1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17 #include "CodeGenHwModes.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenTarget.h"
20 #include "SDNodeProperties.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
43 class TreePatternNode
;
44 class CodeGenDAGPatterns
;
47 /// Shared pointer for TreePatternNode.
48 using TreePatternNodePtr
= std::shared_ptr
<TreePatternNode
>;
50 /// This represents a set of MVTs. Since the underlying type for the MVT
51 /// is uint8_t, there are at most 256 values. To reduce the number of memory
52 /// allocations and deallocations, represent the set as a sequence of bits.
53 /// To reduce the allocations even further, make MachineValueTypeSet own
54 /// the storage and use std::array as the bit container.
55 struct MachineValueTypeSet
{
56 static_assert(std::is_same
<std::underlying_type
<MVT::SimpleValueType
>::type
,
58 "Change uint8_t here to the SimpleValueType's type");
59 static unsigned constexpr Capacity
= std::numeric_limits
<uint8_t>::max()+1;
60 using WordType
= uint64_t;
61 static unsigned constexpr WordWidth
= CHAR_BIT
*sizeof(WordType
);
62 static unsigned constexpr NumWords
= Capacity
/WordWidth
;
63 static_assert(NumWords
*WordWidth
== Capacity
,
64 "Capacity should be a multiple of WordWidth");
66 LLVM_ATTRIBUTE_ALWAYS_INLINE
67 MachineValueTypeSet() {
71 LLVM_ATTRIBUTE_ALWAYS_INLINE
72 unsigned size() const {
74 for (WordType W
: Words
)
75 Count
+= countPopulation(W
);
78 LLVM_ATTRIBUTE_ALWAYS_INLINE
80 std::memset(Words
.data(), 0, NumWords
*sizeof(WordType
));
82 LLVM_ATTRIBUTE_ALWAYS_INLINE
84 for (WordType W
: Words
)
89 LLVM_ATTRIBUTE_ALWAYS_INLINE
90 unsigned count(MVT T
) const {
91 return (Words
[T
.SimpleTy
/ WordWidth
] >> (T
.SimpleTy
% WordWidth
)) & 1;
93 std::pair
<MachineValueTypeSet
&,bool> insert(MVT T
) {
94 bool V
= count(T
.SimpleTy
);
95 Words
[T
.SimpleTy
/ WordWidth
] |= WordType(1) << (T
.SimpleTy
% WordWidth
);
98 MachineValueTypeSet
&insert(const MachineValueTypeSet
&S
) {
99 for (unsigned i
= 0; i
!= NumWords
; ++i
)
100 Words
[i
] |= S
.Words
[i
];
103 LLVM_ATTRIBUTE_ALWAYS_INLINE
105 Words
[T
.SimpleTy
/ WordWidth
] &= ~(WordType(1) << (T
.SimpleTy
% WordWidth
));
108 struct const_iterator
{
109 // Some implementations of the C++ library require these traits to be
111 using iterator_category
= std::forward_iterator_tag
;
112 using value_type
= MVT
;
113 using difference_type
= ptrdiff_t;
114 using pointer
= const MVT
*;
115 using reference
= const MVT
&;
117 LLVM_ATTRIBUTE_ALWAYS_INLINE
118 MVT
operator*() const {
119 assert(Pos
!= Capacity
);
120 return MVT::SimpleValueType(Pos
);
122 LLVM_ATTRIBUTE_ALWAYS_INLINE
123 const_iterator(const MachineValueTypeSet
*S
, bool End
) : Set(S
) {
124 Pos
= End
? Capacity
: find_from_pos(0);
126 LLVM_ATTRIBUTE_ALWAYS_INLINE
127 const_iterator
&operator++() {
128 assert(Pos
!= Capacity
);
129 Pos
= find_from_pos(Pos
+1);
133 LLVM_ATTRIBUTE_ALWAYS_INLINE
134 bool operator==(const const_iterator
&It
) const {
135 return Set
== It
.Set
&& Pos
== It
.Pos
;
137 LLVM_ATTRIBUTE_ALWAYS_INLINE
138 bool operator!=(const const_iterator
&It
) const {
139 return !operator==(It
);
143 unsigned find_from_pos(unsigned P
) const {
144 unsigned SkipWords
= P
/ WordWidth
;
145 unsigned SkipBits
= P
% WordWidth
;
146 unsigned Count
= SkipWords
* WordWidth
;
148 // If P is in the middle of a word, process it manually here, because
149 // the trailing bits need to be masked off to use findFirstSet.
151 WordType W
= Set
->Words
[SkipWords
];
152 W
&= maskLeadingOnes
<WordType
>(WordWidth
-SkipBits
);
154 return Count
+ findFirstSet(W
);
159 for (unsigned i
= SkipWords
; i
!= NumWords
; ++i
) {
160 WordType W
= Set
->Words
[i
];
162 return Count
+ findFirstSet(W
);
168 const MachineValueTypeSet
*Set
;
172 LLVM_ATTRIBUTE_ALWAYS_INLINE
173 const_iterator
begin() const { return const_iterator(this, false); }
174 LLVM_ATTRIBUTE_ALWAYS_INLINE
175 const_iterator
end() const { return const_iterator(this, true); }
177 LLVM_ATTRIBUTE_ALWAYS_INLINE
178 bool operator==(const MachineValueTypeSet
&S
) const {
179 return Words
== S
.Words
;
181 LLVM_ATTRIBUTE_ALWAYS_INLINE
182 bool operator!=(const MachineValueTypeSet
&S
) const {
183 return !operator==(S
);
187 friend struct const_iterator
;
188 std::array
<WordType
,NumWords
> Words
;
191 struct TypeSetByHwMode
: public InfoByHwMode
<MachineValueTypeSet
> {
192 using SetType
= MachineValueTypeSet
;
193 std::vector
<unsigned> AddrSpaces
;
195 TypeSetByHwMode() = default;
196 TypeSetByHwMode(const TypeSetByHwMode
&VTS
) = default;
197 TypeSetByHwMode(MVT::SimpleValueType VT
)
198 : TypeSetByHwMode(ValueTypeByHwMode(VT
)) {}
199 TypeSetByHwMode(ValueTypeByHwMode VT
)
200 : TypeSetByHwMode(ArrayRef
<ValueTypeByHwMode
>(&VT
, 1)) {}
201 TypeSetByHwMode(ArrayRef
<ValueTypeByHwMode
> VTList
);
203 SetType
&getOrCreate(unsigned Mode
) {
206 return Map
.insert({Mode
,SetType()}).first
->second
;
209 bool isValueTypeByHwMode(bool AllowEmpty
) const;
210 ValueTypeByHwMode
getValueTypeByHwMode() const;
212 LLVM_ATTRIBUTE_ALWAYS_INLINE
213 bool isMachineValueType() const {
214 return isDefaultOnly() && Map
.begin()->second
.size() == 1;
217 LLVM_ATTRIBUTE_ALWAYS_INLINE
218 MVT
getMachineValueType() const {
219 assert(isMachineValueType());
220 return *Map
.begin()->second
.begin();
223 bool isPossible() const;
225 LLVM_ATTRIBUTE_ALWAYS_INLINE
226 bool isDefaultOnly() const {
227 return Map
.size() == 1 && Map
.begin()->first
== DefaultMode
;
230 bool isPointer() const {
231 return getValueTypeByHwMode().isPointer();
234 unsigned getPtrAddrSpace() const {
236 return getValueTypeByHwMode().PtrAddrSpace
;
239 bool insert(const ValueTypeByHwMode
&VVT
);
240 bool constrain(const TypeSetByHwMode
&VTS
);
241 template <typename Predicate
> bool constrain(Predicate P
);
242 template <typename Predicate
>
243 bool assign_if(const TypeSetByHwMode
&VTS
, Predicate P
);
245 void writeToStream(raw_ostream
&OS
) const;
246 static void writeToStream(const SetType
&S
, raw_ostream
&OS
);
248 bool operator==(const TypeSetByHwMode
&VTS
) const;
249 bool operator!=(const TypeSetByHwMode
&VTS
) const { return !(*this == VTS
); }
252 bool validate() const;
255 unsigned PtrAddrSpace
= std::numeric_limits
<unsigned>::max();
256 /// Intersect two sets. Return true if anything has changed.
257 bool intersect(SetType
&Out
, const SetType
&In
);
260 raw_ostream
&operator<<(raw_ostream
&OS
, const TypeSetByHwMode
&T
);
263 TypeInfer(TreePattern
&T
) : TP(T
), ForceMode(0) {}
265 bool isConcrete(const TypeSetByHwMode
&VTS
, bool AllowEmpty
) const {
266 return VTS
.isValueTypeByHwMode(AllowEmpty
);
268 ValueTypeByHwMode
getConcrete(const TypeSetByHwMode
&VTS
,
269 bool AllowEmpty
) const {
270 assert(VTS
.isValueTypeByHwMode(AllowEmpty
));
271 return VTS
.getValueTypeByHwMode();
274 /// The protocol in the following functions (Merge*, force*, Enforce*,
275 /// expand*) is to return "true" if a change has been made, "false"
278 bool MergeInTypeInfo(TypeSetByHwMode
&Out
, const TypeSetByHwMode
&In
);
279 bool MergeInTypeInfo(TypeSetByHwMode
&Out
, MVT::SimpleValueType InVT
) {
280 return MergeInTypeInfo(Out
, TypeSetByHwMode(InVT
));
282 bool MergeInTypeInfo(TypeSetByHwMode
&Out
, ValueTypeByHwMode InVT
) {
283 return MergeInTypeInfo(Out
, TypeSetByHwMode(InVT
));
286 /// Reduce the set \p Out to have at most one element for each mode.
287 bool forceArbitrary(TypeSetByHwMode
&Out
);
289 /// The following four functions ensure that upon return the set \p Out
290 /// will only contain types of the specified kind: integer, floating-point,
291 /// scalar, or vector.
292 /// If \p Out is empty, all legal types of the specified kind will be added
293 /// to it. Otherwise, all types that are not of the specified kind will be
294 /// removed from \p Out.
295 bool EnforceInteger(TypeSetByHwMode
&Out
);
296 bool EnforceFloatingPoint(TypeSetByHwMode
&Out
);
297 bool EnforceScalar(TypeSetByHwMode
&Out
);
298 bool EnforceVector(TypeSetByHwMode
&Out
);
300 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
302 bool EnforceAny(TypeSetByHwMode
&Out
);
303 /// Make sure that for each type in \p Small, there exists a larger type
305 bool EnforceSmallerThan(TypeSetByHwMode
&Small
, TypeSetByHwMode
&Big
);
306 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
307 /// for each type U in \p Elem, U is a scalar type.
308 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
309 /// (vector) type T in \p Vec, such that U is the element type of T.
310 bool EnforceVectorEltTypeIs(TypeSetByHwMode
&Vec
, TypeSetByHwMode
&Elem
);
311 bool EnforceVectorEltTypeIs(TypeSetByHwMode
&Vec
,
312 const ValueTypeByHwMode
&VVT
);
313 /// Ensure that for each type T in \p Sub, T is a vector type, and there
314 /// exists a type U in \p Vec such that U is a vector type with the same
315 /// element type as T and at least as many elements as T.
316 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode
&Vec
,
317 TypeSetByHwMode
&Sub
);
318 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
319 /// 2. Ensure that for each vector type T in \p V, there exists a vector
320 /// type U in \p W, such that T and U have the same number of elements.
321 /// 3. Ensure that for each vector type U in \p W, there exists a vector
322 /// type T in \p V, such that T and U have the same number of elements
324 bool EnforceSameNumElts(TypeSetByHwMode
&V
, TypeSetByHwMode
&W
);
325 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
326 /// such that T and U have equal size in bits.
327 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
328 /// such that T and U have equal size in bits (reverse of 1).
329 bool EnforceSameSize(TypeSetByHwMode
&A
, TypeSetByHwMode
&B
);
331 /// For each overloaded type (i.e. of form *Any), replace it with the
332 /// corresponding subset of legal, specific types.
333 void expandOverloads(TypeSetByHwMode
&VTS
);
334 void expandOverloads(TypeSetByHwMode::SetType
&Out
,
335 const TypeSetByHwMode::SetType
&Legal
);
337 struct ValidateOnExit
{
338 ValidateOnExit(TypeSetByHwMode
&T
, TypeInfer
&TI
) : Infer(TI
), VTS(T
) {}
342 ~ValidateOnExit() {} // Empty destructor with NDEBUG.
345 TypeSetByHwMode
&VTS
;
348 struct SuppressValidation
{
349 SuppressValidation(TypeInfer
&TI
) : Infer(TI
), SavedValidate(TI
.Validate
) {
350 Infer
.Validate
= false;
352 ~SuppressValidation() {
353 Infer
.Validate
= SavedValidate
;
360 unsigned ForceMode
; // Mode to use when set.
361 bool CodeGen
= false; // Set during generation of matcher code.
362 bool Validate
= true; // Indicate whether to validate types.
365 const TypeSetByHwMode
&getLegalTypes();
367 /// Cached legal types (in default mode).
368 bool LegalTypesCached
= false;
369 TypeSetByHwMode LegalCache
;
372 /// Set type used to track multiply used variables in patterns
373 typedef StringSet
<> MultipleUseVarSet
;
375 /// SDTypeConstraint - This is a discriminated union of constraints,
376 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
377 struct SDTypeConstraint
{
378 SDTypeConstraint(Record
*R
, const CodeGenHwModes
&CGH
);
380 unsigned OperandNo
; // The operand # this constraint applies to.
382 SDTCisVT
, SDTCisPtrTy
, SDTCisInt
, SDTCisFP
, SDTCisVec
, SDTCisSameAs
,
383 SDTCisVTSmallerThanOp
, SDTCisOpSmallerThanOp
, SDTCisEltOfVec
,
384 SDTCisSubVecOfVec
, SDTCVecEltisVT
, SDTCisSameNumEltsAs
, SDTCisSameSizeAs
387 union { // The discriminated union.
389 unsigned OtherOperandNum
;
392 unsigned OtherOperandNum
;
393 } SDTCisVTSmallerThanOp_Info
;
395 unsigned BigOperandNum
;
396 } SDTCisOpSmallerThanOp_Info
;
398 unsigned OtherOperandNum
;
399 } SDTCisEltOfVec_Info
;
401 unsigned OtherOperandNum
;
402 } SDTCisSubVecOfVec_Info
;
404 unsigned OtherOperandNum
;
405 } SDTCisSameNumEltsAs_Info
;
407 unsigned OtherOperandNum
;
408 } SDTCisSameSizeAs_Info
;
411 // The VT for SDTCisVT and SDTCVecEltisVT.
412 // Must not be in the union because it has a non-trivial destructor.
413 ValueTypeByHwMode VVT
;
415 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
416 /// constraint to the nodes operands. This returns true if it makes a
417 /// change, false otherwise. If a type contradiction is found, an error
419 bool ApplyTypeConstraint(TreePatternNode
*N
, const SDNodeInfo
&NodeInfo
,
420 TreePattern
&TP
) const;
423 /// ScopedName - A name of a node associated with a "scope" that indicates
424 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
425 /// used. This enables substitution of pattern fragments while keeping track
426 /// of what name(s) were originally given to various nodes in the tree.
429 std::string Identifier
;
431 ScopedName(unsigned Scope
, StringRef Identifier
)
432 : Scope(Scope
), Identifier(Identifier
) {
434 "Scope == 0 is used to indicate predicates without arguments");
437 unsigned getScope() const { return Scope
; }
438 const std::string
&getIdentifier() const { return Identifier
; }
440 std::string
getFullName() const;
442 bool operator==(const ScopedName
&o
) const;
443 bool operator!=(const ScopedName
&o
) const;
446 /// SDNodeInfo - One of these records is created for each SDNode instance in
447 /// the target .td file. This represents the various dag nodes we will be
452 StringRef SDClassName
;
456 std::vector
<SDTypeConstraint
> TypeConstraints
;
458 // Parse the specified record.
459 SDNodeInfo(Record
*R
, const CodeGenHwModes
&CGH
);
461 unsigned getNumResults() const { return NumResults
; }
463 /// getNumOperands - This is the number of operands required or -1 if
465 int getNumOperands() const { return NumOperands
; }
466 Record
*getRecord() const { return Def
; }
467 StringRef
getEnumName() const { return EnumName
; }
468 StringRef
getSDClassName() const { return SDClassName
; }
470 const std::vector
<SDTypeConstraint
> &getTypeConstraints() const {
471 return TypeConstraints
;
474 /// getKnownType - If the type constraints on this node imply a fixed type
475 /// (e.g. all stores return void, etc), then return it as an
476 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
477 MVT::SimpleValueType
getKnownType(unsigned ResNo
) const;
479 /// hasProperty - Return true if this node has the specified property.
481 bool hasProperty(enum SDNP Prop
) const { return Properties
& (1 << Prop
); }
483 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
484 /// constraints for this node to the operands of the node. This returns
485 /// true if it makes a change, false otherwise. If a type contradiction is
486 /// found, an error is flagged.
487 bool ApplyTypeConstraints(TreePatternNode
*N
, TreePattern
&TP
) const;
490 /// TreePredicateFn - This is an abstraction that represents the predicates on
491 /// a PatFrag node. This is a simple one-word wrapper around a pointer to
492 /// provide nice accessors.
493 class TreePredicateFn
{
494 /// PatFragRec - This is the TreePattern for the PatFrag that we
495 /// originally came from.
496 TreePattern
*PatFragRec
;
498 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
499 TreePredicateFn(TreePattern
*N
);
502 TreePattern
*getOrigPatFragRecord() const { return PatFragRec
; }
504 /// isAlwaysTrue - Return true if this is a noop predicate.
505 bool isAlwaysTrue() const;
507 bool isImmediatePattern() const { return hasImmCode(); }
509 /// getImmediatePredicateCode - Return the code that evaluates this pattern if
510 /// this is an immediate predicate. It is an error to call this on a
511 /// non-immediate pattern.
512 std::string
getImmediatePredicateCode() const {
513 std::string Result
= getImmCode();
514 assert(!Result
.empty() && "Isn't an immediate pattern!");
518 bool operator==(const TreePredicateFn
&RHS
) const {
519 return PatFragRec
== RHS
.PatFragRec
;
522 bool operator!=(const TreePredicateFn
&RHS
) const { return !(*this == RHS
); }
524 /// Return the name to use in the generated code to reference this, this is
525 /// "Predicate_foo" if from a pattern fragment "foo".
526 std::string
getFnName() const;
528 /// getCodeToRunOnSDNode - Return the code for the function body that
529 /// evaluates this predicate. The argument is expected to be in "Node",
530 /// not N. This handles casting and conversion to a concrete node type as
532 std::string
getCodeToRunOnSDNode() const;
534 /// Get the data type of the argument to getImmediatePredicateCode().
535 StringRef
getImmType() const;
537 /// Get a string that describes the type returned by getImmType() but is
538 /// usable as part of an identifier.
539 StringRef
getImmTypeIdentifier() const;
541 // Predicate code uses the PatFrag's captured operands.
542 bool usesOperands() const;
544 // Is the desired predefined predicate for a load?
546 // Is the desired predefined predicate for a store?
547 bool isStore() const;
548 // Is the desired predefined predicate for an atomic?
549 bool isAtomic() const;
551 /// Is this predicate the predefined unindexed load predicate?
552 /// Is this predicate the predefined unindexed store predicate?
553 bool isUnindexed() const;
554 /// Is this predicate the predefined non-extending load predicate?
555 bool isNonExtLoad() const;
556 /// Is this predicate the predefined any-extend load predicate?
557 bool isAnyExtLoad() const;
558 /// Is this predicate the predefined sign-extend load predicate?
559 bool isSignExtLoad() const;
560 /// Is this predicate the predefined zero-extend load predicate?
561 bool isZeroExtLoad() const;
562 /// Is this predicate the predefined non-truncating store predicate?
563 bool isNonTruncStore() const;
564 /// Is this predicate the predefined truncating store predicate?
565 bool isTruncStore() const;
567 /// Is this predicate the predefined monotonic atomic predicate?
568 bool isAtomicOrderingMonotonic() const;
569 /// Is this predicate the predefined acquire atomic predicate?
570 bool isAtomicOrderingAcquire() const;
571 /// Is this predicate the predefined release atomic predicate?
572 bool isAtomicOrderingRelease() const;
573 /// Is this predicate the predefined acquire-release atomic predicate?
574 bool isAtomicOrderingAcquireRelease() const;
575 /// Is this predicate the predefined sequentially consistent atomic predicate?
576 bool isAtomicOrderingSequentiallyConsistent() const;
578 /// Is this predicate the predefined acquire-or-stronger atomic predicate?
579 bool isAtomicOrderingAcquireOrStronger() const;
580 /// Is this predicate the predefined weaker-than-acquire atomic predicate?
581 bool isAtomicOrderingWeakerThanAcquire() const;
583 /// Is this predicate the predefined release-or-stronger atomic predicate?
584 bool isAtomicOrderingReleaseOrStronger() const;
585 /// Is this predicate the predefined weaker-than-release atomic predicate?
586 bool isAtomicOrderingWeakerThanRelease() const;
588 /// If non-null, indicates that this predicate is a predefined memory VT
589 /// predicate for a load/store and returns the ValueType record for the memory VT.
590 Record
*getMemoryVT() const;
591 /// If non-null, indicates that this predicate is a predefined memory VT
592 /// predicate (checking only the scalar type) for load/store and returns the
593 /// ValueType record for the memory VT.
594 Record
*getScalarMemoryVT() const;
596 ListInit
*getAddressSpaces() const;
597 int64_t getMinAlignment() const;
599 // If true, indicates that GlobalISel-based C++ code was supplied.
600 bool hasGISelPredicateCode() const;
601 std::string
getGISelPredicateCode() const;
604 bool hasPredCode() const;
605 bool hasImmCode() const;
606 std::string
getPredCode() const;
607 std::string
getImmCode() const;
608 bool immCodeUsesAPInt() const;
609 bool immCodeUsesAPFloat() const;
611 bool isPredefinedPredicateEqualTo(StringRef Field
, bool Value
) const;
614 struct TreePredicateCall
{
617 // Scope -- unique identifier for retrieving named arguments. 0 is used when
618 // the predicate does not use named arguments.
621 TreePredicateCall(const TreePredicateFn
&Fn
, unsigned Scope
)
622 : Fn(Fn
), Scope(Scope
) {}
624 bool operator==(const TreePredicateCall
&o
) const {
625 return Fn
== o
.Fn
&& Scope
== o
.Scope
;
627 bool operator!=(const TreePredicateCall
&o
) const {
628 return !(*this == o
);
632 class TreePatternNode
{
633 /// The type of each node result. Before and during type inference, each
634 /// result may be a set of possible types. After (successful) type inference,
635 /// each is a single concrete type.
636 std::vector
<TypeSetByHwMode
> Types
;
638 /// The index of each result in results of the pattern.
639 std::vector
<unsigned> ResultPerm
;
641 /// Operator - The Record for the operator if this is an interior node (not
645 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
649 /// Name - The name given to this node with the :$foo notation.
653 std::vector
<ScopedName
> NamesAsPredicateArg
;
655 /// PredicateCalls - The predicate functions to execute on this node to check
656 /// for a match. If this list is empty, no predicate is involved.
657 std::vector
<TreePredicateCall
> PredicateCalls
;
659 /// TransformFn - The transformation function to execute on this node before
660 /// it can be substituted into the resulting instruction on a pattern match.
663 std::vector
<TreePatternNodePtr
> Children
;
666 TreePatternNode(Record
*Op
, std::vector
<TreePatternNodePtr
> Ch
,
668 : Operator(Op
), Val(nullptr), TransformFn(nullptr),
669 Children(std::move(Ch
)) {
670 Types
.resize(NumResults
);
671 ResultPerm
.resize(NumResults
);
672 std::iota(ResultPerm
.begin(), ResultPerm
.end(), 0);
674 TreePatternNode(Init
*val
, unsigned NumResults
) // leaf ctor
675 : Operator(nullptr), Val(val
), TransformFn(nullptr) {
676 Types
.resize(NumResults
);
677 ResultPerm
.resize(NumResults
);
678 std::iota(ResultPerm
.begin(), ResultPerm
.end(), 0);
681 bool hasName() const { return !Name
.empty(); }
682 const std::string
&getName() const { return Name
; }
683 void setName(StringRef N
) { Name
.assign(N
.begin(), N
.end()); }
685 const std::vector
<ScopedName
> &getNamesAsPredicateArg() const {
686 return NamesAsPredicateArg
;
688 void setNamesAsPredicateArg(const std::vector
<ScopedName
>& Names
) {
689 NamesAsPredicateArg
= Names
;
691 void addNameAsPredicateArg(const ScopedName
&N
) {
692 NamesAsPredicateArg
.push_back(N
);
695 bool isLeaf() const { return Val
!= nullptr; }
698 unsigned getNumTypes() const { return Types
.size(); }
699 ValueTypeByHwMode
getType(unsigned ResNo
) const {
700 return Types
[ResNo
].getValueTypeByHwMode();
702 const std::vector
<TypeSetByHwMode
> &getExtTypes() const { return Types
; }
703 const TypeSetByHwMode
&getExtType(unsigned ResNo
) const {
706 TypeSetByHwMode
&getExtType(unsigned ResNo
) { return Types
[ResNo
]; }
707 void setType(unsigned ResNo
, const TypeSetByHwMode
&T
) { Types
[ResNo
] = T
; }
708 MVT::SimpleValueType
getSimpleType(unsigned ResNo
) const {
709 return Types
[ResNo
].getMachineValueType().SimpleTy
;
712 bool hasConcreteType(unsigned ResNo
) const {
713 return Types
[ResNo
].isValueTypeByHwMode(false);
715 bool isTypeCompletelyUnknown(unsigned ResNo
, TreePattern
&TP
) const {
716 return Types
[ResNo
].empty();
719 unsigned getNumResults() const { return ResultPerm
.size(); }
720 unsigned getResultIndex(unsigned ResNo
) const { return ResultPerm
[ResNo
]; }
721 void setResultIndex(unsigned ResNo
, unsigned RI
) { ResultPerm
[ResNo
] = RI
; }
723 Init
*getLeafValue() const { assert(isLeaf()); return Val
; }
724 Record
*getOperator() const { assert(!isLeaf()); return Operator
; }
726 unsigned getNumChildren() const { return Children
.size(); }
727 TreePatternNode
*getChild(unsigned N
) const { return Children
[N
].get(); }
728 const TreePatternNodePtr
&getChildShared(unsigned N
) const {
731 void setChild(unsigned i
, TreePatternNodePtr N
) { Children
[i
] = N
; }
733 /// hasChild - Return true if N is any of our children.
734 bool hasChild(const TreePatternNode
*N
) const {
735 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
736 if (Children
[i
].get() == N
)
741 bool hasProperTypeByHwMode() const;
742 bool hasPossibleType() const;
743 bool setDefaultMode(unsigned Mode
);
745 bool hasAnyPredicate() const { return !PredicateCalls
.empty(); }
747 const std::vector
<TreePredicateCall
> &getPredicateCalls() const {
748 return PredicateCalls
;
750 void clearPredicateCalls() { PredicateCalls
.clear(); }
751 void setPredicateCalls(const std::vector
<TreePredicateCall
> &Calls
) {
752 assert(PredicateCalls
.empty() && "Overwriting non-empty predicate list!");
753 PredicateCalls
= Calls
;
755 void addPredicateCall(const TreePredicateCall
&Call
) {
756 assert(!Call
.Fn
.isAlwaysTrue() && "Empty predicate string!");
757 assert(!is_contained(PredicateCalls
, Call
) && "predicate applied recursively");
758 PredicateCalls
.push_back(Call
);
760 void addPredicateCall(const TreePredicateFn
&Fn
, unsigned Scope
) {
761 assert((Scope
!= 0) == Fn
.usesOperands());
762 addPredicateCall(TreePredicateCall(Fn
, Scope
));
765 Record
*getTransformFn() const { return TransformFn
; }
766 void setTransformFn(Record
*Fn
) { TransformFn
= Fn
; }
768 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
769 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
770 const CodeGenIntrinsic
*getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const;
772 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
773 /// return the ComplexPattern information, otherwise return null.
774 const ComplexPattern
*
775 getComplexPatternInfo(const CodeGenDAGPatterns
&CGP
) const;
777 /// Returns the number of MachineInstr operands that would be produced by this
778 /// node if it mapped directly to an output Instruction's
779 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
780 /// for Operands; otherwise 1.
781 unsigned getNumMIResults(const CodeGenDAGPatterns
&CGP
) const;
783 /// NodeHasProperty - Return true if this node has the specified property.
784 bool NodeHasProperty(SDNP Property
, const CodeGenDAGPatterns
&CGP
) const;
786 /// TreeHasProperty - Return true if any node in this tree has the specified
788 bool TreeHasProperty(SDNP Property
, const CodeGenDAGPatterns
&CGP
) const;
790 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
791 /// marked isCommutative.
792 bool isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const;
794 void print(raw_ostream
&OS
) const;
797 public: // Higher level manipulation routines.
799 /// clone - Return a new copy of this tree.
801 TreePatternNodePtr
clone() const;
803 /// RemoveAllTypes - Recursively strip all the types of this tree.
804 void RemoveAllTypes();
806 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
807 /// the specified node. For this comparison, all of the state of the node
808 /// is considered, except for the assigned name. Nodes with differing names
809 /// that are otherwise identical are considered isomorphic.
810 bool isIsomorphicTo(const TreePatternNode
*N
,
811 const MultipleUseVarSet
&DepVars
) const;
813 /// SubstituteFormalArguments - Replace the formal arguments in this tree
814 /// with actual values specified by ArgMap.
816 SubstituteFormalArguments(std::map
<std::string
, TreePatternNodePtr
> &ArgMap
);
818 /// InlinePatternFragments - If this pattern refers to any pattern
819 /// fragments, return the set of inlined versions (this can be more than
820 /// one if a PatFrags record has multiple alternatives).
821 void InlinePatternFragments(TreePatternNodePtr T
,
823 std::vector
<TreePatternNodePtr
> &OutAlternatives
);
825 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
826 /// this node and its children in the tree. This returns true if it makes a
827 /// change, false otherwise. If a type contradiction is found, flag an error.
828 bool ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
);
830 /// UpdateNodeType - Set the node type of N to VT if VT contains
831 /// information. If N already contains a conflicting type, then flag an
832 /// error. This returns true if any information was updated.
834 bool UpdateNodeType(unsigned ResNo
, const TypeSetByHwMode
&InTy
,
836 bool UpdateNodeType(unsigned ResNo
, MVT::SimpleValueType InTy
,
838 bool UpdateNodeType(unsigned ResNo
, ValueTypeByHwMode InTy
,
841 // Update node type with types inferred from an instruction operand or result
842 // def from the ins/outs lists.
843 // Return true if the type changed.
844 bool UpdateNodeTypeFromInst(unsigned ResNo
, Record
*Operand
, TreePattern
&TP
);
846 /// ContainsUnresolvedType - Return true if this tree contains any
847 /// unresolved types.
848 bool ContainsUnresolvedType(TreePattern
&TP
) const;
850 /// canPatternMatch - If it is impossible for this pattern to match on this
851 /// target, fill in Reason and return false. Otherwise, return true.
852 bool canPatternMatch(std::string
&Reason
, const CodeGenDAGPatterns
&CDP
);
855 inline raw_ostream
&operator<<(raw_ostream
&OS
, const TreePatternNode
&TPN
) {
861 /// TreePattern - Represent a pattern, used for instructions, pattern
865 /// Trees - The list of pattern trees which corresponds to this pattern.
866 /// Note that PatFrag's only have a single tree.
868 std::vector
<TreePatternNodePtr
> Trees
;
870 /// NamedNodes - This is all of the nodes that have names in the trees in this
872 StringMap
<SmallVector
<TreePatternNode
*, 1>> NamedNodes
;
874 /// TheRecord - The actual TableGen record corresponding to this pattern.
878 /// Args - This is a list of all of the arguments to this pattern (for
879 /// PatFrag patterns), which are the 'node' markers in this pattern.
880 std::vector
<std::string
> Args
;
882 /// CDP - the top-level object coordinating this madness.
884 CodeGenDAGPatterns
&CDP
;
886 /// isInputPattern - True if this is an input pattern, something to match.
887 /// False if this is an output pattern, something to emit.
890 /// hasError - True if the currently processed nodes have unresolvable types
891 /// or other non-fatal errors
894 /// It's important that the usage of operands in ComplexPatterns is
895 /// consistent: each named operand can be defined by at most one
896 /// ComplexPattern. This records the ComplexPattern instance and the operand
897 /// number for each operand encountered in a ComplexPattern to aid in that
899 StringMap
<std::pair
<Record
*, unsigned>> ComplexPatternOperands
;
905 /// TreePattern constructor - Parse the specified DagInits into the
907 TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
908 CodeGenDAGPatterns
&ise
);
909 TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
910 CodeGenDAGPatterns
&ise
);
911 TreePattern(Record
*TheRec
, TreePatternNodePtr Pat
, bool isInput
,
912 CodeGenDAGPatterns
&ise
);
914 /// getTrees - Return the tree patterns which corresponds to this pattern.
916 const std::vector
<TreePatternNodePtr
> &getTrees() const { return Trees
; }
917 unsigned getNumTrees() const { return Trees
.size(); }
918 const TreePatternNodePtr
&getTree(unsigned i
) const { return Trees
[i
]; }
919 void setTree(unsigned i
, TreePatternNodePtr Tree
) { Trees
[i
] = Tree
; }
920 const TreePatternNodePtr
&getOnlyTree() const {
921 assert(Trees
.size() == 1 && "Doesn't have exactly one pattern!");
925 const StringMap
<SmallVector
<TreePatternNode
*, 1>> &getNamedNodesMap() {
926 if (NamedNodes
.empty())
931 /// getRecord - Return the actual TableGen record corresponding to this
934 Record
*getRecord() const { return TheRecord
; }
936 unsigned getNumArgs() const { return Args
.size(); }
937 const std::string
&getArgName(unsigned i
) const {
938 assert(i
< Args
.size() && "Argument reference out of range!");
941 std::vector
<std::string
> &getArgList() { return Args
; }
943 CodeGenDAGPatterns
&getDAGPatterns() const { return CDP
; }
945 /// InlinePatternFragments - If this pattern refers to any pattern
946 /// fragments, inline them into place, giving us a pattern without any
947 /// PatFrags references. This may increase the number of trees in the
948 /// pattern if a PatFrags has multiple alternatives.
949 void InlinePatternFragments() {
950 std::vector
<TreePatternNodePtr
> Copy
= Trees
;
952 for (unsigned i
= 0, e
= Copy
.size(); i
!= e
; ++i
)
953 Copy
[i
]->InlinePatternFragments(Copy
[i
], *this, Trees
);
956 /// InferAllTypes - Infer/propagate as many types throughout the expression
957 /// patterns as possible. Return true if all types are inferred, false
958 /// otherwise. Bail out if a type contradiction is found.
960 const StringMap
<SmallVector
<TreePatternNode
*, 1>> *NamedTypes
= nullptr);
962 /// error - If this is the first error in the current resolution step,
963 /// print it and set the error flag. Otherwise, continue silently.
964 void error(const Twine
&Msg
);
965 bool hasError() const {
972 TypeInfer
&getInfer() { return Infer
; }
974 void print(raw_ostream
&OS
) const;
978 TreePatternNodePtr
ParseTreePattern(Init
*DI
, StringRef OpName
);
979 void ComputeNamedNodes();
980 void ComputeNamedNodes(TreePatternNode
*N
);
984 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo
,
985 const TypeSetByHwMode
&InTy
,
987 TypeSetByHwMode
VTS(InTy
);
988 TP
.getInfer().expandOverloads(VTS
);
989 return TP
.getInfer().MergeInTypeInfo(Types
[ResNo
], VTS
);
992 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo
,
993 MVT::SimpleValueType InTy
,
995 TypeSetByHwMode
VTS(InTy
);
996 TP
.getInfer().expandOverloads(VTS
);
997 return TP
.getInfer().MergeInTypeInfo(Types
[ResNo
], VTS
);
1000 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo
,
1001 ValueTypeByHwMode InTy
,
1003 TypeSetByHwMode
VTS(InTy
);
1004 TP
.getInfer().expandOverloads(VTS
);
1005 return TP
.getInfer().MergeInTypeInfo(Types
[ResNo
], VTS
);
1009 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1010 /// that has a set ExecuteAlways / DefaultOps field.
1011 struct DAGDefaultOperand
{
1012 std::vector
<TreePatternNodePtr
> DefaultOps
;
1015 class DAGInstruction
{
1016 std::vector
<Record
*> Results
;
1017 std::vector
<Record
*> Operands
;
1018 std::vector
<Record
*> ImpResults
;
1019 TreePatternNodePtr SrcPattern
;
1020 TreePatternNodePtr ResultPattern
;
1023 DAGInstruction(const std::vector
<Record
*> &results
,
1024 const std::vector
<Record
*> &operands
,
1025 const std::vector
<Record
*> &impresults
,
1026 TreePatternNodePtr srcpattern
= nullptr,
1027 TreePatternNodePtr resultpattern
= nullptr)
1028 : Results(results
), Operands(operands
), ImpResults(impresults
),
1029 SrcPattern(srcpattern
), ResultPattern(resultpattern
) {}
1031 unsigned getNumResults() const { return Results
.size(); }
1032 unsigned getNumOperands() const { return Operands
.size(); }
1033 unsigned getNumImpResults() const { return ImpResults
.size(); }
1034 const std::vector
<Record
*>& getImpResults() const { return ImpResults
; }
1036 Record
*getResult(unsigned RN
) const {
1037 assert(RN
< Results
.size());
1041 Record
*getOperand(unsigned ON
) const {
1042 assert(ON
< Operands
.size());
1043 return Operands
[ON
];
1046 Record
*getImpResult(unsigned RN
) const {
1047 assert(RN
< ImpResults
.size());
1048 return ImpResults
[RN
];
1051 TreePatternNodePtr
getSrcPattern() const { return SrcPattern
; }
1052 TreePatternNodePtr
getResultPattern() const { return ResultPattern
; }
1055 /// This class represents a condition that has to be satisfied for a pattern
1056 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
1057 /// in addition to the Target.td's predicates, this class can also represent
1058 /// conditions associated with HW modes. Both types will eventually become
1059 /// strings containing C++ code to be executed, the difference is in how
1060 /// these strings are generated.
1063 Predicate(Record
*R
, bool C
= true) : Def(R
), IfCond(C
), IsHwMode(false) {
1064 assert(R
->isSubClassOf("Predicate") &&
1065 "Predicate objects should only be created for records derived"
1066 "from Predicate class");
1068 Predicate(StringRef FS
, bool C
= true) : Def(nullptr), Features(FS
.str()),
1069 IfCond(C
), IsHwMode(true) {}
1071 /// Return a string which contains the C++ condition code that will serve
1072 /// as a predicate during instruction selection.
1073 std::string
getCondString() const {
1074 // The string will excute in a subclass of SelectionDAGISel.
1075 // Cast to std::string explicitly to avoid ambiguity with StringRef.
1076 std::string C
= IsHwMode
1077 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features
+ "\")")
1078 : std::string(Def
->getValueAsString("CondString"));
1081 return IfCond
? C
: "!("+C
+')';
1084 bool operator==(const Predicate
&P
) const {
1085 return IfCond
== P
.IfCond
&& IsHwMode
== P
.IsHwMode
&& Def
== P
.Def
;
1087 bool operator<(const Predicate
&P
) const {
1088 if (IsHwMode
!= P
.IsHwMode
)
1089 return IsHwMode
< P
.IsHwMode
;
1090 assert(!Def
== !P
.Def
&& "Inconsistency between Def and IsHwMode");
1091 if (IfCond
!= P
.IfCond
)
1092 return IfCond
< P
.IfCond
;
1094 return LessRecord()(Def
, P
.Def
);
1095 return Features
< P
.Features
;
1097 Record
*Def
; ///< Predicate definition from .td file, null for
1099 std::string Features
; ///< Feature string for HW mode.
1100 bool IfCond
; ///< The boolean value that the condition has to
1101 ///< evaluate to for this predicate to be true.
1102 bool IsHwMode
; ///< Does this predicate correspond to a HW mode?
1105 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1106 /// processed to produce isel.
1107 class PatternToMatch
{
1109 PatternToMatch(Record
*srcrecord
, std::vector
<Predicate
> preds
,
1110 TreePatternNodePtr src
, TreePatternNodePtr dst
,
1111 std::vector
<Record
*> dstregs
, int complexity
,
1112 unsigned uid
, unsigned setmode
= 0)
1113 : SrcRecord(srcrecord
), SrcPattern(src
), DstPattern(dst
),
1114 Predicates(std::move(preds
)), Dstregs(std::move(dstregs
)),
1115 AddedComplexity(complexity
), ID(uid
), ForceMode(setmode
) {}
1117 Record
*SrcRecord
; // Originating Record for the pattern.
1118 TreePatternNodePtr SrcPattern
; // Source pattern to match.
1119 TreePatternNodePtr DstPattern
; // Resulting pattern.
1120 std::vector
<Predicate
> Predicates
; // Top level predicate conditions
1122 std::vector
<Record
*> Dstregs
; // Physical register defs being matched.
1123 int AddedComplexity
; // Add to matching pattern complexity.
1124 unsigned ID
; // Unique ID for the record.
1125 unsigned ForceMode
; // Force this mode in type inference when set.
1127 Record
*getSrcRecord() const { return SrcRecord
; }
1128 TreePatternNode
*getSrcPattern() const { return SrcPattern
.get(); }
1129 TreePatternNodePtr
getSrcPatternShared() const { return SrcPattern
; }
1130 TreePatternNode
*getDstPattern() const { return DstPattern
.get(); }
1131 TreePatternNodePtr
getDstPatternShared() const { return DstPattern
; }
1132 const std::vector
<Record
*> &getDstRegs() const { return Dstregs
; }
1133 int getAddedComplexity() const { return AddedComplexity
; }
1134 const std::vector
<Predicate
> &getPredicates() const { return Predicates
; }
1136 std::string
getPredicateCheck() const;
1138 /// Compute the complexity metric for the input pattern. This roughly
1139 /// corresponds to the number of nodes that are covered.
1140 int getPatternComplexity(const CodeGenDAGPatterns
&CGP
) const;
1143 class CodeGenDAGPatterns
{
1144 RecordKeeper
&Records
;
1145 CodeGenTarget Target
;
1146 CodeGenIntrinsicTable Intrinsics
;
1147 CodeGenIntrinsicTable TgtIntrinsics
;
1149 std::map
<Record
*, SDNodeInfo
, LessRecordByID
> SDNodes
;
1150 std::map
<Record
*, std::pair
<Record
*, std::string
>, LessRecordByID
>
1152 std::map
<Record
*, ComplexPattern
, LessRecordByID
> ComplexPatterns
;
1153 std::map
<Record
*, std::unique_ptr
<TreePattern
>, LessRecordByID
>
1155 std::map
<Record
*, DAGDefaultOperand
, LessRecordByID
> DefaultOperands
;
1156 std::map
<Record
*, DAGInstruction
, LessRecordByID
> Instructions
;
1158 // Specific SDNode definitions:
1159 Record
*intrinsic_void_sdnode
;
1160 Record
*intrinsic_w_chain_sdnode
, *intrinsic_wo_chain_sdnode
;
1162 /// PatternsToMatch - All of the things we are matching on the DAG. The first
1163 /// value is the pattern to match, the second pattern is the result to
1165 std::vector
<PatternToMatch
> PatternsToMatch
;
1167 TypeSetByHwMode LegalVTS
;
1169 using PatternRewriterFn
= std::function
<void (TreePattern
*)>;
1170 PatternRewriterFn PatternRewriter
;
1172 unsigned NumScopes
= 0;
1175 CodeGenDAGPatterns(RecordKeeper
&R
,
1176 PatternRewriterFn PatternRewriter
= nullptr);
1178 CodeGenTarget
&getTargetInfo() { return Target
; }
1179 const CodeGenTarget
&getTargetInfo() const { return Target
; }
1180 const TypeSetByHwMode
&getLegalTypes() const { return LegalVTS
; }
1182 Record
*getSDNodeNamed(const std::string
&Name
) const;
1184 const SDNodeInfo
&getSDNodeInfo(Record
*R
) const {
1185 auto F
= SDNodes
.find(R
);
1186 assert(F
!= SDNodes
.end() && "Unknown node!");
1190 // Node transformation lookups.
1191 typedef std::pair
<Record
*, std::string
> NodeXForm
;
1192 const NodeXForm
&getSDNodeTransform(Record
*R
) const {
1193 auto F
= SDNodeXForms
.find(R
);
1194 assert(F
!= SDNodeXForms
.end() && "Invalid transform!");
1198 typedef std::map
<Record
*, NodeXForm
, LessRecordByID
>::const_iterator
1200 nx_iterator
nx_begin() const { return SDNodeXForms
.begin(); }
1201 nx_iterator
nx_end() const { return SDNodeXForms
.end(); }
1204 const ComplexPattern
&getComplexPattern(Record
*R
) const {
1205 auto F
= ComplexPatterns
.find(R
);
1206 assert(F
!= ComplexPatterns
.end() && "Unknown addressing mode!");
1210 const CodeGenIntrinsic
&getIntrinsic(Record
*R
) const {
1211 for (unsigned i
= 0, e
= Intrinsics
.size(); i
!= e
; ++i
)
1212 if (Intrinsics
[i
].TheDef
== R
) return Intrinsics
[i
];
1213 for (unsigned i
= 0, e
= TgtIntrinsics
.size(); i
!= e
; ++i
)
1214 if (TgtIntrinsics
[i
].TheDef
== R
) return TgtIntrinsics
[i
];
1215 llvm_unreachable("Unknown intrinsic!");
1218 const CodeGenIntrinsic
&getIntrinsicInfo(unsigned IID
) const {
1219 if (IID
-1 < Intrinsics
.size())
1220 return Intrinsics
[IID
-1];
1221 if (IID
-Intrinsics
.size()-1 < TgtIntrinsics
.size())
1222 return TgtIntrinsics
[IID
-Intrinsics
.size()-1];
1223 llvm_unreachable("Bad intrinsic ID!");
1226 unsigned getIntrinsicID(Record
*R
) const {
1227 for (unsigned i
= 0, e
= Intrinsics
.size(); i
!= e
; ++i
)
1228 if (Intrinsics
[i
].TheDef
== R
) return i
;
1229 for (unsigned i
= 0, e
= TgtIntrinsics
.size(); i
!= e
; ++i
)
1230 if (TgtIntrinsics
[i
].TheDef
== R
) return i
+ Intrinsics
.size();
1231 llvm_unreachable("Unknown intrinsic!");
1234 const DAGDefaultOperand
&getDefaultOperand(Record
*R
) const {
1235 auto F
= DefaultOperands
.find(R
);
1236 assert(F
!= DefaultOperands
.end() &&"Isn't an analyzed default operand!");
1240 // Pattern Fragment information.
1241 TreePattern
*getPatternFragment(Record
*R
) const {
1242 auto F
= PatternFragments
.find(R
);
1243 assert(F
!= PatternFragments
.end() && "Invalid pattern fragment request!");
1244 return F
->second
.get();
1246 TreePattern
*getPatternFragmentIfRead(Record
*R
) const {
1247 auto F
= PatternFragments
.find(R
);
1248 if (F
== PatternFragments
.end())
1250 return F
->second
.get();
1253 typedef std::map
<Record
*, std::unique_ptr
<TreePattern
>,
1254 LessRecordByID
>::const_iterator pf_iterator
;
1255 pf_iterator
pf_begin() const { return PatternFragments
.begin(); }
1256 pf_iterator
pf_end() const { return PatternFragments
.end(); }
1257 iterator_range
<pf_iterator
> ptfs() const { return PatternFragments
; }
1259 // Patterns to match information.
1260 typedef std::vector
<PatternToMatch
>::const_iterator ptm_iterator
;
1261 ptm_iterator
ptm_begin() const { return PatternsToMatch
.begin(); }
1262 ptm_iterator
ptm_end() const { return PatternsToMatch
.end(); }
1263 iterator_range
<ptm_iterator
> ptms() const { return PatternsToMatch
; }
1265 /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1266 typedef std::map
<Record
*, DAGInstruction
, LessRecordByID
> DAGInstMap
;
1267 void parseInstructionPattern(
1268 CodeGenInstruction
&CGI
, ListInit
*Pattern
,
1269 DAGInstMap
&DAGInsts
);
1271 const DAGInstruction
&getInstruction(Record
*R
) const {
1272 auto F
= Instructions
.find(R
);
1273 assert(F
!= Instructions
.end() && "Unknown instruction!");
1277 Record
*get_intrinsic_void_sdnode() const {
1278 return intrinsic_void_sdnode
;
1280 Record
*get_intrinsic_w_chain_sdnode() const {
1281 return intrinsic_w_chain_sdnode
;
1283 Record
*get_intrinsic_wo_chain_sdnode() const {
1284 return intrinsic_wo_chain_sdnode
;
1287 bool hasTargetIntrinsics() { return !TgtIntrinsics
.empty(); }
1289 unsigned allocateScope() { return ++NumScopes
; }
1291 bool operandHasDefault(Record
*Op
) const {
1292 return Op
->isSubClassOf("OperandWithDefaultOps") &&
1293 !getDefaultOperand(Op
).DefaultOps
.empty();
1297 void ParseNodeInfo();
1298 void ParseNodeTransforms();
1299 void ParseComplexPatterns();
1300 void ParsePatternFragments(bool OutFrags
= false);
1301 void ParseDefaultOperands();
1302 void ParseInstructions();
1303 void ParsePatterns();
1304 void ExpandHwModeBasedTypes();
1305 void InferInstructionFlags();
1306 void GenerateVariants();
1307 void VerifyInstructionFlags();
1309 std::vector
<Predicate
> makePredList(ListInit
*L
);
1311 void ParseOnePattern(Record
*TheDef
,
1312 TreePattern
&Pattern
, TreePattern
&Result
,
1313 const std::vector
<Record
*> &InstImpResults
);
1314 void AddPatternToMatch(TreePattern
*Pattern
, PatternToMatch
&&PTM
);
1315 void FindPatternInputsAndOutputs(
1316 TreePattern
&I
, TreePatternNodePtr Pat
,
1317 std::map
<std::string
, TreePatternNodePtr
> &InstInputs
,
1318 MapVector
<std::string
, TreePatternNodePtr
,
1319 std::map
<std::string
, unsigned>> &InstResults
,
1320 std::vector
<Record
*> &InstImpResults
);
1324 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode
*N
,
1325 TreePattern
&TP
) const {
1326 bool MadeChange
= false;
1327 for (unsigned i
= 0, e
= TypeConstraints
.size(); i
!= e
; ++i
)
1328 MadeChange
|= TypeConstraints
[i
].ApplyTypeConstraint(N
, *this, TP
);
1332 } // end namespace llvm