1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCost will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Scalar.h"
71 using namespace consthoist
;
73 #define DEBUG_TYPE "consthoist"
75 STATISTIC(NumConstantsHoisted
, "Number of constants hoisted");
76 STATISTIC(NumConstantsRebased
, "Number of constants rebased");
78 static cl::opt
<bool> ConstHoistWithBlockFrequency(
79 "consthoist-with-block-frequency", cl::init(true), cl::Hidden
,
80 cl::desc("Enable the use of the block frequency analysis to reduce the "
81 "chance to execute const materialization more frequently than "
82 "without hoisting."));
84 static cl::opt
<bool> ConstHoistGEP(
85 "consthoist-gep", cl::init(false), cl::Hidden
,
86 cl::desc("Try hoisting constant gep expressions"));
88 static cl::opt
<unsigned>
89 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
90 cl::desc("Do not rebase if number of dependent constants of a Base is less "
92 cl::init(0), cl::Hidden
);
96 /// The constant hoisting pass.
97 class ConstantHoistingLegacyPass
: public FunctionPass
{
99 static char ID
; // Pass identification, replacement for typeid
101 ConstantHoistingLegacyPass() : FunctionPass(ID
) {
102 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
105 bool runOnFunction(Function
&Fn
) override
;
107 StringRef
getPassName() const override
{ return "Constant Hoisting"; }
109 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
110 AU
.setPreservesCFG();
111 if (ConstHoistWithBlockFrequency
)
112 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
113 AU
.addRequired
<DominatorTreeWrapperPass
>();
114 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
117 void releaseMemory() override
{ Impl
.releaseMemory(); }
120 ConstantHoistingPass Impl
;
123 } // end anonymous namespace
125 char ConstantHoistingLegacyPass::ID
= 0;
127 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass
, "consthoist",
128 "Constant Hoisting", false, false)
129 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
131 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
132 INITIALIZE_PASS_END(ConstantHoistingLegacyPass
, "consthoist",
133 "Constant Hoisting", false, false)
135 FunctionPass
*llvm::createConstantHoistingPass() {
136 return new ConstantHoistingLegacyPass();
139 /// Perform the constant hoisting optimization for the given function.
140 bool ConstantHoistingLegacyPass::runOnFunction(Function
&Fn
) {
141 if (skipFunction(Fn
))
144 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
145 LLVM_DEBUG(dbgs() << "********** Function: " << Fn
.getName() << '\n');
148 Impl
.runImpl(Fn
, getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(Fn
),
149 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
150 ConstHoistWithBlockFrequency
151 ? &getAnalysis
<BlockFrequencyInfoWrapperPass
>().getBFI()
156 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
157 << Fn
.getName() << '\n');
158 LLVM_DEBUG(dbgs() << Fn
);
160 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
165 /// Find the constant materialization insertion point.
166 Instruction
*ConstantHoistingPass::findMatInsertPt(Instruction
*Inst
,
167 unsigned Idx
) const {
168 // If the operand is a cast instruction, then we have to materialize the
169 // constant before the cast instruction.
171 Value
*Opnd
= Inst
->getOperand(Idx
);
172 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
))
173 if (CastInst
->isCast())
177 // The simple and common case. This also includes constant expressions.
178 if (!isa
<PHINode
>(Inst
) && !Inst
->isEHPad())
181 // We can't insert directly before a phi node or an eh pad. Insert before
182 // the terminator of the incoming or dominating block.
183 assert(Entry
!= Inst
->getParent() && "PHI or landing pad in entry block!");
184 if (Idx
!= ~0U && isa
<PHINode
>(Inst
))
185 return cast
<PHINode
>(Inst
)->getIncomingBlock(Idx
)->getTerminator();
187 // This must be an EH pad. Iterate over immediate dominators until we find a
188 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
190 auto IDom
= DT
->getNode(Inst
->getParent())->getIDom();
191 while (IDom
->getBlock()->isEHPad()) {
192 assert(Entry
!= IDom
->getBlock() && "eh pad in entry block");
193 IDom
= IDom
->getIDom();
196 return IDom
->getBlock()->getTerminator();
199 /// Given \p BBs as input, find another set of BBs which collectively
200 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
201 /// set found in \p BBs.
202 static void findBestInsertionSet(DominatorTree
&DT
, BlockFrequencyInfo
&BFI
,
204 SmallPtrSet
<BasicBlock
*, 8> &BBs
) {
205 assert(!BBs
.count(Entry
) && "Assume Entry is not in BBs");
206 // Nodes on the current path to the root.
207 SmallPtrSet
<BasicBlock
*, 8> Path
;
208 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
209 // dominated by any other blocks in set 'BBs', and all nodes in the path
210 // in the dominator tree from Entry to 'BB'.
211 SmallPtrSet
<BasicBlock
*, 16> Candidates
;
212 for (auto BB
: BBs
) {
214 // Walk up the dominator tree until Entry or another BB in BBs
215 // is reached. Insert the nodes on the way to the Path.
216 BasicBlock
*Node
= BB
;
217 // The "Path" is a candidate path to be added into Candidates set.
218 bool isCandidate
= false;
221 if (Node
== Entry
|| Candidates
.count(Node
)) {
225 assert(DT
.getNode(Node
)->getIDom() &&
226 "Entry doens't dominate current Node");
227 Node
= DT
.getNode(Node
)->getIDom()->getBlock();
228 } while (!BBs
.count(Node
));
230 // If isCandidate is false, Node is another Block in BBs dominating
231 // current 'BB'. Drop the nodes on the Path.
235 // Add nodes on the Path into Candidates.
236 Candidates
.insert(Path
.begin(), Path
.end());
239 // Sort the nodes in Candidates in top-down order and save the nodes
242 SmallVector
<BasicBlock
*, 16> Orders
;
243 Orders
.push_back(Entry
);
244 while (Idx
!= Orders
.size()) {
245 BasicBlock
*Node
= Orders
[Idx
++];
246 for (auto ChildDomNode
: DT
.getNode(Node
)->getChildren()) {
247 if (Candidates
.count(ChildDomNode
->getBlock()))
248 Orders
.push_back(ChildDomNode
->getBlock());
252 // Visit Orders in bottom-up order.
253 using InsertPtsCostPair
=
254 std::pair
<SmallPtrSet
<BasicBlock
*, 16>, BlockFrequency
>;
256 // InsertPtsMap is a map from a BB to the best insertion points for the
257 // subtree of BB (subtree not including the BB itself).
258 DenseMap
<BasicBlock
*, InsertPtsCostPair
> InsertPtsMap
;
259 InsertPtsMap
.reserve(Orders
.size() + 1);
260 for (auto RIt
= Orders
.rbegin(); RIt
!= Orders
.rend(); RIt
++) {
261 BasicBlock
*Node
= *RIt
;
262 bool NodeInBBs
= BBs
.count(Node
);
263 SmallPtrSet
<BasicBlock
*, 16> &InsertPts
= InsertPtsMap
[Node
].first
;
264 BlockFrequency
&InsertPtsFreq
= InsertPtsMap
[Node
].second
;
266 // Return the optimal insert points in BBs.
269 if (InsertPtsFreq
> BFI
.getBlockFreq(Node
) ||
270 (InsertPtsFreq
== BFI
.getBlockFreq(Node
) && InsertPts
.size() > 1))
273 BBs
.insert(InsertPts
.begin(), InsertPts
.end());
277 BasicBlock
*Parent
= DT
.getNode(Node
)->getIDom()->getBlock();
278 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
279 // will update its parent's ParentInsertPts and ParentPtsFreq.
280 SmallPtrSet
<BasicBlock
*, 16> &ParentInsertPts
= InsertPtsMap
[Parent
].first
;
281 BlockFrequency
&ParentPtsFreq
= InsertPtsMap
[Parent
].second
;
282 // Choose to insert in Node or in subtree of Node.
283 // Don't hoist to EHPad because we may not find a proper place to insert
285 // If the total frequency of InsertPts is the same as the frequency of the
286 // target Node, and InsertPts contains more than one nodes, choose hoisting
287 // to reduce code size.
290 (InsertPtsFreq
> BFI
.getBlockFreq(Node
) ||
291 (InsertPtsFreq
== BFI
.getBlockFreq(Node
) && InsertPts
.size() > 1)))) {
292 ParentInsertPts
.insert(Node
);
293 ParentPtsFreq
+= BFI
.getBlockFreq(Node
);
295 ParentInsertPts
.insert(InsertPts
.begin(), InsertPts
.end());
296 ParentPtsFreq
+= InsertPtsFreq
;
301 /// Find an insertion point that dominates all uses.
302 SmallPtrSet
<Instruction
*, 8> ConstantHoistingPass::findConstantInsertionPoint(
303 const ConstantInfo
&ConstInfo
) const {
304 assert(!ConstInfo
.RebasedConstants
.empty() && "Invalid constant info entry.");
305 // Collect all basic blocks.
306 SmallPtrSet
<BasicBlock
*, 8> BBs
;
307 SmallPtrSet
<Instruction
*, 8> InsertPts
;
308 for (auto const &RCI
: ConstInfo
.RebasedConstants
)
309 for (auto const &U
: RCI
.Uses
)
310 BBs
.insert(findMatInsertPt(U
.Inst
, U
.OpndIdx
)->getParent());
312 if (BBs
.count(Entry
)) {
313 InsertPts
.insert(&Entry
->front());
318 findBestInsertionSet(*DT
, *BFI
, Entry
, BBs
);
319 for (auto BB
: BBs
) {
320 BasicBlock::iterator InsertPt
= BB
->begin();
321 for (; isa
<PHINode
>(InsertPt
) || InsertPt
->isEHPad(); ++InsertPt
)
323 InsertPts
.insert(&*InsertPt
);
328 while (BBs
.size() >= 2) {
329 BasicBlock
*BB
, *BB1
, *BB2
;
331 BB2
= *std::next(BBs
.begin());
332 BB
= DT
->findNearestCommonDominator(BB1
, BB2
);
334 InsertPts
.insert(&Entry
->front());
341 assert((BBs
.size() == 1) && "Expected only one element.");
342 Instruction
&FirstInst
= (*BBs
.begin())->front();
343 InsertPts
.insert(findMatInsertPt(&FirstInst
));
347 /// Record constant integer ConstInt for instruction Inst at operand
350 /// The operand at index Idx is not necessarily the constant integer itself. It
351 /// could also be a cast instruction or a constant expression that uses the
352 /// constant integer.
353 void ConstantHoistingPass::collectConstantCandidates(
354 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
,
355 ConstantInt
*ConstInt
) {
357 // Ask the target about the cost of materializing the constant for the given
358 // instruction and operand index.
359 if (auto IntrInst
= dyn_cast
<IntrinsicInst
>(Inst
))
360 Cost
= TTI
->getIntImmCost(IntrInst
->getIntrinsicID(), Idx
,
361 ConstInt
->getValue(), ConstInt
->getType());
363 Cost
= TTI
->getIntImmCost(Inst
->getOpcode(), Idx
, ConstInt
->getValue(),
364 ConstInt
->getType());
366 // Ignore cheap integer constants.
367 if (Cost
> TargetTransformInfo::TCC_Basic
) {
368 ConstCandMapType::iterator Itr
;
370 ConstPtrUnionType Cand
= ConstInt
;
371 std::tie(Itr
, Inserted
) = ConstCandMap
.insert(std::make_pair(Cand
, 0));
373 ConstIntCandVec
.push_back(ConstantCandidate(ConstInt
));
374 Itr
->second
= ConstIntCandVec
.size() - 1;
376 ConstIntCandVec
[Itr
->second
].addUser(Inst
, Idx
, Cost
);
377 LLVM_DEBUG(if (isa
<ConstantInt
>(Inst
->getOperand(Idx
))) dbgs()
378 << "Collect constant " << *ConstInt
<< " from " << *Inst
379 << " with cost " << Cost
<< '\n';
380 else dbgs() << "Collect constant " << *ConstInt
381 << " indirectly from " << *Inst
<< " via "
382 << *Inst
->getOperand(Idx
) << " with cost " << Cost
387 /// Record constant GEP expression for instruction Inst at operand index Idx.
388 void ConstantHoistingPass::collectConstantCandidates(
389 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
,
390 ConstantExpr
*ConstExpr
) {
391 // TODO: Handle vector GEPs
392 if (ConstExpr
->getType()->isVectorTy())
395 GlobalVariable
*BaseGV
= dyn_cast
<GlobalVariable
>(ConstExpr
->getOperand(0));
399 // Get offset from the base GV.
400 PointerType
*GVPtrTy
= dyn_cast
<PointerType
>(BaseGV
->getType());
401 IntegerType
*PtrIntTy
= DL
->getIntPtrType(*Ctx
, GVPtrTy
->getAddressSpace());
402 APInt
Offset(DL
->getTypeSizeInBits(PtrIntTy
), /*val*/0, /*isSigned*/true);
403 auto *GEPO
= cast
<GEPOperator
>(ConstExpr
);
404 if (!GEPO
->accumulateConstantOffset(*DL
, Offset
))
407 if (!Offset
.isIntN(32))
410 // A constant GEP expression that has a GlobalVariable as base pointer is
411 // usually lowered to a load from constant pool. Such operation is unlikely
412 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
413 // an ADD instruction or folded into Load/Store instruction.
414 int Cost
= TTI
->getIntImmCost(Instruction::Add
, 1, Offset
, PtrIntTy
);
415 ConstCandVecType
&ExprCandVec
= ConstGEPCandMap
[BaseGV
];
416 ConstCandMapType::iterator Itr
;
418 ConstPtrUnionType Cand
= ConstExpr
;
419 std::tie(Itr
, Inserted
) = ConstCandMap
.insert(std::make_pair(Cand
, 0));
421 ExprCandVec
.push_back(ConstantCandidate(
422 ConstantInt::get(Type::getInt32Ty(*Ctx
), Offset
.getLimitedValue()),
424 Itr
->second
= ExprCandVec
.size() - 1;
426 ExprCandVec
[Itr
->second
].addUser(Inst
, Idx
, Cost
);
429 /// Check the operand for instruction Inst at index Idx.
430 void ConstantHoistingPass::collectConstantCandidates(
431 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
) {
432 Value
*Opnd
= Inst
->getOperand(Idx
);
434 // Visit constant integers.
435 if (auto ConstInt
= dyn_cast
<ConstantInt
>(Opnd
)) {
436 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
440 // Visit cast instructions that have constant integers.
441 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
)) {
442 // Only visit cast instructions, which have been skipped. All other
443 // instructions should have already been visited.
444 if (!CastInst
->isCast())
447 if (auto *ConstInt
= dyn_cast
<ConstantInt
>(CastInst
->getOperand(0))) {
448 // Pretend the constant is directly used by the instruction and ignore
449 // the cast instruction.
450 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
455 // Visit constant expressions that have constant integers.
456 if (auto ConstExpr
= dyn_cast
<ConstantExpr
>(Opnd
)) {
457 // Handle constant gep expressions.
458 if (ConstHoistGEP
&& ConstExpr
->isGEPWithNoNotionalOverIndexing())
459 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstExpr
);
461 // Only visit constant cast expressions.
462 if (!ConstExpr
->isCast())
465 if (auto ConstInt
= dyn_cast
<ConstantInt
>(ConstExpr
->getOperand(0))) {
466 // Pretend the constant is directly used by the instruction and ignore
467 // the constant expression.
468 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
474 /// Scan the instruction for expensive integer constants and record them
475 /// in the constant candidate vector.
476 void ConstantHoistingPass::collectConstantCandidates(
477 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
) {
478 // Skip all cast instructions. They are visited indirectly later on.
482 // Scan all operands.
483 for (unsigned Idx
= 0, E
= Inst
->getNumOperands(); Idx
!= E
; ++Idx
) {
484 // The cost of materializing the constants (defined in
485 // `TargetTransformInfo::getIntImmCost`) for instructions which only take
486 // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
487 // it's safe for us to collect constant candidates from all IntrinsicInsts.
488 if (canReplaceOperandWithVariable(Inst
, Idx
) || isa
<IntrinsicInst
>(Inst
)) {
489 collectConstantCandidates(ConstCandMap
, Inst
, Idx
);
491 } // end of for all operands
494 /// Collect all integer constants in the function that cannot be folded
495 /// into an instruction itself.
496 void ConstantHoistingPass::collectConstantCandidates(Function
&Fn
) {
497 ConstCandMapType ConstCandMap
;
498 for (BasicBlock
&BB
: Fn
)
499 for (Instruction
&Inst
: BB
)
500 collectConstantCandidates(ConstCandMap
, &Inst
);
503 // This helper function is necessary to deal with values that have different
504 // bit widths (APInt Operator- does not like that). If the value cannot be
505 // represented in uint64 we return an "empty" APInt. This is then interpreted
506 // as the value is not in range.
507 static Optional
<APInt
> calculateOffsetDiff(const APInt
&V1
, const APInt
&V2
) {
508 Optional
<APInt
> Res
= None
;
509 unsigned BW
= V1
.getBitWidth() > V2
.getBitWidth() ?
510 V1
.getBitWidth() : V2
.getBitWidth();
511 uint64_t LimVal1
= V1
.getLimitedValue();
512 uint64_t LimVal2
= V2
.getLimitedValue();
514 if (LimVal1
== ~0ULL || LimVal2
== ~0ULL)
517 uint64_t Diff
= LimVal1
- LimVal2
;
518 return APInt(BW
, Diff
, true);
521 // From a list of constants, one needs to picked as the base and the other
522 // constants will be transformed into an offset from that base constant. The
523 // question is which we can pick best? For example, consider these constants
524 // and their number of uses:
526 // Constants| 2 | 4 | 12 | 42 |
527 // NumUses | 3 | 2 | 8 | 7 |
529 // Selecting constant 12 because it has the most uses will generate negative
530 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
531 // offsets lead to less optimal code generation, then there might be better
532 // solutions. Suppose immediates in the range of 0..35 are most optimally
533 // supported by the architecture, then selecting constant 2 is most optimal
534 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
535 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
536 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
537 // selecting the base constant the range of the offsets is a very important
538 // factor too that we take into account here. This algorithm calculates a total
539 // costs for selecting a constant as the base and substract the costs if
540 // immediates are out of range. It has quadratic complexity, so we call this
541 // function only when we're optimising for size and there are less than 100
542 // constants, we fall back to the straightforward algorithm otherwise
543 // which does not do all the offset calculations.
545 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S
,
546 ConstCandVecType::iterator E
,
547 ConstCandVecType::iterator
&MaxCostItr
) {
548 unsigned NumUses
= 0;
550 if(!Entry
->getParent()->optForSize() || std::distance(S
,E
) > 100) {
551 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
552 NumUses
+= ConstCand
->Uses
.size();
553 if (ConstCand
->CumulativeCost
> MaxCostItr
->CumulativeCost
)
554 MaxCostItr
= ConstCand
;
559 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
561 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
562 auto Value
= ConstCand
->ConstInt
->getValue();
563 Type
*Ty
= ConstCand
->ConstInt
->getType();
565 NumUses
+= ConstCand
->Uses
.size();
566 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand
->ConstInt
->getValue()
569 for (auto User
: ConstCand
->Uses
) {
570 unsigned Opcode
= User
.Inst
->getOpcode();
571 unsigned OpndIdx
= User
.OpndIdx
;
572 Cost
+= TTI
->getIntImmCost(Opcode
, OpndIdx
, Value
, Ty
);
573 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< "\n");
575 for (auto C2
= S
; C2
!= E
; ++C2
) {
576 Optional
<APInt
> Diff
= calculateOffsetDiff(
577 C2
->ConstInt
->getValue(),
578 ConstCand
->ConstInt
->getValue());
581 TTI
->getIntImmCodeSizeCost(Opcode
, OpndIdx
, Diff
.getValue(), Ty
);
583 LLVM_DEBUG(dbgs() << "Offset " << Diff
.getValue() << " "
584 << "has penalty: " << ImmCosts
<< "\n"
585 << "Adjusted cost: " << Cost
<< "\n");
589 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost
<< "\n");
590 if (Cost
> MaxCost
) {
592 MaxCostItr
= ConstCand
;
593 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr
->ConstInt
->getValue()
600 /// Find the base constant within the given range and rebase all other
601 /// constants with respect to the base constant.
602 void ConstantHoistingPass::findAndMakeBaseConstant(
603 ConstCandVecType::iterator S
, ConstCandVecType::iterator E
,
604 SmallVectorImpl
<consthoist::ConstantInfo
> &ConstInfoVec
) {
606 unsigned NumUses
= maximizeConstantsInRange(S
, E
, MaxCostItr
);
608 // Don't hoist constants that have only one use.
612 ConstantInt
*ConstInt
= MaxCostItr
->ConstInt
;
613 ConstantExpr
*ConstExpr
= MaxCostItr
->ConstExpr
;
614 ConstantInfo ConstInfo
;
615 ConstInfo
.BaseInt
= ConstInt
;
616 ConstInfo
.BaseExpr
= ConstExpr
;
617 Type
*Ty
= ConstInt
->getType();
619 // Rebase the constants with respect to the base constant.
620 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
621 APInt Diff
= ConstCand
->ConstInt
->getValue() - ConstInt
->getValue();
622 Constant
*Offset
= Diff
== 0 ? nullptr : ConstantInt::get(Ty
, Diff
);
624 ConstCand
->ConstExpr
? ConstCand
->ConstExpr
->getType() : nullptr;
625 ConstInfo
.RebasedConstants
.push_back(
626 RebasedConstantInfo(std::move(ConstCand
->Uses
), Offset
, ConstTy
));
628 ConstInfoVec
.push_back(std::move(ConstInfo
));
631 /// Finds and combines constant candidates that can be easily
632 /// rematerialized with an add from a common base constant.
633 void ConstantHoistingPass::findBaseConstants(GlobalVariable
*BaseGV
) {
634 // If BaseGV is nullptr, find base among candidate constant integers;
635 // Otherwise find base among constant GEPs that share the same BaseGV.
636 ConstCandVecType
&ConstCandVec
= BaseGV
?
637 ConstGEPCandMap
[BaseGV
] : ConstIntCandVec
;
638 ConstInfoVecType
&ConstInfoVec
= BaseGV
?
639 ConstGEPInfoMap
[BaseGV
] : ConstIntInfoVec
;
641 // Sort the constants by value and type. This invalidates the mapping!
642 std::stable_sort(ConstCandVec
.begin(), ConstCandVec
.end(),
643 [](const ConstantCandidate
&LHS
, const ConstantCandidate
&RHS
) {
644 if (LHS
.ConstInt
->getType() != RHS
.ConstInt
->getType())
645 return LHS
.ConstInt
->getType()->getBitWidth() <
646 RHS
.ConstInt
->getType()->getBitWidth();
647 return LHS
.ConstInt
->getValue().ult(RHS
.ConstInt
->getValue());
650 // Simple linear scan through the sorted constant candidate vector for viable
652 auto MinValItr
= ConstCandVec
.begin();
653 for (auto CC
= std::next(ConstCandVec
.begin()), E
= ConstCandVec
.end();
655 if (MinValItr
->ConstInt
->getType() == CC
->ConstInt
->getType()) {
656 Type
*MemUseValTy
= nullptr;
657 for (auto &U
: CC
->Uses
) {
659 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UI
)) {
660 MemUseValTy
= LI
->getType();
662 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
663 // Make sure the constant is used as pointer operand of the StoreInst.
664 if (SI
->getPointerOperand() == SI
->getOperand(U
.OpndIdx
)) {
665 MemUseValTy
= SI
->getValueOperand()->getType();
671 // Check if the constant is in range of an add with immediate.
672 APInt Diff
= CC
->ConstInt
->getValue() - MinValItr
->ConstInt
->getValue();
673 if ((Diff
.getBitWidth() <= 64) &&
674 TTI
->isLegalAddImmediate(Diff
.getSExtValue()) &&
675 // Check if Diff can be used as offset in addressing mode of the user
676 // memory instruction.
677 (!MemUseValTy
|| TTI
->isLegalAddressingMode(MemUseValTy
,
678 /*BaseGV*/nullptr, /*BaseOffset*/Diff
.getSExtValue(),
679 /*HasBaseReg*/true, /*Scale*/0)))
682 // We either have now a different constant type or the constant is not in
683 // range of an add with immediate anymore.
684 findAndMakeBaseConstant(MinValItr
, CC
, ConstInfoVec
);
685 // Start a new base constant search.
688 // Finalize the last base constant search.
689 findAndMakeBaseConstant(MinValItr
, ConstCandVec
.end(), ConstInfoVec
);
692 /// Updates the operand at Idx in instruction Inst with the result of
693 /// instruction Mat. If the instruction is a PHI node then special
694 /// handling for duplicate values form the same incoming basic block is
696 /// \return The update will always succeed, but the return value indicated if
697 /// Mat was used for the update or not.
698 static bool updateOperand(Instruction
*Inst
, unsigned Idx
, Instruction
*Mat
) {
699 if (auto PHI
= dyn_cast
<PHINode
>(Inst
)) {
700 // Check if any previous operand of the PHI node has the same incoming basic
701 // block. This is a very odd case that happens when the incoming basic block
702 // has a switch statement. In this case use the same value as the previous
703 // operand(s), otherwise we will fail verification due to different values.
704 // The values are actually the same, but the variable names are different
705 // and the verifier doesn't like that.
706 BasicBlock
*IncomingBB
= PHI
->getIncomingBlock(Idx
);
707 for (unsigned i
= 0; i
< Idx
; ++i
) {
708 if (PHI
->getIncomingBlock(i
) == IncomingBB
) {
709 Value
*IncomingVal
= PHI
->getIncomingValue(i
);
710 Inst
->setOperand(Idx
, IncomingVal
);
716 Inst
->setOperand(Idx
, Mat
);
720 /// Emit materialization code for all rebased constants and update their
722 void ConstantHoistingPass::emitBaseConstants(Instruction
*Base
,
725 const ConstantUser
&ConstUser
) {
726 Instruction
*Mat
= Base
;
728 // The same offset can be dereferenced to different types in nested struct.
729 if (!Offset
&& Ty
&& Ty
!= Base
->getType())
730 Offset
= ConstantInt::get(Type::getInt32Ty(*Ctx
), 0);
733 Instruction
*InsertionPt
= findMatInsertPt(ConstUser
.Inst
,
736 // Constant being rebased is a ConstantExpr.
737 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(*Ctx
,
738 cast
<PointerType
>(Ty
)->getAddressSpace());
739 Base
= new BitCastInst(Base
, Int8PtrTy
, "base_bitcast", InsertionPt
);
740 Mat
= GetElementPtrInst::Create(Int8PtrTy
->getElementType(), Base
,
741 Offset
, "mat_gep", InsertionPt
);
742 Mat
= new BitCastInst(Mat
, Ty
, "mat_bitcast", InsertionPt
);
744 // Constant being rebased is a ConstantInt.
745 Mat
= BinaryOperator::Create(Instruction::Add
, Base
, Offset
,
746 "const_mat", InsertionPt
);
748 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base
->getOperand(0)
749 << " + " << *Offset
<< ") in BB "
750 << Mat
->getParent()->getName() << '\n'
752 Mat
->setDebugLoc(ConstUser
.Inst
->getDebugLoc());
754 Value
*Opnd
= ConstUser
.Inst
->getOperand(ConstUser
.OpndIdx
);
756 // Visit constant integer.
757 if (isa
<ConstantInt
>(Opnd
)) {
758 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
759 if (!updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, Mat
) && Offset
)
760 Mat
->eraseFromParent();
761 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
765 // Visit cast instruction.
766 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
)) {
767 assert(CastInst
->isCast() && "Expected an cast instruction!");
768 // Check if we already have visited this cast instruction before to avoid
769 // unnecessary cloning.
770 Instruction
*&ClonedCastInst
= ClonedCastMap
[CastInst
];
771 if (!ClonedCastInst
) {
772 ClonedCastInst
= CastInst
->clone();
773 ClonedCastInst
->setOperand(0, Mat
);
774 ClonedCastInst
->insertAfter(CastInst
);
775 // Use the same debug location as the original cast instruction.
776 ClonedCastInst
->setDebugLoc(CastInst
->getDebugLoc());
777 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst
<< '\n'
778 << "To : " << *ClonedCastInst
<< '\n');
781 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
782 updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, ClonedCastInst
);
783 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
787 // Visit constant expression.
788 if (auto ConstExpr
= dyn_cast
<ConstantExpr
>(Opnd
)) {
789 if (ConstExpr
->isGEPWithNoNotionalOverIndexing()) {
790 // Operand is a ConstantGEP, replace it.
791 updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, Mat
);
795 // Aside from constant GEPs, only constant cast expressions are collected.
796 assert(ConstExpr
->isCast() && "ConstExpr should be a cast");
797 Instruction
*ConstExprInst
= ConstExpr
->getAsInstruction();
798 ConstExprInst
->setOperand(0, Mat
);
799 ConstExprInst
->insertBefore(findMatInsertPt(ConstUser
.Inst
,
802 // Use the same debug location as the instruction we are about to update.
803 ConstExprInst
->setDebugLoc(ConstUser
.Inst
->getDebugLoc());
805 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst
<< '\n'
806 << "From : " << *ConstExpr
<< '\n');
807 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
808 if (!updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, ConstExprInst
)) {
809 ConstExprInst
->eraseFromParent();
811 Mat
->eraseFromParent();
813 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
818 /// Hoist and hide the base constant behind a bitcast and emit
819 /// materialization code for derived constants.
820 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable
*BaseGV
) {
821 bool MadeChange
= false;
822 SmallVectorImpl
<consthoist::ConstantInfo
> &ConstInfoVec
=
823 BaseGV
? ConstGEPInfoMap
[BaseGV
] : ConstIntInfoVec
;
824 for (auto const &ConstInfo
: ConstInfoVec
) {
825 SmallPtrSet
<Instruction
*, 8> IPSet
= findConstantInsertionPoint(ConstInfo
);
826 assert(!IPSet
.empty() && "IPSet is empty");
828 unsigned UsesNum
= 0;
829 unsigned ReBasesNum
= 0;
830 unsigned NotRebasedNum
= 0;
831 for (Instruction
*IP
: IPSet
) {
832 // First, collect constants depending on this IP of the base.
834 using RebasedUse
= std::tuple
<Constant
*, Type
*, ConstantUser
>;
835 SmallVector
<RebasedUse
, 4> ToBeRebased
;
836 for (auto const &RCI
: ConstInfo
.RebasedConstants
) {
837 for (auto const &U
: RCI
.Uses
) {
839 BasicBlock
*OrigMatInsertBB
=
840 findMatInsertPt(U
.Inst
, U
.OpndIdx
)->getParent();
841 // If Base constant is to be inserted in multiple places,
842 // generate rebase for U using the Base dominating U.
843 if (IPSet
.size() == 1 ||
844 DT
->dominates(IP
->getParent(), OrigMatInsertBB
))
845 ToBeRebased
.push_back(RebasedUse(RCI
.Offset
, RCI
.Ty
, U
));
850 // If only few constants depend on this IP of base, skip rebasing,
851 // assuming the base and the rebased have the same materialization cost.
852 if (ToBeRebased
.size() < MinNumOfDependentToRebase
) {
853 NotRebasedNum
+= ToBeRebased
.size();
857 // Emit an instance of the base at this IP.
858 Instruction
*Base
= nullptr;
859 // Hoist and hide the base constant behind a bitcast.
860 if (ConstInfo
.BaseExpr
) {
861 assert(BaseGV
&& "A base constant expression must have an base GV");
862 Type
*Ty
= ConstInfo
.BaseExpr
->getType();
863 Base
= new BitCastInst(ConstInfo
.BaseExpr
, Ty
, "const", IP
);
865 IntegerType
*Ty
= ConstInfo
.BaseInt
->getType();
866 Base
= new BitCastInst(ConstInfo
.BaseInt
, Ty
, "const", IP
);
869 Base
->setDebugLoc(IP
->getDebugLoc());
871 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo
.BaseInt
872 << ") to BB " << IP
->getParent()->getName() << '\n'
875 // Emit materialization code for rebased constants depending on this IP.
876 for (auto const &R
: ToBeRebased
) {
877 Constant
*Off
= std::get
<0>(R
);
878 Type
*Ty
= std::get
<1>(R
);
879 ConstantUser U
= std::get
<2>(R
);
880 emitBaseConstants(Base
, Off
, Ty
, U
);
882 // Use the same debug location as the last user of the constant.
883 Base
->setDebugLoc(DILocation::getMergedLocation(
884 Base
->getDebugLoc(), U
.Inst
->getDebugLoc()));
886 assert(!Base
->use_empty() && "The use list is empty!?");
887 assert(isa
<Instruction
>(Base
->user_back()) &&
888 "All uses should be instructions.");
893 // Expect all uses are rebased after rebase is done.
894 assert(UsesNum
== (ReBasesNum
+ NotRebasedNum
) &&
895 "Not all uses are rebased");
897 NumConstantsHoisted
++;
899 // Base constant is also included in ConstInfo.RebasedConstants, so
900 // deduct 1 from ConstInfo.RebasedConstants.size().
901 NumConstantsRebased
+= ConstInfo
.RebasedConstants
.size() - 1;
908 /// Check all cast instructions we made a copy of and remove them if they
909 /// have no more users.
910 void ConstantHoistingPass::deleteDeadCastInst() const {
911 for (auto const &I
: ClonedCastMap
)
912 if (I
.first
->use_empty())
913 I
.first
->eraseFromParent();
916 /// Optimize expensive integer constants in the given function.
917 bool ConstantHoistingPass::runImpl(Function
&Fn
, TargetTransformInfo
&TTI
,
918 DominatorTree
&DT
, BlockFrequencyInfo
*BFI
,
923 this->DL
= &Fn
.getParent()->getDataLayout();
924 this->Ctx
= &Fn
.getContext();
925 this->Entry
= &Entry
;
926 // Collect all constant candidates.
927 collectConstantCandidates(Fn
);
929 // Combine constants that can be easily materialized with an add from a common
931 if (!ConstIntCandVec
.empty())
932 findBaseConstants(nullptr);
933 for (auto &MapEntry
: ConstGEPCandMap
)
934 if (!MapEntry
.second
.empty())
935 findBaseConstants(MapEntry
.first
);
937 // Finally hoist the base constant and emit materialization code for dependent
939 bool MadeChange
= false;
940 if (!ConstIntInfoVec
.empty())
941 MadeChange
= emitBaseConstants(nullptr);
942 for (auto MapEntry
: ConstGEPInfoMap
)
943 if (!MapEntry
.second
.empty())
944 MadeChange
|= emitBaseConstants(MapEntry
.first
);
947 // Cleanup dead instructions.
948 deleteDeadCastInst();
953 PreservedAnalyses
ConstantHoistingPass::run(Function
&F
,
954 FunctionAnalysisManager
&AM
) {
955 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
956 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
957 auto BFI
= ConstHoistWithBlockFrequency
958 ? &AM
.getResult
<BlockFrequencyAnalysis
>(F
)
960 if (!runImpl(F
, TTI
, DT
, BFI
, F
.getEntryBlock()))
961 return PreservedAnalyses::all();
963 PreservedAnalyses PA
;
964 PA
.preserveSet
<CFGAnalyses
>();