[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / StraightLineStrengthReduce.cpp
bloba58c32cc58943f3fc6071183eb18b7080cded890
1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements straight-line strength reduction (SLSR). Unlike loop
10 // strength reduction, this algorithm is designed to reduce arithmetic
11 // redundancy in straight-line code instead of loops. It has proven to be
12 // effective in simplifying arithmetic statements derived from an unrolled loop.
13 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 // There are many optimizations we can perform in the domain of SLSR. This file
16 // for now contains only an initial step. Specifically, we look for strength
17 // reduction candidates in the following forms:
19 // Form 1: B + i * S
20 // Form 2: (B + i) * S
21 // Form 3: &B[i * S]
23 // where S is an integer variable, and i is a constant integer. If we found two
24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25 // in a simpler way with respect to S1. For example,
27 // S1: X = B + i * S
28 // S2: Y = B + i' * S => X + (i' - i) * S
30 // S1: X = (B + i) * S
31 // S2: Y = (B + i') * S => X + (i' - i) * S
33 // S1: X = &B[i * S]
34 // S2: Y = &B[i' * S] => &X[(i' - i) * S]
36 // Note: (i' - i) * S is folded to the extent possible.
38 // This rewriting is in general a good idea. The code patterns we focus on
39 // usually come from loop unrolling, so (i' - i) * S is likely the same
40 // across iterations and can be reused. When that happens, the optimized form
41 // takes only one add starting from the second iteration.
43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
45 // basis, the basis that is the closest ancestor in the dominator tree.
47 // TODO:
49 // - Floating point arithmetics when fast math is enabled.
51 // - SLSR may decrease ILP at the architecture level. Targets that are very
52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53 // left as future work.
55 // - When (i' - i) is constant but i and i' are not, we could still perform
56 // SLSR.
58 #include "llvm/ADT/APInt.h"
59 #include "llvm/ADT/DepthFirstIterator.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Analysis/ValueTracking.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/Operator.h"
76 #include "llvm/IR/PatternMatch.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <limits>
86 #include <list>
87 #include <vector>
89 using namespace llvm;
90 using namespace PatternMatch;
92 static const unsigned UnknownAddressSpace =
93 std::numeric_limits<unsigned>::max();
95 namespace {
97 class StraightLineStrengthReduce : public FunctionPass {
98 public:
99 // SLSR candidate. Such a candidate must be in one of the forms described in
100 // the header comments.
101 struct Candidate {
102 enum Kind {
103 Invalid, // reserved for the default constructor
104 Add, // B + i * S
105 Mul, // (B + i) * S
106 GEP, // &B[..][i * S][..]
109 Candidate() = default;
110 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
111 Instruction *I)
112 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
114 Kind CandidateKind = Invalid;
116 const SCEV *Base = nullptr;
118 // Note that Index and Stride of a GEP candidate do not necessarily have the
119 // same integer type. In that case, during rewriting, Stride will be
120 // sign-extended or truncated to Index's type.
121 ConstantInt *Index = nullptr;
123 Value *Stride = nullptr;
125 // The instruction this candidate corresponds to. It helps us to rewrite a
126 // candidate with respect to its immediate basis. Note that one instruction
127 // can correspond to multiple candidates depending on how you associate the
128 // expression. For instance,
130 // (a + 1) * (b + 2)
132 // can be treated as
134 // <Base: a, Index: 1, Stride: b + 2>
136 // or
138 // <Base: b, Index: 2, Stride: a + 1>
139 Instruction *Ins = nullptr;
141 // Points to the immediate basis of this candidate, or nullptr if we cannot
142 // find any basis for this candidate.
143 Candidate *Basis = nullptr;
146 static char ID;
148 StraightLineStrengthReduce() : FunctionPass(ID) {
149 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
152 void getAnalysisUsage(AnalysisUsage &AU) const override {
153 AU.addRequired<DominatorTreeWrapperPass>();
154 AU.addRequired<ScalarEvolutionWrapperPass>();
155 AU.addRequired<TargetTransformInfoWrapperPass>();
156 // We do not modify the shape of the CFG.
157 AU.setPreservesCFG();
160 bool doInitialization(Module &M) override {
161 DL = &M.getDataLayout();
162 return false;
165 bool runOnFunction(Function &F) override;
167 private:
168 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
169 // share the same base and stride.
170 bool isBasisFor(const Candidate &Basis, const Candidate &C);
172 // Returns whether the candidate can be folded into an addressing mode.
173 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
174 const DataLayout *DL);
176 // Returns true if C is already in a simplest form and not worth being
177 // rewritten.
178 bool isSimplestForm(const Candidate &C);
180 // Checks whether I is in a candidate form. If so, adds all the matching forms
181 // to Candidates, and tries to find the immediate basis for each of them.
182 void allocateCandidatesAndFindBasis(Instruction *I);
184 // Allocate candidates and find bases for Add instructions.
185 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
187 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
188 // candidate.
189 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
190 Instruction *I);
191 // Allocate candidates and find bases for Mul instructions.
192 void allocateCandidatesAndFindBasisForMul(Instruction *I);
194 // Splits LHS into Base + Index and, if succeeds, calls
195 // allocateCandidatesAndFindBasis.
196 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
197 Instruction *I);
199 // Allocate candidates and find bases for GetElementPtr instructions.
200 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
202 // A helper function that scales Idx with ElementSize before invoking
203 // allocateCandidatesAndFindBasis.
204 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
205 Value *S, uint64_t ElementSize,
206 Instruction *I);
208 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
209 // basis.
210 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
211 ConstantInt *Idx, Value *S,
212 Instruction *I);
214 // Rewrites candidate C with respect to Basis.
215 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
217 // A helper function that factors ArrayIdx to a product of a stride and a
218 // constant index, and invokes allocateCandidatesAndFindBasis with the
219 // factorings.
220 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
221 GetElementPtrInst *GEP);
223 // Emit code that computes the "bump" from Basis to C. If the candidate is a
224 // GEP and the bump is not divisible by the element size of the GEP, this
225 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
226 // basis using an ugly GEP.
227 static Value *emitBump(const Candidate &Basis, const Candidate &C,
228 IRBuilder<> &Builder, const DataLayout *DL,
229 bool &BumpWithUglyGEP);
231 const DataLayout *DL = nullptr;
232 DominatorTree *DT = nullptr;
233 ScalarEvolution *SE;
234 TargetTransformInfo *TTI = nullptr;
235 std::list<Candidate> Candidates;
237 // Temporarily holds all instructions that are unlinked (but not deleted) by
238 // rewriteCandidateWithBasis. These instructions will be actually removed
239 // after all rewriting finishes.
240 std::vector<Instruction *> UnlinkedInstructions;
243 } // end anonymous namespace
245 char StraightLineStrengthReduce::ID = 0;
247 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
248 "Straight line strength reduction", false, false)
249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
250 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
252 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
253 "Straight line strength reduction", false, false)
255 FunctionPass *llvm::createStraightLineStrengthReducePass() {
256 return new StraightLineStrengthReduce();
259 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
260 const Candidate &C) {
261 return (Basis.Ins != C.Ins && // skip the same instruction
262 // They must have the same type too. Basis.Base == C.Base doesn't
263 // guarantee their types are the same (PR23975).
264 Basis.Ins->getType() == C.Ins->getType() &&
265 // Basis must dominate C in order to rewrite C with respect to Basis.
266 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
267 // They share the same base, stride, and candidate kind.
268 Basis.Base == C.Base && Basis.Stride == C.Stride &&
269 Basis.CandidateKind == C.CandidateKind);
272 static bool isGEPFoldable(GetElementPtrInst *GEP,
273 const TargetTransformInfo *TTI) {
274 SmallVector<const Value*, 4> Indices;
275 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
276 Indices.push_back(*I);
277 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
278 Indices) == TargetTransformInfo::TCC_Free;
281 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
282 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
283 TargetTransformInfo *TTI) {
284 // Index->getSExtValue() may crash if Index is wider than 64-bit.
285 return Index->getBitWidth() <= 64 &&
286 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
287 Index->getSExtValue(), UnknownAddressSpace);
290 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
291 TargetTransformInfo *TTI,
292 const DataLayout *DL) {
293 if (C.CandidateKind == Candidate::Add)
294 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
295 if (C.CandidateKind == Candidate::GEP)
296 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
297 return false;
300 // Returns true if GEP has zero or one non-zero index.
301 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
302 unsigned NumNonZeroIndices = 0;
303 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
304 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
305 if (ConstIdx == nullptr || !ConstIdx->isZero())
306 ++NumNonZeroIndices;
308 return NumNonZeroIndices <= 1;
311 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
312 if (C.CandidateKind == Candidate::Add) {
313 // B + 1 * S or B + (-1) * S
314 return C.Index->isOne() || C.Index->isMinusOne();
316 if (C.CandidateKind == Candidate::Mul) {
317 // (B + 0) * S
318 return C.Index->isZero();
320 if (C.CandidateKind == Candidate::GEP) {
321 // (char*)B + S or (char*)B - S
322 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
323 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
325 return false;
328 // TODO: We currently implement an algorithm whose time complexity is linear in
329 // the number of existing candidates. However, we could do better by using
330 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
331 // maintain all the candidates that dominate the basic block being traversed in
332 // a ScopedHashTable. This hash table is indexed by the base and the stride of
333 // a candidate. Therefore, finding the immediate basis of a candidate boils down
334 // to one hash-table look up.
335 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
336 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
337 Instruction *I) {
338 Candidate C(CT, B, Idx, S, I);
339 // SLSR can complicate an instruction in two cases:
341 // 1. If we can fold I into an addressing mode, computing I is likely free or
342 // takes only one instruction.
344 // 2. I is already in a simplest form. For example, when
345 // X = B + 8 * S
346 // Y = B + S,
347 // rewriting Y to X - 7 * S is probably a bad idea.
349 // In the above cases, we still add I to the candidate list so that I can be
350 // the basis of other candidates, but we leave I's basis blank so that I
351 // won't be rewritten.
352 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
353 // Try to compute the immediate basis of C.
354 unsigned NumIterations = 0;
355 // Limit the scan radius to avoid running in quadratice time.
356 static const unsigned MaxNumIterations = 50;
357 for (auto Basis = Candidates.rbegin();
358 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
359 ++Basis, ++NumIterations) {
360 if (isBasisFor(*Basis, C)) {
361 C.Basis = &(*Basis);
362 break;
366 // Regardless of whether we find a basis for C, we need to push C to the
367 // candidate list so that it can be the basis of other candidates.
368 Candidates.push_back(C);
371 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
372 Instruction *I) {
373 switch (I->getOpcode()) {
374 case Instruction::Add:
375 allocateCandidatesAndFindBasisForAdd(I);
376 break;
377 case Instruction::Mul:
378 allocateCandidatesAndFindBasisForMul(I);
379 break;
380 case Instruction::GetElementPtr:
381 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
382 break;
386 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
387 Instruction *I) {
388 // Try matching B + i * S.
389 if (!isa<IntegerType>(I->getType()))
390 return;
392 assert(I->getNumOperands() == 2 && "isn't I an add?");
393 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
394 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
395 if (LHS != RHS)
396 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
399 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
400 Value *LHS, Value *RHS, Instruction *I) {
401 Value *S = nullptr;
402 ConstantInt *Idx = nullptr;
403 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
404 // I = LHS + RHS = LHS + Idx * S
405 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
406 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
407 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
408 APInt One(Idx->getBitWidth(), 1);
409 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
410 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
411 } else {
412 // At least, I = LHS + 1 * RHS
413 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
414 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
419 // Returns true if A matches B + C where C is constant.
420 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
421 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
422 match(A, m_Add(m_ConstantInt(C), m_Value(B))));
425 // Returns true if A matches B | C where C is constant.
426 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
427 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
428 match(A, m_Or(m_ConstantInt(C), m_Value(B))));
431 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
432 Value *LHS, Value *RHS, Instruction *I) {
433 Value *B = nullptr;
434 ConstantInt *Idx = nullptr;
435 if (matchesAdd(LHS, B, Idx)) {
436 // If LHS is in the form of "Base + Index", then I is in the form of
437 // "(Base + Index) * RHS".
438 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
439 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
440 // If LHS is in the form of "Base | Index" and Base and Index have no common
441 // bits set, then
442 // Base | Index = Base + Index
443 // and I is thus in the form of "(Base + Index) * RHS".
444 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
445 } else {
446 // Otherwise, at least try the form (LHS + 0) * RHS.
447 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
448 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
453 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
454 Instruction *I) {
455 // Try matching (B + i) * S.
456 // TODO: we could extend SLSR to float and vector types.
457 if (!isa<IntegerType>(I->getType()))
458 return;
460 assert(I->getNumOperands() == 2 && "isn't I a mul?");
461 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
462 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
463 if (LHS != RHS) {
464 // Symmetrically, try to split RHS to Base + Index.
465 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
469 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
470 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
471 Instruction *I) {
472 // I = B + sext(Idx *nsw S) * ElementSize
473 // = B + (sext(Idx) * sext(S)) * ElementSize
474 // = B + (sext(Idx) * ElementSize) * sext(S)
475 // Casting to IntegerType is safe because we skipped vector GEPs.
476 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
477 ConstantInt *ScaledIdx = ConstantInt::get(
478 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
479 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
482 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
483 const SCEV *Base,
484 uint64_t ElementSize,
485 GetElementPtrInst *GEP) {
486 // At least, ArrayIdx = ArrayIdx *nsw 1.
487 allocateCandidatesAndFindBasisForGEP(
488 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
489 ArrayIdx, ElementSize, GEP);
490 Value *LHS = nullptr;
491 ConstantInt *RHS = nullptr;
492 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
493 // itself. This would allow us to handle the shl case for free. However,
494 // matching SCEVs has two issues:
496 // 1. this would complicate rewriting because the rewriting procedure
497 // would have to translate SCEVs back to IR instructions. This translation
498 // is difficult when LHS is further evaluated to a composite SCEV.
500 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
501 // to strip nsw/nuw flags which are critical for SLSR to trace into
502 // sext'ed multiplication.
503 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
504 // SLSR is currently unsafe if i * S may overflow.
505 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
506 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
507 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
508 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
509 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
510 APInt One(RHS->getBitWidth(), 1);
511 ConstantInt *PowerOf2 =
512 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
513 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
517 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
518 GetElementPtrInst *GEP) {
519 // TODO: handle vector GEPs
520 if (GEP->getType()->isVectorTy())
521 return;
523 SmallVector<const SCEV *, 4> IndexExprs;
524 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
525 IndexExprs.push_back(SE->getSCEV(*I));
527 gep_type_iterator GTI = gep_type_begin(GEP);
528 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
529 if (GTI.isStruct())
530 continue;
532 const SCEV *OrigIndexExpr = IndexExprs[I - 1];
533 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
535 // The base of this candidate is GEP's base plus the offsets of all
536 // indices except this current one.
537 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
538 Value *ArrayIdx = GEP->getOperand(I);
539 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
540 if (ArrayIdx->getType()->getIntegerBitWidth() <=
541 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
542 // Skip factoring if ArrayIdx is wider than the pointer size, because
543 // ArrayIdx is implicitly truncated to the pointer size.
544 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
546 // When ArrayIdx is the sext of a value, we try to factor that value as
547 // well. Handling this case is important because array indices are
548 // typically sign-extended to the pointer size.
549 Value *TruncatedArrayIdx = nullptr;
550 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
551 TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
552 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
553 // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
554 // because TruncatedArrayIdx is implicitly truncated to the pointer size.
555 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
558 IndexExprs[I - 1] = OrigIndexExpr;
562 // A helper function that unifies the bitwidth of A and B.
563 static void unifyBitWidth(APInt &A, APInt &B) {
564 if (A.getBitWidth() < B.getBitWidth())
565 A = A.sext(B.getBitWidth());
566 else if (A.getBitWidth() > B.getBitWidth())
567 B = B.sext(A.getBitWidth());
570 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
571 const Candidate &C,
572 IRBuilder<> &Builder,
573 const DataLayout *DL,
574 bool &BumpWithUglyGEP) {
575 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
576 unifyBitWidth(Idx, BasisIdx);
577 APInt IndexOffset = Idx - BasisIdx;
579 BumpWithUglyGEP = false;
580 if (Basis.CandidateKind == Candidate::GEP) {
581 APInt ElementSize(
582 IndexOffset.getBitWidth(),
583 DL->getTypeAllocSize(
584 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
585 APInt Q, R;
586 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
587 if (R == 0)
588 IndexOffset = Q;
589 else
590 BumpWithUglyGEP = true;
593 // Compute Bump = C - Basis = (i' - i) * S.
594 // Common case 1: if (i' - i) is 1, Bump = S.
595 if (IndexOffset == 1)
596 return C.Stride;
597 // Common case 2: if (i' - i) is -1, Bump = -S.
598 if (IndexOffset.isAllOnesValue())
599 return Builder.CreateNeg(C.Stride);
601 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
602 // have different bit widths.
603 IntegerType *DeltaType =
604 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
605 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
606 if (IndexOffset.isPowerOf2()) {
607 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
608 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
609 return Builder.CreateShl(ExtendedStride, Exponent);
611 if ((-IndexOffset).isPowerOf2()) {
612 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
613 ConstantInt *Exponent =
614 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
615 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
617 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
618 return Builder.CreateMul(ExtendedStride, Delta);
621 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
622 const Candidate &C, const Candidate &Basis) {
623 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
624 C.Stride == Basis.Stride);
625 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
626 // basis of a candidate cannot be unlinked before the candidate.
627 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
629 // An instruction can correspond to multiple candidates. Therefore, instead of
630 // simply deleting an instruction when we rewrite it, we mark its parent as
631 // nullptr (i.e. unlink it) so that we can skip the candidates whose
632 // instruction is already rewritten.
633 if (!C.Ins->getParent())
634 return;
636 IRBuilder<> Builder(C.Ins);
637 bool BumpWithUglyGEP;
638 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
639 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
640 switch (C.CandidateKind) {
641 case Candidate::Add:
642 case Candidate::Mul: {
643 // C = Basis + Bump
644 Value *NegBump;
645 if (match(Bump, m_Neg(m_Value(NegBump)))) {
646 // If Bump is a neg instruction, emit C = Basis - (-Bump).
647 Reduced = Builder.CreateSub(Basis.Ins, NegBump);
648 // We only use the negative argument of Bump, and Bump itself may be
649 // trivially dead.
650 RecursivelyDeleteTriviallyDeadInstructions(Bump);
651 } else {
652 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
653 // usually unsound, e.g.,
655 // X = (-2 +nsw 1) *nsw INT_MAX
656 // Y = (-2 +nsw 3) *nsw INT_MAX
657 // =>
658 // Y = X + 2 * INT_MAX
660 // Neither + and * in the resultant expression are nsw.
661 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
663 break;
665 case Candidate::GEP:
667 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
668 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
669 if (BumpWithUglyGEP) {
670 // C = (char *)Basis + Bump
671 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
672 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
673 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
674 if (InBounds)
675 Reduced =
676 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
677 else
678 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
679 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
680 } else {
681 // C = gep Basis, Bump
682 // Canonicalize bump to pointer size.
683 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
684 if (InBounds)
685 Reduced = Builder.CreateInBoundsGEP(
686 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
687 Basis.Ins, Bump);
688 else
689 Reduced = Builder.CreateGEP(
690 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
691 Basis.Ins, Bump);
693 break;
695 default:
696 llvm_unreachable("C.CandidateKind is invalid");
698 Reduced->takeName(C.Ins);
699 C.Ins->replaceAllUsesWith(Reduced);
700 // Unlink C.Ins so that we can skip other candidates also corresponding to
701 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
702 C.Ins->removeFromParent();
703 UnlinkedInstructions.push_back(C.Ins);
706 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
707 if (skipFunction(F))
708 return false;
710 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
711 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
712 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
713 // Traverse the dominator tree in the depth-first order. This order makes sure
714 // all bases of a candidate are in Candidates when we process it.
715 for (const auto Node : depth_first(DT))
716 for (auto &I : *(Node->getBlock()))
717 allocateCandidatesAndFindBasis(&I);
719 // Rewrite candidates in the reverse depth-first order. This order makes sure
720 // a candidate being rewritten is not a basis for any other candidate.
721 while (!Candidates.empty()) {
722 const Candidate &C = Candidates.back();
723 if (C.Basis != nullptr) {
724 rewriteCandidateWithBasis(C, *C.Basis);
726 Candidates.pop_back();
729 // Delete all unlink instructions.
730 for (auto *UnlinkedInst : UnlinkedInstructions) {
731 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
732 Value *Op = UnlinkedInst->getOperand(I);
733 UnlinkedInst->setOperand(I, nullptr);
734 RecursivelyDeleteTriviallyDeadInstructions(Op);
736 UnlinkedInst->deleteValue();
738 bool Ret = !UnlinkedInstructions.empty();
739 UnlinkedInstructions.clear();
740 return Ret;