[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / InductiveRangeCheckElimination.cpp
blobf89b8e498f75e3d7e7b155419d8e11cab6be8773
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges. It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
14 // len = < known positive >
15 // for (i = 0; i < n; i++) {
16 // if (0 <= i && i < len) {
17 // do_something();
18 // } else {
19 // throw_out_of_bounds();
20 // }
21 // }
23 // to
25 // len = < known positive >
26 // limit = smin(n, len)
27 // // no first segment
28 // for (i = 0; i < limit; i++) {
29 // if (0 <= i && i < len) { // this check is fully redundant
30 // do_something();
31 // } else {
32 // throw_out_of_bounds();
33 // }
34 // }
35 // for (i = limit; i < n; i++) {
36 // if (0 <= i && i < len) {
37 // do_something();
38 // } else {
39 // throw_out_of_bounds();
40 // }
41 // }
43 //===----------------------------------------------------------------------===//
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringRef.h"
53 #include "llvm/ADT/Twine.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpander.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Transforms/Scalar.h"
86 #include "llvm/Transforms/Utils/Cloning.h"
87 #include "llvm/Transforms/Utils/LoopSimplify.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Utils/ValueMapper.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <iterator>
93 #include <limits>
94 #include <utility>
95 #include <vector>
97 using namespace llvm;
98 using namespace llvm::PatternMatch;
100 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
101 cl::init(64));
103 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
104 cl::init(false));
106 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
107 cl::init(false));
109 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
110 cl::Hidden, cl::init(10));
112 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
113 cl::Hidden, cl::init(false));
115 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
116 cl::Hidden, cl::init(true));
118 static cl::opt<bool> AllowNarrowLatchCondition(
119 "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
120 cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
121 "with narrow latch condition."));
123 static const char *ClonedLoopTag = "irce.loop.clone";
125 #define DEBUG_TYPE "irce"
127 namespace {
129 /// An inductive range check is conditional branch in a loop with
131 /// 1. a very cold successor (i.e. the branch jumps to that successor very
132 /// rarely)
134 /// and
136 /// 2. a condition that is provably true for some contiguous range of values
137 /// taken by the containing loop's induction variable.
139 class InductiveRangeCheck {
141 const SCEV *Begin = nullptr;
142 const SCEV *Step = nullptr;
143 const SCEV *End = nullptr;
144 Use *CheckUse = nullptr;
145 bool IsSigned = true;
147 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
148 Value *&Index, Value *&Length,
149 bool &IsSigned);
151 static void
152 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
153 SmallVectorImpl<InductiveRangeCheck> &Checks,
154 SmallPtrSetImpl<Value *> &Visited);
156 public:
157 const SCEV *getBegin() const { return Begin; }
158 const SCEV *getStep() const { return Step; }
159 const SCEV *getEnd() const { return End; }
160 bool isSigned() const { return IsSigned; }
162 void print(raw_ostream &OS) const {
163 OS << "InductiveRangeCheck:\n";
164 OS << " Begin: ";
165 Begin->print(OS);
166 OS << " Step: ";
167 Step->print(OS);
168 OS << " End: ";
169 End->print(OS);
170 OS << "\n CheckUse: ";
171 getCheckUse()->getUser()->print(OS);
172 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
175 LLVM_DUMP_METHOD
176 void dump() {
177 print(dbgs());
180 Use *getCheckUse() const { return CheckUse; }
182 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
183 /// R.getEnd() le R.getBegin(), then R denotes the empty range.
185 class Range {
186 const SCEV *Begin;
187 const SCEV *End;
189 public:
190 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
191 assert(Begin->getType() == End->getType() && "ill-typed range!");
194 Type *getType() const { return Begin->getType(); }
195 const SCEV *getBegin() const { return Begin; }
196 const SCEV *getEnd() const { return End; }
197 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
198 if (Begin == End)
199 return true;
200 if (IsSigned)
201 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
202 else
203 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
207 /// This is the value the condition of the branch needs to evaluate to for the
208 /// branch to take the hot successor (see (1) above).
209 bool getPassingDirection() { return true; }
211 /// Computes a range for the induction variable (IndVar) in which the range
212 /// check is redundant and can be constant-folded away. The induction
213 /// variable is not required to be the canonical {0,+,1} induction variable.
214 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
215 const SCEVAddRecExpr *IndVar,
216 bool IsLatchSigned) const;
218 /// Parse out a set of inductive range checks from \p BI and append them to \p
219 /// Checks.
221 /// NB! There may be conditions feeding into \p BI that aren't inductive range
222 /// checks, and hence don't end up in \p Checks.
223 static void
224 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
225 BranchProbabilityInfo *BPI,
226 SmallVectorImpl<InductiveRangeCheck> &Checks);
229 class InductiveRangeCheckElimination {
230 ScalarEvolution &SE;
231 BranchProbabilityInfo *BPI;
232 DominatorTree &DT;
233 LoopInfo &LI;
235 public:
236 InductiveRangeCheckElimination(ScalarEvolution &SE,
237 BranchProbabilityInfo *BPI, DominatorTree &DT,
238 LoopInfo &LI)
239 : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
241 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
244 class IRCELegacyPass : public LoopPass {
245 public:
246 static char ID;
248 IRCELegacyPass() : LoopPass(ID) {
249 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
252 void getAnalysisUsage(AnalysisUsage &AU) const override {
253 AU.addRequired<BranchProbabilityInfoWrapperPass>();
254 getLoopAnalysisUsage(AU);
257 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
260 } // end anonymous namespace
262 char IRCELegacyPass::ID = 0;
264 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
265 "Inductive range check elimination", false, false)
266 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
267 INITIALIZE_PASS_DEPENDENCY(LoopPass)
268 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
269 false, false)
271 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
272 /// be interpreted as a range check, return false and set `Index` and `Length`
273 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and
274 /// set `Length` to the upper limit `Index` is being range checked.
275 bool
276 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
277 ScalarEvolution &SE, Value *&Index,
278 Value *&Length, bool &IsSigned) {
279 auto IsLoopInvariant = [&SE, L](Value *V) {
280 return SE.isLoopInvariant(SE.getSCEV(V), L);
283 ICmpInst::Predicate Pred = ICI->getPredicate();
284 Value *LHS = ICI->getOperand(0);
285 Value *RHS = ICI->getOperand(1);
287 switch (Pred) {
288 default:
289 return false;
291 case ICmpInst::ICMP_SLE:
292 std::swap(LHS, RHS);
293 LLVM_FALLTHROUGH;
294 case ICmpInst::ICMP_SGE:
295 IsSigned = true;
296 if (match(RHS, m_ConstantInt<0>())) {
297 Index = LHS;
298 return true; // Lower.
300 return false;
302 case ICmpInst::ICMP_SLT:
303 std::swap(LHS, RHS);
304 LLVM_FALLTHROUGH;
305 case ICmpInst::ICMP_SGT:
306 IsSigned = true;
307 if (match(RHS, m_ConstantInt<-1>())) {
308 Index = LHS;
309 return true; // Lower.
312 if (IsLoopInvariant(LHS)) {
313 Index = RHS;
314 Length = LHS;
315 return true; // Upper.
317 return false;
319 case ICmpInst::ICMP_ULT:
320 std::swap(LHS, RHS);
321 LLVM_FALLTHROUGH;
322 case ICmpInst::ICMP_UGT:
323 IsSigned = false;
324 if (IsLoopInvariant(LHS)) {
325 Index = RHS;
326 Length = LHS;
327 return true; // Both lower and upper.
329 return false;
332 llvm_unreachable("default clause returns!");
335 void InductiveRangeCheck::extractRangeChecksFromCond(
336 Loop *L, ScalarEvolution &SE, Use &ConditionUse,
337 SmallVectorImpl<InductiveRangeCheck> &Checks,
338 SmallPtrSetImpl<Value *> &Visited) {
339 Value *Condition = ConditionUse.get();
340 if (!Visited.insert(Condition).second)
341 return;
343 // TODO: Do the same for OR, XOR, NOT etc?
344 if (match(Condition, m_And(m_Value(), m_Value()))) {
345 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
346 Checks, Visited);
347 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
348 Checks, Visited);
349 return;
352 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
353 if (!ICI)
354 return;
356 Value *Length = nullptr, *Index;
357 bool IsSigned;
358 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
359 return;
361 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
362 bool IsAffineIndex =
363 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
365 if (!IsAffineIndex)
366 return;
368 const SCEV *End = nullptr;
369 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
370 // We can potentially do much better here.
371 if (Length)
372 End = SE.getSCEV(Length);
373 else {
374 // So far we can only reach this point for Signed range check. This may
375 // change in future. In this case we will need to pick Unsigned max for the
376 // unsigned range check.
377 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
378 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
379 End = SIntMax;
382 InductiveRangeCheck IRC;
383 IRC.End = End;
384 IRC.Begin = IndexAddRec->getStart();
385 IRC.Step = IndexAddRec->getStepRecurrence(SE);
386 IRC.CheckUse = &ConditionUse;
387 IRC.IsSigned = IsSigned;
388 Checks.push_back(IRC);
391 void InductiveRangeCheck::extractRangeChecksFromBranch(
392 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
393 SmallVectorImpl<InductiveRangeCheck> &Checks) {
394 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
395 return;
397 BranchProbability LikelyTaken(15, 16);
399 if (!SkipProfitabilityChecks && BPI &&
400 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
401 return;
403 SmallPtrSet<Value *, 8> Visited;
404 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
405 Checks, Visited);
408 // Add metadata to the loop L to disable loop optimizations. Callers need to
409 // confirm that optimizing loop L is not beneficial.
410 static void DisableAllLoopOptsOnLoop(Loop &L) {
411 // We do not care about any existing loopID related metadata for L, since we
412 // are setting all loop metadata to false.
413 LLVMContext &Context = L.getHeader()->getContext();
414 // Reserve first location for self reference to the LoopID metadata node.
415 MDNode *Dummy = MDNode::get(Context, {});
416 MDNode *DisableUnroll = MDNode::get(
417 Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
418 Metadata *FalseVal =
419 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
420 MDNode *DisableVectorize = MDNode::get(
421 Context,
422 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
423 MDNode *DisableLICMVersioning = MDNode::get(
424 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
425 MDNode *DisableDistribution= MDNode::get(
426 Context,
427 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
428 MDNode *NewLoopID =
429 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
430 DisableLICMVersioning, DisableDistribution});
431 // Set operand 0 to refer to the loop id itself.
432 NewLoopID->replaceOperandWith(0, NewLoopID);
433 L.setLoopID(NewLoopID);
436 namespace {
438 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
439 // except that it is more lightweight and can track the state of a loop through
440 // changing and potentially invalid IR. This structure also formalizes the
441 // kinds of loops we can deal with -- ones that have a single latch that is also
442 // an exiting block *and* have a canonical induction variable.
443 struct LoopStructure {
444 const char *Tag = "";
446 BasicBlock *Header = nullptr;
447 BasicBlock *Latch = nullptr;
449 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
450 // successor is `LatchExit', the exit block of the loop.
451 BranchInst *LatchBr = nullptr;
452 BasicBlock *LatchExit = nullptr;
453 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
455 // The loop represented by this instance of LoopStructure is semantically
456 // equivalent to:
458 // intN_ty inc = IndVarIncreasing ? 1 : -1;
459 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
461 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
462 // ... body ...
464 Value *IndVarBase = nullptr;
465 Value *IndVarStart = nullptr;
466 Value *IndVarStep = nullptr;
467 Value *LoopExitAt = nullptr;
468 bool IndVarIncreasing = false;
469 bool IsSignedPredicate = true;
471 LoopStructure() = default;
473 template <typename M> LoopStructure map(M Map) const {
474 LoopStructure Result;
475 Result.Tag = Tag;
476 Result.Header = cast<BasicBlock>(Map(Header));
477 Result.Latch = cast<BasicBlock>(Map(Latch));
478 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
479 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
480 Result.LatchBrExitIdx = LatchBrExitIdx;
481 Result.IndVarBase = Map(IndVarBase);
482 Result.IndVarStart = Map(IndVarStart);
483 Result.IndVarStep = Map(IndVarStep);
484 Result.LoopExitAt = Map(LoopExitAt);
485 Result.IndVarIncreasing = IndVarIncreasing;
486 Result.IsSignedPredicate = IsSignedPredicate;
487 return Result;
490 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
491 BranchProbabilityInfo *BPI,
492 Loop &, const char *&);
495 /// This class is used to constrain loops to run within a given iteration space.
496 /// The algorithm this class implements is given a Loop and a range [Begin,
497 /// End). The algorithm then tries to break out a "main loop" out of the loop
498 /// it is given in a way that the "main loop" runs with the induction variable
499 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
500 /// loops to run any remaining iterations. The pre loop runs any iterations in
501 /// which the induction variable is < Begin, and the post loop runs any
502 /// iterations in which the induction variable is >= End.
503 class LoopConstrainer {
504 // The representation of a clone of the original loop we started out with.
505 struct ClonedLoop {
506 // The cloned blocks
507 std::vector<BasicBlock *> Blocks;
509 // `Map` maps values in the clonee into values in the cloned version
510 ValueToValueMapTy Map;
512 // An instance of `LoopStructure` for the cloned loop
513 LoopStructure Structure;
516 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
517 // more details on what these fields mean.
518 struct RewrittenRangeInfo {
519 BasicBlock *PseudoExit = nullptr;
520 BasicBlock *ExitSelector = nullptr;
521 std::vector<PHINode *> PHIValuesAtPseudoExit;
522 PHINode *IndVarEnd = nullptr;
524 RewrittenRangeInfo() = default;
527 // Calculated subranges we restrict the iteration space of the main loop to.
528 // See the implementation of `calculateSubRanges' for more details on how
529 // these fields are computed. `LowLimit` is None if there is no restriction
530 // on low end of the restricted iteration space of the main loop. `HighLimit`
531 // is None if there is no restriction on high end of the restricted iteration
532 // space of the main loop.
534 struct SubRanges {
535 Optional<const SCEV *> LowLimit;
536 Optional<const SCEV *> HighLimit;
539 // A utility function that does a `replaceUsesOfWith' on the incoming block
540 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
541 // incoming block list with `ReplaceBy'.
542 static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
543 BasicBlock *ReplaceBy);
545 // Compute a safe set of limits for the main loop to run in -- effectively the
546 // intersection of `Range' and the iteration space of the original loop.
547 // Return None if unable to compute the set of subranges.
548 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
550 // Clone `OriginalLoop' and return the result in CLResult. The IR after
551 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
552 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
553 // but there is no such edge.
554 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
556 // Create the appropriate loop structure needed to describe a cloned copy of
557 // `Original`. The clone is described by `VM`.
558 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
559 ValueToValueMapTy &VM, bool IsSubloop);
561 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
562 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
563 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
564 // `OriginalHeaderCount'.
566 // If there are iterations left to execute, control is made to jump to
567 // `ContinuationBlock', otherwise they take the normal loop exit. The
568 // returned `RewrittenRangeInfo' object is populated as follows:
570 // .PseudoExit is a basic block that unconditionally branches to
571 // `ContinuationBlock'.
573 // .ExitSelector is a basic block that decides, on exit from the loop,
574 // whether to branch to the "true" exit or to `PseudoExit'.
576 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
577 // for each PHINode in the loop header on taking the pseudo exit.
579 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
580 // preheader because it is made to branch to the loop header only
581 // conditionally.
582 RewrittenRangeInfo
583 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
584 Value *ExitLoopAt,
585 BasicBlock *ContinuationBlock) const;
587 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
588 // function creates a new preheader for `LS' and returns it.
589 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
590 const char *Tag) const;
592 // `ContinuationBlockAndPreheader' was the continuation block for some call to
593 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
594 // This function rewrites the PHI nodes in `LS.Header' to start with the
595 // correct value.
596 void rewriteIncomingValuesForPHIs(
597 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
598 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
600 // Even though we do not preserve any passes at this time, we at least need to
601 // keep the parent loop structure consistent. The `LPPassManager' seems to
602 // verify this after running a loop pass. This function adds the list of
603 // blocks denoted by BBs to this loops parent loop if required.
604 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
606 // Some global state.
607 Function &F;
608 LLVMContext &Ctx;
609 ScalarEvolution &SE;
610 DominatorTree &DT;
611 LoopInfo &LI;
612 function_ref<void(Loop *, bool)> LPMAddNewLoop;
614 // Information about the original loop we started out with.
615 Loop &OriginalLoop;
617 const SCEV *LatchTakenCount = nullptr;
618 BasicBlock *OriginalPreheader = nullptr;
620 // The preheader of the main loop. This may or may not be different from
621 // `OriginalPreheader'.
622 BasicBlock *MainLoopPreheader = nullptr;
624 // The range we need to run the main loop in.
625 InductiveRangeCheck::Range Range;
627 // The structure of the main loop (see comment at the beginning of this class
628 // for a definition)
629 LoopStructure MainLoopStructure;
631 public:
632 LoopConstrainer(Loop &L, LoopInfo &LI,
633 function_ref<void(Loop *, bool)> LPMAddNewLoop,
634 const LoopStructure &LS, ScalarEvolution &SE,
635 DominatorTree &DT, InductiveRangeCheck::Range R)
636 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
637 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
638 Range(R), MainLoopStructure(LS) {}
640 // Entry point for the algorithm. Returns true on success.
641 bool run();
644 } // end anonymous namespace
646 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
647 BasicBlock *ReplaceBy) {
648 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
649 if (PN->getIncomingBlock(i) == Block)
650 PN->setIncomingBlock(i, ReplaceBy);
653 /// Given a loop with an deccreasing induction variable, is it possible to
654 /// safely calculate the bounds of a new loop using the given Predicate.
655 static bool isSafeDecreasingBound(const SCEV *Start,
656 const SCEV *BoundSCEV, const SCEV *Step,
657 ICmpInst::Predicate Pred,
658 unsigned LatchBrExitIdx,
659 Loop *L, ScalarEvolution &SE) {
660 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
661 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
662 return false;
664 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
665 return false;
667 assert(SE.isKnownNegative(Step) && "expecting negative step");
669 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
670 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
671 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
672 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
673 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
674 << "\n");
675 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
677 bool IsSigned = ICmpInst::isSigned(Pred);
678 // The predicate that we need to check that the induction variable lies
679 // within bounds.
680 ICmpInst::Predicate BoundPred =
681 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
683 if (LatchBrExitIdx == 1)
684 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
686 assert(LatchBrExitIdx == 0 &&
687 "LatchBrExitIdx should be either 0 or 1");
689 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
690 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
691 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
692 APInt::getMinValue(BitWidth);
693 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
695 const SCEV *MinusOne =
696 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
698 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
699 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
703 /// Given a loop with an increasing induction variable, is it possible to
704 /// safely calculate the bounds of a new loop using the given Predicate.
705 static bool isSafeIncreasingBound(const SCEV *Start,
706 const SCEV *BoundSCEV, const SCEV *Step,
707 ICmpInst::Predicate Pred,
708 unsigned LatchBrExitIdx,
709 Loop *L, ScalarEvolution &SE) {
710 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
711 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
712 return false;
714 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
715 return false;
717 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
718 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
719 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
720 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
721 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
722 << "\n");
723 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
725 bool IsSigned = ICmpInst::isSigned(Pred);
726 // The predicate that we need to check that the induction variable lies
727 // within bounds.
728 ICmpInst::Predicate BoundPred =
729 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
731 if (LatchBrExitIdx == 1)
732 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
734 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
736 const SCEV *StepMinusOne =
737 SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
738 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
739 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
740 APInt::getMaxValue(BitWidth);
741 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
743 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
744 SE.getAddExpr(BoundSCEV, Step)) &&
745 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
748 Optional<LoopStructure>
749 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
750 BranchProbabilityInfo *BPI, Loop &L,
751 const char *&FailureReason) {
752 if (!L.isLoopSimplifyForm()) {
753 FailureReason = "loop not in LoopSimplify form";
754 return None;
757 BasicBlock *Latch = L.getLoopLatch();
758 assert(Latch && "Simplified loops only have one latch!");
760 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
761 FailureReason = "loop has already been cloned";
762 return None;
765 if (!L.isLoopExiting(Latch)) {
766 FailureReason = "no loop latch";
767 return None;
770 BasicBlock *Header = L.getHeader();
771 BasicBlock *Preheader = L.getLoopPreheader();
772 if (!Preheader) {
773 FailureReason = "no preheader";
774 return None;
777 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
778 if (!LatchBr || LatchBr->isUnconditional()) {
779 FailureReason = "latch terminator not conditional branch";
780 return None;
783 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
785 BranchProbability ExitProbability =
786 BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
787 : BranchProbability::getZero();
789 if (!SkipProfitabilityChecks &&
790 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
791 FailureReason = "short running loop, not profitable";
792 return None;
795 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
796 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
797 FailureReason = "latch terminator branch not conditional on integral icmp";
798 return None;
801 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
802 if (isa<SCEVCouldNotCompute>(LatchCount)) {
803 FailureReason = "could not compute latch count";
804 return None;
807 ICmpInst::Predicate Pred = ICI->getPredicate();
808 Value *LeftValue = ICI->getOperand(0);
809 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
810 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
812 Value *RightValue = ICI->getOperand(1);
813 const SCEV *RightSCEV = SE.getSCEV(RightValue);
815 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
816 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
817 if (isa<SCEVAddRecExpr>(RightSCEV)) {
818 std::swap(LeftSCEV, RightSCEV);
819 std::swap(LeftValue, RightValue);
820 Pred = ICmpInst::getSwappedPredicate(Pred);
821 } else {
822 FailureReason = "no add recurrences in the icmp";
823 return None;
827 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
828 if (AR->getNoWrapFlags(SCEV::FlagNSW))
829 return true;
831 IntegerType *Ty = cast<IntegerType>(AR->getType());
832 IntegerType *WideTy =
833 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
835 const SCEVAddRecExpr *ExtendAfterOp =
836 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
837 if (ExtendAfterOp) {
838 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
839 const SCEV *ExtendedStep =
840 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
842 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
843 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
845 if (NoSignedWrap)
846 return true;
849 // We may have proved this when computing the sign extension above.
850 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
853 // `ICI` is interpreted as taking the backedge if the *next* value of the
854 // induction variable satisfies some constraint.
856 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
857 if (!IndVarBase->isAffine()) {
858 FailureReason = "LHS in icmp not induction variable";
859 return None;
861 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
862 if (!isa<SCEVConstant>(StepRec)) {
863 FailureReason = "LHS in icmp not induction variable";
864 return None;
866 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
868 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
869 FailureReason = "LHS in icmp needs nsw for equality predicates";
870 return None;
873 assert(!StepCI->isZero() && "Zero step?");
874 bool IsIncreasing = !StepCI->isNegative();
875 bool IsSignedPredicate = ICmpInst::isSigned(Pred);
876 const SCEV *StartNext = IndVarBase->getStart();
877 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
878 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
879 const SCEV *Step = SE.getSCEV(StepCI);
881 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
882 if (IsIncreasing) {
883 bool DecreasedRightValueByOne = false;
884 if (StepCI->isOne()) {
885 // Try to turn eq/ne predicates to those we can work with.
886 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
887 // while (++i != len) { while (++i < len) {
888 // ... ---> ...
889 // } }
890 // If both parts are known non-negative, it is profitable to use
891 // unsigned comparison in increasing loop. This allows us to make the
892 // comparison check against "RightSCEV + 1" more optimistic.
893 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
894 isKnownNonNegativeInLoop(RightSCEV, &L, SE))
895 Pred = ICmpInst::ICMP_ULT;
896 else
897 Pred = ICmpInst::ICMP_SLT;
898 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
899 // while (true) { while (true) {
900 // if (++i == len) ---> if (++i > len - 1)
901 // break; break;
902 // ... ...
903 // } }
904 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
905 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
906 Pred = ICmpInst::ICMP_UGT;
907 RightSCEV = SE.getMinusSCEV(RightSCEV,
908 SE.getOne(RightSCEV->getType()));
909 DecreasedRightValueByOne = true;
910 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
911 Pred = ICmpInst::ICMP_SGT;
912 RightSCEV = SE.getMinusSCEV(RightSCEV,
913 SE.getOne(RightSCEV->getType()));
914 DecreasedRightValueByOne = true;
919 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
920 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
921 bool FoundExpectedPred =
922 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
924 if (!FoundExpectedPred) {
925 FailureReason = "expected icmp slt semantically, found something else";
926 return None;
929 IsSignedPredicate = ICmpInst::isSigned(Pred);
930 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
931 FailureReason = "unsigned latch conditions are explicitly prohibited";
932 return None;
935 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
936 LatchBrExitIdx, &L, SE)) {
937 FailureReason = "Unsafe loop bounds";
938 return None;
940 if (LatchBrExitIdx == 0) {
941 // We need to increase the right value unless we have already decreased
942 // it virtually when we replaced EQ with SGT.
943 if (!DecreasedRightValueByOne) {
944 IRBuilder<> B(Preheader->getTerminator());
945 RightValue = B.CreateAdd(RightValue, One);
947 } else {
948 assert(!DecreasedRightValueByOne &&
949 "Right value can be decreased only for LatchBrExitIdx == 0!");
951 } else {
952 bool IncreasedRightValueByOne = false;
953 if (StepCI->isMinusOne()) {
954 // Try to turn eq/ne predicates to those we can work with.
955 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
956 // while (--i != len) { while (--i > len) {
957 // ... ---> ...
958 // } }
959 // We intentionally don't turn the predicate into UGT even if we know
960 // that both operands are non-negative, because it will only pessimize
961 // our check against "RightSCEV - 1".
962 Pred = ICmpInst::ICMP_SGT;
963 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
964 // while (true) { while (true) {
965 // if (--i == len) ---> if (--i < len + 1)
966 // break; break;
967 // ... ...
968 // } }
969 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
970 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
971 Pred = ICmpInst::ICMP_ULT;
972 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
973 IncreasedRightValueByOne = true;
974 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
975 Pred = ICmpInst::ICMP_SLT;
976 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
977 IncreasedRightValueByOne = true;
982 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
983 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
985 bool FoundExpectedPred =
986 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
988 if (!FoundExpectedPred) {
989 FailureReason = "expected icmp sgt semantically, found something else";
990 return None;
993 IsSignedPredicate =
994 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
996 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
997 FailureReason = "unsigned latch conditions are explicitly prohibited";
998 return None;
1001 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1002 LatchBrExitIdx, &L, SE)) {
1003 FailureReason = "Unsafe bounds";
1004 return None;
1007 if (LatchBrExitIdx == 0) {
1008 // We need to decrease the right value unless we have already increased
1009 // it virtually when we replaced EQ with SLT.
1010 if (!IncreasedRightValueByOne) {
1011 IRBuilder<> B(Preheader->getTerminator());
1012 RightValue = B.CreateSub(RightValue, One);
1014 } else {
1015 assert(!IncreasedRightValueByOne &&
1016 "Right value can be increased only for LatchBrExitIdx == 0!");
1019 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1021 assert(SE.getLoopDisposition(LatchCount, &L) ==
1022 ScalarEvolution::LoopInvariant &&
1023 "loop variant exit count doesn't make sense!");
1025 assert(!L.contains(LatchExit) && "expected an exit block!");
1026 const DataLayout &DL = Preheader->getModule()->getDataLayout();
1027 Value *IndVarStartV =
1028 SCEVExpander(SE, DL, "irce")
1029 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
1030 IndVarStartV->setName("indvar.start");
1032 LoopStructure Result;
1034 Result.Tag = "main";
1035 Result.Header = Header;
1036 Result.Latch = Latch;
1037 Result.LatchBr = LatchBr;
1038 Result.LatchExit = LatchExit;
1039 Result.LatchBrExitIdx = LatchBrExitIdx;
1040 Result.IndVarStart = IndVarStartV;
1041 Result.IndVarStep = StepCI;
1042 Result.IndVarBase = LeftValue;
1043 Result.IndVarIncreasing = IsIncreasing;
1044 Result.LoopExitAt = RightValue;
1045 Result.IsSignedPredicate = IsSignedPredicate;
1047 FailureReason = nullptr;
1049 return Result;
1052 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1053 /// signed or unsigned extension of \p S to type \p Ty.
1054 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1055 bool Signed) {
1056 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1059 Optional<LoopConstrainer::SubRanges>
1060 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1061 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1063 auto *RTy = cast<IntegerType>(Range.getType());
1065 // We only support wide range checks and narrow latches.
1066 if (!AllowNarrowLatchCondition && RTy != Ty)
1067 return None;
1068 if (RTy->getBitWidth() < Ty->getBitWidth())
1069 return None;
1071 LoopConstrainer::SubRanges Result;
1073 // I think we can be more aggressive here and make this nuw / nsw if the
1074 // addition that feeds into the icmp for the latch's terminating branch is nuw
1075 // / nsw. In any case, a wrapping 2's complement addition is safe.
1076 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1077 RTy, SE, IsSignedPredicate);
1078 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1079 SE, IsSignedPredicate);
1081 bool Increasing = MainLoopStructure.IndVarIncreasing;
1083 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1084 // [Smallest, GreatestSeen] is the range of values the induction variable
1085 // takes.
1087 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1089 const SCEV *One = SE.getOne(RTy);
1090 if (Increasing) {
1091 Smallest = Start;
1092 Greatest = End;
1093 // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1094 GreatestSeen = SE.getMinusSCEV(End, One);
1095 } else {
1096 // These two computations may sign-overflow. Here is why that is okay:
1098 // We know that the induction variable does not sign-overflow on any
1099 // iteration except the last one, and it starts at `Start` and ends at
1100 // `End`, decrementing by one every time.
1102 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1103 // induction variable is decreasing we know that that the smallest value
1104 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1106 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
1107 // that case, `Clamp` will always return `Smallest` and
1108 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1109 // will be an empty range. Returning an empty range is always safe.
1111 Smallest = SE.getAddExpr(End, One);
1112 Greatest = SE.getAddExpr(Start, One);
1113 GreatestSeen = Start;
1116 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1117 return IsSignedPredicate
1118 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1119 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1122 // In some cases we can prove that we don't need a pre or post loop.
1123 ICmpInst::Predicate PredLE =
1124 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1125 ICmpInst::Predicate PredLT =
1126 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1128 bool ProvablyNoPreloop =
1129 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1130 if (!ProvablyNoPreloop)
1131 Result.LowLimit = Clamp(Range.getBegin());
1133 bool ProvablyNoPostLoop =
1134 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1135 if (!ProvablyNoPostLoop)
1136 Result.HighLimit = Clamp(Range.getEnd());
1138 return Result;
1141 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1142 const char *Tag) const {
1143 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1144 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1145 Result.Blocks.push_back(Clone);
1146 Result.Map[BB] = Clone;
1149 auto GetClonedValue = [&Result](Value *V) {
1150 assert(V && "null values not in domain!");
1151 auto It = Result.Map.find(V);
1152 if (It == Result.Map.end())
1153 return V;
1154 return static_cast<Value *>(It->second);
1157 auto *ClonedLatch =
1158 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1159 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1160 MDNode::get(Ctx, {}));
1162 Result.Structure = MainLoopStructure.map(GetClonedValue);
1163 Result.Structure.Tag = Tag;
1165 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1166 BasicBlock *ClonedBB = Result.Blocks[i];
1167 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1169 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1171 for (Instruction &I : *ClonedBB)
1172 RemapInstruction(&I, Result.Map,
1173 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1175 // Exit blocks will now have one more predecessor and their PHI nodes need
1176 // to be edited to reflect that. No phi nodes need to be introduced because
1177 // the loop is in LCSSA.
1179 for (auto *SBB : successors(OriginalBB)) {
1180 if (OriginalLoop.contains(SBB))
1181 continue; // not an exit block
1183 for (PHINode &PN : SBB->phis()) {
1184 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1185 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1191 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1192 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1193 BasicBlock *ContinuationBlock) const {
1194 // We start with a loop with a single latch:
1196 // +--------------------+
1197 // | |
1198 // | preheader |
1199 // | |
1200 // +--------+-----------+
1201 // | ----------------\
1202 // | / |
1203 // +--------v----v------+ |
1204 // | | |
1205 // | header | |
1206 // | | |
1207 // +--------------------+ |
1208 // |
1209 // ..... |
1210 // |
1211 // +--------------------+ |
1212 // | | |
1213 // | latch >----------/
1214 // | |
1215 // +-------v------------+
1216 // |
1217 // |
1218 // | +--------------------+
1219 // | | |
1220 // +---> original exit |
1221 // | |
1222 // +--------------------+
1224 // We change the control flow to look like
1227 // +--------------------+
1228 // | |
1229 // | preheader >-------------------------+
1230 // | | |
1231 // +--------v-----------+ |
1232 // | /-------------+ |
1233 // | / | |
1234 // +--------v--v--------+ | |
1235 // | | | |
1236 // | header | | +--------+ |
1237 // | | | | | |
1238 // +--------------------+ | | +-----v-----v-----------+
1239 // | | | |
1240 // | | | .pseudo.exit |
1241 // | | | |
1242 // | | +-----------v-----------+
1243 // | | |
1244 // ..... | | |
1245 // | | +--------v-------------+
1246 // +--------------------+ | | | |
1247 // | | | | | ContinuationBlock |
1248 // | latch >------+ | | |
1249 // | | | +----------------------+
1250 // +---------v----------+ |
1251 // | |
1252 // | |
1253 // | +---------------^-----+
1254 // | | |
1255 // +-----> .exit.selector |
1256 // | |
1257 // +----------v----------+
1258 // |
1259 // +--------------------+ |
1260 // | | |
1261 // | original exit <----+
1262 // | |
1263 // +--------------------+
1265 RewrittenRangeInfo RRI;
1267 BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1268 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1269 &F, BBInsertLocation);
1270 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1271 BBInsertLocation);
1273 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1274 bool Increasing = LS.IndVarIncreasing;
1275 bool IsSignedPredicate = LS.IsSignedPredicate;
1277 IRBuilder<> B(PreheaderJump);
1278 auto *RangeTy = Range.getBegin()->getType();
1279 auto NoopOrExt = [&](Value *V) {
1280 if (V->getType() == RangeTy)
1281 return V;
1282 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1283 : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1286 // EnterLoopCond - is it okay to start executing this `LS'?
1287 Value *EnterLoopCond = nullptr;
1288 auto Pred =
1289 Increasing
1290 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1291 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1292 Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1293 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1295 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1296 PreheaderJump->eraseFromParent();
1298 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1299 B.SetInsertPoint(LS.LatchBr);
1300 Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1301 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1303 Value *CondForBranch = LS.LatchBrExitIdx == 1
1304 ? TakeBackedgeLoopCond
1305 : B.CreateNot(TakeBackedgeLoopCond);
1307 LS.LatchBr->setCondition(CondForBranch);
1309 B.SetInsertPoint(RRI.ExitSelector);
1311 // IterationsLeft - are there any more iterations left, given the original
1312 // upper bound on the induction variable? If not, we branch to the "real"
1313 // exit.
1314 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1315 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1316 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1318 BranchInst *BranchToContinuation =
1319 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1321 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1322 // each of the PHI nodes in the loop header. This feeds into the initial
1323 // value of the same PHI nodes if/when we continue execution.
1324 for (PHINode &PN : LS.Header->phis()) {
1325 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1326 BranchToContinuation);
1328 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1329 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1330 RRI.ExitSelector);
1331 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1334 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1335 BranchToContinuation);
1336 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1337 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1339 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1340 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1341 for (PHINode &PN : LS.LatchExit->phis())
1342 replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector);
1344 return RRI;
1347 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1348 LoopStructure &LS, BasicBlock *ContinuationBlock,
1349 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1350 unsigned PHIIndex = 0;
1351 for (PHINode &PN : LS.Header->phis())
1352 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
1353 if (PN.getIncomingBlock(i) == ContinuationBlock)
1354 PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1356 LS.IndVarStart = RRI.IndVarEnd;
1359 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1360 BasicBlock *OldPreheader,
1361 const char *Tag) const {
1362 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1363 BranchInst::Create(LS.Header, Preheader);
1365 for (PHINode &PN : LS.Header->phis())
1366 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
1367 replacePHIBlock(&PN, OldPreheader, Preheader);
1369 return Preheader;
1372 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1373 Loop *ParentLoop = OriginalLoop.getParentLoop();
1374 if (!ParentLoop)
1375 return;
1377 for (BasicBlock *BB : BBs)
1378 ParentLoop->addBasicBlockToLoop(BB, LI);
1381 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1382 ValueToValueMapTy &VM,
1383 bool IsSubloop) {
1384 Loop &New = *LI.AllocateLoop();
1385 if (Parent)
1386 Parent->addChildLoop(&New);
1387 else
1388 LI.addTopLevelLoop(&New);
1389 LPMAddNewLoop(&New, IsSubloop);
1391 // Add all of the blocks in Original to the new loop.
1392 for (auto *BB : Original->blocks())
1393 if (LI.getLoopFor(BB) == Original)
1394 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1396 // Add all of the subloops to the new loop.
1397 for (Loop *SubLoop : *Original)
1398 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1400 return &New;
1403 bool LoopConstrainer::run() {
1404 BasicBlock *Preheader = nullptr;
1405 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1406 Preheader = OriginalLoop.getLoopPreheader();
1407 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1408 "preconditions!");
1410 OriginalPreheader = Preheader;
1411 MainLoopPreheader = Preheader;
1413 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1414 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1415 if (!MaybeSR.hasValue()) {
1416 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1417 return false;
1420 SubRanges SR = MaybeSR.getValue();
1421 bool Increasing = MainLoopStructure.IndVarIncreasing;
1422 IntegerType *IVTy =
1423 cast<IntegerType>(Range.getBegin()->getType());
1425 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1426 Instruction *InsertPt = OriginalPreheader->getTerminator();
1428 // It would have been better to make `PreLoop' and `PostLoop'
1429 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1430 // constructor.
1431 ClonedLoop PreLoop, PostLoop;
1432 bool NeedsPreLoop =
1433 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1434 bool NeedsPostLoop =
1435 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1437 Value *ExitPreLoopAt = nullptr;
1438 Value *ExitMainLoopAt = nullptr;
1439 const SCEVConstant *MinusOneS =
1440 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1442 if (NeedsPreLoop) {
1443 const SCEV *ExitPreLoopAtSCEV = nullptr;
1445 if (Increasing)
1446 ExitPreLoopAtSCEV = *SR.LowLimit;
1447 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1448 IsSignedPredicate))
1449 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1450 else {
1451 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1452 << "preloop exit limit. HighLimit = "
1453 << *(*SR.HighLimit) << "\n");
1454 return false;
1457 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1458 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1459 << " preloop exit limit " << *ExitPreLoopAtSCEV
1460 << " at block " << InsertPt->getParent()->getName()
1461 << "\n");
1462 return false;
1465 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1466 ExitPreLoopAt->setName("exit.preloop.at");
1469 if (NeedsPostLoop) {
1470 const SCEV *ExitMainLoopAtSCEV = nullptr;
1472 if (Increasing)
1473 ExitMainLoopAtSCEV = *SR.HighLimit;
1474 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1475 IsSignedPredicate))
1476 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1477 else {
1478 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1479 << "mainloop exit limit. LowLimit = "
1480 << *(*SR.LowLimit) << "\n");
1481 return false;
1484 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1485 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1486 << " main loop exit limit " << *ExitMainLoopAtSCEV
1487 << " at block " << InsertPt->getParent()->getName()
1488 << "\n");
1489 return false;
1492 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1493 ExitMainLoopAt->setName("exit.mainloop.at");
1496 // We clone these ahead of time so that we don't have to deal with changing
1497 // and temporarily invalid IR as we transform the loops.
1498 if (NeedsPreLoop)
1499 cloneLoop(PreLoop, "preloop");
1500 if (NeedsPostLoop)
1501 cloneLoop(PostLoop, "postloop");
1503 RewrittenRangeInfo PreLoopRRI;
1505 if (NeedsPreLoop) {
1506 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1507 PreLoop.Structure.Header);
1509 MainLoopPreheader =
1510 createPreheader(MainLoopStructure, Preheader, "mainloop");
1511 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1512 ExitPreLoopAt, MainLoopPreheader);
1513 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1514 PreLoopRRI);
1517 BasicBlock *PostLoopPreheader = nullptr;
1518 RewrittenRangeInfo PostLoopRRI;
1520 if (NeedsPostLoop) {
1521 PostLoopPreheader =
1522 createPreheader(PostLoop.Structure, Preheader, "postloop");
1523 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1524 ExitMainLoopAt, PostLoopPreheader);
1525 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1526 PostLoopRRI);
1529 BasicBlock *NewMainLoopPreheader =
1530 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1531 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1532 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1533 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1535 // Some of the above may be nullptr, filter them out before passing to
1536 // addToParentLoopIfNeeded.
1537 auto NewBlocksEnd =
1538 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1540 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1542 DT.recalculate(F);
1544 // We need to first add all the pre and post loop blocks into the loop
1545 // structures (as part of createClonedLoopStructure), and then update the
1546 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1547 // LI when LoopSimplifyForm is generated.
1548 Loop *PreL = nullptr, *PostL = nullptr;
1549 if (!PreLoop.Blocks.empty()) {
1550 PreL = createClonedLoopStructure(&OriginalLoop,
1551 OriginalLoop.getParentLoop(), PreLoop.Map,
1552 /* IsSubLoop */ false);
1555 if (!PostLoop.Blocks.empty()) {
1556 PostL =
1557 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1558 PostLoop.Map, /* IsSubLoop */ false);
1561 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1562 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1563 formLCSSARecursively(*L, DT, &LI, &SE);
1564 simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
1565 // Pre/post loops are slow paths, we do not need to perform any loop
1566 // optimizations on them.
1567 if (!IsOriginalLoop)
1568 DisableAllLoopOptsOnLoop(*L);
1570 if (PreL)
1571 CanonicalizeLoop(PreL, false);
1572 if (PostL)
1573 CanonicalizeLoop(PostL, false);
1574 CanonicalizeLoop(&OriginalLoop, true);
1576 return true;
1579 /// Computes and returns a range of values for the induction variable (IndVar)
1580 /// in which the range check can be safely elided. If it cannot compute such a
1581 /// range, returns None.
1582 Optional<InductiveRangeCheck::Range>
1583 InductiveRangeCheck::computeSafeIterationSpace(
1584 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1585 bool IsLatchSigned) const {
1586 // We can deal when types of latch check and range checks don't match in case
1587 // if latch check is more narrow.
1588 auto *IVType = cast<IntegerType>(IndVar->getType());
1589 auto *RCType = cast<IntegerType>(getBegin()->getType());
1590 if (IVType->getBitWidth() > RCType->getBitWidth())
1591 return None;
1592 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1593 // variable, that may or may not exist as a real llvm::Value in the loop) and
1594 // this inductive range check is a range check on the "C + D * I" ("C" is
1595 // getBegin() and "D" is getStep()). We rewrite the value being range
1596 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1598 // The actual inequalities we solve are of the form
1600 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1602 // Here L stands for upper limit of the safe iteration space.
1603 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1604 // overflows when calculating (0 - M) and (L - M) we, depending on type of
1605 // IV's iteration space, limit the calculations by borders of the iteration
1606 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1607 // If we figured out that "anything greater than (-M) is safe", we strengthen
1608 // this to "everything greater than 0 is safe", assuming that values between
1609 // -M and 0 just do not exist in unsigned iteration space, and we don't want
1610 // to deal with overflown values.
1612 if (!IndVar->isAffine())
1613 return None;
1615 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1616 const SCEVConstant *B = dyn_cast<SCEVConstant>(
1617 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1618 if (!B)
1619 return None;
1620 assert(!B->isZero() && "Recurrence with zero step?");
1622 const SCEV *C = getBegin();
1623 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1624 if (D != B)
1625 return None;
1627 assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1628 unsigned BitWidth = RCType->getBitWidth();
1629 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1631 // Subtract Y from X so that it does not go through border of the IV
1632 // iteration space. Mathematically, it is equivalent to:
1634 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
1636 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1637 // any width of bit grid). But after we take min/max, the result is
1638 // guaranteed to be within [INT_MIN, INT_MAX].
1640 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1641 // values, depending on type of latch condition that defines IV iteration
1642 // space.
1643 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1644 // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1645 // This is required to ensure that SINT_MAX - X does not overflow signed and
1646 // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1647 // restriction and make it work for negative X either?
1648 if (IsLatchSigned) {
1649 // X is a number from signed range, Y is interpreted as signed.
1650 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1651 // thing we should care about is that we didn't cross SINT_MAX.
1652 // So, if Y is positive, we subtract Y safely.
1653 // Rule 1: Y > 0 ---> Y.
1654 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1655 // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1656 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1657 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1658 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1659 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1660 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1661 SCEV::FlagNSW);
1662 } else
1663 // X is a number from unsigned range, Y is interpreted as signed.
1664 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1665 // thing we should care about is that we didn't cross zero.
1666 // So, if Y is negative, we subtract Y safely.
1667 // Rule 1: Y <s 0 ---> Y.
1668 // If 0 <= Y <= X, we subtract Y safely.
1669 // Rule 2: Y <=s X ---> Y.
1670 // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1671 // Rule 3: Y >s X ---> X.
1672 // It gives us smin(X, Y) to subtract in all cases.
1673 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1675 const SCEV *M = SE.getMinusSCEV(C, A);
1676 const SCEV *Zero = SE.getZero(M->getType());
1678 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1679 auto SCEVCheckNonNegative = [&](const SCEV *X) {
1680 const Loop *L = IndVar->getLoop();
1681 const SCEV *One = SE.getOne(X->getType());
1682 // Can we trivially prove that X is a non-negative or negative value?
1683 if (isKnownNonNegativeInLoop(X, L, SE))
1684 return One;
1685 else if (isKnownNegativeInLoop(X, L, SE))
1686 return Zero;
1687 // If not, we will have to figure it out during the execution.
1688 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1689 const SCEV *NegOne = SE.getNegativeSCEV(One);
1690 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1692 // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1693 // X is non-negative (in sense of a signed value). We need to re-implement
1694 // this function in a way that it will correctly handle negative X as well.
1695 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1696 // end up with a negative X and produce wrong results. So currently we ensure
1697 // that if getEnd() is negative then both ends of the safe range are zero.
1698 // Note that this may pessimize elimination of unsigned range checks against
1699 // negative values.
1700 const SCEV *REnd = getEnd();
1701 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1703 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1704 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1705 return InductiveRangeCheck::Range(Begin, End);
1708 static Optional<InductiveRangeCheck::Range>
1709 IntersectSignedRange(ScalarEvolution &SE,
1710 const Optional<InductiveRangeCheck::Range> &R1,
1711 const InductiveRangeCheck::Range &R2) {
1712 if (R2.isEmpty(SE, /* IsSigned */ true))
1713 return None;
1714 if (!R1.hasValue())
1715 return R2;
1716 auto &R1Value = R1.getValue();
1717 // We never return empty ranges from this function, and R1 is supposed to be
1718 // a result of intersection. Thus, R1 is never empty.
1719 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1720 "We should never have empty R1!");
1722 // TODO: we could widen the smaller range and have this work; but for now we
1723 // bail out to keep things simple.
1724 if (R1Value.getType() != R2.getType())
1725 return None;
1727 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1728 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1730 // If the resulting range is empty, just return None.
1731 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1732 if (Ret.isEmpty(SE, /* IsSigned */ true))
1733 return None;
1734 return Ret;
1737 static Optional<InductiveRangeCheck::Range>
1738 IntersectUnsignedRange(ScalarEvolution &SE,
1739 const Optional<InductiveRangeCheck::Range> &R1,
1740 const InductiveRangeCheck::Range &R2) {
1741 if (R2.isEmpty(SE, /* IsSigned */ false))
1742 return None;
1743 if (!R1.hasValue())
1744 return R2;
1745 auto &R1Value = R1.getValue();
1746 // We never return empty ranges from this function, and R1 is supposed to be
1747 // a result of intersection. Thus, R1 is never empty.
1748 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1749 "We should never have empty R1!");
1751 // TODO: we could widen the smaller range and have this work; but for now we
1752 // bail out to keep things simple.
1753 if (R1Value.getType() != R2.getType())
1754 return None;
1756 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1757 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1759 // If the resulting range is empty, just return None.
1760 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1761 if (Ret.isEmpty(SE, /* IsSigned */ false))
1762 return None;
1763 return Ret;
1766 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM,
1767 LoopStandardAnalysisResults &AR,
1768 LPMUpdater &U) {
1769 Function *F = L.getHeader()->getParent();
1770 const auto &FAM =
1771 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1772 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
1773 InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI);
1774 auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) {
1775 if (!IsSubloop)
1776 U.addSiblingLoops(NL);
1778 bool Changed = IRCE.run(&L, LPMAddNewLoop);
1779 if (!Changed)
1780 return PreservedAnalyses::all();
1782 return getLoopPassPreservedAnalyses();
1785 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1786 if (skipLoop(L))
1787 return false;
1789 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1790 BranchProbabilityInfo &BPI =
1791 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1792 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1793 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1794 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1795 auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) {
1796 LPM.addLoop(*NL);
1798 return IRCE.run(L, LPMAddNewLoop);
1801 bool InductiveRangeCheckElimination::run(
1802 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1803 if (L->getBlocks().size() >= LoopSizeCutoff) {
1804 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1805 return false;
1808 BasicBlock *Preheader = L->getLoopPreheader();
1809 if (!Preheader) {
1810 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1811 return false;
1814 LLVMContext &Context = Preheader->getContext();
1815 SmallVector<InductiveRangeCheck, 16> RangeChecks;
1817 for (auto BBI : L->getBlocks())
1818 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1819 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1820 RangeChecks);
1822 if (RangeChecks.empty())
1823 return false;
1825 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1826 OS << "irce: looking at loop "; L->print(OS);
1827 OS << "irce: loop has " << RangeChecks.size()
1828 << " inductive range checks: \n";
1829 for (InductiveRangeCheck &IRC : RangeChecks)
1830 IRC.print(OS);
1833 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1835 if (PrintRangeChecks)
1836 PrintRecognizedRangeChecks(errs());
1838 const char *FailureReason = nullptr;
1839 Optional<LoopStructure> MaybeLoopStructure =
1840 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1841 if (!MaybeLoopStructure.hasValue()) {
1842 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1843 << FailureReason << "\n";);
1844 return false;
1846 LoopStructure LS = MaybeLoopStructure.getValue();
1847 const SCEVAddRecExpr *IndVar =
1848 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1850 Optional<InductiveRangeCheck::Range> SafeIterRange;
1851 Instruction *ExprInsertPt = Preheader->getTerminator();
1853 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1854 // Basing on the type of latch predicate, we interpret the IV iteration range
1855 // as signed or unsigned range. We use different min/max functions (signed or
1856 // unsigned) when intersecting this range with safe iteration ranges implied
1857 // by range checks.
1858 auto IntersectRange =
1859 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1861 IRBuilder<> B(ExprInsertPt);
1862 for (InductiveRangeCheck &IRC : RangeChecks) {
1863 auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1864 LS.IsSignedPredicate);
1865 if (Result.hasValue()) {
1866 auto MaybeSafeIterRange =
1867 IntersectRange(SE, SafeIterRange, Result.getValue());
1868 if (MaybeSafeIterRange.hasValue()) {
1869 assert(
1870 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1871 "We should never return empty ranges!");
1872 RangeChecksToEliminate.push_back(IRC);
1873 SafeIterRange = MaybeSafeIterRange.getValue();
1878 if (!SafeIterRange.hasValue())
1879 return false;
1881 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1882 SafeIterRange.getValue());
1883 bool Changed = LC.run();
1885 if (Changed) {
1886 auto PrintConstrainedLoopInfo = [L]() {
1887 dbgs() << "irce: in function ";
1888 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1889 dbgs() << "constrained ";
1890 L->print(dbgs());
1893 LLVM_DEBUG(PrintConstrainedLoopInfo());
1895 if (PrintChangedLoops)
1896 PrintConstrainedLoopInfo();
1898 // Optimize away the now-redundant range checks.
1900 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1901 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1902 ? ConstantInt::getTrue(Context)
1903 : ConstantInt::getFalse(Context);
1904 IRC.getCheckUse()->set(FoldedRangeCheck);
1908 return Changed;
1911 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1912 return new IRCELegacyPass();