[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / ConstantHoisting.cpp
blob27d4f67ccc0f6ea3697dcd2d6756e0fa6bb8a5c7
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCost will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Scalar.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <iterator>
67 #include <tuple>
68 #include <utility>
70 using namespace llvm;
71 using namespace consthoist;
73 #define DEBUG_TYPE "consthoist"
75 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
76 STATISTIC(NumConstantsRebased, "Number of constants rebased");
78 static cl::opt<bool> ConstHoistWithBlockFrequency(
79 "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
80 cl::desc("Enable the use of the block frequency analysis to reduce the "
81 "chance to execute const materialization more frequently than "
82 "without hoisting."));
84 static cl::opt<bool> ConstHoistGEP(
85 "consthoist-gep", cl::init(false), cl::Hidden,
86 cl::desc("Try hoisting constant gep expressions"));
88 static cl::opt<unsigned>
89 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
90 cl::desc("Do not rebase if number of dependent constants of a Base is less "
91 "than this number."),
92 cl::init(0), cl::Hidden);
94 namespace {
96 /// The constant hoisting pass.
97 class ConstantHoistingLegacyPass : public FunctionPass {
98 public:
99 static char ID; // Pass identification, replacement for typeid
101 ConstantHoistingLegacyPass() : FunctionPass(ID) {
102 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
105 bool runOnFunction(Function &Fn) override;
107 StringRef getPassName() const override { return "Constant Hoisting"; }
109 void getAnalysisUsage(AnalysisUsage &AU) const override {
110 AU.setPreservesCFG();
111 if (ConstHoistWithBlockFrequency)
112 AU.addRequired<BlockFrequencyInfoWrapperPass>();
113 AU.addRequired<DominatorTreeWrapperPass>();
114 AU.addRequired<TargetTransformInfoWrapperPass>();
117 void releaseMemory() override { Impl.releaseMemory(); }
119 private:
120 ConstantHoistingPass Impl;
123 } // end anonymous namespace
125 char ConstantHoistingLegacyPass::ID = 0;
127 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
128 "Constant Hoisting", false, false)
129 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
132 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
133 "Constant Hoisting", false, false)
135 FunctionPass *llvm::createConstantHoistingPass() {
136 return new ConstantHoistingLegacyPass();
139 /// Perform the constant hoisting optimization for the given function.
140 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
141 if (skipFunction(Fn))
142 return false;
144 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
145 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
147 bool MadeChange =
148 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
149 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
150 ConstHoistWithBlockFrequency
151 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
152 : nullptr,
153 Fn.getEntryBlock());
155 if (MadeChange) {
156 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
157 << Fn.getName() << '\n');
158 LLVM_DEBUG(dbgs() << Fn);
160 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
162 return MadeChange;
165 /// Find the constant materialization insertion point.
166 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
167 unsigned Idx) const {
168 // If the operand is a cast instruction, then we have to materialize the
169 // constant before the cast instruction.
170 if (Idx != ~0U) {
171 Value *Opnd = Inst->getOperand(Idx);
172 if (auto CastInst = dyn_cast<Instruction>(Opnd))
173 if (CastInst->isCast())
174 return CastInst;
177 // The simple and common case. This also includes constant expressions.
178 if (!isa<PHINode>(Inst) && !Inst->isEHPad())
179 return Inst;
181 // We can't insert directly before a phi node or an eh pad. Insert before
182 // the terminator of the incoming or dominating block.
183 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
184 if (Idx != ~0U && isa<PHINode>(Inst))
185 return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
187 // This must be an EH pad. Iterate over immediate dominators until we find a
188 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
189 // and terminators.
190 auto IDom = DT->getNode(Inst->getParent())->getIDom();
191 while (IDom->getBlock()->isEHPad()) {
192 assert(Entry != IDom->getBlock() && "eh pad in entry block");
193 IDom = IDom->getIDom();
196 return IDom->getBlock()->getTerminator();
199 /// Given \p BBs as input, find another set of BBs which collectively
200 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
201 /// set found in \p BBs.
202 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
203 BasicBlock *Entry,
204 SmallPtrSet<BasicBlock *, 8> &BBs) {
205 assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
206 // Nodes on the current path to the root.
207 SmallPtrSet<BasicBlock *, 8> Path;
208 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
209 // dominated by any other blocks in set 'BBs', and all nodes in the path
210 // in the dominator tree from Entry to 'BB'.
211 SmallPtrSet<BasicBlock *, 16> Candidates;
212 for (auto BB : BBs) {
213 Path.clear();
214 // Walk up the dominator tree until Entry or another BB in BBs
215 // is reached. Insert the nodes on the way to the Path.
216 BasicBlock *Node = BB;
217 // The "Path" is a candidate path to be added into Candidates set.
218 bool isCandidate = false;
219 do {
220 Path.insert(Node);
221 if (Node == Entry || Candidates.count(Node)) {
222 isCandidate = true;
223 break;
225 assert(DT.getNode(Node)->getIDom() &&
226 "Entry doens't dominate current Node");
227 Node = DT.getNode(Node)->getIDom()->getBlock();
228 } while (!BBs.count(Node));
230 // If isCandidate is false, Node is another Block in BBs dominating
231 // current 'BB'. Drop the nodes on the Path.
232 if (!isCandidate)
233 continue;
235 // Add nodes on the Path into Candidates.
236 Candidates.insert(Path.begin(), Path.end());
239 // Sort the nodes in Candidates in top-down order and save the nodes
240 // in Orders.
241 unsigned Idx = 0;
242 SmallVector<BasicBlock *, 16> Orders;
243 Orders.push_back(Entry);
244 while (Idx != Orders.size()) {
245 BasicBlock *Node = Orders[Idx++];
246 for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
247 if (Candidates.count(ChildDomNode->getBlock()))
248 Orders.push_back(ChildDomNode->getBlock());
252 // Visit Orders in bottom-up order.
253 using InsertPtsCostPair =
254 std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>;
256 // InsertPtsMap is a map from a BB to the best insertion points for the
257 // subtree of BB (subtree not including the BB itself).
258 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
259 InsertPtsMap.reserve(Orders.size() + 1);
260 for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
261 BasicBlock *Node = *RIt;
262 bool NodeInBBs = BBs.count(Node);
263 SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first;
264 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
266 // Return the optimal insert points in BBs.
267 if (Node == Entry) {
268 BBs.clear();
269 if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
270 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
271 BBs.insert(Entry);
272 else
273 BBs.insert(InsertPts.begin(), InsertPts.end());
274 break;
277 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
278 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
279 // will update its parent's ParentInsertPts and ParentPtsFreq.
280 SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first;
281 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
282 // Choose to insert in Node or in subtree of Node.
283 // Don't hoist to EHPad because we may not find a proper place to insert
284 // in EHPad.
285 // If the total frequency of InsertPts is the same as the frequency of the
286 // target Node, and InsertPts contains more than one nodes, choose hoisting
287 // to reduce code size.
288 if (NodeInBBs ||
289 (!Node->isEHPad() &&
290 (InsertPtsFreq > BFI.getBlockFreq(Node) ||
291 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
292 ParentInsertPts.insert(Node);
293 ParentPtsFreq += BFI.getBlockFreq(Node);
294 } else {
295 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
296 ParentPtsFreq += InsertPtsFreq;
301 /// Find an insertion point that dominates all uses.
302 SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint(
303 const ConstantInfo &ConstInfo) const {
304 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
305 // Collect all basic blocks.
306 SmallPtrSet<BasicBlock *, 8> BBs;
307 SmallPtrSet<Instruction *, 8> InsertPts;
308 for (auto const &RCI : ConstInfo.RebasedConstants)
309 for (auto const &U : RCI.Uses)
310 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
312 if (BBs.count(Entry)) {
313 InsertPts.insert(&Entry->front());
314 return InsertPts;
317 if (BFI) {
318 findBestInsertionSet(*DT, *BFI, Entry, BBs);
319 for (auto BB : BBs) {
320 BasicBlock::iterator InsertPt = BB->begin();
321 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
323 InsertPts.insert(&*InsertPt);
325 return InsertPts;
328 while (BBs.size() >= 2) {
329 BasicBlock *BB, *BB1, *BB2;
330 BB1 = *BBs.begin();
331 BB2 = *std::next(BBs.begin());
332 BB = DT->findNearestCommonDominator(BB1, BB2);
333 if (BB == Entry) {
334 InsertPts.insert(&Entry->front());
335 return InsertPts;
337 BBs.erase(BB1);
338 BBs.erase(BB2);
339 BBs.insert(BB);
341 assert((BBs.size() == 1) && "Expected only one element.");
342 Instruction &FirstInst = (*BBs.begin())->front();
343 InsertPts.insert(findMatInsertPt(&FirstInst));
344 return InsertPts;
347 /// Record constant integer ConstInt for instruction Inst at operand
348 /// index Idx.
350 /// The operand at index Idx is not necessarily the constant integer itself. It
351 /// could also be a cast instruction or a constant expression that uses the
352 /// constant integer.
353 void ConstantHoistingPass::collectConstantCandidates(
354 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
355 ConstantInt *ConstInt) {
356 unsigned Cost;
357 // Ask the target about the cost of materializing the constant for the given
358 // instruction and operand index.
359 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
360 Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
361 ConstInt->getValue(), ConstInt->getType());
362 else
363 Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
364 ConstInt->getType());
366 // Ignore cheap integer constants.
367 if (Cost > TargetTransformInfo::TCC_Basic) {
368 ConstCandMapType::iterator Itr;
369 bool Inserted;
370 ConstPtrUnionType Cand = ConstInt;
371 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
372 if (Inserted) {
373 ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
374 Itr->second = ConstIntCandVec.size() - 1;
376 ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost);
377 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
378 << "Collect constant " << *ConstInt << " from " << *Inst
379 << " with cost " << Cost << '\n';
380 else dbgs() << "Collect constant " << *ConstInt
381 << " indirectly from " << *Inst << " via "
382 << *Inst->getOperand(Idx) << " with cost " << Cost
383 << '\n';);
387 /// Record constant GEP expression for instruction Inst at operand index Idx.
388 void ConstantHoistingPass::collectConstantCandidates(
389 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
390 ConstantExpr *ConstExpr) {
391 // TODO: Handle vector GEPs
392 if (ConstExpr->getType()->isVectorTy())
393 return;
395 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
396 if (!BaseGV)
397 return;
399 // Get offset from the base GV.
400 PointerType *GVPtrTy = dyn_cast<PointerType>(BaseGV->getType());
401 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
402 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
403 auto *GEPO = cast<GEPOperator>(ConstExpr);
404 if (!GEPO->accumulateConstantOffset(*DL, Offset))
405 return;
407 if (!Offset.isIntN(32))
408 return;
410 // A constant GEP expression that has a GlobalVariable as base pointer is
411 // usually lowered to a load from constant pool. Such operation is unlikely
412 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
413 // an ADD instruction or folded into Load/Store instruction.
414 int Cost = TTI->getIntImmCost(Instruction::Add, 1, Offset, PtrIntTy);
415 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
416 ConstCandMapType::iterator Itr;
417 bool Inserted;
418 ConstPtrUnionType Cand = ConstExpr;
419 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
420 if (Inserted) {
421 ExprCandVec.push_back(ConstantCandidate(
422 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
423 ConstExpr));
424 Itr->second = ExprCandVec.size() - 1;
426 ExprCandVec[Itr->second].addUser(Inst, Idx, Cost);
429 /// Check the operand for instruction Inst at index Idx.
430 void ConstantHoistingPass::collectConstantCandidates(
431 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
432 Value *Opnd = Inst->getOperand(Idx);
434 // Visit constant integers.
435 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
436 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
437 return;
440 // Visit cast instructions that have constant integers.
441 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
442 // Only visit cast instructions, which have been skipped. All other
443 // instructions should have already been visited.
444 if (!CastInst->isCast())
445 return;
447 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
448 // Pretend the constant is directly used by the instruction and ignore
449 // the cast instruction.
450 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
451 return;
455 // Visit constant expressions that have constant integers.
456 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
457 // Handle constant gep expressions.
458 if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
459 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
461 // Only visit constant cast expressions.
462 if (!ConstExpr->isCast())
463 return;
465 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
466 // Pretend the constant is directly used by the instruction and ignore
467 // the constant expression.
468 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
469 return;
474 /// Scan the instruction for expensive integer constants and record them
475 /// in the constant candidate vector.
476 void ConstantHoistingPass::collectConstantCandidates(
477 ConstCandMapType &ConstCandMap, Instruction *Inst) {
478 // Skip all cast instructions. They are visited indirectly later on.
479 if (Inst->isCast())
480 return;
482 // Scan all operands.
483 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
484 // The cost of materializing the constants (defined in
485 // `TargetTransformInfo::getIntImmCost`) for instructions which only take
486 // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
487 // it's safe for us to collect constant candidates from all IntrinsicInsts.
488 if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
489 collectConstantCandidates(ConstCandMap, Inst, Idx);
491 } // end of for all operands
494 /// Collect all integer constants in the function that cannot be folded
495 /// into an instruction itself.
496 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
497 ConstCandMapType ConstCandMap;
498 for (BasicBlock &BB : Fn)
499 for (Instruction &Inst : BB)
500 collectConstantCandidates(ConstCandMap, &Inst);
503 // This helper function is necessary to deal with values that have different
504 // bit widths (APInt Operator- does not like that). If the value cannot be
505 // represented in uint64 we return an "empty" APInt. This is then interpreted
506 // as the value is not in range.
507 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
508 Optional<APInt> Res = None;
509 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
510 V1.getBitWidth() : V2.getBitWidth();
511 uint64_t LimVal1 = V1.getLimitedValue();
512 uint64_t LimVal2 = V2.getLimitedValue();
514 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
515 return Res;
517 uint64_t Diff = LimVal1 - LimVal2;
518 return APInt(BW, Diff, true);
521 // From a list of constants, one needs to picked as the base and the other
522 // constants will be transformed into an offset from that base constant. The
523 // question is which we can pick best? For example, consider these constants
524 // and their number of uses:
526 // Constants| 2 | 4 | 12 | 42 |
527 // NumUses | 3 | 2 | 8 | 7 |
529 // Selecting constant 12 because it has the most uses will generate negative
530 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
531 // offsets lead to less optimal code generation, then there might be better
532 // solutions. Suppose immediates in the range of 0..35 are most optimally
533 // supported by the architecture, then selecting constant 2 is most optimal
534 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
535 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
536 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
537 // selecting the base constant the range of the offsets is a very important
538 // factor too that we take into account here. This algorithm calculates a total
539 // costs for selecting a constant as the base and substract the costs if
540 // immediates are out of range. It has quadratic complexity, so we call this
541 // function only when we're optimising for size and there are less than 100
542 // constants, we fall back to the straightforward algorithm otherwise
543 // which does not do all the offset calculations.
544 unsigned
545 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
546 ConstCandVecType::iterator E,
547 ConstCandVecType::iterator &MaxCostItr) {
548 unsigned NumUses = 0;
550 if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
551 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
552 NumUses += ConstCand->Uses.size();
553 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
554 MaxCostItr = ConstCand;
556 return NumUses;
559 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
560 int MaxCost = -1;
561 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
562 auto Value = ConstCand->ConstInt->getValue();
563 Type *Ty = ConstCand->ConstInt->getType();
564 int Cost = 0;
565 NumUses += ConstCand->Uses.size();
566 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
567 << "\n");
569 for (auto User : ConstCand->Uses) {
570 unsigned Opcode = User.Inst->getOpcode();
571 unsigned OpndIdx = User.OpndIdx;
572 Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
573 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
575 for (auto C2 = S; C2 != E; ++C2) {
576 Optional<APInt> Diff = calculateOffsetDiff(
577 C2->ConstInt->getValue(),
578 ConstCand->ConstInt->getValue());
579 if (Diff) {
580 const int ImmCosts =
581 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
582 Cost -= ImmCosts;
583 LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
584 << "has penalty: " << ImmCosts << "\n"
585 << "Adjusted cost: " << Cost << "\n");
589 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
590 if (Cost > MaxCost) {
591 MaxCost = Cost;
592 MaxCostItr = ConstCand;
593 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
594 << "\n");
597 return NumUses;
600 /// Find the base constant within the given range and rebase all other
601 /// constants with respect to the base constant.
602 void ConstantHoistingPass::findAndMakeBaseConstant(
603 ConstCandVecType::iterator S, ConstCandVecType::iterator E,
604 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
605 auto MaxCostItr = S;
606 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
608 // Don't hoist constants that have only one use.
609 if (NumUses <= 1)
610 return;
612 ConstantInt *ConstInt = MaxCostItr->ConstInt;
613 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
614 ConstantInfo ConstInfo;
615 ConstInfo.BaseInt = ConstInt;
616 ConstInfo.BaseExpr = ConstExpr;
617 Type *Ty = ConstInt->getType();
619 // Rebase the constants with respect to the base constant.
620 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
621 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
622 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
623 Type *ConstTy =
624 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
625 ConstInfo.RebasedConstants.push_back(
626 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
628 ConstInfoVec.push_back(std::move(ConstInfo));
631 /// Finds and combines constant candidates that can be easily
632 /// rematerialized with an add from a common base constant.
633 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
634 // If BaseGV is nullptr, find base among candidate constant integers;
635 // Otherwise find base among constant GEPs that share the same BaseGV.
636 ConstCandVecType &ConstCandVec = BaseGV ?
637 ConstGEPCandMap[BaseGV] : ConstIntCandVec;
638 ConstInfoVecType &ConstInfoVec = BaseGV ?
639 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
641 // Sort the constants by value and type. This invalidates the mapping!
642 std::stable_sort(ConstCandVec.begin(), ConstCandVec.end(),
643 [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
644 if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
645 return LHS.ConstInt->getType()->getBitWidth() <
646 RHS.ConstInt->getType()->getBitWidth();
647 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
650 // Simple linear scan through the sorted constant candidate vector for viable
651 // merge candidates.
652 auto MinValItr = ConstCandVec.begin();
653 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
654 CC != E; ++CC) {
655 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
656 Type *MemUseValTy = nullptr;
657 for (auto &U : CC->Uses) {
658 auto *UI = U.Inst;
659 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
660 MemUseValTy = LI->getType();
661 break;
662 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
663 // Make sure the constant is used as pointer operand of the StoreInst.
664 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
665 MemUseValTy = SI->getValueOperand()->getType();
666 break;
671 // Check if the constant is in range of an add with immediate.
672 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
673 if ((Diff.getBitWidth() <= 64) &&
674 TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
675 // Check if Diff can be used as offset in addressing mode of the user
676 // memory instruction.
677 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
678 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
679 /*HasBaseReg*/true, /*Scale*/0)))
680 continue;
682 // We either have now a different constant type or the constant is not in
683 // range of an add with immediate anymore.
684 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
685 // Start a new base constant search.
686 MinValItr = CC;
688 // Finalize the last base constant search.
689 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
692 /// Updates the operand at Idx in instruction Inst with the result of
693 /// instruction Mat. If the instruction is a PHI node then special
694 /// handling for duplicate values form the same incoming basic block is
695 /// required.
696 /// \return The update will always succeed, but the return value indicated if
697 /// Mat was used for the update or not.
698 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
699 if (auto PHI = dyn_cast<PHINode>(Inst)) {
700 // Check if any previous operand of the PHI node has the same incoming basic
701 // block. This is a very odd case that happens when the incoming basic block
702 // has a switch statement. In this case use the same value as the previous
703 // operand(s), otherwise we will fail verification due to different values.
704 // The values are actually the same, but the variable names are different
705 // and the verifier doesn't like that.
706 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
707 for (unsigned i = 0; i < Idx; ++i) {
708 if (PHI->getIncomingBlock(i) == IncomingBB) {
709 Value *IncomingVal = PHI->getIncomingValue(i);
710 Inst->setOperand(Idx, IncomingVal);
711 return false;
716 Inst->setOperand(Idx, Mat);
717 return true;
720 /// Emit materialization code for all rebased constants and update their
721 /// users.
722 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
723 Constant *Offset,
724 Type *Ty,
725 const ConstantUser &ConstUser) {
726 Instruction *Mat = Base;
728 // The same offset can be dereferenced to different types in nested struct.
729 if (!Offset && Ty && Ty != Base->getType())
730 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
732 if (Offset) {
733 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
734 ConstUser.OpndIdx);
735 if (Ty) {
736 // Constant being rebased is a ConstantExpr.
737 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
738 cast<PointerType>(Ty)->getAddressSpace());
739 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
740 Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
741 Offset, "mat_gep", InsertionPt);
742 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
743 } else
744 // Constant being rebased is a ConstantInt.
745 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
746 "const_mat", InsertionPt);
748 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
749 << " + " << *Offset << ") in BB "
750 << Mat->getParent()->getName() << '\n'
751 << *Mat << '\n');
752 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
754 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
756 // Visit constant integer.
757 if (isa<ConstantInt>(Opnd)) {
758 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
759 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
760 Mat->eraseFromParent();
761 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
762 return;
765 // Visit cast instruction.
766 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
767 assert(CastInst->isCast() && "Expected an cast instruction!");
768 // Check if we already have visited this cast instruction before to avoid
769 // unnecessary cloning.
770 Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
771 if (!ClonedCastInst) {
772 ClonedCastInst = CastInst->clone();
773 ClonedCastInst->setOperand(0, Mat);
774 ClonedCastInst->insertAfter(CastInst);
775 // Use the same debug location as the original cast instruction.
776 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
777 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
778 << "To : " << *ClonedCastInst << '\n');
781 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
782 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
783 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
784 return;
787 // Visit constant expression.
788 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
789 if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
790 // Operand is a ConstantGEP, replace it.
791 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
792 return;
795 // Aside from constant GEPs, only constant cast expressions are collected.
796 assert(ConstExpr->isCast() && "ConstExpr should be a cast");
797 Instruction *ConstExprInst = ConstExpr->getAsInstruction();
798 ConstExprInst->setOperand(0, Mat);
799 ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
800 ConstUser.OpndIdx));
802 // Use the same debug location as the instruction we are about to update.
803 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
805 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
806 << "From : " << *ConstExpr << '\n');
807 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
808 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
809 ConstExprInst->eraseFromParent();
810 if (Offset)
811 Mat->eraseFromParent();
813 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
814 return;
818 /// Hoist and hide the base constant behind a bitcast and emit
819 /// materialization code for derived constants.
820 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
821 bool MadeChange = false;
822 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
823 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
824 for (auto const &ConstInfo : ConstInfoVec) {
825 SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo);
826 assert(!IPSet.empty() && "IPSet is empty");
828 unsigned UsesNum = 0;
829 unsigned ReBasesNum = 0;
830 unsigned NotRebasedNum = 0;
831 for (Instruction *IP : IPSet) {
832 // First, collect constants depending on this IP of the base.
833 unsigned Uses = 0;
834 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
835 SmallVector<RebasedUse, 4> ToBeRebased;
836 for (auto const &RCI : ConstInfo.RebasedConstants) {
837 for (auto const &U : RCI.Uses) {
838 Uses++;
839 BasicBlock *OrigMatInsertBB =
840 findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
841 // If Base constant is to be inserted in multiple places,
842 // generate rebase for U using the Base dominating U.
843 if (IPSet.size() == 1 ||
844 DT->dominates(IP->getParent(), OrigMatInsertBB))
845 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
848 UsesNum = Uses;
850 // If only few constants depend on this IP of base, skip rebasing,
851 // assuming the base and the rebased have the same materialization cost.
852 if (ToBeRebased.size() < MinNumOfDependentToRebase) {
853 NotRebasedNum += ToBeRebased.size();
854 continue;
857 // Emit an instance of the base at this IP.
858 Instruction *Base = nullptr;
859 // Hoist and hide the base constant behind a bitcast.
860 if (ConstInfo.BaseExpr) {
861 assert(BaseGV && "A base constant expression must have an base GV");
862 Type *Ty = ConstInfo.BaseExpr->getType();
863 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
864 } else {
865 IntegerType *Ty = ConstInfo.BaseInt->getType();
866 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
869 Base->setDebugLoc(IP->getDebugLoc());
871 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
872 << ") to BB " << IP->getParent()->getName() << '\n'
873 << *Base << '\n');
875 // Emit materialization code for rebased constants depending on this IP.
876 for (auto const &R : ToBeRebased) {
877 Constant *Off = std::get<0>(R);
878 Type *Ty = std::get<1>(R);
879 ConstantUser U = std::get<2>(R);
880 emitBaseConstants(Base, Off, Ty, U);
881 ReBasesNum++;
882 // Use the same debug location as the last user of the constant.
883 Base->setDebugLoc(DILocation::getMergedLocation(
884 Base->getDebugLoc(), U.Inst->getDebugLoc()));
886 assert(!Base->use_empty() && "The use list is empty!?");
887 assert(isa<Instruction>(Base->user_back()) &&
888 "All uses should be instructions.");
890 (void)UsesNum;
891 (void)ReBasesNum;
892 (void)NotRebasedNum;
893 // Expect all uses are rebased after rebase is done.
894 assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
895 "Not all uses are rebased");
897 NumConstantsHoisted++;
899 // Base constant is also included in ConstInfo.RebasedConstants, so
900 // deduct 1 from ConstInfo.RebasedConstants.size().
901 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
903 MadeChange = true;
905 return MadeChange;
908 /// Check all cast instructions we made a copy of and remove them if they
909 /// have no more users.
910 void ConstantHoistingPass::deleteDeadCastInst() const {
911 for (auto const &I : ClonedCastMap)
912 if (I.first->use_empty())
913 I.first->eraseFromParent();
916 /// Optimize expensive integer constants in the given function.
917 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
918 DominatorTree &DT, BlockFrequencyInfo *BFI,
919 BasicBlock &Entry) {
920 this->TTI = &TTI;
921 this->DT = &DT;
922 this->BFI = BFI;
923 this->DL = &Fn.getParent()->getDataLayout();
924 this->Ctx = &Fn.getContext();
925 this->Entry = &Entry;
926 // Collect all constant candidates.
927 collectConstantCandidates(Fn);
929 // Combine constants that can be easily materialized with an add from a common
930 // base constant.
931 if (!ConstIntCandVec.empty())
932 findBaseConstants(nullptr);
933 for (auto &MapEntry : ConstGEPCandMap)
934 if (!MapEntry.second.empty())
935 findBaseConstants(MapEntry.first);
937 // Finally hoist the base constant and emit materialization code for dependent
938 // constants.
939 bool MadeChange = false;
940 if (!ConstIntInfoVec.empty())
941 MadeChange = emitBaseConstants(nullptr);
942 for (auto MapEntry : ConstGEPInfoMap)
943 if (!MapEntry.second.empty())
944 MadeChange |= emitBaseConstants(MapEntry.first);
947 // Cleanup dead instructions.
948 deleteDeadCastInst();
950 return MadeChange;
953 PreservedAnalyses ConstantHoistingPass::run(Function &F,
954 FunctionAnalysisManager &AM) {
955 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
956 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
957 auto BFI = ConstHoistWithBlockFrequency
958 ? &AM.getResult<BlockFrequencyAnalysis>(F)
959 : nullptr;
960 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock()))
961 return PreservedAnalyses::all();
963 PreservedAnalyses PA;
964 PA.preserveSet<CFGAnalyses>();
965 return PA;