1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop. This pass also implements the following extensions to the basic
14 // 1. Trivial instructions between the call and return do not prevent the
15 // transformation from taking place, though currently the analysis cannot
16 // support moving any really useful instructions (only dead ones).
17 // 2. This pass transforms functions that are prevented from being tail
18 // recursive by an associative and commutative expression to use an
19 // accumulator variable, thus compiling the typical naive factorial or
20 // 'fib' implementation into efficient code.
21 // 3. TRE is performed if the function returns void, if the return
22 // returns the result returned by the call, or if the function returns a
23 // run-time constant on all exits from the function. It is possible, though
24 // unlikely, that the return returns something else (like constant 0), and
25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
26 // the function return the exact same value.
27 // 4. If it can prove that callees do not access their caller stack frame,
28 // they are marked as eligible for tail call elimination (by the code
31 // There are several improvements that could be made:
33 // 1. If the function has any alloca instructions, these instructions will be
34 // moved out of the entry block of the function, causing them to be
35 // evaluated each time through the tail recursion. Safely keeping allocas
36 // in the entry block requires analysis to proves that the tail-called
37 // function does not read or write the stack object.
38 // 2. Tail recursion is only performed if the call immediately precedes the
39 // return instruction. It's possible that there could be a jump between
40 // the call and the return.
41 // 3. There can be intervening operations between the call and the return that
42 // prevent the TRE from occurring. For example, there could be GEP's and
43 // stores to memory that will not be read or written by the call. This
44 // requires some substantial analysis (such as with DSA) to prove safe to
45 // move ahead of the call, but doing so could allow many more TREs to be
46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 // 4. The algorithm we use to detect if callees access their caller stack
48 // frames is very primitive.
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/DiagnosticInfo.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/InstIterator.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Module.h"
78 #include "llvm/IR/ValueHandle.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
86 #define DEBUG_TYPE "tailcallelim"
88 STATISTIC(NumEliminated
, "Number of tail calls removed");
89 STATISTIC(NumRetDuped
, "Number of return duplicated");
90 STATISTIC(NumAccumAdded
, "Number of accumulators introduced");
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
94 static bool canTRE(Function
&F
) {
95 // Because of PR962, we don't TRE dynamic allocas.
96 return llvm::all_of(instructions(F
), [](Instruction
&I
) {
97 auto *AI
= dyn_cast
<AllocaInst
>(&I
);
98 return !AI
|| AI
->isStaticAlloca();
103 struct AllocaDerivedValueTracker
{
104 // Start at a root value and walk its use-def chain to mark calls that use the
105 // value or a derived value in AllocaUsers, and places where it may escape in
107 void walk(Value
*Root
) {
108 SmallVector
<Use
*, 32> Worklist
;
109 SmallPtrSet
<Use
*, 32> Visited
;
111 auto AddUsesToWorklist
= [&](Value
*V
) {
112 for (auto &U
: V
->uses()) {
113 if (!Visited
.insert(&U
).second
)
115 Worklist
.push_back(&U
);
119 AddUsesToWorklist(Root
);
121 while (!Worklist
.empty()) {
122 Use
*U
= Worklist
.pop_back_val();
123 Instruction
*I
= cast
<Instruction
>(U
->getUser());
125 switch (I
->getOpcode()) {
126 case Instruction::Call
:
127 case Instruction::Invoke
: {
129 // If the alloca-derived argument is passed byval it is not an escape
130 // point, or a use of an alloca. Calling with byval copies the contents
131 // of the alloca into argument registers or stack slots, which exist
132 // beyond the lifetime of the current frame.
133 if (CS
.isArgOperand(U
) && CS
.isByValArgument(CS
.getArgumentNo(U
)))
136 CS
.isDataOperand(U
) && CS
.doesNotCapture(CS
.getDataOperandNo(U
));
137 callUsesLocalStack(CS
, IsNocapture
);
139 // If the alloca-derived argument is passed in as nocapture, then it
140 // can't propagate to the call's return. That would be capturing.
145 case Instruction::Load
: {
146 // The result of a load is not alloca-derived (unless an alloca has
147 // otherwise escaped, but this is a local analysis).
150 case Instruction::Store
: {
151 if (U
->getOperandNo() == 0)
152 EscapePoints
.insert(I
);
153 continue; // Stores have no users to analyze.
155 case Instruction::BitCast
:
156 case Instruction::GetElementPtr
:
157 case Instruction::PHI
:
158 case Instruction::Select
:
159 case Instruction::AddrSpaceCast
:
162 EscapePoints
.insert(I
);
166 AddUsesToWorklist(I
);
170 void callUsesLocalStack(CallSite CS
, bool IsNocapture
) {
171 // Add it to the list of alloca users.
172 AllocaUsers
.insert(CS
.getInstruction());
174 // If it's nocapture then it can't capture this alloca.
178 // If it can write to memory, it can leak the alloca value.
179 if (!CS
.onlyReadsMemory())
180 EscapePoints
.insert(CS
.getInstruction());
183 SmallPtrSet
<Instruction
*, 32> AllocaUsers
;
184 SmallPtrSet
<Instruction
*, 32> EscapePoints
;
188 static bool markTails(Function
&F
, bool &AllCallsAreTailCalls
,
189 OptimizationRemarkEmitter
*ORE
) {
190 if (F
.callsFunctionThatReturnsTwice())
192 AllCallsAreTailCalls
= true;
194 // The local stack holds all alloca instructions and all byval arguments.
195 AllocaDerivedValueTracker Tracker
;
196 for (Argument
&Arg
: F
.args()) {
197 if (Arg
.hasByValAttr())
202 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(&I
))
206 bool Modified
= false;
208 // Track whether a block is reachable after an alloca has escaped. Blocks that
209 // contain the escaping instruction will be marked as being visited without an
210 // escaped alloca, since that is how the block began.
216 DenseMap
<BasicBlock
*, VisitType
> Visited
;
218 // We propagate the fact that an alloca has escaped from block to successor.
219 // Visit the blocks that are propagating the escapedness first. To do this, we
220 // maintain two worklists.
221 SmallVector
<BasicBlock
*, 32> WorklistUnescaped
, WorklistEscaped
;
223 // We may enter a block and visit it thinking that no alloca has escaped yet,
224 // then see an escape point and go back around a loop edge and come back to
225 // the same block twice. Because of this, we defer setting tail on calls when
226 // we first encounter them in a block. Every entry in this list does not
227 // statically use an alloca via use-def chain analysis, but may find an alloca
228 // through other means if the block turns out to be reachable after an escape
230 SmallVector
<CallInst
*, 32> DeferredTails
;
232 BasicBlock
*BB
= &F
.getEntryBlock();
233 VisitType Escaped
= UNESCAPED
;
235 for (auto &I
: *BB
) {
236 if (Tracker
.EscapePoints
.count(&I
))
239 CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
240 if (!CI
|| CI
->isTailCall() || isa
<DbgInfoIntrinsic
>(&I
))
243 bool IsNoTail
= CI
->isNoTailCall() || CI
->hasOperandBundles();
245 if (!IsNoTail
&& CI
->doesNotAccessMemory()) {
246 // A call to a readnone function whose arguments are all things computed
247 // outside this function can be marked tail. Even if you stored the
248 // alloca address into a global, a readnone function can't load the
251 // Note that this runs whether we know an alloca has escaped or not. If
252 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
253 bool SafeToTail
= true;
254 for (auto &Arg
: CI
->arg_operands()) {
255 if (isa
<Constant
>(Arg
.getUser()))
257 if (Argument
*A
= dyn_cast
<Argument
>(Arg
.getUser()))
258 if (!A
->hasByValAttr())
266 return OptimizationRemark(DEBUG_TYPE
, "tailcall-readnone", CI
)
267 << "marked as tail call candidate (readnone)";
275 if (!IsNoTail
&& Escaped
== UNESCAPED
&& !Tracker
.AllocaUsers
.count(CI
)) {
276 DeferredTails
.push_back(CI
);
278 AllCallsAreTailCalls
= false;
282 for (auto *SuccBB
: make_range(succ_begin(BB
), succ_end(BB
))) {
283 auto &State
= Visited
[SuccBB
];
284 if (State
< Escaped
) {
286 if (State
== ESCAPED
)
287 WorklistEscaped
.push_back(SuccBB
);
289 WorklistUnescaped
.push_back(SuccBB
);
293 if (!WorklistEscaped
.empty()) {
294 BB
= WorklistEscaped
.pop_back_val();
298 while (!WorklistUnescaped
.empty()) {
299 auto *NextBB
= WorklistUnescaped
.pop_back_val();
300 if (Visited
[NextBB
] == UNESCAPED
) {
309 for (CallInst
*CI
: DeferredTails
) {
310 if (Visited
[CI
->getParent()] != ESCAPED
) {
311 // If the escape point was part way through the block, calls after the
312 // escape point wouldn't have been put into DeferredTails.
313 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI
<< "\n");
317 AllCallsAreTailCalls
= false;
324 /// Return true if it is safe to move the specified
325 /// instruction from after the call to before the call, assuming that all
326 /// instructions between the call and this instruction are movable.
328 static bool canMoveAboveCall(Instruction
*I
, CallInst
*CI
, AliasAnalysis
*AA
) {
329 // FIXME: We can move load/store/call/free instructions above the call if the
330 // call does not mod/ref the memory location being processed.
331 if (I
->mayHaveSideEffects()) // This also handles volatile loads.
334 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
335 // Loads may always be moved above calls without side effects.
336 if (CI
->mayHaveSideEffects()) {
337 // Non-volatile loads may be moved above a call with side effects if it
338 // does not write to memory and the load provably won't trap.
339 // Writes to memory only matter if they may alias the pointer
340 // being loaded from.
341 const DataLayout
&DL
= L
->getModule()->getDataLayout();
342 if (isModSet(AA
->getModRefInfo(CI
, MemoryLocation::get(L
))) ||
343 !isSafeToLoadUnconditionally(L
->getPointerOperand(), L
->getType(),
344 L
->getAlignment(), DL
, L
))
349 // Otherwise, if this is a side-effect free instruction, check to make sure
350 // that it does not use the return value of the call. If it doesn't use the
351 // return value of the call, it must only use things that are defined before
352 // the call, or movable instructions between the call and the instruction
354 return !is_contained(I
->operands(), CI
);
357 /// Return true if the specified value is the same when the return would exit
358 /// as it was when the initial iteration of the recursive function was executed.
360 /// We currently handle static constants and arguments that are not modified as
361 /// part of the recursion.
362 static bool isDynamicConstant(Value
*V
, CallInst
*CI
, ReturnInst
*RI
) {
363 if (isa
<Constant
>(V
)) return true; // Static constants are always dyn consts
365 // Check to see if this is an immutable argument, if so, the value
366 // will be available to initialize the accumulator.
367 if (Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
368 // Figure out which argument number this is...
370 Function
*F
= CI
->getParent()->getParent();
371 for (Function::arg_iterator AI
= F
->arg_begin(); &*AI
!= Arg
; ++AI
)
374 // If we are passing this argument into call as the corresponding
375 // argument operand, then the argument is dynamically constant.
376 // Otherwise, we cannot transform this function safely.
377 if (CI
->getArgOperand(ArgNo
) == Arg
)
381 // Switch cases are always constant integers. If the value is being switched
382 // on and the return is only reachable from one of its cases, it's
383 // effectively constant.
384 if (BasicBlock
*UniquePred
= RI
->getParent()->getUniquePredecessor())
385 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(UniquePred
->getTerminator()))
386 if (SI
->getCondition() == V
)
387 return SI
->getDefaultDest() != RI
->getParent();
389 // Not a constant or immutable argument, we can't safely transform.
393 /// Check to see if the function containing the specified tail call consistently
394 /// returns the same runtime-constant value at all exit points except for
395 /// IgnoreRI. If so, return the returned value.
396 static Value
*getCommonReturnValue(ReturnInst
*IgnoreRI
, CallInst
*CI
) {
397 Function
*F
= CI
->getParent()->getParent();
398 Value
*ReturnedValue
= nullptr;
400 for (BasicBlock
&BBI
: *F
) {
401 ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
.getTerminator());
402 if (RI
== nullptr || RI
== IgnoreRI
) continue;
404 // We can only perform this transformation if the value returned is
405 // evaluatable at the start of the initial invocation of the function,
406 // instead of at the end of the evaluation.
408 Value
*RetOp
= RI
->getOperand(0);
409 if (!isDynamicConstant(RetOp
, CI
, RI
))
412 if (ReturnedValue
&& RetOp
!= ReturnedValue
)
413 return nullptr; // Cannot transform if differing values are returned.
414 ReturnedValue
= RetOp
;
416 return ReturnedValue
;
419 /// If the specified instruction can be transformed using accumulator recursion
420 /// elimination, return the constant which is the start of the accumulator
421 /// value. Otherwise return null.
422 static Value
*canTransformAccumulatorRecursion(Instruction
*I
, CallInst
*CI
) {
423 if (!I
->isAssociative() || !I
->isCommutative()) return nullptr;
424 assert(I
->getNumOperands() == 2 &&
425 "Associative/commutative operations should have 2 args!");
427 // Exactly one operand should be the result of the call instruction.
428 if ((I
->getOperand(0) == CI
&& I
->getOperand(1) == CI
) ||
429 (I
->getOperand(0) != CI
&& I
->getOperand(1) != CI
))
432 // The only user of this instruction we allow is a single return instruction.
433 if (!I
->hasOneUse() || !isa
<ReturnInst
>(I
->user_back()))
436 // Ok, now we have to check all of the other return instructions in this
437 // function. If they return non-constants or differing values, then we cannot
438 // transform the function safely.
439 return getCommonReturnValue(cast
<ReturnInst
>(I
->user_back()), CI
);
442 static Instruction
*firstNonDbg(BasicBlock::iterator I
) {
443 while (isa
<DbgInfoIntrinsic
>(I
))
448 static CallInst
*findTRECandidate(Instruction
*TI
,
449 bool CannotTailCallElimCallsMarkedTail
,
450 const TargetTransformInfo
*TTI
) {
451 BasicBlock
*BB
= TI
->getParent();
452 Function
*F
= BB
->getParent();
454 if (&BB
->front() == TI
) // Make sure there is something before the terminator.
457 // Scan backwards from the return, checking to see if there is a tail call in
458 // this block. If so, set CI to it.
459 CallInst
*CI
= nullptr;
460 BasicBlock::iterator
BBI(TI
);
462 CI
= dyn_cast
<CallInst
>(BBI
);
463 if (CI
&& CI
->getCalledFunction() == F
)
466 if (BBI
== BB
->begin())
467 return nullptr; // Didn't find a potential tail call.
471 // If this call is marked as a tail call, and if there are dynamic allocas in
472 // the function, we cannot perform this optimization.
473 if (CI
->isTailCall() && CannotTailCallElimCallsMarkedTail
)
476 // As a special case, detect code like this:
477 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
478 // and disable this xform in this case, because the code generator will
479 // lower the call to fabs into inline code.
480 if (BB
== &F
->getEntryBlock() &&
481 firstNonDbg(BB
->front().getIterator()) == CI
&&
482 firstNonDbg(std::next(BB
->begin())) == TI
&& CI
->getCalledFunction() &&
483 !TTI
->isLoweredToCall(CI
->getCalledFunction())) {
484 // A single-block function with just a call and a return. Check that
485 // the arguments match.
486 CallSite::arg_iterator I
= CallSite(CI
).arg_begin(),
487 E
= CallSite(CI
).arg_end();
488 Function::arg_iterator FI
= F
->arg_begin(),
490 for (; I
!= E
&& FI
!= FE
; ++I
, ++FI
)
491 if (*I
!= &*FI
) break;
492 if (I
== E
&& FI
== FE
)
499 static bool eliminateRecursiveTailCall(
500 CallInst
*CI
, ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
501 bool &TailCallsAreMarkedTail
, SmallVectorImpl
<PHINode
*> &ArgumentPHIs
,
502 AliasAnalysis
*AA
, OptimizationRemarkEmitter
*ORE
, DomTreeUpdater
&DTU
) {
503 // If we are introducing accumulator recursion to eliminate operations after
504 // the call instruction that are both associative and commutative, the initial
505 // value for the accumulator is placed in this variable. If this value is set
506 // then we actually perform accumulator recursion elimination instead of
507 // simple tail recursion elimination. If the operation is an LLVM instruction
508 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
509 // we are handling the case when the return instruction returns a constant C
510 // which is different to the constant returned by other return instructions
511 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
512 // special case of accumulator recursion, the operation being "return C".
513 Value
*AccumulatorRecursionEliminationInitVal
= nullptr;
514 Instruction
*AccumulatorRecursionInstr
= nullptr;
516 // Ok, we found a potential tail call. We can currently only transform the
517 // tail call if all of the instructions between the call and the return are
518 // movable to above the call itself, leaving the call next to the return.
519 // Check that this is the case now.
520 BasicBlock::iterator
BBI(CI
);
521 for (++BBI
; &*BBI
!= Ret
; ++BBI
) {
522 if (canMoveAboveCall(&*BBI
, CI
, AA
))
525 // If we can't move the instruction above the call, it might be because it
526 // is an associative and commutative operation that could be transformed
527 // using accumulator recursion elimination. Check to see if this is the
528 // case, and if so, remember the initial accumulator value for later.
529 if ((AccumulatorRecursionEliminationInitVal
=
530 canTransformAccumulatorRecursion(&*BBI
, CI
))) {
531 // Yes, this is accumulator recursion. Remember which instruction
533 AccumulatorRecursionInstr
= &*BBI
;
535 return false; // Otherwise, we cannot eliminate the tail recursion!
539 // We can only transform call/return pairs that either ignore the return value
540 // of the call and return void, ignore the value of the call and return a
541 // constant, return the value returned by the tail call, or that are being
542 // accumulator recursion variable eliminated.
543 if (Ret
->getNumOperands() == 1 && Ret
->getReturnValue() != CI
&&
544 !isa
<UndefValue
>(Ret
->getReturnValue()) &&
545 AccumulatorRecursionEliminationInitVal
== nullptr &&
546 !getCommonReturnValue(nullptr, CI
)) {
547 // One case remains that we are able to handle: the current return
548 // instruction returns a constant, and all other return instructions
549 // return a different constant.
550 if (!isDynamicConstant(Ret
->getReturnValue(), CI
, Ret
))
551 return false; // Current return instruction does not return a constant.
552 // Check that all other return instructions return a common constant. If
553 // so, record it in AccumulatorRecursionEliminationInitVal.
554 AccumulatorRecursionEliminationInitVal
= getCommonReturnValue(Ret
, CI
);
555 if (!AccumulatorRecursionEliminationInitVal
)
559 BasicBlock
*BB
= Ret
->getParent();
560 Function
*F
= BB
->getParent();
564 return OptimizationRemark(DEBUG_TYPE
, "tailcall-recursion", CI
)
565 << "transforming tail recursion into loop";
568 // OK! We can transform this tail call. If this is the first one found,
569 // create the new entry block, allowing us to branch back to the old entry.
571 OldEntry
= &F
->getEntryBlock();
572 BasicBlock
*NewEntry
= BasicBlock::Create(F
->getContext(), "", F
, OldEntry
);
573 NewEntry
->takeName(OldEntry
);
574 OldEntry
->setName("tailrecurse");
575 BranchInst
*BI
= BranchInst::Create(OldEntry
, NewEntry
);
576 BI
->setDebugLoc(CI
->getDebugLoc());
578 // If this tail call is marked 'tail' and if there are any allocas in the
579 // entry block, move them up to the new entry block.
580 TailCallsAreMarkedTail
= CI
->isTailCall();
581 if (TailCallsAreMarkedTail
)
582 // Move all fixed sized allocas from OldEntry to NewEntry.
583 for (BasicBlock::iterator OEBI
= OldEntry
->begin(), E
= OldEntry
->end(),
584 NEBI
= NewEntry
->begin(); OEBI
!= E
; )
585 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(OEBI
++))
586 if (isa
<ConstantInt
>(AI
->getArraySize()))
587 AI
->moveBefore(&*NEBI
);
589 // Now that we have created a new block, which jumps to the entry
590 // block, insert a PHI node for each argument of the function.
591 // For now, we initialize each PHI to only have the real arguments
592 // which are passed in.
593 Instruction
*InsertPos
= &OldEntry
->front();
594 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
596 PHINode
*PN
= PHINode::Create(I
->getType(), 2,
597 I
->getName() + ".tr", InsertPos
);
598 I
->replaceAllUsesWith(PN
); // Everyone use the PHI node now!
599 PN
->addIncoming(&*I
, NewEntry
);
600 ArgumentPHIs
.push_back(PN
);
602 // The entry block was changed from OldEntry to NewEntry.
603 // The forward DominatorTree needs to be recalculated when the EntryBB is
604 // changed. In this corner-case we recalculate the entire tree.
605 DTU
.recalculate(*NewEntry
->getParent());
608 // If this function has self recursive calls in the tail position where some
609 // are marked tail and some are not, only transform one flavor or another. We
610 // have to choose whether we move allocas in the entry block to the new entry
611 // block or not, so we can't make a good choice for both. NOTE: We could do
612 // slightly better here in the case that the function has no entry block
614 if (TailCallsAreMarkedTail
&& !CI
->isTailCall())
617 // Ok, now that we know we have a pseudo-entry block WITH all of the
618 // required PHI nodes, add entries into the PHI node for the actual
619 // parameters passed into the tail-recursive call.
620 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
)
621 ArgumentPHIs
[i
]->addIncoming(CI
->getArgOperand(i
), BB
);
623 // If we are introducing an accumulator variable to eliminate the recursion,
624 // do so now. Note that we _know_ that no subsequent tail recursion
625 // eliminations will happen on this function because of the way the
626 // accumulator recursion predicate is set up.
628 if (AccumulatorRecursionEliminationInitVal
) {
629 Instruction
*AccRecInstr
= AccumulatorRecursionInstr
;
630 // Start by inserting a new PHI node for the accumulator.
631 pred_iterator PB
= pred_begin(OldEntry
), PE
= pred_end(OldEntry
);
632 PHINode
*AccPN
= PHINode::Create(
633 AccumulatorRecursionEliminationInitVal
->getType(),
634 std::distance(PB
, PE
) + 1, "accumulator.tr", &OldEntry
->front());
636 // Loop over all of the predecessors of the tail recursion block. For the
637 // real entry into the function we seed the PHI with the initial value,
638 // computed earlier. For any other existing branches to this block (due to
639 // other tail recursions eliminated) the accumulator is not modified.
640 // Because we haven't added the branch in the current block to OldEntry yet,
641 // it will not show up as a predecessor.
642 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
644 if (P
== &F
->getEntryBlock())
645 AccPN
->addIncoming(AccumulatorRecursionEliminationInitVal
, P
);
647 AccPN
->addIncoming(AccPN
, P
);
651 // Add an incoming argument for the current block, which is computed by
652 // our associative and commutative accumulator instruction.
653 AccPN
->addIncoming(AccRecInstr
, BB
);
655 // Next, rewrite the accumulator recursion instruction so that it does not
656 // use the result of the call anymore, instead, use the PHI node we just
658 AccRecInstr
->setOperand(AccRecInstr
->getOperand(0) != CI
, AccPN
);
660 // Add an incoming argument for the current block, which is just the
661 // constant returned by the current return instruction.
662 AccPN
->addIncoming(Ret
->getReturnValue(), BB
);
665 // Finally, rewrite any return instructions in the program to return the PHI
666 // node instead of the "initval" that they do currently. This loop will
667 // actually rewrite the return value we are destroying, but that's ok.
668 for (BasicBlock
&BBI
: *F
)
669 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
.getTerminator()))
670 RI
->setOperand(0, AccPN
);
674 // Now that all of the PHI nodes are in place, remove the call and
675 // ret instructions, replacing them with an unconditional branch.
676 BranchInst
*NewBI
= BranchInst::Create(OldEntry
, Ret
);
677 NewBI
->setDebugLoc(CI
->getDebugLoc());
679 BB
->getInstList().erase(Ret
); // Remove return.
680 BB
->getInstList().erase(CI
); // Remove call.
681 DTU
.applyUpdates({{DominatorTree::Insert
, BB
, OldEntry
}});
686 static bool foldReturnAndProcessPred(
687 BasicBlock
*BB
, ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
688 bool &TailCallsAreMarkedTail
, SmallVectorImpl
<PHINode
*> &ArgumentPHIs
,
689 bool CannotTailCallElimCallsMarkedTail
, const TargetTransformInfo
*TTI
,
690 AliasAnalysis
*AA
, OptimizationRemarkEmitter
*ORE
, DomTreeUpdater
&DTU
) {
693 // Make sure this block is a trivial return block.
694 assert(BB
->getFirstNonPHIOrDbg() == Ret
&&
695 "Trying to fold non-trivial return block");
697 // If the return block contains nothing but the return and PHI's,
698 // there might be an opportunity to duplicate the return in its
699 // predecessors and perform TRE there. Look for predecessors that end
700 // in unconditional branch and recursive call(s).
701 SmallVector
<BranchInst
*, 8> UncondBranchPreds
;
702 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
703 BasicBlock
*Pred
= *PI
;
704 Instruction
*PTI
= Pred
->getTerminator();
705 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
))
706 if (BI
->isUnconditional())
707 UncondBranchPreds
.push_back(BI
);
710 while (!UncondBranchPreds
.empty()) {
711 BranchInst
*BI
= UncondBranchPreds
.pop_back_val();
712 BasicBlock
*Pred
= BI
->getParent();
713 if (CallInst
*CI
= findTRECandidate(BI
, CannotTailCallElimCallsMarkedTail
, TTI
)){
714 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
715 << "INTO UNCOND BRANCH PRED: " << *Pred
);
716 ReturnInst
*RI
= FoldReturnIntoUncondBranch(Ret
, BB
, Pred
, &DTU
);
718 // Cleanup: if all predecessors of BB have been eliminated by
719 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
720 // because the ret instruction in there is still using a value which
721 // eliminateRecursiveTailCall will attempt to remove.
722 if (!BB
->hasAddressTaken() && pred_begin(BB
) == pred_end(BB
))
725 eliminateRecursiveTailCall(CI
, RI
, OldEntry
, TailCallsAreMarkedTail
,
726 ArgumentPHIs
, AA
, ORE
, DTU
);
735 static bool processReturningBlock(
736 ReturnInst
*Ret
, BasicBlock
*&OldEntry
, bool &TailCallsAreMarkedTail
,
737 SmallVectorImpl
<PHINode
*> &ArgumentPHIs
,
738 bool CannotTailCallElimCallsMarkedTail
, const TargetTransformInfo
*TTI
,
739 AliasAnalysis
*AA
, OptimizationRemarkEmitter
*ORE
, DomTreeUpdater
&DTU
) {
740 CallInst
*CI
= findTRECandidate(Ret
, CannotTailCallElimCallsMarkedTail
, TTI
);
744 return eliminateRecursiveTailCall(CI
, Ret
, OldEntry
, TailCallsAreMarkedTail
,
745 ArgumentPHIs
, AA
, ORE
, DTU
);
748 static bool eliminateTailRecursion(Function
&F
, const TargetTransformInfo
*TTI
,
750 OptimizationRemarkEmitter
*ORE
,
751 DomTreeUpdater
&DTU
) {
752 if (F
.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
755 bool MadeChange
= false;
756 bool AllCallsAreTailCalls
= false;
757 MadeChange
|= markTails(F
, AllCallsAreTailCalls
, ORE
);
758 if (!AllCallsAreTailCalls
)
761 // If this function is a varargs function, we won't be able to PHI the args
762 // right, so don't even try to convert it...
763 if (F
.getFunctionType()->isVarArg())
766 BasicBlock
*OldEntry
= nullptr;
767 bool TailCallsAreMarkedTail
= false;
768 SmallVector
<PHINode
*, 8> ArgumentPHIs
;
770 // If false, we cannot perform TRE on tail calls marked with the 'tail'
771 // attribute, because doing so would cause the stack size to increase (real
772 // TRE would deallocate variable sized allocas, TRE doesn't).
773 bool CanTRETailMarkedCall
= canTRE(F
);
775 // Change any tail recursive calls to loops.
777 // FIXME: The code generator produces really bad code when an 'escaping
778 // alloca' is changed from being a static alloca to being a dynamic alloca.
779 // Until this is resolved, disable this transformation if that would ever
780 // happen. This bug is PR962.
781 for (Function::iterator BBI
= F
.begin(), E
= F
.end(); BBI
!= E
; /*in loop*/) {
782 BasicBlock
*BB
= &*BBI
++; // foldReturnAndProcessPred may delete BB.
783 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
784 bool Change
= processReturningBlock(Ret
, OldEntry
, TailCallsAreMarkedTail
,
785 ArgumentPHIs
, !CanTRETailMarkedCall
,
787 if (!Change
&& BB
->getFirstNonPHIOrDbg() == Ret
)
788 Change
= foldReturnAndProcessPred(
789 BB
, Ret
, OldEntry
, TailCallsAreMarkedTail
, ArgumentPHIs
,
790 !CanTRETailMarkedCall
, TTI
, AA
, ORE
, DTU
);
791 MadeChange
|= Change
;
795 // If we eliminated any tail recursions, it's possible that we inserted some
796 // silly PHI nodes which just merge an initial value (the incoming operand)
797 // with themselves. Check to see if we did and clean up our mess if so. This
798 // occurs when a function passes an argument straight through to its tail
800 for (PHINode
*PN
: ArgumentPHIs
) {
801 // If the PHI Node is a dynamic constant, replace it with the value it is.
802 if (Value
*PNV
= SimplifyInstruction(PN
, F
.getParent()->getDataLayout())) {
803 PN
->replaceAllUsesWith(PNV
);
804 PN
->eraseFromParent();
812 struct TailCallElim
: public FunctionPass
{
813 static char ID
; // Pass identification, replacement for typeid
814 TailCallElim() : FunctionPass(ID
) {
815 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
818 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
819 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
820 AU
.addRequired
<AAResultsWrapperPass
>();
821 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
822 AU
.addPreserved
<GlobalsAAWrapperPass
>();
823 AU
.addPreserved
<DominatorTreeWrapperPass
>();
824 AU
.addPreserved
<PostDominatorTreeWrapperPass
>();
827 bool runOnFunction(Function
&F
) override
{
831 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
832 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
833 auto *PDTWP
= getAnalysisIfAvailable
<PostDominatorTreeWrapperPass
>();
834 auto *PDT
= PDTWP
? &PDTWP
->getPostDomTree() : nullptr;
835 // There is no noticable performance difference here between Lazy and Eager
836 // UpdateStrategy based on some test results. It is feasible to switch the
837 // UpdateStrategy to Lazy if we find it profitable later.
838 DomTreeUpdater
DTU(DT
, PDT
, DomTreeUpdater::UpdateStrategy::Eager
);
840 return eliminateTailRecursion(
841 F
, &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
),
842 &getAnalysis
<AAResultsWrapperPass
>().getAAResults(),
843 &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE(), DTU
);
848 char TailCallElim::ID
= 0;
849 INITIALIZE_PASS_BEGIN(TailCallElim
, "tailcallelim", "Tail Call Elimination",
851 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
852 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
853 INITIALIZE_PASS_END(TailCallElim
, "tailcallelim", "Tail Call Elimination",
856 // Public interface to the TailCallElimination pass
857 FunctionPass
*llvm::createTailCallEliminationPass() {
858 return new TailCallElim();
861 PreservedAnalyses
TailCallElimPass::run(Function
&F
,
862 FunctionAnalysisManager
&AM
) {
864 TargetTransformInfo
&TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
865 AliasAnalysis
&AA
= AM
.getResult
<AAManager
>(F
);
866 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
867 auto *DT
= AM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
868 auto *PDT
= AM
.getCachedResult
<PostDominatorTreeAnalysis
>(F
);
869 // There is no noticable performance difference here between Lazy and Eager
870 // UpdateStrategy based on some test results. It is feasible to switch the
871 // UpdateStrategy to Lazy if we find it profitable later.
872 DomTreeUpdater
DTU(DT
, PDT
, DomTreeUpdater::UpdateStrategy::Eager
);
873 bool Changed
= eliminateTailRecursion(F
, &TTI
, &AA
, &ORE
, DTU
);
876 return PreservedAnalyses::all();
877 PreservedAnalyses PA
;
878 PA
.preserve
<GlobalsAA
>();
879 PA
.preserve
<DominatorTreeAnalysis
>();
880 PA
.preserve
<PostDominatorTreeAnalysis
>();