[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / IPO / LowerTypeTests.cpp
blob398005d22340527ddd438c150133a5286fad89a1
1 //===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10 // It also ensures that globals are properly laid out for the
11 // llvm.icall.branch.funnel intrinsic.
12 // See http://llvm.org/docs/TypeMetadata.html for more information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO/LowerTypeTests.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/EquivalenceClasses.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ModuleSummaryIndex.h"
50 #include "llvm/IR/ModuleSummaryIndexYAML.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Allocator.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/Error.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/FileSystem.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/TrailingObjects.h"
68 #include "llvm/Support/YAMLTraits.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/IPO.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/ModuleUtils.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <set>
78 #include <string>
79 #include <system_error>
80 #include <utility>
81 #include <vector>
83 using namespace llvm;
84 using namespace lowertypetests;
86 #define DEBUG_TYPE "lowertypetests"
88 STATISTIC(ByteArraySizeBits, "Byte array size in bits");
89 STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
90 STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
91 STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
92 STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
94 static cl::opt<bool> AvoidReuse(
95 "lowertypetests-avoid-reuse",
96 cl::desc("Try to avoid reuse of byte array addresses using aliases"),
97 cl::Hidden, cl::init(true));
99 static cl::opt<PassSummaryAction> ClSummaryAction(
100 "lowertypetests-summary-action",
101 cl::desc("What to do with the summary when running this pass"),
102 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
103 clEnumValN(PassSummaryAction::Import, "import",
104 "Import typeid resolutions from summary and globals"),
105 clEnumValN(PassSummaryAction::Export, "export",
106 "Export typeid resolutions to summary and globals")),
107 cl::Hidden);
109 static cl::opt<std::string> ClReadSummary(
110 "lowertypetests-read-summary",
111 cl::desc("Read summary from given YAML file before running pass"),
112 cl::Hidden);
114 static cl::opt<std::string> ClWriteSummary(
115 "lowertypetests-write-summary",
116 cl::desc("Write summary to given YAML file after running pass"),
117 cl::Hidden);
119 bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
120 if (Offset < ByteOffset)
121 return false;
123 if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
124 return false;
126 uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
127 if (BitOffset >= BitSize)
128 return false;
130 return Bits.count(BitOffset);
133 void BitSetInfo::print(raw_ostream &OS) const {
134 OS << "offset " << ByteOffset << " size " << BitSize << " align "
135 << (1 << AlignLog2);
137 if (isAllOnes()) {
138 OS << " all-ones\n";
139 return;
142 OS << " { ";
143 for (uint64_t B : Bits)
144 OS << B << ' ';
145 OS << "}\n";
148 BitSetInfo BitSetBuilder::build() {
149 if (Min > Max)
150 Min = 0;
152 // Normalize each offset against the minimum observed offset, and compute
153 // the bitwise OR of each of the offsets. The number of trailing zeros
154 // in the mask gives us the log2 of the alignment of all offsets, which
155 // allows us to compress the bitset by only storing one bit per aligned
156 // address.
157 uint64_t Mask = 0;
158 for (uint64_t &Offset : Offsets) {
159 Offset -= Min;
160 Mask |= Offset;
163 BitSetInfo BSI;
164 BSI.ByteOffset = Min;
166 BSI.AlignLog2 = 0;
167 if (Mask != 0)
168 BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
170 // Build the compressed bitset while normalizing the offsets against the
171 // computed alignment.
172 BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
173 for (uint64_t Offset : Offsets) {
174 Offset >>= BSI.AlignLog2;
175 BSI.Bits.insert(Offset);
178 return BSI;
181 void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
182 // Create a new fragment to hold the layout for F.
183 Fragments.emplace_back();
184 std::vector<uint64_t> &Fragment = Fragments.back();
185 uint64_t FragmentIndex = Fragments.size() - 1;
187 for (auto ObjIndex : F) {
188 uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
189 if (OldFragmentIndex == 0) {
190 // We haven't seen this object index before, so just add it to the current
191 // fragment.
192 Fragment.push_back(ObjIndex);
193 } else {
194 // This index belongs to an existing fragment. Copy the elements of the
195 // old fragment into this one and clear the old fragment. We don't update
196 // the fragment map just yet, this ensures that any further references to
197 // indices from the old fragment in this fragment do not insert any more
198 // indices.
199 std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
200 Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
201 OldFragment.clear();
205 // Update the fragment map to point our object indices to this fragment.
206 for (uint64_t ObjIndex : Fragment)
207 FragmentMap[ObjIndex] = FragmentIndex;
210 void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
211 uint64_t BitSize, uint64_t &AllocByteOffset,
212 uint8_t &AllocMask) {
213 // Find the smallest current allocation.
214 unsigned Bit = 0;
215 for (unsigned I = 1; I != BitsPerByte; ++I)
216 if (BitAllocs[I] < BitAllocs[Bit])
217 Bit = I;
219 AllocByteOffset = BitAllocs[Bit];
221 // Add our size to it.
222 unsigned ReqSize = AllocByteOffset + BitSize;
223 BitAllocs[Bit] = ReqSize;
224 if (Bytes.size() < ReqSize)
225 Bytes.resize(ReqSize);
227 // Set our bits.
228 AllocMask = 1 << Bit;
229 for (uint64_t B : Bits)
230 Bytes[AllocByteOffset + B] |= AllocMask;
233 namespace {
235 struct ByteArrayInfo {
236 std::set<uint64_t> Bits;
237 uint64_t BitSize;
238 GlobalVariable *ByteArray;
239 GlobalVariable *MaskGlobal;
240 uint8_t *MaskPtr = nullptr;
243 /// A POD-like structure that we use to store a global reference together with
244 /// its metadata types. In this pass we frequently need to query the set of
245 /// metadata types referenced by a global, which at the IR level is an expensive
246 /// operation involving a map lookup; this data structure helps to reduce the
247 /// number of times we need to do this lookup.
248 class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
249 friend TrailingObjects;
251 GlobalObject *GO;
252 size_t NTypes;
254 // For functions: true if this is a definition (either in the merged module or
255 // in one of the thinlto modules).
256 bool IsDefinition;
258 // For functions: true if this function is either defined or used in a thinlto
259 // module and its jumptable entry needs to be exported to thinlto backends.
260 bool IsExported;
262 size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
264 public:
265 static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
266 bool IsDefinition, bool IsExported,
267 ArrayRef<MDNode *> Types) {
268 auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
269 totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
270 GTM->GO = GO;
271 GTM->NTypes = Types.size();
272 GTM->IsDefinition = IsDefinition;
273 GTM->IsExported = IsExported;
274 std::uninitialized_copy(Types.begin(), Types.end(),
275 GTM->getTrailingObjects<MDNode *>());
276 return GTM;
279 GlobalObject *getGlobal() const {
280 return GO;
283 bool isDefinition() const {
284 return IsDefinition;
287 bool isExported() const {
288 return IsExported;
291 ArrayRef<MDNode *> types() const {
292 return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
296 struct ICallBranchFunnel final
297 : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
298 static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
299 ArrayRef<GlobalTypeMember *> Targets,
300 unsigned UniqueId) {
301 auto *Call = static_cast<ICallBranchFunnel *>(
302 Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
303 alignof(ICallBranchFunnel)));
304 Call->CI = CI;
305 Call->UniqueId = UniqueId;
306 Call->NTargets = Targets.size();
307 std::uninitialized_copy(Targets.begin(), Targets.end(),
308 Call->getTrailingObjects<GlobalTypeMember *>());
309 return Call;
312 CallInst *CI;
313 ArrayRef<GlobalTypeMember *> targets() const {
314 return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
317 unsigned UniqueId;
319 private:
320 size_t NTargets;
323 class LowerTypeTestsModule {
324 Module &M;
326 ModuleSummaryIndex *ExportSummary;
327 const ModuleSummaryIndex *ImportSummary;
329 Triple::ArchType Arch;
330 Triple::OSType OS;
331 Triple::ObjectFormatType ObjectFormat;
333 IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
334 IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
335 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
336 ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
337 IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
338 PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
339 IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
340 IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
342 // Indirect function call index assignment counter for WebAssembly
343 uint64_t IndirectIndex = 1;
345 // Mapping from type identifiers to the call sites that test them, as well as
346 // whether the type identifier needs to be exported to ThinLTO backends as
347 // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
348 struct TypeIdUserInfo {
349 std::vector<CallInst *> CallSites;
350 bool IsExported = false;
352 DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
354 /// This structure describes how to lower type tests for a particular type
355 /// identifier. It is either built directly from the global analysis (during
356 /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
357 /// identifier summaries and external symbol references (in ThinLTO backends).
358 struct TypeIdLowering {
359 TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
361 /// All except Unsat: the start address within the combined global.
362 Constant *OffsetedGlobal;
364 /// ByteArray, Inline, AllOnes: log2 of the required global alignment
365 /// relative to the start address.
366 Constant *AlignLog2;
368 /// ByteArray, Inline, AllOnes: one less than the size of the memory region
369 /// covering members of this type identifier as a multiple of 2^AlignLog2.
370 Constant *SizeM1;
372 /// ByteArray: the byte array to test the address against.
373 Constant *TheByteArray;
375 /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
376 Constant *BitMask;
378 /// Inline: the bit mask to test the address against.
379 Constant *InlineBits;
382 std::vector<ByteArrayInfo> ByteArrayInfos;
384 Function *WeakInitializerFn = nullptr;
386 bool shouldExportConstantsAsAbsoluteSymbols();
387 uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
388 TypeIdLowering importTypeId(StringRef TypeId);
389 void importTypeTest(CallInst *CI);
390 void importFunction(Function *F, bool isDefinition);
392 BitSetInfo
393 buildBitSet(Metadata *TypeId,
394 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
395 ByteArrayInfo *createByteArray(BitSetInfo &BSI);
396 void allocateByteArrays();
397 Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
398 Value *BitOffset);
399 void lowerTypeTestCalls(
400 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
401 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
402 Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
403 const TypeIdLowering &TIL);
405 void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
406 ArrayRef<GlobalTypeMember *> Globals);
407 unsigned getJumpTableEntrySize();
408 Type *getJumpTableEntryType();
409 void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
410 Triple::ArchType JumpTableArch,
411 SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
412 void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
413 void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
414 ArrayRef<GlobalTypeMember *> Functions);
415 void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
416 ArrayRef<GlobalTypeMember *> Functions);
417 void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
418 ArrayRef<GlobalTypeMember *> Functions);
419 void
420 buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
421 ArrayRef<GlobalTypeMember *> Globals,
422 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
424 void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT, bool IsDefinition);
425 void moveInitializerToModuleConstructor(GlobalVariable *GV);
426 void findGlobalVariableUsersOf(Constant *C,
427 SmallSetVector<GlobalVariable *, 8> &Out);
429 void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
431 /// replaceCfiUses - Go through the uses list for this definition
432 /// and make each use point to "V" instead of "this" when the use is outside
433 /// the block. 'This's use list is expected to have at least one element.
434 /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
435 /// uses.
436 void replaceCfiUses(Function *Old, Value *New, bool IsDefinition);
438 /// replaceDirectCalls - Go through the uses list for this definition and
439 /// replace each use, which is a direct function call.
440 void replaceDirectCalls(Value *Old, Value *New);
442 public:
443 LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
444 const ModuleSummaryIndex *ImportSummary);
446 bool lower();
448 // Lower the module using the action and summary passed as command line
449 // arguments. For testing purposes only.
450 static bool runForTesting(Module &M);
453 struct LowerTypeTests : public ModulePass {
454 static char ID;
456 bool UseCommandLine = false;
458 ModuleSummaryIndex *ExportSummary;
459 const ModuleSummaryIndex *ImportSummary;
461 LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
462 initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
465 LowerTypeTests(ModuleSummaryIndex *ExportSummary,
466 const ModuleSummaryIndex *ImportSummary)
467 : ModulePass(ID), ExportSummary(ExportSummary),
468 ImportSummary(ImportSummary) {
469 initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
472 bool runOnModule(Module &M) override {
473 if (UseCommandLine)
474 return LowerTypeTestsModule::runForTesting(M);
475 return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
479 } // end anonymous namespace
481 char LowerTypeTests::ID = 0;
483 INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
484 false)
486 ModulePass *
487 llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
488 const ModuleSummaryIndex *ImportSummary) {
489 return new LowerTypeTests(ExportSummary, ImportSummary);
492 /// Build a bit set for TypeId using the object layouts in
493 /// GlobalLayout.
494 BitSetInfo LowerTypeTestsModule::buildBitSet(
495 Metadata *TypeId,
496 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
497 BitSetBuilder BSB;
499 // Compute the byte offset of each address associated with this type
500 // identifier.
501 for (auto &GlobalAndOffset : GlobalLayout) {
502 for (MDNode *Type : GlobalAndOffset.first->types()) {
503 if (Type->getOperand(1) != TypeId)
504 continue;
505 uint64_t Offset =
506 cast<ConstantInt>(
507 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
508 ->getZExtValue();
509 BSB.addOffset(GlobalAndOffset.second + Offset);
513 return BSB.build();
516 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
517 /// Bits. This pattern matches to the bt instruction on x86.
518 static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
519 Value *BitOffset) {
520 auto BitsType = cast<IntegerType>(Bits->getType());
521 unsigned BitWidth = BitsType->getBitWidth();
523 BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
524 Value *BitIndex =
525 B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
526 Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
527 Value *MaskedBits = B.CreateAnd(Bits, BitMask);
528 return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
531 ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
532 // Create globals to stand in for byte arrays and masks. These never actually
533 // get initialized, we RAUW and erase them later in allocateByteArrays() once
534 // we know the offset and mask to use.
535 auto ByteArrayGlobal = new GlobalVariable(
536 M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
537 auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
538 GlobalValue::PrivateLinkage, nullptr);
540 ByteArrayInfos.emplace_back();
541 ByteArrayInfo *BAI = &ByteArrayInfos.back();
543 BAI->Bits = BSI.Bits;
544 BAI->BitSize = BSI.BitSize;
545 BAI->ByteArray = ByteArrayGlobal;
546 BAI->MaskGlobal = MaskGlobal;
547 return BAI;
550 void LowerTypeTestsModule::allocateByteArrays() {
551 std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
552 [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
553 return BAI1.BitSize > BAI2.BitSize;
556 std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
558 ByteArrayBuilder BAB;
559 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
560 ByteArrayInfo *BAI = &ByteArrayInfos[I];
562 uint8_t Mask;
563 BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
565 BAI->MaskGlobal->replaceAllUsesWith(
566 ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
567 BAI->MaskGlobal->eraseFromParent();
568 if (BAI->MaskPtr)
569 *BAI->MaskPtr = Mask;
572 Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
573 auto ByteArray =
574 new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
575 GlobalValue::PrivateLinkage, ByteArrayConst);
577 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
578 ByteArrayInfo *BAI = &ByteArrayInfos[I];
580 Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
581 ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
582 Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
583 ByteArrayConst->getType(), ByteArray, Idxs);
585 // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
586 // that the pc-relative displacement is folded into the lea instead of the
587 // test instruction getting another displacement.
588 GlobalAlias *Alias = GlobalAlias::create(
589 Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
590 BAI->ByteArray->replaceAllUsesWith(Alias);
591 BAI->ByteArray->eraseFromParent();
594 ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
595 BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
596 BAB.BitAllocs[6] + BAB.BitAllocs[7];
597 ByteArraySizeBytes = BAB.Bytes.size();
600 /// Build a test that bit BitOffset is set in the type identifier that was
601 /// lowered to TIL, which must be either an Inline or a ByteArray.
602 Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
603 const TypeIdLowering &TIL,
604 Value *BitOffset) {
605 if (TIL.TheKind == TypeTestResolution::Inline) {
606 // If the bit set is sufficiently small, we can avoid a load by bit testing
607 // a constant.
608 return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
609 } else {
610 Constant *ByteArray = TIL.TheByteArray;
611 if (AvoidReuse && !ImportSummary) {
612 // Each use of the byte array uses a different alias. This makes the
613 // backend less likely to reuse previously computed byte array addresses,
614 // improving the security of the CFI mechanism based on this pass.
615 // This won't work when importing because TheByteArray is external.
616 ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
617 "bits_use", ByteArray, &M);
620 Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
621 Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
623 Value *ByteAndMask =
624 B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
625 return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
629 static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
630 Value *V, uint64_t COffset) {
631 if (auto GV = dyn_cast<GlobalObject>(V)) {
632 SmallVector<MDNode *, 2> Types;
633 GV->getMetadata(LLVMContext::MD_type, Types);
634 for (MDNode *Type : Types) {
635 if (Type->getOperand(1) != TypeId)
636 continue;
637 uint64_t Offset =
638 cast<ConstantInt>(
639 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
640 ->getZExtValue();
641 if (COffset == Offset)
642 return true;
644 return false;
647 if (auto GEP = dyn_cast<GEPOperator>(V)) {
648 APInt APOffset(DL.getPointerSizeInBits(0), 0);
649 bool Result = GEP->accumulateConstantOffset(DL, APOffset);
650 if (!Result)
651 return false;
652 COffset += APOffset.getZExtValue();
653 return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
656 if (auto Op = dyn_cast<Operator>(V)) {
657 if (Op->getOpcode() == Instruction::BitCast)
658 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
660 if (Op->getOpcode() == Instruction::Select)
661 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
662 isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
665 return false;
668 /// Lower a llvm.type.test call to its implementation. Returns the value to
669 /// replace the call with.
670 Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
671 const TypeIdLowering &TIL) {
672 if (TIL.TheKind == TypeTestResolution::Unsat)
673 return ConstantInt::getFalse(M.getContext());
675 Value *Ptr = CI->getArgOperand(0);
676 const DataLayout &DL = M.getDataLayout();
677 if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
678 return ConstantInt::getTrue(M.getContext());
680 BasicBlock *InitialBB = CI->getParent();
682 IRBuilder<> B(CI);
684 Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
686 Constant *OffsetedGlobalAsInt =
687 ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
688 if (TIL.TheKind == TypeTestResolution::Single)
689 return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
691 Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
693 // We need to check that the offset both falls within our range and is
694 // suitably aligned. We can check both properties at the same time by
695 // performing a right rotate by log2(alignment) followed by an integer
696 // comparison against the bitset size. The rotate will move the lower
697 // order bits that need to be zero into the higher order bits of the
698 // result, causing the comparison to fail if they are nonzero. The rotate
699 // also conveniently gives us a bit offset to use during the load from
700 // the bitset.
701 Value *OffsetSHR =
702 B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
703 Value *OffsetSHL = B.CreateShl(
704 PtrOffset, ConstantExpr::getZExt(
705 ConstantExpr::getSub(
706 ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
707 TIL.AlignLog2),
708 IntPtrTy));
709 Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
711 Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
713 // If the bit set is all ones, testing against it is unnecessary.
714 if (TIL.TheKind == TypeTestResolution::AllOnes)
715 return OffsetInRange;
717 // See if the intrinsic is used in the following common pattern:
718 // br(llvm.type.test(...), thenbb, elsebb)
719 // where nothing happens between the type test and the br.
720 // If so, create slightly simpler IR.
721 if (CI->hasOneUse())
722 if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
723 if (CI->getNextNode() == Br) {
724 BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
725 BasicBlock *Else = Br->getSuccessor(1);
726 BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
727 NewBr->setMetadata(LLVMContext::MD_prof,
728 Br->getMetadata(LLVMContext::MD_prof));
729 ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
731 // Update phis in Else resulting from InitialBB being split
732 for (auto &Phi : Else->phis())
733 Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
735 IRBuilder<> ThenB(CI);
736 return createBitSetTest(ThenB, TIL, BitOffset);
739 IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
741 // Now that we know that the offset is in range and aligned, load the
742 // appropriate bit from the bitset.
743 Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
745 // The value we want is 0 if we came directly from the initial block
746 // (having failed the range or alignment checks), or the loaded bit if
747 // we came from the block in which we loaded it.
748 B.SetInsertPoint(CI);
749 PHINode *P = B.CreatePHI(Int1Ty, 2);
750 P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
751 P->addIncoming(Bit, ThenB.GetInsertBlock());
752 return P;
755 /// Given a disjoint set of type identifiers and globals, lay out the globals,
756 /// build the bit sets and lower the llvm.type.test calls.
757 void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
758 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
759 // Build a new global with the combined contents of the referenced globals.
760 // This global is a struct whose even-indexed elements contain the original
761 // contents of the referenced globals and whose odd-indexed elements contain
762 // any padding required to align the next element to the next power of 2.
763 std::vector<Constant *> GlobalInits;
764 const DataLayout &DL = M.getDataLayout();
765 for (GlobalTypeMember *G : Globals) {
766 GlobalVariable *GV = cast<GlobalVariable>(G->getGlobal());
767 GlobalInits.push_back(GV->getInitializer());
768 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
770 // Compute the amount of padding required.
771 uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
773 // Experiments of different caps with Chromium on both x64 and ARM64
774 // have shown that the 32-byte cap generates the smallest binary on
775 // both platforms while different caps yield similar performance.
776 // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
777 if (Padding > 32)
778 Padding = alignTo(InitSize, 32) - InitSize;
780 GlobalInits.push_back(
781 ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
783 if (!GlobalInits.empty())
784 GlobalInits.pop_back();
785 Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
786 auto *CombinedGlobal =
787 new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
788 GlobalValue::PrivateLinkage, NewInit);
790 StructType *NewTy = cast<StructType>(NewInit->getType());
791 const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);
793 // Compute the offsets of the original globals within the new global.
794 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
795 for (unsigned I = 0; I != Globals.size(); ++I)
796 // Multiply by 2 to account for padding elements.
797 GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
799 lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
801 // Build aliases pointing to offsets into the combined global for each
802 // global from which we built the combined global, and replace references
803 // to the original globals with references to the aliases.
804 for (unsigned I = 0; I != Globals.size(); ++I) {
805 GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
807 // Multiply by 2 to account for padding elements.
808 Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
809 ConstantInt::get(Int32Ty, I * 2)};
810 Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
811 NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
812 assert(GV->getType()->getAddressSpace() == 0);
813 GlobalAlias *GAlias =
814 GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
815 "", CombinedGlobalElemPtr, &M);
816 GAlias->setVisibility(GV->getVisibility());
817 GAlias->takeName(GV);
818 GV->replaceAllUsesWith(GAlias);
819 GV->eraseFromParent();
823 bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
824 return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
825 ObjectFormat == Triple::ELF;
828 /// Export the given type identifier so that ThinLTO backends may import it.
829 /// Type identifiers are exported by adding coarse-grained information about how
830 /// to test the type identifier to the summary, and creating symbols in the
831 /// object file (aliases and absolute symbols) containing fine-grained
832 /// information about the type identifier.
834 /// Returns a pointer to the location in which to store the bitmask, if
835 /// applicable.
836 uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
837 const TypeIdLowering &TIL) {
838 TypeTestResolution &TTRes =
839 ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
840 TTRes.TheKind = TIL.TheKind;
842 auto ExportGlobal = [&](StringRef Name, Constant *C) {
843 GlobalAlias *GA =
844 GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
845 "__typeid_" + TypeId + "_" + Name, C, &M);
846 GA->setVisibility(GlobalValue::HiddenVisibility);
849 auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
850 if (shouldExportConstantsAsAbsoluteSymbols())
851 ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
852 else
853 Storage = cast<ConstantInt>(C)->getZExtValue();
856 if (TIL.TheKind != TypeTestResolution::Unsat)
857 ExportGlobal("global_addr", TIL.OffsetedGlobal);
859 if (TIL.TheKind == TypeTestResolution::ByteArray ||
860 TIL.TheKind == TypeTestResolution::Inline ||
861 TIL.TheKind == TypeTestResolution::AllOnes) {
862 ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
863 ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
865 uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
866 if (TIL.TheKind == TypeTestResolution::Inline)
867 TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
868 else
869 TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
872 if (TIL.TheKind == TypeTestResolution::ByteArray) {
873 ExportGlobal("byte_array", TIL.TheByteArray);
874 if (shouldExportConstantsAsAbsoluteSymbols())
875 ExportGlobal("bit_mask", TIL.BitMask);
876 else
877 return &TTRes.BitMask;
880 if (TIL.TheKind == TypeTestResolution::Inline)
881 ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
883 return nullptr;
886 LowerTypeTestsModule::TypeIdLowering
887 LowerTypeTestsModule::importTypeId(StringRef TypeId) {
888 const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
889 if (!TidSummary)
890 return {}; // Unsat: no globals match this type id.
891 const TypeTestResolution &TTRes = TidSummary->TTRes;
893 TypeIdLowering TIL;
894 TIL.TheKind = TTRes.TheKind;
896 auto ImportGlobal = [&](StringRef Name) {
897 // Give the global a type of length 0 so that it is not assumed not to alias
898 // with any other global.
899 Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
900 Int8Arr0Ty);
901 if (auto *GV = dyn_cast<GlobalVariable>(C))
902 GV->setVisibility(GlobalValue::HiddenVisibility);
903 C = ConstantExpr::getBitCast(C, Int8PtrTy);
904 return C;
907 auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
908 Type *Ty) {
909 if (!shouldExportConstantsAsAbsoluteSymbols()) {
910 Constant *C =
911 ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
912 if (!isa<IntegerType>(Ty))
913 C = ConstantExpr::getIntToPtr(C, Ty);
914 return C;
917 Constant *C = ImportGlobal(Name);
918 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
919 if (isa<IntegerType>(Ty))
920 C = ConstantExpr::getPtrToInt(C, Ty);
921 if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
922 return C;
924 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
925 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
926 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
927 GV->setMetadata(LLVMContext::MD_absolute_symbol,
928 MDNode::get(M.getContext(), {MinC, MaxC}));
930 if (AbsWidth == IntPtrTy->getBitWidth())
931 SetAbsRange(~0ull, ~0ull); // Full set.
932 else
933 SetAbsRange(0, 1ull << AbsWidth);
934 return C;
937 if (TIL.TheKind != TypeTestResolution::Unsat)
938 TIL.OffsetedGlobal = ImportGlobal("global_addr");
940 if (TIL.TheKind == TypeTestResolution::ByteArray ||
941 TIL.TheKind == TypeTestResolution::Inline ||
942 TIL.TheKind == TypeTestResolution::AllOnes) {
943 TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
944 TIL.SizeM1 =
945 ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
948 if (TIL.TheKind == TypeTestResolution::ByteArray) {
949 TIL.TheByteArray = ImportGlobal("byte_array");
950 TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
953 if (TIL.TheKind == TypeTestResolution::Inline)
954 TIL.InlineBits = ImportConstant(
955 "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
956 TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
958 return TIL;
961 void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
962 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
963 if (!TypeIdMDVal)
964 report_fatal_error("Second argument of llvm.type.test must be metadata");
966 auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
967 if (!TypeIdStr)
968 report_fatal_error(
969 "Second argument of llvm.type.test must be a metadata string");
971 TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
972 Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
973 CI->replaceAllUsesWith(Lowered);
974 CI->eraseFromParent();
977 // ThinLTO backend: the function F has a jump table entry; update this module
978 // accordingly. isDefinition describes the type of the jump table entry.
979 void LowerTypeTestsModule::importFunction(Function *F, bool isDefinition) {
980 assert(F->getType()->getAddressSpace() == 0);
982 GlobalValue::VisibilityTypes Visibility = F->getVisibility();
983 std::string Name = F->getName();
985 if (F->isDeclarationForLinker() && isDefinition) {
986 // Non-dso_local functions may be overriden at run time,
987 // don't short curcuit them
988 if (F->isDSOLocal()) {
989 Function *RealF = Function::Create(F->getFunctionType(),
990 GlobalValue::ExternalLinkage,
991 F->getAddressSpace(),
992 Name + ".cfi", &M);
993 RealF->setVisibility(GlobalVariable::HiddenVisibility);
994 replaceDirectCalls(F, RealF);
996 return;
999 Function *FDecl;
1000 if (F->isDeclarationForLinker() && !isDefinition) {
1001 // Declaration of an external function.
1002 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1003 F->getAddressSpace(), Name + ".cfi_jt", &M);
1004 FDecl->setVisibility(GlobalValue::HiddenVisibility);
1005 } else if (isDefinition) {
1006 F->setName(Name + ".cfi");
1007 F->setLinkage(GlobalValue::ExternalLinkage);
1008 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1009 F->getAddressSpace(), Name, &M);
1010 FDecl->setVisibility(Visibility);
1011 Visibility = GlobalValue::HiddenVisibility;
1013 // Delete aliases pointing to this function, they'll be re-created in the
1014 // merged output
1015 SmallVector<GlobalAlias*, 4> ToErase;
1016 for (auto &U : F->uses()) {
1017 if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1018 Function *AliasDecl = Function::Create(
1019 F->getFunctionType(), GlobalValue::ExternalLinkage,
1020 F->getAddressSpace(), "", &M);
1021 AliasDecl->takeName(A);
1022 A->replaceAllUsesWith(AliasDecl);
1023 ToErase.push_back(A);
1026 for (auto *A : ToErase)
1027 A->eraseFromParent();
1028 } else {
1029 // Function definition without type metadata, where some other translation
1030 // unit contained a declaration with type metadata. This normally happens
1031 // during mixed CFI + non-CFI compilation. We do nothing with the function
1032 // so that it is treated the same way as a function defined outside of the
1033 // LTO unit.
1034 return;
1037 if (F->isWeakForLinker())
1038 replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isDefinition);
1039 else
1040 replaceCfiUses(F, FDecl, isDefinition);
1042 // Set visibility late because it's used in replaceCfiUses() to determine
1043 // whether uses need to to be replaced.
1044 F->setVisibility(Visibility);
1047 void LowerTypeTestsModule::lowerTypeTestCalls(
1048 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1049 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1050 CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
1052 // For each type identifier in this disjoint set...
1053 for (Metadata *TypeId : TypeIds) {
1054 // Build the bitset.
1055 BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
1056 LLVM_DEBUG({
1057 if (auto MDS = dyn_cast<MDString>(TypeId))
1058 dbgs() << MDS->getString() << ": ";
1059 else
1060 dbgs() << "<unnamed>: ";
1061 BSI.print(dbgs());
1064 ByteArrayInfo *BAI = nullptr;
1065 TypeIdLowering TIL;
1066 TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1067 Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
1068 TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
1069 TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1070 if (BSI.isAllOnes()) {
1071 TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1072 : TypeTestResolution::AllOnes;
1073 } else if (BSI.BitSize <= 64) {
1074 TIL.TheKind = TypeTestResolution::Inline;
1075 uint64_t InlineBits = 0;
1076 for (auto Bit : BSI.Bits)
1077 InlineBits |= uint64_t(1) << Bit;
1078 if (InlineBits == 0)
1079 TIL.TheKind = TypeTestResolution::Unsat;
1080 else
1081 TIL.InlineBits = ConstantInt::get(
1082 (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1083 } else {
1084 TIL.TheKind = TypeTestResolution::ByteArray;
1085 ++NumByteArraysCreated;
1086 BAI = createByteArray(BSI);
1087 TIL.TheByteArray = BAI->ByteArray;
1088 TIL.BitMask = BAI->MaskGlobal;
1091 TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1093 if (TIUI.IsExported) {
1094 uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1095 if (BAI)
1096 BAI->MaskPtr = MaskPtr;
1099 // Lower each call to llvm.type.test for this type identifier.
1100 for (CallInst *CI : TIUI.CallSites) {
1101 ++NumTypeTestCallsLowered;
1102 Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1103 CI->replaceAllUsesWith(Lowered);
1104 CI->eraseFromParent();
1109 void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1110 if (Type->getNumOperands() != 2)
1111 report_fatal_error("All operands of type metadata must have 2 elements");
1113 if (GO->isThreadLocal())
1114 report_fatal_error("Bit set element may not be thread-local");
1115 if (isa<GlobalVariable>(GO) && GO->hasSection())
1116 report_fatal_error(
1117 "A member of a type identifier may not have an explicit section");
1119 // FIXME: We previously checked that global var member of a type identifier
1120 // must be a definition, but the IR linker may leave type metadata on
1121 // declarations. We should restore this check after fixing PR31759.
1123 auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1124 if (!OffsetConstMD)
1125 report_fatal_error("Type offset must be a constant");
1126 auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1127 if (!OffsetInt)
1128 report_fatal_error("Type offset must be an integer constant");
1131 static const unsigned kX86JumpTableEntrySize = 8;
1132 static const unsigned kARMJumpTableEntrySize = 4;
1134 unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1135 switch (Arch) {
1136 case Triple::x86:
1137 case Triple::x86_64:
1138 return kX86JumpTableEntrySize;
1139 case Triple::arm:
1140 case Triple::thumb:
1141 case Triple::aarch64:
1142 return kARMJumpTableEntrySize;
1143 default:
1144 report_fatal_error("Unsupported architecture for jump tables");
1148 // Create a jump table entry for the target. This consists of an instruction
1149 // sequence containing a relative branch to Dest. Appends inline asm text,
1150 // constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
1151 void LowerTypeTestsModule::createJumpTableEntry(
1152 raw_ostream &AsmOS, raw_ostream &ConstraintOS,
1153 Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
1154 Function *Dest) {
1155 unsigned ArgIndex = AsmArgs.size();
1157 if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1158 AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
1159 AsmOS << "int3\nint3\nint3\n";
1160 } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
1161 AsmOS << "b $" << ArgIndex << "\n";
1162 } else if (JumpTableArch == Triple::thumb) {
1163 AsmOS << "b.w $" << ArgIndex << "\n";
1164 } else {
1165 report_fatal_error("Unsupported architecture for jump tables");
1168 ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
1169 AsmArgs.push_back(Dest);
1172 Type *LowerTypeTestsModule::getJumpTableEntryType() {
1173 return ArrayType::get(Int8Ty, getJumpTableEntrySize());
1176 /// Given a disjoint set of type identifiers and functions, build the bit sets
1177 /// and lower the llvm.type.test calls, architecture dependently.
1178 void LowerTypeTestsModule::buildBitSetsFromFunctions(
1179 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1180 if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1181 Arch == Triple::thumb || Arch == Triple::aarch64)
1182 buildBitSetsFromFunctionsNative(TypeIds, Functions);
1183 else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1184 buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1185 else
1186 report_fatal_error("Unsupported architecture for jump tables");
1189 void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1190 GlobalVariable *GV) {
1191 if (WeakInitializerFn == nullptr) {
1192 WeakInitializerFn = Function::Create(
1193 FunctionType::get(Type::getVoidTy(M.getContext()),
1194 /* IsVarArg */ false),
1195 GlobalValue::InternalLinkage,
1196 M.getDataLayout().getProgramAddressSpace(),
1197 "__cfi_global_var_init", &M);
1198 BasicBlock *BB =
1199 BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1200 ReturnInst::Create(M.getContext(), BB);
1201 WeakInitializerFn->setSection(
1202 ObjectFormat == Triple::MachO
1203 ? "__TEXT,__StaticInit,regular,pure_instructions"
1204 : ".text.startup");
1205 // This code is equivalent to relocation application, and should run at the
1206 // earliest possible time (i.e. with the highest priority).
1207 appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1210 IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1211 GV->setConstant(false);
1212 IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
1213 GV->setInitializer(Constant::getNullValue(GV->getValueType()));
1216 void LowerTypeTestsModule::findGlobalVariableUsersOf(
1217 Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1218 for (auto *U : C->users()){
1219 if (auto *GV = dyn_cast<GlobalVariable>(U))
1220 Out.insert(GV);
1221 else if (auto *C2 = dyn_cast<Constant>(U))
1222 findGlobalVariableUsersOf(C2, Out);
1226 // Replace all uses of F with (F ? JT : 0).
1227 void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1228 Function *F, Constant *JT, bool IsDefinition) {
1229 // The target expression can not appear in a constant initializer on most
1230 // (all?) targets. Switch to a runtime initializer.
1231 SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1232 findGlobalVariableUsersOf(F, GlobalVarUsers);
1233 for (auto GV : GlobalVarUsers)
1234 moveInitializerToModuleConstructor(GV);
1236 // Can not RAUW F with an expression that uses F. Replace with a temporary
1237 // placeholder first.
1238 Function *PlaceholderFn =
1239 Function::Create(cast<FunctionType>(F->getValueType()),
1240 GlobalValue::ExternalWeakLinkage,
1241 F->getAddressSpace(), "", &M);
1242 replaceCfiUses(F, PlaceholderFn, IsDefinition);
1244 Constant *Target = ConstantExpr::getSelect(
1245 ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
1246 Constant::getNullValue(F->getType())),
1247 JT, Constant::getNullValue(F->getType()));
1248 PlaceholderFn->replaceAllUsesWith(Target);
1249 PlaceholderFn->eraseFromParent();
1252 static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1253 Attribute TFAttr = F->getFnAttribute("target-features");
1254 if (!TFAttr.hasAttribute(Attribute::None)) {
1255 SmallVector<StringRef, 6> Features;
1256 TFAttr.getValueAsString().split(Features, ',');
1257 for (StringRef Feature : Features) {
1258 if (Feature == "-thumb-mode")
1259 return false;
1260 else if (Feature == "+thumb-mode")
1261 return true;
1265 return ModuleArch == Triple::thumb;
1268 // Each jump table must be either ARM or Thumb as a whole for the bit-test math
1269 // to work. Pick one that matches the majority of members to minimize interop
1270 // veneers inserted by the linker.
1271 static Triple::ArchType
1272 selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
1273 Triple::ArchType ModuleArch) {
1274 if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
1275 return ModuleArch;
1277 unsigned ArmCount = 0, ThumbCount = 0;
1278 for (const auto GTM : Functions) {
1279 if (!GTM->isDefinition()) {
1280 // PLT stubs are always ARM.
1281 ++ArmCount;
1282 continue;
1285 Function *F = cast<Function>(GTM->getGlobal());
1286 ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
1289 return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1292 void LowerTypeTestsModule::createJumpTable(
1293 Function *F, ArrayRef<GlobalTypeMember *> Functions) {
1294 std::string AsmStr, ConstraintStr;
1295 raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
1296 SmallVector<Value *, 16> AsmArgs;
1297 AsmArgs.reserve(Functions.size() * 2);
1299 Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
1301 for (unsigned I = 0; I != Functions.size(); ++I)
1302 createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
1303 cast<Function>(Functions[I]->getGlobal()));
1305 // Align the whole table by entry size.
1306 F->setAlignment(getJumpTableEntrySize());
1307 // Skip prologue.
1308 // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1309 // Luckily, this function does not get any prologue even without the
1310 // attribute.
1311 if (OS != Triple::Win32)
1312 F->addFnAttr(Attribute::Naked);
1313 if (JumpTableArch == Triple::arm)
1314 F->addFnAttr("target-features", "-thumb-mode");
1315 if (JumpTableArch == Triple::thumb) {
1316 F->addFnAttr("target-features", "+thumb-mode");
1317 // Thumb jump table assembly needs Thumb2. The following attribute is added
1318 // by Clang for -march=armv7.
1319 F->addFnAttr("target-cpu", "cortex-a8");
1321 // Make sure we don't emit .eh_frame for this function.
1322 F->addFnAttr(Attribute::NoUnwind);
1324 BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1325 IRBuilder<> IRB(BB);
1327 SmallVector<Type *, 16> ArgTypes;
1328 ArgTypes.reserve(AsmArgs.size());
1329 for (const auto &Arg : AsmArgs)
1330 ArgTypes.push_back(Arg->getType());
1331 InlineAsm *JumpTableAsm =
1332 InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
1333 AsmOS.str(), ConstraintOS.str(),
1334 /*hasSideEffects=*/true);
1336 IRB.CreateCall(JumpTableAsm, AsmArgs);
1337 IRB.CreateUnreachable();
1340 /// Given a disjoint set of type identifiers and functions, build a jump table
1341 /// for the functions, build the bit sets and lower the llvm.type.test calls.
1342 void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1343 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1344 // Unlike the global bitset builder, the function bitset builder cannot
1345 // re-arrange functions in a particular order and base its calculations on the
1346 // layout of the functions' entry points, as we have no idea how large a
1347 // particular function will end up being (the size could even depend on what
1348 // this pass does!) Instead, we build a jump table, which is a block of code
1349 // consisting of one branch instruction for each of the functions in the bit
1350 // set that branches to the target function, and redirect any taken function
1351 // addresses to the corresponding jump table entry. In the object file's
1352 // symbol table, the symbols for the target functions also refer to the jump
1353 // table entries, so that addresses taken outside the module will pass any
1354 // verification done inside the module.
1356 // In more concrete terms, suppose we have three functions f, g, h which are
1357 // of the same type, and a function foo that returns their addresses:
1359 // f:
1360 // mov 0, %eax
1361 // ret
1363 // g:
1364 // mov 1, %eax
1365 // ret
1367 // h:
1368 // mov 2, %eax
1369 // ret
1371 // foo:
1372 // mov f, %eax
1373 // mov g, %edx
1374 // mov h, %ecx
1375 // ret
1377 // We output the jump table as module-level inline asm string. The end result
1378 // will (conceptually) look like this:
1380 // f = .cfi.jumptable
1381 // g = .cfi.jumptable + 4
1382 // h = .cfi.jumptable + 8
1383 // .cfi.jumptable:
1384 // jmp f.cfi ; 5 bytes
1385 // int3 ; 1 byte
1386 // int3 ; 1 byte
1387 // int3 ; 1 byte
1388 // jmp g.cfi ; 5 bytes
1389 // int3 ; 1 byte
1390 // int3 ; 1 byte
1391 // int3 ; 1 byte
1392 // jmp h.cfi ; 5 bytes
1393 // int3 ; 1 byte
1394 // int3 ; 1 byte
1395 // int3 ; 1 byte
1397 // f.cfi:
1398 // mov 0, %eax
1399 // ret
1401 // g.cfi:
1402 // mov 1, %eax
1403 // ret
1405 // h.cfi:
1406 // mov 2, %eax
1407 // ret
1409 // foo:
1410 // mov f, %eax
1411 // mov g, %edx
1412 // mov h, %ecx
1413 // ret
1415 // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1416 // normal case the check can be carried out using the same kind of simple
1417 // arithmetic that we normally use for globals.
1419 // FIXME: find a better way to represent the jumptable in the IR.
1420 assert(!Functions.empty());
1422 // Build a simple layout based on the regular layout of jump tables.
1423 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1424 unsigned EntrySize = getJumpTableEntrySize();
1425 for (unsigned I = 0; I != Functions.size(); ++I)
1426 GlobalLayout[Functions[I]] = I * EntrySize;
1428 Function *JumpTableFn =
1429 Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
1430 /* IsVarArg */ false),
1431 GlobalValue::PrivateLinkage,
1432 M.getDataLayout().getProgramAddressSpace(),
1433 ".cfi.jumptable", &M);
1434 ArrayType *JumpTableType =
1435 ArrayType::get(getJumpTableEntryType(), Functions.size());
1436 auto JumpTable =
1437 ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
1439 lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1441 // Build aliases pointing to offsets into the jump table, and replace
1442 // references to the original functions with references to the aliases.
1443 for (unsigned I = 0; I != Functions.size(); ++I) {
1444 Function *F = cast<Function>(Functions[I]->getGlobal());
1445 bool IsDefinition = Functions[I]->isDefinition();
1447 Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
1448 ConstantExpr::getInBoundsGetElementPtr(
1449 JumpTableType, JumpTable,
1450 ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1451 ConstantInt::get(IntPtrTy, I)}),
1452 F->getType());
1453 if (Functions[I]->isExported()) {
1454 if (IsDefinition) {
1455 ExportSummary->cfiFunctionDefs().insert(F->getName());
1456 } else {
1457 GlobalAlias *JtAlias = GlobalAlias::create(
1458 F->getValueType(), 0, GlobalValue::ExternalLinkage,
1459 F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
1460 JtAlias->setVisibility(GlobalValue::HiddenVisibility);
1461 ExportSummary->cfiFunctionDecls().insert(F->getName());
1464 if (!IsDefinition) {
1465 if (F->isWeakForLinker())
1466 replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr, IsDefinition);
1467 else
1468 replaceCfiUses(F, CombinedGlobalElemPtr, IsDefinition);
1469 } else {
1470 assert(F->getType()->getAddressSpace() == 0);
1472 GlobalAlias *FAlias = GlobalAlias::create(
1473 F->getValueType(), 0, F->getLinkage(), "", CombinedGlobalElemPtr, &M);
1474 FAlias->setVisibility(F->getVisibility());
1475 FAlias->takeName(F);
1476 if (FAlias->hasName())
1477 F->setName(FAlias->getName() + ".cfi");
1478 replaceCfiUses(F, FAlias, IsDefinition);
1479 if (!F->hasLocalLinkage())
1480 F->setVisibility(GlobalVariable::HiddenVisibility);
1484 createJumpTable(JumpTableFn, Functions);
1487 /// Assign a dummy layout using an incrementing counter, tag each function
1488 /// with its index represented as metadata, and lower each type test to an
1489 /// integer range comparison. During generation of the indirect function call
1490 /// table in the backend, it will assign the given indexes.
1491 /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1492 /// been finalized.
1493 void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1494 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1495 assert(!Functions.empty());
1497 // Build consecutive monotonic integer ranges for each call target set
1498 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1500 for (GlobalTypeMember *GTM : Functions) {
1501 Function *F = cast<Function>(GTM->getGlobal());
1503 // Skip functions that are not address taken, to avoid bloating the table
1504 if (!F->hasAddressTaken())
1505 continue;
1507 // Store metadata with the index for each function
1508 MDNode *MD = MDNode::get(F->getContext(),
1509 ArrayRef<Metadata *>(ConstantAsMetadata::get(
1510 ConstantInt::get(Int64Ty, IndirectIndex))));
1511 F->setMetadata("wasm.index", MD);
1513 // Assign the counter value
1514 GlobalLayout[GTM] = IndirectIndex++;
1517 // The indirect function table index space starts at zero, so pass a NULL
1518 // pointer as the subtracted "jump table" offset.
1519 lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
1520 GlobalLayout);
1523 void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1524 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
1525 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1526 DenseMap<Metadata *, uint64_t> TypeIdIndices;
1527 for (unsigned I = 0; I != TypeIds.size(); ++I)
1528 TypeIdIndices[TypeIds[I]] = I;
1530 // For each type identifier, build a set of indices that refer to members of
1531 // the type identifier.
1532 std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1533 unsigned GlobalIndex = 0;
1534 DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1535 for (GlobalTypeMember *GTM : Globals) {
1536 for (MDNode *Type : GTM->types()) {
1537 // Type = { offset, type identifier }
1538 auto I = TypeIdIndices.find(Type->getOperand(1));
1539 if (I != TypeIdIndices.end())
1540 TypeMembers[I->second].insert(GlobalIndex);
1542 GlobalIndices[GTM] = GlobalIndex;
1543 GlobalIndex++;
1546 for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1547 TypeMembers.emplace_back();
1548 std::set<uint64_t> &TMSet = TypeMembers.back();
1549 for (GlobalTypeMember *T : JT->targets())
1550 TMSet.insert(GlobalIndices[T]);
1553 // Order the sets of indices by size. The GlobalLayoutBuilder works best
1554 // when given small index sets first.
1555 std::stable_sort(
1556 TypeMembers.begin(), TypeMembers.end(),
1557 [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
1558 return O1.size() < O2.size();
1561 // Create a GlobalLayoutBuilder and provide it with index sets as layout
1562 // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1563 // close together as possible.
1564 GlobalLayoutBuilder GLB(Globals.size());
1565 for (auto &&MemSet : TypeMembers)
1566 GLB.addFragment(MemSet);
1568 // Build a vector of globals with the computed layout.
1569 bool IsGlobalSet =
1570 Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1571 std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1572 auto OGTMI = OrderedGTMs.begin();
1573 for (auto &&F : GLB.Fragments) {
1574 for (auto &&Offset : F) {
1575 if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1576 report_fatal_error("Type identifier may not contain both global "
1577 "variables and functions");
1578 *OGTMI++ = Globals[Offset];
1582 // Build the bitsets from this disjoint set.
1583 if (IsGlobalSet)
1584 buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1585 else
1586 buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1589 /// Lower all type tests in this module.
1590 LowerTypeTestsModule::LowerTypeTestsModule(
1591 Module &M, ModuleSummaryIndex *ExportSummary,
1592 const ModuleSummaryIndex *ImportSummary)
1593 : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
1594 assert(!(ExportSummary && ImportSummary));
1595 Triple TargetTriple(M.getTargetTriple());
1596 Arch = TargetTriple.getArch();
1597 OS = TargetTriple.getOS();
1598 ObjectFormat = TargetTriple.getObjectFormat();
1601 bool LowerTypeTestsModule::runForTesting(Module &M) {
1602 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1604 // Handle the command-line summary arguments. This code is for testing
1605 // purposes only, so we handle errors directly.
1606 if (!ClReadSummary.empty()) {
1607 ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1608 ": ");
1609 auto ReadSummaryFile =
1610 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
1612 yaml::Input In(ReadSummaryFile->getBuffer());
1613 In >> Summary;
1614 ExitOnErr(errorCodeToError(In.error()));
1617 bool Changed =
1618 LowerTypeTestsModule(
1619 M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1620 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
1621 .lower();
1623 if (!ClWriteSummary.empty()) {
1624 ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1625 ": ");
1626 std::error_code EC;
1627 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
1628 ExitOnErr(errorCodeToError(EC));
1630 yaml::Output Out(OS);
1631 Out << Summary;
1634 return Changed;
1637 static bool isDirectCall(Use& U) {
1638 auto *Usr = dyn_cast<CallInst>(U.getUser());
1639 if (Usr) {
1640 CallSite CS(Usr);
1641 if (CS.isCallee(&U))
1642 return true;
1644 return false;
1647 void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New, bool IsDefinition) {
1648 SmallSetVector<Constant *, 4> Constants;
1649 auto UI = Old->use_begin(), E = Old->use_end();
1650 for (; UI != E;) {
1651 Use &U = *UI;
1652 ++UI;
1654 // Skip block addresses
1655 if (isa<BlockAddress>(U.getUser()))
1656 continue;
1658 // Skip direct calls to externally defined or non-dso_local functions
1659 if (isDirectCall(U) && (Old->isDSOLocal() || !IsDefinition))
1660 continue;
1662 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1663 // constant because they are uniqued.
1664 if (auto *C = dyn_cast<Constant>(U.getUser())) {
1665 if (!isa<GlobalValue>(C)) {
1666 // Save unique users to avoid processing operand replacement
1667 // more than once.
1668 Constants.insert(C);
1669 continue;
1673 U.set(New);
1676 // Process operand replacement of saved constants.
1677 for (auto *C : Constants)
1678 C->handleOperandChange(Old, New);
1681 void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1682 auto UI = Old->use_begin(), E = Old->use_end();
1683 for (; UI != E;) {
1684 Use &U = *UI;
1685 ++UI;
1687 if (!isDirectCall(U))
1688 continue;
1690 U.set(New);
1694 bool LowerTypeTestsModule::lower() {
1695 // If only some of the modules were split, we cannot correctly perform
1696 // this transformation. We already checked for the presense of type tests
1697 // with partially split modules during the thin link, and would have emitted
1698 // an error if any were found, so here we can simply return.
1699 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1700 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1701 return false;
1703 Function *TypeTestFunc =
1704 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1705 Function *ICallBranchFunnelFunc =
1706 M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
1707 if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
1708 (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
1709 !ExportSummary && !ImportSummary)
1710 return false;
1712 if (ImportSummary) {
1713 if (TypeTestFunc) {
1714 for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
1715 UI != UE;) {
1716 auto *CI = cast<CallInst>((*UI++).getUser());
1717 importTypeTest(CI);
1721 if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
1722 report_fatal_error(
1723 "unexpected call to llvm.icall.branch.funnel during import phase");
1725 SmallVector<Function *, 8> Defs;
1726 SmallVector<Function *, 8> Decls;
1727 for (auto &F : M) {
1728 // CFI functions are either external, or promoted. A local function may
1729 // have the same name, but it's not the one we are looking for.
1730 if (F.hasLocalLinkage())
1731 continue;
1732 if (ImportSummary->cfiFunctionDefs().count(F.getName()))
1733 Defs.push_back(&F);
1734 else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
1735 Decls.push_back(&F);
1738 for (auto F : Defs)
1739 importFunction(F, /*isDefinition*/ true);
1740 for (auto F : Decls)
1741 importFunction(F, /*isDefinition*/ false);
1743 return true;
1746 // Equivalence class set containing type identifiers and the globals that
1747 // reference them. This is used to partition the set of type identifiers in
1748 // the module into disjoint sets.
1749 using GlobalClassesTy = EquivalenceClasses<
1750 PointerUnion3<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
1751 GlobalClassesTy GlobalClasses;
1753 // Verify the type metadata and build a few data structures to let us
1754 // efficiently enumerate the type identifiers associated with a global:
1755 // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1756 // of associated type metadata) and a mapping from type identifiers to their
1757 // list of GlobalTypeMembers and last observed index in the list of globals.
1758 // The indices will be used later to deterministically order the list of type
1759 // identifiers.
1760 BumpPtrAllocator Alloc;
1761 struct TIInfo {
1762 unsigned UniqueId;
1763 std::vector<GlobalTypeMember *> RefGlobals;
1765 DenseMap<Metadata *, TIInfo> TypeIdInfo;
1766 unsigned CurUniqueId = 0;
1767 SmallVector<MDNode *, 2> Types;
1769 // Cross-DSO CFI emits jumptable entries for exported functions as well as
1770 // address taken functions in case they are address taken in other modules.
1771 const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
1773 struct ExportedFunctionInfo {
1774 CfiFunctionLinkage Linkage;
1775 MDNode *FuncMD; // {name, linkage, type[, type...]}
1777 DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
1778 if (ExportSummary) {
1779 // A set of all functions that are address taken by a live global object.
1780 DenseSet<GlobalValue::GUID> AddressTaken;
1781 for (auto &I : *ExportSummary)
1782 for (auto &GVS : I.second.SummaryList)
1783 if (GVS->isLive())
1784 for (auto &Ref : GVS->refs())
1785 AddressTaken.insert(Ref.getGUID());
1787 NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
1788 if (CfiFunctionsMD) {
1789 for (auto FuncMD : CfiFunctionsMD->operands()) {
1790 assert(FuncMD->getNumOperands() >= 2);
1791 StringRef FunctionName =
1792 cast<MDString>(FuncMD->getOperand(0))->getString();
1793 CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
1794 cast<ConstantAsMetadata>(FuncMD->getOperand(1))
1795 ->getValue()
1796 ->getUniqueInteger()
1797 .getZExtValue());
1798 const GlobalValue::GUID GUID = GlobalValue::getGUID(
1799 GlobalValue::dropLLVMManglingEscape(FunctionName));
1800 // Do not emit jumptable entries for functions that are not-live and
1801 // have no live references (and are not exported with cross-DSO CFI.)
1802 if (!ExportSummary->isGUIDLive(GUID))
1803 continue;
1804 if (!AddressTaken.count(GUID)) {
1805 if (!CrossDsoCfi || Linkage != CFL_Definition)
1806 continue;
1808 bool Exported = false;
1809 if (auto VI = ExportSummary->getValueInfo(GUID))
1810 for (auto &GVS : VI.getSummaryList())
1811 if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
1812 Exported = true;
1814 if (!Exported)
1815 continue;
1817 auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
1818 if (!P.second && P.first->second.Linkage != CFL_Definition)
1819 P.first->second = {Linkage, FuncMD};
1822 for (const auto &P : ExportedFunctions) {
1823 StringRef FunctionName = P.first;
1824 CfiFunctionLinkage Linkage = P.second.Linkage;
1825 MDNode *FuncMD = P.second.FuncMD;
1826 Function *F = M.getFunction(FunctionName);
1827 if (!F)
1828 F = Function::Create(
1829 FunctionType::get(Type::getVoidTy(M.getContext()), false),
1830 GlobalVariable::ExternalLinkage,
1831 M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
1833 // If the function is available_externally, remove its definition so
1834 // that it is handled the same way as a declaration. Later we will try
1835 // to create an alias using this function's linkage, which will fail if
1836 // the linkage is available_externally. This will also result in us
1837 // following the code path below to replace the type metadata.
1838 if (F->hasAvailableExternallyLinkage()) {
1839 F->setLinkage(GlobalValue::ExternalLinkage);
1840 F->deleteBody();
1841 F->setComdat(nullptr);
1842 F->clearMetadata();
1845 // Update the linkage for extern_weak declarations when a definition
1846 // exists.
1847 if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
1848 F->setLinkage(GlobalValue::ExternalLinkage);
1850 // If the function in the full LTO module is a declaration, replace its
1851 // type metadata with the type metadata we found in cfi.functions. That
1852 // metadata is presumed to be more accurate than the metadata attached
1853 // to the declaration.
1854 if (F->isDeclaration()) {
1855 if (Linkage == CFL_WeakDeclaration)
1856 F->setLinkage(GlobalValue::ExternalWeakLinkage);
1858 F->eraseMetadata(LLVMContext::MD_type);
1859 for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
1860 F->addMetadata(LLVMContext::MD_type,
1861 *cast<MDNode>(FuncMD->getOperand(I).get()));
1867 DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
1868 for (GlobalObject &GO : M.global_objects()) {
1869 if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
1870 continue;
1872 Types.clear();
1873 GO.getMetadata(LLVMContext::MD_type, Types);
1875 bool IsDefinition = !GO.isDeclarationForLinker();
1876 bool IsExported = false;
1877 if (Function *F = dyn_cast<Function>(&GO)) {
1878 if (ExportedFunctions.count(F->getName())) {
1879 IsDefinition |= ExportedFunctions[F->getName()].Linkage == CFL_Definition;
1880 IsExported = true;
1881 // TODO: The logic here checks only that the function is address taken,
1882 // not that the address takers are live. This can be updated to check
1883 // their liveness and emit fewer jumptable entries once monolithic LTO
1884 // builds also emit summaries.
1885 } else if (!F->hasAddressTaken()) {
1886 if (!CrossDsoCfi || !IsDefinition || F->hasLocalLinkage())
1887 continue;
1891 auto *GTM =
1892 GlobalTypeMember::create(Alloc, &GO, IsDefinition, IsExported, Types);
1893 GlobalTypeMembers[&GO] = GTM;
1894 for (MDNode *Type : Types) {
1895 verifyTypeMDNode(&GO, Type);
1896 auto &Info = TypeIdInfo[Type->getOperand(1)];
1897 Info.UniqueId = ++CurUniqueId;
1898 Info.RefGlobals.push_back(GTM);
1902 auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
1903 // Add the call site to the list of call sites for this type identifier. We
1904 // also use TypeIdUsers to keep track of whether we have seen this type
1905 // identifier before. If we have, we don't need to re-add the referenced
1906 // globals to the equivalence class.
1907 auto Ins = TypeIdUsers.insert({TypeId, {}});
1908 if (Ins.second) {
1909 // Add the type identifier to the equivalence class.
1910 GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
1911 GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
1913 // Add the referenced globals to the type identifier's equivalence class.
1914 for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
1915 CurSet = GlobalClasses.unionSets(
1916 CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
1919 return Ins.first->second;
1922 if (TypeTestFunc) {
1923 for (const Use &U : TypeTestFunc->uses()) {
1924 auto CI = cast<CallInst>(U.getUser());
1926 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1927 if (!TypeIdMDVal)
1928 report_fatal_error("Second argument of llvm.type.test must be metadata");
1929 auto TypeId = TypeIdMDVal->getMetadata();
1930 AddTypeIdUse(TypeId).CallSites.push_back(CI);
1934 if (ICallBranchFunnelFunc) {
1935 for (const Use &U : ICallBranchFunnelFunc->uses()) {
1936 if (Arch != Triple::x86_64)
1937 report_fatal_error(
1938 "llvm.icall.branch.funnel not supported on this target");
1940 auto CI = cast<CallInst>(U.getUser());
1942 std::vector<GlobalTypeMember *> Targets;
1943 if (CI->getNumArgOperands() % 2 != 1)
1944 report_fatal_error("number of arguments should be odd");
1946 GlobalClassesTy::member_iterator CurSet;
1947 for (unsigned I = 1; I != CI->getNumArgOperands(); I += 2) {
1948 int64_t Offset;
1949 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
1950 CI->getOperand(I), Offset, M.getDataLayout()));
1951 if (!Base)
1952 report_fatal_error(
1953 "Expected branch funnel operand to be global value");
1955 GlobalTypeMember *GTM = GlobalTypeMembers[Base];
1956 Targets.push_back(GTM);
1957 GlobalClassesTy::member_iterator NewSet =
1958 GlobalClasses.findLeader(GlobalClasses.insert(GTM));
1959 if (I == 1)
1960 CurSet = NewSet;
1961 else
1962 CurSet = GlobalClasses.unionSets(CurSet, NewSet);
1965 GlobalClasses.unionSets(
1966 CurSet, GlobalClasses.findLeader(
1967 GlobalClasses.insert(ICallBranchFunnel::create(
1968 Alloc, CI, Targets, ++CurUniqueId))));
1972 if (ExportSummary) {
1973 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1974 for (auto &P : TypeIdInfo) {
1975 if (auto *TypeId = dyn_cast<MDString>(P.first))
1976 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1977 TypeId);
1980 for (auto &P : *ExportSummary) {
1981 for (auto &S : P.second.SummaryList) {
1982 if (!ExportSummary->isGlobalValueLive(S.get()))
1983 continue;
1984 if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
1985 for (GlobalValue::GUID G : FS->type_tests())
1986 for (Metadata *MD : MetadataByGUID[G])
1987 AddTypeIdUse(MD).IsExported = true;
1992 if (GlobalClasses.empty())
1993 return false;
1995 // Build a list of disjoint sets ordered by their maximum global index for
1996 // determinism.
1997 std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
1998 for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
1999 E = GlobalClasses.end();
2000 I != E; ++I) {
2001 if (!I->isLeader())
2002 continue;
2003 ++NumTypeIdDisjointSets;
2005 unsigned MaxUniqueId = 0;
2006 for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
2007 MI != GlobalClasses.member_end(); ++MI) {
2008 if (auto *MD = MI->dyn_cast<Metadata *>())
2009 MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
2010 else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
2011 MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
2013 Sets.emplace_back(I, MaxUniqueId);
2015 llvm::sort(Sets,
2016 [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
2017 const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
2018 return S1.second < S2.second;
2021 // For each disjoint set we found...
2022 for (const auto &S : Sets) {
2023 // Build the list of type identifiers in this disjoint set.
2024 std::vector<Metadata *> TypeIds;
2025 std::vector<GlobalTypeMember *> Globals;
2026 std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2027 for (GlobalClassesTy::member_iterator MI =
2028 GlobalClasses.member_begin(S.first);
2029 MI != GlobalClasses.member_end(); ++MI) {
2030 if (MI->is<Metadata *>())
2031 TypeIds.push_back(MI->get<Metadata *>());
2032 else if (MI->is<GlobalTypeMember *>())
2033 Globals.push_back(MI->get<GlobalTypeMember *>());
2034 else
2035 ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
2038 // Order type identifiers by unique ID for determinism. This ordering is
2039 // stable as there is a one-to-one mapping between metadata and unique IDs.
2040 llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
2041 return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2044 // Same for the branch funnels.
2045 llvm::sort(ICallBranchFunnels,
2046 [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2047 return F1->UniqueId < F2->UniqueId;
2050 // Build bitsets for this disjoint set.
2051 buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2054 allocateByteArrays();
2056 // Parse alias data to replace stand-in function declarations for aliases
2057 // with an alias to the intended target.
2058 if (ExportSummary) {
2059 if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2060 for (auto AliasMD : AliasesMD->operands()) {
2061 assert(AliasMD->getNumOperands() >= 4);
2062 StringRef AliasName =
2063 cast<MDString>(AliasMD->getOperand(0))->getString();
2064 StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
2066 if (!ExportedFunctions.count(Aliasee) ||
2067 ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
2068 !M.getNamedAlias(Aliasee))
2069 continue;
2071 GlobalValue::VisibilityTypes Visibility =
2072 static_cast<GlobalValue::VisibilityTypes>(
2073 cast<ConstantAsMetadata>(AliasMD->getOperand(2))
2074 ->getValue()
2075 ->getUniqueInteger()
2076 .getZExtValue());
2077 bool Weak =
2078 static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
2079 ->getValue()
2080 ->getUniqueInteger()
2081 .getZExtValue());
2083 auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
2084 Alias->setVisibility(Visibility);
2085 if (Weak)
2086 Alias->setLinkage(GlobalValue::WeakAnyLinkage);
2088 if (auto *F = M.getFunction(AliasName)) {
2089 Alias->takeName(F);
2090 F->replaceAllUsesWith(Alias);
2091 F->eraseFromParent();
2092 } else {
2093 Alias->setName(AliasName);
2099 // Emit .symver directives for exported functions, if they exist.
2100 if (ExportSummary) {
2101 if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2102 for (auto Symver : SymversMD->operands()) {
2103 assert(Symver->getNumOperands() >= 2);
2104 StringRef SymbolName =
2105 cast<MDString>(Symver->getOperand(0))->getString();
2106 StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2108 if (!ExportedFunctions.count(SymbolName))
2109 continue;
2111 M.appendModuleInlineAsm(
2112 (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2117 return true;
2120 PreservedAnalyses LowerTypeTestsPass::run(Module &M,
2121 ModuleAnalysisManager &AM) {
2122 bool Changed = LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
2123 if (!Changed)
2124 return PreservedAnalyses::all();
2125 return PreservedAnalyses::none();