1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Loops should be simplified before this analysis.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/BranchProbability.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
46 #define DEBUG_TYPE "branch-prob"
48 static cl::opt
<bool> PrintBranchProb(
49 "print-bpi", cl::init(false), cl::Hidden
,
50 cl::desc("Print the branch probability info."));
52 cl::opt
<std::string
> PrintBranchProbFuncName(
53 "print-bpi-func-name", cl::Hidden
,
54 cl::desc("The option to specify the name of the function "
55 "whose branch probability info is printed."));
57 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass
, "branch-prob",
58 "Branch Probability Analysis", false, true)
59 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
60 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
61 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass
, "branch-prob",
62 "Branch Probability Analysis", false, true)
64 char BranchProbabilityInfoWrapperPass::ID
= 0;
66 // Weights are for internal use only. They are used by heuristics to help to
67 // estimate edges' probability. Example:
69 // Using "Loop Branch Heuristics" we predict weights of edges for the
84 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
85 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
86 static const uint32_t LBH_TAKEN_WEIGHT
= 124;
87 static const uint32_t LBH_NONTAKEN_WEIGHT
= 4;
88 // Unlikely edges within a loop are half as likely as other edges
89 static const uint32_t LBH_UNLIKELY_WEIGHT
= 62;
91 /// Unreachable-terminating branch taken probability.
93 /// This is the probability for a branch being taken to a block that terminates
94 /// (eventually) in unreachable. These are predicted as unlikely as possible.
95 /// All reachable probability will equally share the remaining part.
96 static const BranchProbability UR_TAKEN_PROB
= BranchProbability::getRaw(1);
98 /// Weight for a branch taken going into a cold block.
100 /// This is the weight for a branch taken toward a block marked
101 /// cold. A block is marked cold if it's postdominated by a
102 /// block containing a call to a cold function. Cold functions
103 /// are those marked with attribute 'cold'.
104 static const uint32_t CC_TAKEN_WEIGHT
= 4;
106 /// Weight for a branch not-taken into a cold block.
108 /// This is the weight for a branch not taken toward a block marked
110 static const uint32_t CC_NONTAKEN_WEIGHT
= 64;
112 static const uint32_t PH_TAKEN_WEIGHT
= 20;
113 static const uint32_t PH_NONTAKEN_WEIGHT
= 12;
115 static const uint32_t ZH_TAKEN_WEIGHT
= 20;
116 static const uint32_t ZH_NONTAKEN_WEIGHT
= 12;
118 static const uint32_t FPH_TAKEN_WEIGHT
= 20;
119 static const uint32_t FPH_NONTAKEN_WEIGHT
= 12;
121 /// Invoke-terminating normal branch taken weight
123 /// This is the weight for branching to the normal destination of an invoke
124 /// instruction. We expect this to happen most of the time. Set the weight to an
125 /// absurdly high value so that nested loops subsume it.
126 static const uint32_t IH_TAKEN_WEIGHT
= 1024 * 1024 - 1;
128 /// Invoke-terminating normal branch not-taken weight.
130 /// This is the weight for branching to the unwind destination of an invoke
131 /// instruction. This is essentially never taken.
132 static const uint32_t IH_NONTAKEN_WEIGHT
= 1;
134 /// Add \p BB to PostDominatedByUnreachable set if applicable.
136 BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock
*BB
) {
137 const Instruction
*TI
= BB
->getTerminator();
138 if (TI
->getNumSuccessors() == 0) {
139 if (isa
<UnreachableInst
>(TI
) ||
140 // If this block is terminated by a call to
141 // @llvm.experimental.deoptimize then treat it like an unreachable since
142 // the @llvm.experimental.deoptimize call is expected to practically
144 BB
->getTerminatingDeoptimizeCall())
145 PostDominatedByUnreachable
.insert(BB
);
149 // If the terminator is an InvokeInst, check only the normal destination block
150 // as the unwind edge of InvokeInst is also very unlikely taken.
151 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
152 if (PostDominatedByUnreachable
.count(II
->getNormalDest()))
153 PostDominatedByUnreachable
.insert(BB
);
157 for (auto *I
: successors(BB
))
158 // If any of successor is not post dominated then BB is also not.
159 if (!PostDominatedByUnreachable
.count(I
))
162 PostDominatedByUnreachable
.insert(BB
);
165 /// Add \p BB to PostDominatedByColdCall set if applicable.
167 BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock
*BB
) {
168 assert(!PostDominatedByColdCall
.count(BB
));
169 const Instruction
*TI
= BB
->getTerminator();
170 if (TI
->getNumSuccessors() == 0)
173 // If all of successor are post dominated then BB is also done.
174 if (llvm::all_of(successors(BB
), [&](const BasicBlock
*SuccBB
) {
175 return PostDominatedByColdCall
.count(SuccBB
);
177 PostDominatedByColdCall
.insert(BB
);
181 // If the terminator is an InvokeInst, check only the normal destination
182 // block as the unwind edge of InvokeInst is also very unlikely taken.
183 if (auto *II
= dyn_cast
<InvokeInst
>(TI
))
184 if (PostDominatedByColdCall
.count(II
->getNormalDest())) {
185 PostDominatedByColdCall
.insert(BB
);
189 // Otherwise, if the block itself contains a cold function, add it to the
190 // set of blocks post-dominated by a cold call.
192 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
193 if (CI
->hasFnAttr(Attribute::Cold
)) {
194 PostDominatedByColdCall
.insert(BB
);
199 /// Calculate edge weights for successors lead to unreachable.
201 /// Predict that a successor which leads necessarily to an
202 /// unreachable-terminated block as extremely unlikely.
203 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock
*BB
) {
204 const Instruction
*TI
= BB
->getTerminator();
206 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
207 assert(!isa
<InvokeInst
>(TI
) &&
208 "Invokes should have already been handled by calcInvokeHeuristics");
210 SmallVector
<unsigned, 4> UnreachableEdges
;
211 SmallVector
<unsigned, 4> ReachableEdges
;
213 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
)
214 if (PostDominatedByUnreachable
.count(*I
))
215 UnreachableEdges
.push_back(I
.getSuccessorIndex());
217 ReachableEdges
.push_back(I
.getSuccessorIndex());
219 // Skip probabilities if all were reachable.
220 if (UnreachableEdges
.empty())
223 if (ReachableEdges
.empty()) {
224 BranchProbability
Prob(1, UnreachableEdges
.size());
225 for (unsigned SuccIdx
: UnreachableEdges
)
226 setEdgeProbability(BB
, SuccIdx
, Prob
);
230 auto UnreachableProb
= UR_TAKEN_PROB
;
232 (BranchProbability::getOne() - UR_TAKEN_PROB
* UnreachableEdges
.size()) /
233 ReachableEdges
.size();
235 for (unsigned SuccIdx
: UnreachableEdges
)
236 setEdgeProbability(BB
, SuccIdx
, UnreachableProb
);
237 for (unsigned SuccIdx
: ReachableEdges
)
238 setEdgeProbability(BB
, SuccIdx
, ReachableProb
);
243 // Propagate existing explicit probabilities from either profile data or
244 // 'expect' intrinsic processing. Examine metadata against unreachable
245 // heuristic. The probability of the edge coming to unreachable block is
246 // set to min of metadata and unreachable heuristic.
247 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock
*BB
) {
248 const Instruction
*TI
= BB
->getTerminator();
249 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
250 if (!(isa
<BranchInst
>(TI
) || isa
<SwitchInst
>(TI
) || isa
<IndirectBrInst
>(TI
)))
253 MDNode
*WeightsNode
= TI
->getMetadata(LLVMContext::MD_prof
);
257 // Check that the number of successors is manageable.
258 assert(TI
->getNumSuccessors() < UINT32_MAX
&& "Too many successors");
260 // Ensure there are weights for all of the successors. Note that the first
261 // operand to the metadata node is a name, not a weight.
262 if (WeightsNode
->getNumOperands() != TI
->getNumSuccessors() + 1)
265 // Build up the final weights that will be used in a temporary buffer.
266 // Compute the sum of all weights to later decide whether they need to
267 // be scaled to fit in 32 bits.
268 uint64_t WeightSum
= 0;
269 SmallVector
<uint32_t, 2> Weights
;
270 SmallVector
<unsigned, 2> UnreachableIdxs
;
271 SmallVector
<unsigned, 2> ReachableIdxs
;
272 Weights
.reserve(TI
->getNumSuccessors());
273 for (unsigned i
= 1, e
= WeightsNode
->getNumOperands(); i
!= e
; ++i
) {
274 ConstantInt
*Weight
=
275 mdconst::dyn_extract
<ConstantInt
>(WeightsNode
->getOperand(i
));
278 assert(Weight
->getValue().getActiveBits() <= 32 &&
279 "Too many bits for uint32_t");
280 Weights
.push_back(Weight
->getZExtValue());
281 WeightSum
+= Weights
.back();
282 if (PostDominatedByUnreachable
.count(TI
->getSuccessor(i
- 1)))
283 UnreachableIdxs
.push_back(i
- 1);
285 ReachableIdxs
.push_back(i
- 1);
287 assert(Weights
.size() == TI
->getNumSuccessors() && "Checked above");
289 // If the sum of weights does not fit in 32 bits, scale every weight down
291 uint64_t ScalingFactor
=
292 (WeightSum
> UINT32_MAX
) ? WeightSum
/ UINT32_MAX
+ 1 : 1;
294 if (ScalingFactor
> 1) {
296 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
297 Weights
[i
] /= ScalingFactor
;
298 WeightSum
+= Weights
[i
];
301 assert(WeightSum
<= UINT32_MAX
&&
302 "Expected weights to scale down to 32 bits");
304 if (WeightSum
== 0 || ReachableIdxs
.size() == 0) {
305 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
307 WeightSum
= TI
->getNumSuccessors();
310 // Set the probability.
311 SmallVector
<BranchProbability
, 2> BP
;
312 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
313 BP
.push_back({ Weights
[i
], static_cast<uint32_t>(WeightSum
) });
315 // Examine the metadata against unreachable heuristic.
316 // If the unreachable heuristic is more strong then we use it for this edge.
317 if (UnreachableIdxs
.size() > 0 && ReachableIdxs
.size() > 0) {
318 auto ToDistribute
= BranchProbability::getZero();
319 auto UnreachableProb
= UR_TAKEN_PROB
;
320 for (auto i
: UnreachableIdxs
)
321 if (UnreachableProb
< BP
[i
]) {
322 ToDistribute
+= BP
[i
] - UnreachableProb
;
323 BP
[i
] = UnreachableProb
;
326 // If we modified the probability of some edges then we must distribute
327 // the difference between reachable blocks.
328 if (ToDistribute
> BranchProbability::getZero()) {
329 BranchProbability PerEdge
= ToDistribute
/ ReachableIdxs
.size();
330 for (auto i
: ReachableIdxs
)
335 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
336 setEdgeProbability(BB
, i
, BP
[i
]);
341 /// Calculate edge weights for edges leading to cold blocks.
343 /// A cold block is one post-dominated by a block with a call to a
344 /// cold function. Those edges are unlikely to be taken, so we give
345 /// them relatively low weight.
347 /// Return true if we could compute the weights for cold edges.
348 /// Return false, otherwise.
349 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock
*BB
) {
350 const Instruction
*TI
= BB
->getTerminator();
352 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
353 assert(!isa
<InvokeInst
>(TI
) &&
354 "Invokes should have already been handled by calcInvokeHeuristics");
356 // Determine which successors are post-dominated by a cold block.
357 SmallVector
<unsigned, 4> ColdEdges
;
358 SmallVector
<unsigned, 4> NormalEdges
;
359 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
)
360 if (PostDominatedByColdCall
.count(*I
))
361 ColdEdges
.push_back(I
.getSuccessorIndex());
363 NormalEdges
.push_back(I
.getSuccessorIndex());
365 // Skip probabilities if no cold edges.
366 if (ColdEdges
.empty())
369 if (NormalEdges
.empty()) {
370 BranchProbability
Prob(1, ColdEdges
.size());
371 for (unsigned SuccIdx
: ColdEdges
)
372 setEdgeProbability(BB
, SuccIdx
, Prob
);
376 auto ColdProb
= BranchProbability::getBranchProbability(
378 (CC_TAKEN_WEIGHT
+ CC_NONTAKEN_WEIGHT
) * uint64_t(ColdEdges
.size()));
379 auto NormalProb
= BranchProbability::getBranchProbability(
381 (CC_TAKEN_WEIGHT
+ CC_NONTAKEN_WEIGHT
) * uint64_t(NormalEdges
.size()));
383 for (unsigned SuccIdx
: ColdEdges
)
384 setEdgeProbability(BB
, SuccIdx
, ColdProb
);
385 for (unsigned SuccIdx
: NormalEdges
)
386 setEdgeProbability(BB
, SuccIdx
, NormalProb
);
391 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
392 // between two pointer or pointer and NULL will fail.
393 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock
*BB
) {
394 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
395 if (!BI
|| !BI
->isConditional())
398 Value
*Cond
= BI
->getCondition();
399 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Cond
);
400 if (!CI
|| !CI
->isEquality())
403 Value
*LHS
= CI
->getOperand(0);
405 if (!LHS
->getType()->isPointerTy())
408 assert(CI
->getOperand(1)->getType()->isPointerTy());
410 // p != 0 -> isProb = true
411 // p == 0 -> isProb = false
412 // p != q -> isProb = true
413 // p == q -> isProb = false;
414 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
415 bool isProb
= CI
->getPredicate() == ICmpInst::ICMP_NE
;
417 std::swap(TakenIdx
, NonTakenIdx
);
419 BranchProbability
TakenProb(PH_TAKEN_WEIGHT
,
420 PH_TAKEN_WEIGHT
+ PH_NONTAKEN_WEIGHT
);
421 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
422 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
426 static int getSCCNum(const BasicBlock
*BB
,
427 const BranchProbabilityInfo::SccInfo
&SccI
) {
428 auto SccIt
= SccI
.SccNums
.find(BB
);
429 if (SccIt
== SccI
.SccNums
.end())
431 return SccIt
->second
;
434 // Consider any block that is an entry point to the SCC as a header.
435 static bool isSCCHeader(const BasicBlock
*BB
, int SccNum
,
436 BranchProbabilityInfo::SccInfo
&SccI
) {
437 assert(getSCCNum(BB
, SccI
) == SccNum
);
439 // Lazily compute the set of headers for a given SCC and cache the results
440 // in the SccHeaderMap.
441 if (SccI
.SccHeaders
.size() <= static_cast<unsigned>(SccNum
))
442 SccI
.SccHeaders
.resize(SccNum
+ 1);
443 auto &HeaderMap
= SccI
.SccHeaders
[SccNum
];
445 BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt
;
446 std::tie(HeaderMapIt
, Inserted
) = HeaderMap
.insert(std::make_pair(BB
, false));
448 bool IsHeader
= llvm::any_of(make_range(pred_begin(BB
), pred_end(BB
)),
449 [&](const BasicBlock
*Pred
) {
450 return getSCCNum(Pred
, SccI
) != SccNum
;
452 HeaderMapIt
->second
= IsHeader
;
455 return HeaderMapIt
->second
;
458 // Compute the unlikely successors to the block BB in the loop L, specifically
459 // those that are unlikely because this is a loop, and add them to the
460 // UnlikelyBlocks set.
462 computeUnlikelySuccessors(const BasicBlock
*BB
, Loop
*L
,
463 SmallPtrSetImpl
<const BasicBlock
*> &UnlikelyBlocks
) {
464 // Sometimes in a loop we have a branch whose condition is made false by
465 // taking it. This is typically something like
472 // In this sort of situation taking the branch means that at the very least it
473 // won't be taken again in the next iteration of the loop, so we should
474 // consider it less likely than a typical branch.
476 // We detect this by looking back through the graph of PHI nodes that sets the
477 // value that the condition depends on, and seeing if we can reach a successor
478 // block which can be determined to make the condition false.
480 // FIXME: We currently consider unlikely blocks to be half as likely as other
481 // blocks, but if we consider the example above the likelyhood is actually
482 // 1/MAX. We could therefore be more precise in how unlikely we consider
483 // blocks to be, but it would require more careful examination of the form
484 // of the comparison expression.
485 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
486 if (!BI
|| !BI
->isConditional())
489 // Check if the branch is based on an instruction compared with a constant
490 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
491 if (!CI
|| !isa
<Instruction
>(CI
->getOperand(0)) ||
492 !isa
<Constant
>(CI
->getOperand(1)))
495 // Either the instruction must be a PHI, or a chain of operations involving
496 // constants that ends in a PHI which we can then collapse into a single value
497 // if the PHI value is known.
498 Instruction
*CmpLHS
= dyn_cast
<Instruction
>(CI
->getOperand(0));
499 PHINode
*CmpPHI
= dyn_cast
<PHINode
>(CmpLHS
);
500 Constant
*CmpConst
= dyn_cast
<Constant
>(CI
->getOperand(1));
501 // Collect the instructions until we hit a PHI
502 SmallVector
<BinaryOperator
*, 1> InstChain
;
503 while (!CmpPHI
&& CmpLHS
&& isa
<BinaryOperator
>(CmpLHS
) &&
504 isa
<Constant
>(CmpLHS
->getOperand(1))) {
505 // Stop if the chain extends outside of the loop
506 if (!L
->contains(CmpLHS
))
508 InstChain
.push_back(cast
<BinaryOperator
>(CmpLHS
));
509 CmpLHS
= dyn_cast
<Instruction
>(CmpLHS
->getOperand(0));
511 CmpPHI
= dyn_cast
<PHINode
>(CmpLHS
);
513 if (!CmpPHI
|| !L
->contains(CmpPHI
))
516 // Trace the phi node to find all values that come from successors of BB
517 SmallPtrSet
<PHINode
*, 8> VisitedInsts
;
518 SmallVector
<PHINode
*, 8> WorkList
;
519 WorkList
.push_back(CmpPHI
);
520 VisitedInsts
.insert(CmpPHI
);
521 while (!WorkList
.empty()) {
522 PHINode
*P
= WorkList
.back();
524 for (BasicBlock
*B
: P
->blocks()) {
525 // Skip blocks that aren't part of the loop
528 Value
*V
= P
->getIncomingValueForBlock(B
);
529 // If the source is a PHI add it to the work list if we haven't
530 // already visited it.
531 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
532 if (VisitedInsts
.insert(PN
).second
)
533 WorkList
.push_back(PN
);
536 // If this incoming value is a constant and B is a successor of BB, then
537 // we can constant-evaluate the compare to see if it makes the branch be
539 Constant
*CmpLHSConst
= dyn_cast
<Constant
>(V
);
541 std::find(succ_begin(BB
), succ_end(BB
), B
) == succ_end(BB
))
543 // First collapse InstChain
544 for (Instruction
*I
: llvm::reverse(InstChain
)) {
545 CmpLHSConst
= ConstantExpr::get(I
->getOpcode(), CmpLHSConst
,
546 cast
<Constant
>(I
->getOperand(1)), true);
552 // Now constant-evaluate the compare
553 Constant
*Result
= ConstantExpr::getCompare(CI
->getPredicate(),
554 CmpLHSConst
, CmpConst
, true);
555 // If the result means we don't branch to the block then that block is
558 ((Result
->isZeroValue() && B
== BI
->getSuccessor(0)) ||
559 (Result
->isOneValue() && B
== BI
->getSuccessor(1))))
560 UnlikelyBlocks
.insert(B
);
565 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
566 // as taken, exiting edges as not-taken.
567 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock
*BB
,
571 Loop
*L
= LI
.getLoopFor(BB
);
573 SccNum
= getSCCNum(BB
, SccI
);
578 SmallPtrSet
<const BasicBlock
*, 8> UnlikelyBlocks
;
580 computeUnlikelySuccessors(BB
, L
, UnlikelyBlocks
);
582 SmallVector
<unsigned, 8> BackEdges
;
583 SmallVector
<unsigned, 8> ExitingEdges
;
584 SmallVector
<unsigned, 8> InEdges
; // Edges from header to the loop.
585 SmallVector
<unsigned, 8> UnlikelyEdges
;
587 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
) {
588 // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
589 // irreducible loops.
591 if (UnlikelyBlocks
.count(*I
) != 0)
592 UnlikelyEdges
.push_back(I
.getSuccessorIndex());
593 else if (!L
->contains(*I
))
594 ExitingEdges
.push_back(I
.getSuccessorIndex());
595 else if (L
->getHeader() == *I
)
596 BackEdges
.push_back(I
.getSuccessorIndex());
598 InEdges
.push_back(I
.getSuccessorIndex());
600 if (getSCCNum(*I
, SccI
) != SccNum
)
601 ExitingEdges
.push_back(I
.getSuccessorIndex());
602 else if (isSCCHeader(*I
, SccNum
, SccI
))
603 BackEdges
.push_back(I
.getSuccessorIndex());
605 InEdges
.push_back(I
.getSuccessorIndex());
609 if (BackEdges
.empty() && ExitingEdges
.empty() && UnlikelyEdges
.empty())
612 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
613 // normalize them so that they sum up to one.
614 unsigned Denom
= (BackEdges
.empty() ? 0 : LBH_TAKEN_WEIGHT
) +
615 (InEdges
.empty() ? 0 : LBH_TAKEN_WEIGHT
) +
616 (UnlikelyEdges
.empty() ? 0 : LBH_UNLIKELY_WEIGHT
) +
617 (ExitingEdges
.empty() ? 0 : LBH_NONTAKEN_WEIGHT
);
619 if (uint32_t numBackEdges
= BackEdges
.size()) {
620 BranchProbability TakenProb
= BranchProbability(LBH_TAKEN_WEIGHT
, Denom
);
621 auto Prob
= TakenProb
/ numBackEdges
;
622 for (unsigned SuccIdx
: BackEdges
)
623 setEdgeProbability(BB
, SuccIdx
, Prob
);
626 if (uint32_t numInEdges
= InEdges
.size()) {
627 BranchProbability TakenProb
= BranchProbability(LBH_TAKEN_WEIGHT
, Denom
);
628 auto Prob
= TakenProb
/ numInEdges
;
629 for (unsigned SuccIdx
: InEdges
)
630 setEdgeProbability(BB
, SuccIdx
, Prob
);
633 if (uint32_t numExitingEdges
= ExitingEdges
.size()) {
634 BranchProbability NotTakenProb
= BranchProbability(LBH_NONTAKEN_WEIGHT
,
636 auto Prob
= NotTakenProb
/ numExitingEdges
;
637 for (unsigned SuccIdx
: ExitingEdges
)
638 setEdgeProbability(BB
, SuccIdx
, Prob
);
641 if (uint32_t numUnlikelyEdges
= UnlikelyEdges
.size()) {
642 BranchProbability UnlikelyProb
= BranchProbability(LBH_UNLIKELY_WEIGHT
,
644 auto Prob
= UnlikelyProb
/ numUnlikelyEdges
;
645 for (unsigned SuccIdx
: UnlikelyEdges
)
646 setEdgeProbability(BB
, SuccIdx
, Prob
);
652 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock
*BB
,
653 const TargetLibraryInfo
*TLI
) {
654 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
655 if (!BI
|| !BI
->isConditional())
658 Value
*Cond
= BI
->getCondition();
659 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Cond
);
663 auto GetConstantInt
= [](Value
*V
) {
664 if (auto *I
= dyn_cast
<BitCastInst
>(V
))
665 return dyn_cast
<ConstantInt
>(I
->getOperand(0));
666 return dyn_cast
<ConstantInt
>(V
);
669 Value
*RHS
= CI
->getOperand(1);
670 ConstantInt
*CV
= GetConstantInt(RHS
);
674 // If the LHS is the result of AND'ing a value with a single bit bitmask,
675 // we don't have information about probabilities.
676 if (Instruction
*LHS
= dyn_cast
<Instruction
>(CI
->getOperand(0)))
677 if (LHS
->getOpcode() == Instruction::And
)
678 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1)))
679 if (AndRHS
->getValue().isPowerOf2())
682 // Check if the LHS is the return value of a library function
683 LibFunc Func
= NumLibFuncs
;
685 if (CallInst
*Call
= dyn_cast
<CallInst
>(CI
->getOperand(0)))
686 if (Function
*CalledFn
= Call
->getCalledFunction())
687 TLI
->getLibFunc(*CalledFn
, Func
);
690 if (Func
== LibFunc_strcasecmp
||
691 Func
== LibFunc_strcmp
||
692 Func
== LibFunc_strncasecmp
||
693 Func
== LibFunc_strncmp
||
694 Func
== LibFunc_memcmp
) {
695 // strcmp and similar functions return zero, negative, or positive, if the
696 // first string is equal, less, or greater than the second. We consider it
697 // likely that the strings are not equal, so a comparison with zero is
698 // probably false, but also a comparison with any other number is also
699 // probably false given that what exactly is returned for nonzero values is
700 // not specified. Any kind of comparison other than equality we know
702 switch (CI
->getPredicate()) {
703 case CmpInst::ICMP_EQ
:
706 case CmpInst::ICMP_NE
:
712 } else if (CV
->isZero()) {
713 switch (CI
->getPredicate()) {
714 case CmpInst::ICMP_EQ
:
715 // X == 0 -> Unlikely
718 case CmpInst::ICMP_NE
:
722 case CmpInst::ICMP_SLT
:
726 case CmpInst::ICMP_SGT
:
733 } else if (CV
->isOne() && CI
->getPredicate() == CmpInst::ICMP_SLT
) {
734 // InstCombine canonicalizes X <= 0 into X < 1.
735 // X <= 0 -> Unlikely
737 } else if (CV
->isMinusOne()) {
738 switch (CI
->getPredicate()) {
739 case CmpInst::ICMP_EQ
:
740 // X == -1 -> Unlikely
743 case CmpInst::ICMP_NE
:
747 case CmpInst::ICMP_SGT
:
748 // InstCombine canonicalizes X >= 0 into X > -1.
759 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
762 std::swap(TakenIdx
, NonTakenIdx
);
764 BranchProbability
TakenProb(ZH_TAKEN_WEIGHT
,
765 ZH_TAKEN_WEIGHT
+ ZH_NONTAKEN_WEIGHT
);
766 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
767 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
771 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock
*BB
) {
772 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
773 if (!BI
|| !BI
->isConditional())
776 Value
*Cond
= BI
->getCondition();
777 FCmpInst
*FCmp
= dyn_cast
<FCmpInst
>(Cond
);
782 if (FCmp
->isEquality()) {
783 // f1 == f2 -> Unlikely
784 // f1 != f2 -> Likely
785 isProb
= !FCmp
->isTrueWhenEqual();
786 } else if (FCmp
->getPredicate() == FCmpInst::FCMP_ORD
) {
789 } else if (FCmp
->getPredicate() == FCmpInst::FCMP_UNO
) {
796 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
799 std::swap(TakenIdx
, NonTakenIdx
);
801 BranchProbability
TakenProb(FPH_TAKEN_WEIGHT
,
802 FPH_TAKEN_WEIGHT
+ FPH_NONTAKEN_WEIGHT
);
803 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
804 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
808 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock
*BB
) {
809 const InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator());
813 BranchProbability
TakenProb(IH_TAKEN_WEIGHT
,
814 IH_TAKEN_WEIGHT
+ IH_NONTAKEN_WEIGHT
);
815 setEdgeProbability(BB
, 0 /*Index for Normal*/, TakenProb
);
816 setEdgeProbability(BB
, 1 /*Index for Unwind*/, TakenProb
.getCompl());
820 void BranchProbabilityInfo::releaseMemory() {
824 void BranchProbabilityInfo::print(raw_ostream
&OS
) const {
825 OS
<< "---- Branch Probabilities ----\n";
826 // We print the probabilities from the last function the analysis ran over,
827 // or the function it is currently running over.
828 assert(LastF
&& "Cannot print prior to running over a function");
829 for (const auto &BI
: *LastF
) {
830 for (succ_const_iterator SI
= succ_begin(&BI
), SE
= succ_end(&BI
); SI
!= SE
;
832 printEdgeProbability(OS
<< " ", &BI
, *SI
);
837 bool BranchProbabilityInfo::
838 isEdgeHot(const BasicBlock
*Src
, const BasicBlock
*Dst
) const {
839 // Hot probability is at least 4/5 = 80%
840 // FIXME: Compare against a static "hot" BranchProbability.
841 return getEdgeProbability(Src
, Dst
) > BranchProbability(4, 5);
845 BranchProbabilityInfo::getHotSucc(const BasicBlock
*BB
) const {
846 auto MaxProb
= BranchProbability::getZero();
847 const BasicBlock
*MaxSucc
= nullptr;
849 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
) {
850 const BasicBlock
*Succ
= *I
;
851 auto Prob
= getEdgeProbability(BB
, Succ
);
852 if (Prob
> MaxProb
) {
858 // Hot probability is at least 4/5 = 80%
859 if (MaxProb
> BranchProbability(4, 5))
865 /// Get the raw edge probability for the edge. If can't find it, return a
866 /// default probability 1/N where N is the number of successors. Here an edge is
867 /// specified using PredBlock and an
868 /// index to the successors.
870 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
871 unsigned IndexInSuccessors
) const {
872 auto I
= Probs
.find(std::make_pair(Src
, IndexInSuccessors
));
874 if (I
!= Probs
.end())
877 return {1, static_cast<uint32_t>(succ_size(Src
))};
881 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
882 succ_const_iterator Dst
) const {
883 return getEdgeProbability(Src
, Dst
.getSuccessorIndex());
886 /// Get the raw edge probability calculated for the block pair. This returns the
887 /// sum of all raw edge probabilities from Src to Dst.
889 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
890 const BasicBlock
*Dst
) const {
891 auto Prob
= BranchProbability::getZero();
892 bool FoundProb
= false;
893 for (succ_const_iterator I
= succ_begin(Src
), E
= succ_end(Src
); I
!= E
; ++I
)
895 auto MapI
= Probs
.find(std::make_pair(Src
, I
.getSuccessorIndex()));
896 if (MapI
!= Probs
.end()) {
898 Prob
+= MapI
->second
;
901 uint32_t succ_num
= std::distance(succ_begin(Src
), succ_end(Src
));
902 return FoundProb
? Prob
: BranchProbability(1, succ_num
);
905 /// Set the edge probability for a given edge specified by PredBlock and an
906 /// index to the successors.
907 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock
*Src
,
908 unsigned IndexInSuccessors
,
909 BranchProbability Prob
) {
910 Probs
[std::make_pair(Src
, IndexInSuccessors
)] = Prob
;
911 Handles
.insert(BasicBlockCallbackVH(Src
, this));
912 LLVM_DEBUG(dbgs() << "set edge " << Src
->getName() << " -> "
913 << IndexInSuccessors
<< " successor probability to " << Prob
918 BranchProbabilityInfo::printEdgeProbability(raw_ostream
&OS
,
919 const BasicBlock
*Src
,
920 const BasicBlock
*Dst
) const {
921 const BranchProbability Prob
= getEdgeProbability(Src
, Dst
);
922 OS
<< "edge " << Src
->getName() << " -> " << Dst
->getName()
923 << " probability is " << Prob
924 << (isEdgeHot(Src
, Dst
) ? " [HOT edge]\n" : "\n");
929 void BranchProbabilityInfo::eraseBlock(const BasicBlock
*BB
) {
930 for (auto I
= Probs
.begin(), E
= Probs
.end(); I
!= E
; ++I
) {
937 void BranchProbabilityInfo::calculate(const Function
&F
, const LoopInfo
&LI
,
938 const TargetLibraryInfo
*TLI
) {
939 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F
.getName()
941 LastF
= &F
; // Store the last function we ran on for printing.
942 assert(PostDominatedByUnreachable
.empty());
943 assert(PostDominatedByColdCall
.empty());
945 // Record SCC numbers of blocks in the CFG to identify irreducible loops.
946 // FIXME: We could only calculate this if the CFG is known to be irreducible
947 // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
950 for (scc_iterator
<const Function
*> It
= scc_begin(&F
); !It
.isAtEnd();
952 // Ignore single-block SCCs since they either aren't loops or LoopInfo will
954 const std::vector
<const BasicBlock
*> &Scc
= *It
;
958 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum
<< ":");
959 for (auto *BB
: Scc
) {
960 LLVM_DEBUG(dbgs() << " " << BB
->getName());
961 SccI
.SccNums
[BB
] = SccNum
;
963 LLVM_DEBUG(dbgs() << "\n");
966 // Walk the basic blocks in post-order so that we can build up state about
967 // the successors of a block iteratively.
968 for (auto BB
: post_order(&F
.getEntryBlock())) {
969 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB
->getName()
971 updatePostDominatedByUnreachable(BB
);
972 updatePostDominatedByColdCall(BB
);
973 // If there is no at least two successors, no sense to set probability.
974 if (BB
->getTerminator()->getNumSuccessors() < 2)
976 if (calcMetadataWeights(BB
))
978 if (calcInvokeHeuristics(BB
))
980 if (calcUnreachableHeuristics(BB
))
982 if (calcColdCallHeuristics(BB
))
984 if (calcLoopBranchHeuristics(BB
, LI
, SccI
))
986 if (calcPointerHeuristics(BB
))
988 if (calcZeroHeuristics(BB
, TLI
))
990 if (calcFloatingPointHeuristics(BB
))
994 PostDominatedByUnreachable
.clear();
995 PostDominatedByColdCall
.clear();
997 if (PrintBranchProb
&&
998 (PrintBranchProbFuncName
.empty() ||
999 F
.getName().equals(PrintBranchProbFuncName
))) {
1004 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1005 AnalysisUsage
&AU
) const {
1006 // We require DT so it's available when LI is available. The LI updating code
1007 // asserts that DT is also present so if we don't make sure that we have DT
1008 // here, that assert will trigger.
1009 AU
.addRequired
<DominatorTreeWrapperPass
>();
1010 AU
.addRequired
<LoopInfoWrapperPass
>();
1011 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
1012 AU
.setPreservesAll();
1015 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function
&F
) {
1016 const LoopInfo
&LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1017 const TargetLibraryInfo
&TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
1018 BPI
.calculate(F
, LI
, &TLI
);
1022 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI
.releaseMemory(); }
1024 void BranchProbabilityInfoWrapperPass::print(raw_ostream
&OS
,
1025 const Module
*) const {
1029 AnalysisKey
BranchProbabilityAnalysis::Key
;
1030 BranchProbabilityInfo
1031 BranchProbabilityAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1032 BranchProbabilityInfo BPI
;
1033 BPI
.calculate(F
, AM
.getResult
<LoopAnalysis
>(F
), &AM
.getResult
<TargetLibraryAnalysis
>(F
));
1038 BranchProbabilityPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1039 OS
<< "Printing analysis results of BPI for function "
1040 << "'" << F
.getName() << "':"
1042 AM
.getResult
<BranchProbabilityAnalysis
>(F
).print(OS
);
1043 return PreservedAnalyses::all();