[Alignment] fix dubious min function alignment
[llvm-complete.git] / utils / TableGen / CodeGenDAGPatterns.h
blob80fc932a7a50250f9c453c277dd807d82d246fb2
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17 #include "CodeGenHwModes.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenTarget.h"
20 #include "SDNodeProperties.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <array>
29 #include <functional>
30 #include <map>
31 #include <numeric>
32 #include <set>
33 #include <vector>
35 namespace llvm {
37 class Record;
38 class Init;
39 class ListInit;
40 class DagInit;
41 class SDNodeInfo;
42 class TreePattern;
43 class TreePatternNode;
44 class CodeGenDAGPatterns;
45 class ComplexPattern;
47 /// Shared pointer for TreePatternNode.
48 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
50 /// This represents a set of MVTs. Since the underlying type for the MVT
51 /// is uint8_t, there are at most 256 values. To reduce the number of memory
52 /// allocations and deallocations, represent the set as a sequence of bits.
53 /// To reduce the allocations even further, make MachineValueTypeSet own
54 /// the storage and use std::array as the bit container.
55 struct MachineValueTypeSet {
56 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
57 uint8_t>::value,
58 "Change uint8_t here to the SimpleValueType's type");
59 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
60 using WordType = uint64_t;
61 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
62 static unsigned constexpr NumWords = Capacity/WordWidth;
63 static_assert(NumWords*WordWidth == Capacity,
64 "Capacity should be a multiple of WordWidth");
66 LLVM_ATTRIBUTE_ALWAYS_INLINE
67 MachineValueTypeSet() {
68 clear();
71 LLVM_ATTRIBUTE_ALWAYS_INLINE
72 unsigned size() const {
73 unsigned Count = 0;
74 for (WordType W : Words)
75 Count += countPopulation(W);
76 return Count;
78 LLVM_ATTRIBUTE_ALWAYS_INLINE
79 void clear() {
80 std::memset(Words.data(), 0, NumWords*sizeof(WordType));
82 LLVM_ATTRIBUTE_ALWAYS_INLINE
83 bool empty() const {
84 for (WordType W : Words)
85 if (W != 0)
86 return false;
87 return true;
89 LLVM_ATTRIBUTE_ALWAYS_INLINE
90 unsigned count(MVT T) const {
91 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
93 std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
94 bool V = count(T.SimpleTy);
95 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
96 return {*this, V};
98 MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
99 for (unsigned i = 0; i != NumWords; ++i)
100 Words[i] |= S.Words[i];
101 return *this;
103 LLVM_ATTRIBUTE_ALWAYS_INLINE
104 void erase(MVT T) {
105 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
108 struct const_iterator {
109 // Some implementations of the C++ library require these traits to be
110 // defined.
111 using iterator_category = std::forward_iterator_tag;
112 using value_type = MVT;
113 using difference_type = ptrdiff_t;
114 using pointer = const MVT*;
115 using reference = const MVT&;
117 LLVM_ATTRIBUTE_ALWAYS_INLINE
118 MVT operator*() const {
119 assert(Pos != Capacity);
120 return MVT::SimpleValueType(Pos);
122 LLVM_ATTRIBUTE_ALWAYS_INLINE
123 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
124 Pos = End ? Capacity : find_from_pos(0);
126 LLVM_ATTRIBUTE_ALWAYS_INLINE
127 const_iterator &operator++() {
128 assert(Pos != Capacity);
129 Pos = find_from_pos(Pos+1);
130 return *this;
133 LLVM_ATTRIBUTE_ALWAYS_INLINE
134 bool operator==(const const_iterator &It) const {
135 return Set == It.Set && Pos == It.Pos;
137 LLVM_ATTRIBUTE_ALWAYS_INLINE
138 bool operator!=(const const_iterator &It) const {
139 return !operator==(It);
142 private:
143 unsigned find_from_pos(unsigned P) const {
144 unsigned SkipWords = P / WordWidth;
145 unsigned SkipBits = P % WordWidth;
146 unsigned Count = SkipWords * WordWidth;
148 // If P is in the middle of a word, process it manually here, because
149 // the trailing bits need to be masked off to use findFirstSet.
150 if (SkipBits != 0) {
151 WordType W = Set->Words[SkipWords];
152 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
153 if (W != 0)
154 return Count + findFirstSet(W);
155 Count += WordWidth;
156 SkipWords++;
159 for (unsigned i = SkipWords; i != NumWords; ++i) {
160 WordType W = Set->Words[i];
161 if (W != 0)
162 return Count + findFirstSet(W);
163 Count += WordWidth;
165 return Capacity;
168 const MachineValueTypeSet *Set;
169 unsigned Pos;
172 LLVM_ATTRIBUTE_ALWAYS_INLINE
173 const_iterator begin() const { return const_iterator(this, false); }
174 LLVM_ATTRIBUTE_ALWAYS_INLINE
175 const_iterator end() const { return const_iterator(this, true); }
177 LLVM_ATTRIBUTE_ALWAYS_INLINE
178 bool operator==(const MachineValueTypeSet &S) const {
179 return Words == S.Words;
181 LLVM_ATTRIBUTE_ALWAYS_INLINE
182 bool operator!=(const MachineValueTypeSet &S) const {
183 return !operator==(S);
186 private:
187 friend struct const_iterator;
188 std::array<WordType,NumWords> Words;
191 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
192 using SetType = MachineValueTypeSet;
193 std::vector<unsigned> AddrSpaces;
195 TypeSetByHwMode() = default;
196 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
197 TypeSetByHwMode(MVT::SimpleValueType VT)
198 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
199 TypeSetByHwMode(ValueTypeByHwMode VT)
200 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
201 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
203 SetType &getOrCreate(unsigned Mode) {
204 if (hasMode(Mode))
205 return get(Mode);
206 return Map.insert({Mode,SetType()}).first->second;
209 bool isValueTypeByHwMode(bool AllowEmpty) const;
210 ValueTypeByHwMode getValueTypeByHwMode() const;
212 LLVM_ATTRIBUTE_ALWAYS_INLINE
213 bool isMachineValueType() const {
214 return isDefaultOnly() && Map.begin()->second.size() == 1;
217 LLVM_ATTRIBUTE_ALWAYS_INLINE
218 MVT getMachineValueType() const {
219 assert(isMachineValueType());
220 return *Map.begin()->second.begin();
223 bool isPossible() const;
225 LLVM_ATTRIBUTE_ALWAYS_INLINE
226 bool isDefaultOnly() const {
227 return Map.size() == 1 && Map.begin()->first == DefaultMode;
230 bool isPointer() const {
231 return getValueTypeByHwMode().isPointer();
234 unsigned getPtrAddrSpace() const {
235 assert(isPointer());
236 return getValueTypeByHwMode().PtrAddrSpace;
239 bool insert(const ValueTypeByHwMode &VVT);
240 bool constrain(const TypeSetByHwMode &VTS);
241 template <typename Predicate> bool constrain(Predicate P);
242 template <typename Predicate>
243 bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
245 void writeToStream(raw_ostream &OS) const;
246 static void writeToStream(const SetType &S, raw_ostream &OS);
248 bool operator==(const TypeSetByHwMode &VTS) const;
249 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
251 void dump() const;
252 bool validate() const;
254 private:
255 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
256 /// Intersect two sets. Return true if anything has changed.
257 bool intersect(SetType &Out, const SetType &In);
260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
262 struct TypeInfer {
263 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
265 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
266 return VTS.isValueTypeByHwMode(AllowEmpty);
268 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
269 bool AllowEmpty) const {
270 assert(VTS.isValueTypeByHwMode(AllowEmpty));
271 return VTS.getValueTypeByHwMode();
274 /// The protocol in the following functions (Merge*, force*, Enforce*,
275 /// expand*) is to return "true" if a change has been made, "false"
276 /// otherwise.
278 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
279 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
280 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
282 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
283 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
286 /// Reduce the set \p Out to have at most one element for each mode.
287 bool forceArbitrary(TypeSetByHwMode &Out);
289 /// The following four functions ensure that upon return the set \p Out
290 /// will only contain types of the specified kind: integer, floating-point,
291 /// scalar, or vector.
292 /// If \p Out is empty, all legal types of the specified kind will be added
293 /// to it. Otherwise, all types that are not of the specified kind will be
294 /// removed from \p Out.
295 bool EnforceInteger(TypeSetByHwMode &Out);
296 bool EnforceFloatingPoint(TypeSetByHwMode &Out);
297 bool EnforceScalar(TypeSetByHwMode &Out);
298 bool EnforceVector(TypeSetByHwMode &Out);
300 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
301 /// unchanged.
302 bool EnforceAny(TypeSetByHwMode &Out);
303 /// Make sure that for each type in \p Small, there exists a larger type
304 /// in \p Big.
305 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
306 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
307 /// for each type U in \p Elem, U is a scalar type.
308 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
309 /// (vector) type T in \p Vec, such that U is the element type of T.
310 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
311 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
312 const ValueTypeByHwMode &VVT);
313 /// Ensure that for each type T in \p Sub, T is a vector type, and there
314 /// exists a type U in \p Vec such that U is a vector type with the same
315 /// element type as T and at least as many elements as T.
316 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
317 TypeSetByHwMode &Sub);
318 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
319 /// 2. Ensure that for each vector type T in \p V, there exists a vector
320 /// type U in \p W, such that T and U have the same number of elements.
321 /// 3. Ensure that for each vector type U in \p W, there exists a vector
322 /// type T in \p V, such that T and U have the same number of elements
323 /// (reverse of 2).
324 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
325 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
326 /// such that T and U have equal size in bits.
327 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
328 /// such that T and U have equal size in bits (reverse of 1).
329 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
331 /// For each overloaded type (i.e. of form *Any), replace it with the
332 /// corresponding subset of legal, specific types.
333 void expandOverloads(TypeSetByHwMode &VTS);
334 void expandOverloads(TypeSetByHwMode::SetType &Out,
335 const TypeSetByHwMode::SetType &Legal);
337 struct ValidateOnExit {
338 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
339 #ifndef NDEBUG
340 ~ValidateOnExit();
341 #else
342 ~ValidateOnExit() {} // Empty destructor with NDEBUG.
343 #endif
344 TypeInfer &Infer;
345 TypeSetByHwMode &VTS;
348 struct SuppressValidation {
349 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
350 Infer.Validate = false;
352 ~SuppressValidation() {
353 Infer.Validate = SavedValidate;
355 TypeInfer &Infer;
356 bool SavedValidate;
359 TreePattern &TP;
360 unsigned ForceMode; // Mode to use when set.
361 bool CodeGen = false; // Set during generation of matcher code.
362 bool Validate = true; // Indicate whether to validate types.
364 private:
365 const TypeSetByHwMode &getLegalTypes();
367 /// Cached legal types (in default mode).
368 bool LegalTypesCached = false;
369 TypeSetByHwMode LegalCache;
372 /// Set type used to track multiply used variables in patterns
373 typedef StringSet<> MultipleUseVarSet;
375 /// SDTypeConstraint - This is a discriminated union of constraints,
376 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
377 struct SDTypeConstraint {
378 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
380 unsigned OperandNo; // The operand # this constraint applies to.
381 enum {
382 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
383 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
384 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
385 } ConstraintType;
387 union { // The discriminated union.
388 struct {
389 unsigned OtherOperandNum;
390 } SDTCisSameAs_Info;
391 struct {
392 unsigned OtherOperandNum;
393 } SDTCisVTSmallerThanOp_Info;
394 struct {
395 unsigned BigOperandNum;
396 } SDTCisOpSmallerThanOp_Info;
397 struct {
398 unsigned OtherOperandNum;
399 } SDTCisEltOfVec_Info;
400 struct {
401 unsigned OtherOperandNum;
402 } SDTCisSubVecOfVec_Info;
403 struct {
404 unsigned OtherOperandNum;
405 } SDTCisSameNumEltsAs_Info;
406 struct {
407 unsigned OtherOperandNum;
408 } SDTCisSameSizeAs_Info;
409 } x;
411 // The VT for SDTCisVT and SDTCVecEltisVT.
412 // Must not be in the union because it has a non-trivial destructor.
413 ValueTypeByHwMode VVT;
415 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
416 /// constraint to the nodes operands. This returns true if it makes a
417 /// change, false otherwise. If a type contradiction is found, an error
418 /// is flagged.
419 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
420 TreePattern &TP) const;
423 /// ScopedName - A name of a node associated with a "scope" that indicates
424 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
425 /// used. This enables substitution of pattern fragments while keeping track
426 /// of what name(s) were originally given to various nodes in the tree.
427 class ScopedName {
428 unsigned Scope;
429 std::string Identifier;
430 public:
431 ScopedName(unsigned Scope, StringRef Identifier)
432 : Scope(Scope), Identifier(Identifier) {
433 assert(Scope != 0 &&
434 "Scope == 0 is used to indicate predicates without arguments");
437 unsigned getScope() const { return Scope; }
438 const std::string &getIdentifier() const { return Identifier; }
440 std::string getFullName() const;
442 bool operator==(const ScopedName &o) const;
443 bool operator!=(const ScopedName &o) const;
446 /// SDNodeInfo - One of these records is created for each SDNode instance in
447 /// the target .td file. This represents the various dag nodes we will be
448 /// processing.
449 class SDNodeInfo {
450 Record *Def;
451 StringRef EnumName;
452 StringRef SDClassName;
453 unsigned Properties;
454 unsigned NumResults;
455 int NumOperands;
456 std::vector<SDTypeConstraint> TypeConstraints;
457 public:
458 // Parse the specified record.
459 SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
461 unsigned getNumResults() const { return NumResults; }
463 /// getNumOperands - This is the number of operands required or -1 if
464 /// variadic.
465 int getNumOperands() const { return NumOperands; }
466 Record *getRecord() const { return Def; }
467 StringRef getEnumName() const { return EnumName; }
468 StringRef getSDClassName() const { return SDClassName; }
470 const std::vector<SDTypeConstraint> &getTypeConstraints() const {
471 return TypeConstraints;
474 /// getKnownType - If the type constraints on this node imply a fixed type
475 /// (e.g. all stores return void, etc), then return it as an
476 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
477 MVT::SimpleValueType getKnownType(unsigned ResNo) const;
479 /// hasProperty - Return true if this node has the specified property.
481 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
483 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
484 /// constraints for this node to the operands of the node. This returns
485 /// true if it makes a change, false otherwise. If a type contradiction is
486 /// found, an error is flagged.
487 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
490 /// TreePredicateFn - This is an abstraction that represents the predicates on
491 /// a PatFrag node. This is a simple one-word wrapper around a pointer to
492 /// provide nice accessors.
493 class TreePredicateFn {
494 /// PatFragRec - This is the TreePattern for the PatFrag that we
495 /// originally came from.
496 TreePattern *PatFragRec;
497 public:
498 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
499 TreePredicateFn(TreePattern *N);
502 TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
504 /// isAlwaysTrue - Return true if this is a noop predicate.
505 bool isAlwaysTrue() const;
507 bool isImmediatePattern() const { return hasImmCode(); }
509 /// getImmediatePredicateCode - Return the code that evaluates this pattern if
510 /// this is an immediate predicate. It is an error to call this on a
511 /// non-immediate pattern.
512 std::string getImmediatePredicateCode() const {
513 std::string Result = getImmCode();
514 assert(!Result.empty() && "Isn't an immediate pattern!");
515 return Result;
518 bool operator==(const TreePredicateFn &RHS) const {
519 return PatFragRec == RHS.PatFragRec;
522 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
524 /// Return the name to use in the generated code to reference this, this is
525 /// "Predicate_foo" if from a pattern fragment "foo".
526 std::string getFnName() const;
528 /// getCodeToRunOnSDNode - Return the code for the function body that
529 /// evaluates this predicate. The argument is expected to be in "Node",
530 /// not N. This handles casting and conversion to a concrete node type as
531 /// appropriate.
532 std::string getCodeToRunOnSDNode() const;
534 /// Get the data type of the argument to getImmediatePredicateCode().
535 StringRef getImmType() const;
537 /// Get a string that describes the type returned by getImmType() but is
538 /// usable as part of an identifier.
539 StringRef getImmTypeIdentifier() const;
541 // Predicate code uses the PatFrag's captured operands.
542 bool usesOperands() const;
544 // Is the desired predefined predicate for a load?
545 bool isLoad() const;
546 // Is the desired predefined predicate for a store?
547 bool isStore() const;
548 // Is the desired predefined predicate for an atomic?
549 bool isAtomic() const;
551 /// Is this predicate the predefined unindexed load predicate?
552 /// Is this predicate the predefined unindexed store predicate?
553 bool isUnindexed() const;
554 /// Is this predicate the predefined non-extending load predicate?
555 bool isNonExtLoad() const;
556 /// Is this predicate the predefined any-extend load predicate?
557 bool isAnyExtLoad() const;
558 /// Is this predicate the predefined sign-extend load predicate?
559 bool isSignExtLoad() const;
560 /// Is this predicate the predefined zero-extend load predicate?
561 bool isZeroExtLoad() const;
562 /// Is this predicate the predefined non-truncating store predicate?
563 bool isNonTruncStore() const;
564 /// Is this predicate the predefined truncating store predicate?
565 bool isTruncStore() const;
567 /// Is this predicate the predefined monotonic atomic predicate?
568 bool isAtomicOrderingMonotonic() const;
569 /// Is this predicate the predefined acquire atomic predicate?
570 bool isAtomicOrderingAcquire() const;
571 /// Is this predicate the predefined release atomic predicate?
572 bool isAtomicOrderingRelease() const;
573 /// Is this predicate the predefined acquire-release atomic predicate?
574 bool isAtomicOrderingAcquireRelease() const;
575 /// Is this predicate the predefined sequentially consistent atomic predicate?
576 bool isAtomicOrderingSequentiallyConsistent() const;
578 /// Is this predicate the predefined acquire-or-stronger atomic predicate?
579 bool isAtomicOrderingAcquireOrStronger() const;
580 /// Is this predicate the predefined weaker-than-acquire atomic predicate?
581 bool isAtomicOrderingWeakerThanAcquire() const;
583 /// Is this predicate the predefined release-or-stronger atomic predicate?
584 bool isAtomicOrderingReleaseOrStronger() const;
585 /// Is this predicate the predefined weaker-than-release atomic predicate?
586 bool isAtomicOrderingWeakerThanRelease() const;
588 /// If non-null, indicates that this predicate is a predefined memory VT
589 /// predicate for a load/store and returns the ValueType record for the memory VT.
590 Record *getMemoryVT() const;
591 /// If non-null, indicates that this predicate is a predefined memory VT
592 /// predicate (checking only the scalar type) for load/store and returns the
593 /// ValueType record for the memory VT.
594 Record *getScalarMemoryVT() const;
596 ListInit *getAddressSpaces() const;
597 int64_t getMinAlignment() const;
599 // If true, indicates that GlobalISel-based C++ code was supplied.
600 bool hasGISelPredicateCode() const;
601 std::string getGISelPredicateCode() const;
603 private:
604 bool hasPredCode() const;
605 bool hasImmCode() const;
606 std::string getPredCode() const;
607 std::string getImmCode() const;
608 bool immCodeUsesAPInt() const;
609 bool immCodeUsesAPFloat() const;
611 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
614 struct TreePredicateCall {
615 TreePredicateFn Fn;
617 // Scope -- unique identifier for retrieving named arguments. 0 is used when
618 // the predicate does not use named arguments.
619 unsigned Scope;
621 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
622 : Fn(Fn), Scope(Scope) {}
624 bool operator==(const TreePredicateCall &o) const {
625 return Fn == o.Fn && Scope == o.Scope;
627 bool operator!=(const TreePredicateCall &o) const {
628 return !(*this == o);
632 class TreePatternNode {
633 /// The type of each node result. Before and during type inference, each
634 /// result may be a set of possible types. After (successful) type inference,
635 /// each is a single concrete type.
636 std::vector<TypeSetByHwMode> Types;
638 /// The index of each result in results of the pattern.
639 std::vector<unsigned> ResultPerm;
641 /// Operator - The Record for the operator if this is an interior node (not
642 /// a leaf).
643 Record *Operator;
645 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
647 Init *Val;
649 /// Name - The name given to this node with the :$foo notation.
651 std::string Name;
653 std::vector<ScopedName> NamesAsPredicateArg;
655 /// PredicateCalls - The predicate functions to execute on this node to check
656 /// for a match. If this list is empty, no predicate is involved.
657 std::vector<TreePredicateCall> PredicateCalls;
659 /// TransformFn - The transformation function to execute on this node before
660 /// it can be substituted into the resulting instruction on a pattern match.
661 Record *TransformFn;
663 std::vector<TreePatternNodePtr> Children;
665 public:
666 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
667 unsigned NumResults)
668 : Operator(Op), Val(nullptr), TransformFn(nullptr),
669 Children(std::move(Ch)) {
670 Types.resize(NumResults);
671 ResultPerm.resize(NumResults);
672 std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
674 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
675 : Operator(nullptr), Val(val), TransformFn(nullptr) {
676 Types.resize(NumResults);
677 ResultPerm.resize(NumResults);
678 std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
681 bool hasName() const { return !Name.empty(); }
682 const std::string &getName() const { return Name; }
683 void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
685 const std::vector<ScopedName> &getNamesAsPredicateArg() const {
686 return NamesAsPredicateArg;
688 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
689 NamesAsPredicateArg = Names;
691 void addNameAsPredicateArg(const ScopedName &N) {
692 NamesAsPredicateArg.push_back(N);
695 bool isLeaf() const { return Val != nullptr; }
697 // Type accessors.
698 unsigned getNumTypes() const { return Types.size(); }
699 ValueTypeByHwMode getType(unsigned ResNo) const {
700 return Types[ResNo].getValueTypeByHwMode();
702 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
703 const TypeSetByHwMode &getExtType(unsigned ResNo) const {
704 return Types[ResNo];
706 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
707 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
708 MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
709 return Types[ResNo].getMachineValueType().SimpleTy;
712 bool hasConcreteType(unsigned ResNo) const {
713 return Types[ResNo].isValueTypeByHwMode(false);
715 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
716 return Types[ResNo].empty();
719 unsigned getNumResults() const { return ResultPerm.size(); }
720 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
721 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
723 Init *getLeafValue() const { assert(isLeaf()); return Val; }
724 Record *getOperator() const { assert(!isLeaf()); return Operator; }
726 unsigned getNumChildren() const { return Children.size(); }
727 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
728 const TreePatternNodePtr &getChildShared(unsigned N) const {
729 return Children[N];
731 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
733 /// hasChild - Return true if N is any of our children.
734 bool hasChild(const TreePatternNode *N) const {
735 for (unsigned i = 0, e = Children.size(); i != e; ++i)
736 if (Children[i].get() == N)
737 return true;
738 return false;
741 bool hasProperTypeByHwMode() const;
742 bool hasPossibleType() const;
743 bool setDefaultMode(unsigned Mode);
745 bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
747 const std::vector<TreePredicateCall> &getPredicateCalls() const {
748 return PredicateCalls;
750 void clearPredicateCalls() { PredicateCalls.clear(); }
751 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
752 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
753 PredicateCalls = Calls;
755 void addPredicateCall(const TreePredicateCall &Call) {
756 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
757 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
758 PredicateCalls.push_back(Call);
760 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
761 assert((Scope != 0) == Fn.usesOperands());
762 addPredicateCall(TreePredicateCall(Fn, Scope));
765 Record *getTransformFn() const { return TransformFn; }
766 void setTransformFn(Record *Fn) { TransformFn = Fn; }
768 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
769 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
770 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
772 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
773 /// return the ComplexPattern information, otherwise return null.
774 const ComplexPattern *
775 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
777 /// Returns the number of MachineInstr operands that would be produced by this
778 /// node if it mapped directly to an output Instruction's
779 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
780 /// for Operands; otherwise 1.
781 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
783 /// NodeHasProperty - Return true if this node has the specified property.
784 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
786 /// TreeHasProperty - Return true if any node in this tree has the specified
787 /// property.
788 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
790 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
791 /// marked isCommutative.
792 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
794 void print(raw_ostream &OS) const;
795 void dump() const;
797 public: // Higher level manipulation routines.
799 /// clone - Return a new copy of this tree.
801 TreePatternNodePtr clone() const;
803 /// RemoveAllTypes - Recursively strip all the types of this tree.
804 void RemoveAllTypes();
806 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
807 /// the specified node. For this comparison, all of the state of the node
808 /// is considered, except for the assigned name. Nodes with differing names
809 /// that are otherwise identical are considered isomorphic.
810 bool isIsomorphicTo(const TreePatternNode *N,
811 const MultipleUseVarSet &DepVars) const;
813 /// SubstituteFormalArguments - Replace the formal arguments in this tree
814 /// with actual values specified by ArgMap.
815 void
816 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
818 /// InlinePatternFragments - If this pattern refers to any pattern
819 /// fragments, return the set of inlined versions (this can be more than
820 /// one if a PatFrags record has multiple alternatives).
821 void InlinePatternFragments(TreePatternNodePtr T,
822 TreePattern &TP,
823 std::vector<TreePatternNodePtr> &OutAlternatives);
825 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
826 /// this node and its children in the tree. This returns true if it makes a
827 /// change, false otherwise. If a type contradiction is found, flag an error.
828 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
830 /// UpdateNodeType - Set the node type of N to VT if VT contains
831 /// information. If N already contains a conflicting type, then flag an
832 /// error. This returns true if any information was updated.
834 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
835 TreePattern &TP);
836 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
837 TreePattern &TP);
838 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
839 TreePattern &TP);
841 // Update node type with types inferred from an instruction operand or result
842 // def from the ins/outs lists.
843 // Return true if the type changed.
844 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
846 /// ContainsUnresolvedType - Return true if this tree contains any
847 /// unresolved types.
848 bool ContainsUnresolvedType(TreePattern &TP) const;
850 /// canPatternMatch - If it is impossible for this pattern to match on this
851 /// target, fill in Reason and return false. Otherwise, return true.
852 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
855 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
856 TPN.print(OS);
857 return OS;
861 /// TreePattern - Represent a pattern, used for instructions, pattern
862 /// fragments, etc.
864 class TreePattern {
865 /// Trees - The list of pattern trees which corresponds to this pattern.
866 /// Note that PatFrag's only have a single tree.
868 std::vector<TreePatternNodePtr> Trees;
870 /// NamedNodes - This is all of the nodes that have names in the trees in this
871 /// pattern.
872 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
874 /// TheRecord - The actual TableGen record corresponding to this pattern.
876 Record *TheRecord;
878 /// Args - This is a list of all of the arguments to this pattern (for
879 /// PatFrag patterns), which are the 'node' markers in this pattern.
880 std::vector<std::string> Args;
882 /// CDP - the top-level object coordinating this madness.
884 CodeGenDAGPatterns &CDP;
886 /// isInputPattern - True if this is an input pattern, something to match.
887 /// False if this is an output pattern, something to emit.
888 bool isInputPattern;
890 /// hasError - True if the currently processed nodes have unresolvable types
891 /// or other non-fatal errors
892 bool HasError;
894 /// It's important that the usage of operands in ComplexPatterns is
895 /// consistent: each named operand can be defined by at most one
896 /// ComplexPattern. This records the ComplexPattern instance and the operand
897 /// number for each operand encountered in a ComplexPattern to aid in that
898 /// check.
899 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
901 TypeInfer Infer;
903 public:
905 /// TreePattern constructor - Parse the specified DagInits into the
906 /// current record.
907 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
908 CodeGenDAGPatterns &ise);
909 TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
910 CodeGenDAGPatterns &ise);
911 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
912 CodeGenDAGPatterns &ise);
914 /// getTrees - Return the tree patterns which corresponds to this pattern.
916 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
917 unsigned getNumTrees() const { return Trees.size(); }
918 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
919 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
920 const TreePatternNodePtr &getOnlyTree() const {
921 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
922 return Trees[0];
925 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
926 if (NamedNodes.empty())
927 ComputeNamedNodes();
928 return NamedNodes;
931 /// getRecord - Return the actual TableGen record corresponding to this
932 /// pattern.
934 Record *getRecord() const { return TheRecord; }
936 unsigned getNumArgs() const { return Args.size(); }
937 const std::string &getArgName(unsigned i) const {
938 assert(i < Args.size() && "Argument reference out of range!");
939 return Args[i];
941 std::vector<std::string> &getArgList() { return Args; }
943 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
945 /// InlinePatternFragments - If this pattern refers to any pattern
946 /// fragments, inline them into place, giving us a pattern without any
947 /// PatFrags references. This may increase the number of trees in the
948 /// pattern if a PatFrags has multiple alternatives.
949 void InlinePatternFragments() {
950 std::vector<TreePatternNodePtr> Copy = Trees;
951 Trees.clear();
952 for (unsigned i = 0, e = Copy.size(); i != e; ++i)
953 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
956 /// InferAllTypes - Infer/propagate as many types throughout the expression
957 /// patterns as possible. Return true if all types are inferred, false
958 /// otherwise. Bail out if a type contradiction is found.
959 bool InferAllTypes(
960 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
962 /// error - If this is the first error in the current resolution step,
963 /// print it and set the error flag. Otherwise, continue silently.
964 void error(const Twine &Msg);
965 bool hasError() const {
966 return HasError;
968 void resetError() {
969 HasError = false;
972 TypeInfer &getInfer() { return Infer; }
974 void print(raw_ostream &OS) const;
975 void dump() const;
977 private:
978 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
979 void ComputeNamedNodes();
980 void ComputeNamedNodes(TreePatternNode *N);
984 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
985 const TypeSetByHwMode &InTy,
986 TreePattern &TP) {
987 TypeSetByHwMode VTS(InTy);
988 TP.getInfer().expandOverloads(VTS);
989 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
992 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
993 MVT::SimpleValueType InTy,
994 TreePattern &TP) {
995 TypeSetByHwMode VTS(InTy);
996 TP.getInfer().expandOverloads(VTS);
997 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1000 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
1001 ValueTypeByHwMode InTy,
1002 TreePattern &TP) {
1003 TypeSetByHwMode VTS(InTy);
1004 TP.getInfer().expandOverloads(VTS);
1005 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1009 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1010 /// that has a set ExecuteAlways / DefaultOps field.
1011 struct DAGDefaultOperand {
1012 std::vector<TreePatternNodePtr> DefaultOps;
1015 class DAGInstruction {
1016 std::vector<Record*> Results;
1017 std::vector<Record*> Operands;
1018 std::vector<Record*> ImpResults;
1019 TreePatternNodePtr SrcPattern;
1020 TreePatternNodePtr ResultPattern;
1022 public:
1023 DAGInstruction(const std::vector<Record*> &results,
1024 const std::vector<Record*> &operands,
1025 const std::vector<Record*> &impresults,
1026 TreePatternNodePtr srcpattern = nullptr,
1027 TreePatternNodePtr resultpattern = nullptr)
1028 : Results(results), Operands(operands), ImpResults(impresults),
1029 SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1031 unsigned getNumResults() const { return Results.size(); }
1032 unsigned getNumOperands() const { return Operands.size(); }
1033 unsigned getNumImpResults() const { return ImpResults.size(); }
1034 const std::vector<Record*>& getImpResults() const { return ImpResults; }
1036 Record *getResult(unsigned RN) const {
1037 assert(RN < Results.size());
1038 return Results[RN];
1041 Record *getOperand(unsigned ON) const {
1042 assert(ON < Operands.size());
1043 return Operands[ON];
1046 Record *getImpResult(unsigned RN) const {
1047 assert(RN < ImpResults.size());
1048 return ImpResults[RN];
1051 TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1052 TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1055 /// This class represents a condition that has to be satisfied for a pattern
1056 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
1057 /// in addition to the Target.td's predicates, this class can also represent
1058 /// conditions associated with HW modes. Both types will eventually become
1059 /// strings containing C++ code to be executed, the difference is in how
1060 /// these strings are generated.
1061 class Predicate {
1062 public:
1063 Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
1064 assert(R->isSubClassOf("Predicate") &&
1065 "Predicate objects should only be created for records derived"
1066 "from Predicate class");
1068 Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
1069 IfCond(C), IsHwMode(true) {}
1071 /// Return a string which contains the C++ condition code that will serve
1072 /// as a predicate during instruction selection.
1073 std::string getCondString() const {
1074 // The string will excute in a subclass of SelectionDAGISel.
1075 // Cast to std::string explicitly to avoid ambiguity with StringRef.
1076 std::string C = IsHwMode
1077 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
1078 : std::string(Def->getValueAsString("CondString"));
1079 if (C.empty())
1080 return "";
1081 return IfCond ? C : "!("+C+')';
1084 bool operator==(const Predicate &P) const {
1085 return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
1087 bool operator<(const Predicate &P) const {
1088 if (IsHwMode != P.IsHwMode)
1089 return IsHwMode < P.IsHwMode;
1090 assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
1091 if (IfCond != P.IfCond)
1092 return IfCond < P.IfCond;
1093 if (Def)
1094 return LessRecord()(Def, P.Def);
1095 return Features < P.Features;
1097 Record *Def; ///< Predicate definition from .td file, null for
1098 ///< HW modes.
1099 std::string Features; ///< Feature string for HW mode.
1100 bool IfCond; ///< The boolean value that the condition has to
1101 ///< evaluate to for this predicate to be true.
1102 bool IsHwMode; ///< Does this predicate correspond to a HW mode?
1105 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1106 /// processed to produce isel.
1107 class PatternToMatch {
1108 public:
1109 PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
1110 TreePatternNodePtr src, TreePatternNodePtr dst,
1111 std::vector<Record *> dstregs, int complexity,
1112 unsigned uid, unsigned setmode = 0)
1113 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
1114 Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
1115 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
1117 Record *SrcRecord; // Originating Record for the pattern.
1118 TreePatternNodePtr SrcPattern; // Source pattern to match.
1119 TreePatternNodePtr DstPattern; // Resulting pattern.
1120 std::vector<Predicate> Predicates; // Top level predicate conditions
1121 // to match.
1122 std::vector<Record*> Dstregs; // Physical register defs being matched.
1123 int AddedComplexity; // Add to matching pattern complexity.
1124 unsigned ID; // Unique ID for the record.
1125 unsigned ForceMode; // Force this mode in type inference when set.
1127 Record *getSrcRecord() const { return SrcRecord; }
1128 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
1129 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1130 TreePatternNode *getDstPattern() const { return DstPattern.get(); }
1131 TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1132 const std::vector<Record*> &getDstRegs() const { return Dstregs; }
1133 int getAddedComplexity() const { return AddedComplexity; }
1134 const std::vector<Predicate> &getPredicates() const { return Predicates; }
1136 std::string getPredicateCheck() const;
1138 /// Compute the complexity metric for the input pattern. This roughly
1139 /// corresponds to the number of nodes that are covered.
1140 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1143 class CodeGenDAGPatterns {
1144 RecordKeeper &Records;
1145 CodeGenTarget Target;
1146 CodeGenIntrinsicTable Intrinsics;
1147 CodeGenIntrinsicTable TgtIntrinsics;
1149 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1150 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1151 SDNodeXForms;
1152 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1153 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1154 PatternFragments;
1155 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1156 std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1158 // Specific SDNode definitions:
1159 Record *intrinsic_void_sdnode;
1160 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1162 /// PatternsToMatch - All of the things we are matching on the DAG. The first
1163 /// value is the pattern to match, the second pattern is the result to
1164 /// emit.
1165 std::vector<PatternToMatch> PatternsToMatch;
1167 TypeSetByHwMode LegalVTS;
1169 using PatternRewriterFn = std::function<void (TreePattern *)>;
1170 PatternRewriterFn PatternRewriter;
1172 unsigned NumScopes = 0;
1174 public:
1175 CodeGenDAGPatterns(RecordKeeper &R,
1176 PatternRewriterFn PatternRewriter = nullptr);
1178 CodeGenTarget &getTargetInfo() { return Target; }
1179 const CodeGenTarget &getTargetInfo() const { return Target; }
1180 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1182 Record *getSDNodeNamed(const std::string &Name) const;
1184 const SDNodeInfo &getSDNodeInfo(Record *R) const {
1185 auto F = SDNodes.find(R);
1186 assert(F != SDNodes.end() && "Unknown node!");
1187 return F->second;
1190 // Node transformation lookups.
1191 typedef std::pair<Record*, std::string> NodeXForm;
1192 const NodeXForm &getSDNodeTransform(Record *R) const {
1193 auto F = SDNodeXForms.find(R);
1194 assert(F != SDNodeXForms.end() && "Invalid transform!");
1195 return F->second;
1198 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
1199 nx_iterator;
1200 nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
1201 nx_iterator nx_end() const { return SDNodeXForms.end(); }
1204 const ComplexPattern &getComplexPattern(Record *R) const {
1205 auto F = ComplexPatterns.find(R);
1206 assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1207 return F->second;
1210 const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1211 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1212 if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1213 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1214 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
1215 llvm_unreachable("Unknown intrinsic!");
1218 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1219 if (IID-1 < Intrinsics.size())
1220 return Intrinsics[IID-1];
1221 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
1222 return TgtIntrinsics[IID-Intrinsics.size()-1];
1223 llvm_unreachable("Bad intrinsic ID!");
1226 unsigned getIntrinsicID(Record *R) const {
1227 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1228 if (Intrinsics[i].TheDef == R) return i;
1229 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1230 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
1231 llvm_unreachable("Unknown intrinsic!");
1234 const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1235 auto F = DefaultOperands.find(R);
1236 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1237 return F->second;
1240 // Pattern Fragment information.
1241 TreePattern *getPatternFragment(Record *R) const {
1242 auto F = PatternFragments.find(R);
1243 assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1244 return F->second.get();
1246 TreePattern *getPatternFragmentIfRead(Record *R) const {
1247 auto F = PatternFragments.find(R);
1248 if (F == PatternFragments.end())
1249 return nullptr;
1250 return F->second.get();
1253 typedef std::map<Record *, std::unique_ptr<TreePattern>,
1254 LessRecordByID>::const_iterator pf_iterator;
1255 pf_iterator pf_begin() const { return PatternFragments.begin(); }
1256 pf_iterator pf_end() const { return PatternFragments.end(); }
1257 iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1259 // Patterns to match information.
1260 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1261 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1262 ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1263 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1265 /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1266 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1267 void parseInstructionPattern(
1268 CodeGenInstruction &CGI, ListInit *Pattern,
1269 DAGInstMap &DAGInsts);
1271 const DAGInstruction &getInstruction(Record *R) const {
1272 auto F = Instructions.find(R);
1273 assert(F != Instructions.end() && "Unknown instruction!");
1274 return F->second;
1277 Record *get_intrinsic_void_sdnode() const {
1278 return intrinsic_void_sdnode;
1280 Record *get_intrinsic_w_chain_sdnode() const {
1281 return intrinsic_w_chain_sdnode;
1283 Record *get_intrinsic_wo_chain_sdnode() const {
1284 return intrinsic_wo_chain_sdnode;
1287 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
1289 unsigned allocateScope() { return ++NumScopes; }
1291 bool operandHasDefault(Record *Op) const {
1292 return Op->isSubClassOf("OperandWithDefaultOps") &&
1293 !getDefaultOperand(Op).DefaultOps.empty();
1296 private:
1297 void ParseNodeInfo();
1298 void ParseNodeTransforms();
1299 void ParseComplexPatterns();
1300 void ParsePatternFragments(bool OutFrags = false);
1301 void ParseDefaultOperands();
1302 void ParseInstructions();
1303 void ParsePatterns();
1304 void ExpandHwModeBasedTypes();
1305 void InferInstructionFlags();
1306 void GenerateVariants();
1307 void VerifyInstructionFlags();
1309 std::vector<Predicate> makePredList(ListInit *L);
1311 void ParseOnePattern(Record *TheDef,
1312 TreePattern &Pattern, TreePattern &Result,
1313 const std::vector<Record *> &InstImpResults);
1314 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1315 void FindPatternInputsAndOutputs(
1316 TreePattern &I, TreePatternNodePtr Pat,
1317 std::map<std::string, TreePatternNodePtr> &InstInputs,
1318 MapVector<std::string, TreePatternNodePtr,
1319 std::map<std::string, unsigned>> &InstResults,
1320 std::vector<Record *> &InstImpResults);
1324 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1325 TreePattern &TP) const {
1326 bool MadeChange = false;
1327 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1328 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1329 return MadeChange;
1332 } // end namespace llvm
1334 #endif