[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / Sink.cpp
blob90f3a2aa46e161bb3d4f825dc38bb7ec321662a7
1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks, when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/Sink.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Scalar.h"
27 using namespace llvm;
29 #define DEBUG_TYPE "sink"
31 STATISTIC(NumSunk, "Number of instructions sunk");
32 STATISTIC(NumSinkIter, "Number of sinking iterations");
34 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
35 /// occur in blocks dominated by the specified block.
36 static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB,
37 DominatorTree &DT) {
38 // Ignoring debug uses is necessary so debug info doesn't affect the code.
39 // This may leave a referencing dbg_value in the original block, before
40 // the definition of the vreg. Dwarf generator handles this although the
41 // user might not get the right info at runtime.
42 for (Use &U : Inst->uses()) {
43 // Determine the block of the use.
44 Instruction *UseInst = cast<Instruction>(U.getUser());
45 BasicBlock *UseBlock = UseInst->getParent();
46 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
47 // PHI nodes use the operand in the predecessor block, not the block with
48 // the PHI.
49 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
50 UseBlock = PN->getIncomingBlock(Num);
52 // Check that it dominates.
53 if (!DT.dominates(BB, UseBlock))
54 return false;
56 return true;
59 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA,
60 SmallPtrSetImpl<Instruction *> &Stores) {
62 if (Inst->mayWriteToMemory()) {
63 Stores.insert(Inst);
64 return false;
67 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
68 MemoryLocation Loc = MemoryLocation::get(L);
69 for (Instruction *S : Stores)
70 if (isModSet(AA.getModRefInfo(S, Loc)))
71 return false;
74 if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() ||
75 Inst->mayThrow())
76 return false;
78 if (auto *Call = dyn_cast<CallBase>(Inst)) {
79 // Convergent operations cannot be made control-dependent on additional
80 // values.
81 if (Call->hasFnAttr(Attribute::Convergent))
82 return false;
84 for (Instruction *S : Stores)
85 if (isModSet(AA.getModRefInfo(S, Call)))
86 return false;
89 return true;
92 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
93 /// in the specified basic block.
94 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo,
95 DominatorTree &DT, LoopInfo &LI) {
96 assert(Inst && "Instruction to be sunk is null");
97 assert(SuccToSinkTo && "Candidate sink target is null");
99 // It is not possible to sink an instruction into its own block. This can
100 // happen with loops.
101 if (Inst->getParent() == SuccToSinkTo)
102 return false;
104 // It's never legal to sink an instruction into a block which terminates in an
105 // EH-pad.
106 if (SuccToSinkTo->getTerminator()->isExceptionalTerminator())
107 return false;
109 // If the block has multiple predecessors, this would introduce computation
110 // on different code paths. We could split the critical edge, but for now we
111 // just punt.
112 // FIXME: Split critical edges if not backedges.
113 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
114 // We cannot sink a load across a critical edge - there may be stores in
115 // other code paths.
116 if (Inst->mayReadFromMemory())
117 return false;
119 // We don't want to sink across a critical edge if we don't dominate the
120 // successor. We could be introducing calculations to new code paths.
121 if (!DT.dominates(Inst->getParent(), SuccToSinkTo))
122 return false;
124 // Don't sink instructions into a loop.
125 Loop *succ = LI.getLoopFor(SuccToSinkTo);
126 Loop *cur = LI.getLoopFor(Inst->getParent());
127 if (succ != nullptr && succ != cur)
128 return false;
131 // Finally, check that all the uses of the instruction are actually
132 // dominated by the candidate
133 return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT);
136 /// SinkInstruction - Determine whether it is safe to sink the specified machine
137 /// instruction out of its current block into a successor.
138 static bool SinkInstruction(Instruction *Inst,
139 SmallPtrSetImpl<Instruction *> &Stores,
140 DominatorTree &DT, LoopInfo &LI, AAResults &AA) {
142 // Don't sink static alloca instructions. CodeGen assumes allocas outside the
143 // entry block are dynamically sized stack objects.
144 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
145 if (AI->isStaticAlloca())
146 return false;
148 // Check if it's safe to move the instruction.
149 if (!isSafeToMove(Inst, AA, Stores))
150 return false;
152 // FIXME: This should include support for sinking instructions within the
153 // block they are currently in to shorten the live ranges. We often get
154 // instructions sunk into the top of a large block, but it would be better to
155 // also sink them down before their first use in the block. This xform has to
156 // be careful not to *increase* register pressure though, e.g. sinking
157 // "x = y + z" down if it kills y and z would increase the live ranges of y
158 // and z and only shrink the live range of x.
160 // SuccToSinkTo - This is the successor to sink this instruction to, once we
161 // decide.
162 BasicBlock *SuccToSinkTo = nullptr;
164 // Instructions can only be sunk if all their uses are in blocks
165 // dominated by one of the successors.
166 // Look at all the dominated blocks and see if we can sink it in one.
167 DomTreeNode *DTN = DT.getNode(Inst->getParent());
168 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
169 I != E && SuccToSinkTo == nullptr; ++I) {
170 BasicBlock *Candidate = (*I)->getBlock();
171 // A node always immediate-dominates its children on the dominator
172 // tree.
173 if (IsAcceptableTarget(Inst, Candidate, DT, LI))
174 SuccToSinkTo = Candidate;
177 // If no suitable postdominator was found, look at all the successors and
178 // decide which one we should sink to, if any.
179 for (succ_iterator I = succ_begin(Inst->getParent()),
180 E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
181 if (IsAcceptableTarget(Inst, *I, DT, LI))
182 SuccToSinkTo = *I;
185 // If we couldn't find a block to sink to, ignore this instruction.
186 if (!SuccToSinkTo)
187 return false;
189 LLVM_DEBUG(dbgs() << "Sink" << *Inst << " (";
190 Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> ";
191 SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n");
193 // Move the instruction.
194 Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
195 return true;
198 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI,
199 AAResults &AA) {
200 // Can't sink anything out of a block that has less than two successors.
201 if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
203 // Don't bother sinking code out of unreachable blocks. In addition to being
204 // unprofitable, it can also lead to infinite looping, because in an
205 // unreachable loop there may be nowhere to stop.
206 if (!DT.isReachableFromEntry(&BB)) return false;
208 bool MadeChange = false;
210 // Walk the basic block bottom-up. Remember if we saw a store.
211 BasicBlock::iterator I = BB.end();
212 --I;
213 bool ProcessedBegin = false;
214 SmallPtrSet<Instruction *, 8> Stores;
215 do {
216 Instruction *Inst = &*I; // The instruction to sink.
218 // Predecrement I (if it's not begin) so that it isn't invalidated by
219 // sinking.
220 ProcessedBegin = I == BB.begin();
221 if (!ProcessedBegin)
222 --I;
224 if (isa<DbgInfoIntrinsic>(Inst))
225 continue;
227 if (SinkInstruction(Inst, Stores, DT, LI, AA)) {
228 ++NumSunk;
229 MadeChange = true;
232 // If we just processed the first instruction in the block, we're done.
233 } while (!ProcessedBegin);
235 return MadeChange;
238 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT,
239 LoopInfo &LI, AAResults &AA) {
240 bool MadeChange, EverMadeChange = false;
242 do {
243 MadeChange = false;
244 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
245 // Process all basic blocks.
246 for (BasicBlock &I : F)
247 MadeChange |= ProcessBlock(I, DT, LI, AA);
248 EverMadeChange |= MadeChange;
249 NumSinkIter++;
250 } while (MadeChange);
252 return EverMadeChange;
255 PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) {
256 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
257 auto &LI = AM.getResult<LoopAnalysis>(F);
258 auto &AA = AM.getResult<AAManager>(F);
260 if (!iterativelySinkInstructions(F, DT, LI, AA))
261 return PreservedAnalyses::all();
263 PreservedAnalyses PA;
264 PA.preserveSet<CFGAnalyses>();
265 return PA;
268 namespace {
269 class SinkingLegacyPass : public FunctionPass {
270 public:
271 static char ID; // Pass identification
272 SinkingLegacyPass() : FunctionPass(ID) {
273 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
276 bool runOnFunction(Function &F) override {
277 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
278 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
279 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
281 return iterativelySinkInstructions(F, DT, LI, AA);
284 void getAnalysisUsage(AnalysisUsage &AU) const override {
285 AU.setPreservesCFG();
286 FunctionPass::getAnalysisUsage(AU);
287 AU.addRequired<AAResultsWrapperPass>();
288 AU.addRequired<DominatorTreeWrapperPass>();
289 AU.addRequired<LoopInfoWrapperPass>();
290 AU.addPreserved<DominatorTreeWrapperPass>();
291 AU.addPreserved<LoopInfoWrapperPass>();
294 } // end anonymous namespace
296 char SinkingLegacyPass::ID = 0;
297 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false)
298 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
299 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
301 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false)
303 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }