1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CGSCCPassManager.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/LazyCallGraph.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/IPO.h"
65 #define DEBUG_TYPE "functionattrs"
67 STATISTIC(NumReadNone
, "Number of functions marked readnone");
68 STATISTIC(NumReadOnly
, "Number of functions marked readonly");
69 STATISTIC(NumWriteOnly
, "Number of functions marked writeonly");
70 STATISTIC(NumNoCapture
, "Number of arguments marked nocapture");
71 STATISTIC(NumReturned
, "Number of arguments marked returned");
72 STATISTIC(NumReadNoneArg
, "Number of arguments marked readnone");
73 STATISTIC(NumReadOnlyArg
, "Number of arguments marked readonly");
74 STATISTIC(NumNoAlias
, "Number of function returns marked noalias");
75 STATISTIC(NumNonNullReturn
, "Number of function returns marked nonnull");
76 STATISTIC(NumNoRecurse
, "Number of functions marked as norecurse");
77 STATISTIC(NumNoUnwind
, "Number of functions marked as nounwind");
79 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
80 // in C/C++ code compiled by clang:
81 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
82 static cl::opt
<bool> EnableNonnullArgPropagation(
83 "enable-nonnull-arg-prop", cl::Hidden
,
84 cl::desc("Try to propagate nonnull argument attributes from callsites to "
85 "caller functions."));
87 static cl::opt
<bool> DisableNoUnwindInference(
88 "disable-nounwind-inference", cl::Hidden
,
89 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
93 using SCCNodeSet
= SmallSetVector
<Function
*, 8>;
95 } // end anonymous namespace
97 /// Returns the memory access attribute for function F using AAR for AA results,
98 /// where SCCNodes is the current SCC.
100 /// If ThisBody is true, this function may examine the function body and will
101 /// return a result pertaining to this copy of the function. If it is false, the
102 /// result will be based only on AA results for the function declaration; it
103 /// will be assumed that some other (perhaps less optimized) version of the
104 /// function may be selected at link time.
105 static MemoryAccessKind
checkFunctionMemoryAccess(Function
&F
, bool ThisBody
,
107 const SCCNodeSet
&SCCNodes
) {
108 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(&F
);
109 if (MRB
== FMRB_DoesNotAccessMemory
)
114 if (AliasAnalysis::onlyReadsMemory(MRB
))
117 if (AliasAnalysis::doesNotReadMemory(MRB
))
118 return MAK_WriteOnly
;
120 // Conservatively assume it reads and writes to memory.
124 // Scan the function body for instructions that may read or write memory.
125 bool ReadsMemory
= false;
126 bool WritesMemory
= false;
127 for (inst_iterator II
= inst_begin(F
), E
= inst_end(F
); II
!= E
; ++II
) {
128 Instruction
*I
= &*II
;
130 // Some instructions can be ignored even if they read or write memory.
131 // Detect these now, skipping to the next instruction if one is found.
132 if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
133 // Ignore calls to functions in the same SCC, as long as the call sites
134 // don't have operand bundles. Calls with operand bundles are allowed to
135 // have memory effects not described by the memory effects of the call
137 if (!Call
->hasOperandBundles() && Call
->getCalledFunction() &&
138 SCCNodes
.count(Call
->getCalledFunction()))
140 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(Call
);
141 ModRefInfo MRI
= createModRefInfo(MRB
);
143 // If the call doesn't access memory, we're done.
147 if (!AliasAnalysis::onlyAccessesArgPointees(MRB
)) {
148 // The call could access any memory. If that includes writes, note it.
151 // If it reads, note it.
157 // Check whether all pointer arguments point to local memory, and
158 // ignore calls that only access local memory.
159 for (CallSite::arg_iterator CI
= Call
->arg_begin(), CE
= Call
->arg_end();
162 if (!Arg
->getType()->isPtrOrPtrVectorTy())
166 I
->getAAMetadata(AAInfo
);
167 MemoryLocation
Loc(Arg
, LocationSize::unknown(), AAInfo
);
169 // Skip accesses to local or constant memory as they don't impact the
170 // externally visible mod/ref behavior.
171 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
175 // Writes non-local memory.
178 // Ok, it reads non-local memory.
182 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
183 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
184 if (!LI
->isVolatile()) {
185 MemoryLocation Loc
= MemoryLocation::get(LI
);
186 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
189 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
190 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
191 if (!SI
->isVolatile()) {
192 MemoryLocation Loc
= MemoryLocation::get(SI
);
193 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
196 } else if (VAArgInst
*VI
= dyn_cast
<VAArgInst
>(I
)) {
197 // Ignore vaargs on local memory.
198 MemoryLocation Loc
= MemoryLocation::get(VI
);
199 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
203 // Any remaining instructions need to be taken seriously! Check if they
204 // read or write memory.
206 // Writes memory, remember that.
207 WritesMemory
|= I
->mayWriteToMemory();
209 // If this instruction may read memory, remember that.
210 ReadsMemory
|= I
->mayReadFromMemory();
215 return MAK_WriteOnly
;
220 return ReadsMemory
? MAK_ReadOnly
: MAK_ReadNone
;
223 MemoryAccessKind
llvm::computeFunctionBodyMemoryAccess(Function
&F
,
225 return checkFunctionMemoryAccess(F
, /*ThisBody=*/true, AAR
, {});
228 /// Deduce readonly/readnone attributes for the SCC.
229 template <typename AARGetterT
>
230 static bool addReadAttrs(const SCCNodeSet
&SCCNodes
, AARGetterT
&&AARGetter
) {
231 // Check if any of the functions in the SCC read or write memory. If they
232 // write memory then they can't be marked readnone or readonly.
233 bool ReadsMemory
= false;
234 bool WritesMemory
= false;
235 for (Function
*F
: SCCNodes
) {
236 // Call the callable parameter to look up AA results for this function.
237 AAResults
&AAR
= AARGetter(*F
);
239 // Non-exact function definitions may not be selected at link time, and an
240 // alternative version that writes to memory may be selected. See the
241 // comment on GlobalValue::isDefinitionExact for more details.
242 switch (checkFunctionMemoryAccess(*F
, F
->hasExactDefinition(),
258 // Success! Functions in this SCC do not access memory, or only read memory.
259 // Give them the appropriate attribute.
260 bool MadeChange
= false;
262 assert(!(ReadsMemory
&& WritesMemory
) &&
263 "Function marked read-only and write-only");
264 for (Function
*F
: SCCNodes
) {
265 if (F
->doesNotAccessMemory())
269 if (F
->onlyReadsMemory() && ReadsMemory
)
273 if (F
->doesNotReadMemory() && WritesMemory
)
278 // Clear out any existing attributes.
279 F
->removeFnAttr(Attribute::ReadOnly
);
280 F
->removeFnAttr(Attribute::ReadNone
);
281 F
->removeFnAttr(Attribute::WriteOnly
);
283 if (!WritesMemory
&& !ReadsMemory
) {
284 // Clear out any "access range attributes" if readnone was deduced.
285 F
->removeFnAttr(Attribute::ArgMemOnly
);
286 F
->removeFnAttr(Attribute::InaccessibleMemOnly
);
287 F
->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly
);
290 // Add in the new attribute.
291 if (WritesMemory
&& !ReadsMemory
)
292 F
->addFnAttr(Attribute::WriteOnly
);
294 F
->addFnAttr(ReadsMemory
? Attribute::ReadOnly
: Attribute::ReadNone
);
296 if (WritesMemory
&& !ReadsMemory
)
298 else if (ReadsMemory
)
309 /// For a given pointer Argument, this retains a list of Arguments of functions
310 /// in the same SCC that the pointer data flows into. We use this to build an
311 /// SCC of the arguments.
312 struct ArgumentGraphNode
{
313 Argument
*Definition
;
314 SmallVector
<ArgumentGraphNode
*, 4> Uses
;
317 class ArgumentGraph
{
318 // We store pointers to ArgumentGraphNode objects, so it's important that
319 // that they not move around upon insert.
320 using ArgumentMapTy
= std::map
<Argument
*, ArgumentGraphNode
>;
322 ArgumentMapTy ArgumentMap
;
324 // There is no root node for the argument graph, in fact:
325 // void f(int *x, int *y) { if (...) f(x, y); }
326 // is an example where the graph is disconnected. The SCCIterator requires a
327 // single entry point, so we maintain a fake ("synthetic") root node that
328 // uses every node. Because the graph is directed and nothing points into
329 // the root, it will not participate in any SCCs (except for its own).
330 ArgumentGraphNode SyntheticRoot
;
333 ArgumentGraph() { SyntheticRoot
.Definition
= nullptr; }
335 using iterator
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
337 iterator
begin() { return SyntheticRoot
.Uses
.begin(); }
338 iterator
end() { return SyntheticRoot
.Uses
.end(); }
339 ArgumentGraphNode
*getEntryNode() { return &SyntheticRoot
; }
341 ArgumentGraphNode
*operator[](Argument
*A
) {
342 ArgumentGraphNode
&Node
= ArgumentMap
[A
];
344 SyntheticRoot
.Uses
.push_back(&Node
);
349 /// This tracker checks whether callees are in the SCC, and if so it does not
350 /// consider that a capture, instead adding it to the "Uses" list and
351 /// continuing with the analysis.
352 struct ArgumentUsesTracker
: public CaptureTracker
{
353 ArgumentUsesTracker(const SCCNodeSet
&SCCNodes
) : SCCNodes(SCCNodes
) {}
355 void tooManyUses() override
{ Captured
= true; }
357 bool captured(const Use
*U
) override
{
358 CallSite
CS(U
->getUser());
359 if (!CS
.getInstruction()) {
364 Function
*F
= CS
.getCalledFunction();
365 if (!F
|| !F
->hasExactDefinition() || !SCCNodes
.count(F
)) {
370 // Note: the callee and the two successor blocks *follow* the argument
371 // operands. This means there is no need to adjust UseIndex to account for
375 std::distance(const_cast<const Use
*>(CS
.arg_begin()), U
);
377 assert(UseIndex
< CS
.data_operands_size() &&
378 "Indirect function calls should have been filtered above!");
380 if (UseIndex
>= CS
.getNumArgOperands()) {
381 // Data operand, but not a argument operand -- must be a bundle operand
382 assert(CS
.hasOperandBundles() && "Must be!");
384 // CaptureTracking told us that we're being captured by an operand bundle
385 // use. In this case it does not matter if the callee is within our SCC
386 // or not -- we've been captured in some unknown way, and we have to be
392 if (UseIndex
>= F
->arg_size()) {
393 assert(F
->isVarArg() && "More params than args in non-varargs call");
398 Uses
.push_back(&*std::next(F
->arg_begin(), UseIndex
));
402 // True only if certainly captured (used outside our SCC).
403 bool Captured
= false;
405 // Uses within our SCC.
406 SmallVector
<Argument
*, 4> Uses
;
408 const SCCNodeSet
&SCCNodes
;
411 } // end anonymous namespace
415 template <> struct GraphTraits
<ArgumentGraphNode
*> {
416 using NodeRef
= ArgumentGraphNode
*;
417 using ChildIteratorType
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
419 static NodeRef
getEntryNode(NodeRef A
) { return A
; }
420 static ChildIteratorType
child_begin(NodeRef N
) { return N
->Uses
.begin(); }
421 static ChildIteratorType
child_end(NodeRef N
) { return N
->Uses
.end(); }
425 struct GraphTraits
<ArgumentGraph
*> : public GraphTraits
<ArgumentGraphNode
*> {
426 static NodeRef
getEntryNode(ArgumentGraph
*AG
) { return AG
->getEntryNode(); }
428 static ChildIteratorType
nodes_begin(ArgumentGraph
*AG
) {
432 static ChildIteratorType
nodes_end(ArgumentGraph
*AG
) { return AG
->end(); }
435 } // end namespace llvm
437 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
438 static Attribute::AttrKind
439 determinePointerReadAttrs(Argument
*A
,
440 const SmallPtrSet
<Argument
*, 8> &SCCNodes
) {
441 SmallVector
<Use
*, 32> Worklist
;
442 SmallPtrSet
<Use
*, 32> Visited
;
444 // inalloca arguments are always clobbered by the call.
445 if (A
->hasInAllocaAttr())
446 return Attribute::None
;
449 // We don't need to track IsWritten. If A is written to, return immediately.
451 for (Use
&U
: A
->uses()) {
453 Worklist
.push_back(&U
);
456 while (!Worklist
.empty()) {
457 Use
*U
= Worklist
.pop_back_val();
458 Instruction
*I
= cast
<Instruction
>(U
->getUser());
460 switch (I
->getOpcode()) {
461 case Instruction::BitCast
:
462 case Instruction::GetElementPtr
:
463 case Instruction::PHI
:
464 case Instruction::Select
:
465 case Instruction::AddrSpaceCast
:
466 // The original value is not read/written via this if the new value isn't.
467 for (Use
&UU
: I
->uses())
468 if (Visited
.insert(&UU
).second
)
469 Worklist
.push_back(&UU
);
472 case Instruction::Call
:
473 case Instruction::Invoke
: {
474 bool Captures
= true;
476 if (I
->getType()->isVoidTy())
479 auto AddUsersToWorklistIfCapturing
= [&] {
481 for (Use
&UU
: I
->uses())
482 if (Visited
.insert(&UU
).second
)
483 Worklist
.push_back(&UU
);
487 if (CS
.doesNotAccessMemory()) {
488 AddUsersToWorklistIfCapturing();
492 Function
*F
= CS
.getCalledFunction();
494 if (CS
.onlyReadsMemory()) {
496 AddUsersToWorklistIfCapturing();
499 return Attribute::None
;
502 // Note: the callee and the two successor blocks *follow* the argument
503 // operands. This means there is no need to adjust UseIndex to account
506 unsigned UseIndex
= std::distance(CS
.arg_begin(), U
);
508 // U cannot be the callee operand use: since we're exploring the
509 // transitive uses of an Argument, having such a use be a callee would
510 // imply the CallSite is an indirect call or invoke; and we'd take the
512 assert(UseIndex
< CS
.data_operands_size() &&
513 "Data operand use expected!");
515 bool IsOperandBundleUse
= UseIndex
>= CS
.getNumArgOperands();
517 if (UseIndex
>= F
->arg_size() && !IsOperandBundleUse
) {
518 assert(F
->isVarArg() && "More params than args in non-varargs call");
519 return Attribute::None
;
522 Captures
&= !CS
.doesNotCapture(UseIndex
);
524 // Since the optimizer (by design) cannot see the data flow corresponding
525 // to a operand bundle use, these cannot participate in the optimistic SCC
526 // analysis. Instead, we model the operand bundle uses as arguments in
527 // call to a function external to the SCC.
528 if (IsOperandBundleUse
||
529 !SCCNodes
.count(&*std::next(F
->arg_begin(), UseIndex
))) {
531 // The accessors used on CallSite here do the right thing for calls and
532 // invokes with operand bundles.
534 if (!CS
.onlyReadsMemory() && !CS
.onlyReadsMemory(UseIndex
))
535 return Attribute::None
;
536 if (!CS
.doesNotAccessMemory(UseIndex
))
540 AddUsersToWorklistIfCapturing();
544 case Instruction::Load
:
545 // A volatile load has side effects beyond what readonly can be relied
547 if (cast
<LoadInst
>(I
)->isVolatile())
548 return Attribute::None
;
553 case Instruction::ICmp
:
554 case Instruction::Ret
:
558 return Attribute::None
;
562 return IsRead
? Attribute::ReadOnly
: Attribute::ReadNone
;
565 /// Deduce returned attributes for the SCC.
566 static bool addArgumentReturnedAttrs(const SCCNodeSet
&SCCNodes
) {
567 bool Changed
= false;
569 // Check each function in turn, determining if an argument is always returned.
570 for (Function
*F
: SCCNodes
) {
571 // We can infer and propagate function attributes only when we know that the
572 // definition we'll get at link time is *exactly* the definition we see now.
573 // For more details, see GlobalValue::mayBeDerefined.
574 if (!F
->hasExactDefinition())
577 if (F
->getReturnType()->isVoidTy())
580 // There is nothing to do if an argument is already marked as 'returned'.
581 if (llvm::any_of(F
->args(),
582 [](const Argument
&Arg
) { return Arg
.hasReturnedAttr(); }))
585 auto FindRetArg
= [&]() -> Value
* {
586 Value
*RetArg
= nullptr;
587 for (BasicBlock
&BB
: *F
)
588 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
589 // Note that stripPointerCasts should look through functions with
590 // returned arguments.
591 Value
*RetVal
= Ret
->getReturnValue()->stripPointerCasts();
592 if (!isa
<Argument
>(RetVal
) || RetVal
->getType() != F
->getReturnType())
597 else if (RetArg
!= RetVal
)
604 if (Value
*RetArg
= FindRetArg()) {
605 auto *A
= cast
<Argument
>(RetArg
);
606 A
->addAttr(Attribute::Returned
);
615 /// If a callsite has arguments that are also arguments to the parent function,
616 /// try to propagate attributes from the callsite's arguments to the parent's
617 /// arguments. This may be important because inlining can cause information loss
618 /// when attribute knowledge disappears with the inlined call.
619 static bool addArgumentAttrsFromCallsites(Function
&F
) {
620 if (!EnableNonnullArgPropagation
)
623 bool Changed
= false;
625 // For an argument attribute to transfer from a callsite to the parent, the
626 // call must be guaranteed to execute every time the parent is called.
627 // Conservatively, just check for calls in the entry block that are guaranteed
629 // TODO: This could be enhanced by testing if the callsite post-dominates the
630 // entry block or by doing simple forward walks or backward walks to the
632 BasicBlock
&Entry
= F
.getEntryBlock();
633 for (Instruction
&I
: Entry
) {
634 if (auto CS
= CallSite(&I
)) {
635 if (auto *CalledFunc
= CS
.getCalledFunction()) {
636 for (auto &CSArg
: CalledFunc
->args()) {
637 if (!CSArg
.hasNonNullAttr())
640 // If the non-null callsite argument operand is an argument to 'F'
641 // (the caller) and the call is guaranteed to execute, then the value
642 // must be non-null throughout 'F'.
643 auto *FArg
= dyn_cast
<Argument
>(CS
.getArgOperand(CSArg
.getArgNo()));
644 if (FArg
&& !FArg
->hasNonNullAttr()) {
645 FArg
->addAttr(Attribute::NonNull
);
651 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
658 /// Deduce nocapture attributes for the SCC.
659 static bool addArgumentAttrs(const SCCNodeSet
&SCCNodes
) {
660 bool Changed
= false;
664 // Check each function in turn, determining which pointer arguments are not
666 for (Function
*F
: SCCNodes
) {
667 // We can infer and propagate function attributes only when we know that the
668 // definition we'll get at link time is *exactly* the definition we see now.
669 // For more details, see GlobalValue::mayBeDerefined.
670 if (!F
->hasExactDefinition())
673 Changed
|= addArgumentAttrsFromCallsites(*F
);
675 // Functions that are readonly (or readnone) and nounwind and don't return
676 // a value can't capture arguments. Don't analyze them.
677 if (F
->onlyReadsMemory() && F
->doesNotThrow() &&
678 F
->getReturnType()->isVoidTy()) {
679 for (Function::arg_iterator A
= F
->arg_begin(), E
= F
->arg_end(); A
!= E
;
681 if (A
->getType()->isPointerTy() && !A
->hasNoCaptureAttr()) {
682 A
->addAttr(Attribute::NoCapture
);
690 for (Function::arg_iterator A
= F
->arg_begin(), E
= F
->arg_end(); A
!= E
;
692 if (!A
->getType()->isPointerTy())
694 bool HasNonLocalUses
= false;
695 if (!A
->hasNoCaptureAttr()) {
696 ArgumentUsesTracker
Tracker(SCCNodes
);
697 PointerMayBeCaptured(&*A
, &Tracker
);
698 if (!Tracker
.Captured
) {
699 if (Tracker
.Uses
.empty()) {
700 // If it's trivially not captured, mark it nocapture now.
701 A
->addAttr(Attribute::NoCapture
);
705 // If it's not trivially captured and not trivially not captured,
706 // then it must be calling into another function in our SCC. Save
707 // its particulars for Argument-SCC analysis later.
708 ArgumentGraphNode
*Node
= AG
[&*A
];
709 for (Argument
*Use
: Tracker
.Uses
) {
710 Node
->Uses
.push_back(AG
[Use
]);
712 HasNonLocalUses
= true;
716 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
718 if (!HasNonLocalUses
&& !A
->onlyReadsMemory()) {
719 // Can we determine that it's readonly/readnone without doing an SCC?
720 // Note that we don't allow any calls at all here, or else our result
721 // will be dependent on the iteration order through the functions in the
723 SmallPtrSet
<Argument
*, 8> Self
;
725 Attribute::AttrKind R
= determinePointerReadAttrs(&*A
, Self
);
726 if (R
!= Attribute::None
) {
729 R
== Attribute::ReadOnly
? ++NumReadOnlyArg
: ++NumReadNoneArg
;
735 // The graph we've collected is partial because we stopped scanning for
736 // argument uses once we solved the argument trivially. These partial nodes
737 // show up as ArgumentGraphNode objects with an empty Uses list, and for
738 // these nodes the final decision about whether they capture has already been
739 // made. If the definition doesn't have a 'nocapture' attribute by now, it
742 for (scc_iterator
<ArgumentGraph
*> I
= scc_begin(&AG
); !I
.isAtEnd(); ++I
) {
743 const std::vector
<ArgumentGraphNode
*> &ArgumentSCC
= *I
;
744 if (ArgumentSCC
.size() == 1) {
745 if (!ArgumentSCC
[0]->Definition
)
746 continue; // synthetic root node
748 // eg. "void f(int* x) { if (...) f(x); }"
749 if (ArgumentSCC
[0]->Uses
.size() == 1 &&
750 ArgumentSCC
[0]->Uses
[0] == ArgumentSCC
[0]) {
751 Argument
*A
= ArgumentSCC
[0]->Definition
;
752 A
->addAttr(Attribute::NoCapture
);
759 bool SCCCaptured
= false;
760 for (auto I
= ArgumentSCC
.begin(), E
= ArgumentSCC
.end();
761 I
!= E
&& !SCCCaptured
; ++I
) {
762 ArgumentGraphNode
*Node
= *I
;
763 if (Node
->Uses
.empty()) {
764 if (!Node
->Definition
->hasNoCaptureAttr())
771 SmallPtrSet
<Argument
*, 8> ArgumentSCCNodes
;
772 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
773 // quickly looking up whether a given Argument is in this ArgumentSCC.
774 for (ArgumentGraphNode
*I
: ArgumentSCC
) {
775 ArgumentSCCNodes
.insert(I
->Definition
);
778 for (auto I
= ArgumentSCC
.begin(), E
= ArgumentSCC
.end();
779 I
!= E
&& !SCCCaptured
; ++I
) {
780 ArgumentGraphNode
*N
= *I
;
781 for (ArgumentGraphNode
*Use
: N
->Uses
) {
782 Argument
*A
= Use
->Definition
;
783 if (A
->hasNoCaptureAttr() || ArgumentSCCNodes
.count(A
))
792 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
793 Argument
*A
= ArgumentSCC
[i
]->Definition
;
794 A
->addAttr(Attribute::NoCapture
);
799 // We also want to compute readonly/readnone. With a small number of false
800 // negatives, we can assume that any pointer which is captured isn't going
801 // to be provably readonly or readnone, since by definition we can't
802 // analyze all uses of a captured pointer.
804 // The false negatives happen when the pointer is captured by a function
805 // that promises readonly/readnone behaviour on the pointer, then the
806 // pointer's lifetime ends before anything that writes to arbitrary memory.
807 // Also, a readonly/readnone pointer may be returned, but returning a
808 // pointer is capturing it.
810 Attribute::AttrKind ReadAttr
= Attribute::ReadNone
;
811 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
812 Argument
*A
= ArgumentSCC
[i
]->Definition
;
813 Attribute::AttrKind K
= determinePointerReadAttrs(A
, ArgumentSCCNodes
);
814 if (K
== Attribute::ReadNone
)
816 if (K
== Attribute::ReadOnly
) {
817 ReadAttr
= Attribute::ReadOnly
;
824 if (ReadAttr
!= Attribute::None
) {
825 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
826 Argument
*A
= ArgumentSCC
[i
]->Definition
;
827 // Clear out existing readonly/readnone attributes
828 A
->removeAttr(Attribute::ReadOnly
);
829 A
->removeAttr(Attribute::ReadNone
);
830 A
->addAttr(ReadAttr
);
831 ReadAttr
== Attribute::ReadOnly
? ++NumReadOnlyArg
: ++NumReadNoneArg
;
840 /// Tests whether a function is "malloc-like".
842 /// A function is "malloc-like" if it returns either null or a pointer that
843 /// doesn't alias any other pointer visible to the caller.
844 static bool isFunctionMallocLike(Function
*F
, const SCCNodeSet
&SCCNodes
) {
845 SmallSetVector
<Value
*, 8> FlowsToReturn
;
846 for (BasicBlock
&BB
: *F
)
847 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
848 FlowsToReturn
.insert(Ret
->getReturnValue());
850 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
851 Value
*RetVal
= FlowsToReturn
[i
];
853 if (Constant
*C
= dyn_cast
<Constant
>(RetVal
)) {
854 if (!C
->isNullValue() && !isa
<UndefValue
>(C
))
860 if (isa
<Argument
>(RetVal
))
863 if (Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
))
864 switch (RVI
->getOpcode()) {
865 // Extend the analysis by looking upwards.
866 case Instruction::BitCast
:
867 case Instruction::GetElementPtr
:
868 case Instruction::AddrSpaceCast
:
869 FlowsToReturn
.insert(RVI
->getOperand(0));
871 case Instruction::Select
: {
872 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
873 FlowsToReturn
.insert(SI
->getTrueValue());
874 FlowsToReturn
.insert(SI
->getFalseValue());
877 case Instruction::PHI
: {
878 PHINode
*PN
= cast
<PHINode
>(RVI
);
879 for (Value
*IncValue
: PN
->incoming_values())
880 FlowsToReturn
.insert(IncValue
);
884 // Check whether the pointer came from an allocation.
885 case Instruction::Alloca
:
887 case Instruction::Call
:
888 case Instruction::Invoke
: {
890 if (CS
.hasRetAttr(Attribute::NoAlias
))
892 if (CS
.getCalledFunction() && SCCNodes
.count(CS
.getCalledFunction()))
897 return false; // Did not come from an allocation.
900 if (PointerMayBeCaptured(RetVal
, false, /*StoreCaptures=*/false))
907 /// Deduce noalias attributes for the SCC.
908 static bool addNoAliasAttrs(const SCCNodeSet
&SCCNodes
) {
909 // Check each function in turn, determining which functions return noalias
911 for (Function
*F
: SCCNodes
) {
913 if (F
->returnDoesNotAlias())
916 // We can infer and propagate function attributes only when we know that the
917 // definition we'll get at link time is *exactly* the definition we see now.
918 // For more details, see GlobalValue::mayBeDerefined.
919 if (!F
->hasExactDefinition())
922 // We annotate noalias return values, which are only applicable to
924 if (!F
->getReturnType()->isPointerTy())
927 if (!isFunctionMallocLike(F
, SCCNodes
))
931 bool MadeChange
= false;
932 for (Function
*F
: SCCNodes
) {
933 if (F
->returnDoesNotAlias() ||
934 !F
->getReturnType()->isPointerTy())
937 F
->setReturnDoesNotAlias();
945 /// Tests whether this function is known to not return null.
947 /// Requires that the function returns a pointer.
949 /// Returns true if it believes the function will not return a null, and sets
950 /// \p Speculative based on whether the returned conclusion is a speculative
951 /// conclusion due to SCC calls.
952 static bool isReturnNonNull(Function
*F
, const SCCNodeSet
&SCCNodes
,
954 assert(F
->getReturnType()->isPointerTy() &&
955 "nonnull only meaningful on pointer types");
958 SmallSetVector
<Value
*, 8> FlowsToReturn
;
959 for (BasicBlock
&BB
: *F
)
960 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
961 FlowsToReturn
.insert(Ret
->getReturnValue());
963 auto &DL
= F
->getParent()->getDataLayout();
965 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
966 Value
*RetVal
= FlowsToReturn
[i
];
968 // If this value is locally known to be non-null, we're good
969 if (isKnownNonZero(RetVal
, DL
))
972 // Otherwise, we need to look upwards since we can't make any local
974 Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
);
977 switch (RVI
->getOpcode()) {
978 // Extend the analysis by looking upwards.
979 case Instruction::BitCast
:
980 case Instruction::GetElementPtr
:
981 case Instruction::AddrSpaceCast
:
982 FlowsToReturn
.insert(RVI
->getOperand(0));
984 case Instruction::Select
: {
985 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
986 FlowsToReturn
.insert(SI
->getTrueValue());
987 FlowsToReturn
.insert(SI
->getFalseValue());
990 case Instruction::PHI
: {
991 PHINode
*PN
= cast
<PHINode
>(RVI
);
992 for (int i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
993 FlowsToReturn
.insert(PN
->getIncomingValue(i
));
996 case Instruction::Call
:
997 case Instruction::Invoke
: {
999 Function
*Callee
= CS
.getCalledFunction();
1000 // A call to a node within the SCC is assumed to return null until
1002 if (Callee
&& SCCNodes
.count(Callee
)) {
1009 return false; // Unknown source, may be null
1011 llvm_unreachable("should have either continued or returned");
1017 /// Deduce nonnull attributes for the SCC.
1018 static bool addNonNullAttrs(const SCCNodeSet
&SCCNodes
) {
1019 // Speculative that all functions in the SCC return only nonnull
1020 // pointers. We may refute this as we analyze functions.
1021 bool SCCReturnsNonNull
= true;
1023 bool MadeChange
= false;
1025 // Check each function in turn, determining which functions return nonnull
1027 for (Function
*F
: SCCNodes
) {
1029 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1030 Attribute::NonNull
))
1033 // We can infer and propagate function attributes only when we know that the
1034 // definition we'll get at link time is *exactly* the definition we see now.
1035 // For more details, see GlobalValue::mayBeDerefined.
1036 if (!F
->hasExactDefinition())
1039 // We annotate nonnull return values, which are only applicable to
1041 if (!F
->getReturnType()->isPointerTy())
1044 bool Speculative
= false;
1045 if (isReturnNonNull(F
, SCCNodes
, Speculative
)) {
1047 // Mark the function eagerly since we may discover a function
1048 // which prevents us from speculating about the entire SCC
1049 LLVM_DEBUG(dbgs() << "Eagerly marking " << F
->getName()
1050 << " as nonnull\n");
1051 F
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
1057 // At least one function returns something which could be null, can't
1058 // speculate any more.
1059 SCCReturnsNonNull
= false;
1062 if (SCCReturnsNonNull
) {
1063 for (Function
*F
: SCCNodes
) {
1064 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1065 Attribute::NonNull
) ||
1066 !F
->getReturnType()->isPointerTy())
1069 LLVM_DEBUG(dbgs() << "SCC marking " << F
->getName() << " as nonnull\n");
1070 F
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
1081 /// Collects a set of attribute inference requests and performs them all in one
1082 /// go on a single SCC Node. Inference involves scanning function bodies
1083 /// looking for instructions that violate attribute assumptions.
1084 /// As soon as all the bodies are fine we are free to set the attribute.
1085 /// Customization of inference for individual attributes is performed by
1086 /// providing a handful of predicates for each attribute.
1087 class AttributeInferer
{
1089 /// Describes a request for inference of a single attribute.
1090 struct InferenceDescriptor
{
1092 /// Returns true if this function does not have to be handled.
1093 /// General intent for this predicate is to provide an optimization
1094 /// for functions that do not need this attribute inference at all
1095 /// (say, for functions that already have the attribute).
1096 std::function
<bool(const Function
&)> SkipFunction
;
1098 /// Returns true if this instruction violates attribute assumptions.
1099 std::function
<bool(Instruction
&)> InstrBreaksAttribute
;
1101 /// Sets the inferred attribute for this function.
1102 std::function
<void(Function
&)> SetAttribute
;
1104 /// Attribute we derive.
1105 Attribute::AttrKind AKind
;
1107 /// If true, only "exact" definitions can be used to infer this attribute.
1108 /// See GlobalValue::isDefinitionExact.
1109 bool RequiresExactDefinition
;
1111 InferenceDescriptor(Attribute::AttrKind AK
,
1112 std::function
<bool(const Function
&)> SkipFunc
,
1113 std::function
<bool(Instruction
&)> InstrScan
,
1114 std::function
<void(Function
&)> SetAttr
,
1116 : SkipFunction(SkipFunc
), InstrBreaksAttribute(InstrScan
),
1117 SetAttribute(SetAttr
), AKind(AK
),
1118 RequiresExactDefinition(ReqExactDef
) {}
1122 SmallVector
<InferenceDescriptor
, 4> InferenceDescriptors
;
1125 void registerAttrInference(InferenceDescriptor AttrInference
) {
1126 InferenceDescriptors
.push_back(AttrInference
);
1129 bool run(const SCCNodeSet
&SCCNodes
);
1132 /// Perform all the requested attribute inference actions according to the
1133 /// attribute predicates stored before.
1134 bool AttributeInferer::run(const SCCNodeSet
&SCCNodes
) {
1135 SmallVector
<InferenceDescriptor
, 4> InferInSCC
= InferenceDescriptors
;
1136 // Go through all the functions in SCC and check corresponding attribute
1137 // assumptions for each of them. Attributes that are invalid for this SCC
1138 // will be removed from InferInSCC.
1139 for (Function
*F
: SCCNodes
) {
1141 // No attributes whose assumptions are still valid - done.
1142 if (InferInSCC
.empty())
1145 // Check if our attributes ever need scanning/can be scanned.
1146 llvm::erase_if(InferInSCC
, [F
](const InferenceDescriptor
&ID
) {
1147 if (ID
.SkipFunction(*F
))
1150 // Remove from further inference (invalidate) when visiting a function
1151 // that has no instructions to scan/has an unsuitable definition.
1152 return F
->isDeclaration() ||
1153 (ID
.RequiresExactDefinition
&& !F
->hasExactDefinition());
1156 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1157 // set up the F instructions scan to verify assumptions of the attribute.
1158 SmallVector
<InferenceDescriptor
, 4> InferInThisFunc
;
1160 InferInSCC
, std::back_inserter(InferInThisFunc
),
1161 [F
](const InferenceDescriptor
&ID
) { return !ID
.SkipFunction(*F
); });
1163 if (InferInThisFunc
.empty())
1166 // Start instruction scan.
1167 for (Instruction
&I
: instructions(*F
)) {
1168 llvm::erase_if(InferInThisFunc
, [&](const InferenceDescriptor
&ID
) {
1169 if (!ID
.InstrBreaksAttribute(I
))
1171 // Remove attribute from further inference on any other functions
1172 // because attribute assumptions have just been violated.
1173 llvm::erase_if(InferInSCC
, [&ID
](const InferenceDescriptor
&D
) {
1174 return D
.AKind
== ID
.AKind
;
1176 // Remove attribute from the rest of current instruction scan.
1180 if (InferInThisFunc
.empty())
1185 if (InferInSCC
.empty())
1188 bool Changed
= false;
1189 for (Function
*F
: SCCNodes
)
1190 // At this point InferInSCC contains only functions that were either:
1191 // - explicitly skipped from scan/inference, or
1192 // - verified to have no instructions that break attribute assumptions.
1193 // Hence we just go and force the attribute for all non-skipped functions.
1194 for (auto &ID
: InferInSCC
) {
1195 if (ID
.SkipFunction(*F
))
1198 ID
.SetAttribute(*F
);
1203 } // end anonymous namespace
1205 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1206 static bool InstrBreaksNonConvergent(Instruction
&I
,
1207 const SCCNodeSet
&SCCNodes
) {
1208 const CallSite
CS(&I
);
1209 // Breaks non-convergent assumption if CS is a convergent call to a function
1211 return CS
&& CS
.isConvergent() && SCCNodes
.count(CS
.getCalledFunction()) == 0;
1214 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1215 static bool InstrBreaksNonThrowing(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1218 if (const auto *CI
= dyn_cast
<CallInst
>(&I
)) {
1219 if (Function
*Callee
= CI
->getCalledFunction()) {
1220 // I is a may-throw call to a function inside our SCC. This doesn't
1221 // invalidate our current working assumption that the SCC is no-throw; we
1222 // just have to scan that other function.
1223 if (SCCNodes
.count(Callee
) > 0)
1230 /// Infer attributes from all functions in the SCC by scanning every
1231 /// instruction for compliance to the attribute assumptions. Currently it
1233 /// - removal of Convergent attribute
1234 /// - addition of NoUnwind attribute
1236 /// Returns true if any changes to function attributes were made.
1237 static bool inferAttrsFromFunctionBodies(const SCCNodeSet
&SCCNodes
) {
1239 AttributeInferer AI
;
1241 // Request to remove the convergent attribute from all functions in the SCC
1242 // if every callsite within the SCC is not convergent (except for calls
1243 // to functions within the SCC).
1244 // Note: Removal of the attr from the callsites will happen in
1245 // InstCombineCalls separately.
1246 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1247 Attribute::Convergent
,
1248 // Skip non-convergent functions.
1249 [](const Function
&F
) { return !F
.isConvergent(); },
1250 // Instructions that break non-convergent assumption.
1251 [SCCNodes
](Instruction
&I
) {
1252 return InstrBreaksNonConvergent(I
, SCCNodes
);
1255 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F
.getName()
1257 F
.setNotConvergent();
1259 /* RequiresExactDefinition= */ false});
1261 if (!DisableNoUnwindInference
)
1262 // Request to infer nounwind attribute for all the functions in the SCC if
1263 // every callsite within the SCC is not throwing (except for calls to
1264 // functions within the SCC). Note that nounwind attribute suffers from
1265 // derefinement - results may change depending on how functions are
1266 // optimized. Thus it can be inferred only from exact definitions.
1267 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1268 Attribute::NoUnwind
,
1269 // Skip non-throwing functions.
1270 [](const Function
&F
) { return F
.doesNotThrow(); },
1271 // Instructions that break non-throwing assumption.
1272 [SCCNodes
](Instruction
&I
) {
1273 return InstrBreaksNonThrowing(I
, SCCNodes
);
1277 << "Adding nounwind attr to fn " << F
.getName() << "\n");
1278 F
.setDoesNotThrow();
1281 /* RequiresExactDefinition= */ true});
1283 // Perform all the requested attribute inference actions.
1284 return AI
.run(SCCNodes
);
1287 static bool setDoesNotRecurse(Function
&F
) {
1288 if (F
.doesNotRecurse())
1290 F
.setDoesNotRecurse();
1295 static bool addNoRecurseAttrs(const SCCNodeSet
&SCCNodes
) {
1296 // Try and identify functions that do not recurse.
1298 // If the SCC contains multiple nodes we know for sure there is recursion.
1299 if (SCCNodes
.size() != 1)
1302 Function
*F
= *SCCNodes
.begin();
1303 if (!F
|| F
->isDeclaration() || F
->doesNotRecurse())
1306 // If all of the calls in F are identifiable and are to norecurse functions, F
1307 // is norecurse. This check also detects self-recursion as F is not currently
1308 // marked norecurse, so any called from F to F will not be marked norecurse.
1310 for (auto &I
: BB
.instructionsWithoutDebug())
1311 if (auto CS
= CallSite(&I
)) {
1312 Function
*Callee
= CS
.getCalledFunction();
1313 if (!Callee
|| Callee
== F
|| !Callee
->doesNotRecurse())
1314 // Function calls a potentially recursive function.
1318 // Every call was to a non-recursive function other than this function, and
1319 // we have no indirect recursion as the SCC size is one. This function cannot
1321 return setDoesNotRecurse(*F
);
1324 template <typename AARGetterT
>
1325 static bool deriveAttrsInPostOrder(SCCNodeSet
&SCCNodes
, AARGetterT
&&AARGetter
,
1326 bool HasUnknownCall
) {
1327 bool Changed
= false;
1329 // Bail if the SCC only contains optnone functions.
1330 if (SCCNodes
.empty())
1333 Changed
|= addArgumentReturnedAttrs(SCCNodes
);
1334 Changed
|= addReadAttrs(SCCNodes
, AARGetter
);
1335 Changed
|= addArgumentAttrs(SCCNodes
);
1337 // If we have no external nodes participating in the SCC, we can deduce some
1338 // more precise attributes as well.
1339 if (!HasUnknownCall
) {
1340 Changed
|= addNoAliasAttrs(SCCNodes
);
1341 Changed
|= addNonNullAttrs(SCCNodes
);
1342 Changed
|= inferAttrsFromFunctionBodies(SCCNodes
);
1343 Changed
|= addNoRecurseAttrs(SCCNodes
);
1349 PreservedAnalyses
PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC
&C
,
1350 CGSCCAnalysisManager
&AM
,
1352 CGSCCUpdateResult
&) {
1353 FunctionAnalysisManager
&FAM
=
1354 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
1356 // We pass a lambda into functions to wire them up to the analysis manager
1357 // for getting function analyses.
1358 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
1359 return FAM
.getResult
<AAManager
>(F
);
1362 // Fill SCCNodes with the elements of the SCC. Also track whether there are
1363 // any external or opt-none nodes that will prevent us from optimizing any
1365 SCCNodeSet SCCNodes
;
1366 bool HasUnknownCall
= false;
1367 for (LazyCallGraph::Node
&N
: C
) {
1368 Function
&F
= N
.getFunction();
1369 if (F
.hasFnAttribute(Attribute::OptimizeNone
) ||
1370 F
.hasFnAttribute(Attribute::Naked
)) {
1371 // Treat any function we're trying not to optimize as if it were an
1372 // indirect call and omit it from the node set used below.
1373 HasUnknownCall
= true;
1376 // Track whether any functions in this SCC have an unknown call edge.
1377 // Note: if this is ever a performance hit, we can common it with
1378 // subsequent routines which also do scans over the instructions of the
1380 if (!HasUnknownCall
)
1381 for (Instruction
&I
: instructions(F
))
1382 if (auto CS
= CallSite(&I
))
1383 if (!CS
.getCalledFunction()) {
1384 HasUnknownCall
= true;
1388 SCCNodes
.insert(&F
);
1391 if (deriveAttrsInPostOrder(SCCNodes
, AARGetter
, HasUnknownCall
))
1392 return PreservedAnalyses::none();
1394 return PreservedAnalyses::all();
1399 struct PostOrderFunctionAttrsLegacyPass
: public CallGraphSCCPass
{
1400 // Pass identification, replacement for typeid
1403 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID
) {
1404 initializePostOrderFunctionAttrsLegacyPassPass(
1405 *PassRegistry::getPassRegistry());
1408 bool runOnSCC(CallGraphSCC
&SCC
) override
;
1410 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1411 AU
.setPreservesCFG();
1412 AU
.addRequired
<AssumptionCacheTracker
>();
1413 getAAResultsAnalysisUsage(AU
);
1414 CallGraphSCCPass::getAnalysisUsage(AU
);
1418 } // end anonymous namespace
1420 char PostOrderFunctionAttrsLegacyPass::ID
= 0;
1421 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass
, "functionattrs",
1422 "Deduce function attributes", false, false)
1423 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1424 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1425 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass
, "functionattrs",
1426 "Deduce function attributes", false, false)
1428 Pass
*llvm::createPostOrderFunctionAttrsLegacyPass() {
1429 return new PostOrderFunctionAttrsLegacyPass();
1432 template <typename AARGetterT
>
1433 static bool runImpl(CallGraphSCC
&SCC
, AARGetterT AARGetter
) {
1435 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1436 // whether a given CallGraphNode is in this SCC. Also track whether there are
1437 // any external or opt-none nodes that will prevent us from optimizing any
1439 SCCNodeSet SCCNodes
;
1440 bool ExternalNode
= false;
1441 for (CallGraphNode
*I
: SCC
) {
1442 Function
*F
= I
->getFunction();
1443 if (!F
|| F
->hasFnAttribute(Attribute::OptimizeNone
) ||
1444 F
->hasFnAttribute(Attribute::Naked
)) {
1445 // External node or function we're trying not to optimize - we both avoid
1446 // transform them and avoid leveraging information they provide.
1447 ExternalNode
= true;
1454 return deriveAttrsInPostOrder(SCCNodes
, AARGetter
, ExternalNode
);
1457 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC
&SCC
) {
1460 return runImpl(SCC
, LegacyAARGetter(*this));
1465 struct ReversePostOrderFunctionAttrsLegacyPass
: public ModulePass
{
1466 // Pass identification, replacement for typeid
1469 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID
) {
1470 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1471 *PassRegistry::getPassRegistry());
1474 bool runOnModule(Module
&M
) override
;
1476 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1477 AU
.setPreservesCFG();
1478 AU
.addRequired
<CallGraphWrapperPass
>();
1479 AU
.addPreserved
<CallGraphWrapperPass
>();
1483 } // end anonymous namespace
1485 char ReversePostOrderFunctionAttrsLegacyPass::ID
= 0;
1487 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass
, "rpo-functionattrs",
1488 "Deduce function attributes in RPO", false, false)
1489 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1490 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass
, "rpo-functionattrs",
1491 "Deduce function attributes in RPO", false, false)
1493 Pass
*llvm::createReversePostOrderFunctionAttrsPass() {
1494 return new ReversePostOrderFunctionAttrsLegacyPass();
1497 static bool addNoRecurseAttrsTopDown(Function
&F
) {
1498 // We check the preconditions for the function prior to calling this to avoid
1499 // the cost of building up a reversible post-order list. We assert them here
1500 // to make sure none of the invariants this relies on were violated.
1501 assert(!F
.isDeclaration() && "Cannot deduce norecurse without a definition!");
1502 assert(!F
.doesNotRecurse() &&
1503 "This function has already been deduced as norecurs!");
1504 assert(F
.hasInternalLinkage() &&
1505 "Can only do top-down deduction for internal linkage functions!");
1507 // If F is internal and all of its uses are calls from a non-recursive
1508 // functions, then none of its calls could in fact recurse without going
1509 // through a function marked norecurse, and so we can mark this function too
1510 // as norecurse. Note that the uses must actually be calls -- otherwise
1511 // a pointer to this function could be returned from a norecurse function but
1512 // this function could be recursively (indirectly) called. Note that this
1513 // also detects if F is directly recursive as F is not yet marked as
1514 // a norecurse function.
1515 for (auto *U
: F
.users()) {
1516 auto *I
= dyn_cast
<Instruction
>(U
);
1520 if (!CS
|| !CS
.getParent()->getParent()->doesNotRecurse())
1523 return setDoesNotRecurse(F
);
1526 static bool deduceFunctionAttributeInRPO(Module
&M
, CallGraph
&CG
) {
1527 // We only have a post-order SCC traversal (because SCCs are inherently
1528 // discovered in post-order), so we accumulate them in a vector and then walk
1529 // it in reverse. This is simpler than using the RPO iterator infrastructure
1530 // because we need to combine SCC detection and the PO walk of the call
1531 // graph. We can also cheat egregiously because we're primarily interested in
1532 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1533 // with multiple functions in them will clearly be recursive.
1534 SmallVector
<Function
*, 16> Worklist
;
1535 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
1539 Function
*F
= I
->front()->getFunction();
1540 if (F
&& !F
->isDeclaration() && !F
->doesNotRecurse() &&
1541 F
->hasInternalLinkage())
1542 Worklist
.push_back(F
);
1545 bool Changed
= false;
1546 for (auto *F
: llvm::reverse(Worklist
))
1547 Changed
|= addNoRecurseAttrsTopDown(*F
);
1552 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module
&M
) {
1556 auto &CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
1558 return deduceFunctionAttributeInRPO(M
, CG
);
1562 ReversePostOrderFunctionAttrsPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
1563 auto &CG
= AM
.getResult
<CallGraphAnalysis
>(M
);
1565 if (!deduceFunctionAttributeInRPO(M
, CG
))
1566 return PreservedAnalyses::all();
1568 PreservedAnalyses PA
;
1569 PA
.preserve
<CallGraphAnalysis
>();