[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / GVNHoist.cpp
blobca8f92c388721dc18c4187d6bb7dfaa6735bf0ae
1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists expressions from branches to a common dominator. It uses
10 // GVN (global value numbering) to discover expressions computing the same
11 // values. The primary goals of code-hoisting are:
12 // 1. To reduce the code size.
13 // 2. In some cases reduce critical path (by exposing more ILP).
15 // The algorithm factors out the reachability of values such that multiple
16 // queries to find reachability of values are fast. This is based on finding the
17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18 // are basically the dominance-frontiers in the inverse graph. So we introduce a
19 // data structure (CHI nodes) to keep track of values flowing out of a basic
20 // block. We only do this for values with multiple occurrences in the function
21 // as they are the potential hoistable candidates. This approach allows us to
22 // hoist instructions to a basic block with more than two successors, as well as
23 // deal with infinite loops in a trivial way.
25 // Limitations: This pass does not hoist fully redundant expressions because
26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27 // and after gvn-pre because gvn-pre creates opportunities for more instructions
28 // to be hoisted.
30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
31 // is disabled in the following cases.
32 // 1. Scalars across calls.
33 // 2. geps when corresponding load/store cannot be hoisted.
34 //===----------------------------------------------------------------------===//
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/IteratedDominanceFrontier.h"
46 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Transforms/Scalar/GVN.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 #include <vector>
82 using namespace llvm;
84 #define DEBUG_TYPE "gvn-hoist"
86 STATISTIC(NumHoisted, "Number of instructions hoisted");
87 STATISTIC(NumRemoved, "Number of instructions removed");
88 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
89 STATISTIC(NumLoadsRemoved, "Number of loads removed");
90 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
91 STATISTIC(NumStoresRemoved, "Number of stores removed");
92 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
93 STATISTIC(NumCallsRemoved, "Number of calls removed");
95 static cl::opt<int>
96 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
97 cl::desc("Max number of instructions to hoist "
98 "(default unlimited = -1)"));
100 static cl::opt<int> MaxNumberOfBBSInPath(
101 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
102 cl::desc("Max number of basic blocks on the path between "
103 "hoisting locations (default = 4, unlimited = -1)"));
105 static cl::opt<int> MaxDepthInBB(
106 "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
107 cl::desc("Hoist instructions from the beginning of the BB up to the "
108 "maximum specified depth (default = 100, unlimited = -1)"));
110 static cl::opt<int>
111 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
112 cl::desc("Maximum length of dependent chains to hoist "
113 "(default = 10, unlimited = -1)"));
115 namespace llvm {
117 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
118 using SmallVecInsn = SmallVector<Instruction *, 4>;
119 using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
121 // Each element of a hoisting list contains the basic block where to hoist and
122 // a list of instructions to be hoisted.
123 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
125 using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
127 // A map from a pair of VNs to all the instructions with those VNs.
128 using VNType = std::pair<unsigned, unsigned>;
130 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
132 // CHI keeps information about values flowing out of a basic block. It is
133 // similar to PHI but in the inverse graph, and used for outgoing values on each
134 // edge. For conciseness, it is computed only for instructions with multiple
135 // occurrences in the CFG because they are the only hoistable candidates.
136 // A (CHI[{V, B, I1}, {V, C, I2}]
137 // / \
138 // / \
139 // B(I1) C (I2)
140 // The Value number for both I1 and I2 is V, the CHI node will save the
141 // instruction as well as the edge where the value is flowing to.
142 struct CHIArg {
143 VNType VN;
145 // Edge destination (shows the direction of flow), may not be where the I is.
146 BasicBlock *Dest;
148 // The instruction (VN) which uses the values flowing out of CHI.
149 Instruction *I;
151 bool operator==(const CHIArg &A) { return VN == A.VN; }
152 bool operator!=(const CHIArg &A) { return !(*this == A); }
155 using CHIIt = SmallVectorImpl<CHIArg>::iterator;
156 using CHIArgs = iterator_range<CHIIt>;
157 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
158 using InValuesType =
159 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
161 // An invalid value number Used when inserting a single value number into
162 // VNtoInsns.
163 enum : unsigned { InvalidVN = ~2U };
165 // Records all scalar instructions candidate for code hoisting.
166 class InsnInfo {
167 VNtoInsns VNtoScalars;
169 public:
170 // Inserts I and its value number in VNtoScalars.
171 void insert(Instruction *I, GVN::ValueTable &VN) {
172 // Scalar instruction.
173 unsigned V = VN.lookupOrAdd(I);
174 VNtoScalars[{V, InvalidVN}].push_back(I);
177 const VNtoInsns &getVNTable() const { return VNtoScalars; }
180 // Records all load instructions candidate for code hoisting.
181 class LoadInfo {
182 VNtoInsns VNtoLoads;
184 public:
185 // Insert Load and the value number of its memory address in VNtoLoads.
186 void insert(LoadInst *Load, GVN::ValueTable &VN) {
187 if (Load->isSimple()) {
188 unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
189 VNtoLoads[{V, InvalidVN}].push_back(Load);
193 const VNtoInsns &getVNTable() const { return VNtoLoads; }
196 // Records all store instructions candidate for code hoisting.
197 class StoreInfo {
198 VNtoInsns VNtoStores;
200 public:
201 // Insert the Store and a hash number of the store address and the stored
202 // value in VNtoStores.
203 void insert(StoreInst *Store, GVN::ValueTable &VN) {
204 if (!Store->isSimple())
205 return;
206 // Hash the store address and the stored value.
207 Value *Ptr = Store->getPointerOperand();
208 Value *Val = Store->getValueOperand();
209 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
212 const VNtoInsns &getVNTable() const { return VNtoStores; }
215 // Records all call instructions candidate for code hoisting.
216 class CallInfo {
217 VNtoInsns VNtoCallsScalars;
218 VNtoInsns VNtoCallsLoads;
219 VNtoInsns VNtoCallsStores;
221 public:
222 // Insert Call and its value numbering in one of the VNtoCalls* containers.
223 void insert(CallInst *Call, GVN::ValueTable &VN) {
224 // A call that doesNotAccessMemory is handled as a Scalar,
225 // onlyReadsMemory will be handled as a Load instruction,
226 // all other calls will be handled as stores.
227 unsigned V = VN.lookupOrAdd(Call);
228 auto Entry = std::make_pair(V, InvalidVN);
230 if (Call->doesNotAccessMemory())
231 VNtoCallsScalars[Entry].push_back(Call);
232 else if (Call->onlyReadsMemory())
233 VNtoCallsLoads[Entry].push_back(Call);
234 else
235 VNtoCallsStores[Entry].push_back(Call);
238 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
239 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
240 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
243 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
244 static const unsigned KnownIDs[] = {
245 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
246 LLVMContext::MD_noalias, LLVMContext::MD_range,
247 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
248 LLVMContext::MD_invariant_group, LLVMContext::MD_access_group};
249 combineMetadata(ReplInst, I, KnownIDs, true);
252 // This pass hoists common computations across branches sharing common
253 // dominator. The primary goal is to reduce the code size, and in some
254 // cases reduce critical path (by exposing more ILP).
255 class GVNHoist {
256 public:
257 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
258 MemoryDependenceResults *MD, MemorySSA *MSSA)
259 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
260 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
262 bool run(Function &F) {
263 NumFuncArgs = F.arg_size();
264 VN.setDomTree(DT);
265 VN.setAliasAnalysis(AA);
266 VN.setMemDep(MD);
267 bool Res = false;
268 // Perform DFS Numbering of instructions.
269 unsigned BBI = 0;
270 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
271 DFSNumber[BB] = ++BBI;
272 unsigned I = 0;
273 for (auto &Inst : *BB)
274 DFSNumber[&Inst] = ++I;
277 int ChainLength = 0;
279 // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
280 while (true) {
281 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
282 return Res;
284 auto HoistStat = hoistExpressions(F);
285 if (HoistStat.first + HoistStat.second == 0)
286 return Res;
288 if (HoistStat.second > 0)
289 // To address a limitation of the current GVN, we need to rerun the
290 // hoisting after we hoisted loads or stores in order to be able to
291 // hoist all scalars dependent on the hoisted ld/st.
292 VN.clear();
294 Res = true;
297 return Res;
300 // Copied from NewGVN.cpp
301 // This function provides global ranking of operations so that we can place
302 // them in a canonical order. Note that rank alone is not necessarily enough
303 // for a complete ordering, as constants all have the same rank. However,
304 // generally, we will simplify an operation with all constants so that it
305 // doesn't matter what order they appear in.
306 unsigned int rank(const Value *V) const {
307 // Prefer constants to undef to anything else
308 // Undef is a constant, have to check it first.
309 // Prefer smaller constants to constantexprs
310 if (isa<ConstantExpr>(V))
311 return 2;
312 if (isa<UndefValue>(V))
313 return 1;
314 if (isa<Constant>(V))
315 return 0;
316 else if (auto *A = dyn_cast<Argument>(V))
317 return 3 + A->getArgNo();
319 // Need to shift the instruction DFS by number of arguments + 3 to account
320 // for the constant and argument ranking above.
321 auto Result = DFSNumber.lookup(V);
322 if (Result > 0)
323 return 4 + NumFuncArgs + Result;
324 // Unreachable or something else, just return a really large number.
325 return ~0;
328 private:
329 GVN::ValueTable VN;
330 DominatorTree *DT;
331 PostDominatorTree *PDT;
332 AliasAnalysis *AA;
333 MemoryDependenceResults *MD;
334 MemorySSA *MSSA;
335 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
336 DenseMap<const Value *, unsigned> DFSNumber;
337 BBSideEffectsSet BBSideEffects;
338 DenseSet<const BasicBlock *> HoistBarrier;
339 SmallVector<BasicBlock *, 32> IDFBlocks;
340 unsigned NumFuncArgs;
341 const bool HoistingGeps = false;
343 enum InsKind { Unknown, Scalar, Load, Store };
345 // Return true when there are exception handling in BB.
346 bool hasEH(const BasicBlock *BB) {
347 auto It = BBSideEffects.find(BB);
348 if (It != BBSideEffects.end())
349 return It->second;
351 if (BB->isEHPad() || BB->hasAddressTaken()) {
352 BBSideEffects[BB] = true;
353 return true;
356 if (BB->getTerminator()->mayThrow()) {
357 BBSideEffects[BB] = true;
358 return true;
361 BBSideEffects[BB] = false;
362 return false;
365 // Return true when a successor of BB dominates A.
366 bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
367 for (const BasicBlock *Succ : successors(BB))
368 if (DT->dominates(Succ, A))
369 return true;
371 return false;
374 // Return true when I1 appears before I2 in the instructions of BB.
375 bool firstInBB(const Instruction *I1, const Instruction *I2) {
376 assert(I1->getParent() == I2->getParent());
377 unsigned I1DFS = DFSNumber.lookup(I1);
378 unsigned I2DFS = DFSNumber.lookup(I2);
379 assert(I1DFS && I2DFS);
380 return I1DFS < I2DFS;
383 // Return true when there are memory uses of Def in BB.
384 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
385 const BasicBlock *BB) {
386 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
387 if (!Acc)
388 return false;
390 Instruction *OldPt = Def->getMemoryInst();
391 const BasicBlock *OldBB = OldPt->getParent();
392 const BasicBlock *NewBB = NewPt->getParent();
393 bool ReachedNewPt = false;
395 for (const MemoryAccess &MA : *Acc)
396 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
397 Instruction *Insn = MU->getMemoryInst();
399 // Do not check whether MU aliases Def when MU occurs after OldPt.
400 if (BB == OldBB && firstInBB(OldPt, Insn))
401 break;
403 // Do not check whether MU aliases Def when MU occurs before NewPt.
404 if (BB == NewBB) {
405 if (!ReachedNewPt) {
406 if (firstInBB(Insn, NewPt))
407 continue;
408 ReachedNewPt = true;
411 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
412 return true;
415 return false;
418 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
419 int &NBBsOnAllPaths) {
420 // Stop walk once the limit is reached.
421 if (NBBsOnAllPaths == 0)
422 return true;
424 // Impossible to hoist with exceptions on the path.
425 if (hasEH(BB))
426 return true;
428 // No such instruction after HoistBarrier in a basic block was
429 // selected for hoisting so instructions selected within basic block with
430 // a hoist barrier can be hoisted.
431 if ((BB != SrcBB) && HoistBarrier.count(BB))
432 return true;
434 return false;
437 // Return true when there are exception handling or loads of memory Def
438 // between Def and NewPt. This function is only called for stores: Def is
439 // the MemoryDef of the store to be hoisted.
441 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
442 // return true when the counter NBBsOnAllPaths reaces 0, except when it is
443 // initialized to -1 which is unlimited.
444 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
445 int &NBBsOnAllPaths) {
446 const BasicBlock *NewBB = NewPt->getParent();
447 const BasicBlock *OldBB = Def->getBlock();
448 assert(DT->dominates(NewBB, OldBB) && "invalid path");
449 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
450 "def does not dominate new hoisting point");
452 // Walk all basic blocks reachable in depth-first iteration on the inverse
453 // CFG from OldBB to NewBB. These blocks are all the blocks that may be
454 // executed between the execution of NewBB and OldBB. Hoisting an expression
455 // from OldBB into NewBB has to be safe on all execution paths.
456 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
457 const BasicBlock *BB = *I;
458 if (BB == NewBB) {
459 // Stop traversal when reaching HoistPt.
460 I.skipChildren();
461 continue;
464 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
465 return true;
467 // Check that we do not move a store past loads.
468 if (hasMemoryUse(NewPt, Def, BB))
469 return true;
471 // -1 is unlimited number of blocks on all paths.
472 if (NBBsOnAllPaths != -1)
473 --NBBsOnAllPaths;
475 ++I;
478 return false;
481 // Return true when there are exception handling between HoistPt and BB.
482 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
483 // return true when the counter NBBsOnAllPaths reaches 0, except when it is
484 // initialized to -1 which is unlimited.
485 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
486 int &NBBsOnAllPaths) {
487 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
489 // Walk all basic blocks reachable in depth-first iteration on
490 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
491 // blocks that may be executed between the execution of NewHoistPt and
492 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
493 // on all execution paths.
494 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
495 const BasicBlock *BB = *I;
496 if (BB == HoistPt) {
497 // Stop traversal when reaching NewHoistPt.
498 I.skipChildren();
499 continue;
502 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
503 return true;
505 // -1 is unlimited number of blocks on all paths.
506 if (NBBsOnAllPaths != -1)
507 --NBBsOnAllPaths;
509 ++I;
512 return false;
515 // Return true when it is safe to hoist a memory load or store U from OldPt
516 // to NewPt.
517 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
518 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
519 // In place hoisting is safe.
520 if (NewPt == OldPt)
521 return true;
523 const BasicBlock *NewBB = NewPt->getParent();
524 const BasicBlock *OldBB = OldPt->getParent();
525 const BasicBlock *UBB = U->getBlock();
527 // Check for dependences on the Memory SSA.
528 MemoryAccess *D = U->getDefiningAccess();
529 BasicBlock *DBB = D->getBlock();
530 if (DT->properlyDominates(NewBB, DBB))
531 // Cannot move the load or store to NewBB above its definition in DBB.
532 return false;
534 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
535 if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
536 if (!firstInBB(UD->getMemoryInst(), NewPt))
537 // Cannot move the load or store to NewPt above its definition in D.
538 return false;
540 // Check for unsafe hoistings due to side effects.
541 if (K == InsKind::Store) {
542 if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
543 return false;
544 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
545 return false;
547 if (UBB == NewBB) {
548 if (DT->properlyDominates(DBB, NewBB))
549 return true;
550 assert(UBB == DBB);
551 assert(MSSA->locallyDominates(D, U));
554 // No side effects: it is safe to hoist.
555 return true;
558 // Return true when it is safe to hoist scalar instructions from all blocks in
559 // WL to HoistBB.
560 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
561 int &NBBsOnAllPaths) {
562 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
565 // In the inverse CFG, the dominance frontier of basic block (BB) is the
566 // point where ANTIC needs to be computed for instructions which are going
567 // to be hoisted. Since this point does not change during gvn-hoist,
568 // we compute it only once (on demand).
569 // The ides is inspired from:
570 // "Partial Redundancy Elimination in SSA Form"
571 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
572 // They use similar idea in the forward graph to find fully redundant and
573 // partially redundant expressions, here it is used in the inverse graph to
574 // find fully anticipable instructions at merge point (post-dominator in
575 // the inverse CFG).
576 // Returns the edge via which an instruction in BB will get the values from.
578 // Returns true when the values are flowing out to each edge.
579 bool valueAnticipable(CHIArgs C, Instruction *TI) const {
580 if (TI->getNumSuccessors() > (unsigned)size(C))
581 return false; // Not enough args in this CHI.
583 for (auto CHI : C) {
584 BasicBlock *Dest = CHI.Dest;
585 // Find if all the edges have values flowing out of BB.
586 bool Found = llvm::any_of(
587 successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; });
588 if (!Found)
589 return false;
591 return true;
594 // Check if it is safe to hoist values tracked by CHI in the range
595 // [Begin, End) and accumulate them in Safe.
596 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
597 SmallVectorImpl<CHIArg> &Safe) {
598 int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
599 for (auto CHI : C) {
600 Instruction *Insn = CHI.I;
601 if (!Insn) // No instruction was inserted in this CHI.
602 continue;
603 if (K == InsKind::Scalar) {
604 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
605 Safe.push_back(CHI);
606 } else {
607 MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
608 if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
609 Safe.push_back(CHI);
614 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
616 // Push all the VNs corresponding to BB into RenameStack.
617 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
618 RenameStackType &RenameStack) {
619 auto it1 = ValueBBs.find(BB);
620 if (it1 != ValueBBs.end()) {
621 // Iterate in reverse order to keep lower ranked values on the top.
622 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
623 // Get the value of instruction I
624 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
625 RenameStack[VI.first].push_back(VI.second);
630 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
631 RenameStackType &RenameStack) {
632 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
633 for (auto Pred : predecessors(BB)) {
634 auto P = CHIBBs.find(Pred);
635 if (P == CHIBBs.end()) {
636 continue;
638 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
639 // A CHI is found (BB -> Pred is an edge in the CFG)
640 // Pop the stack until Top(V) = Ve.
641 auto &VCHI = P->second;
642 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
643 CHIArg &C = *It;
644 if (!C.Dest) {
645 auto si = RenameStack.find(C.VN);
646 // The Basic Block where CHI is must dominate the value we want to
647 // track in a CHI. In the PDom walk, there can be values in the
648 // stack which are not control dependent e.g., nested loop.
649 if (si != RenameStack.end() && si->second.size() &&
650 DT->properlyDominates(Pred, si->second.back()->getParent())) {
651 C.Dest = BB; // Assign the edge
652 C.I = si->second.pop_back_val(); // Assign the argument
653 LLVM_DEBUG(dbgs()
654 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
655 << ", VN: " << C.VN.first << ", " << C.VN.second);
657 // Move to next CHI of a different value
658 It = std::find_if(It, VCHI.end(),
659 [It](CHIArg &A) { return A != *It; });
660 } else
661 ++It;
666 // Walk the post-dominator tree top-down and use a stack for each value to
667 // store the last value you see. When you hit a CHI from a given edge, the
668 // value to use as the argument is at the top of the stack, add the value to
669 // CHI and pop.
670 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
671 auto Root = PDT->getNode(nullptr);
672 if (!Root)
673 return;
674 // Depth first walk on PDom tree to fill the CHIargs at each PDF.
675 RenameStackType RenameStack;
676 for (auto Node : depth_first(Root)) {
677 BasicBlock *BB = Node->getBlock();
678 if (!BB)
679 continue;
681 // Collect all values in BB and push to stack.
682 fillRenameStack(BB, ValueBBs, RenameStack);
684 // Fill outgoing values in each CHI corresponding to BB.
685 fillChiArgs(BB, CHIBBs, RenameStack);
689 // Walk all the CHI-nodes to find ones which have a empty-entry and remove
690 // them Then collect all the instructions which are safe to hoist and see if
691 // they form a list of anticipable values. OutValues contains CHIs
692 // corresponding to each basic block.
693 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
694 HoistingPointList &HPL) {
695 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
697 // CHIArgs now have the outgoing values, so check for anticipability and
698 // accumulate hoistable candidates in HPL.
699 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
700 BasicBlock *BB = A.first;
701 SmallVectorImpl<CHIArg> &CHIs = A.second;
702 // Vector of PHIs contains PHIs for different instructions.
703 // Sort the args according to their VNs, such that identical
704 // instructions are together.
705 std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN);
706 auto TI = BB->getTerminator();
707 auto B = CHIs.begin();
708 // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
709 auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
710 [B](CHIArg &A) { return A != *B; });
711 auto PrevIt = CHIs.begin();
712 while (PrevIt != PHIIt) {
713 // Collect values which satisfy safety checks.
714 SmallVector<CHIArg, 2> Safe;
715 // We check for safety first because there might be multiple values in
716 // the same path, some of which are not safe to be hoisted, but overall
717 // each edge has at least one value which can be hoisted, making the
718 // value anticipable along that path.
719 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
721 // List of safe values should be anticipable at TI.
722 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
723 HPL.push_back({BB, SmallVecInsn()});
724 SmallVecInsn &V = HPL.back().second;
725 for (auto B : Safe)
726 V.push_back(B.I);
729 // Check other VNs
730 PrevIt = PHIIt;
731 PHIIt = std::find_if(PrevIt, CHIs.end(),
732 [PrevIt](CHIArg &A) { return A != *PrevIt; });
737 // Compute insertion points for each values which can be fully anticipated at
738 // a dominator. HPL contains all such values.
739 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
740 InsKind K) {
741 // Sort VNs based on their rankings
742 std::vector<VNType> Ranks;
743 for (const auto &Entry : Map) {
744 Ranks.push_back(Entry.first);
747 // TODO: Remove fully-redundant expressions.
748 // Get instruction from the Map, assume that all the Instructions
749 // with same VNs have same rank (this is an approximation).
750 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
751 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
754 // - Sort VNs according to their rank, and start with lowest ranked VN
755 // - Take a VN and for each instruction with same VN
756 // - Find the dominance frontier in the inverse graph (PDF)
757 // - Insert the chi-node at PDF
758 // - Remove the chi-nodes with missing entries
759 // - Remove values from CHI-nodes which do not truly flow out, e.g.,
760 // modified along the path.
761 // - Collect the remaining values that are still anticipable
762 SmallVector<BasicBlock *, 2> IDFBlocks;
763 ReverseIDFCalculator IDFs(*PDT);
764 OutValuesType OutValue;
765 InValuesType InValue;
766 for (const auto &R : Ranks) {
767 const SmallVecInsn &V = Map.lookup(R);
768 if (V.size() < 2)
769 continue;
770 const VNType &VN = R;
771 SmallPtrSet<BasicBlock *, 2> VNBlocks;
772 for (auto &I : V) {
773 BasicBlock *BBI = I->getParent();
774 if (!hasEH(BBI))
775 VNBlocks.insert(BBI);
777 // Compute the Post Dominance Frontiers of each basic block
778 // The dominance frontier of a live block X in the reverse
779 // control graph is the set of blocks upon which X is control
780 // dependent. The following sequence computes the set of blocks
781 // which currently have dead terminators that are control
782 // dependence sources of a block which is in NewLiveBlocks.
783 IDFs.setDefiningBlocks(VNBlocks);
784 IDFBlocks.clear();
785 IDFs.calculate(IDFBlocks);
787 // Make a map of BB vs instructions to be hoisted.
788 for (unsigned i = 0; i < V.size(); ++i) {
789 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
791 // Insert empty CHI node for this VN. This is used to factor out
792 // basic blocks where the ANTIC can potentially change.
793 for (auto IDFB : IDFBlocks) {
794 for (unsigned i = 0; i < V.size(); ++i) {
795 CHIArg C = {VN, nullptr, nullptr};
796 // Ignore spurious PDFs.
797 if (DT->properlyDominates(IDFB, V[i]->getParent())) {
798 OutValue[IDFB].push_back(C);
799 LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
800 << ", for Insn: " << *V[i]);
806 // Insert CHI args at each PDF to iterate on factored graph of
807 // control dependence.
808 insertCHI(InValue, OutValue);
809 // Using the CHI args inserted at each PDF, find fully anticipable values.
810 findHoistableCandidates(OutValue, K, HPL);
813 // Return true when all operands of Instr are available at insertion point
814 // HoistPt. When limiting the number of hoisted expressions, one could hoist
815 // a load without hoisting its access function. So before hoisting any
816 // expression, make sure that all its operands are available at insert point.
817 bool allOperandsAvailable(const Instruction *I,
818 const BasicBlock *HoistPt) const {
819 for (const Use &Op : I->operands())
820 if (const auto *Inst = dyn_cast<Instruction>(&Op))
821 if (!DT->dominates(Inst->getParent(), HoistPt))
822 return false;
824 return true;
827 // Same as allOperandsAvailable with recursive check for GEP operands.
828 bool allGepOperandsAvailable(const Instruction *I,
829 const BasicBlock *HoistPt) const {
830 for (const Use &Op : I->operands())
831 if (const auto *Inst = dyn_cast<Instruction>(&Op))
832 if (!DT->dominates(Inst->getParent(), HoistPt)) {
833 if (const GetElementPtrInst *GepOp =
834 dyn_cast<GetElementPtrInst>(Inst)) {
835 if (!allGepOperandsAvailable(GepOp, HoistPt))
836 return false;
837 // Gep is available if all operands of GepOp are available.
838 } else {
839 // Gep is not available if it has operands other than GEPs that are
840 // defined in blocks not dominating HoistPt.
841 return false;
844 return true;
847 // Make all operands of the GEP available.
848 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
849 const SmallVecInsn &InstructionsToHoist,
850 Instruction *Gep) const {
851 assert(allGepOperandsAvailable(Gep, HoistPt) &&
852 "GEP operands not available");
854 Instruction *ClonedGep = Gep->clone();
855 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
856 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
857 // Check whether the operand is already available.
858 if (DT->dominates(Op->getParent(), HoistPt))
859 continue;
861 // As a GEP can refer to other GEPs, recursively make all the operands
862 // of this GEP available at HoistPt.
863 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
864 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
867 // Copy Gep and replace its uses in Repl with ClonedGep.
868 ClonedGep->insertBefore(HoistPt->getTerminator());
870 // Conservatively discard any optimization hints, they may differ on the
871 // other paths.
872 ClonedGep->dropUnknownNonDebugMetadata();
874 // If we have optimization hints which agree with each other along different
875 // paths, preserve them.
876 for (const Instruction *OtherInst : InstructionsToHoist) {
877 const GetElementPtrInst *OtherGep;
878 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
879 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
880 else
881 OtherGep = cast<GetElementPtrInst>(
882 cast<StoreInst>(OtherInst)->getPointerOperand());
883 ClonedGep->andIRFlags(OtherGep);
886 // Replace uses of Gep with ClonedGep in Repl.
887 Repl->replaceUsesOfWith(Gep, ClonedGep);
890 void updateAlignment(Instruction *I, Instruction *Repl) {
891 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
892 ReplacementLoad->setAlignment(
893 std::min(ReplacementLoad->getAlignment(),
894 cast<LoadInst>(I)->getAlignment()));
895 ++NumLoadsRemoved;
896 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
897 ReplacementStore->setAlignment(
898 std::min(ReplacementStore->getAlignment(),
899 cast<StoreInst>(I)->getAlignment()));
900 ++NumStoresRemoved;
901 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
902 ReplacementAlloca->setAlignment(
903 std::max(ReplacementAlloca->getAlignment(),
904 cast<AllocaInst>(I)->getAlignment()));
905 } else if (isa<CallInst>(Repl)) {
906 ++NumCallsRemoved;
910 // Remove all the instructions in Candidates and replace their usage with Repl.
911 // Returns the number of instructions removed.
912 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
913 MemoryUseOrDef *NewMemAcc) {
914 unsigned NR = 0;
915 for (Instruction *I : Candidates) {
916 if (I != Repl) {
917 ++NR;
918 updateAlignment(I, Repl);
919 if (NewMemAcc) {
920 // Update the uses of the old MSSA access with NewMemAcc.
921 MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
922 OldMA->replaceAllUsesWith(NewMemAcc);
923 MSSAUpdater->removeMemoryAccess(OldMA);
926 Repl->andIRFlags(I);
927 combineKnownMetadata(Repl, I);
928 I->replaceAllUsesWith(Repl);
929 // Also invalidate the Alias Analysis cache.
930 MD->removeInstruction(I);
931 I->eraseFromParent();
934 return NR;
937 // Replace all Memory PHI usage with NewMemAcc.
938 void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
939 SmallPtrSet<MemoryPhi *, 4> UsePhis;
940 for (User *U : NewMemAcc->users())
941 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
942 UsePhis.insert(Phi);
944 for (MemoryPhi *Phi : UsePhis) {
945 auto In = Phi->incoming_values();
946 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
947 Phi->replaceAllUsesWith(NewMemAcc);
948 MSSAUpdater->removeMemoryAccess(Phi);
953 // Remove all other instructions and replace them with Repl.
954 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
955 BasicBlock *DestBB, bool MoveAccess) {
956 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
957 if (MoveAccess && NewMemAcc) {
958 // The definition of this ld/st will not change: ld/st hoisting is
959 // legal when the ld/st is not moved past its current definition.
960 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
963 // Replace all other instructions with Repl with memory access NewMemAcc.
964 unsigned NR = rauw(Candidates, Repl, NewMemAcc);
966 // Remove MemorySSA phi nodes with the same arguments.
967 if (NewMemAcc)
968 raMPHIuw(NewMemAcc);
969 return NR;
972 // In the case Repl is a load or a store, we make all their GEPs
973 // available: GEPs are not hoisted by default to avoid the address
974 // computations to be hoisted without the associated load or store.
975 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
976 const SmallVecInsn &InstructionsToHoist) const {
977 // Check whether the GEP of a ld/st can be synthesized at HoistPt.
978 GetElementPtrInst *Gep = nullptr;
979 Instruction *Val = nullptr;
980 if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
981 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
982 } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
983 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
984 Val = dyn_cast<Instruction>(St->getValueOperand());
985 // Check that the stored value is available.
986 if (Val) {
987 if (isa<GetElementPtrInst>(Val)) {
988 // Check whether we can compute the GEP at HoistPt.
989 if (!allGepOperandsAvailable(Val, HoistPt))
990 return false;
991 } else if (!DT->dominates(Val->getParent(), HoistPt))
992 return false;
996 // Check whether we can compute the Gep at HoistPt.
997 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
998 return false;
1000 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1002 if (Val && isa<GetElementPtrInst>(Val))
1003 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1005 return true;
1008 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
1009 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1010 for (const HoistingPointInfo &HP : HPL) {
1011 // Find out whether we already have one of the instructions in HoistPt,
1012 // in which case we do not have to move it.
1013 BasicBlock *DestBB = HP.first;
1014 const SmallVecInsn &InstructionsToHoist = HP.second;
1015 Instruction *Repl = nullptr;
1016 for (Instruction *I : InstructionsToHoist)
1017 if (I->getParent() == DestBB)
1018 // If there are two instructions in HoistPt to be hoisted in place:
1019 // update Repl to be the first one, such that we can rename the uses
1020 // of the second based on the first.
1021 if (!Repl || firstInBB(I, Repl))
1022 Repl = I;
1024 // Keep track of whether we moved the instruction so we know whether we
1025 // should move the MemoryAccess.
1026 bool MoveAccess = true;
1027 if (Repl) {
1028 // Repl is already in HoistPt: it remains in place.
1029 assert(allOperandsAvailable(Repl, DestBB) &&
1030 "instruction depends on operands that are not available");
1031 MoveAccess = false;
1032 } else {
1033 // When we do not find Repl in HoistPt, select the first in the list
1034 // and move it to HoistPt.
1035 Repl = InstructionsToHoist.front();
1037 // We can move Repl in HoistPt only when all operands are available.
1038 // The order in which hoistings are done may influence the availability
1039 // of operands.
1040 if (!allOperandsAvailable(Repl, DestBB)) {
1041 // When HoistingGeps there is nothing more we can do to make the
1042 // operands available: just continue.
1043 if (HoistingGeps)
1044 continue;
1046 // When not HoistingGeps we need to copy the GEPs.
1047 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1048 continue;
1051 // Move the instruction at the end of HoistPt.
1052 Instruction *Last = DestBB->getTerminator();
1053 MD->removeInstruction(Repl);
1054 Repl->moveBefore(Last);
1056 DFSNumber[Repl] = DFSNumber[Last]++;
1059 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1061 if (isa<LoadInst>(Repl))
1062 ++NL;
1063 else if (isa<StoreInst>(Repl))
1064 ++NS;
1065 else if (isa<CallInst>(Repl))
1066 ++NC;
1067 else // Scalar
1068 ++NI;
1071 NumHoisted += NL + NS + NC + NI;
1072 NumRemoved += NR;
1073 NumLoadsHoisted += NL;
1074 NumStoresHoisted += NS;
1075 NumCallsHoisted += NC;
1076 return {NI, NL + NC + NS};
1079 // Hoist all expressions. Returns Number of scalars hoisted
1080 // and number of non-scalars hoisted.
1081 std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
1082 InsnInfo II;
1083 LoadInfo LI;
1084 StoreInfo SI;
1085 CallInfo CI;
1086 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1087 int InstructionNb = 0;
1088 for (Instruction &I1 : *BB) {
1089 // If I1 cannot guarantee progress, subsequent instructions
1090 // in BB cannot be hoisted anyways.
1091 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1092 HoistBarrier.insert(BB);
1093 break;
1095 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1096 // deeper may increase the register pressure and compilation time.
1097 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1098 break;
1100 // Do not value number terminator instructions.
1101 if (I1.isTerminator())
1102 break;
1104 if (auto *Load = dyn_cast<LoadInst>(&I1))
1105 LI.insert(Load, VN);
1106 else if (auto *Store = dyn_cast<StoreInst>(&I1))
1107 SI.insert(Store, VN);
1108 else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1109 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1110 if (isa<DbgInfoIntrinsic>(Intr) ||
1111 Intr->getIntrinsicID() == Intrinsic::assume ||
1112 Intr->getIntrinsicID() == Intrinsic::sideeffect)
1113 continue;
1115 if (Call->mayHaveSideEffects())
1116 break;
1118 if (Call->isConvergent())
1119 break;
1121 CI.insert(Call, VN);
1122 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1123 // Do not hoist scalars past calls that may write to memory because
1124 // that could result in spills later. geps are handled separately.
1125 // TODO: We can relax this for targets like AArch64 as they have more
1126 // registers than X86.
1127 II.insert(&I1, VN);
1131 HoistingPointList HPL;
1132 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1133 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1134 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1135 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1136 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1137 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1138 return hoist(HPL);
1142 class GVNHoistLegacyPass : public FunctionPass {
1143 public:
1144 static char ID;
1146 GVNHoistLegacyPass() : FunctionPass(ID) {
1147 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
1150 bool runOnFunction(Function &F) override {
1151 if (skipFunction(F))
1152 return false;
1153 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1154 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1155 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1156 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1157 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1159 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1160 return G.run(F);
1163 void getAnalysisUsage(AnalysisUsage &AU) const override {
1164 AU.addRequired<DominatorTreeWrapperPass>();
1165 AU.addRequired<PostDominatorTreeWrapperPass>();
1166 AU.addRequired<AAResultsWrapperPass>();
1167 AU.addRequired<MemoryDependenceWrapperPass>();
1168 AU.addRequired<MemorySSAWrapperPass>();
1169 AU.addPreserved<DominatorTreeWrapperPass>();
1170 AU.addPreserved<MemorySSAWrapperPass>();
1171 AU.addPreserved<GlobalsAAWrapperPass>();
1175 } // end namespace llvm
1177 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1178 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1179 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1180 AliasAnalysis &AA = AM.getResult<AAManager>(F);
1181 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1182 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1183 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1184 if (!G.run(F))
1185 return PreservedAnalyses::all();
1187 PreservedAnalyses PA;
1188 PA.preserve<DominatorTreeAnalysis>();
1189 PA.preserve<MemorySSAAnalysis>();
1190 PA.preserve<GlobalsAA>();
1191 return PA;
1194 char GVNHoistLegacyPass::ID = 0;
1196 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
1197 "Early GVN Hoisting of Expressions", false, false)
1198 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1200 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1201 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1203 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
1204 "Early GVN Hoisting of Expressions", false, false)
1206 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }