAddressSpace();
4005 StoreInst
*PStore
= IRB
.CreateAlignedStore(
4007 getAdjustedPtr(IRB
, DL
, StoreBasePtr
,
4008 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
4009 StorePartPtrTy
, StoreBasePtr
->getName() + "."),
4010 getAdjustedAlignment(SI
, PartOffset
, DL
), /*IsVolatile*/ false);
4012 // Now build a new slice for the alloca.
4013 NewSlices
.push_back(
4014 Slice(BaseOffset
+ PartOffset
, BaseOffset
+ PartOffset
+ PartSize
,
4015 &PStore
->getOperandUse(PStore
->getPointerOperandIndex()),
4016 /*IsSplittable*/ false));
4017 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices
.back().beginOffset()
4018 << ", " << NewSlices
.back().endOffset()
4019 << "): " << *PStore
<< "\n");
4021 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad
<< "\n");
4024 // See if we've finished all the splits.
4028 // Setup the next partition.
4029 PartOffset
= Offsets
.Splits
[Idx
];
4031 PartSize
= (Idx
< Size
? Offsets
.Splits
[Idx
] : StoreSize
) - PartOffset
;
4034 // We want to immediately iterate on any allocas impacted by splitting
4035 // this load, which is only relevant if it isn't a load of this alloca and
4036 // thus we didn't already split the loads above. We also have to keep track
4037 // of any promotable allocas we split loads on as they can no longer be
4040 if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(LoadBasePtr
)) {
4041 assert(OtherAI
!= &AI
&& "We can't re-split our own alloca!");
4042 ResplitPromotableAllocas
.insert(OtherAI
);
4043 Worklist
.insert(OtherAI
);
4044 } else if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(
4045 LoadBasePtr
->stripInBoundsOffsets())) {
4046 assert(OtherAI
!= &AI
&& "We can't re-split our own alloca!");
4047 Worklist
.insert(OtherAI
);
4051 // Mark the original store as dead now that we've split it up and kill its
4052 // slice. Note that we leave the original load in place unless this store
4053 // was its only use. It may in turn be split up if it is an alloca load
4054 // for some other alloca, but it may be a normal load. This may introduce
4055 // redundant loads, but where those can be merged the rest of the optimizer
4056 // should handle the merging, and this uncovers SSA splits which is more
4057 // important. In practice, the original loads will almost always be fully
4058 // split and removed eventually, and the splits will be merged by any
4059 // trivial CSE, including instcombine.
4060 if (LI
->hasOneUse()) {
4061 assert(*LI
->user_begin() == SI
&& "Single use isn't this store!");
4062 DeadInsts
.insert(LI
);
4064 DeadInsts
.insert(SI
);
4068 // Remove the killed slices that have ben pre-split.
4069 AS
.erase(llvm::remove_if(AS
, [](const Slice
&S
) { return S
.isDead(); }),
4072 // Insert our new slices. This will sort and merge them into the sorted
4074 AS
.insert(NewSlices
);
4076 LLVM_DEBUG(dbgs() << " Pre-split slices:\n");
4078 for (auto I
= AS
.begin(), E
= AS
.end(); I
!= E
; ++I
)
4079 LLVM_DEBUG(AS
.print(dbgs(), I
, " "));
4082 // Finally, don't try to promote any allocas that new require re-splitting.
4083 // They have already been added to the worklist above.
4084 PromotableAllocas
.erase(
4087 [&](AllocaInst
*AI
) { return ResplitPromotableAllocas
.count(AI
); }),
4088 PromotableAllocas
.end());
4093 /// Rewrite an alloca partition's users.
4095 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4096 /// to rewrite uses of an alloca partition to be conducive for SSA value
4097 /// promotion. If the partition needs a new, more refined alloca, this will
4098 /// build that new alloca, preserving as much type information as possible, and
4099 /// rewrite the uses of the old alloca to point at the new one and have the
4100 /// appropriate new offsets. It also evaluates how successful the rewrite was
4101 /// at enabling promotion and if it was successful queues the alloca to be
4103 AllocaInst
*SROA::rewritePartition(AllocaInst
&AI
, AllocaSlices
&AS
,
4105 // Try to compute a friendly type for this partition of the alloca. This
4106 // won't always succeed, in which case we fall back to a legal integer type
4107 // or an i8 array of an appropriate size.
4108 Type
*SliceTy
= nullptr;
4109 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4110 if (Type
*CommonUseTy
= findCommonType(P
.begin(), P
.end(), P
.endOffset()))
4111 if (DL
.getTypeAllocSize(CommonUseTy
) >= P
.size())
4112 SliceTy
= CommonUseTy
;
4114 if (Type
*TypePartitionTy
= getTypePartition(DL
, AI
.getAllocatedType(),
4115 P
.beginOffset(), P
.size()))
4116 SliceTy
= TypePartitionTy
;
4117 if ((!SliceTy
|| (SliceTy
->isArrayTy() &&
4118 SliceTy
->getArrayElementType()->isIntegerTy())) &&
4119 DL
.isLegalInteger(P
.size() * 8))
4120 SliceTy
= Type::getIntNTy(*C
, P
.size() * 8);
4122 SliceTy
= ArrayType::get(Type::getInt8Ty(*C
), P
.size());
4123 assert(DL
.getTypeAllocSize(SliceTy
) >= P
.size());
4125 bool IsIntegerPromotable
= isIntegerWideningViable(P
, SliceTy
, DL
);
4128 IsIntegerPromotable
? nullptr : isVectorPromotionViable(P
, DL
);
4132 // Check for the case where we're going to rewrite to a new alloca of the
4133 // exact same type as the original, and with the same access offsets. In that
4134 // case, re-use the existing alloca, but still run through the rewriter to
4135 // perform phi and select speculation.
4136 // P.beginOffset() can be non-zero even with the same type in a case with
4137 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4139 if (SliceTy
== AI
.getAllocatedType() && P
.beginOffset() == 0) {
4141 // FIXME: We should be able to bail at this point with "nothing changed".
4142 // FIXME: We might want to defer PHI speculation until after here.
4143 // FIXME: return nullptr;
4145 unsigned Alignment
= AI
.getAlignment();
4147 // The minimum alignment which users can rely on when the explicit
4148 // alignment is omitted or zero is that required by the ABI for this
4150 Alignment
= DL
.getABITypeAlignment(AI
.getAllocatedType());
4152 Alignment
= MinAlign(Alignment
, P
.beginOffset());
4153 // If we will get at least this much alignment from the type alone, leave
4154 // the alloca's alignment unconstrained.
4155 if (Alignment
<= DL
.getABITypeAlignment(SliceTy
))
4157 NewAI
= new AllocaInst(
4158 SliceTy
, AI
.getType()->getAddressSpace(), nullptr, Alignment
,
4159 AI
.getName() + ".sroa." + Twine(P
.begin() - AS
.begin()), &AI
);
4160 // Copy the old AI debug location over to the new one.
4161 NewAI
->setDebugLoc(AI
.getDebugLoc());
4165 LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4166 << "[" << P
.beginOffset() << "," << P
.endOffset()
4167 << ") to: " << *NewAI
<< "\n");
4169 // Track the high watermark on the worklist as it is only relevant for
4170 // promoted allocas. We will reset it to this point if the alloca is not in
4171 // fact scheduled for promotion.
4172 unsigned PPWOldSize
= PostPromotionWorklist
.size();
4173 unsigned NumUses
= 0;
4174 SmallSetVector
<PHINode
*, 8> PHIUsers
;
4175 SmallSetVector
<SelectInst
*, 8> SelectUsers
;
4177 AllocaSliceRewriter
Rewriter(DL
, AS
, *this, AI
, *NewAI
, P
.beginOffset(),
4178 P
.endOffset(), IsIntegerPromotable
, VecTy
,
4179 PHIUsers
, SelectUsers
);
4180 bool Promotable
= true;
4181 for (Slice
*S
: P
.splitSliceTails()) {
4182 Promotable
&= Rewriter
.visit(S
);
4185 for (Slice
&S
: P
) {
4186 Promotable
&= Rewriter
.visit(&S
);
4190 NumAllocaPartitionUses
+= NumUses
;
4191 MaxUsesPerAllocaPartition
.updateMax(NumUses
);
4193 // Now that we've processed all the slices in the new partition, check if any
4194 // PHIs or Selects would block promotion.
4195 for (PHINode
*PHI
: PHIUsers
)
4196 if (!isSafePHIToSpeculate(*PHI
)) {
4199 SelectUsers
.clear();
4203 for (SelectInst
*Sel
: SelectUsers
)
4204 if (!isSafeSelectToSpeculate(*Sel
)) {
4207 SelectUsers
.clear();
4212 if (PHIUsers
.empty() && SelectUsers
.empty()) {
4213 // Promote the alloca.
4214 PromotableAllocas
.push_back(NewAI
);
4216 // If we have either PHIs or Selects to speculate, add them to those
4217 // worklists and re-queue the new alloca so that we promote in on the
4219 for (PHINode
*PHIUser
: PHIUsers
)
4220 SpeculatablePHIs
.insert(PHIUser
);
4221 for (SelectInst
*SelectUser
: SelectUsers
)
4222 SpeculatableSelects
.insert(SelectUser
);
4223 Worklist
.insert(NewAI
);
4226 // Drop any post-promotion work items if promotion didn't happen.
4227 while (PostPromotionWorklist
.size() > PPWOldSize
)
4228 PostPromotionWorklist
.pop_back();
4230 // We couldn't promote and we didn't create a new partition, nothing
4235 // If we can't promote the alloca, iterate on it to check for new
4236 // refinements exposed by splitting the current alloca. Don't iterate on an
4237 // alloca which didn't actually change and didn't get promoted.
4238 Worklist
.insert(NewAI
);
4244 /// Walks the slices of an alloca and form partitions based on them,
4245 /// rewriting each of their uses.
4246 bool SROA::splitAlloca(AllocaInst
&AI
, AllocaSlices
&AS
) {
4247 if (AS
.begin() == AS
.end())
4250 unsigned NumPartitions
= 0;
4251 bool Changed
= false;
4252 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4254 // First try to pre-split loads and stores.
4255 Changed
|= presplitLoadsAndStores(AI
, AS
);
4257 // Now that we have identified any pre-splitting opportunities,
4258 // mark loads and stores unsplittable except for the following case.
4259 // We leave a slice splittable if all other slices are disjoint or fully
4260 // included in the slice, such as whole-alloca loads and stores.
4261 // If we fail to split these during pre-splitting, we want to force them
4262 // to be rewritten into a partition.
4263 bool IsSorted
= true;
4265 uint64_t AllocaSize
= DL
.getTypeAllocSize(AI
.getAllocatedType());
4266 const uint64_t MaxBitVectorSize
= 1024;
4267 if (AllocaSize
<= MaxBitVectorSize
) {
4268 // If a byte boundary is included in any load or store, a slice starting or
4269 // ending at the boundary is not splittable.
4270 SmallBitVector
SplittableOffset(AllocaSize
+ 1, true);
4272 for (unsigned O
= S
.beginOffset() + 1;
4273 O
< S
.endOffset() && O
< AllocaSize
; O
++)
4274 SplittableOffset
.reset(O
);
4276 for (Slice
&S
: AS
) {
4277 if (!S
.isSplittable())
4280 if ((S
.beginOffset() > AllocaSize
|| SplittableOffset
[S
.beginOffset()]) &&
4281 (S
.endOffset() > AllocaSize
|| SplittableOffset
[S
.endOffset()]))
4284 if (isa
<LoadInst
>(S
.getUse()->getUser()) ||
4285 isa
<StoreInst
>(S
.getUse()->getUser())) {
4286 S
.makeUnsplittable();
4292 // We only allow whole-alloca splittable loads and stores
4293 // for a large alloca to avoid creating too large BitVector.
4294 for (Slice
&S
: AS
) {
4295 if (!S
.isSplittable())
4298 if (S
.beginOffset() == 0 && S
.endOffset() >= AllocaSize
)
4301 if (isa
<LoadInst
>(S
.getUse()->getUser()) ||
4302 isa
<StoreInst
>(S
.getUse()->getUser())) {
4303 S
.makeUnsplittable();
4312 /// Describes the allocas introduced by rewritePartition in order to migrate
4318 Fragment(AllocaInst
*AI
, uint64_t O
, uint64_t S
)
4319 : Alloca(AI
), Offset(O
), Size(S
) {}
4321 SmallVector
<Fragment
, 4> Fragments
;
4323 // Rewrite each partition.
4324 for (auto &P
: AS
.partitions()) {
4325 if (AllocaInst
*NewAI
= rewritePartition(AI
, AS
, P
)) {
4328 uint64_t SizeOfByte
= 8;
4329 uint64_t AllocaSize
= DL
.getTypeSizeInBits(NewAI
->getAllocatedType());
4330 // Don't include any padding.
4331 uint64_t Size
= std::min(AllocaSize
, P
.size() * SizeOfByte
);
4332 Fragments
.push_back(Fragment(NewAI
, P
.beginOffset() * SizeOfByte
, Size
));
4338 NumAllocaPartitions
+= NumPartitions
;
4339 MaxPartitionsPerAlloca
.updateMax(NumPartitions
);
4341 // Migrate debug information from the old alloca to the new alloca(s)
4342 // and the individual partitions.
4343 TinyPtrVector
<DbgVariableIntrinsic
*> DbgDeclares
= FindDbgAddrUses(&AI
);
4344 if (!DbgDeclares
.empty()) {
4345 auto *Var
= DbgDeclares
.front()->getVariable();
4346 auto *Expr
= DbgDeclares
.front()->getExpression();
4347 auto VarSize
= Var
->getSizeInBits();
4348 DIBuilder
DIB(*AI
.getModule(), /*AllowUnresolved*/ false);
4349 uint64_t AllocaSize
= DL
.getTypeSizeInBits(AI
.getAllocatedType());
4350 for (auto Fragment
: Fragments
) {
4351 // Create a fragment expression describing the new partition or reuse AI's
4352 // expression if there is only one partition.
4353 auto *FragmentExpr
= Expr
;
4354 if (Fragment
.Size
< AllocaSize
|| Expr
->isFragment()) {
4355 // If this alloca is already a scalar replacement of a larger aggregate,
4356 // Fragment.Offset describes the offset inside the scalar.
4357 auto ExprFragment
= Expr
->getFragmentInfo();
4358 uint64_t Offset
= ExprFragment
? ExprFragment
->OffsetInBits
: 0;
4359 uint64_t Start
= Offset
+ Fragment
.Offset
;
4360 uint64_t Size
= Fragment
.Size
;
4363 ExprFragment
->OffsetInBits
+ ExprFragment
->SizeInBits
;
4364 if (Start
>= AbsEnd
)
4365 // No need to describe a SROAed padding.
4367 Size
= std::min(Size
, AbsEnd
- Start
);
4369 // The new, smaller fragment is stenciled out from the old fragment.
4370 if (auto OrigFragment
= FragmentExpr
->getFragmentInfo()) {
4371 assert(Start
>= OrigFragment
->OffsetInBits
&&
4372 "new fragment is outside of original fragment");
4373 Start
-= OrigFragment
->OffsetInBits
;
4376 // The alloca may be larger than the variable.
4378 if (Size
> *VarSize
)
4380 if (Size
== 0 || Start
+ Size
> *VarSize
)
4384 // Avoid creating a fragment expression that covers the entire variable.
4385 if (!VarSize
|| *VarSize
!= Size
) {
4387 DIExpression::createFragmentExpression(Expr
, Start
, Size
))
4394 // Remove any existing intrinsics describing the same alloca.
4395 for (DbgVariableIntrinsic
*OldDII
: FindDbgAddrUses(Fragment
.Alloca
))
4396 OldDII
->eraseFromParent();
4398 DIB
.insertDeclare(Fragment
.Alloca
, Var
, FragmentExpr
,
4399 DbgDeclares
.front()->getDebugLoc(), &AI
);
4405 /// Clobber a use with undef, deleting the used value if it becomes dead.
4406 void SROA::clobberUse(Use
&U
) {
4408 // Replace the use with an undef value.
4409 U
= UndefValue::get(OldV
->getType());
4411 // Check for this making an instruction dead. We have to garbage collect
4412 // all the dead instructions to ensure the uses of any alloca end up being
4414 if (Instruction
*OldI
= dyn_cast
<Instruction
>(OldV
))
4415 if (isInstructionTriviallyDead(OldI
)) {
4416 DeadInsts
.insert(OldI
);
4420 /// Analyze an alloca for SROA.
4422 /// This analyzes the alloca to ensure we can reason about it, builds
4423 /// the slices of the alloca, and then hands it off to be split and
4424 /// rewritten as needed.
4425 bool SROA::runOnAlloca(AllocaInst
&AI
) {
4426 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI
<< "\n");
4427 ++NumAllocasAnalyzed
;
4429 // Special case dead allocas, as they're trivial.
4430 if (AI
.use_empty()) {
4431 AI
.eraseFromParent();
4434 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4436 // Skip alloca forms that this analysis can't handle.
4437 if (AI
.isArrayAllocation() || !AI
.getAllocatedType()->isSized() ||
4438 DL
.getTypeAllocSize(AI
.getAllocatedType()) == 0)
4441 bool Changed
= false;
4443 // First, split any FCA loads and stores touching this alloca to promote
4444 // better splitting and promotion opportunities.
4445 AggLoadStoreRewriter
AggRewriter(DL
);
4446 Changed
|= AggRewriter
.rewrite(AI
);
4448 // Build the slices using a recursive instruction-visiting builder.
4449 AllocaSlices
AS(DL
, AI
);
4450 LLVM_DEBUG(AS
.print(dbgs()));
4454 // Delete all the dead users of this alloca before splitting and rewriting it.
4455 for (Instruction
*DeadUser
: AS
.getDeadUsers()) {
4456 // Free up everything used by this instruction.
4457 for (Use
&DeadOp
: DeadUser
->operands())
4460 // Now replace the uses of this instruction.
4461 DeadUser
->replaceAllUsesWith(UndefValue::get(DeadUser
->getType()));
4463 // And mark it for deletion.
4464 DeadInsts
.insert(DeadUser
);
4467 for (Use
*DeadOp
: AS
.getDeadOperands()) {
4468 clobberUse(*DeadOp
);
4472 // No slices to split. Leave the dead alloca for a later pass to clean up.
4473 if (AS
.begin() == AS
.end())
4476 Changed
|= splitAlloca(AI
, AS
);
4478 LLVM_DEBUG(dbgs() << " Speculating PHIs\n");
4479 while (!SpeculatablePHIs
.empty())
4480 speculatePHINodeLoads(*SpeculatablePHIs
.pop_back_val());
4482 LLVM_DEBUG(dbgs() << " Speculating Selects\n");
4483 while (!SpeculatableSelects
.empty())
4484 speculateSelectInstLoads(*SpeculatableSelects
.pop_back_val());
4489 /// Delete the dead instructions accumulated in this run.
4491 /// Recursively deletes the dead instructions we've accumulated. This is done
4492 /// at the very end to maximize locality of the recursive delete and to
4493 /// minimize the problems of invalidated instruction pointers as such pointers
4494 /// are used heavily in the intermediate stages of the algorithm.
4496 /// We also record the alloca instructions deleted here so that they aren't
4497 /// subsequently handed to mem2reg to promote.
4498 bool SROA::deleteDeadInstructions(
4499 SmallPtrSetImpl
<AllocaInst
*> &DeletedAllocas
) {
4500 bool Changed
= false;
4501 while (!DeadInsts
.empty()) {
4502 Instruction
*I
= DeadInsts
.pop_back_val();
4503 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I
<< "\n");
4505 // If the instruction is an alloca, find the possible dbg.declare connected
4506 // to it, and remove it too. We must do this before calling RAUW or we will
4507 // not be able to find it.
4508 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
4509 DeletedAllocas
.insert(AI
);
4510 for (DbgVariableIntrinsic
*OldDII
: FindDbgAddrUses(AI
))
4511 OldDII
->eraseFromParent();
4514 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
4516 for (Use
&Operand
: I
->operands())
4517 if (Instruction
*U
= dyn_cast
<Instruction
>(Operand
)) {
4518 // Zero out the operand and see if it becomes trivially dead.
4520 if (isInstructionTriviallyDead(U
))
4521 DeadInsts
.insert(U
);
4525 I
->eraseFromParent();
4531 /// Promote the allocas, using the best available technique.
4533 /// This attempts to promote whatever allocas have been identified as viable in
4534 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4535 /// This function returns whether any promotion occurred.
4536 bool SROA::promoteAllocas(Function
&F
) {
4537 if (PromotableAllocas
.empty())
4540 NumPromoted
+= PromotableAllocas
.size();
4542 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4543 PromoteMemToReg(PromotableAllocas
, *DT
, AC
);
4544 PromotableAllocas
.clear();
4548 PreservedAnalyses
SROA::runImpl(Function
&F
, DominatorTree
&RunDT
,
4549 AssumptionCache
&RunAC
) {
4550 LLVM_DEBUG(dbgs() << "SROA function: " << F
.getName() << "\n");
4551 C
= &F
.getContext();
4555 BasicBlock
&EntryBB
= F
.getEntryBlock();
4556 for (BasicBlock::iterator I
= EntryBB
.begin(), E
= std::prev(EntryBB
.end());
4558 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
4559 Worklist
.insert(AI
);
4562 bool Changed
= false;
4563 // A set of deleted alloca instruction pointers which should be removed from
4564 // the list of promotable allocas.
4565 SmallPtrSet
<AllocaInst
*, 4> DeletedAllocas
;
4568 while (!Worklist
.empty()) {
4569 Changed
|= runOnAlloca(*Worklist
.pop_back_val());
4570 Changed
|= deleteDeadInstructions(DeletedAllocas
);
4572 // Remove the deleted allocas from various lists so that we don't try to
4573 // continue processing them.
4574 if (!DeletedAllocas
.empty()) {
4575 auto IsInSet
= [&](AllocaInst
*AI
) { return DeletedAllocas
.count(AI
); };
4576 Worklist
.remove_if(IsInSet
);
4577 PostPromotionWorklist
.remove_if(IsInSet
);
4578 PromotableAllocas
.erase(llvm::remove_if(PromotableAllocas
, IsInSet
),
4579 PromotableAllocas
.end());
4580 DeletedAllocas
.clear();
4584 Changed
|= promoteAllocas(F
);
4586 Worklist
= PostPromotionWorklist
;
4587 PostPromotionWorklist
.clear();
4588 } while (!Worklist
.empty());
4591 return PreservedAnalyses::all();
4593 PreservedAnalyses PA
;
4594 PA
.preserveSet
<CFGAnalyses
>();
4595 PA
.preserve
<GlobalsAA
>();
4599 PreservedAnalyses
SROA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
4600 return runImpl(F
, AM
.getResult
<DominatorTreeAnalysis
>(F
),
4601 AM
.getResult
<AssumptionAnalysis
>(F
));
4604 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4606 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4608 class llvm::sroa::SROALegacyPass
: public FunctionPass
{
4609 /// The SROA implementation.
4615 SROALegacyPass() : FunctionPass(ID
) {
4616 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4619 bool runOnFunction(Function
&F
) override
{
4620 if (skipFunction(F
))
4623 auto PA
= Impl
.runImpl(
4624 F
, getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
4625 getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
));
4626 return !PA
.areAllPreserved();
4629 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4630 AU
.addRequired
<AssumptionCacheTracker
>();
4631 AU
.addRequired
<DominatorTreeWrapperPass
>();
4632 AU
.addPreserved
<GlobalsAAWrapperPass
>();
4633 AU
.setPreservesCFG();
4636 StringRef
getPassName() const override
{ return "SROA"; }
4639 char SROALegacyPass::ID
= 0;
4641 FunctionPass
*llvm::createSROAPass() { return new SROALegacyPass(); }
4643 INITIALIZE_PASS_BEGIN(SROALegacyPass
, "sroa",
4644 "Scalar Replacement Of Aggregates", false, false)
4645 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
4646 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
4647 INITIALIZE_PASS_END(SROALegacyPass
, "sroa", "Scalar Replacement Of Aggregates",