1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends. This makes it easier to access the data and
11 // provides a single place that needs to check it for validity. All of these
12 // classes abort on error conditions.
14 //===----------------------------------------------------------------------===//
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
30 cl::OptionCategory
AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory
AsmWriterCat("Options for -gen-asm-writer");
33 static cl::opt
<unsigned>
34 AsmParserNum("asmparsernum", cl::init(0),
35 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36 cl::cat(AsmParserCat
));
38 static cl::opt
<unsigned>
39 AsmWriterNum("asmwriternum", cl::init(0),
40 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41 cl::cat(AsmWriterCat
));
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType
llvm::getValueType(Record
*Rec
) {
46 return (MVT::SimpleValueType
)Rec
->getValueAsInt("Value");
49 StringRef
llvm::getName(MVT::SimpleValueType T
) {
51 case MVT::Other
: return "UNKNOWN";
52 case MVT::iPTR
: return "TLI.getPointerTy()";
53 case MVT::iPTRAny
: return "TLI.getPointerTy()";
54 default: return getEnumName(T
);
58 StringRef
llvm::getEnumName(MVT::SimpleValueType T
) {
60 case MVT::Other
: return "MVT::Other";
61 case MVT::i1
: return "MVT::i1";
62 case MVT::i8
: return "MVT::i8";
63 case MVT::i16
: return "MVT::i16";
64 case MVT::i32
: return "MVT::i32";
65 case MVT::i64
: return "MVT::i64";
66 case MVT::i128
: return "MVT::i128";
67 case MVT::Any
: return "MVT::Any";
68 case MVT::iAny
: return "MVT::iAny";
69 case MVT::fAny
: return "MVT::fAny";
70 case MVT::vAny
: return "MVT::vAny";
71 case MVT::f16
: return "MVT::f16";
72 case MVT::f32
: return "MVT::f32";
73 case MVT::f64
: return "MVT::f64";
74 case MVT::f80
: return "MVT::f80";
75 case MVT::f128
: return "MVT::f128";
76 case MVT::ppcf128
: return "MVT::ppcf128";
77 case MVT::x86mmx
: return "MVT::x86mmx";
78 case MVT::Glue
: return "MVT::Glue";
79 case MVT::isVoid
: return "MVT::isVoid";
80 case MVT::v1i1
: return "MVT::v1i1";
81 case MVT::v2i1
: return "MVT::v2i1";
82 case MVT::v4i1
: return "MVT::v4i1";
83 case MVT::v8i1
: return "MVT::v8i1";
84 case MVT::v16i1
: return "MVT::v16i1";
85 case MVT::v32i1
: return "MVT::v32i1";
86 case MVT::v64i1
: return "MVT::v64i1";
87 case MVT::v128i1
: return "MVT::v128i1";
88 case MVT::v512i1
: return "MVT::v512i1";
89 case MVT::v1024i1
: return "MVT::v1024i1";
90 case MVT::v1i8
: return "MVT::v1i8";
91 case MVT::v2i8
: return "MVT::v2i8";
92 case MVT::v4i8
: return "MVT::v4i8";
93 case MVT::v8i8
: return "MVT::v8i8";
94 case MVT::v16i8
: return "MVT::v16i8";
95 case MVT::v32i8
: return "MVT::v32i8";
96 case MVT::v64i8
: return "MVT::v64i8";
97 case MVT::v128i8
: return "MVT::v128i8";
98 case MVT::v256i8
: return "MVT::v256i8";
99 case MVT::v1i16
: return "MVT::v1i16";
100 case MVT::v2i16
: return "MVT::v2i16";
101 case MVT::v3i16
: return "MVT::v3i16";
102 case MVT::v4i16
: return "MVT::v4i16";
103 case MVT::v8i16
: return "MVT::v8i16";
104 case MVT::v16i16
: return "MVT::v16i16";
105 case MVT::v32i16
: return "MVT::v32i16";
106 case MVT::v64i16
: return "MVT::v64i16";
107 case MVT::v128i16
: return "MVT::v128i16";
108 case MVT::v1i32
: return "MVT::v1i32";
109 case MVT::v2i32
: return "MVT::v2i32";
110 case MVT::v3i32
: return "MVT::v3i32";
111 case MVT::v4i32
: return "MVT::v4i32";
112 case MVT::v5i32
: return "MVT::v5i32";
113 case MVT::v8i32
: return "MVT::v8i32";
114 case MVT::v16i32
: return "MVT::v16i32";
115 case MVT::v32i32
: return "MVT::v32i32";
116 case MVT::v64i32
: return "MVT::v64i32";
117 case MVT::v128i32
: return "MVT::v128i32";
118 case MVT::v256i32
: return "MVT::v256i32";
119 case MVT::v512i32
: return "MVT::v512i32";
120 case MVT::v1024i32
: return "MVT::v1024i32";
121 case MVT::v2048i32
: return "MVT::v2048i32";
122 case MVT::v1i64
: return "MVT::v1i64";
123 case MVT::v2i64
: return "MVT::v2i64";
124 case MVT::v4i64
: return "MVT::v4i64";
125 case MVT::v8i64
: return "MVT::v8i64";
126 case MVT::v16i64
: return "MVT::v16i64";
127 case MVT::v32i64
: return "MVT::v32i64";
128 case MVT::v1i128
: return "MVT::v1i128";
129 case MVT::v2f16
: return "MVT::v2f16";
130 case MVT::v3f16
: return "MVT::v3f16";
131 case MVT::v4f16
: return "MVT::v4f16";
132 case MVT::v8f16
: return "MVT::v8f16";
133 case MVT::v16f16
: return "MVT::v16f16";
134 case MVT::v32f16
: return "MVT::v32f16";
135 case MVT::v1f32
: return "MVT::v1f32";
136 case MVT::v2f32
: return "MVT::v2f32";
137 case MVT::v3f32
: return "MVT::v3f32";
138 case MVT::v4f32
: return "MVT::v4f32";
139 case MVT::v5f32
: return "MVT::v5f32";
140 case MVT::v8f32
: return "MVT::v8f32";
141 case MVT::v16f32
: return "MVT::v16f32";
142 case MVT::v32f32
: return "MVT::v32f32";
143 case MVT::v64f32
: return "MVT::v64f32";
144 case MVT::v128f32
: return "MVT::v128f32";
145 case MVT::v256f32
: return "MVT::v256f32";
146 case MVT::v512f32
: return "MVT::v512f32";
147 case MVT::v1024f32
: return "MVT::v1024f32";
148 case MVT::v2048f32
: return "MVT::v2048f32";
149 case MVT::v1f64
: return "MVT::v1f64";
150 case MVT::v2f64
: return "MVT::v2f64";
151 case MVT::v4f64
: return "MVT::v4f64";
152 case MVT::v8f64
: return "MVT::v8f64";
153 case MVT::nxv1i1
: return "MVT::nxv1i1";
154 case MVT::nxv2i1
: return "MVT::nxv2i1";
155 case MVT::nxv4i1
: return "MVT::nxv4i1";
156 case MVT::nxv8i1
: return "MVT::nxv8i1";
157 case MVT::nxv16i1
: return "MVT::nxv16i1";
158 case MVT::nxv32i1
: return "MVT::nxv32i1";
159 case MVT::nxv1i8
: return "MVT::nxv1i8";
160 case MVT::nxv2i8
: return "MVT::nxv2i8";
161 case MVT::nxv4i8
: return "MVT::nxv4i8";
162 case MVT::nxv8i8
: return "MVT::nxv8i8";
163 case MVT::nxv16i8
: return "MVT::nxv16i8";
164 case MVT::nxv32i8
: return "MVT::nxv32i8";
165 case MVT::nxv1i16
: return "MVT::nxv1i16";
166 case MVT::nxv2i16
: return "MVT::nxv2i16";
167 case MVT::nxv4i16
: return "MVT::nxv4i16";
168 case MVT::nxv8i16
: return "MVT::nxv8i16";
169 case MVT::nxv16i16
: return "MVT::nxv16i16";
170 case MVT::nxv32i16
: return "MVT::nxv32i16";
171 case MVT::nxv1i32
: return "MVT::nxv1i32";
172 case MVT::nxv2i32
: return "MVT::nxv2i32";
173 case MVT::nxv4i32
: return "MVT::nxv4i32";
174 case MVT::nxv8i32
: return "MVT::nxv8i32";
175 case MVT::nxv16i32
: return "MVT::nxv16i32";
176 case MVT::nxv1i64
: return "MVT::nxv1i64";
177 case MVT::nxv2i64
: return "MVT::nxv2i64";
178 case MVT::nxv4i64
: return "MVT::nxv4i64";
179 case MVT::nxv8i64
: return "MVT::nxv8i64";
180 case MVT::nxv16i64
: return "MVT::nxv16i64";
181 case MVT::nxv2f16
: return "MVT::nxv2f16";
182 case MVT::nxv4f16
: return "MVT::nxv4f16";
183 case MVT::nxv8f16
: return "MVT::nxv8f16";
184 case MVT::nxv1f32
: return "MVT::nxv1f32";
185 case MVT::nxv2f32
: return "MVT::nxv2f32";
186 case MVT::nxv4f32
: return "MVT::nxv4f32";
187 case MVT::nxv8f32
: return "MVT::nxv8f32";
188 case MVT::nxv16f32
: return "MVT::nxv16f32";
189 case MVT::nxv1f64
: return "MVT::nxv1f64";
190 case MVT::nxv2f64
: return "MVT::nxv2f64";
191 case MVT::nxv4f64
: return "MVT::nxv4f64";
192 case MVT::nxv8f64
: return "MVT::nxv8f64";
193 case MVT::token
: return "MVT::token";
194 case MVT::Metadata
: return "MVT::Metadata";
195 case MVT::iPTR
: return "MVT::iPTR";
196 case MVT::iPTRAny
: return "MVT::iPTRAny";
197 case MVT::Untyped
: return "MVT::Untyped";
198 case MVT::exnref
: return "MVT::exnref";
199 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
203 /// getQualifiedName - Return the name of the specified record, with a
204 /// namespace qualifier if the record contains one.
206 std::string
llvm::getQualifiedName(const Record
*R
) {
207 std::string Namespace
;
208 if (R
->getValue("Namespace"))
209 Namespace
= R
->getValueAsString("Namespace");
210 if (Namespace
.empty()) return R
->getName();
211 return Namespace
+ "::" + R
->getName().str();
215 /// getTarget - Return the current instance of the Target class.
217 CodeGenTarget::CodeGenTarget(RecordKeeper
&records
)
218 : Records(records
), CGH(records
) {
219 std::vector
<Record
*> Targets
= Records
.getAllDerivedDefinitions("Target");
220 if (Targets
.size() == 0)
221 PrintFatalError("ERROR: No 'Target' subclasses defined!");
222 if (Targets
.size() != 1)
223 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
224 TargetRec
= Targets
[0];
227 CodeGenTarget::~CodeGenTarget() {
230 const StringRef
CodeGenTarget::getName() const {
231 return TargetRec
->getName();
234 StringRef
CodeGenTarget::getInstNamespace() const {
235 for (const CodeGenInstruction
*Inst
: getInstructionsByEnumValue()) {
236 // Make sure not to pick up "TargetOpcode" by accidentally getting
237 // the namespace off the PHI instruction or something.
238 if (Inst
->Namespace
!= "TargetOpcode")
239 return Inst
->Namespace
;
245 Record
*CodeGenTarget::getInstructionSet() const {
246 return TargetRec
->getValueAsDef("InstructionSet");
249 bool CodeGenTarget::getAllowRegisterRenaming() const {
250 return TargetRec
->getValueAsInt("AllowRegisterRenaming");
253 /// getAsmParser - Return the AssemblyParser definition for this target.
255 Record
*CodeGenTarget::getAsmParser() const {
256 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyParsers");
257 if (AsmParserNum
>= LI
.size())
258 PrintFatalError("Target does not have an AsmParser #" +
259 Twine(AsmParserNum
) + "!");
260 return LI
[AsmParserNum
];
263 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
266 Record
*CodeGenTarget::getAsmParserVariant(unsigned i
) const {
267 std::vector
<Record
*> LI
=
268 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
270 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i
) +
275 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
276 /// available for this target.
278 unsigned CodeGenTarget::getAsmParserVariantCount() const {
279 std::vector
<Record
*> LI
=
280 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
284 /// getAsmWriter - Return the AssemblyWriter definition for this target.
286 Record
*CodeGenTarget::getAsmWriter() const {
287 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyWriters");
288 if (AsmWriterNum
>= LI
.size())
289 PrintFatalError("Target does not have an AsmWriter #" +
290 Twine(AsmWriterNum
) + "!");
291 return LI
[AsmWriterNum
];
294 CodeGenRegBank
&CodeGenTarget::getRegBank() const {
296 RegBank
= std::make_unique
<CodeGenRegBank
>(Records
, getHwModes());
300 Optional
<CodeGenRegisterClass
*>
301 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode
&ValueTy
,
302 CodeGenRegBank
&RegBank
,
303 const CodeGenSubRegIndex
*SubIdx
) const {
304 std::vector
<CodeGenRegisterClass
*> Candidates
;
305 auto &RegClasses
= RegBank
.getRegClasses();
307 // Try to find a register class which supports ValueTy, and also contains
309 for (CodeGenRegisterClass
&RC
: RegClasses
) {
310 // Is there a subclass of this class which contains this subregister index?
311 CodeGenRegisterClass
*SubClassWithSubReg
= RC
.getSubClassWithSubReg(SubIdx
);
312 if (!SubClassWithSubReg
)
315 // We have a class. Check if it supports this value type.
316 if (llvm::none_of(SubClassWithSubReg
->VTs
,
317 [&ValueTy
](const ValueTypeByHwMode
&ClassVT
) {
318 return ClassVT
== ValueTy
;
322 // We have a register class which supports both the value type and
323 // subregister index. Remember it.
324 Candidates
.push_back(SubClassWithSubReg
);
327 // If we didn't find anything, we're done.
328 if (Candidates
.empty())
331 // Find and return the largest of our candidate classes.
332 llvm::stable_sort(Candidates
, [&](const CodeGenRegisterClass
*A
,
333 const CodeGenRegisterClass
*B
) {
334 if (A
->getMembers().size() > B
->getMembers().size())
337 if (A
->getMembers().size() < B
->getMembers().size())
340 // Order by name as a tie-breaker.
341 return StringRef(A
->getName()) < B
->getName();
344 return Candidates
[0];
347 void CodeGenTarget::ReadRegAltNameIndices() const {
348 RegAltNameIndices
= Records
.getAllDerivedDefinitions("RegAltNameIndex");
349 llvm::sort(RegAltNameIndices
, LessRecord());
352 /// getRegisterByName - If there is a register with the specific AsmName,
354 const CodeGenRegister
*CodeGenTarget::getRegisterByName(StringRef Name
) const {
355 const StringMap
<CodeGenRegister
*> &Regs
= getRegBank().getRegistersByName();
356 StringMap
<CodeGenRegister
*>::const_iterator I
= Regs
.find(Name
);
362 std::vector
<ValueTypeByHwMode
> CodeGenTarget::getRegisterVTs(Record
*R
)
364 const CodeGenRegister
*Reg
= getRegBank().getReg(R
);
365 std::vector
<ValueTypeByHwMode
> Result
;
366 for (const auto &RC
: getRegBank().getRegClasses()) {
367 if (RC
.contains(Reg
)) {
368 ArrayRef
<ValueTypeByHwMode
> InVTs
= RC
.getValueTypes();
369 Result
.insert(Result
.end(), InVTs
.begin(), InVTs
.end());
373 // Remove duplicates.
375 Result
.erase(std::unique(Result
.begin(), Result
.end()), Result
.end());
380 void CodeGenTarget::ReadLegalValueTypes() const {
381 for (const auto &RC
: getRegBank().getRegClasses())
382 LegalValueTypes
.insert(LegalValueTypes
.end(), RC
.VTs
.begin(), RC
.VTs
.end());
384 // Remove duplicates.
385 llvm::sort(LegalValueTypes
);
386 LegalValueTypes
.erase(std::unique(LegalValueTypes
.begin(),
387 LegalValueTypes
.end()),
388 LegalValueTypes
.end());
391 CodeGenSchedModels
&CodeGenTarget::getSchedModels() const {
393 SchedModels
= std::make_unique
<CodeGenSchedModels
>(Records
, *this);
397 void CodeGenTarget::ReadInstructions() const {
398 NamedRegionTimer
T("Read Instructions", "Time spent reading instructions",
399 "CodeGenTarget", "CodeGenTarget", TimeRegions
);
400 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
401 if (Insts
.size() <= 2)
402 PrintFatalError("No 'Instruction' subclasses defined!");
404 // Parse the instructions defined in the .td file.
405 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
)
406 Instructions
[Insts
[i
]] = std::make_unique
<CodeGenInstruction
>(Insts
[i
]);
409 static const CodeGenInstruction
*
410 GetInstByName(const char *Name
,
411 const DenseMap
<const Record
*,
412 std::unique_ptr
<CodeGenInstruction
>> &Insts
,
413 RecordKeeper
&Records
) {
414 const Record
*Rec
= Records
.getDef(Name
);
416 const auto I
= Insts
.find(Rec
);
417 if (!Rec
|| I
== Insts
.end())
418 PrintFatalError(Twine("Could not find '") + Name
+ "' instruction!");
419 return I
->second
.get();
422 static const char *const FixedInstrs
[] = {
423 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
424 #include "llvm/Support/TargetOpcodes.def"
427 unsigned CodeGenTarget::getNumFixedInstructions() {
428 return array_lengthof(FixedInstrs
) - 1;
431 /// Return all of the instructions defined by the target, ordered by
432 /// their enum value.
433 void CodeGenTarget::ComputeInstrsByEnum() const {
434 const auto &Insts
= getInstructions();
435 for (const char *const *p
= FixedInstrs
; *p
; ++p
) {
436 const CodeGenInstruction
*Instr
= GetInstByName(*p
, Insts
, Records
);
437 assert(Instr
&& "Missing target independent instruction");
438 assert(Instr
->Namespace
== "TargetOpcode" && "Bad namespace");
439 InstrsByEnum
.push_back(Instr
);
441 unsigned EndOfPredefines
= InstrsByEnum
.size();
442 assert(EndOfPredefines
== getNumFixedInstructions() &&
443 "Missing generic opcode");
445 for (const auto &I
: Insts
) {
446 const CodeGenInstruction
*CGI
= I
.second
.get();
447 if (CGI
->Namespace
!= "TargetOpcode") {
448 InstrsByEnum
.push_back(CGI
);
449 if (CGI
->TheDef
->getValueAsBit("isPseudo"))
450 ++NumPseudoInstructions
;
454 assert(InstrsByEnum
.size() == Insts
.size() && "Missing predefined instr");
456 // All of the instructions are now in random order based on the map iteration.
458 InstrsByEnum
.begin() + EndOfPredefines
, InstrsByEnum
.end(),
459 [](const CodeGenInstruction
*Rec1
, const CodeGenInstruction
*Rec2
) {
460 const auto &D1
= *Rec1
->TheDef
;
461 const auto &D2
= *Rec2
->TheDef
;
462 return std::make_tuple(!D1
.getValueAsBit("isPseudo"), D1
.getName()) <
463 std::make_tuple(!D2
.getValueAsBit("isPseudo"), D2
.getName());
468 /// isLittleEndianEncoding - Return whether this target encodes its instruction
469 /// in little-endian format, i.e. bits laid out in the order [0..n]
471 bool CodeGenTarget::isLittleEndianEncoding() const {
472 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
475 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
476 /// encodings, reverse the bit order of all instructions.
477 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
478 if (!isLittleEndianEncoding())
481 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
482 for (Record
*R
: Insts
) {
483 if (R
->getValueAsString("Namespace") == "TargetOpcode" ||
484 R
->getValueAsBit("isPseudo"))
487 BitsInit
*BI
= R
->getValueAsBitsInit("Inst");
489 unsigned numBits
= BI
->getNumBits();
491 SmallVector
<Init
*, 16> NewBits(numBits
);
493 for (unsigned bit
= 0, end
= numBits
/ 2; bit
!= end
; ++bit
) {
494 unsigned bitSwapIdx
= numBits
- bit
- 1;
495 Init
*OrigBit
= BI
->getBit(bit
);
496 Init
*BitSwap
= BI
->getBit(bitSwapIdx
);
497 NewBits
[bit
] = BitSwap
;
498 NewBits
[bitSwapIdx
] = OrigBit
;
501 unsigned middle
= (numBits
+ 1) / 2;
502 NewBits
[middle
] = BI
->getBit(middle
);
505 BitsInit
*NewBI
= BitsInit::get(NewBits
);
507 // Update the bits in reversed order so that emitInstrOpBits will get the
508 // correct endianness.
509 R
->getValue("Inst")->setValue(NewBI
);
513 /// guessInstructionProperties - Return true if it's OK to guess instruction
514 /// properties instead of raising an error.
516 /// This is configurable as a temporary migration aid. It will eventually be
517 /// permanently false.
518 bool CodeGenTarget::guessInstructionProperties() const {
519 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
522 //===----------------------------------------------------------------------===//
523 // ComplexPattern implementation
525 ComplexPattern::ComplexPattern(Record
*R
) {
526 Ty
= ::getValueType(R
->getValueAsDef("Ty"));
527 NumOperands
= R
->getValueAsInt("NumOperands");
528 SelectFunc
= R
->getValueAsString("SelectFunc");
529 RootNodes
= R
->getValueAsListOfDefs("RootNodes");
531 // FIXME: This is a hack to statically increase the priority of patterns which
532 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
533 // possible pattern match we'll need to dynamically calculate the complexity
534 // of all patterns a dag can potentially map to.
535 int64_t RawComplexity
= R
->getValueAsInt("Complexity");
536 if (RawComplexity
== -1)
537 Complexity
= NumOperands
* 3;
539 Complexity
= RawComplexity
;
541 // FIXME: Why is this different from parseSDPatternOperatorProperties?
542 // Parse the properties.
544 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
545 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
)
546 if (PropList
[i
]->getName() == "SDNPHasChain") {
547 Properties
|= 1 << SDNPHasChain
;
548 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
549 Properties
|= 1 << SDNPOptInGlue
;
550 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
551 Properties
|= 1 << SDNPMayStore
;
552 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
553 Properties
|= 1 << SDNPMayLoad
;
554 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
555 Properties
|= 1 << SDNPSideEffect
;
556 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
557 Properties
|= 1 << SDNPMemOperand
;
558 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
559 Properties
|= 1 << SDNPVariadic
;
560 } else if (PropList
[i
]->getName() == "SDNPWantRoot") {
561 Properties
|= 1 << SDNPWantRoot
;
562 } else if (PropList
[i
]->getName() == "SDNPWantParent") {
563 Properties
|= 1 << SDNPWantParent
;
565 PrintFatalError(R
->getLoc(), "Unsupported SD Node property '" +
566 PropList
[i
]->getName() +
567 "' on ComplexPattern '" + R
->getName() +
572 //===----------------------------------------------------------------------===//
573 // CodeGenIntrinsic Implementation
574 //===----------------------------------------------------------------------===//
576 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper
&RC
,
578 std::vector
<Record
*> Defs
= RC
.getAllDerivedDefinitions("Intrinsic");
580 Intrinsics
.reserve(Defs
.size());
582 for (unsigned I
= 0, e
= Defs
.size(); I
!= e
; ++I
) {
583 bool isTarget
= Defs
[I
]->getValueAsBit("isTarget");
584 if (isTarget
== TargetOnly
)
585 Intrinsics
.push_back(CodeGenIntrinsic(Defs
[I
]));
587 llvm::sort(Intrinsics
,
588 [](const CodeGenIntrinsic
&LHS
, const CodeGenIntrinsic
&RHS
) {
589 return std::tie(LHS
.TargetPrefix
, LHS
.Name
) <
590 std::tie(RHS
.TargetPrefix
, RHS
.Name
);
592 Targets
.push_back({"", 0, 0});
593 for (size_t I
= 0, E
= Intrinsics
.size(); I
< E
; ++I
)
594 if (Intrinsics
[I
].TargetPrefix
!= Targets
.back().Name
) {
595 Targets
.back().Count
= I
- Targets
.back().Offset
;
596 Targets
.push_back({Intrinsics
[I
].TargetPrefix
, I
, 0});
598 Targets
.back().Count
= Intrinsics
.size() - Targets
.back().Offset
;
601 CodeGenIntrinsic::CodeGenIntrinsic(Record
*R
) {
603 std::string DefName
= R
->getName();
604 ArrayRef
<SMLoc
> DefLoc
= R
->getLoc();
605 ModRef
= ReadWriteMem
;
607 isOverloaded
= false;
608 isCommutative
= false;
611 isWillReturn
= false;
613 isNoDuplicate
= false;
614 isConvergent
= false;
615 isSpeculatable
= false;
616 hasSideEffects
= false;
618 if (DefName
.size() <= 4 ||
619 std::string(DefName
.begin(), DefName
.begin() + 4) != "int_")
620 PrintFatalError(DefLoc
,
621 "Intrinsic '" + DefName
+ "' does not start with 'int_'!");
623 EnumName
= std::string(DefName
.begin()+4, DefName
.end());
625 if (R
->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
626 GCCBuiltinName
= R
->getValueAsString("GCCBuiltinName");
627 if (R
->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
628 MSBuiltinName
= R
->getValueAsString("MSBuiltinName");
630 TargetPrefix
= R
->getValueAsString("TargetPrefix");
631 Name
= R
->getValueAsString("LLVMName");
634 // If an explicit name isn't specified, derive one from the DefName.
637 for (unsigned i
= 0, e
= EnumName
.size(); i
!= e
; ++i
)
638 Name
+= (EnumName
[i
] == '_') ? '.' : EnumName
[i
];
640 // Verify it starts with "llvm.".
641 if (Name
.size() <= 5 ||
642 std::string(Name
.begin(), Name
.begin() + 5) != "llvm.")
643 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
644 "'s name does not start with 'llvm.'!");
647 // If TargetPrefix is specified, make sure that Name starts with
648 // "llvm.<targetprefix>.".
649 if (!TargetPrefix
.empty()) {
650 if (Name
.size() < 6+TargetPrefix
.size() ||
651 std::string(Name
.begin() + 5, Name
.begin() + 6 + TargetPrefix
.size())
652 != (TargetPrefix
+ "."))
653 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
654 "' does not start with 'llvm." +
655 TargetPrefix
+ ".'!");
658 ListInit
*RetTypes
= R
->getValueAsListInit("RetTypes");
659 ListInit
*ParamTypes
= R
->getValueAsListInit("ParamTypes");
661 // First collate a list of overloaded types.
662 std::vector
<MVT::SimpleValueType
> OverloadedVTs
;
663 for (ListInit
*TypeList
: {RetTypes
, ParamTypes
}) {
664 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
665 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
666 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
668 if (TyEl
->isSubClassOf("LLVMMatchType"))
671 MVT::SimpleValueType VT
= getValueType(TyEl
->getValueAsDef("VT"));
672 if (MVT(VT
).isOverloaded()) {
673 OverloadedVTs
.push_back(VT
);
679 // Parse the list of return types.
680 ListInit
*TypeList
= RetTypes
;
681 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
682 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
683 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
684 MVT::SimpleValueType VT
;
685 if (TyEl
->isSubClassOf("LLVMMatchType")) {
686 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
687 assert(MatchTy
< OverloadedVTs
.size() &&
688 "Invalid matching number!");
689 VT
= OverloadedVTs
[MatchTy
];
690 // It only makes sense to use the extended and truncated vector element
691 // variants with iAny types; otherwise, if the intrinsic is not
692 // overloaded, all the types can be specified directly.
693 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
694 !TyEl
->isSubClassOf("LLVMTruncatedType")) ||
695 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
696 "Expected iAny or vAny type");
698 VT
= getValueType(TyEl
->getValueAsDef("VT"));
701 // Reject invalid types.
702 if (VT
== MVT::isVoid
)
703 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
704 " has void in result type list!");
706 IS
.RetVTs
.push_back(VT
);
707 IS
.RetTypeDefs
.push_back(TyEl
);
710 // Parse the list of parameter types.
711 TypeList
= ParamTypes
;
712 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
713 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
714 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
715 MVT::SimpleValueType VT
;
716 if (TyEl
->isSubClassOf("LLVMMatchType")) {
717 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
718 if (MatchTy
>= OverloadedVTs
.size()) {
719 PrintError(R
->getLoc(),
720 "Parameter #" + Twine(i
) + " has out of bounds matching "
721 "number " + Twine(MatchTy
));
722 PrintFatalError(DefLoc
,
723 Twine("ParamTypes is ") + TypeList
->getAsString());
725 VT
= OverloadedVTs
[MatchTy
];
726 // It only makes sense to use the extended and truncated vector element
727 // variants with iAny types; otherwise, if the intrinsic is not
728 // overloaded, all the types can be specified directly.
729 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
730 !TyEl
->isSubClassOf("LLVMTruncatedType") &&
731 !TyEl
->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
732 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
733 "Expected iAny or vAny type");
735 VT
= getValueType(TyEl
->getValueAsDef("VT"));
737 // Reject invalid types.
738 if (VT
== MVT::isVoid
&& i
!= e
-1 /*void at end means varargs*/)
739 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
740 " has void in result type list!");
742 IS
.ParamVTs
.push_back(VT
);
743 IS
.ParamTypeDefs
.push_back(TyEl
);
746 // Parse the intrinsic properties.
747 ListInit
*PropList
= R
->getValueAsListInit("IntrProperties");
748 for (unsigned i
= 0, e
= PropList
->size(); i
!= e
; ++i
) {
749 Record
*Property
= PropList
->getElementAsRecord(i
);
750 assert(Property
->isSubClassOf("IntrinsicProperty") &&
751 "Expected a property!");
753 if (Property
->getName() == "IntrNoMem")
755 else if (Property
->getName() == "IntrReadMem")
756 ModRef
= ModRefBehavior(ModRef
& ~MR_Mod
);
757 else if (Property
->getName() == "IntrWriteMem")
758 ModRef
= ModRefBehavior(ModRef
& ~MR_Ref
);
759 else if (Property
->getName() == "IntrArgMemOnly")
760 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
);
761 else if (Property
->getName() == "IntrInaccessibleMemOnly")
762 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_InaccessibleMem
);
763 else if (Property
->getName() == "IntrInaccessibleMemOrArgMemOnly")
764 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
|
766 else if (Property
->getName() == "Commutative")
767 isCommutative
= true;
768 else if (Property
->getName() == "Throws")
770 else if (Property
->getName() == "IntrNoDuplicate")
771 isNoDuplicate
= true;
772 else if (Property
->getName() == "IntrConvergent")
774 else if (Property
->getName() == "IntrNoReturn")
776 else if (Property
->getName() == "IntrWillReturn")
778 else if (Property
->getName() == "IntrCold")
780 else if (Property
->getName() == "IntrSpeculatable")
781 isSpeculatable
= true;
782 else if (Property
->getName() == "IntrHasSideEffects")
783 hasSideEffects
= true;
784 else if (Property
->isSubClassOf("NoCapture")) {
785 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
786 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoCapture
));
787 } else if (Property
->isSubClassOf("NoAlias")) {
788 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
789 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoAlias
));
790 } else if (Property
->isSubClassOf("Returned")) {
791 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
792 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, Returned
));
793 } else if (Property
->isSubClassOf("ReadOnly")) {
794 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
795 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadOnly
));
796 } else if (Property
->isSubClassOf("WriteOnly")) {
797 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
798 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, WriteOnly
));
799 } else if (Property
->isSubClassOf("ReadNone")) {
800 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
801 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadNone
));
802 } else if (Property
->isSubClassOf("ImmArg")) {
803 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
804 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ImmArg
));
806 llvm_unreachable("Unknown property!");
809 // Also record the SDPatternOperator Properties.
810 Properties
= parseSDPatternOperatorProperties(R
);
812 // Sort the argument attributes for later benefit.
813 llvm::sort(ArgumentAttributes
);
816 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx
) const {
817 if (ParamIdx
>= IS
.ParamVTs
.size())
819 MVT ParamType
= MVT(IS
.ParamVTs
[ParamIdx
]);
820 return ParamType
== MVT::iPTR
|| ParamType
== MVT::iPTRAny
;