[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / EarlyCSE.cpp
blobbc6c60cf314598284e0cdcccfd35634a62c5da8b
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/PassManager.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Allocator.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/DebugCounter.h"
54 #include "llvm/Support/RecyclingAllocator.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/GuardUtils.h"
58 #include <cassert>
59 #include <deque>
60 #include <memory>
61 #include <utility>
63 using namespace llvm;
64 using namespace llvm::PatternMatch;
66 #define DEBUG_TYPE "early-cse"
68 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
69 STATISTIC(NumCSE, "Number of instructions CSE'd");
70 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
71 STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
72 STATISTIC(NumCSECall, "Number of call instructions CSE'd");
73 STATISTIC(NumDSE, "Number of trivial dead stores removed");
75 DEBUG_COUNTER(CSECounter, "early-cse",
76 "Controls which instructions are removed");
78 static cl::opt<unsigned> EarlyCSEMssaOptCap(
79 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
80 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
81 "for faster compile. Caps the MemorySSA clobbering calls."));
83 //===----------------------------------------------------------------------===//
84 // SimpleValue
85 //===----------------------------------------------------------------------===//
87 namespace {
89 /// Struct representing the available values in the scoped hash table.
90 struct SimpleValue {
91 Instruction *Inst;
93 SimpleValue(Instruction *I) : Inst(I) {
94 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
97 bool isSentinel() const {
98 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
99 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
102 static bool canHandle(Instruction *Inst) {
103 // This can only handle non-void readnone functions.
104 if (CallInst *CI = dyn_cast<CallInst>(Inst))
105 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
106 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
107 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
108 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
109 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
110 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
114 } // end anonymous namespace
116 namespace llvm {
118 template <> struct DenseMapInfo<SimpleValue> {
119 static inline SimpleValue getEmptyKey() {
120 return DenseMapInfo<Instruction *>::getEmptyKey();
123 static inline SimpleValue getTombstoneKey() {
124 return DenseMapInfo<Instruction *>::getTombstoneKey();
127 static unsigned getHashValue(SimpleValue Val);
128 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
131 } // end namespace llvm
133 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
134 Instruction *Inst = Val.Inst;
135 // Hash in all of the operands as pointers.
136 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
137 Value *LHS = BinOp->getOperand(0);
138 Value *RHS = BinOp->getOperand(1);
139 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
140 std::swap(LHS, RHS);
142 return hash_combine(BinOp->getOpcode(), LHS, RHS);
145 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
146 Value *LHS = CI->getOperand(0);
147 Value *RHS = CI->getOperand(1);
148 CmpInst::Predicate Pred = CI->getPredicate();
149 if (Inst->getOperand(0) > Inst->getOperand(1)) {
150 std::swap(LHS, RHS);
151 Pred = CI->getSwappedPredicate();
153 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
156 // Hash min/max/abs (cmp + select) to allow for commuted operands.
157 // Min/max may also have non-canonical compare predicate (eg, the compare for
158 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
159 // compare.
160 Value *A, *B;
161 SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor;
162 // TODO: We should also detect FP min/max.
163 if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
164 SPF == SPF_UMIN || SPF == SPF_UMAX) {
165 if (A > B)
166 std::swap(A, B);
167 return hash_combine(Inst->getOpcode(), SPF, A, B);
169 if (SPF == SPF_ABS || SPF == SPF_NABS) {
170 // ABS/NABS always puts the input in A and its negation in B.
171 return hash_combine(Inst->getOpcode(), SPF, A, B);
174 if (CastInst *CI = dyn_cast<CastInst>(Inst))
175 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
177 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
178 return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
179 hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
181 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
182 return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
183 IVI->getOperand(1),
184 hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
186 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
187 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
188 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
189 isa<ShuffleVectorInst>(Inst)) &&
190 "Invalid/unknown instruction");
192 // Mix in the opcode.
193 return hash_combine(
194 Inst->getOpcode(),
195 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
198 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
199 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
201 if (LHS.isSentinel() || RHS.isSentinel())
202 return LHSI == RHSI;
204 if (LHSI->getOpcode() != RHSI->getOpcode())
205 return false;
206 if (LHSI->isIdenticalToWhenDefined(RHSI))
207 return true;
209 // If we're not strictly identical, we still might be a commutable instruction
210 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
211 if (!LHSBinOp->isCommutative())
212 return false;
214 assert(isa<BinaryOperator>(RHSI) &&
215 "same opcode, but different instruction type?");
216 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
218 // Commuted equality
219 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
220 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
222 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
223 assert(isa<CmpInst>(RHSI) &&
224 "same opcode, but different instruction type?");
225 CmpInst *RHSCmp = cast<CmpInst>(RHSI);
226 // Commuted equality
227 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
228 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
229 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
232 // Min/max/abs can occur with commuted operands, non-canonical predicates,
233 // and/or non-canonical operands.
234 Value *LHSA, *LHSB;
235 SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor;
236 // TODO: We should also detect FP min/max.
237 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
238 LSPF == SPF_UMIN || LSPF == SPF_UMAX ||
239 LSPF == SPF_ABS || LSPF == SPF_NABS) {
240 Value *RHSA, *RHSB;
241 SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor;
242 if (LSPF == RSPF) {
243 // Abs results are placed in a defined order by matchSelectPattern.
244 if (LSPF == SPF_ABS || LSPF == SPF_NABS)
245 return LHSA == RHSA && LHSB == RHSB;
246 return ((LHSA == RHSA && LHSB == RHSB) ||
247 (LHSA == RHSB && LHSB == RHSA));
251 return false;
254 //===----------------------------------------------------------------------===//
255 // CallValue
256 //===----------------------------------------------------------------------===//
258 namespace {
260 /// Struct representing the available call values in the scoped hash
261 /// table.
262 struct CallValue {
263 Instruction *Inst;
265 CallValue(Instruction *I) : Inst(I) {
266 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
269 bool isSentinel() const {
270 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
271 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
274 static bool canHandle(Instruction *Inst) {
275 // Don't value number anything that returns void.
276 if (Inst->getType()->isVoidTy())
277 return false;
279 CallInst *CI = dyn_cast<CallInst>(Inst);
280 if (!CI || !CI->onlyReadsMemory())
281 return false;
282 return true;
286 } // end anonymous namespace
288 namespace llvm {
290 template <> struct DenseMapInfo<CallValue> {
291 static inline CallValue getEmptyKey() {
292 return DenseMapInfo<Instruction *>::getEmptyKey();
295 static inline CallValue getTombstoneKey() {
296 return DenseMapInfo<Instruction *>::getTombstoneKey();
299 static unsigned getHashValue(CallValue Val);
300 static bool isEqual(CallValue LHS, CallValue RHS);
303 } // end namespace llvm
305 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
306 Instruction *Inst = Val.Inst;
307 // Hash all of the operands as pointers and mix in the opcode.
308 return hash_combine(
309 Inst->getOpcode(),
310 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
313 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
314 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
315 if (LHS.isSentinel() || RHS.isSentinel())
316 return LHSI == RHSI;
317 return LHSI->isIdenticalTo(RHSI);
320 //===----------------------------------------------------------------------===//
321 // EarlyCSE implementation
322 //===----------------------------------------------------------------------===//
324 namespace {
326 /// A simple and fast domtree-based CSE pass.
328 /// This pass does a simple depth-first walk over the dominator tree,
329 /// eliminating trivially redundant instructions and using instsimplify to
330 /// canonicalize things as it goes. It is intended to be fast and catch obvious
331 /// cases so that instcombine and other passes are more effective. It is
332 /// expected that a later pass of GVN will catch the interesting/hard cases.
333 class EarlyCSE {
334 public:
335 const TargetLibraryInfo &TLI;
336 const TargetTransformInfo &TTI;
337 DominatorTree &DT;
338 AssumptionCache &AC;
339 const SimplifyQuery SQ;
340 MemorySSA *MSSA;
341 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
343 using AllocatorTy =
344 RecyclingAllocator<BumpPtrAllocator,
345 ScopedHashTableVal<SimpleValue, Value *>>;
346 using ScopedHTType =
347 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
348 AllocatorTy>;
350 /// A scoped hash table of the current values of all of our simple
351 /// scalar expressions.
353 /// As we walk down the domtree, we look to see if instructions are in this:
354 /// if so, we replace them with what we find, otherwise we insert them so
355 /// that dominated values can succeed in their lookup.
356 ScopedHTType AvailableValues;
358 /// A scoped hash table of the current values of previously encountered
359 /// memory locations.
361 /// This allows us to get efficient access to dominating loads or stores when
362 /// we have a fully redundant load. In addition to the most recent load, we
363 /// keep track of a generation count of the read, which is compared against
364 /// the current generation count. The current generation count is incremented
365 /// after every possibly writing memory operation, which ensures that we only
366 /// CSE loads with other loads that have no intervening store. Ordering
367 /// events (such as fences or atomic instructions) increment the generation
368 /// count as well; essentially, we model these as writes to all possible
369 /// locations. Note that atomic and/or volatile loads and stores can be
370 /// present the table; it is the responsibility of the consumer to inspect
371 /// the atomicity/volatility if needed.
372 struct LoadValue {
373 Instruction *DefInst = nullptr;
374 unsigned Generation = 0;
375 int MatchingId = -1;
376 bool IsAtomic = false;
378 LoadValue() = default;
379 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
380 bool IsAtomic)
381 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
382 IsAtomic(IsAtomic) {}
385 using LoadMapAllocator =
386 RecyclingAllocator<BumpPtrAllocator,
387 ScopedHashTableVal<Value *, LoadValue>>;
388 using LoadHTType =
389 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
390 LoadMapAllocator>;
392 LoadHTType AvailableLoads;
394 // A scoped hash table mapping memory locations (represented as typed
395 // addresses) to generation numbers at which that memory location became
396 // (henceforth indefinitely) invariant.
397 using InvariantMapAllocator =
398 RecyclingAllocator<BumpPtrAllocator,
399 ScopedHashTableVal<MemoryLocation, unsigned>>;
400 using InvariantHTType =
401 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
402 InvariantMapAllocator>;
403 InvariantHTType AvailableInvariants;
405 /// A scoped hash table of the current values of read-only call
406 /// values.
408 /// It uses the same generation count as loads.
409 using CallHTType =
410 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
411 CallHTType AvailableCalls;
413 /// This is the current generation of the memory value.
414 unsigned CurrentGeneration = 0;
416 /// Set up the EarlyCSE runner for a particular function.
417 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
418 const TargetTransformInfo &TTI, DominatorTree &DT,
419 AssumptionCache &AC, MemorySSA *MSSA)
420 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
421 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
423 bool run();
425 private:
426 unsigned ClobberCounter = 0;
427 // Almost a POD, but needs to call the constructors for the scoped hash
428 // tables so that a new scope gets pushed on. These are RAII so that the
429 // scope gets popped when the NodeScope is destroyed.
430 class NodeScope {
431 public:
432 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
433 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
434 : Scope(AvailableValues), LoadScope(AvailableLoads),
435 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
436 NodeScope(const NodeScope &) = delete;
437 NodeScope &operator=(const NodeScope &) = delete;
439 private:
440 ScopedHTType::ScopeTy Scope;
441 LoadHTType::ScopeTy LoadScope;
442 InvariantHTType::ScopeTy InvariantScope;
443 CallHTType::ScopeTy CallScope;
446 // Contains all the needed information to create a stack for doing a depth
447 // first traversal of the tree. This includes scopes for values, loads, and
448 // calls as well as the generation. There is a child iterator so that the
449 // children do not need to be store separately.
450 class StackNode {
451 public:
452 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
453 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
454 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child,
455 DomTreeNode::iterator end)
456 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
457 EndIter(end),
458 Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
459 AvailableCalls)
461 StackNode(const StackNode &) = delete;
462 StackNode &operator=(const StackNode &) = delete;
464 // Accessors.
465 unsigned currentGeneration() { return CurrentGeneration; }
466 unsigned childGeneration() { return ChildGeneration; }
467 void childGeneration(unsigned generation) { ChildGeneration = generation; }
468 DomTreeNode *node() { return Node; }
469 DomTreeNode::iterator childIter() { return ChildIter; }
471 DomTreeNode *nextChild() {
472 DomTreeNode *child = *ChildIter;
473 ++ChildIter;
474 return child;
477 DomTreeNode::iterator end() { return EndIter; }
478 bool isProcessed() { return Processed; }
479 void process() { Processed = true; }
481 private:
482 unsigned CurrentGeneration;
483 unsigned ChildGeneration;
484 DomTreeNode *Node;
485 DomTreeNode::iterator ChildIter;
486 DomTreeNode::iterator EndIter;
487 NodeScope Scopes;
488 bool Processed = false;
491 /// Wrapper class to handle memory instructions, including loads,
492 /// stores and intrinsic loads and stores defined by the target.
493 class ParseMemoryInst {
494 public:
495 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
496 : Inst(Inst) {
497 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
498 if (TTI.getTgtMemIntrinsic(II, Info))
499 IsTargetMemInst = true;
502 bool isLoad() const {
503 if (IsTargetMemInst) return Info.ReadMem;
504 return isa<LoadInst>(Inst);
507 bool isStore() const {
508 if (IsTargetMemInst) return Info.WriteMem;
509 return isa<StoreInst>(Inst);
512 bool isAtomic() const {
513 if (IsTargetMemInst)
514 return Info.Ordering != AtomicOrdering::NotAtomic;
515 return Inst->isAtomic();
518 bool isUnordered() const {
519 if (IsTargetMemInst)
520 return Info.isUnordered();
522 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
523 return LI->isUnordered();
524 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
525 return SI->isUnordered();
527 // Conservative answer
528 return !Inst->isAtomic();
531 bool isVolatile() const {
532 if (IsTargetMemInst)
533 return Info.IsVolatile;
535 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
536 return LI->isVolatile();
537 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
538 return SI->isVolatile();
540 // Conservative answer
541 return true;
544 bool isInvariantLoad() const {
545 if (auto *LI = dyn_cast<LoadInst>(Inst))
546 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
547 return false;
550 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
551 return (getPointerOperand() == Inst.getPointerOperand() &&
552 getMatchingId() == Inst.getMatchingId());
555 bool isValid() const { return getPointerOperand() != nullptr; }
557 // For regular (non-intrinsic) loads/stores, this is set to -1. For
558 // intrinsic loads/stores, the id is retrieved from the corresponding
559 // field in the MemIntrinsicInfo structure. That field contains
560 // non-negative values only.
561 int getMatchingId() const {
562 if (IsTargetMemInst) return Info.MatchingId;
563 return -1;
566 Value *getPointerOperand() const {
567 if (IsTargetMemInst) return Info.PtrVal;
568 return getLoadStorePointerOperand(Inst);
571 bool mayReadFromMemory() const {
572 if (IsTargetMemInst) return Info.ReadMem;
573 return Inst->mayReadFromMemory();
576 bool mayWriteToMemory() const {
577 if (IsTargetMemInst) return Info.WriteMem;
578 return Inst->mayWriteToMemory();
581 private:
582 bool IsTargetMemInst = false;
583 MemIntrinsicInfo Info;
584 Instruction *Inst;
587 bool processNode(DomTreeNode *Node);
589 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
590 const BasicBlock *BB, const BasicBlock *Pred);
592 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
593 if (auto *LI = dyn_cast<LoadInst>(Inst))
594 return LI;
595 if (auto *SI = dyn_cast<StoreInst>(Inst))
596 return SI->getValueOperand();
597 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
598 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
599 ExpectedType);
602 /// Return true if the instruction is known to only operate on memory
603 /// provably invariant in the given "generation".
604 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
606 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
607 Instruction *EarlierInst, Instruction *LaterInst);
609 void removeMSSA(Instruction *Inst) {
610 if (!MSSA)
611 return;
612 if (VerifyMemorySSA)
613 MSSA->verifyMemorySSA();
614 // Removing a store here can leave MemorySSA in an unoptimized state by
615 // creating MemoryPhis that have identical arguments and by creating
616 // MemoryUses whose defining access is not an actual clobber. The phi case
617 // is handled by MemorySSA when passing OptimizePhis = true to
618 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated
619 // by MemorySSA's getClobberingMemoryAccess.
620 MSSAUpdater->removeMemoryAccess(Inst, true);
624 } // end anonymous namespace
626 /// Determine if the memory referenced by LaterInst is from the same heap
627 /// version as EarlierInst.
628 /// This is currently called in two scenarios:
630 /// load p
631 /// ...
632 /// load p
634 /// and
636 /// x = load p
637 /// ...
638 /// store x, p
640 /// in both cases we want to verify that there are no possible writes to the
641 /// memory referenced by p between the earlier and later instruction.
642 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
643 unsigned LaterGeneration,
644 Instruction *EarlierInst,
645 Instruction *LaterInst) {
646 // Check the simple memory generation tracking first.
647 if (EarlierGeneration == LaterGeneration)
648 return true;
650 if (!MSSA)
651 return false;
653 // If MemorySSA has determined that one of EarlierInst or LaterInst does not
654 // read/write memory, then we can safely return true here.
655 // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
656 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
657 // by also checking the MemorySSA MemoryAccess on the instruction. Initial
658 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
659 // with the default optimization pipeline.
660 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
661 if (!EarlierMA)
662 return true;
663 auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
664 if (!LaterMA)
665 return true;
667 // Since we know LaterDef dominates LaterInst and EarlierInst dominates
668 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
669 // EarlierInst and LaterInst and neither can any other write that potentially
670 // clobbers LaterInst.
671 MemoryAccess *LaterDef;
672 if (ClobberCounter < EarlyCSEMssaOptCap) {
673 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
674 ClobberCounter++;
675 } else
676 LaterDef = LaterMA->getDefiningAccess();
678 return MSSA->dominates(LaterDef, EarlierMA);
681 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
682 // A location loaded from with an invariant_load is assumed to *never* change
683 // within the visible scope of the compilation.
684 if (auto *LI = dyn_cast<LoadInst>(I))
685 if (LI->getMetadata(LLVMContext::MD_invariant_load))
686 return true;
688 auto MemLocOpt = MemoryLocation::getOrNone(I);
689 if (!MemLocOpt)
690 // "target" intrinsic forms of loads aren't currently known to
691 // MemoryLocation::get. TODO
692 return false;
693 MemoryLocation MemLoc = *MemLocOpt;
694 if (!AvailableInvariants.count(MemLoc))
695 return false;
697 // Is the generation at which this became invariant older than the
698 // current one?
699 return AvailableInvariants.lookup(MemLoc) <= GenAt;
702 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
703 const BranchInst *BI, const BasicBlock *BB,
704 const BasicBlock *Pred) {
705 assert(BI->isConditional() && "Should be a conditional branch!");
706 assert(BI->getCondition() == CondInst && "Wrong condition?");
707 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
708 auto *TorF = (BI->getSuccessor(0) == BB)
709 ? ConstantInt::getTrue(BB->getContext())
710 : ConstantInt::getFalse(BB->getContext());
711 auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
712 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
713 return BOp->getOpcode() == Opcode;
714 return false;
716 // If the condition is AND operation, we can propagate its operands into the
717 // true branch. If it is OR operation, we can propagate them into the false
718 // branch.
719 unsigned PropagateOpcode =
720 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
722 bool MadeChanges = false;
723 SmallVector<Instruction *, 4> WorkList;
724 SmallPtrSet<Instruction *, 4> Visited;
725 WorkList.push_back(CondInst);
726 while (!WorkList.empty()) {
727 Instruction *Curr = WorkList.pop_back_val();
729 AvailableValues.insert(Curr, TorF);
730 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
731 << Curr->getName() << "' as " << *TorF << " in "
732 << BB->getName() << "\n");
733 if (!DebugCounter::shouldExecute(CSECounter)) {
734 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
735 } else {
736 // Replace all dominated uses with the known value.
737 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
738 BasicBlockEdge(Pred, BB))) {
739 NumCSECVP += Count;
740 MadeChanges = true;
744 if (MatchBinOp(Curr, PropagateOpcode))
745 for (auto &Op : cast<BinaryOperator>(Curr)->operands())
746 if (Instruction *OPI = dyn_cast<Instruction>(Op))
747 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
748 WorkList.push_back(OPI);
751 return MadeChanges;
754 bool EarlyCSE::processNode(DomTreeNode *Node) {
755 bool Changed = false;
756 BasicBlock *BB = Node->getBlock();
758 // If this block has a single predecessor, then the predecessor is the parent
759 // of the domtree node and all of the live out memory values are still current
760 // in this block. If this block has multiple predecessors, then they could
761 // have invalidated the live-out memory values of our parent value. For now,
762 // just be conservative and invalidate memory if this block has multiple
763 // predecessors.
764 if (!BB->getSinglePredecessor())
765 ++CurrentGeneration;
767 // If this node has a single predecessor which ends in a conditional branch,
768 // we can infer the value of the branch condition given that we took this
769 // path. We need the single predecessor to ensure there's not another path
770 // which reaches this block where the condition might hold a different
771 // value. Since we're adding this to the scoped hash table (like any other
772 // def), it will have been popped if we encounter a future merge block.
773 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
774 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
775 if (BI && BI->isConditional()) {
776 auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
777 if (CondInst && SimpleValue::canHandle(CondInst))
778 Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
782 /// LastStore - Keep track of the last non-volatile store that we saw... for
783 /// as long as there in no instruction that reads memory. If we see a store
784 /// to the same location, we delete the dead store. This zaps trivial dead
785 /// stores which can occur in bitfield code among other things.
786 Instruction *LastStore = nullptr;
788 // See if any instructions in the block can be eliminated. If so, do it. If
789 // not, add them to AvailableValues.
790 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
791 Instruction *Inst = &*I++;
793 // Dead instructions should just be removed.
794 if (isInstructionTriviallyDead(Inst, &TLI)) {
795 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
796 if (!DebugCounter::shouldExecute(CSECounter)) {
797 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
798 continue;
800 if (!salvageDebugInfo(*Inst))
801 replaceDbgUsesWithUndef(Inst);
802 removeMSSA(Inst);
803 Inst->eraseFromParent();
804 Changed = true;
805 ++NumSimplify;
806 continue;
809 // Skip assume intrinsics, they don't really have side effects (although
810 // they're marked as such to ensure preservation of control dependencies),
811 // and this pass will not bother with its removal. However, we should mark
812 // its condition as true for all dominated blocks.
813 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
814 auto *CondI =
815 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
816 if (CondI && SimpleValue::canHandle(CondI)) {
817 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst
818 << '\n');
819 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
820 } else
821 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
822 continue;
825 // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
826 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
827 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
828 continue;
831 // We can skip all invariant.start intrinsics since they only read memory,
832 // and we can forward values across it. For invariant starts without
833 // invariant ends, we can use the fact that the invariantness never ends to
834 // start a scope in the current generaton which is true for all future
835 // generations. Also, we dont need to consume the last store since the
836 // semantics of invariant.start allow us to perform DSE of the last
837 // store, if there was a store following invariant.start. Consider:
839 // store 30, i8* p
840 // invariant.start(p)
841 // store 40, i8* p
842 // We can DSE the store to 30, since the store 40 to invariant location p
843 // causes undefined behaviour.
844 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
845 // If there are any uses, the scope might end.
846 if (!Inst->use_empty())
847 continue;
848 auto *CI = cast<CallInst>(Inst);
849 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI);
850 // Don't start a scope if we already have a better one pushed
851 if (!AvailableInvariants.count(MemLoc))
852 AvailableInvariants.insert(MemLoc, CurrentGeneration);
853 continue;
856 if (isGuard(Inst)) {
857 if (auto *CondI =
858 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
859 if (SimpleValue::canHandle(CondI)) {
860 // Do we already know the actual value of this condition?
861 if (auto *KnownCond = AvailableValues.lookup(CondI)) {
862 // Is the condition known to be true?
863 if (isa<ConstantInt>(KnownCond) &&
864 cast<ConstantInt>(KnownCond)->isOne()) {
865 LLVM_DEBUG(dbgs()
866 << "EarlyCSE removing guard: " << *Inst << '\n');
867 removeMSSA(Inst);
868 Inst->eraseFromParent();
869 Changed = true;
870 continue;
871 } else
872 // Use the known value if it wasn't true.
873 cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
875 // The condition we're on guarding here is true for all dominated
876 // locations.
877 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
881 // Guard intrinsics read all memory, but don't write any memory.
882 // Accordingly, don't update the generation but consume the last store (to
883 // avoid an incorrect DSE).
884 LastStore = nullptr;
885 continue;
888 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
889 // its simpler value.
890 if (Value *V = SimplifyInstruction(Inst, SQ)) {
891 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V
892 << '\n');
893 if (!DebugCounter::shouldExecute(CSECounter)) {
894 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
895 } else {
896 bool Killed = false;
897 if (!Inst->use_empty()) {
898 Inst->replaceAllUsesWith(V);
899 Changed = true;
901 if (isInstructionTriviallyDead(Inst, &TLI)) {
902 removeMSSA(Inst);
903 Inst->eraseFromParent();
904 Changed = true;
905 Killed = true;
907 if (Changed)
908 ++NumSimplify;
909 if (Killed)
910 continue;
914 // If this is a simple instruction that we can value number, process it.
915 if (SimpleValue::canHandle(Inst)) {
916 // See if the instruction has an available value. If so, use it.
917 if (Value *V = AvailableValues.lookup(Inst)) {
918 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V
919 << '\n');
920 if (!DebugCounter::shouldExecute(CSECounter)) {
921 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
922 continue;
924 if (auto *I = dyn_cast<Instruction>(V))
925 I->andIRFlags(Inst);
926 Inst->replaceAllUsesWith(V);
927 removeMSSA(Inst);
928 Inst->eraseFromParent();
929 Changed = true;
930 ++NumCSE;
931 continue;
934 // Otherwise, just remember that this value is available.
935 AvailableValues.insert(Inst, Inst);
936 continue;
939 ParseMemoryInst MemInst(Inst, TTI);
940 // If this is a non-volatile load, process it.
941 if (MemInst.isValid() && MemInst.isLoad()) {
942 // (conservatively) we can't peak past the ordering implied by this
943 // operation, but we can add this load to our set of available values
944 if (MemInst.isVolatile() || !MemInst.isUnordered()) {
945 LastStore = nullptr;
946 ++CurrentGeneration;
949 if (MemInst.isInvariantLoad()) {
950 // If we pass an invariant load, we know that memory location is
951 // indefinitely constant from the moment of first dereferenceability.
952 // We conservatively treat the invariant_load as that moment. If we
953 // pass a invariant load after already establishing a scope, don't
954 // restart it since we want to preserve the earliest point seen.
955 auto MemLoc = MemoryLocation::get(Inst);
956 if (!AvailableInvariants.count(MemLoc))
957 AvailableInvariants.insert(MemLoc, CurrentGeneration);
960 // If we have an available version of this load, and if it is the right
961 // generation or the load is known to be from an invariant location,
962 // replace this instruction.
964 // If either the dominating load or the current load are invariant, then
965 // we can assume the current load loads the same value as the dominating
966 // load.
967 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
968 if (InVal.DefInst != nullptr &&
969 InVal.MatchingId == MemInst.getMatchingId() &&
970 // We don't yet handle removing loads with ordering of any kind.
971 !MemInst.isVolatile() && MemInst.isUnordered() &&
972 // We can't replace an atomic load with one which isn't also atomic.
973 InVal.IsAtomic >= MemInst.isAtomic() &&
974 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
975 isSameMemGeneration(InVal.Generation, CurrentGeneration,
976 InVal.DefInst, Inst))) {
977 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
978 if (Op != nullptr) {
979 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
980 << " to: " << *InVal.DefInst << '\n');
981 if (!DebugCounter::shouldExecute(CSECounter)) {
982 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
983 continue;
985 if (!Inst->use_empty())
986 Inst->replaceAllUsesWith(Op);
987 removeMSSA(Inst);
988 Inst->eraseFromParent();
989 Changed = true;
990 ++NumCSELoad;
991 continue;
995 // Otherwise, remember that we have this instruction.
996 AvailableLoads.insert(
997 MemInst.getPointerOperand(),
998 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
999 MemInst.isAtomic()));
1000 LastStore = nullptr;
1001 continue;
1004 // If this instruction may read from memory or throw (and potentially read
1005 // from memory in the exception handler), forget LastStore. Load/store
1006 // intrinsics will indicate both a read and a write to memory. The target
1007 // may override this (e.g. so that a store intrinsic does not read from
1008 // memory, and thus will be treated the same as a regular store for
1009 // commoning purposes).
1010 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
1011 !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1012 LastStore = nullptr;
1014 // If this is a read-only call, process it.
1015 if (CallValue::canHandle(Inst)) {
1016 // If we have an available version of this call, and if it is the right
1017 // generation, replace this instruction.
1018 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
1019 if (InVal.first != nullptr &&
1020 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1021 Inst)) {
1022 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
1023 << " to: " << *InVal.first << '\n');
1024 if (!DebugCounter::shouldExecute(CSECounter)) {
1025 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1026 continue;
1028 if (!Inst->use_empty())
1029 Inst->replaceAllUsesWith(InVal.first);
1030 removeMSSA(Inst);
1031 Inst->eraseFromParent();
1032 Changed = true;
1033 ++NumCSECall;
1034 continue;
1037 // Otherwise, remember that we have this instruction.
1038 AvailableCalls.insert(
1039 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
1040 continue;
1043 // A release fence requires that all stores complete before it, but does
1044 // not prevent the reordering of following loads 'before' the fence. As a
1045 // result, we don't need to consider it as writing to memory and don't need
1046 // to advance the generation. We do need to prevent DSE across the fence,
1047 // but that's handled above.
1048 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
1049 if (FI->getOrdering() == AtomicOrdering::Release) {
1050 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
1051 continue;
1054 // write back DSE - If we write back the same value we just loaded from
1055 // the same location and haven't passed any intervening writes or ordering
1056 // operations, we can remove the write. The primary benefit is in allowing
1057 // the available load table to remain valid and value forward past where
1058 // the store originally was.
1059 if (MemInst.isValid() && MemInst.isStore()) {
1060 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1061 if (InVal.DefInst &&
1062 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
1063 InVal.MatchingId == MemInst.getMatchingId() &&
1064 // We don't yet handle removing stores with ordering of any kind.
1065 !MemInst.isVolatile() && MemInst.isUnordered() &&
1066 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
1067 isSameMemGeneration(InVal.Generation, CurrentGeneration,
1068 InVal.DefInst, Inst))) {
1069 // It is okay to have a LastStore to a different pointer here if MemorySSA
1070 // tells us that the load and store are from the same memory generation.
1071 // In that case, LastStore should keep its present value since we're
1072 // removing the current store.
1073 assert((!LastStore ||
1074 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1075 MemInst.getPointerOperand() ||
1076 MSSA) &&
1077 "can't have an intervening store if not using MemorySSA!");
1078 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
1079 if (!DebugCounter::shouldExecute(CSECounter)) {
1080 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1081 continue;
1083 removeMSSA(Inst);
1084 Inst->eraseFromParent();
1085 Changed = true;
1086 ++NumDSE;
1087 // We can avoid incrementing the generation count since we were able
1088 // to eliminate this store.
1089 continue;
1093 // Okay, this isn't something we can CSE at all. Check to see if it is
1094 // something that could modify memory. If so, our available memory values
1095 // cannot be used so bump the generation count.
1096 if (Inst->mayWriteToMemory()) {
1097 ++CurrentGeneration;
1099 if (MemInst.isValid() && MemInst.isStore()) {
1100 // We do a trivial form of DSE if there are two stores to the same
1101 // location with no intervening loads. Delete the earlier store.
1102 // At the moment, we don't remove ordered stores, but do remove
1103 // unordered atomic stores. There's no special requirement (for
1104 // unordered atomics) about removing atomic stores only in favor of
1105 // other atomic stores since we we're going to execute the non-atomic
1106 // one anyway and the atomic one might never have become visible.
1107 if (LastStore) {
1108 ParseMemoryInst LastStoreMemInst(LastStore, TTI);
1109 assert(LastStoreMemInst.isUnordered() &&
1110 !LastStoreMemInst.isVolatile() &&
1111 "Violated invariant");
1112 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
1113 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1114 << " due to: " << *Inst << '\n');
1115 if (!DebugCounter::shouldExecute(CSECounter)) {
1116 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1117 } else {
1118 removeMSSA(LastStore);
1119 LastStore->eraseFromParent();
1120 Changed = true;
1121 ++NumDSE;
1122 LastStore = nullptr;
1125 // fallthrough - we can exploit information about this store
1128 // Okay, we just invalidated anything we knew about loaded values. Try
1129 // to salvage *something* by remembering that the stored value is a live
1130 // version of the pointer. It is safe to forward from volatile stores
1131 // to non-volatile loads, so we don't have to check for volatility of
1132 // the store.
1133 AvailableLoads.insert(
1134 MemInst.getPointerOperand(),
1135 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
1136 MemInst.isAtomic()));
1138 // Remember that this was the last unordered store we saw for DSE. We
1139 // don't yet handle DSE on ordered or volatile stores since we don't
1140 // have a good way to model the ordering requirement for following
1141 // passes once the store is removed. We could insert a fence, but
1142 // since fences are slightly stronger than stores in their ordering,
1143 // it's not clear this is a profitable transform. Another option would
1144 // be to merge the ordering with that of the post dominating store.
1145 if (MemInst.isUnordered() && !MemInst.isVolatile())
1146 LastStore = Inst;
1147 else
1148 LastStore = nullptr;
1153 return Changed;
1156 bool EarlyCSE::run() {
1157 // Note, deque is being used here because there is significant performance
1158 // gains over vector when the container becomes very large due to the
1159 // specific access patterns. For more information see the mailing list
1160 // discussion on this:
1161 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1162 std::deque<StackNode *> nodesToProcess;
1164 bool Changed = false;
1166 // Process the root node.
1167 nodesToProcess.push_back(new StackNode(
1168 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1169 CurrentGeneration, DT.getRootNode(),
1170 DT.getRootNode()->begin(), DT.getRootNode()->end()));
1172 // Save the current generation.
1173 unsigned LiveOutGeneration = CurrentGeneration;
1175 // Process the stack.
1176 while (!nodesToProcess.empty()) {
1177 // Grab the first item off the stack. Set the current generation, remove
1178 // the node from the stack, and process it.
1179 StackNode *NodeToProcess = nodesToProcess.back();
1181 // Initialize class members.
1182 CurrentGeneration = NodeToProcess->currentGeneration();
1184 // Check if the node needs to be processed.
1185 if (!NodeToProcess->isProcessed()) {
1186 // Process the node.
1187 Changed |= processNode(NodeToProcess->node());
1188 NodeToProcess->childGeneration(CurrentGeneration);
1189 NodeToProcess->process();
1190 } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1191 // Push the next child onto the stack.
1192 DomTreeNode *child = NodeToProcess->nextChild();
1193 nodesToProcess.push_back(
1194 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1195 AvailableCalls, NodeToProcess->childGeneration(),
1196 child, child->begin(), child->end()));
1197 } else {
1198 // It has been processed, and there are no more children to process,
1199 // so delete it and pop it off the stack.
1200 delete NodeToProcess;
1201 nodesToProcess.pop_back();
1203 } // while (!nodes...)
1205 // Reset the current generation.
1206 CurrentGeneration = LiveOutGeneration;
1208 return Changed;
1211 PreservedAnalyses EarlyCSEPass::run(Function &F,
1212 FunctionAnalysisManager &AM) {
1213 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1214 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1215 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1216 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1217 auto *MSSA =
1218 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1220 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1222 if (!CSE.run())
1223 return PreservedAnalyses::all();
1225 PreservedAnalyses PA;
1226 PA.preserveSet<CFGAnalyses>();
1227 PA.preserve<GlobalsAA>();
1228 if (UseMemorySSA)
1229 PA.preserve<MemorySSAAnalysis>();
1230 return PA;
1233 namespace {
1235 /// A simple and fast domtree-based CSE pass.
1237 /// This pass does a simple depth-first walk over the dominator tree,
1238 /// eliminating trivially redundant instructions and using instsimplify to
1239 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1240 /// cases so that instcombine and other passes are more effective. It is
1241 /// expected that a later pass of GVN will catch the interesting/hard cases.
1242 template<bool UseMemorySSA>
1243 class EarlyCSELegacyCommonPass : public FunctionPass {
1244 public:
1245 static char ID;
1247 EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1248 if (UseMemorySSA)
1249 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1250 else
1251 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1254 bool runOnFunction(Function &F) override {
1255 if (skipFunction(F))
1256 return false;
1258 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1259 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1260 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1261 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1262 auto *MSSA =
1263 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1265 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1267 return CSE.run();
1270 void getAnalysisUsage(AnalysisUsage &AU) const override {
1271 AU.addRequired<AssumptionCacheTracker>();
1272 AU.addRequired<DominatorTreeWrapperPass>();
1273 AU.addRequired<TargetLibraryInfoWrapperPass>();
1274 AU.addRequired<TargetTransformInfoWrapperPass>();
1275 if (UseMemorySSA) {
1276 AU.addRequired<MemorySSAWrapperPass>();
1277 AU.addPreserved<MemorySSAWrapperPass>();
1279 AU.addPreserved<GlobalsAAWrapperPass>();
1280 AU.setPreservesCFG();
1284 } // end anonymous namespace
1286 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1288 template<>
1289 char EarlyCSELegacyPass::ID = 0;
1291 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1292 false)
1293 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1294 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1295 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1296 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1297 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1299 using EarlyCSEMemSSALegacyPass =
1300 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1302 template<>
1303 char EarlyCSEMemSSALegacyPass::ID = 0;
1305 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1306 if (UseMemorySSA)
1307 return new EarlyCSEMemSSALegacyPass();
1308 else
1309 return new EarlyCSELegacyPass();
1312 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1313 "Early CSE w/ MemorySSA", false, false)
1314 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1315 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1316 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1317 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1318 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1319 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1320 "Early CSE w/ MemorySSA", false, false)