1 //===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10 // It also ensures that globals are properly laid out for the
11 // llvm.icall.branch.funnel intrinsic.
12 // See http://llvm.org/docs/TypeMetadata.html for more information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO/LowerTypeTests.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/EquivalenceClasses.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ModuleSummaryIndex.h"
50 #include "llvm/IR/ModuleSummaryIndexYAML.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Allocator.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/Error.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/FileSystem.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/TrailingObjects.h"
68 #include "llvm/Support/YAMLTraits.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/IPO.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/ModuleUtils.h"
79 #include <system_error>
84 using namespace lowertypetests
;
86 #define DEBUG_TYPE "lowertypetests"
88 STATISTIC(ByteArraySizeBits
, "Byte array size in bits");
89 STATISTIC(ByteArraySizeBytes
, "Byte array size in bytes");
90 STATISTIC(NumByteArraysCreated
, "Number of byte arrays created");
91 STATISTIC(NumTypeTestCallsLowered
, "Number of type test calls lowered");
92 STATISTIC(NumTypeIdDisjointSets
, "Number of disjoint sets of type identifiers");
94 static cl::opt
<bool> AvoidReuse(
95 "lowertypetests-avoid-reuse",
96 cl::desc("Try to avoid reuse of byte array addresses using aliases"),
97 cl::Hidden
, cl::init(true));
99 static cl::opt
<PassSummaryAction
> ClSummaryAction(
100 "lowertypetests-summary-action",
101 cl::desc("What to do with the summary when running this pass"),
102 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
103 clEnumValN(PassSummaryAction::Import
, "import",
104 "Import typeid resolutions from summary and globals"),
105 clEnumValN(PassSummaryAction::Export
, "export",
106 "Export typeid resolutions to summary and globals")),
109 static cl::opt
<std::string
> ClReadSummary(
110 "lowertypetests-read-summary",
111 cl::desc("Read summary from given YAML file before running pass"),
114 static cl::opt
<std::string
> ClWriteSummary(
115 "lowertypetests-write-summary",
116 cl::desc("Write summary to given YAML file after running pass"),
119 bool BitSetInfo::containsGlobalOffset(uint64_t Offset
) const {
120 if (Offset
< ByteOffset
)
123 if ((Offset
- ByteOffset
) % (uint64_t(1) << AlignLog2
) != 0)
126 uint64_t BitOffset
= (Offset
- ByteOffset
) >> AlignLog2
;
127 if (BitOffset
>= BitSize
)
130 return Bits
.count(BitOffset
);
133 void BitSetInfo::print(raw_ostream
&OS
) const {
134 OS
<< "offset " << ByteOffset
<< " size " << BitSize
<< " align "
143 for (uint64_t B
: Bits
)
148 BitSetInfo
BitSetBuilder::build() {
152 // Normalize each offset against the minimum observed offset, and compute
153 // the bitwise OR of each of the offsets. The number of trailing zeros
154 // in the mask gives us the log2 of the alignment of all offsets, which
155 // allows us to compress the bitset by only storing one bit per aligned
158 for (uint64_t &Offset
: Offsets
) {
164 BSI
.ByteOffset
= Min
;
168 BSI
.AlignLog2
= countTrailingZeros(Mask
, ZB_Undefined
);
170 // Build the compressed bitset while normalizing the offsets against the
171 // computed alignment.
172 BSI
.BitSize
= ((Max
- Min
) >> BSI
.AlignLog2
) + 1;
173 for (uint64_t Offset
: Offsets
) {
174 Offset
>>= BSI
.AlignLog2
;
175 BSI
.Bits
.insert(Offset
);
181 void GlobalLayoutBuilder::addFragment(const std::set
<uint64_t> &F
) {
182 // Create a new fragment to hold the layout for F.
183 Fragments
.emplace_back();
184 std::vector
<uint64_t> &Fragment
= Fragments
.back();
185 uint64_t FragmentIndex
= Fragments
.size() - 1;
187 for (auto ObjIndex
: F
) {
188 uint64_t OldFragmentIndex
= FragmentMap
[ObjIndex
];
189 if (OldFragmentIndex
== 0) {
190 // We haven't seen this object index before, so just add it to the current
192 Fragment
.push_back(ObjIndex
);
194 // This index belongs to an existing fragment. Copy the elements of the
195 // old fragment into this one and clear the old fragment. We don't update
196 // the fragment map just yet, this ensures that any further references to
197 // indices from the old fragment in this fragment do not insert any more
199 std::vector
<uint64_t> &OldFragment
= Fragments
[OldFragmentIndex
];
200 Fragment
.insert(Fragment
.end(), OldFragment
.begin(), OldFragment
.end());
205 // Update the fragment map to point our object indices to this fragment.
206 for (uint64_t ObjIndex
: Fragment
)
207 FragmentMap
[ObjIndex
] = FragmentIndex
;
210 void ByteArrayBuilder::allocate(const std::set
<uint64_t> &Bits
,
211 uint64_t BitSize
, uint64_t &AllocByteOffset
,
212 uint8_t &AllocMask
) {
213 // Find the smallest current allocation.
215 for (unsigned I
= 1; I
!= BitsPerByte
; ++I
)
216 if (BitAllocs
[I
] < BitAllocs
[Bit
])
219 AllocByteOffset
= BitAllocs
[Bit
];
221 // Add our size to it.
222 unsigned ReqSize
= AllocByteOffset
+ BitSize
;
223 BitAllocs
[Bit
] = ReqSize
;
224 if (Bytes
.size() < ReqSize
)
225 Bytes
.resize(ReqSize
);
228 AllocMask
= 1 << Bit
;
229 for (uint64_t B
: Bits
)
230 Bytes
[AllocByteOffset
+ B
] |= AllocMask
;
235 struct ByteArrayInfo
{
236 std::set
<uint64_t> Bits
;
238 GlobalVariable
*ByteArray
;
239 GlobalVariable
*MaskGlobal
;
240 uint8_t *MaskPtr
= nullptr;
243 /// A POD-like structure that we use to store a global reference together with
244 /// its metadata types. In this pass we frequently need to query the set of
245 /// metadata types referenced by a global, which at the IR level is an expensive
246 /// operation involving a map lookup; this data structure helps to reduce the
247 /// number of times we need to do this lookup.
248 class GlobalTypeMember final
: TrailingObjects
<GlobalTypeMember
, MDNode
*> {
249 friend TrailingObjects
;
254 // For functions: true if this is a definition (either in the merged module or
255 // in one of the thinlto modules).
258 // For functions: true if this function is either defined or used in a thinlto
259 // module and its jumptable entry needs to be exported to thinlto backends.
262 size_t numTrailingObjects(OverloadToken
<MDNode
*>) const { return NTypes
; }
265 static GlobalTypeMember
*create(BumpPtrAllocator
&Alloc
, GlobalObject
*GO
,
266 bool IsDefinition
, bool IsExported
,
267 ArrayRef
<MDNode
*> Types
) {
268 auto *GTM
= static_cast<GlobalTypeMember
*>(Alloc
.Allocate(
269 totalSizeToAlloc
<MDNode
*>(Types
.size()), alignof(GlobalTypeMember
)));
271 GTM
->NTypes
= Types
.size();
272 GTM
->IsDefinition
= IsDefinition
;
273 GTM
->IsExported
= IsExported
;
274 std::uninitialized_copy(Types
.begin(), Types
.end(),
275 GTM
->getTrailingObjects
<MDNode
*>());
279 GlobalObject
*getGlobal() const {
283 bool isDefinition() const {
287 bool isExported() const {
291 ArrayRef
<MDNode
*> types() const {
292 return makeArrayRef(getTrailingObjects
<MDNode
*>(), NTypes
);
296 struct ICallBranchFunnel final
297 : TrailingObjects
<ICallBranchFunnel
, GlobalTypeMember
*> {
298 static ICallBranchFunnel
*create(BumpPtrAllocator
&Alloc
, CallInst
*CI
,
299 ArrayRef
<GlobalTypeMember
*> Targets
,
301 auto *Call
= static_cast<ICallBranchFunnel
*>(
302 Alloc
.Allocate(totalSizeToAlloc
<GlobalTypeMember
*>(Targets
.size()),
303 alignof(ICallBranchFunnel
)));
305 Call
->UniqueId
= UniqueId
;
306 Call
->NTargets
= Targets
.size();
307 std::uninitialized_copy(Targets
.begin(), Targets
.end(),
308 Call
->getTrailingObjects
<GlobalTypeMember
*>());
313 ArrayRef
<GlobalTypeMember
*> targets() const {
314 return makeArrayRef(getTrailingObjects
<GlobalTypeMember
*>(), NTargets
);
323 class LowerTypeTestsModule
{
326 ModuleSummaryIndex
*ExportSummary
;
327 const ModuleSummaryIndex
*ImportSummary
;
329 Triple::ArchType Arch
;
331 Triple::ObjectFormatType ObjectFormat
;
333 IntegerType
*Int1Ty
= Type::getInt1Ty(M
.getContext());
334 IntegerType
*Int8Ty
= Type::getInt8Ty(M
.getContext());
335 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(M
.getContext());
336 ArrayType
*Int8Arr0Ty
= ArrayType::get(Type::getInt8Ty(M
.getContext()), 0);
337 IntegerType
*Int32Ty
= Type::getInt32Ty(M
.getContext());
338 PointerType
*Int32PtrTy
= PointerType::getUnqual(Int32Ty
);
339 IntegerType
*Int64Ty
= Type::getInt64Ty(M
.getContext());
340 IntegerType
*IntPtrTy
= M
.getDataLayout().getIntPtrType(M
.getContext(), 0);
342 // Indirect function call index assignment counter for WebAssembly
343 uint64_t IndirectIndex
= 1;
345 // Mapping from type identifiers to the call sites that test them, as well as
346 // whether the type identifier needs to be exported to ThinLTO backends as
347 // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
348 struct TypeIdUserInfo
{
349 std::vector
<CallInst
*> CallSites
;
350 bool IsExported
= false;
352 DenseMap
<Metadata
*, TypeIdUserInfo
> TypeIdUsers
;
354 /// This structure describes how to lower type tests for a particular type
355 /// identifier. It is either built directly from the global analysis (during
356 /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
357 /// identifier summaries and external symbol references (in ThinLTO backends).
358 struct TypeIdLowering
{
359 TypeTestResolution::Kind TheKind
= TypeTestResolution::Unsat
;
361 /// All except Unsat: the start address within the combined global.
362 Constant
*OffsetedGlobal
;
364 /// ByteArray, Inline, AllOnes: log2 of the required global alignment
365 /// relative to the start address.
368 /// ByteArray, Inline, AllOnes: one less than the size of the memory region
369 /// covering members of this type identifier as a multiple of 2^AlignLog2.
372 /// ByteArray: the byte array to test the address against.
373 Constant
*TheByteArray
;
375 /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
378 /// Inline: the bit mask to test the address against.
379 Constant
*InlineBits
;
382 std::vector
<ByteArrayInfo
> ByteArrayInfos
;
384 Function
*WeakInitializerFn
= nullptr;
386 bool shouldExportConstantsAsAbsoluteSymbols();
387 uint8_t *exportTypeId(StringRef TypeId
, const TypeIdLowering
&TIL
);
388 TypeIdLowering
importTypeId(StringRef TypeId
);
389 void importTypeTest(CallInst
*CI
);
390 void importFunction(Function
*F
, bool isDefinition
);
393 buildBitSet(Metadata
*TypeId
,
394 const DenseMap
<GlobalTypeMember
*, uint64_t> &GlobalLayout
);
395 ByteArrayInfo
*createByteArray(BitSetInfo
&BSI
);
396 void allocateByteArrays();
397 Value
*createBitSetTest(IRBuilder
<> &B
, const TypeIdLowering
&TIL
,
399 void lowerTypeTestCalls(
400 ArrayRef
<Metadata
*> TypeIds
, Constant
*CombinedGlobalAddr
,
401 const DenseMap
<GlobalTypeMember
*, uint64_t> &GlobalLayout
);
402 Value
*lowerTypeTestCall(Metadata
*TypeId
, CallInst
*CI
,
403 const TypeIdLowering
&TIL
);
405 void buildBitSetsFromGlobalVariables(ArrayRef
<Metadata
*> TypeIds
,
406 ArrayRef
<GlobalTypeMember
*> Globals
);
407 unsigned getJumpTableEntrySize();
408 Type
*getJumpTableEntryType();
409 void createJumpTableEntry(raw_ostream
&AsmOS
, raw_ostream
&ConstraintOS
,
410 Triple::ArchType JumpTableArch
,
411 SmallVectorImpl
<Value
*> &AsmArgs
, Function
*Dest
);
412 void verifyTypeMDNode(GlobalObject
*GO
, MDNode
*Type
);
413 void buildBitSetsFromFunctions(ArrayRef
<Metadata
*> TypeIds
,
414 ArrayRef
<GlobalTypeMember
*> Functions
);
415 void buildBitSetsFromFunctionsNative(ArrayRef
<Metadata
*> TypeIds
,
416 ArrayRef
<GlobalTypeMember
*> Functions
);
417 void buildBitSetsFromFunctionsWASM(ArrayRef
<Metadata
*> TypeIds
,
418 ArrayRef
<GlobalTypeMember
*> Functions
);
420 buildBitSetsFromDisjointSet(ArrayRef
<Metadata
*> TypeIds
,
421 ArrayRef
<GlobalTypeMember
*> Globals
,
422 ArrayRef
<ICallBranchFunnel
*> ICallBranchFunnels
);
424 void replaceWeakDeclarationWithJumpTablePtr(Function
*F
, Constant
*JT
, bool IsDefinition
);
425 void moveInitializerToModuleConstructor(GlobalVariable
*GV
);
426 void findGlobalVariableUsersOf(Constant
*C
,
427 SmallSetVector
<GlobalVariable
*, 8> &Out
);
429 void createJumpTable(Function
*F
, ArrayRef
<GlobalTypeMember
*> Functions
);
431 /// replaceCfiUses - Go through the uses list for this definition
432 /// and make each use point to "V" instead of "this" when the use is outside
433 /// the block. 'This's use list is expected to have at least one element.
434 /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
436 void replaceCfiUses(Function
*Old
, Value
*New
, bool IsDefinition
);
438 /// replaceDirectCalls - Go through the uses list for this definition and
439 /// replace each use, which is a direct function call.
440 void replaceDirectCalls(Value
*Old
, Value
*New
);
443 LowerTypeTestsModule(Module
&M
, ModuleSummaryIndex
*ExportSummary
,
444 const ModuleSummaryIndex
*ImportSummary
);
448 // Lower the module using the action and summary passed as command line
449 // arguments. For testing purposes only.
450 static bool runForTesting(Module
&M
);
453 struct LowerTypeTests
: public ModulePass
{
456 bool UseCommandLine
= false;
458 ModuleSummaryIndex
*ExportSummary
;
459 const ModuleSummaryIndex
*ImportSummary
;
461 LowerTypeTests() : ModulePass(ID
), UseCommandLine(true) {
462 initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
465 LowerTypeTests(ModuleSummaryIndex
*ExportSummary
,
466 const ModuleSummaryIndex
*ImportSummary
)
467 : ModulePass(ID
), ExportSummary(ExportSummary
),
468 ImportSummary(ImportSummary
) {
469 initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
472 bool runOnModule(Module
&M
) override
{
474 return LowerTypeTestsModule::runForTesting(M
);
475 return LowerTypeTestsModule(M
, ExportSummary
, ImportSummary
).lower();
479 } // end anonymous namespace
481 char LowerTypeTests::ID
= 0;
483 INITIALIZE_PASS(LowerTypeTests
, "lowertypetests", "Lower type metadata", false,
487 llvm::createLowerTypeTestsPass(ModuleSummaryIndex
*ExportSummary
,
488 const ModuleSummaryIndex
*ImportSummary
) {
489 return new LowerTypeTests(ExportSummary
, ImportSummary
);
492 /// Build a bit set for TypeId using the object layouts in
494 BitSetInfo
LowerTypeTestsModule::buildBitSet(
496 const DenseMap
<GlobalTypeMember
*, uint64_t> &GlobalLayout
) {
499 // Compute the byte offset of each address associated with this type
501 for (auto &GlobalAndOffset
: GlobalLayout
) {
502 for (MDNode
*Type
: GlobalAndOffset
.first
->types()) {
503 if (Type
->getOperand(1) != TypeId
)
507 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
509 BSB
.addOffset(GlobalAndOffset
.second
+ Offset
);
516 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
517 /// Bits. This pattern matches to the bt instruction on x86.
518 static Value
*createMaskedBitTest(IRBuilder
<> &B
, Value
*Bits
,
520 auto BitsType
= cast
<IntegerType
>(Bits
->getType());
521 unsigned BitWidth
= BitsType
->getBitWidth();
523 BitOffset
= B
.CreateZExtOrTrunc(BitOffset
, BitsType
);
525 B
.CreateAnd(BitOffset
, ConstantInt::get(BitsType
, BitWidth
- 1));
526 Value
*BitMask
= B
.CreateShl(ConstantInt::get(BitsType
, 1), BitIndex
);
527 Value
*MaskedBits
= B
.CreateAnd(Bits
, BitMask
);
528 return B
.CreateICmpNE(MaskedBits
, ConstantInt::get(BitsType
, 0));
531 ByteArrayInfo
*LowerTypeTestsModule::createByteArray(BitSetInfo
&BSI
) {
532 // Create globals to stand in for byte arrays and masks. These never actually
533 // get initialized, we RAUW and erase them later in allocateByteArrays() once
534 // we know the offset and mask to use.
535 auto ByteArrayGlobal
= new GlobalVariable(
536 M
, Int8Ty
, /*isConstant=*/true, GlobalValue::PrivateLinkage
, nullptr);
537 auto MaskGlobal
= new GlobalVariable(M
, Int8Ty
, /*isConstant=*/true,
538 GlobalValue::PrivateLinkage
, nullptr);
540 ByteArrayInfos
.emplace_back();
541 ByteArrayInfo
*BAI
= &ByteArrayInfos
.back();
543 BAI
->Bits
= BSI
.Bits
;
544 BAI
->BitSize
= BSI
.BitSize
;
545 BAI
->ByteArray
= ByteArrayGlobal
;
546 BAI
->MaskGlobal
= MaskGlobal
;
550 void LowerTypeTestsModule::allocateByteArrays() {
551 std::stable_sort(ByteArrayInfos
.begin(), ByteArrayInfos
.end(),
552 [](const ByteArrayInfo
&BAI1
, const ByteArrayInfo
&BAI2
) {
553 return BAI1
.BitSize
> BAI2
.BitSize
;
556 std::vector
<uint64_t> ByteArrayOffsets(ByteArrayInfos
.size());
558 ByteArrayBuilder BAB
;
559 for (unsigned I
= 0; I
!= ByteArrayInfos
.size(); ++I
) {
560 ByteArrayInfo
*BAI
= &ByteArrayInfos
[I
];
563 BAB
.allocate(BAI
->Bits
, BAI
->BitSize
, ByteArrayOffsets
[I
], Mask
);
565 BAI
->MaskGlobal
->replaceAllUsesWith(
566 ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty
, Mask
), Int8PtrTy
));
567 BAI
->MaskGlobal
->eraseFromParent();
569 *BAI
->MaskPtr
= Mask
;
572 Constant
*ByteArrayConst
= ConstantDataArray::get(M
.getContext(), BAB
.Bytes
);
574 new GlobalVariable(M
, ByteArrayConst
->getType(), /*isConstant=*/true,
575 GlobalValue::PrivateLinkage
, ByteArrayConst
);
577 for (unsigned I
= 0; I
!= ByteArrayInfos
.size(); ++I
) {
578 ByteArrayInfo
*BAI
= &ByteArrayInfos
[I
];
580 Constant
*Idxs
[] = {ConstantInt::get(IntPtrTy
, 0),
581 ConstantInt::get(IntPtrTy
, ByteArrayOffsets
[I
])};
582 Constant
*GEP
= ConstantExpr::getInBoundsGetElementPtr(
583 ByteArrayConst
->getType(), ByteArray
, Idxs
);
585 // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
586 // that the pc-relative displacement is folded into the lea instead of the
587 // test instruction getting another displacement.
588 GlobalAlias
*Alias
= GlobalAlias::create(
589 Int8Ty
, 0, GlobalValue::PrivateLinkage
, "bits", GEP
, &M
);
590 BAI
->ByteArray
->replaceAllUsesWith(Alias
);
591 BAI
->ByteArray
->eraseFromParent();
594 ByteArraySizeBits
= BAB
.BitAllocs
[0] + BAB
.BitAllocs
[1] + BAB
.BitAllocs
[2] +
595 BAB
.BitAllocs
[3] + BAB
.BitAllocs
[4] + BAB
.BitAllocs
[5] +
596 BAB
.BitAllocs
[6] + BAB
.BitAllocs
[7];
597 ByteArraySizeBytes
= BAB
.Bytes
.size();
600 /// Build a test that bit BitOffset is set in the type identifier that was
601 /// lowered to TIL, which must be either an Inline or a ByteArray.
602 Value
*LowerTypeTestsModule::createBitSetTest(IRBuilder
<> &B
,
603 const TypeIdLowering
&TIL
,
605 if (TIL
.TheKind
== TypeTestResolution::Inline
) {
606 // If the bit set is sufficiently small, we can avoid a load by bit testing
608 return createMaskedBitTest(B
, TIL
.InlineBits
, BitOffset
);
610 Constant
*ByteArray
= TIL
.TheByteArray
;
611 if (AvoidReuse
&& !ImportSummary
) {
612 // Each use of the byte array uses a different alias. This makes the
613 // backend less likely to reuse previously computed byte array addresses,
614 // improving the security of the CFI mechanism based on this pass.
615 // This won't work when importing because TheByteArray is external.
616 ByteArray
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::PrivateLinkage
,
617 "bits_use", ByteArray
, &M
);
620 Value
*ByteAddr
= B
.CreateGEP(Int8Ty
, ByteArray
, BitOffset
);
621 Value
*Byte
= B
.CreateLoad(Int8Ty
, ByteAddr
);
624 B
.CreateAnd(Byte
, ConstantExpr::getPtrToInt(TIL
.BitMask
, Int8Ty
));
625 return B
.CreateICmpNE(ByteAndMask
, ConstantInt::get(Int8Ty
, 0));
629 static bool isKnownTypeIdMember(Metadata
*TypeId
, const DataLayout
&DL
,
630 Value
*V
, uint64_t COffset
) {
631 if (auto GV
= dyn_cast
<GlobalObject
>(V
)) {
632 SmallVector
<MDNode
*, 2> Types
;
633 GV
->getMetadata(LLVMContext::MD_type
, Types
);
634 for (MDNode
*Type
: Types
) {
635 if (Type
->getOperand(1) != TypeId
)
639 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
641 if (COffset
== Offset
)
647 if (auto GEP
= dyn_cast
<GEPOperator
>(V
)) {
648 APInt
APOffset(DL
.getPointerSizeInBits(0), 0);
649 bool Result
= GEP
->accumulateConstantOffset(DL
, APOffset
);
652 COffset
+= APOffset
.getZExtValue();
653 return isKnownTypeIdMember(TypeId
, DL
, GEP
->getPointerOperand(), COffset
);
656 if (auto Op
= dyn_cast
<Operator
>(V
)) {
657 if (Op
->getOpcode() == Instruction::BitCast
)
658 return isKnownTypeIdMember(TypeId
, DL
, Op
->getOperand(0), COffset
);
660 if (Op
->getOpcode() == Instruction::Select
)
661 return isKnownTypeIdMember(TypeId
, DL
, Op
->getOperand(1), COffset
) &&
662 isKnownTypeIdMember(TypeId
, DL
, Op
->getOperand(2), COffset
);
668 /// Lower a llvm.type.test call to its implementation. Returns the value to
669 /// replace the call with.
670 Value
*LowerTypeTestsModule::lowerTypeTestCall(Metadata
*TypeId
, CallInst
*CI
,
671 const TypeIdLowering
&TIL
) {
672 if (TIL
.TheKind
== TypeTestResolution::Unsat
)
673 return ConstantInt::getFalse(M
.getContext());
675 Value
*Ptr
= CI
->getArgOperand(0);
676 const DataLayout
&DL
= M
.getDataLayout();
677 if (isKnownTypeIdMember(TypeId
, DL
, Ptr
, 0))
678 return ConstantInt::getTrue(M
.getContext());
680 BasicBlock
*InitialBB
= CI
->getParent();
684 Value
*PtrAsInt
= B
.CreatePtrToInt(Ptr
, IntPtrTy
);
686 Constant
*OffsetedGlobalAsInt
=
687 ConstantExpr::getPtrToInt(TIL
.OffsetedGlobal
, IntPtrTy
);
688 if (TIL
.TheKind
== TypeTestResolution::Single
)
689 return B
.CreateICmpEQ(PtrAsInt
, OffsetedGlobalAsInt
);
691 Value
*PtrOffset
= B
.CreateSub(PtrAsInt
, OffsetedGlobalAsInt
);
693 // We need to check that the offset both falls within our range and is
694 // suitably aligned. We can check both properties at the same time by
695 // performing a right rotate by log2(alignment) followed by an integer
696 // comparison against the bitset size. The rotate will move the lower
697 // order bits that need to be zero into the higher order bits of the
698 // result, causing the comparison to fail if they are nonzero. The rotate
699 // also conveniently gives us a bit offset to use during the load from
702 B
.CreateLShr(PtrOffset
, ConstantExpr::getZExt(TIL
.AlignLog2
, IntPtrTy
));
703 Value
*OffsetSHL
= B
.CreateShl(
704 PtrOffset
, ConstantExpr::getZExt(
705 ConstantExpr::getSub(
706 ConstantInt::get(Int8Ty
, DL
.getPointerSizeInBits(0)),
709 Value
*BitOffset
= B
.CreateOr(OffsetSHR
, OffsetSHL
);
711 Value
*OffsetInRange
= B
.CreateICmpULE(BitOffset
, TIL
.SizeM1
);
713 // If the bit set is all ones, testing against it is unnecessary.
714 if (TIL
.TheKind
== TypeTestResolution::AllOnes
)
715 return OffsetInRange
;
717 // See if the intrinsic is used in the following common pattern:
718 // br(llvm.type.test(...), thenbb, elsebb)
719 // where nothing happens between the type test and the br.
720 // If so, create slightly simpler IR.
722 if (auto *Br
= dyn_cast
<BranchInst
>(*CI
->user_begin()))
723 if (CI
->getNextNode() == Br
) {
724 BasicBlock
*Then
= InitialBB
->splitBasicBlock(CI
->getIterator());
725 BasicBlock
*Else
= Br
->getSuccessor(1);
726 BranchInst
*NewBr
= BranchInst::Create(Then
, Else
, OffsetInRange
);
727 NewBr
->setMetadata(LLVMContext::MD_prof
,
728 Br
->getMetadata(LLVMContext::MD_prof
));
729 ReplaceInstWithInst(InitialBB
->getTerminator(), NewBr
);
731 // Update phis in Else resulting from InitialBB being split
732 for (auto &Phi
: Else
->phis())
733 Phi
.addIncoming(Phi
.getIncomingValueForBlock(Then
), InitialBB
);
735 IRBuilder
<> ThenB(CI
);
736 return createBitSetTest(ThenB
, TIL
, BitOffset
);
739 IRBuilder
<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange
, CI
, false));
741 // Now that we know that the offset is in range and aligned, load the
742 // appropriate bit from the bitset.
743 Value
*Bit
= createBitSetTest(ThenB
, TIL
, BitOffset
);
745 // The value we want is 0 if we came directly from the initial block
746 // (having failed the range or alignment checks), or the loaded bit if
747 // we came from the block in which we loaded it.
748 B
.SetInsertPoint(CI
);
749 PHINode
*P
= B
.CreatePHI(Int1Ty
, 2);
750 P
->addIncoming(ConstantInt::get(Int1Ty
, 0), InitialBB
);
751 P
->addIncoming(Bit
, ThenB
.GetInsertBlock());
755 /// Given a disjoint set of type identifiers and globals, lay out the globals,
756 /// build the bit sets and lower the llvm.type.test calls.
757 void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
758 ArrayRef
<Metadata
*> TypeIds
, ArrayRef
<GlobalTypeMember
*> Globals
) {
759 // Build a new global with the combined contents of the referenced globals.
760 // This global is a struct whose even-indexed elements contain the original
761 // contents of the referenced globals and whose odd-indexed elements contain
762 // any padding required to align the next element to the next power of 2.
763 std::vector
<Constant
*> GlobalInits
;
764 const DataLayout
&DL
= M
.getDataLayout();
765 for (GlobalTypeMember
*G
: Globals
) {
766 GlobalVariable
*GV
= cast
<GlobalVariable
>(G
->getGlobal());
767 GlobalInits
.push_back(GV
->getInitializer());
768 uint64_t InitSize
= DL
.getTypeAllocSize(GV
->getValueType());
770 // Compute the amount of padding required.
771 uint64_t Padding
= NextPowerOf2(InitSize
- 1) - InitSize
;
773 // Experiments of different caps with Chromium on both x64 and ARM64
774 // have shown that the 32-byte cap generates the smallest binary on
775 // both platforms while different caps yield similar performance.
776 // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
778 Padding
= alignTo(InitSize
, 32) - InitSize
;
780 GlobalInits
.push_back(
781 ConstantAggregateZero::get(ArrayType::get(Int8Ty
, Padding
)));
783 if (!GlobalInits
.empty())
784 GlobalInits
.pop_back();
785 Constant
*NewInit
= ConstantStruct::getAnon(M
.getContext(), GlobalInits
);
786 auto *CombinedGlobal
=
787 new GlobalVariable(M
, NewInit
->getType(), /*isConstant=*/true,
788 GlobalValue::PrivateLinkage
, NewInit
);
790 StructType
*NewTy
= cast
<StructType
>(NewInit
->getType());
791 const StructLayout
*CombinedGlobalLayout
= DL
.getStructLayout(NewTy
);
793 // Compute the offsets of the original globals within the new global.
794 DenseMap
<GlobalTypeMember
*, uint64_t> GlobalLayout
;
795 for (unsigned I
= 0; I
!= Globals
.size(); ++I
)
796 // Multiply by 2 to account for padding elements.
797 GlobalLayout
[Globals
[I
]] = CombinedGlobalLayout
->getElementOffset(I
* 2);
799 lowerTypeTestCalls(TypeIds
, CombinedGlobal
, GlobalLayout
);
801 // Build aliases pointing to offsets into the combined global for each
802 // global from which we built the combined global, and replace references
803 // to the original globals with references to the aliases.
804 for (unsigned I
= 0; I
!= Globals
.size(); ++I
) {
805 GlobalVariable
*GV
= cast
<GlobalVariable
>(Globals
[I
]->getGlobal());
807 // Multiply by 2 to account for padding elements.
808 Constant
*CombinedGlobalIdxs
[] = {ConstantInt::get(Int32Ty
, 0),
809 ConstantInt::get(Int32Ty
, I
* 2)};
810 Constant
*CombinedGlobalElemPtr
= ConstantExpr::getGetElementPtr(
811 NewInit
->getType(), CombinedGlobal
, CombinedGlobalIdxs
);
812 assert(GV
->getType()->getAddressSpace() == 0);
813 GlobalAlias
*GAlias
=
814 GlobalAlias::create(NewTy
->getElementType(I
* 2), 0, GV
->getLinkage(),
815 "", CombinedGlobalElemPtr
, &M
);
816 GAlias
->setVisibility(GV
->getVisibility());
817 GAlias
->takeName(GV
);
818 GV
->replaceAllUsesWith(GAlias
);
819 GV
->eraseFromParent();
823 bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
824 return (Arch
== Triple::x86
|| Arch
== Triple::x86_64
) &&
825 ObjectFormat
== Triple::ELF
;
828 /// Export the given type identifier so that ThinLTO backends may import it.
829 /// Type identifiers are exported by adding coarse-grained information about how
830 /// to test the type identifier to the summary, and creating symbols in the
831 /// object file (aliases and absolute symbols) containing fine-grained
832 /// information about the type identifier.
834 /// Returns a pointer to the location in which to store the bitmask, if
836 uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId
,
837 const TypeIdLowering
&TIL
) {
838 TypeTestResolution
&TTRes
=
839 ExportSummary
->getOrInsertTypeIdSummary(TypeId
).TTRes
;
840 TTRes
.TheKind
= TIL
.TheKind
;
842 auto ExportGlobal
= [&](StringRef Name
, Constant
*C
) {
844 GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
845 "__typeid_" + TypeId
+ "_" + Name
, C
, &M
);
846 GA
->setVisibility(GlobalValue::HiddenVisibility
);
849 auto ExportConstant
= [&](StringRef Name
, uint64_t &Storage
, Constant
*C
) {
850 if (shouldExportConstantsAsAbsoluteSymbols())
851 ExportGlobal(Name
, ConstantExpr::getIntToPtr(C
, Int8PtrTy
));
853 Storage
= cast
<ConstantInt
>(C
)->getZExtValue();
856 if (TIL
.TheKind
!= TypeTestResolution::Unsat
)
857 ExportGlobal("global_addr", TIL
.OffsetedGlobal
);
859 if (TIL
.TheKind
== TypeTestResolution::ByteArray
||
860 TIL
.TheKind
== TypeTestResolution::Inline
||
861 TIL
.TheKind
== TypeTestResolution::AllOnes
) {
862 ExportConstant("align", TTRes
.AlignLog2
, TIL
.AlignLog2
);
863 ExportConstant("size_m1", TTRes
.SizeM1
, TIL
.SizeM1
);
865 uint64_t BitSize
= cast
<ConstantInt
>(TIL
.SizeM1
)->getZExtValue() + 1;
866 if (TIL
.TheKind
== TypeTestResolution::Inline
)
867 TTRes
.SizeM1BitWidth
= (BitSize
<= 32) ? 5 : 6;
869 TTRes
.SizeM1BitWidth
= (BitSize
<= 128) ? 7 : 32;
872 if (TIL
.TheKind
== TypeTestResolution::ByteArray
) {
873 ExportGlobal("byte_array", TIL
.TheByteArray
);
874 if (shouldExportConstantsAsAbsoluteSymbols())
875 ExportGlobal("bit_mask", TIL
.BitMask
);
877 return &TTRes
.BitMask
;
880 if (TIL
.TheKind
== TypeTestResolution::Inline
)
881 ExportConstant("inline_bits", TTRes
.InlineBits
, TIL
.InlineBits
);
886 LowerTypeTestsModule::TypeIdLowering
887 LowerTypeTestsModule::importTypeId(StringRef TypeId
) {
888 const TypeIdSummary
*TidSummary
= ImportSummary
->getTypeIdSummary(TypeId
);
890 return {}; // Unsat: no globals match this type id.
891 const TypeTestResolution
&TTRes
= TidSummary
->TTRes
;
894 TIL
.TheKind
= TTRes
.TheKind
;
896 auto ImportGlobal
= [&](StringRef Name
) {
897 // Give the global a type of length 0 so that it is not assumed not to alias
898 // with any other global.
899 Constant
*C
= M
.getOrInsertGlobal(("__typeid_" + TypeId
+ "_" + Name
).str(),
901 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
902 GV
->setVisibility(GlobalValue::HiddenVisibility
);
903 C
= ConstantExpr::getBitCast(C
, Int8PtrTy
);
907 auto ImportConstant
= [&](StringRef Name
, uint64_t Const
, unsigned AbsWidth
,
909 if (!shouldExportConstantsAsAbsoluteSymbols()) {
911 ConstantInt::get(isa
<IntegerType
>(Ty
) ? Ty
: Int64Ty
, Const
);
912 if (!isa
<IntegerType
>(Ty
))
913 C
= ConstantExpr::getIntToPtr(C
, Ty
);
917 Constant
*C
= ImportGlobal(Name
);
918 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
919 if (isa
<IntegerType
>(Ty
))
920 C
= ConstantExpr::getPtrToInt(C
, Ty
);
921 if (GV
->getMetadata(LLVMContext::MD_absolute_symbol
))
924 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
925 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
926 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
927 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
928 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
930 if (AbsWidth
== IntPtrTy
->getBitWidth())
931 SetAbsRange(~0ull, ~0ull); // Full set.
933 SetAbsRange(0, 1ull << AbsWidth
);
937 if (TIL
.TheKind
!= TypeTestResolution::Unsat
)
938 TIL
.OffsetedGlobal
= ImportGlobal("global_addr");
940 if (TIL
.TheKind
== TypeTestResolution::ByteArray
||
941 TIL
.TheKind
== TypeTestResolution::Inline
||
942 TIL
.TheKind
== TypeTestResolution::AllOnes
) {
943 TIL
.AlignLog2
= ImportConstant("align", TTRes
.AlignLog2
, 8, Int8Ty
);
945 ImportConstant("size_m1", TTRes
.SizeM1
, TTRes
.SizeM1BitWidth
, IntPtrTy
);
948 if (TIL
.TheKind
== TypeTestResolution::ByteArray
) {
949 TIL
.TheByteArray
= ImportGlobal("byte_array");
950 TIL
.BitMask
= ImportConstant("bit_mask", TTRes
.BitMask
, 8, Int8PtrTy
);
953 if (TIL
.TheKind
== TypeTestResolution::Inline
)
954 TIL
.InlineBits
= ImportConstant(
955 "inline_bits", TTRes
.InlineBits
, 1 << TTRes
.SizeM1BitWidth
,
956 TTRes
.SizeM1BitWidth
<= 5 ? Int32Ty
: Int64Ty
);
961 void LowerTypeTestsModule::importTypeTest(CallInst
*CI
) {
962 auto TypeIdMDVal
= dyn_cast
<MetadataAsValue
>(CI
->getArgOperand(1));
964 report_fatal_error("Second argument of llvm.type.test must be metadata");
966 auto TypeIdStr
= dyn_cast
<MDString
>(TypeIdMDVal
->getMetadata());
969 "Second argument of llvm.type.test must be a metadata string");
971 TypeIdLowering TIL
= importTypeId(TypeIdStr
->getString());
972 Value
*Lowered
= lowerTypeTestCall(TypeIdStr
, CI
, TIL
);
973 CI
->replaceAllUsesWith(Lowered
);
974 CI
->eraseFromParent();
977 // ThinLTO backend: the function F has a jump table entry; update this module
978 // accordingly. isDefinition describes the type of the jump table entry.
979 void LowerTypeTestsModule::importFunction(Function
*F
, bool isDefinition
) {
980 assert(F
->getType()->getAddressSpace() == 0);
982 GlobalValue::VisibilityTypes Visibility
= F
->getVisibility();
983 std::string Name
= F
->getName();
985 if (F
->isDeclarationForLinker() && isDefinition
) {
986 // Non-dso_local functions may be overriden at run time,
987 // don't short curcuit them
988 if (F
->isDSOLocal()) {
989 Function
*RealF
= Function::Create(F
->getFunctionType(),
990 GlobalValue::ExternalLinkage
,
991 F
->getAddressSpace(),
993 RealF
->setVisibility(GlobalVariable::HiddenVisibility
);
994 replaceDirectCalls(F
, RealF
);
1000 if (F
->isDeclarationForLinker() && !isDefinition
) {
1001 // Declaration of an external function.
1002 FDecl
= Function::Create(F
->getFunctionType(), GlobalValue::ExternalLinkage
,
1003 F
->getAddressSpace(), Name
+ ".cfi_jt", &M
);
1004 FDecl
->setVisibility(GlobalValue::HiddenVisibility
);
1005 } else if (isDefinition
) {
1006 F
->setName(Name
+ ".cfi");
1007 F
->setLinkage(GlobalValue::ExternalLinkage
);
1008 FDecl
= Function::Create(F
->getFunctionType(), GlobalValue::ExternalLinkage
,
1009 F
->getAddressSpace(), Name
, &M
);
1010 FDecl
->setVisibility(Visibility
);
1011 Visibility
= GlobalValue::HiddenVisibility
;
1013 // Delete aliases pointing to this function, they'll be re-created in the
1015 SmallVector
<GlobalAlias
*, 4> ToErase
;
1016 for (auto &U
: F
->uses()) {
1017 if (auto *A
= dyn_cast
<GlobalAlias
>(U
.getUser())) {
1018 Function
*AliasDecl
= Function::Create(
1019 F
->getFunctionType(), GlobalValue::ExternalLinkage
,
1020 F
->getAddressSpace(), "", &M
);
1021 AliasDecl
->takeName(A
);
1022 A
->replaceAllUsesWith(AliasDecl
);
1023 ToErase
.push_back(A
);
1026 for (auto *A
: ToErase
)
1027 A
->eraseFromParent();
1029 // Function definition without type metadata, where some other translation
1030 // unit contained a declaration with type metadata. This normally happens
1031 // during mixed CFI + non-CFI compilation. We do nothing with the function
1032 // so that it is treated the same way as a function defined outside of the
1037 if (F
->isWeakForLinker())
1038 replaceWeakDeclarationWithJumpTablePtr(F
, FDecl
, isDefinition
);
1040 replaceCfiUses(F
, FDecl
, isDefinition
);
1042 // Set visibility late because it's used in replaceCfiUses() to determine
1043 // whether uses need to to be replaced.
1044 F
->setVisibility(Visibility
);
1047 void LowerTypeTestsModule::lowerTypeTestCalls(
1048 ArrayRef
<Metadata
*> TypeIds
, Constant
*CombinedGlobalAddr
,
1049 const DenseMap
<GlobalTypeMember
*, uint64_t> &GlobalLayout
) {
1050 CombinedGlobalAddr
= ConstantExpr::getBitCast(CombinedGlobalAddr
, Int8PtrTy
);
1052 // For each type identifier in this disjoint set...
1053 for (Metadata
*TypeId
: TypeIds
) {
1054 // Build the bitset.
1055 BitSetInfo BSI
= buildBitSet(TypeId
, GlobalLayout
);
1057 if (auto MDS
= dyn_cast
<MDString
>(TypeId
))
1058 dbgs() << MDS
->getString() << ": ";
1060 dbgs() << "<unnamed>: ";
1064 ByteArrayInfo
*BAI
= nullptr;
1066 TIL
.OffsetedGlobal
= ConstantExpr::getGetElementPtr(
1067 Int8Ty
, CombinedGlobalAddr
, ConstantInt::get(IntPtrTy
, BSI
.ByteOffset
)),
1068 TIL
.AlignLog2
= ConstantInt::get(Int8Ty
, BSI
.AlignLog2
);
1069 TIL
.SizeM1
= ConstantInt::get(IntPtrTy
, BSI
.BitSize
- 1);
1070 if (BSI
.isAllOnes()) {
1071 TIL
.TheKind
= (BSI
.BitSize
== 1) ? TypeTestResolution::Single
1072 : TypeTestResolution::AllOnes
;
1073 } else if (BSI
.BitSize
<= 64) {
1074 TIL
.TheKind
= TypeTestResolution::Inline
;
1075 uint64_t InlineBits
= 0;
1076 for (auto Bit
: BSI
.Bits
)
1077 InlineBits
|= uint64_t(1) << Bit
;
1078 if (InlineBits
== 0)
1079 TIL
.TheKind
= TypeTestResolution::Unsat
;
1081 TIL
.InlineBits
= ConstantInt::get(
1082 (BSI
.BitSize
<= 32) ? Int32Ty
: Int64Ty
, InlineBits
);
1084 TIL
.TheKind
= TypeTestResolution::ByteArray
;
1085 ++NumByteArraysCreated
;
1086 BAI
= createByteArray(BSI
);
1087 TIL
.TheByteArray
= BAI
->ByteArray
;
1088 TIL
.BitMask
= BAI
->MaskGlobal
;
1091 TypeIdUserInfo
&TIUI
= TypeIdUsers
[TypeId
];
1093 if (TIUI
.IsExported
) {
1094 uint8_t *MaskPtr
= exportTypeId(cast
<MDString
>(TypeId
)->getString(), TIL
);
1096 BAI
->MaskPtr
= MaskPtr
;
1099 // Lower each call to llvm.type.test for this type identifier.
1100 for (CallInst
*CI
: TIUI
.CallSites
) {
1101 ++NumTypeTestCallsLowered
;
1102 Value
*Lowered
= lowerTypeTestCall(TypeId
, CI
, TIL
);
1103 CI
->replaceAllUsesWith(Lowered
);
1104 CI
->eraseFromParent();
1109 void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject
*GO
, MDNode
*Type
) {
1110 if (Type
->getNumOperands() != 2)
1111 report_fatal_error("All operands of type metadata must have 2 elements");
1113 if (GO
->isThreadLocal())
1114 report_fatal_error("Bit set element may not be thread-local");
1115 if (isa
<GlobalVariable
>(GO
) && GO
->hasSection())
1117 "A member of a type identifier may not have an explicit section");
1119 // FIXME: We previously checked that global var member of a type identifier
1120 // must be a definition, but the IR linker may leave type metadata on
1121 // declarations. We should restore this check after fixing PR31759.
1123 auto OffsetConstMD
= dyn_cast
<ConstantAsMetadata
>(Type
->getOperand(0));
1125 report_fatal_error("Type offset must be a constant");
1126 auto OffsetInt
= dyn_cast
<ConstantInt
>(OffsetConstMD
->getValue());
1128 report_fatal_error("Type offset must be an integer constant");
1131 static const unsigned kX86JumpTableEntrySize
= 8;
1132 static const unsigned kARMJumpTableEntrySize
= 4;
1134 unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1137 case Triple::x86_64
:
1138 return kX86JumpTableEntrySize
;
1141 case Triple::aarch64
:
1142 return kARMJumpTableEntrySize
;
1144 report_fatal_error("Unsupported architecture for jump tables");
1148 // Create a jump table entry for the target. This consists of an instruction
1149 // sequence containing a relative branch to Dest. Appends inline asm text,
1150 // constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
1151 void LowerTypeTestsModule::createJumpTableEntry(
1152 raw_ostream
&AsmOS
, raw_ostream
&ConstraintOS
,
1153 Triple::ArchType JumpTableArch
, SmallVectorImpl
<Value
*> &AsmArgs
,
1155 unsigned ArgIndex
= AsmArgs
.size();
1157 if (JumpTableArch
== Triple::x86
|| JumpTableArch
== Triple::x86_64
) {
1158 AsmOS
<< "jmp ${" << ArgIndex
<< ":c}@plt\n";
1159 AsmOS
<< "int3\nint3\nint3\n";
1160 } else if (JumpTableArch
== Triple::arm
|| JumpTableArch
== Triple::aarch64
) {
1161 AsmOS
<< "b $" << ArgIndex
<< "\n";
1162 } else if (JumpTableArch
== Triple::thumb
) {
1163 AsmOS
<< "b.w $" << ArgIndex
<< "\n";
1165 report_fatal_error("Unsupported architecture for jump tables");
1168 ConstraintOS
<< (ArgIndex
> 0 ? ",s" : "s");
1169 AsmArgs
.push_back(Dest
);
1172 Type
*LowerTypeTestsModule::getJumpTableEntryType() {
1173 return ArrayType::get(Int8Ty
, getJumpTableEntrySize());
1176 /// Given a disjoint set of type identifiers and functions, build the bit sets
1177 /// and lower the llvm.type.test calls, architecture dependently.
1178 void LowerTypeTestsModule::buildBitSetsFromFunctions(
1179 ArrayRef
<Metadata
*> TypeIds
, ArrayRef
<GlobalTypeMember
*> Functions
) {
1180 if (Arch
== Triple::x86
|| Arch
== Triple::x86_64
|| Arch
== Triple::arm
||
1181 Arch
== Triple::thumb
|| Arch
== Triple::aarch64
)
1182 buildBitSetsFromFunctionsNative(TypeIds
, Functions
);
1183 else if (Arch
== Triple::wasm32
|| Arch
== Triple::wasm64
)
1184 buildBitSetsFromFunctionsWASM(TypeIds
, Functions
);
1186 report_fatal_error("Unsupported architecture for jump tables");
1189 void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1190 GlobalVariable
*GV
) {
1191 if (WeakInitializerFn
== nullptr) {
1192 WeakInitializerFn
= Function::Create(
1193 FunctionType::get(Type::getVoidTy(M
.getContext()),
1194 /* IsVarArg */ false),
1195 GlobalValue::InternalLinkage
,
1196 M
.getDataLayout().getProgramAddressSpace(),
1197 "__cfi_global_var_init", &M
);
1199 BasicBlock::Create(M
.getContext(), "entry", WeakInitializerFn
);
1200 ReturnInst::Create(M
.getContext(), BB
);
1201 WeakInitializerFn
->setSection(
1202 ObjectFormat
== Triple::MachO
1203 ? "__TEXT,__StaticInit,regular,pure_instructions"
1205 // This code is equivalent to relocation application, and should run at the
1206 // earliest possible time (i.e. with the highest priority).
1207 appendToGlobalCtors(M
, WeakInitializerFn
, /* Priority */ 0);
1210 IRBuilder
<> IRB(WeakInitializerFn
->getEntryBlock().getTerminator());
1211 GV
->setConstant(false);
1212 IRB
.CreateAlignedStore(GV
->getInitializer(), GV
, GV
->getAlignment());
1213 GV
->setInitializer(Constant::getNullValue(GV
->getValueType()));
1216 void LowerTypeTestsModule::findGlobalVariableUsersOf(
1217 Constant
*C
, SmallSetVector
<GlobalVariable
*, 8> &Out
) {
1218 for (auto *U
: C
->users()){
1219 if (auto *GV
= dyn_cast
<GlobalVariable
>(U
))
1221 else if (auto *C2
= dyn_cast
<Constant
>(U
))
1222 findGlobalVariableUsersOf(C2
, Out
);
1226 // Replace all uses of F with (F ? JT : 0).
1227 void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1228 Function
*F
, Constant
*JT
, bool IsDefinition
) {
1229 // The target expression can not appear in a constant initializer on most
1230 // (all?) targets. Switch to a runtime initializer.
1231 SmallSetVector
<GlobalVariable
*, 8> GlobalVarUsers
;
1232 findGlobalVariableUsersOf(F
, GlobalVarUsers
);
1233 for (auto GV
: GlobalVarUsers
)
1234 moveInitializerToModuleConstructor(GV
);
1236 // Can not RAUW F with an expression that uses F. Replace with a temporary
1237 // placeholder first.
1238 Function
*PlaceholderFn
=
1239 Function::Create(cast
<FunctionType
>(F
->getValueType()),
1240 GlobalValue::ExternalWeakLinkage
,
1241 F
->getAddressSpace(), "", &M
);
1242 replaceCfiUses(F
, PlaceholderFn
, IsDefinition
);
1244 Constant
*Target
= ConstantExpr::getSelect(
1245 ConstantExpr::getICmp(CmpInst::ICMP_NE
, F
,
1246 Constant::getNullValue(F
->getType())),
1247 JT
, Constant::getNullValue(F
->getType()));
1248 PlaceholderFn
->replaceAllUsesWith(Target
);
1249 PlaceholderFn
->eraseFromParent();
1252 static bool isThumbFunction(Function
*F
, Triple::ArchType ModuleArch
) {
1253 Attribute TFAttr
= F
->getFnAttribute("target-features");
1254 if (!TFAttr
.hasAttribute(Attribute::None
)) {
1255 SmallVector
<StringRef
, 6> Features
;
1256 TFAttr
.getValueAsString().split(Features
, ',');
1257 for (StringRef Feature
: Features
) {
1258 if (Feature
== "-thumb-mode")
1260 else if (Feature
== "+thumb-mode")
1265 return ModuleArch
== Triple::thumb
;
1268 // Each jump table must be either ARM or Thumb as a whole for the bit-test math
1269 // to work. Pick one that matches the majority of members to minimize interop
1270 // veneers inserted by the linker.
1271 static Triple::ArchType
1272 selectJumpTableArmEncoding(ArrayRef
<GlobalTypeMember
*> Functions
,
1273 Triple::ArchType ModuleArch
) {
1274 if (ModuleArch
!= Triple::arm
&& ModuleArch
!= Triple::thumb
)
1277 unsigned ArmCount
= 0, ThumbCount
= 0;
1278 for (const auto GTM
: Functions
) {
1279 if (!GTM
->isDefinition()) {
1280 // PLT stubs are always ARM.
1285 Function
*F
= cast
<Function
>(GTM
->getGlobal());
1286 ++(isThumbFunction(F
, ModuleArch
) ? ThumbCount
: ArmCount
);
1289 return ArmCount
> ThumbCount
? Triple::arm
: Triple::thumb
;
1292 void LowerTypeTestsModule::createJumpTable(
1293 Function
*F
, ArrayRef
<GlobalTypeMember
*> Functions
) {
1294 std::string AsmStr
, ConstraintStr
;
1295 raw_string_ostream
AsmOS(AsmStr
), ConstraintOS(ConstraintStr
);
1296 SmallVector
<Value
*, 16> AsmArgs
;
1297 AsmArgs
.reserve(Functions
.size() * 2);
1299 Triple::ArchType JumpTableArch
= selectJumpTableArmEncoding(Functions
, Arch
);
1301 for (unsigned I
= 0; I
!= Functions
.size(); ++I
)
1302 createJumpTableEntry(AsmOS
, ConstraintOS
, JumpTableArch
, AsmArgs
,
1303 cast
<Function
>(Functions
[I
]->getGlobal()));
1305 // Align the whole table by entry size.
1306 F
->setAlignment(getJumpTableEntrySize());
1308 // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1309 // Luckily, this function does not get any prologue even without the
1311 if (OS
!= Triple::Win32
)
1312 F
->addFnAttr(Attribute::Naked
);
1313 if (JumpTableArch
== Triple::arm
)
1314 F
->addFnAttr("target-features", "-thumb-mode");
1315 if (JumpTableArch
== Triple::thumb
) {
1316 F
->addFnAttr("target-features", "+thumb-mode");
1317 // Thumb jump table assembly needs Thumb2. The following attribute is added
1318 // by Clang for -march=armv7.
1319 F
->addFnAttr("target-cpu", "cortex-a8");
1321 // Make sure we don't emit .eh_frame for this function.
1322 F
->addFnAttr(Attribute::NoUnwind
);
1324 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "entry", F
);
1325 IRBuilder
<> IRB(BB
);
1327 SmallVector
<Type
*, 16> ArgTypes
;
1328 ArgTypes
.reserve(AsmArgs
.size());
1329 for (const auto &Arg
: AsmArgs
)
1330 ArgTypes
.push_back(Arg
->getType());
1331 InlineAsm
*JumpTableAsm
=
1332 InlineAsm::get(FunctionType::get(IRB
.getVoidTy(), ArgTypes
, false),
1333 AsmOS
.str(), ConstraintOS
.str(),
1334 /*hasSideEffects=*/true);
1336 IRB
.CreateCall(JumpTableAsm
, AsmArgs
);
1337 IRB
.CreateUnreachable();
1340 /// Given a disjoint set of type identifiers and functions, build a jump table
1341 /// for the functions, build the bit sets and lower the llvm.type.test calls.
1342 void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1343 ArrayRef
<Metadata
*> TypeIds
, ArrayRef
<GlobalTypeMember
*> Functions
) {
1344 // Unlike the global bitset builder, the function bitset builder cannot
1345 // re-arrange functions in a particular order and base its calculations on the
1346 // layout of the functions' entry points, as we have no idea how large a
1347 // particular function will end up being (the size could even depend on what
1348 // this pass does!) Instead, we build a jump table, which is a block of code
1349 // consisting of one branch instruction for each of the functions in the bit
1350 // set that branches to the target function, and redirect any taken function
1351 // addresses to the corresponding jump table entry. In the object file's
1352 // symbol table, the symbols for the target functions also refer to the jump
1353 // table entries, so that addresses taken outside the module will pass any
1354 // verification done inside the module.
1356 // In more concrete terms, suppose we have three functions f, g, h which are
1357 // of the same type, and a function foo that returns their addresses:
1377 // We output the jump table as module-level inline asm string. The end result
1378 // will (conceptually) look like this:
1380 // f = .cfi.jumptable
1381 // g = .cfi.jumptable + 4
1382 // h = .cfi.jumptable + 8
1384 // jmp f.cfi ; 5 bytes
1388 // jmp g.cfi ; 5 bytes
1392 // jmp h.cfi ; 5 bytes
1415 // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1416 // normal case the check can be carried out using the same kind of simple
1417 // arithmetic that we normally use for globals.
1419 // FIXME: find a better way to represent the jumptable in the IR.
1420 assert(!Functions
.empty());
1422 // Build a simple layout based on the regular layout of jump tables.
1423 DenseMap
<GlobalTypeMember
*, uint64_t> GlobalLayout
;
1424 unsigned EntrySize
= getJumpTableEntrySize();
1425 for (unsigned I
= 0; I
!= Functions
.size(); ++I
)
1426 GlobalLayout
[Functions
[I
]] = I
* EntrySize
;
1428 Function
*JumpTableFn
=
1429 Function::Create(FunctionType::get(Type::getVoidTy(M
.getContext()),
1430 /* IsVarArg */ false),
1431 GlobalValue::PrivateLinkage
,
1432 M
.getDataLayout().getProgramAddressSpace(),
1433 ".cfi.jumptable", &M
);
1434 ArrayType
*JumpTableType
=
1435 ArrayType::get(getJumpTableEntryType(), Functions
.size());
1437 ConstantExpr::getPointerCast(JumpTableFn
, JumpTableType
->getPointerTo(0));
1439 lowerTypeTestCalls(TypeIds
, JumpTable
, GlobalLayout
);
1441 // Build aliases pointing to offsets into the jump table, and replace
1442 // references to the original functions with references to the aliases.
1443 for (unsigned I
= 0; I
!= Functions
.size(); ++I
) {
1444 Function
*F
= cast
<Function
>(Functions
[I
]->getGlobal());
1445 bool IsDefinition
= Functions
[I
]->isDefinition();
1447 Constant
*CombinedGlobalElemPtr
= ConstantExpr::getBitCast(
1448 ConstantExpr::getInBoundsGetElementPtr(
1449 JumpTableType
, JumpTable
,
1450 ArrayRef
<Constant
*>{ConstantInt::get(IntPtrTy
, 0),
1451 ConstantInt::get(IntPtrTy
, I
)}),
1453 if (Functions
[I
]->isExported()) {
1455 ExportSummary
->cfiFunctionDefs().insert(F
->getName());
1457 GlobalAlias
*JtAlias
= GlobalAlias::create(
1458 F
->getValueType(), 0, GlobalValue::ExternalLinkage
,
1459 F
->getName() + ".cfi_jt", CombinedGlobalElemPtr
, &M
);
1460 JtAlias
->setVisibility(GlobalValue::HiddenVisibility
);
1461 ExportSummary
->cfiFunctionDecls().insert(F
->getName());
1464 if (!IsDefinition
) {
1465 if (F
->isWeakForLinker())
1466 replaceWeakDeclarationWithJumpTablePtr(F
, CombinedGlobalElemPtr
, IsDefinition
);
1468 replaceCfiUses(F
, CombinedGlobalElemPtr
, IsDefinition
);
1470 assert(F
->getType()->getAddressSpace() == 0);
1472 GlobalAlias
*FAlias
= GlobalAlias::create(
1473 F
->getValueType(), 0, F
->getLinkage(), "", CombinedGlobalElemPtr
, &M
);
1474 FAlias
->setVisibility(F
->getVisibility());
1475 FAlias
->takeName(F
);
1476 if (FAlias
->hasName())
1477 F
->setName(FAlias
->getName() + ".cfi");
1478 replaceCfiUses(F
, FAlias
, IsDefinition
);
1479 if (!F
->hasLocalLinkage())
1480 F
->setVisibility(GlobalVariable::HiddenVisibility
);
1484 createJumpTable(JumpTableFn
, Functions
);
1487 /// Assign a dummy layout using an incrementing counter, tag each function
1488 /// with its index represented as metadata, and lower each type test to an
1489 /// integer range comparison. During generation of the indirect function call
1490 /// table in the backend, it will assign the given indexes.
1491 /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1493 void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1494 ArrayRef
<Metadata
*> TypeIds
, ArrayRef
<GlobalTypeMember
*> Functions
) {
1495 assert(!Functions
.empty());
1497 // Build consecutive monotonic integer ranges for each call target set
1498 DenseMap
<GlobalTypeMember
*, uint64_t> GlobalLayout
;
1500 for (GlobalTypeMember
*GTM
: Functions
) {
1501 Function
*F
= cast
<Function
>(GTM
->getGlobal());
1503 // Skip functions that are not address taken, to avoid bloating the table
1504 if (!F
->hasAddressTaken())
1507 // Store metadata with the index for each function
1508 MDNode
*MD
= MDNode::get(F
->getContext(),
1509 ArrayRef
<Metadata
*>(ConstantAsMetadata::get(
1510 ConstantInt::get(Int64Ty
, IndirectIndex
))));
1511 F
->setMetadata("wasm.index", MD
);
1513 // Assign the counter value
1514 GlobalLayout
[GTM
] = IndirectIndex
++;
1517 // The indirect function table index space starts at zero, so pass a NULL
1518 // pointer as the subtracted "jump table" offset.
1519 lowerTypeTestCalls(TypeIds
, ConstantPointerNull::get(Int32PtrTy
),
1523 void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1524 ArrayRef
<Metadata
*> TypeIds
, ArrayRef
<GlobalTypeMember
*> Globals
,
1525 ArrayRef
<ICallBranchFunnel
*> ICallBranchFunnels
) {
1526 DenseMap
<Metadata
*, uint64_t> TypeIdIndices
;
1527 for (unsigned I
= 0; I
!= TypeIds
.size(); ++I
)
1528 TypeIdIndices
[TypeIds
[I
]] = I
;
1530 // For each type identifier, build a set of indices that refer to members of
1531 // the type identifier.
1532 std::vector
<std::set
<uint64_t>> TypeMembers(TypeIds
.size());
1533 unsigned GlobalIndex
= 0;
1534 DenseMap
<GlobalTypeMember
*, uint64_t> GlobalIndices
;
1535 for (GlobalTypeMember
*GTM
: Globals
) {
1536 for (MDNode
*Type
: GTM
->types()) {
1537 // Type = { offset, type identifier }
1538 auto I
= TypeIdIndices
.find(Type
->getOperand(1));
1539 if (I
!= TypeIdIndices
.end())
1540 TypeMembers
[I
->second
].insert(GlobalIndex
);
1542 GlobalIndices
[GTM
] = GlobalIndex
;
1546 for (ICallBranchFunnel
*JT
: ICallBranchFunnels
) {
1547 TypeMembers
.emplace_back();
1548 std::set
<uint64_t> &TMSet
= TypeMembers
.back();
1549 for (GlobalTypeMember
*T
: JT
->targets())
1550 TMSet
.insert(GlobalIndices
[T
]);
1553 // Order the sets of indices by size. The GlobalLayoutBuilder works best
1554 // when given small index sets first.
1556 TypeMembers
.begin(), TypeMembers
.end(),
1557 [](const std::set
<uint64_t> &O1
, const std::set
<uint64_t> &O2
) {
1558 return O1
.size() < O2
.size();
1561 // Create a GlobalLayoutBuilder and provide it with index sets as layout
1562 // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1563 // close together as possible.
1564 GlobalLayoutBuilder
GLB(Globals
.size());
1565 for (auto &&MemSet
: TypeMembers
)
1566 GLB
.addFragment(MemSet
);
1568 // Build a vector of globals with the computed layout.
1570 Globals
.empty() || isa
<GlobalVariable
>(Globals
[0]->getGlobal());
1571 std::vector
<GlobalTypeMember
*> OrderedGTMs(Globals
.size());
1572 auto OGTMI
= OrderedGTMs
.begin();
1573 for (auto &&F
: GLB
.Fragments
) {
1574 for (auto &&Offset
: F
) {
1575 if (IsGlobalSet
!= isa
<GlobalVariable
>(Globals
[Offset
]->getGlobal()))
1576 report_fatal_error("Type identifier may not contain both global "
1577 "variables and functions");
1578 *OGTMI
++ = Globals
[Offset
];
1582 // Build the bitsets from this disjoint set.
1584 buildBitSetsFromGlobalVariables(TypeIds
, OrderedGTMs
);
1586 buildBitSetsFromFunctions(TypeIds
, OrderedGTMs
);
1589 /// Lower all type tests in this module.
1590 LowerTypeTestsModule::LowerTypeTestsModule(
1591 Module
&M
, ModuleSummaryIndex
*ExportSummary
,
1592 const ModuleSummaryIndex
*ImportSummary
)
1593 : M(M
), ExportSummary(ExportSummary
), ImportSummary(ImportSummary
) {
1594 assert(!(ExportSummary
&& ImportSummary
));
1595 Triple
TargetTriple(M
.getTargetTriple());
1596 Arch
= TargetTriple
.getArch();
1597 OS
= TargetTriple
.getOS();
1598 ObjectFormat
= TargetTriple
.getObjectFormat();
1601 bool LowerTypeTestsModule::runForTesting(Module
&M
) {
1602 ModuleSummaryIndex
Summary(/*HaveGVs=*/false);
1604 // Handle the command-line summary arguments. This code is for testing
1605 // purposes only, so we handle errors directly.
1606 if (!ClReadSummary
.empty()) {
1607 ExitOnError
ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary
+
1609 auto ReadSummaryFile
=
1610 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
1612 yaml::Input
In(ReadSummaryFile
->getBuffer());
1614 ExitOnErr(errorCodeToError(In
.error()));
1618 LowerTypeTestsModule(
1619 M
, ClSummaryAction
== PassSummaryAction::Export
? &Summary
: nullptr,
1620 ClSummaryAction
== PassSummaryAction::Import
? &Summary
: nullptr)
1623 if (!ClWriteSummary
.empty()) {
1624 ExitOnError
ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary
+
1627 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::F_Text
);
1628 ExitOnErr(errorCodeToError(EC
));
1630 yaml::Output
Out(OS
);
1637 static bool isDirectCall(Use
& U
) {
1638 auto *Usr
= dyn_cast
<CallInst
>(U
.getUser());
1641 if (CS
.isCallee(&U
))
1647 void LowerTypeTestsModule::replaceCfiUses(Function
*Old
, Value
*New
, bool IsDefinition
) {
1648 SmallSetVector
<Constant
*, 4> Constants
;
1649 auto UI
= Old
->use_begin(), E
= Old
->use_end();
1654 // Skip block addresses
1655 if (isa
<BlockAddress
>(U
.getUser()))
1658 // Skip direct calls to externally defined or non-dso_local functions
1659 if (isDirectCall(U
) && (Old
->isDSOLocal() || !IsDefinition
))
1662 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1663 // constant because they are uniqued.
1664 if (auto *C
= dyn_cast
<Constant
>(U
.getUser())) {
1665 if (!isa
<GlobalValue
>(C
)) {
1666 // Save unique users to avoid processing operand replacement
1668 Constants
.insert(C
);
1676 // Process operand replacement of saved constants.
1677 for (auto *C
: Constants
)
1678 C
->handleOperandChange(Old
, New
);
1681 void LowerTypeTestsModule::replaceDirectCalls(Value
*Old
, Value
*New
) {
1682 auto UI
= Old
->use_begin(), E
= Old
->use_end();
1687 if (!isDirectCall(U
))
1694 bool LowerTypeTestsModule::lower() {
1695 // If only some of the modules were split, we cannot correctly perform
1696 // this transformation. We already checked for the presense of type tests
1697 // with partially split modules during the thin link, and would have emitted
1698 // an error if any were found, so here we can simply return.
1699 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
1700 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
1703 Function
*TypeTestFunc
=
1704 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
1705 Function
*ICallBranchFunnelFunc
=
1706 M
.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel
));
1707 if ((!TypeTestFunc
|| TypeTestFunc
->use_empty()) &&
1708 (!ICallBranchFunnelFunc
|| ICallBranchFunnelFunc
->use_empty()) &&
1709 !ExportSummary
&& !ImportSummary
)
1712 if (ImportSummary
) {
1714 for (auto UI
= TypeTestFunc
->use_begin(), UE
= TypeTestFunc
->use_end();
1716 auto *CI
= cast
<CallInst
>((*UI
++).getUser());
1721 if (ICallBranchFunnelFunc
&& !ICallBranchFunnelFunc
->use_empty())
1723 "unexpected call to llvm.icall.branch.funnel during import phase");
1725 SmallVector
<Function
*, 8> Defs
;
1726 SmallVector
<Function
*, 8> Decls
;
1728 // CFI functions are either external, or promoted. A local function may
1729 // have the same name, but it's not the one we are looking for.
1730 if (F
.hasLocalLinkage())
1732 if (ImportSummary
->cfiFunctionDefs().count(F
.getName()))
1734 else if (ImportSummary
->cfiFunctionDecls().count(F
.getName()))
1735 Decls
.push_back(&F
);
1739 importFunction(F
, /*isDefinition*/ true);
1740 for (auto F
: Decls
)
1741 importFunction(F
, /*isDefinition*/ false);
1746 // Equivalence class set containing type identifiers and the globals that
1747 // reference them. This is used to partition the set of type identifiers in
1748 // the module into disjoint sets.
1749 using GlobalClassesTy
= EquivalenceClasses
<
1750 PointerUnion3
<GlobalTypeMember
*, Metadata
*, ICallBranchFunnel
*>>;
1751 GlobalClassesTy GlobalClasses
;
1753 // Verify the type metadata and build a few data structures to let us
1754 // efficiently enumerate the type identifiers associated with a global:
1755 // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1756 // of associated type metadata) and a mapping from type identifiers to their
1757 // list of GlobalTypeMembers and last observed index in the list of globals.
1758 // The indices will be used later to deterministically order the list of type
1760 BumpPtrAllocator Alloc
;
1763 std::vector
<GlobalTypeMember
*> RefGlobals
;
1765 DenseMap
<Metadata
*, TIInfo
> TypeIdInfo
;
1766 unsigned CurUniqueId
= 0;
1767 SmallVector
<MDNode
*, 2> Types
;
1769 // Cross-DSO CFI emits jumptable entries for exported functions as well as
1770 // address taken functions in case they are address taken in other modules.
1771 const bool CrossDsoCfi
= M
.getModuleFlag("Cross-DSO CFI") != nullptr;
1773 struct ExportedFunctionInfo
{
1774 CfiFunctionLinkage Linkage
;
1775 MDNode
*FuncMD
; // {name, linkage, type[, type...]}
1777 DenseMap
<StringRef
, ExportedFunctionInfo
> ExportedFunctions
;
1778 if (ExportSummary
) {
1779 // A set of all functions that are address taken by a live global object.
1780 DenseSet
<GlobalValue::GUID
> AddressTaken
;
1781 for (auto &I
: *ExportSummary
)
1782 for (auto &GVS
: I
.second
.SummaryList
)
1784 for (auto &Ref
: GVS
->refs())
1785 AddressTaken
.insert(Ref
.getGUID());
1787 NamedMDNode
*CfiFunctionsMD
= M
.getNamedMetadata("cfi.functions");
1788 if (CfiFunctionsMD
) {
1789 for (auto FuncMD
: CfiFunctionsMD
->operands()) {
1790 assert(FuncMD
->getNumOperands() >= 2);
1791 StringRef FunctionName
=
1792 cast
<MDString
>(FuncMD
->getOperand(0))->getString();
1793 CfiFunctionLinkage Linkage
= static_cast<CfiFunctionLinkage
>(
1794 cast
<ConstantAsMetadata
>(FuncMD
->getOperand(1))
1796 ->getUniqueInteger()
1798 const GlobalValue::GUID GUID
= GlobalValue::getGUID(
1799 GlobalValue::dropLLVMManglingEscape(FunctionName
));
1800 // Do not emit jumptable entries for functions that are not-live and
1801 // have no live references (and are not exported with cross-DSO CFI.)
1802 if (!ExportSummary
->isGUIDLive(GUID
))
1804 if (!AddressTaken
.count(GUID
)) {
1805 if (!CrossDsoCfi
|| Linkage
!= CFL_Definition
)
1808 bool Exported
= false;
1809 if (auto VI
= ExportSummary
->getValueInfo(GUID
))
1810 for (auto &GVS
: VI
.getSummaryList())
1811 if (GVS
->isLive() && !GlobalValue::isLocalLinkage(GVS
->linkage()))
1817 auto P
= ExportedFunctions
.insert({FunctionName
, {Linkage
, FuncMD
}});
1818 if (!P
.second
&& P
.first
->second
.Linkage
!= CFL_Definition
)
1819 P
.first
->second
= {Linkage
, FuncMD
};
1822 for (const auto &P
: ExportedFunctions
) {
1823 StringRef FunctionName
= P
.first
;
1824 CfiFunctionLinkage Linkage
= P
.second
.Linkage
;
1825 MDNode
*FuncMD
= P
.second
.FuncMD
;
1826 Function
*F
= M
.getFunction(FunctionName
);
1828 F
= Function::Create(
1829 FunctionType::get(Type::getVoidTy(M
.getContext()), false),
1830 GlobalVariable::ExternalLinkage
,
1831 M
.getDataLayout().getProgramAddressSpace(), FunctionName
, &M
);
1833 // If the function is available_externally, remove its definition so
1834 // that it is handled the same way as a declaration. Later we will try
1835 // to create an alias using this function's linkage, which will fail if
1836 // the linkage is available_externally. This will also result in us
1837 // following the code path below to replace the type metadata.
1838 if (F
->hasAvailableExternallyLinkage()) {
1839 F
->setLinkage(GlobalValue::ExternalLinkage
);
1841 F
->setComdat(nullptr);
1845 // Update the linkage for extern_weak declarations when a definition
1847 if (Linkage
== CFL_Definition
&& F
->hasExternalWeakLinkage())
1848 F
->setLinkage(GlobalValue::ExternalLinkage
);
1850 // If the function in the full LTO module is a declaration, replace its
1851 // type metadata with the type metadata we found in cfi.functions. That
1852 // metadata is presumed to be more accurate than the metadata attached
1853 // to the declaration.
1854 if (F
->isDeclaration()) {
1855 if (Linkage
== CFL_WeakDeclaration
)
1856 F
->setLinkage(GlobalValue::ExternalWeakLinkage
);
1858 F
->eraseMetadata(LLVMContext::MD_type
);
1859 for (unsigned I
= 2; I
< FuncMD
->getNumOperands(); ++I
)
1860 F
->addMetadata(LLVMContext::MD_type
,
1861 *cast
<MDNode
>(FuncMD
->getOperand(I
).get()));
1867 DenseMap
<GlobalObject
*, GlobalTypeMember
*> GlobalTypeMembers
;
1868 for (GlobalObject
&GO
: M
.global_objects()) {
1869 if (isa
<GlobalVariable
>(GO
) && GO
.isDeclarationForLinker())
1873 GO
.getMetadata(LLVMContext::MD_type
, Types
);
1875 bool IsDefinition
= !GO
.isDeclarationForLinker();
1876 bool IsExported
= false;
1877 if (Function
*F
= dyn_cast
<Function
>(&GO
)) {
1878 if (ExportedFunctions
.count(F
->getName())) {
1879 IsDefinition
|= ExportedFunctions
[F
->getName()].Linkage
== CFL_Definition
;
1881 // TODO: The logic here checks only that the function is address taken,
1882 // not that the address takers are live. This can be updated to check
1883 // their liveness and emit fewer jumptable entries once monolithic LTO
1884 // builds also emit summaries.
1885 } else if (!F
->hasAddressTaken()) {
1886 if (!CrossDsoCfi
|| !IsDefinition
|| F
->hasLocalLinkage())
1892 GlobalTypeMember::create(Alloc
, &GO
, IsDefinition
, IsExported
, Types
);
1893 GlobalTypeMembers
[&GO
] = GTM
;
1894 for (MDNode
*Type
: Types
) {
1895 verifyTypeMDNode(&GO
, Type
);
1896 auto &Info
= TypeIdInfo
[Type
->getOperand(1)];
1897 Info
.UniqueId
= ++CurUniqueId
;
1898 Info
.RefGlobals
.push_back(GTM
);
1902 auto AddTypeIdUse
= [&](Metadata
*TypeId
) -> TypeIdUserInfo
& {
1903 // Add the call site to the list of call sites for this type identifier. We
1904 // also use TypeIdUsers to keep track of whether we have seen this type
1905 // identifier before. If we have, we don't need to re-add the referenced
1906 // globals to the equivalence class.
1907 auto Ins
= TypeIdUsers
.insert({TypeId
, {}});
1909 // Add the type identifier to the equivalence class.
1910 GlobalClassesTy::iterator GCI
= GlobalClasses
.insert(TypeId
);
1911 GlobalClassesTy::member_iterator CurSet
= GlobalClasses
.findLeader(GCI
);
1913 // Add the referenced globals to the type identifier's equivalence class.
1914 for (GlobalTypeMember
*GTM
: TypeIdInfo
[TypeId
].RefGlobals
)
1915 CurSet
= GlobalClasses
.unionSets(
1916 CurSet
, GlobalClasses
.findLeader(GlobalClasses
.insert(GTM
)));
1919 return Ins
.first
->second
;
1923 for (const Use
&U
: TypeTestFunc
->uses()) {
1924 auto CI
= cast
<CallInst
>(U
.getUser());
1926 auto TypeIdMDVal
= dyn_cast
<MetadataAsValue
>(CI
->getArgOperand(1));
1928 report_fatal_error("Second argument of llvm.type.test must be metadata");
1929 auto TypeId
= TypeIdMDVal
->getMetadata();
1930 AddTypeIdUse(TypeId
).CallSites
.push_back(CI
);
1934 if (ICallBranchFunnelFunc
) {
1935 for (const Use
&U
: ICallBranchFunnelFunc
->uses()) {
1936 if (Arch
!= Triple::x86_64
)
1938 "llvm.icall.branch.funnel not supported on this target");
1940 auto CI
= cast
<CallInst
>(U
.getUser());
1942 std::vector
<GlobalTypeMember
*> Targets
;
1943 if (CI
->getNumArgOperands() % 2 != 1)
1944 report_fatal_error("number of arguments should be odd");
1946 GlobalClassesTy::member_iterator CurSet
;
1947 for (unsigned I
= 1; I
!= CI
->getNumArgOperands(); I
+= 2) {
1949 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
1950 CI
->getOperand(I
), Offset
, M
.getDataLayout()));
1953 "Expected branch funnel operand to be global value");
1955 GlobalTypeMember
*GTM
= GlobalTypeMembers
[Base
];
1956 Targets
.push_back(GTM
);
1957 GlobalClassesTy::member_iterator NewSet
=
1958 GlobalClasses
.findLeader(GlobalClasses
.insert(GTM
));
1962 CurSet
= GlobalClasses
.unionSets(CurSet
, NewSet
);
1965 GlobalClasses
.unionSets(
1966 CurSet
, GlobalClasses
.findLeader(
1967 GlobalClasses
.insert(ICallBranchFunnel::create(
1968 Alloc
, CI
, Targets
, ++CurUniqueId
))));
1972 if (ExportSummary
) {
1973 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
1974 for (auto &P
: TypeIdInfo
) {
1975 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
1976 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
1980 for (auto &P
: *ExportSummary
) {
1981 for (auto &S
: P
.second
.SummaryList
) {
1982 if (!ExportSummary
->isGlobalValueLive(S
.get()))
1984 if (auto *FS
= dyn_cast
<FunctionSummary
>(S
->getBaseObject()))
1985 for (GlobalValue::GUID G
: FS
->type_tests())
1986 for (Metadata
*MD
: MetadataByGUID
[G
])
1987 AddTypeIdUse(MD
).IsExported
= true;
1992 if (GlobalClasses
.empty())
1995 // Build a list of disjoint sets ordered by their maximum global index for
1997 std::vector
<std::pair
<GlobalClassesTy::iterator
, unsigned>> Sets
;
1998 for (GlobalClassesTy::iterator I
= GlobalClasses
.begin(),
1999 E
= GlobalClasses
.end();
2003 ++NumTypeIdDisjointSets
;
2005 unsigned MaxUniqueId
= 0;
2006 for (GlobalClassesTy::member_iterator MI
= GlobalClasses
.member_begin(I
);
2007 MI
!= GlobalClasses
.member_end(); ++MI
) {
2008 if (auto *MD
= MI
->dyn_cast
<Metadata
*>())
2009 MaxUniqueId
= std::max(MaxUniqueId
, TypeIdInfo
[MD
].UniqueId
);
2010 else if (auto *BF
= MI
->dyn_cast
<ICallBranchFunnel
*>())
2011 MaxUniqueId
= std::max(MaxUniqueId
, BF
->UniqueId
);
2013 Sets
.emplace_back(I
, MaxUniqueId
);
2016 [](const std::pair
<GlobalClassesTy::iterator
, unsigned> &S1
,
2017 const std::pair
<GlobalClassesTy::iterator
, unsigned> &S2
) {
2018 return S1
.second
< S2
.second
;
2021 // For each disjoint set we found...
2022 for (const auto &S
: Sets
) {
2023 // Build the list of type identifiers in this disjoint set.
2024 std::vector
<Metadata
*> TypeIds
;
2025 std::vector
<GlobalTypeMember
*> Globals
;
2026 std::vector
<ICallBranchFunnel
*> ICallBranchFunnels
;
2027 for (GlobalClassesTy::member_iterator MI
=
2028 GlobalClasses
.member_begin(S
.first
);
2029 MI
!= GlobalClasses
.member_end(); ++MI
) {
2030 if (MI
->is
<Metadata
*>())
2031 TypeIds
.push_back(MI
->get
<Metadata
*>());
2032 else if (MI
->is
<GlobalTypeMember
*>())
2033 Globals
.push_back(MI
->get
<GlobalTypeMember
*>());
2035 ICallBranchFunnels
.push_back(MI
->get
<ICallBranchFunnel
*>());
2038 // Order type identifiers by unique ID for determinism. This ordering is
2039 // stable as there is a one-to-one mapping between metadata and unique IDs.
2040 llvm::sort(TypeIds
, [&](Metadata
*M1
, Metadata
*M2
) {
2041 return TypeIdInfo
[M1
].UniqueId
< TypeIdInfo
[M2
].UniqueId
;
2044 // Same for the branch funnels.
2045 llvm::sort(ICallBranchFunnels
,
2046 [&](ICallBranchFunnel
*F1
, ICallBranchFunnel
*F2
) {
2047 return F1
->UniqueId
< F2
->UniqueId
;
2050 // Build bitsets for this disjoint set.
2051 buildBitSetsFromDisjointSet(TypeIds
, Globals
, ICallBranchFunnels
);
2054 allocateByteArrays();
2056 // Parse alias data to replace stand-in function declarations for aliases
2057 // with an alias to the intended target.
2058 if (ExportSummary
) {
2059 if (NamedMDNode
*AliasesMD
= M
.getNamedMetadata("aliases")) {
2060 for (auto AliasMD
: AliasesMD
->operands()) {
2061 assert(AliasMD
->getNumOperands() >= 4);
2062 StringRef AliasName
=
2063 cast
<MDString
>(AliasMD
->getOperand(0))->getString();
2064 StringRef Aliasee
= cast
<MDString
>(AliasMD
->getOperand(1))->getString();
2066 if (!ExportedFunctions
.count(Aliasee
) ||
2067 ExportedFunctions
[Aliasee
].Linkage
!= CFL_Definition
||
2068 !M
.getNamedAlias(Aliasee
))
2071 GlobalValue::VisibilityTypes Visibility
=
2072 static_cast<GlobalValue::VisibilityTypes
>(
2073 cast
<ConstantAsMetadata
>(AliasMD
->getOperand(2))
2075 ->getUniqueInteger()
2078 static_cast<bool>(cast
<ConstantAsMetadata
>(AliasMD
->getOperand(3))
2080 ->getUniqueInteger()
2083 auto *Alias
= GlobalAlias::create("", M
.getNamedAlias(Aliasee
));
2084 Alias
->setVisibility(Visibility
);
2086 Alias
->setLinkage(GlobalValue::WeakAnyLinkage
);
2088 if (auto *F
= M
.getFunction(AliasName
)) {
2090 F
->replaceAllUsesWith(Alias
);
2091 F
->eraseFromParent();
2093 Alias
->setName(AliasName
);
2099 // Emit .symver directives for exported functions, if they exist.
2100 if (ExportSummary
) {
2101 if (NamedMDNode
*SymversMD
= M
.getNamedMetadata("symvers")) {
2102 for (auto Symver
: SymversMD
->operands()) {
2103 assert(Symver
->getNumOperands() >= 2);
2104 StringRef SymbolName
=
2105 cast
<MDString
>(Symver
->getOperand(0))->getString();
2106 StringRef Alias
= cast
<MDString
>(Symver
->getOperand(1))->getString();
2108 if (!ExportedFunctions
.count(SymbolName
))
2111 M
.appendModuleInlineAsm(
2112 (llvm::Twine(".symver ") + SymbolName
+ ", " + Alias
).str());
2120 PreservedAnalyses
LowerTypeTestsPass::run(Module
&M
,
2121 ModuleAnalysisManager
&AM
) {
2122 bool Changed
= LowerTypeTestsModule(M
, ExportSummary
, ImportSummary
).lower();
2124 return PreservedAnalyses::all();
2125 return PreservedAnalyses::none();