[Alignment] fix dubious min function alignment
[llvm-complete.git] / utils / TableGen / CodeGenRegisters.h
blob6fb3c3abc1aa9a920a56e9a763795f8268113cb7
1 //===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
17 #include "InfoByHwMode.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SparseBitVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MachineValueType.h"
31 #include "llvm/TableGen/Record.h"
32 #include "llvm/TableGen/SetTheory.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <deque>
36 #include <list>
37 #include <map>
38 #include <string>
39 #include <utility>
40 #include <vector>
42 namespace llvm {
44 class CodeGenRegBank;
45 template <typename T, typename Vector, typename Set> class SetVector;
47 /// Used to encode a step in a register lane mask transformation.
48 /// Mask the bits specified in Mask, then rotate them Rol bits to the left
49 /// assuming a wraparound at 32bits.
50 struct MaskRolPair {
51 LaneBitmask Mask;
52 uint8_t RotateLeft;
54 bool operator==(const MaskRolPair Other) const {
55 return Mask == Other.Mask && RotateLeft == Other.RotateLeft;
57 bool operator!=(const MaskRolPair Other) const {
58 return Mask != Other.Mask || RotateLeft != Other.RotateLeft;
62 /// CodeGenSubRegIndex - Represents a sub-register index.
63 class CodeGenSubRegIndex {
64 Record *const TheDef;
65 std::string Name;
66 std::string Namespace;
68 public:
69 uint16_t Size;
70 uint16_t Offset;
71 const unsigned EnumValue;
72 mutable LaneBitmask LaneMask;
73 mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform;
75 /// A list of subregister indexes concatenated resulting in this
76 /// subregister index. This is the reverse of CodeGenRegBank::ConcatIdx.
77 SmallVector<CodeGenSubRegIndex*,4> ConcatenationOf;
79 // Are all super-registers containing this SubRegIndex covered by their
80 // sub-registers?
81 bool AllSuperRegsCovered;
82 // A subregister index is "artificial" if every subregister obtained
83 // from applying this index is artificial. Artificial subregister
84 // indexes are not used to create new register classes.
85 bool Artificial;
87 CodeGenSubRegIndex(Record *R, unsigned Enum);
88 CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum);
90 const std::string &getName() const { return Name; }
91 const std::string &getNamespace() const { return Namespace; }
92 std::string getQualifiedName() const;
94 // Map of composite subreg indices.
95 typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *,
96 deref<std::less<>>>
97 CompMap;
99 // Returns the subreg index that results from composing this with Idx.
100 // Returns NULL if this and Idx don't compose.
101 CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const {
102 CompMap::const_iterator I = Composed.find(Idx);
103 return I == Composed.end() ? nullptr : I->second;
106 // Add a composite subreg index: this+A = B.
107 // Return a conflicting composite, or NULL
108 CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A,
109 CodeGenSubRegIndex *B) {
110 assert(A && B);
111 std::pair<CompMap::iterator, bool> Ins =
112 Composed.insert(std::make_pair(A, B));
113 // Synthetic subreg indices that aren't contiguous (for instance ARM
114 // register tuples) don't have a bit range, so it's OK to let
115 // B->Offset == -1. For the other cases, accumulate the offset and set
116 // the size here. Only do so if there is no offset yet though.
117 if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) &&
118 (B->Offset == (uint16_t)-1)) {
119 B->Offset = Offset + A->Offset;
120 B->Size = A->Size;
122 return (Ins.second || Ins.first->second == B) ? nullptr
123 : Ins.first->second;
126 // Update the composite maps of components specified in 'ComposedOf'.
127 void updateComponents(CodeGenRegBank&);
129 // Return the map of composites.
130 const CompMap &getComposites() const { return Composed; }
132 // Compute LaneMask from Composed. Return LaneMask.
133 LaneBitmask computeLaneMask() const;
135 void setConcatenationOf(ArrayRef<CodeGenSubRegIndex*> Parts);
137 /// Replaces subregister indexes in the `ConcatenationOf` list with
138 /// list of subregisters they are composed of (if any). Do this recursively.
139 void computeConcatTransitiveClosure();
141 bool operator<(const CodeGenSubRegIndex &RHS) const {
142 return this->EnumValue < RHS.EnumValue;
145 private:
146 CompMap Composed;
149 /// CodeGenRegister - Represents a register definition.
150 struct CodeGenRegister {
151 Record *TheDef;
152 unsigned EnumValue;
153 unsigned CostPerUse;
154 bool CoveredBySubRegs;
155 bool HasDisjunctSubRegs;
156 bool Artificial;
158 // Map SubRegIndex -> Register.
159 typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *,
160 deref<std::less<>>>
161 SubRegMap;
163 CodeGenRegister(Record *R, unsigned Enum);
165 const StringRef getName() const;
167 // Extract more information from TheDef. This is used to build an object
168 // graph after all CodeGenRegister objects have been created.
169 void buildObjectGraph(CodeGenRegBank&);
171 // Lazily compute a map of all sub-registers.
172 // This includes unique entries for all sub-sub-registers.
173 const SubRegMap &computeSubRegs(CodeGenRegBank&);
175 // Compute extra sub-registers by combining the existing sub-registers.
176 void computeSecondarySubRegs(CodeGenRegBank&);
178 // Add this as a super-register to all sub-registers after the sub-register
179 // graph has been built.
180 void computeSuperRegs(CodeGenRegBank&);
182 const SubRegMap &getSubRegs() const {
183 assert(SubRegsComplete && "Must precompute sub-registers");
184 return SubRegs;
187 // Add sub-registers to OSet following a pre-order defined by the .td file.
188 void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
189 CodeGenRegBank&) const;
191 // Return the sub-register index naming Reg as a sub-register of this
192 // register. Returns NULL if Reg is not a sub-register.
193 CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const {
194 return SubReg2Idx.lookup(Reg);
197 typedef std::vector<const CodeGenRegister*> SuperRegList;
199 // Get the list of super-registers in topological order, small to large.
200 // This is valid after computeSubRegs visits all registers during RegBank
201 // construction.
202 const SuperRegList &getSuperRegs() const {
203 assert(SubRegsComplete && "Must precompute sub-registers");
204 return SuperRegs;
207 // Get the list of ad hoc aliases. The graph is symmetric, so the list
208 // contains all registers in 'Aliases', and all registers that mention this
209 // register in 'Aliases'.
210 ArrayRef<CodeGenRegister*> getExplicitAliases() const {
211 return ExplicitAliases;
214 // Get the topological signature of this register. This is a small integer
215 // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have
216 // identical sub-register structure. That is, they support the same set of
217 // sub-register indices mapping to the same kind of sub-registers
218 // (TopoSig-wise).
219 unsigned getTopoSig() const {
220 assert(SuperRegsComplete && "TopoSigs haven't been computed yet.");
221 return TopoSig;
224 // List of register units in ascending order.
225 typedef SparseBitVector<> RegUnitList;
226 typedef SmallVector<LaneBitmask, 16> RegUnitLaneMaskList;
228 // How many entries in RegUnitList are native?
229 RegUnitList NativeRegUnits;
231 // Get the list of register units.
232 // This is only valid after computeSubRegs() completes.
233 const RegUnitList &getRegUnits() const { return RegUnits; }
235 ArrayRef<LaneBitmask> getRegUnitLaneMasks() const {
236 return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count());
239 // Get the native register units. This is a prefix of getRegUnits().
240 RegUnitList getNativeRegUnits() const {
241 return NativeRegUnits;
244 void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) {
245 RegUnitLaneMasks = LaneMasks;
248 // Inherit register units from subregisters.
249 // Return true if the RegUnits changed.
250 bool inheritRegUnits(CodeGenRegBank &RegBank);
252 // Adopt a register unit for pressure tracking.
253 // A unit is adopted iff its unit number is >= NativeRegUnits.count().
254 void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); }
256 // Get the sum of this register's register unit weights.
257 unsigned getWeight(const CodeGenRegBank &RegBank) const;
259 // Canonically ordered set.
260 typedef std::vector<const CodeGenRegister*> Vec;
262 private:
263 bool SubRegsComplete;
264 bool SuperRegsComplete;
265 unsigned TopoSig;
267 // The sub-registers explicit in the .td file form a tree.
268 SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices;
269 SmallVector<CodeGenRegister*, 8> ExplicitSubRegs;
271 // Explicit ad hoc aliases, symmetrized to form an undirected graph.
272 SmallVector<CodeGenRegister*, 8> ExplicitAliases;
274 // Super-registers where this is the first explicit sub-register.
275 SuperRegList LeadingSuperRegs;
277 SubRegMap SubRegs;
278 SuperRegList SuperRegs;
279 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx;
280 RegUnitList RegUnits;
281 RegUnitLaneMaskList RegUnitLaneMasks;
284 inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) {
285 return A.EnumValue < B.EnumValue;
288 inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) {
289 return A.EnumValue == B.EnumValue;
292 class CodeGenRegisterClass {
293 CodeGenRegister::Vec Members;
294 // Allocation orders. Order[0] always contains all registers in Members.
295 std::vector<SmallVector<Record*, 16>> Orders;
296 // Bit mask of sub-classes including this, indexed by their EnumValue.
297 BitVector SubClasses;
298 // List of super-classes, topologocally ordered to have the larger classes
299 // first. This is the same as sorting by EnumValue.
300 SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
301 Record *TheDef;
302 std::string Name;
304 // For a synthesized class, inherit missing properties from the nearest
305 // super-class.
306 void inheritProperties(CodeGenRegBank&);
308 // Map SubRegIndex -> sub-class. This is the largest sub-class where all
309 // registers have a SubRegIndex sub-register.
310 DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *>
311 SubClassWithSubReg;
313 // Map SubRegIndex -> set of super-reg classes. This is all register
314 // classes SuperRC such that:
316 // R:SubRegIndex in this RC for all R in SuperRC.
318 DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>>
319 SuperRegClasses;
321 // Bit vector of TopoSigs for the registers in this class. This will be
322 // very sparse on regular architectures.
323 BitVector TopoSigs;
325 public:
326 unsigned EnumValue;
327 StringRef Namespace;
328 SmallVector<ValueTypeByHwMode, 4> VTs;
329 RegSizeInfoByHwMode RSI;
330 int CopyCost;
331 bool Allocatable;
332 StringRef AltOrderSelect;
333 uint8_t AllocationPriority;
334 /// Contains the combination of the lane masks of all subregisters.
335 LaneBitmask LaneMask;
336 /// True if there are at least 2 subregisters which do not interfere.
337 bool HasDisjunctSubRegs;
338 bool CoveredBySubRegs;
339 /// A register class is artificial if all its members are artificial.
340 bool Artificial;
342 // Return the Record that defined this class, or NULL if the class was
343 // created by TableGen.
344 Record *getDef() const { return TheDef; }
346 const std::string &getName() const { return Name; }
347 std::string getQualifiedName() const;
348 ArrayRef<ValueTypeByHwMode> getValueTypes() const { return VTs; }
349 unsigned getNumValueTypes() const { return VTs.size(); }
351 const ValueTypeByHwMode &getValueTypeNum(unsigned VTNum) const {
352 if (VTNum < VTs.size())
353 return VTs[VTNum];
354 llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!");
357 // Return true if this this class contains the register.
358 bool contains(const CodeGenRegister*) const;
360 // Returns true if RC is a subclass.
361 // RC is a sub-class of this class if it is a valid replacement for any
362 // instruction operand where a register of this classis required. It must
363 // satisfy these conditions:
365 // 1. All RC registers are also in this.
366 // 2. The RC spill size must not be smaller than our spill size.
367 // 3. RC spill alignment must be compatible with ours.
369 bool hasSubClass(const CodeGenRegisterClass *RC) const {
370 return SubClasses.test(RC->EnumValue);
373 // getSubClassWithSubReg - Returns the largest sub-class where all
374 // registers have a SubIdx sub-register.
375 CodeGenRegisterClass *
376 getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const {
377 return SubClassWithSubReg.lookup(SubIdx);
380 /// Find largest subclass where all registers have SubIdx subregisters in
381 /// SubRegClass and the largest subregister class that contains those
382 /// subregisters without (as far as possible) also containing additional registers.
384 /// This can be used to find a suitable pair of classes for subregister copies.
385 /// \return std::pair<SubClass, SubRegClass> where SubClass is a SubClass is
386 /// a class where every register has SubIdx and SubRegClass is a class where
387 /// every register is covered by the SubIdx subregister of SubClass.
388 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
389 getMatchingSubClassWithSubRegs(CodeGenRegBank &RegBank,
390 const CodeGenSubRegIndex *SubIdx) const;
392 void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx,
393 CodeGenRegisterClass *SubRC) {
394 SubClassWithSubReg[SubIdx] = SubRC;
397 // getSuperRegClasses - Returns a bit vector of all register classes
398 // containing only SubIdx super-registers of this class.
399 void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
400 BitVector &Out) const;
402 // addSuperRegClass - Add a class containing only SubIdx super-registers.
403 void addSuperRegClass(CodeGenSubRegIndex *SubIdx,
404 CodeGenRegisterClass *SuperRC) {
405 SuperRegClasses[SubIdx].insert(SuperRC);
408 // getSubClasses - Returns a constant BitVector of subclasses indexed by
409 // EnumValue.
410 // The SubClasses vector includes an entry for this class.
411 const BitVector &getSubClasses() const { return SubClasses; }
413 // getSuperClasses - Returns a list of super classes ordered by EnumValue.
414 // The array does not include an entry for this class.
415 ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
416 return SuperClasses;
419 // Returns an ordered list of class members.
420 // The order of registers is the same as in the .td file.
421 // No = 0 is the default allocation order, No = 1 is the first alternative.
422 ArrayRef<Record*> getOrder(unsigned No = 0) const {
423 return Orders[No];
426 // Return the total number of allocation orders available.
427 unsigned getNumOrders() const { return Orders.size(); }
429 // Get the set of registers. This set contains the same registers as
430 // getOrder(0).
431 const CodeGenRegister::Vec &getMembers() const { return Members; }
433 // Get a bit vector of TopoSigs present in this register class.
434 const BitVector &getTopoSigs() const { return TopoSigs; }
436 // Populate a unique sorted list of units from a register set.
437 void buildRegUnitSet(const CodeGenRegBank &RegBank,
438 std::vector<unsigned> &RegUnits) const;
440 CodeGenRegisterClass(CodeGenRegBank&, Record *R);
442 // A key representing the parts of a register class used for forming
443 // sub-classes. Note the ordering provided by this key is not the same as
444 // the topological order used for the EnumValues.
445 struct Key {
446 const CodeGenRegister::Vec *Members;
447 RegSizeInfoByHwMode RSI;
449 Key(const CodeGenRegister::Vec *M, const RegSizeInfoByHwMode &I)
450 : Members(M), RSI(I) {}
452 Key(const CodeGenRegisterClass &RC)
453 : Members(&RC.getMembers()), RSI(RC.RSI) {}
455 // Lexicographical order of (Members, RegSizeInfoByHwMode).
456 bool operator<(const Key&) const;
459 // Create a non-user defined register class.
460 CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props);
462 // Called by CodeGenRegBank::CodeGenRegBank().
463 static void computeSubClasses(CodeGenRegBank&);
466 // Register units are used to model interference and register pressure.
467 // Every register is assigned one or more register units such that two
468 // registers overlap if and only if they have a register unit in common.
470 // Normally, one register unit is created per leaf register. Non-leaf
471 // registers inherit the units of their sub-registers.
472 struct RegUnit {
473 // Weight assigned to this RegUnit for estimating register pressure.
474 // This is useful when equalizing weights in register classes with mixed
475 // register topologies.
476 unsigned Weight;
478 // Each native RegUnit corresponds to one or two root registers. The full
479 // set of registers containing this unit can be computed as the union of
480 // these two registers and their super-registers.
481 const CodeGenRegister *Roots[2];
483 // Index into RegClassUnitSets where we can find the list of UnitSets that
484 // contain this unit.
485 unsigned RegClassUnitSetsIdx;
486 // A register unit is artificial if at least one of its roots is
487 // artificial.
488 bool Artificial;
490 RegUnit() : Weight(0), RegClassUnitSetsIdx(0), Artificial(false) {
491 Roots[0] = Roots[1] = nullptr;
494 ArrayRef<const CodeGenRegister*> getRoots() const {
495 assert(!(Roots[1] && !Roots[0]) && "Invalid roots array");
496 return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]);
500 // Each RegUnitSet is a sorted vector with a name.
501 struct RegUnitSet {
502 typedef std::vector<unsigned>::const_iterator iterator;
504 std::string Name;
505 std::vector<unsigned> Units;
506 unsigned Weight = 0; // Cache the sum of all unit weights.
507 unsigned Order = 0; // Cache the sort key.
509 RegUnitSet() = default;
512 // Base vector for identifying TopoSigs. The contents uniquely identify a
513 // TopoSig, only computeSuperRegs needs to know how.
514 typedef SmallVector<unsigned, 16> TopoSigId;
516 // CodeGenRegBank - Represent a target's registers and the relations between
517 // them.
518 class CodeGenRegBank {
519 SetTheory Sets;
521 const CodeGenHwModes &CGH;
523 std::deque<CodeGenSubRegIndex> SubRegIndices;
524 DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx;
526 CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace);
528 typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>,
529 CodeGenSubRegIndex*> ConcatIdxMap;
530 ConcatIdxMap ConcatIdx;
532 // Registers.
533 std::deque<CodeGenRegister> Registers;
534 StringMap<CodeGenRegister*> RegistersByName;
535 DenseMap<Record*, CodeGenRegister*> Def2Reg;
536 unsigned NumNativeRegUnits;
538 std::map<TopoSigId, unsigned> TopoSigs;
540 // Includes native (0..NumNativeRegUnits-1) and adopted register units.
541 SmallVector<RegUnit, 8> RegUnits;
543 // Register classes.
544 std::list<CodeGenRegisterClass> RegClasses;
545 DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
546 typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
547 RCKeyMap Key2RC;
549 // Remember each unique set of register units. Initially, this contains a
550 // unique set for each register class. Simliar sets are coalesced with
551 // pruneUnitSets and new supersets are inferred during computeRegUnitSets.
552 std::vector<RegUnitSet> RegUnitSets;
554 // Map RegisterClass index to the index of the RegUnitSet that contains the
555 // class's units and any inferred RegUnit supersets.
557 // NOTE: This could grow beyond the number of register classes when we map
558 // register units to lists of unit sets. If the list of unit sets does not
559 // already exist for a register class, we create a new entry in this vector.
560 std::vector<std::vector<unsigned>> RegClassUnitSets;
562 // Give each register unit set an order based on sorting criteria.
563 std::vector<unsigned> RegUnitSetOrder;
565 // Keep track of synthesized definitions generated in TupleExpander.
566 std::vector<std::unique_ptr<Record>> SynthDefs;
568 // Add RC to *2RC maps.
569 void addToMaps(CodeGenRegisterClass*);
571 // Create a synthetic sub-class if it is missing.
572 CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC,
573 const CodeGenRegister::Vec *Membs,
574 StringRef Name);
576 // Infer missing register classes.
577 void computeInferredRegisterClasses();
578 void inferCommonSubClass(CodeGenRegisterClass *RC);
579 void inferSubClassWithSubReg(CodeGenRegisterClass *RC);
581 void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) {
582 inferMatchingSuperRegClass(RC, RegClasses.begin());
585 void inferMatchingSuperRegClass(
586 CodeGenRegisterClass *RC,
587 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC);
589 // Iteratively prune unit sets.
590 void pruneUnitSets();
592 // Compute a weight for each register unit created during getSubRegs.
593 void computeRegUnitWeights();
595 // Create a RegUnitSet for each RegClass and infer superclasses.
596 void computeRegUnitSets();
598 // Populate the Composite map from sub-register relationships.
599 void computeComposites();
601 // Compute a lane mask for each sub-register index.
602 void computeSubRegLaneMasks();
604 /// Computes a lane mask for each register unit enumerated by a physical
605 /// register.
606 void computeRegUnitLaneMasks();
608 public:
609 CodeGenRegBank(RecordKeeper&, const CodeGenHwModes&);
611 SetTheory &getSets() { return Sets; }
613 const CodeGenHwModes &getHwModes() const { return CGH; }
615 // Sub-register indices. The first NumNamedIndices are defined by the user
616 // in the .td files. The rest are synthesized such that all sub-registers
617 // have a unique name.
618 const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const {
619 return SubRegIndices;
622 // Find a SubRegIndex form its Record def.
623 CodeGenSubRegIndex *getSubRegIdx(Record*);
625 // Find or create a sub-register index representing the A+B composition.
626 CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A,
627 CodeGenSubRegIndex *B);
629 // Find or create a sub-register index representing the concatenation of
630 // non-overlapping sibling indices.
631 CodeGenSubRegIndex *
632 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&);
634 const std::deque<CodeGenRegister> &getRegisters() { return Registers; }
636 const StringMap<CodeGenRegister*> &getRegistersByName() {
637 return RegistersByName;
640 // Find a register from its Record def.
641 CodeGenRegister *getReg(Record*);
643 // Get a Register's index into the Registers array.
644 unsigned getRegIndex(const CodeGenRegister *Reg) const {
645 return Reg->EnumValue - 1;
648 // Return the number of allocated TopoSigs. The first TopoSig representing
649 // leaf registers is allocated number 0.
650 unsigned getNumTopoSigs() const {
651 return TopoSigs.size();
654 // Find or create a TopoSig for the given TopoSigId.
655 // This function is only for use by CodeGenRegister::computeSuperRegs().
656 // Others should simply use Reg->getTopoSig().
657 unsigned getTopoSig(const TopoSigId &Id) {
658 return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second;
661 // Create a native register unit that is associated with one or two root
662 // registers.
663 unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) {
664 RegUnits.resize(RegUnits.size() + 1);
665 RegUnit &RU = RegUnits.back();
666 RU.Roots[0] = R0;
667 RU.Roots[1] = R1;
668 RU.Artificial = R0->Artificial;
669 if (R1)
670 RU.Artificial |= R1->Artificial;
671 return RegUnits.size() - 1;
674 // Create a new non-native register unit that can be adopted by a register
675 // to increase its pressure. Note that NumNativeRegUnits is not increased.
676 unsigned newRegUnit(unsigned Weight) {
677 RegUnits.resize(RegUnits.size() + 1);
678 RegUnits.back().Weight = Weight;
679 return RegUnits.size() - 1;
682 // Native units are the singular unit of a leaf register. Register aliasing
683 // is completely characterized by native units. Adopted units exist to give
684 // register additional weight but don't affect aliasing.
685 bool isNativeUnit(unsigned RUID) {
686 return RUID < NumNativeRegUnits;
689 unsigned getNumNativeRegUnits() const {
690 return NumNativeRegUnits;
693 RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; }
694 const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; }
696 std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; }
698 const std::list<CodeGenRegisterClass> &getRegClasses() const {
699 return RegClasses;
702 // Find a register class from its def.
703 CodeGenRegisterClass *getRegClass(Record*);
705 /// getRegisterClassForRegister - Find the register class that contains the
706 /// specified physical register. If the register is not in a register
707 /// class, return null. If the register is in multiple classes, and the
708 /// classes have a superset-subset relationship and the same set of types,
709 /// return the superclass. Otherwise return null.
710 const CodeGenRegisterClass* getRegClassForRegister(Record *R);
712 // Get the sum of unit weights.
713 unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const {
714 unsigned Weight = 0;
715 for (std::vector<unsigned>::const_iterator
716 I = Units.begin(), E = Units.end(); I != E; ++I)
717 Weight += getRegUnit(*I).Weight;
718 return Weight;
721 unsigned getRegSetIDAt(unsigned Order) const {
722 return RegUnitSetOrder[Order];
725 const RegUnitSet &getRegSetAt(unsigned Order) const {
726 return RegUnitSets[RegUnitSetOrder[Order]];
729 // Increase a RegUnitWeight.
730 void increaseRegUnitWeight(unsigned RUID, unsigned Inc) {
731 getRegUnit(RUID).Weight += Inc;
734 // Get the number of register pressure dimensions.
735 unsigned getNumRegPressureSets() const { return RegUnitSets.size(); }
737 // Get a set of register unit IDs for a given dimension of pressure.
738 const RegUnitSet &getRegPressureSet(unsigned Idx) const {
739 return RegUnitSets[Idx];
742 // The number of pressure set lists may be larget than the number of
743 // register classes if some register units appeared in a list of sets that
744 // did not correspond to an existing register class.
745 unsigned getNumRegClassPressureSetLists() const {
746 return RegClassUnitSets.size();
749 // Get a list of pressure set IDs for a register class. Liveness of a
750 // register in this class impacts each pressure set in this list by the
751 // weight of the register. An exact solution requires all registers in a
752 // class to have the same class, but it is not strictly guaranteed.
753 ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const {
754 return RegClassUnitSets[RCIdx];
757 // Computed derived records such as missing sub-register indices.
758 void computeDerivedInfo();
760 // Compute the set of registers completely covered by the registers in Regs.
761 // The returned BitVector will have a bit set for each register in Regs,
762 // all sub-registers, and all super-registers that are covered by the
763 // registers in Regs.
765 // This is used to compute the mask of call-preserved registers from a list
766 // of callee-saves.
767 BitVector computeCoveredRegisters(ArrayRef<Record*> Regs);
769 // Bit mask of lanes that cover their registers. A sub-register index whose
770 // LaneMask is contained in CoveringLanes will be completely covered by
771 // another sub-register with the same or larger lane mask.
772 LaneBitmask CoveringLanes;
774 // Helper function for printing debug information. Handles artificial
775 // (non-native) reg units.
776 void printRegUnitName(unsigned Unit) const;
779 } // end namespace llvm
781 #endif // LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H