1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Jump Threading pass.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
80 using namespace jumpthreading
;
82 #define DEBUG_TYPE "jump-threading"
84 STATISTIC(NumThreads
, "Number of jumps threaded");
85 STATISTIC(NumFolds
, "Number of terminators folded");
86 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
88 static cl::opt
<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90 cl::desc("Max block size to duplicate for jump threading"),
91 cl::init(6), cl::Hidden
);
93 static cl::opt
<unsigned>
94 ImplicationSearchThreshold(
95 "jump-threading-implication-search-threshold",
96 cl::desc("The number of predecessors to search for a stronger "
97 "condition to use to thread over a weaker condition"),
98 cl::init(3), cl::Hidden
);
100 static cl::opt
<bool> PrintLVIAfterJumpThreading(
101 "print-lvi-after-jump-threading",
102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107 /// This pass performs 'jump threading', which looks at blocks that have
108 /// multiple predecessors and multiple successors. If one or more of the
109 /// predecessors of the block can be proven to always jump to one of the
110 /// successors, we forward the edge from the predecessor to the successor by
111 /// duplicating the contents of this block.
113 /// An example of when this can occur is code like this:
120 /// In this case, the unconditional branch at the end of the first if can be
121 /// revectored to the false side of the second if.
122 class JumpThreading
: public FunctionPass
{
123 JumpThreadingPass Impl
;
126 static char ID
; // Pass identification
128 JumpThreading(int T
= -1) : FunctionPass(ID
), Impl(T
) {
129 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
132 bool runOnFunction(Function
&F
) override
;
134 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
135 AU
.addRequired
<DominatorTreeWrapperPass
>();
136 AU
.addPreserved
<DominatorTreeWrapperPass
>();
137 AU
.addRequired
<AAResultsWrapperPass
>();
138 AU
.addRequired
<LazyValueInfoWrapperPass
>();
139 AU
.addPreserved
<LazyValueInfoWrapperPass
>();
140 AU
.addPreserved
<GlobalsAAWrapperPass
>();
141 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
144 void releaseMemory() override
{ Impl
.releaseMemory(); }
147 } // end anonymous namespace
149 char JumpThreading::ID
= 0;
151 INITIALIZE_PASS_BEGIN(JumpThreading
, "jump-threading",
152 "Jump Threading", false, false)
153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass
)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
157 INITIALIZE_PASS_END(JumpThreading
, "jump-threading",
158 "Jump Threading", false, false)
160 // Public interface to the Jump Threading pass
161 FunctionPass
*llvm::createJumpThreadingPass(int Threshold
) {
162 return new JumpThreading(Threshold
);
165 JumpThreadingPass::JumpThreadingPass(int T
) {
166 BBDupThreshold
= (T
== -1) ? BBDuplicateThreshold
: unsigned(T
);
169 // Update branch probability information according to conditional
170 // branch probability. This is usually made possible for cloned branches
171 // in inline instances by the context specific profile in the caller.
183 // cond = PN([true, %A], [..., %B]); // PHI node
186 // ... // P(cond == true) = 1%
189 // Here we know that when block A is taken, cond must be true, which means
190 // P(cond == true | A) = 1
192 // Given that P(cond == true) = P(cond == true | A) * P(A) +
193 // P(cond == true | B) * P(B)
195 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
198 // P(A) is less than P(cond == true), i.e.
199 // P(t == true) <= P(cond == true)
201 // In other words, if we know P(cond == true) is unlikely, we know
202 // that P(t == true) is also unlikely.
204 static void updatePredecessorProfileMetadata(PHINode
*PN
, BasicBlock
*BB
) {
205 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
209 BranchProbability BP
;
210 uint64_t TrueWeight
, FalseWeight
;
211 if (!CondBr
->extractProfMetadata(TrueWeight
, FalseWeight
))
214 // Returns the outgoing edge of the dominating predecessor block
215 // that leads to the PhiNode's incoming block:
216 auto GetPredOutEdge
=
217 [](BasicBlock
*IncomingBB
,
218 BasicBlock
*PhiBB
) -> std::pair
<BasicBlock
*, BasicBlock
*> {
219 auto *PredBB
= IncomingBB
;
220 auto *SuccBB
= PhiBB
;
222 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
223 if (PredBr
&& PredBr
->isConditional())
224 return {PredBB
, SuccBB
};
225 auto *SinglePredBB
= PredBB
->getSinglePredecessor();
227 return {nullptr, nullptr};
229 PredBB
= SinglePredBB
;
233 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
234 Value
*PhiOpnd
= PN
->getIncomingValue(i
);
235 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(PhiOpnd
);
237 if (!CI
|| !CI
->getType()->isIntegerTy(1))
240 BP
= (CI
->isOne() ? BranchProbability::getBranchProbability(
241 TrueWeight
, TrueWeight
+ FalseWeight
)
242 : BranchProbability::getBranchProbability(
243 FalseWeight
, TrueWeight
+ FalseWeight
));
245 auto PredOutEdge
= GetPredOutEdge(PN
->getIncomingBlock(i
), BB
);
246 if (!PredOutEdge
.first
)
249 BasicBlock
*PredBB
= PredOutEdge
.first
;
250 BranchInst
*PredBr
= cast
<BranchInst
>(PredBB
->getTerminator());
252 uint64_t PredTrueWeight
, PredFalseWeight
;
253 // FIXME: We currently only set the profile data when it is missing.
254 // With PGO, this can be used to refine even existing profile data with
255 // context information. This needs to be done after more performance
257 if (PredBr
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
))
260 // We can not infer anything useful when BP >= 50%, because BP is the
261 // upper bound probability value.
262 if (BP
>= BranchProbability(50, 100))
265 SmallVector
<uint32_t, 2> Weights
;
266 if (PredBr
->getSuccessor(0) == PredOutEdge
.second
) {
267 Weights
.push_back(BP
.getNumerator());
268 Weights
.push_back(BP
.getCompl().getNumerator());
270 Weights
.push_back(BP
.getCompl().getNumerator());
271 Weights
.push_back(BP
.getNumerator());
273 PredBr
->setMetadata(LLVMContext::MD_prof
,
274 MDBuilder(PredBr
->getParent()->getContext())
275 .createBranchWeights(Weights
));
279 /// runOnFunction - Toplevel algorithm.
280 bool JumpThreading::runOnFunction(Function
&F
) {
283 auto TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
284 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
285 // DT if it's available.
286 auto DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
287 auto LVI
= &getAnalysis
<LazyValueInfoWrapperPass
>().getLVI();
288 auto AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
289 DomTreeUpdater
DTU(*DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
290 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
291 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
292 bool HasProfileData
= F
.hasProfileData();
293 if (HasProfileData
) {
294 LoopInfo LI
{DominatorTree(F
)};
295 BPI
.reset(new BranchProbabilityInfo(F
, LI
, TLI
));
296 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, LI
));
299 bool Changed
= Impl
.runImpl(F
, TLI
, LVI
, AA
, &DTU
, HasProfileData
,
300 std::move(BFI
), std::move(BPI
));
301 if (PrintLVIAfterJumpThreading
) {
302 dbgs() << "LVI for function '" << F
.getName() << "':\n";
303 LVI
->printLVI(F
, *DT
, dbgs());
308 PreservedAnalyses
JumpThreadingPass::run(Function
&F
,
309 FunctionAnalysisManager
&AM
) {
310 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
311 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
312 // DT if it's available.
313 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
314 auto &LVI
= AM
.getResult
<LazyValueAnalysis
>(F
);
315 auto &AA
= AM
.getResult
<AAManager
>(F
);
316 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
318 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
319 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
320 if (F
.hasProfileData()) {
321 LoopInfo LI
{DominatorTree(F
)};
322 BPI
.reset(new BranchProbabilityInfo(F
, LI
, &TLI
));
323 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, LI
));
326 bool Changed
= runImpl(F
, &TLI
, &LVI
, &AA
, &DTU
, HasProfileData
,
327 std::move(BFI
), std::move(BPI
));
330 return PreservedAnalyses::all();
331 PreservedAnalyses PA
;
332 PA
.preserve
<GlobalsAA
>();
333 PA
.preserve
<DominatorTreeAnalysis
>();
334 PA
.preserve
<LazyValueAnalysis
>();
338 bool JumpThreadingPass::runImpl(Function
&F
, TargetLibraryInfo
*TLI_
,
339 LazyValueInfo
*LVI_
, AliasAnalysis
*AA_
,
340 DomTreeUpdater
*DTU_
, bool HasProfileData_
,
341 std::unique_ptr
<BlockFrequencyInfo
> BFI_
,
342 std::unique_ptr
<BranchProbabilityInfo
> BPI_
) {
343 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F
.getName() << "'\n");
350 // When profile data is available, we need to update edge weights after
351 // successful jump threading, which requires both BPI and BFI being available.
352 HasProfileData
= HasProfileData_
;
353 auto *GuardDecl
= F
.getParent()->getFunction(
354 Intrinsic::getName(Intrinsic::experimental_guard
));
355 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
356 if (HasProfileData
) {
357 BPI
= std::move(BPI_
);
358 BFI
= std::move(BFI_
);
361 // JumpThreading must not processes blocks unreachable from entry. It's a
362 // waste of compute time and can potentially lead to hangs.
363 SmallPtrSet
<BasicBlock
*, 16> Unreachable
;
364 assert(DTU
&& "DTU isn't passed into JumpThreading before using it.");
365 assert(DTU
->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
366 DominatorTree
&DT
= DTU
->getDomTree();
368 if (!DT
.isReachableFromEntry(&BB
))
369 Unreachable
.insert(&BB
);
373 bool EverChanged
= false;
378 if (Unreachable
.count(&BB
))
380 while (ProcessBlock(&BB
)) // Thread all of the branches we can over BB.
382 // Stop processing BB if it's the entry or is now deleted. The following
383 // routines attempt to eliminate BB and locating a suitable replacement
384 // for the entry is non-trivial.
385 if (&BB
== &F
.getEntryBlock() || DTU
->isBBPendingDeletion(&BB
))
388 if (pred_empty(&BB
)) {
389 // When ProcessBlock makes BB unreachable it doesn't bother to fix up
390 // the instructions in it. We must remove BB to prevent invalid IR.
391 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB
.getName()
392 << "' with terminator: " << *BB
.getTerminator()
394 LoopHeaders
.erase(&BB
);
395 LVI
->eraseBlock(&BB
);
396 DeleteDeadBlock(&BB
, DTU
);
401 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
402 // is "almost empty", we attempt to merge BB with its sole successor.
403 auto *BI
= dyn_cast
<BranchInst
>(BB
.getTerminator());
404 if (BI
&& BI
->isUnconditional() &&
405 // The terminator must be the only non-phi instruction in BB.
406 BB
.getFirstNonPHIOrDbg()->isTerminator() &&
407 // Don't alter Loop headers and latches to ensure another pass can
408 // detect and transform nested loops later.
409 !LoopHeaders
.count(&BB
) && !LoopHeaders
.count(BI
->getSuccessor(0)) &&
410 TryToSimplifyUncondBranchFromEmptyBlock(&BB
, DTU
)) {
411 // BB is valid for cleanup here because we passed in DTU. F remains
412 // BB's parent until a DTU->getDomTree() event.
413 LVI
->eraseBlock(&BB
);
417 EverChanged
|= Changed
;
421 // Flush only the Dominator Tree.
427 // Replace uses of Cond with ToVal when safe to do so. If all uses are
428 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
429 // because we may incorrectly replace uses when guards/assumes are uses of
430 // of `Cond` and we used the guards/assume to reason about the `Cond` value
431 // at the end of block. RAUW unconditionally replaces all uses
432 // including the guards/assumes themselves and the uses before the
434 static void ReplaceFoldableUses(Instruction
*Cond
, Value
*ToVal
) {
435 assert(Cond
->getType() == ToVal
->getType());
436 auto *BB
= Cond
->getParent();
437 // We can unconditionally replace all uses in non-local blocks (i.e. uses
438 // strictly dominated by BB), since LVI information is true from the
440 replaceNonLocalUsesWith(Cond
, ToVal
);
441 for (Instruction
&I
: reverse(*BB
)) {
442 // Reached the Cond whose uses we are trying to replace, so there are no
446 // We only replace uses in instructions that are guaranteed to reach the end
447 // of BB, where we know Cond is ToVal.
448 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
450 I
.replaceUsesOfWith(Cond
, ToVal
);
452 if (Cond
->use_empty() && !Cond
->mayHaveSideEffects())
453 Cond
->eraseFromParent();
456 /// Return the cost of duplicating a piece of this block from first non-phi
457 /// and before StopAt instruction to thread across it. Stop scanning the block
458 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
459 static unsigned getJumpThreadDuplicationCost(BasicBlock
*BB
,
461 unsigned Threshold
) {
462 assert(StopAt
->getParent() == BB
&& "Not an instruction from proper BB?");
463 /// Ignore PHI nodes, these will be flattened when duplication happens.
464 BasicBlock::const_iterator
I(BB
->getFirstNonPHI());
466 // FIXME: THREADING will delete values that are just used to compute the
467 // branch, so they shouldn't count against the duplication cost.
470 if (BB
->getTerminator() == StopAt
) {
471 // Threading through a switch statement is particularly profitable. If this
472 // block ends in a switch, decrease its cost to make it more likely to
474 if (isa
<SwitchInst
>(StopAt
))
477 // The same holds for indirect branches, but slightly more so.
478 if (isa
<IndirectBrInst
>(StopAt
))
482 // Bump the threshold up so the early exit from the loop doesn't skip the
483 // terminator-based Size adjustment at the end.
486 // Sum up the cost of each instruction until we get to the terminator. Don't
487 // include the terminator because the copy won't include it.
489 for (; &*I
!= StopAt
; ++I
) {
491 // Stop scanning the block if we've reached the threshold.
492 if (Size
> Threshold
)
495 // Debugger intrinsics don't incur code size.
496 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
498 // If this is a pointer->pointer bitcast, it is free.
499 if (isa
<BitCastInst
>(I
) && I
->getType()->isPointerTy())
502 // Bail out if this instruction gives back a token type, it is not possible
503 // to duplicate it if it is used outside this BB.
504 if (I
->getType()->isTokenTy() && I
->isUsedOutsideOfBlock(BB
))
507 // All other instructions count for at least one unit.
510 // Calls are more expensive. If they are non-intrinsic calls, we model them
511 // as having cost of 4. If they are a non-vector intrinsic, we model them
512 // as having cost of 2 total, and if they are a vector intrinsic, we model
513 // them as having cost 1.
514 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
515 if (CI
->cannotDuplicate() || CI
->isConvergent())
516 // Blocks with NoDuplicate are modelled as having infinite cost, so they
517 // are never duplicated.
519 else if (!isa
<IntrinsicInst
>(CI
))
521 else if (!CI
->getType()->isVectorTy())
526 return Size
> Bonus
? Size
- Bonus
: 0;
529 /// FindLoopHeaders - We do not want jump threading to turn proper loop
530 /// structures into irreducible loops. Doing this breaks up the loop nesting
531 /// hierarchy and pessimizes later transformations. To prevent this from
532 /// happening, we first have to find the loop headers. Here we approximate this
533 /// by finding targets of backedges in the CFG.
535 /// Note that there definitely are cases when we want to allow threading of
536 /// edges across a loop header. For example, threading a jump from outside the
537 /// loop (the preheader) to an exit block of the loop is definitely profitable.
538 /// It is also almost always profitable to thread backedges from within the loop
539 /// to exit blocks, and is often profitable to thread backedges to other blocks
540 /// within the loop (forming a nested loop). This simple analysis is not rich
541 /// enough to track all of these properties and keep it up-to-date as the CFG
542 /// mutates, so we don't allow any of these transformations.
543 void JumpThreadingPass::FindLoopHeaders(Function
&F
) {
544 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
545 FindFunctionBackedges(F
, Edges
);
547 for (const auto &Edge
: Edges
)
548 LoopHeaders
.insert(Edge
.second
);
551 /// getKnownConstant - Helper method to determine if we can thread over a
552 /// terminator with the given value as its condition, and if so what value to
553 /// use for that. What kind of value this is depends on whether we want an
554 /// integer or a block address, but an undef is always accepted.
555 /// Returns null if Val is null or not an appropriate constant.
556 static Constant
*getKnownConstant(Value
*Val
, ConstantPreference Preference
) {
560 // Undef is "known" enough.
561 if (UndefValue
*U
= dyn_cast
<UndefValue
>(Val
))
564 if (Preference
== WantBlockAddress
)
565 return dyn_cast
<BlockAddress
>(Val
->stripPointerCasts());
567 return dyn_cast
<ConstantInt
>(Val
);
570 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
571 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
572 /// in any of our predecessors. If so, return the known list of value and pred
573 /// BB in the result vector.
575 /// This returns true if there were any known values.
576 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
577 Value
*V
, BasicBlock
*BB
, PredValueInfo
&Result
,
578 ConstantPreference Preference
,
579 DenseSet
<std::pair
<Value
*, BasicBlock
*>> &RecursionSet
,
581 // This method walks up use-def chains recursively. Because of this, we could
582 // get into an infinite loop going around loops in the use-def chain. To
583 // prevent this, keep track of what (value, block) pairs we've already visited
584 // and terminate the search if we loop back to them
585 if (!RecursionSet
.insert(std::make_pair(V
, BB
)).second
)
588 // If V is a constant, then it is known in all predecessors.
589 if (Constant
*KC
= getKnownConstant(V
, Preference
)) {
590 for (BasicBlock
*Pred
: predecessors(BB
))
591 Result
.push_back(std::make_pair(KC
, Pred
));
593 return !Result
.empty();
596 // If V is a non-instruction value, or an instruction in a different block,
597 // then it can't be derived from a PHI.
598 Instruction
*I
= dyn_cast
<Instruction
>(V
);
599 if (!I
|| I
->getParent() != BB
) {
601 // Okay, if this is a live-in value, see if it has a known value at the end
602 // of any of our predecessors.
604 // FIXME: This should be an edge property, not a block end property.
605 /// TODO: Per PR2563, we could infer value range information about a
606 /// predecessor based on its terminator.
608 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
609 // "I" is a non-local compare-with-a-constant instruction. This would be
610 // able to handle value inequalities better, for example if the compare is
611 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
612 // Perhaps getConstantOnEdge should be smart enough to do this?
614 if (DTU
->hasPendingDomTreeUpdates())
618 for (BasicBlock
*P
: predecessors(BB
)) {
619 // If the value is known by LazyValueInfo to be a constant in a
620 // predecessor, use that information to try to thread this block.
621 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
, CxtI
);
622 if (Constant
*KC
= getKnownConstant(PredCst
, Preference
))
623 Result
.push_back(std::make_pair(KC
, P
));
626 return !Result
.empty();
629 /// If I is a PHI node, then we know the incoming values for any constants.
630 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
631 if (DTU
->hasPendingDomTreeUpdates())
635 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
636 Value
*InVal
= PN
->getIncomingValue(i
);
637 if (Constant
*KC
= getKnownConstant(InVal
, Preference
)) {
638 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
640 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
641 PN
->getIncomingBlock(i
),
643 if (Constant
*KC
= getKnownConstant(CI
, Preference
))
644 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
648 return !Result
.empty();
651 // Handle Cast instructions. Only see through Cast when the source operand is
652 // PHI or Cmp to save the compilation time.
653 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
654 Value
*Source
= CI
->getOperand(0);
655 if (!isa
<PHINode
>(Source
) && !isa
<CmpInst
>(Source
))
657 ComputeValueKnownInPredecessorsImpl(Source
, BB
, Result
, Preference
,
662 // Convert the known values.
663 for (auto &R
: Result
)
664 R
.first
= ConstantExpr::getCast(CI
->getOpcode(), R
.first
, CI
->getType());
669 // Handle some boolean conditions.
670 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
671 assert(Preference
== WantInteger
&& "One-bit non-integer type?");
673 // X & false -> false
674 if (I
->getOpcode() == Instruction::Or
||
675 I
->getOpcode() == Instruction::And
) {
676 PredValueInfoTy LHSVals
, RHSVals
;
678 ComputeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, LHSVals
,
679 WantInteger
, RecursionSet
, CxtI
);
680 ComputeValueKnownInPredecessorsImpl(I
->getOperand(1), BB
, RHSVals
,
681 WantInteger
, RecursionSet
, CxtI
);
683 if (LHSVals
.empty() && RHSVals
.empty())
686 ConstantInt
*InterestingVal
;
687 if (I
->getOpcode() == Instruction::Or
)
688 InterestingVal
= ConstantInt::getTrue(I
->getContext());
690 InterestingVal
= ConstantInt::getFalse(I
->getContext());
692 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
694 // Scan for the sentinel. If we find an undef, force it to the
695 // interesting value: x|undef -> true and x&undef -> false.
696 for (const auto &LHSVal
: LHSVals
)
697 if (LHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(LHSVal
.first
)) {
698 Result
.emplace_back(InterestingVal
, LHSVal
.second
);
699 LHSKnownBBs
.insert(LHSVal
.second
);
701 for (const auto &RHSVal
: RHSVals
)
702 if (RHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(RHSVal
.first
)) {
703 // If we already inferred a value for this block on the LHS, don't
705 if (!LHSKnownBBs
.count(RHSVal
.second
))
706 Result
.emplace_back(InterestingVal
, RHSVal
.second
);
709 return !Result
.empty();
712 // Handle the NOT form of XOR.
713 if (I
->getOpcode() == Instruction::Xor
&&
714 isa
<ConstantInt
>(I
->getOperand(1)) &&
715 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
716 ComputeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, Result
,
717 WantInteger
, RecursionSet
, CxtI
);
721 // Invert the known values.
722 for (auto &R
: Result
)
723 R
.first
= ConstantExpr::getNot(R
.first
);
728 // Try to simplify some other binary operator values.
729 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
730 assert(Preference
!= WantBlockAddress
731 && "A binary operator creating a block address?");
732 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
733 PredValueInfoTy LHSVals
;
734 ComputeValueKnownInPredecessorsImpl(BO
->getOperand(0), BB
, LHSVals
,
735 WantInteger
, RecursionSet
, CxtI
);
737 // Try to use constant folding to simplify the binary operator.
738 for (const auto &LHSVal
: LHSVals
) {
739 Constant
*V
= LHSVal
.first
;
740 Constant
*Folded
= ConstantExpr::get(BO
->getOpcode(), V
, CI
);
742 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
743 Result
.push_back(std::make_pair(KC
, LHSVal
.second
));
747 return !Result
.empty();
750 // Handle compare with phi operand, where the PHI is defined in this block.
751 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
752 assert(Preference
== WantInteger
&& "Compares only produce integers");
753 Type
*CmpType
= Cmp
->getType();
754 Value
*CmpLHS
= Cmp
->getOperand(0);
755 Value
*CmpRHS
= Cmp
->getOperand(1);
756 CmpInst::Predicate Pred
= Cmp
->getPredicate();
758 PHINode
*PN
= dyn_cast
<PHINode
>(CmpLHS
);
760 PN
= dyn_cast
<PHINode
>(CmpRHS
);
761 if (PN
&& PN
->getParent() == BB
) {
762 const DataLayout
&DL
= PN
->getModule()->getDataLayout();
763 // We can do this simplification if any comparisons fold to true or false.
765 if (DTU
->hasPendingDomTreeUpdates())
769 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
770 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
773 LHS
= PN
->getIncomingValue(i
);
774 RHS
= CmpRHS
->DoPHITranslation(BB
, PredBB
);
776 LHS
= CmpLHS
->DoPHITranslation(BB
, PredBB
);
777 RHS
= PN
->getIncomingValue(i
);
779 Value
*Res
= SimplifyCmpInst(Pred
, LHS
, RHS
, {DL
});
781 if (!isa
<Constant
>(RHS
))
784 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
785 auto LHSInst
= dyn_cast
<Instruction
>(LHS
);
786 if (LHSInst
&& LHSInst
->getParent() == BB
)
789 LazyValueInfo::Tristate
790 ResT
= LVI
->getPredicateOnEdge(Pred
, LHS
,
791 cast
<Constant
>(RHS
), PredBB
, BB
,
793 if (ResT
== LazyValueInfo::Unknown
)
795 Res
= ConstantInt::get(Type::getInt1Ty(LHS
->getContext()), ResT
);
798 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
799 Result
.push_back(std::make_pair(KC
, PredBB
));
802 return !Result
.empty();
805 // If comparing a live-in value against a constant, see if we know the
806 // live-in value on any predecessors.
807 if (isa
<Constant
>(CmpRHS
) && !CmpType
->isVectorTy()) {
808 Constant
*CmpConst
= cast
<Constant
>(CmpRHS
);
810 if (!isa
<Instruction
>(CmpLHS
) ||
811 cast
<Instruction
>(CmpLHS
)->getParent() != BB
) {
812 if (DTU
->hasPendingDomTreeUpdates())
816 for (BasicBlock
*P
: predecessors(BB
)) {
817 // If the value is known by LazyValueInfo to be a constant in a
818 // predecessor, use that information to try to thread this block.
819 LazyValueInfo::Tristate Res
=
820 LVI
->getPredicateOnEdge(Pred
, CmpLHS
,
821 CmpConst
, P
, BB
, CxtI
? CxtI
: Cmp
);
822 if (Res
== LazyValueInfo::Unknown
)
825 Constant
*ResC
= ConstantInt::get(CmpType
, Res
);
826 Result
.push_back(std::make_pair(ResC
, P
));
829 return !Result
.empty();
832 // InstCombine can fold some forms of constant range checks into
833 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
836 using namespace PatternMatch
;
839 ConstantInt
*AddConst
;
840 if (isa
<ConstantInt
>(CmpConst
) &&
841 match(CmpLHS
, m_Add(m_Value(AddLHS
), m_ConstantInt(AddConst
)))) {
842 if (!isa
<Instruction
>(AddLHS
) ||
843 cast
<Instruction
>(AddLHS
)->getParent() != BB
) {
844 if (DTU
->hasPendingDomTreeUpdates())
848 for (BasicBlock
*P
: predecessors(BB
)) {
849 // If the value is known by LazyValueInfo to be a ConstantRange in
850 // a predecessor, use that information to try to thread this
852 ConstantRange CR
= LVI
->getConstantRangeOnEdge(
853 AddLHS
, P
, BB
, CxtI
? CxtI
: cast
<Instruction
>(CmpLHS
));
854 // Propagate the range through the addition.
855 CR
= CR
.add(AddConst
->getValue());
857 // Get the range where the compare returns true.
858 ConstantRange CmpRange
= ConstantRange::makeExactICmpRegion(
859 Pred
, cast
<ConstantInt
>(CmpConst
)->getValue());
862 if (CmpRange
.contains(CR
))
863 ResC
= ConstantInt::getTrue(CmpType
);
864 else if (CmpRange
.inverse().contains(CR
))
865 ResC
= ConstantInt::getFalse(CmpType
);
869 Result
.push_back(std::make_pair(ResC
, P
));
872 return !Result
.empty();
877 // Try to find a constant value for the LHS of a comparison,
878 // and evaluate it statically if we can.
879 PredValueInfoTy LHSVals
;
880 ComputeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, LHSVals
,
881 WantInteger
, RecursionSet
, CxtI
);
883 for (const auto &LHSVal
: LHSVals
) {
884 Constant
*V
= LHSVal
.first
;
885 Constant
*Folded
= ConstantExpr::getCompare(Pred
, V
, CmpConst
);
886 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
887 Result
.push_back(std::make_pair(KC
, LHSVal
.second
));
890 return !Result
.empty();
894 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
895 // Handle select instructions where at least one operand is a known constant
896 // and we can figure out the condition value for any predecessor block.
897 Constant
*TrueVal
= getKnownConstant(SI
->getTrueValue(), Preference
);
898 Constant
*FalseVal
= getKnownConstant(SI
->getFalseValue(), Preference
);
899 PredValueInfoTy Conds
;
900 if ((TrueVal
|| FalseVal
) &&
901 ComputeValueKnownInPredecessorsImpl(SI
->getCondition(), BB
, Conds
,
902 WantInteger
, RecursionSet
, CxtI
)) {
903 for (auto &C
: Conds
) {
904 Constant
*Cond
= C
.first
;
906 // Figure out what value to use for the condition.
908 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Cond
)) {
910 KnownCond
= CI
->isOne();
912 assert(isa
<UndefValue
>(Cond
) && "Unexpected condition value");
913 // Either operand will do, so be sure to pick the one that's a known
915 // FIXME: Do this more cleverly if both values are known constants?
916 KnownCond
= (TrueVal
!= nullptr);
919 // See if the select has a known constant value for this predecessor.
920 if (Constant
*Val
= KnownCond
? TrueVal
: FalseVal
)
921 Result
.push_back(std::make_pair(Val
, C
.second
));
924 return !Result
.empty();
928 // If all else fails, see if LVI can figure out a constant value for us.
929 if (DTU
->hasPendingDomTreeUpdates())
933 Constant
*CI
= LVI
->getConstant(V
, BB
, CxtI
);
934 if (Constant
*KC
= getKnownConstant(CI
, Preference
)) {
935 for (BasicBlock
*Pred
: predecessors(BB
))
936 Result
.push_back(std::make_pair(KC
, Pred
));
939 return !Result
.empty();
942 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
943 /// in an undefined jump, decide which block is best to revector to.
945 /// Since we can pick an arbitrary destination, we pick the successor with the
946 /// fewest predecessors. This should reduce the in-degree of the others.
947 static unsigned GetBestDestForJumpOnUndef(BasicBlock
*BB
) {
948 Instruction
*BBTerm
= BB
->getTerminator();
949 unsigned MinSucc
= 0;
950 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
951 // Compute the successor with the minimum number of predecessors.
952 unsigned MinNumPreds
= pred_size(TestBB
);
953 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
954 TestBB
= BBTerm
->getSuccessor(i
);
955 unsigned NumPreds
= pred_size(TestBB
);
956 if (NumPreds
< MinNumPreds
) {
958 MinNumPreds
= NumPreds
;
965 static bool hasAddressTakenAndUsed(BasicBlock
*BB
) {
966 if (!BB
->hasAddressTaken()) return false;
968 // If the block has its address taken, it may be a tree of dead constants
969 // hanging off of it. These shouldn't keep the block alive.
970 BlockAddress
*BA
= BlockAddress::get(BB
);
971 BA
->removeDeadConstantUsers();
972 return !BA
->use_empty();
975 /// ProcessBlock - If there are any predecessors whose control can be threaded
976 /// through to a successor, transform them now.
977 bool JumpThreadingPass::ProcessBlock(BasicBlock
*BB
) {
978 // If the block is trivially dead, just return and let the caller nuke it.
979 // This simplifies other transformations.
980 if (DTU
->isBBPendingDeletion(BB
) ||
981 (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()))
984 // If this block has a single predecessor, and if that pred has a single
985 // successor, merge the blocks. This encourages recursive jump threading
986 // because now the condition in this block can be threaded through
987 // predecessors of our predecessor block.
988 if (BasicBlock
*SinglePred
= BB
->getSinglePredecessor()) {
989 const Instruction
*TI
= SinglePred
->getTerminator();
990 if (!TI
->isExceptionalTerminator() && TI
->getNumSuccessors() == 1 &&
991 SinglePred
!= BB
&& !hasAddressTakenAndUsed(BB
)) {
992 // If SinglePred was a loop header, BB becomes one.
993 if (LoopHeaders
.erase(SinglePred
))
994 LoopHeaders
.insert(BB
);
996 LVI
->eraseBlock(SinglePred
);
997 MergeBasicBlockIntoOnlyPred(BB
, DTU
);
999 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1000 // BB code within one basic block `BB`), we need to invalidate the LVI
1001 // information associated with BB, because the LVI information need not be
1002 // true for all of BB after the merge. For example,
1003 // Before the merge, LVI info and code is as follows:
1004 // SinglePred: <LVI info1 for %p val>
1006 // call @exit() // need not transfer execution to successor.
1007 // assume(%p) // from this point on %p is true
1009 // BB: <LVI info2 for %p val, i.e. %p is true>
1013 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1014 // (info2 and info1 respectively). After the merge and the deletion of the
1015 // LVI info1 for SinglePred. We have the following code:
1016 // BB: <LVI info2 for %p val>
1020 // %x = use of %p <-- LVI info2 is correct from here onwards.
1022 // LVI info2 for BB is incorrect at the beginning of BB.
1024 // Invalidate LVI information for BB if the LVI is not provably true for
1026 if (!isGuaranteedToTransferExecutionToSuccessor(BB
))
1027 LVI
->eraseBlock(BB
);
1032 if (TryToUnfoldSelectInCurrBB(BB
))
1035 // Look if we can propagate guards to predecessors.
1036 if (HasGuards
&& ProcessGuards(BB
))
1039 // What kind of constant we're looking for.
1040 ConstantPreference Preference
= WantInteger
;
1042 // Look to see if the terminator is a conditional branch, switch or indirect
1043 // branch, if not we can't thread it.
1045 Instruction
*Terminator
= BB
->getTerminator();
1046 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Terminator
)) {
1047 // Can't thread an unconditional jump.
1048 if (BI
->isUnconditional()) return false;
1049 Condition
= BI
->getCondition();
1050 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Terminator
)) {
1051 Condition
= SI
->getCondition();
1052 } else if (IndirectBrInst
*IB
= dyn_cast
<IndirectBrInst
>(Terminator
)) {
1053 // Can't thread indirect branch with no successors.
1054 if (IB
->getNumSuccessors() == 0) return false;
1055 Condition
= IB
->getAddress()->stripPointerCasts();
1056 Preference
= WantBlockAddress
;
1058 return false; // Must be an invoke or callbr.
1061 // Run constant folding to see if we can reduce the condition to a simple
1063 if (Instruction
*I
= dyn_cast
<Instruction
>(Condition
)) {
1065 ConstantFoldInstruction(I
, BB
->getModule()->getDataLayout(), TLI
);
1067 I
->replaceAllUsesWith(SimpleVal
);
1068 if (isInstructionTriviallyDead(I
, TLI
))
1069 I
->eraseFromParent();
1070 Condition
= SimpleVal
;
1074 // If the terminator is branching on an undef, we can pick any of the
1075 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
1076 if (isa
<UndefValue
>(Condition
)) {
1077 unsigned BestSucc
= GetBestDestForJumpOnUndef(BB
);
1078 std::vector
<DominatorTree::UpdateType
> Updates
;
1080 // Fold the branch/switch.
1081 Instruction
*BBTerm
= BB
->getTerminator();
1082 Updates
.reserve(BBTerm
->getNumSuccessors());
1083 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
1084 if (i
== BestSucc
) continue;
1085 BasicBlock
*Succ
= BBTerm
->getSuccessor(i
);
1086 Succ
->removePredecessor(BB
, true);
1087 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1090 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1091 << "' folding undef terminator: " << *BBTerm
<< '\n');
1092 BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
);
1093 BBTerm
->eraseFromParent();
1094 DTU
->applyUpdates(Updates
);
1098 // If the terminator of this block is branching on a constant, simplify the
1099 // terminator to an unconditional branch. This can occur due to threading in
1101 if (getKnownConstant(Condition
, Preference
)) {
1102 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1103 << "' folding terminator: " << *BB
->getTerminator()
1106 ConstantFoldTerminator(BB
, true, nullptr, DTU
);
1110 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
1112 // All the rest of our checks depend on the condition being an instruction.
1114 // FIXME: Unify this with code below.
1115 if (ProcessThreadableEdges(Condition
, BB
, Preference
, Terminator
))
1120 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondInst
)) {
1121 // If we're branching on a conditional, LVI might be able to determine
1122 // it's value at the branch instruction. We only handle comparisons
1123 // against a constant at this time.
1124 // TODO: This should be extended to handle switches as well.
1125 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
1126 Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1));
1127 if (CondBr
&& CondConst
) {
1128 // We should have returned as soon as we turn a conditional branch to
1129 // unconditional. Because its no longer interesting as far as jump
1130 // threading is concerned.
1131 assert(CondBr
->isConditional() && "Threading on unconditional terminator");
1133 if (DTU
->hasPendingDomTreeUpdates())
1137 LazyValueInfo::Tristate Ret
=
1138 LVI
->getPredicateAt(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
1140 if (Ret
!= LazyValueInfo::Unknown
) {
1141 unsigned ToRemove
= Ret
== LazyValueInfo::True
? 1 : 0;
1142 unsigned ToKeep
= Ret
== LazyValueInfo::True
? 0 : 1;
1143 BasicBlock
*ToRemoveSucc
= CondBr
->getSuccessor(ToRemove
);
1144 ToRemoveSucc
->removePredecessor(BB
, true);
1145 BranchInst::Create(CondBr
->getSuccessor(ToKeep
), CondBr
);
1146 CondBr
->eraseFromParent();
1147 if (CondCmp
->use_empty())
1148 CondCmp
->eraseFromParent();
1149 // We can safely replace *some* uses of the CondInst if it has
1150 // exactly one value as returned by LVI. RAUW is incorrect in the
1151 // presence of guards and assumes, that have the `Cond` as the use. This
1152 // is because we use the guards/assume to reason about the `Cond` value
1153 // at the end of block, but RAUW unconditionally replaces all uses
1154 // including the guards/assumes themselves and the uses before the
1156 else if (CondCmp
->getParent() == BB
) {
1157 auto *CI
= Ret
== LazyValueInfo::True
?
1158 ConstantInt::getTrue(CondCmp
->getType()) :
1159 ConstantInt::getFalse(CondCmp
->getType());
1160 ReplaceFoldableUses(CondCmp
, CI
);
1162 DTU
->deleteEdgeRelaxed(BB
, ToRemoveSucc
);
1166 // We did not manage to simplify this branch, try to see whether
1167 // CondCmp depends on a known phi-select pattern.
1168 if (TryToUnfoldSelect(CondCmp
, BB
))
1173 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
1174 TryToUnfoldSelect(SI
, BB
);
1176 // Check for some cases that are worth simplifying. Right now we want to look
1177 // for loads that are used by a switch or by the condition for the branch. If
1178 // we see one, check to see if it's partially redundant. If so, insert a PHI
1179 // which can then be used to thread the values.
1180 Value
*SimplifyValue
= CondInst
;
1181 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
1182 if (isa
<Constant
>(CondCmp
->getOperand(1)))
1183 SimplifyValue
= CondCmp
->getOperand(0);
1185 // TODO: There are other places where load PRE would be profitable, such as
1186 // more complex comparisons.
1187 if (LoadInst
*LoadI
= dyn_cast
<LoadInst
>(SimplifyValue
))
1188 if (SimplifyPartiallyRedundantLoad(LoadI
))
1191 // Before threading, try to propagate profile data backwards:
1192 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
1193 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1194 updatePredecessorProfileMetadata(PN
, BB
);
1196 // Handle a variety of cases where we are branching on something derived from
1197 // a PHI node in the current block. If we can prove that any predecessors
1198 // compute a predictable value based on a PHI node, thread those predecessors.
1199 if (ProcessThreadableEdges(CondInst
, BB
, Preference
, Terminator
))
1202 // If this is an otherwise-unfoldable branch on a phi node in the current
1203 // block, see if we can simplify.
1204 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
1205 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1206 return ProcessBranchOnPHI(PN
);
1208 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1209 if (CondInst
->getOpcode() == Instruction::Xor
&&
1210 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1211 return ProcessBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
1213 // Search for a stronger dominating condition that can be used to simplify a
1214 // conditional branch leaving BB.
1215 if (ProcessImpliedCondition(BB
))
1221 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock
*BB
) {
1222 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
1223 if (!BI
|| !BI
->isConditional())
1226 Value
*Cond
= BI
->getCondition();
1227 BasicBlock
*CurrentBB
= BB
;
1228 BasicBlock
*CurrentPred
= BB
->getSinglePredecessor();
1231 auto &DL
= BB
->getModule()->getDataLayout();
1233 while (CurrentPred
&& Iter
++ < ImplicationSearchThreshold
) {
1234 auto *PBI
= dyn_cast
<BranchInst
>(CurrentPred
->getTerminator());
1235 if (!PBI
|| !PBI
->isConditional())
1237 if (PBI
->getSuccessor(0) != CurrentBB
&& PBI
->getSuccessor(1) != CurrentBB
)
1240 bool CondIsTrue
= PBI
->getSuccessor(0) == CurrentBB
;
1241 Optional
<bool> Implication
=
1242 isImpliedCondition(PBI
->getCondition(), Cond
, DL
, CondIsTrue
);
1244 BasicBlock
*KeepSucc
= BI
->getSuccessor(*Implication
? 0 : 1);
1245 BasicBlock
*RemoveSucc
= BI
->getSuccessor(*Implication
? 1 : 0);
1246 RemoveSucc
->removePredecessor(BB
);
1247 BranchInst::Create(KeepSucc
, BI
);
1248 BI
->eraseFromParent();
1249 DTU
->deleteEdgeRelaxed(BB
, RemoveSucc
);
1252 CurrentBB
= CurrentPred
;
1253 CurrentPred
= CurrentBB
->getSinglePredecessor();
1259 /// Return true if Op is an instruction defined in the given block.
1260 static bool isOpDefinedInBlock(Value
*Op
, BasicBlock
*BB
) {
1261 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
1262 if (OpInst
->getParent() == BB
)
1267 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1268 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1269 /// This is an important optimization that encourages jump threading, and needs
1270 /// to be run interlaced with other jump threading tasks.
1271 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst
*LoadI
) {
1272 // Don't hack volatile and ordered loads.
1273 if (!LoadI
->isUnordered()) return false;
1275 // If the load is defined in a block with exactly one predecessor, it can't be
1276 // partially redundant.
1277 BasicBlock
*LoadBB
= LoadI
->getParent();
1278 if (LoadBB
->getSinglePredecessor())
1281 // If the load is defined in an EH pad, it can't be partially redundant,
1282 // because the edges between the invoke and the EH pad cannot have other
1283 // instructions between them.
1284 if (LoadBB
->isEHPad())
1287 Value
*LoadedPtr
= LoadI
->getOperand(0);
1289 // If the loaded operand is defined in the LoadBB and its not a phi,
1290 // it can't be available in predecessors.
1291 if (isOpDefinedInBlock(LoadedPtr
, LoadBB
) && !isa
<PHINode
>(LoadedPtr
))
1294 // Scan a few instructions up from the load, to see if it is obviously live at
1295 // the entry to its block.
1296 BasicBlock::iterator
BBIt(LoadI
);
1298 if (Value
*AvailableVal
= FindAvailableLoadedValue(
1299 LoadI
, LoadBB
, BBIt
, DefMaxInstsToScan
, AA
, &IsLoadCSE
)) {
1300 // If the value of the load is locally available within the block, just use
1301 // it. This frequently occurs for reg2mem'd allocas.
1304 LoadInst
*NLoadI
= cast
<LoadInst
>(AvailableVal
);
1305 combineMetadataForCSE(NLoadI
, LoadI
, false);
1308 // If the returned value is the load itself, replace with an undef. This can
1309 // only happen in dead loops.
1310 if (AvailableVal
== LoadI
)
1311 AvailableVal
= UndefValue::get(LoadI
->getType());
1312 if (AvailableVal
->getType() != LoadI
->getType())
1313 AvailableVal
= CastInst::CreateBitOrPointerCast(
1314 AvailableVal
, LoadI
->getType(), "", LoadI
);
1315 LoadI
->replaceAllUsesWith(AvailableVal
);
1316 LoadI
->eraseFromParent();
1320 // Otherwise, if we scanned the whole block and got to the top of the block,
1321 // we know the block is locally transparent to the load. If not, something
1322 // might clobber its value.
1323 if (BBIt
!= LoadBB
->begin())
1326 // If all of the loads and stores that feed the value have the same AA tags,
1327 // then we can propagate them onto any newly inserted loads.
1329 LoadI
->getAAMetadata(AATags
);
1331 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
1333 using AvailablePredsTy
= SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8>;
1335 AvailablePredsTy AvailablePreds
;
1336 BasicBlock
*OneUnavailablePred
= nullptr;
1337 SmallVector
<LoadInst
*, 8> CSELoads
;
1339 // If we got here, the loaded value is transparent through to the start of the
1340 // block. Check to see if it is available in any of the predecessor blocks.
1341 for (BasicBlock
*PredBB
: predecessors(LoadBB
)) {
1342 // If we already scanned this predecessor, skip it.
1343 if (!PredsScanned
.insert(PredBB
).second
)
1346 BBIt
= PredBB
->end();
1347 unsigned NumScanedInst
= 0;
1348 Value
*PredAvailable
= nullptr;
1349 // NOTE: We don't CSE load that is volatile or anything stronger than
1350 // unordered, that should have been checked when we entered the function.
1351 assert(LoadI
->isUnordered() &&
1352 "Attempting to CSE volatile or atomic loads");
1353 // If this is a load on a phi pointer, phi-translate it and search
1354 // for available load/store to the pointer in predecessors.
1355 Value
*Ptr
= LoadedPtr
->DoPHITranslation(LoadBB
, PredBB
);
1356 PredAvailable
= FindAvailablePtrLoadStore(
1357 Ptr
, LoadI
->getType(), LoadI
->isAtomic(), PredBB
, BBIt
,
1358 DefMaxInstsToScan
, AA
, &IsLoadCSE
, &NumScanedInst
);
1360 // If PredBB has a single predecessor, continue scanning through the
1361 // single predecessor.
1362 BasicBlock
*SinglePredBB
= PredBB
;
1363 while (!PredAvailable
&& SinglePredBB
&& BBIt
== SinglePredBB
->begin() &&
1364 NumScanedInst
< DefMaxInstsToScan
) {
1365 SinglePredBB
= SinglePredBB
->getSinglePredecessor();
1367 BBIt
= SinglePredBB
->end();
1368 PredAvailable
= FindAvailablePtrLoadStore(
1369 Ptr
, LoadI
->getType(), LoadI
->isAtomic(), SinglePredBB
, BBIt
,
1370 (DefMaxInstsToScan
- NumScanedInst
), AA
, &IsLoadCSE
,
1375 if (!PredAvailable
) {
1376 OneUnavailablePred
= PredBB
;
1381 CSELoads
.push_back(cast
<LoadInst
>(PredAvailable
));
1383 // If so, this load is partially redundant. Remember this info so that we
1384 // can create a PHI node.
1385 AvailablePreds
.push_back(std::make_pair(PredBB
, PredAvailable
));
1388 // If the loaded value isn't available in any predecessor, it isn't partially
1390 if (AvailablePreds
.empty()) return false;
1392 // Okay, the loaded value is available in at least one (and maybe all!)
1393 // predecessors. If the value is unavailable in more than one unique
1394 // predecessor, we want to insert a merge block for those common predecessors.
1395 // This ensures that we only have to insert one reload, thus not increasing
1397 BasicBlock
*UnavailablePred
= nullptr;
1399 // If the value is unavailable in one of predecessors, we will end up
1400 // inserting a new instruction into them. It is only valid if all the
1401 // instructions before LoadI are guaranteed to pass execution to its
1402 // successor, or if LoadI is safe to speculate.
1403 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1404 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1405 // It requires domination tree analysis, so for this simple case it is an
1407 if (PredsScanned
.size() != AvailablePreds
.size() &&
1408 !isSafeToSpeculativelyExecute(LoadI
))
1409 for (auto I
= LoadBB
->begin(); &*I
!= LoadI
; ++I
)
1410 if (!isGuaranteedToTransferExecutionToSuccessor(&*I
))
1413 // If there is exactly one predecessor where the value is unavailable, the
1414 // already computed 'OneUnavailablePred' block is it. If it ends in an
1415 // unconditional branch, we know that it isn't a critical edge.
1416 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
1417 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
1418 UnavailablePred
= OneUnavailablePred
;
1419 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
1420 // Otherwise, we had multiple unavailable predecessors or we had a critical
1421 // edge from the one.
1422 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
1423 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
1425 for (const auto &AvailablePred
: AvailablePreds
)
1426 AvailablePredSet
.insert(AvailablePred
.first
);
1428 // Add all the unavailable predecessors to the PredsToSplit list.
1429 for (BasicBlock
*P
: predecessors(LoadBB
)) {
1430 // If the predecessor is an indirect goto, we can't split the edge.
1432 if (isa
<IndirectBrInst
>(P
->getTerminator()) ||
1433 isa
<CallBrInst
>(P
->getTerminator()))
1436 if (!AvailablePredSet
.count(P
))
1437 PredsToSplit
.push_back(P
);
1440 // Split them out to their own block.
1441 UnavailablePred
= SplitBlockPreds(LoadBB
, PredsToSplit
, "thread-pre-split");
1444 // If the value isn't available in all predecessors, then there will be
1445 // exactly one where it isn't available. Insert a load on that edge and add
1446 // it to the AvailablePreds list.
1447 if (UnavailablePred
) {
1448 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
1449 "Can't handle critical edge here!");
1450 LoadInst
*NewVal
= new LoadInst(
1451 LoadI
->getType(), LoadedPtr
->DoPHITranslation(LoadBB
, UnavailablePred
),
1452 LoadI
->getName() + ".pr", false, LoadI
->getAlignment(),
1453 LoadI
->getOrdering(), LoadI
->getSyncScopeID(),
1454 UnavailablePred
->getTerminator());
1455 NewVal
->setDebugLoc(LoadI
->getDebugLoc());
1457 NewVal
->setAAMetadata(AATags
);
1459 AvailablePreds
.push_back(std::make_pair(UnavailablePred
, NewVal
));
1462 // Now we know that each predecessor of this block has a value in
1463 // AvailablePreds, sort them for efficient access as we're walking the preds.
1464 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
1466 // Create a PHI node at the start of the block for the PRE'd load value.
1467 pred_iterator PB
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
1468 PHINode
*PN
= PHINode::Create(LoadI
->getType(), std::distance(PB
, PE
), "",
1470 PN
->takeName(LoadI
);
1471 PN
->setDebugLoc(LoadI
->getDebugLoc());
1473 // Insert new entries into the PHI for each predecessor. A single block may
1474 // have multiple entries here.
1475 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
1476 BasicBlock
*P
= *PI
;
1477 AvailablePredsTy::iterator I
=
1478 std::lower_bound(AvailablePreds
.begin(), AvailablePreds
.end(),
1479 std::make_pair(P
, (Value
*)nullptr));
1481 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
1482 "Didn't find entry for predecessor!");
1484 // If we have an available predecessor but it requires casting, insert the
1485 // cast in the predecessor and use the cast. Note that we have to update the
1486 // AvailablePreds vector as we go so that all of the PHI entries for this
1487 // predecessor use the same bitcast.
1488 Value
*&PredV
= I
->second
;
1489 if (PredV
->getType() != LoadI
->getType())
1490 PredV
= CastInst::CreateBitOrPointerCast(PredV
, LoadI
->getType(), "",
1491 P
->getTerminator());
1493 PN
->addIncoming(PredV
, I
->first
);
1496 for (LoadInst
*PredLoadI
: CSELoads
) {
1497 combineMetadataForCSE(PredLoadI
, LoadI
, true);
1500 LoadI
->replaceAllUsesWith(PN
);
1501 LoadI
->eraseFromParent();
1506 /// FindMostPopularDest - The specified list contains multiple possible
1507 /// threadable destinations. Pick the one that occurs the most frequently in
1510 FindMostPopularDest(BasicBlock
*BB
,
1511 const SmallVectorImpl
<std::pair
<BasicBlock
*,
1512 BasicBlock
*>> &PredToDestList
) {
1513 assert(!PredToDestList
.empty());
1515 // Determine popularity. If there are multiple possible destinations, we
1516 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1517 // blocks with known and real destinations to threading undef. We'll handle
1518 // them later if interesting.
1519 DenseMap
<BasicBlock
*, unsigned> DestPopularity
;
1520 for (const auto &PredToDest
: PredToDestList
)
1521 if (PredToDest
.second
)
1522 DestPopularity
[PredToDest
.second
]++;
1524 if (DestPopularity
.empty())
1527 // Find the most popular dest.
1528 DenseMap
<BasicBlock
*, unsigned>::iterator DPI
= DestPopularity
.begin();
1529 BasicBlock
*MostPopularDest
= DPI
->first
;
1530 unsigned Popularity
= DPI
->second
;
1531 SmallVector
<BasicBlock
*, 4> SamePopularity
;
1533 for (++DPI
; DPI
!= DestPopularity
.end(); ++DPI
) {
1534 // If the popularity of this entry isn't higher than the popularity we've
1535 // seen so far, ignore it.
1536 if (DPI
->second
< Popularity
)
1538 else if (DPI
->second
== Popularity
) {
1539 // If it is the same as what we've seen so far, keep track of it.
1540 SamePopularity
.push_back(DPI
->first
);
1542 // If it is more popular, remember it.
1543 SamePopularity
.clear();
1544 MostPopularDest
= DPI
->first
;
1545 Popularity
= DPI
->second
;
1549 // Okay, now we know the most popular destination. If there is more than one
1550 // destination, we need to determine one. This is arbitrary, but we need
1551 // to make a deterministic decision. Pick the first one that appears in the
1553 if (!SamePopularity
.empty()) {
1554 SamePopularity
.push_back(MostPopularDest
);
1555 Instruction
*TI
= BB
->getTerminator();
1556 for (unsigned i
= 0; ; ++i
) {
1557 assert(i
!= TI
->getNumSuccessors() && "Didn't find any successor!");
1559 if (!is_contained(SamePopularity
, TI
->getSuccessor(i
)))
1562 MostPopularDest
= TI
->getSuccessor(i
);
1567 // Okay, we have finally picked the most popular destination.
1568 return MostPopularDest
;
1571 bool JumpThreadingPass::ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
1572 ConstantPreference Preference
,
1573 Instruction
*CxtI
) {
1574 // If threading this would thread across a loop header, don't even try to
1576 if (LoopHeaders
.count(BB
))
1579 PredValueInfoTy PredValues
;
1580 if (!ComputeValueKnownInPredecessors(Cond
, BB
, PredValues
, Preference
, CxtI
))
1583 assert(!PredValues
.empty() &&
1584 "ComputeValueKnownInPredecessors returned true with no values");
1586 LLVM_DEBUG(dbgs() << "IN BB: " << *BB
;
1587 for (const auto &PredValue
: PredValues
) {
1588 dbgs() << " BB '" << BB
->getName()
1589 << "': FOUND condition = " << *PredValue
.first
1590 << " for pred '" << PredValue
.second
->getName() << "'.\n";
1593 // Decide what we want to thread through. Convert our list of known values to
1594 // a list of known destinations for each pred. This also discards duplicate
1595 // predecessors and keeps track of the undefined inputs (which are represented
1596 // as a null dest in the PredToDestList).
1597 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1598 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1600 BasicBlock
*OnlyDest
= nullptr;
1601 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1602 Constant
*OnlyVal
= nullptr;
1603 Constant
*MultipleVal
= (Constant
*)(intptr_t)~0ULL;
1605 unsigned PredWithKnownDest
= 0;
1606 for (const auto &PredValue
: PredValues
) {
1607 BasicBlock
*Pred
= PredValue
.second
;
1608 if (!SeenPreds
.insert(Pred
).second
)
1609 continue; // Duplicate predecessor entry.
1611 Constant
*Val
= PredValue
.first
;
1614 if (isa
<UndefValue
>(Val
))
1616 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1617 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1618 DestBB
= BI
->getSuccessor(cast
<ConstantInt
>(Val
)->isZero());
1619 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1620 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1621 DestBB
= SI
->findCaseValue(cast
<ConstantInt
>(Val
))->getCaseSuccessor();
1623 assert(isa
<IndirectBrInst
>(BB
->getTerminator())
1624 && "Unexpected terminator");
1625 assert(isa
<BlockAddress
>(Val
) && "Expecting a constant blockaddress");
1626 DestBB
= cast
<BlockAddress
>(Val
)->getBasicBlock();
1629 // If we have exactly one destination, remember it for efficiency below.
1630 if (PredToDestList
.empty()) {
1634 if (OnlyDest
!= DestBB
)
1635 OnlyDest
= MultipleDestSentinel
;
1636 // It possible we have same destination, but different value, e.g. default
1637 // case in switchinst.
1639 OnlyVal
= MultipleVal
;
1642 // We know where this predecessor is going.
1643 ++PredWithKnownDest
;
1645 // If the predecessor ends with an indirect goto, we can't change its
1646 // destination. Same for CallBr.
1647 if (isa
<IndirectBrInst
>(Pred
->getTerminator()) ||
1648 isa
<CallBrInst
>(Pred
->getTerminator()))
1651 PredToDestList
.push_back(std::make_pair(Pred
, DestBB
));
1654 // If all edges were unthreadable, we fail.
1655 if (PredToDestList
.empty())
1658 // If all the predecessors go to a single known successor, we want to fold,
1659 // not thread. By doing so, we do not need to duplicate the current block and
1660 // also miss potential opportunities in case we dont/cant duplicate.
1661 if (OnlyDest
&& OnlyDest
!= MultipleDestSentinel
) {
1662 if (PredWithKnownDest
== (size_t)pred_size(BB
)) {
1663 bool SeenFirstBranchToOnlyDest
= false;
1664 std::vector
<DominatorTree::UpdateType
> Updates
;
1665 Updates
.reserve(BB
->getTerminator()->getNumSuccessors() - 1);
1666 for (BasicBlock
*SuccBB
: successors(BB
)) {
1667 if (SuccBB
== OnlyDest
&& !SeenFirstBranchToOnlyDest
) {
1668 SeenFirstBranchToOnlyDest
= true; // Don't modify the first branch.
1670 SuccBB
->removePredecessor(BB
, true); // This is unreachable successor.
1671 Updates
.push_back({DominatorTree::Delete
, BB
, SuccBB
});
1675 // Finally update the terminator.
1676 Instruction
*Term
= BB
->getTerminator();
1677 BranchInst::Create(OnlyDest
, Term
);
1678 Term
->eraseFromParent();
1679 DTU
->applyUpdates(Updates
);
1681 // If the condition is now dead due to the removal of the old terminator,
1683 if (auto *CondInst
= dyn_cast
<Instruction
>(Cond
)) {
1684 if (CondInst
->use_empty() && !CondInst
->mayHaveSideEffects())
1685 CondInst
->eraseFromParent();
1686 // We can safely replace *some* uses of the CondInst if it has
1687 // exactly one value as returned by LVI. RAUW is incorrect in the
1688 // presence of guards and assumes, that have the `Cond` as the use. This
1689 // is because we use the guards/assume to reason about the `Cond` value
1690 // at the end of block, but RAUW unconditionally replaces all uses
1691 // including the guards/assumes themselves and the uses before the
1693 else if (OnlyVal
&& OnlyVal
!= MultipleVal
&&
1694 CondInst
->getParent() == BB
)
1695 ReplaceFoldableUses(CondInst
, OnlyVal
);
1701 // Determine which is the most common successor. If we have many inputs and
1702 // this block is a switch, we want to start by threading the batch that goes
1703 // to the most popular destination first. If we only know about one
1704 // threadable destination (the common case) we can avoid this.
1705 BasicBlock
*MostPopularDest
= OnlyDest
;
1707 if (MostPopularDest
== MultipleDestSentinel
) {
1708 // Remove any loop headers from the Dest list, ThreadEdge conservatively
1709 // won't process them, but we might have other destination that are eligible
1710 // and we still want to process.
1711 erase_if(PredToDestList
,
1712 [&](const std::pair
<BasicBlock
*, BasicBlock
*> &PredToDest
) {
1713 return LoopHeaders
.count(PredToDest
.second
) != 0;
1716 if (PredToDestList
.empty())
1719 MostPopularDest
= FindMostPopularDest(BB
, PredToDestList
);
1722 // Now that we know what the most popular destination is, factor all
1723 // predecessors that will jump to it into a single predecessor.
1724 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1725 for (const auto &PredToDest
: PredToDestList
)
1726 if (PredToDest
.second
== MostPopularDest
) {
1727 BasicBlock
*Pred
= PredToDest
.first
;
1729 // This predecessor may be a switch or something else that has multiple
1730 // edges to the block. Factor each of these edges by listing them
1731 // according to # occurrences in PredsToFactor.
1732 for (BasicBlock
*Succ
: successors(Pred
))
1734 PredsToFactor
.push_back(Pred
);
1737 // If the threadable edges are branching on an undefined value, we get to pick
1738 // the destination that these predecessors should get to.
1739 if (!MostPopularDest
)
1740 MostPopularDest
= BB
->getTerminator()->
1741 getSuccessor(GetBestDestForJumpOnUndef(BB
));
1743 // Ok, try to thread it!
1744 return ThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1747 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1748 /// a PHI node in the current block. See if there are any simplifications we
1749 /// can do based on inputs to the phi node.
1750 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode
*PN
) {
1751 BasicBlock
*BB
= PN
->getParent();
1753 // TODO: We could make use of this to do it once for blocks with common PHI
1755 SmallVector
<BasicBlock
*, 1> PredBBs
;
1758 // If any of the predecessor blocks end in an unconditional branch, we can
1759 // *duplicate* the conditional branch into that block in order to further
1760 // encourage jump threading and to eliminate cases where we have branch on a
1761 // phi of an icmp (branch on icmp is much better).
1762 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1763 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1764 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1765 if (PredBr
->isUnconditional()) {
1766 PredBBs
[0] = PredBB
;
1767 // Try to duplicate BB into PredBB.
1768 if (DuplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1776 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1777 /// a xor instruction in the current block. See if there are any
1778 /// simplifications we can do based on inputs to the xor.
1779 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator
*BO
) {
1780 BasicBlock
*BB
= BO
->getParent();
1782 // If either the LHS or RHS of the xor is a constant, don't do this
1784 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1785 isa
<ConstantInt
>(BO
->getOperand(1)))
1788 // If the first instruction in BB isn't a phi, we won't be able to infer
1789 // anything special about any particular predecessor.
1790 if (!isa
<PHINode
>(BB
->front()))
1793 // If this BB is a landing pad, we won't be able to split the edge into it.
1797 // If we have a xor as the branch input to this block, and we know that the
1798 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1799 // the condition into the predecessor and fix that value to true, saving some
1800 // logical ops on that path and encouraging other paths to simplify.
1802 // This copies something like this:
1805 // %X = phi i1 [1], [%X']
1806 // %Y = icmp eq i32 %A, %B
1807 // %Z = xor i1 %X, %Y
1812 // %Y = icmp ne i32 %A, %B
1815 PredValueInfoTy XorOpValues
;
1817 if (!ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
,
1819 assert(XorOpValues
.empty());
1820 if (!ComputeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
,
1826 assert(!XorOpValues
.empty() &&
1827 "ComputeValueKnownInPredecessors returned true with no values");
1829 // Scan the information to see which is most popular: true or false. The
1830 // predecessors can be of the set true, false, or undef.
1831 unsigned NumTrue
= 0, NumFalse
= 0;
1832 for (const auto &XorOpValue
: XorOpValues
) {
1833 if (isa
<UndefValue
>(XorOpValue
.first
))
1834 // Ignore undefs for the count.
1836 if (cast
<ConstantInt
>(XorOpValue
.first
)->isZero())
1842 // Determine which value to split on, true, false, or undef if neither.
1843 ConstantInt
*SplitVal
= nullptr;
1844 if (NumTrue
> NumFalse
)
1845 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1846 else if (NumTrue
!= 0 || NumFalse
!= 0)
1847 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1849 // Collect all of the blocks that this can be folded into so that we can
1850 // factor this once and clone it once.
1851 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1852 for (const auto &XorOpValue
: XorOpValues
) {
1853 if (XorOpValue
.first
!= SplitVal
&& !isa
<UndefValue
>(XorOpValue
.first
))
1856 BlocksToFoldInto
.push_back(XorOpValue
.second
);
1859 // If we inferred a value for all of the predecessors, then duplication won't
1860 // help us. However, we can just replace the LHS or RHS with the constant.
1861 if (BlocksToFoldInto
.size() ==
1862 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1864 // If all preds provide undef, just nuke the xor, because it is undef too.
1865 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1866 BO
->eraseFromParent();
1867 } else if (SplitVal
->isZero()) {
1868 // If all preds provide 0, replace the xor with the other input.
1869 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1870 BO
->eraseFromParent();
1872 // If all preds provide 1, set the computed value to 1.
1873 BO
->setOperand(!isLHS
, SplitVal
);
1879 // Try to duplicate BB into PredBB.
1880 return DuplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1883 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1884 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1885 /// NewPred using the entries from OldPred (suitably mapped).
1886 static void AddPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1887 BasicBlock
*OldPred
,
1888 BasicBlock
*NewPred
,
1889 DenseMap
<Instruction
*, Value
*> &ValueMap
) {
1890 for (PHINode
&PN
: PHIBB
->phis()) {
1891 // Ok, we have a PHI node. Figure out what the incoming value was for the
1893 Value
*IV
= PN
.getIncomingValueForBlock(OldPred
);
1895 // Remap the value if necessary.
1896 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1897 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMap
.find(Inst
);
1898 if (I
!= ValueMap
.end())
1902 PN
.addIncoming(IV
, NewPred
);
1906 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1907 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1908 /// across BB. Transform the IR to reflect this change.
1909 bool JumpThreadingPass::ThreadEdge(BasicBlock
*BB
,
1910 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
1911 BasicBlock
*SuccBB
) {
1912 // If threading to the same block as we come from, we would infinite loop.
1914 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
1915 << "' - would thread to self!\n");
1919 // If threading this would thread across a loop header, don't thread the edge.
1920 // See the comments above FindLoopHeaders for justifications and caveats.
1921 if (LoopHeaders
.count(BB
) || LoopHeaders
.count(SuccBB
)) {
1923 bool BBIsHeader
= LoopHeaders
.count(BB
);
1924 bool SuccIsHeader
= LoopHeaders
.count(SuccBB
);
1925 dbgs() << " Not threading across "
1926 << (BBIsHeader
? "loop header BB '" : "block BB '") << BB
->getName()
1927 << "' to dest " << (SuccIsHeader
? "loop header BB '" : "block BB '")
1928 << SuccBB
->getName() << "' - it might create an irreducible loop!\n";
1933 unsigned JumpThreadCost
=
1934 getJumpThreadDuplicationCost(BB
, BB
->getTerminator(), BBDupThreshold
);
1935 if (JumpThreadCost
> BBDupThreshold
) {
1936 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
1937 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
1941 // And finally, do it! Start by factoring the predecessors if needed.
1943 if (PredBBs
.size() == 1)
1944 PredBB
= PredBBs
[0];
1946 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1947 << " common predecessors.\n");
1948 PredBB
= SplitBlockPreds(BB
, PredBBs
, ".thr_comm");
1951 // And finally, do it!
1952 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName()
1953 << "' to '" << SuccBB
->getName()
1954 << "' with cost: " << JumpThreadCost
1955 << ", across block:\n " << *BB
<< "\n");
1957 if (DTU
->hasPendingDomTreeUpdates())
1961 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
1963 // We are going to have to map operands from the original BB block to the new
1964 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1965 // account for entry from PredBB.
1966 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1968 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
1969 BB
->getName()+".thread",
1970 BB
->getParent(), BB
);
1971 NewBB
->moveAfter(PredBB
);
1973 // Set the block frequency of NewBB.
1974 if (HasProfileData
) {
1976 BFI
->getBlockFreq(PredBB
) * BPI
->getEdgeProbability(PredBB
, BB
);
1977 BFI
->setBlockFreq(NewBB
, NewBBFreq
.getFrequency());
1980 BasicBlock::iterator BI
= BB
->begin();
1981 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1982 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1984 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1985 // mapping and using it to remap operands in the cloned instructions.
1986 for (; !BI
->isTerminator(); ++BI
) {
1987 Instruction
*New
= BI
->clone();
1988 New
->setName(BI
->getName());
1989 NewBB
->getInstList().push_back(New
);
1990 ValueMapping
[&*BI
] = New
;
1992 // Remap operands to patch up intra-block references.
1993 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1994 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1995 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1996 if (I
!= ValueMapping
.end())
1997 New
->setOperand(i
, I
->second
);
2001 // We didn't copy the terminator from BB over to NewBB, because there is now
2002 // an unconditional jump to SuccBB. Insert the unconditional jump.
2003 BranchInst
*NewBI
= BranchInst::Create(SuccBB
, NewBB
);
2004 NewBI
->setDebugLoc(BB
->getTerminator()->getDebugLoc());
2006 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2007 // PHI nodes for NewBB now.
2008 AddPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
2010 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2011 // eliminates predecessors from BB, which requires us to simplify any PHI
2013 Instruction
*PredTerm
= PredBB
->getTerminator();
2014 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
2015 if (PredTerm
->getSuccessor(i
) == BB
) {
2016 BB
->removePredecessor(PredBB
, true);
2017 PredTerm
->setSuccessor(i
, NewBB
);
2020 // Enqueue required DT updates.
2021 DTU
->applyUpdates({{DominatorTree::Insert
, NewBB
, SuccBB
},
2022 {DominatorTree::Insert
, PredBB
, NewBB
},
2023 {DominatorTree::Delete
, PredBB
, BB
}});
2025 // If there were values defined in BB that are used outside the block, then we
2026 // now have to update all uses of the value to use either the original value,
2027 // the cloned value, or some PHI derived value. This can require arbitrary
2028 // PHI insertion, of which we are prepared to do, clean these up now.
2029 SSAUpdater SSAUpdate
;
2030 SmallVector
<Use
*, 16> UsesToRename
;
2032 for (Instruction
&I
: *BB
) {
2033 // Scan all uses of this instruction to see if their uses are no longer
2034 // dominated by the previous def and if so, record them in UsesToRename.
2035 // Also, skip phi operands from PredBB - we'll remove them anyway.
2036 for (Use
&U
: I
.uses()) {
2037 Instruction
*User
= cast
<Instruction
>(U
.getUser());
2038 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
2039 if (UserPN
->getIncomingBlock(U
) == BB
)
2041 } else if (User
->getParent() == BB
)
2044 UsesToRename
.push_back(&U
);
2047 // If there are no uses outside the block, we're done with this instruction.
2048 if (UsesToRename
.empty())
2050 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I
<< "\n");
2052 // We found a use of I outside of BB. Rename all uses of I that are outside
2053 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2054 // with the two values we know.
2055 SSAUpdate
.Initialize(I
.getType(), I
.getName());
2056 SSAUpdate
.AddAvailableValue(BB
, &I
);
2057 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[&I
]);
2059 while (!UsesToRename
.empty())
2060 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
2061 LLVM_DEBUG(dbgs() << "\n");
2064 // At this point, the IR is fully up to date and consistent. Do a quick scan
2065 // over the new instructions and zap any that are constants or dead. This
2066 // frequently happens because of phi translation.
2067 SimplifyInstructionsInBlock(NewBB
, TLI
);
2069 // Update the edge weight from BB to SuccBB, which should be less than before.
2070 UpdateBlockFreqAndEdgeWeight(PredBB
, BB
, NewBB
, SuccBB
);
2072 // Threaded an edge!
2077 /// Create a new basic block that will be the predecessor of BB and successor of
2078 /// all blocks in Preds. When profile data is available, update the frequency of
2080 BasicBlock
*JumpThreadingPass::SplitBlockPreds(BasicBlock
*BB
,
2081 ArrayRef
<BasicBlock
*> Preds
,
2082 const char *Suffix
) {
2083 SmallVector
<BasicBlock
*, 2> NewBBs
;
2085 // Collect the frequencies of all predecessors of BB, which will be used to
2086 // update the edge weight of the result of splitting predecessors.
2087 DenseMap
<BasicBlock
*, BlockFrequency
> FreqMap
;
2089 for (auto Pred
: Preds
)
2090 FreqMap
.insert(std::make_pair(
2091 Pred
, BFI
->getBlockFreq(Pred
) * BPI
->getEdgeProbability(Pred
, BB
)));
2093 // In the case when BB is a LandingPad block we create 2 new predecessors
2094 // instead of just one.
2095 if (BB
->isLandingPad()) {
2096 std::string NewName
= std::string(Suffix
) + ".split-lp";
2097 SplitLandingPadPredecessors(BB
, Preds
, Suffix
, NewName
.c_str(), NewBBs
);
2099 NewBBs
.push_back(SplitBlockPredecessors(BB
, Preds
, Suffix
));
2102 std::vector
<DominatorTree::UpdateType
> Updates
;
2103 Updates
.reserve((2 * Preds
.size()) + NewBBs
.size());
2104 for (auto NewBB
: NewBBs
) {
2105 BlockFrequency
NewBBFreq(0);
2106 Updates
.push_back({DominatorTree::Insert
, NewBB
, BB
});
2107 for (auto Pred
: predecessors(NewBB
)) {
2108 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
2109 Updates
.push_back({DominatorTree::Insert
, Pred
, NewBB
});
2110 if (HasProfileData
) // Update frequencies between Pred -> NewBB.
2111 NewBBFreq
+= FreqMap
.lookup(Pred
);
2113 if (HasProfileData
) // Apply the summed frequency to NewBB.
2114 BFI
->setBlockFreq(NewBB
, NewBBFreq
.getFrequency());
2117 DTU
->applyUpdates(Updates
);
2121 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock
*BB
) {
2122 const Instruction
*TI
= BB
->getTerminator();
2123 assert(TI
->getNumSuccessors() > 1 && "not a split");
2125 MDNode
*WeightsNode
= TI
->getMetadata(LLVMContext::MD_prof
);
2129 MDString
*MDName
= cast
<MDString
>(WeightsNode
->getOperand(0));
2130 if (MDName
->getString() != "branch_weights")
2133 // Ensure there are weights for all of the successors. Note that the first
2134 // operand to the metadata node is a name, not a weight.
2135 return WeightsNode
->getNumOperands() == TI
->getNumSuccessors() + 1;
2138 /// Update the block frequency of BB and branch weight and the metadata on the
2139 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2140 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2141 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock
*PredBB
,
2144 BasicBlock
*SuccBB
) {
2145 if (!HasProfileData
)
2148 assert(BFI
&& BPI
&& "BFI & BPI should have been created here");
2150 // As the edge from PredBB to BB is deleted, we have to update the block
2152 auto BBOrigFreq
= BFI
->getBlockFreq(BB
);
2153 auto NewBBFreq
= BFI
->getBlockFreq(NewBB
);
2154 auto BB2SuccBBFreq
= BBOrigFreq
* BPI
->getEdgeProbability(BB
, SuccBB
);
2155 auto BBNewFreq
= BBOrigFreq
- NewBBFreq
;
2156 BFI
->setBlockFreq(BB
, BBNewFreq
.getFrequency());
2158 // Collect updated outgoing edges' frequencies from BB and use them to update
2159 // edge probabilities.
2160 SmallVector
<uint64_t, 4> BBSuccFreq
;
2161 for (BasicBlock
*Succ
: successors(BB
)) {
2162 auto SuccFreq
= (Succ
== SuccBB
)
2163 ? BB2SuccBBFreq
- NewBBFreq
2164 : BBOrigFreq
* BPI
->getEdgeProbability(BB
, Succ
);
2165 BBSuccFreq
.push_back(SuccFreq
.getFrequency());
2168 uint64_t MaxBBSuccFreq
=
2169 *std::max_element(BBSuccFreq
.begin(), BBSuccFreq
.end());
2171 SmallVector
<BranchProbability
, 4> BBSuccProbs
;
2172 if (MaxBBSuccFreq
== 0)
2173 BBSuccProbs
.assign(BBSuccFreq
.size(),
2174 {1, static_cast<unsigned>(BBSuccFreq
.size())});
2176 for (uint64_t Freq
: BBSuccFreq
)
2177 BBSuccProbs
.push_back(
2178 BranchProbability::getBranchProbability(Freq
, MaxBBSuccFreq
));
2179 // Normalize edge probabilities so that they sum up to one.
2180 BranchProbability::normalizeProbabilities(BBSuccProbs
.begin(),
2184 // Update edge probabilities in BPI.
2185 for (int I
= 0, E
= BBSuccProbs
.size(); I
< E
; I
++)
2186 BPI
->setEdgeProbability(BB
, I
, BBSuccProbs
[I
]);
2188 // Update the profile metadata as well.
2190 // Don't do this if the profile of the transformed blocks was statically
2191 // estimated. (This could occur despite the function having an entry
2192 // frequency in completely cold parts of the CFG.)
2194 // In this case we don't want to suggest to subsequent passes that the
2195 // calculated weights are fully consistent. Consider this graph:
2210 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2211 // the overall probabilities are inconsistent; the total probability that the
2212 // value is either 1, 2 or 3 is 150%.
2214 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2215 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2216 // the loop exit edge. Then based solely on static estimation we would assume
2217 // the loop was extremely hot.
2219 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2220 // shouldn't make edges extremely likely or unlikely based solely on static
2222 if (BBSuccProbs
.size() >= 2 && doesBlockHaveProfileData(BB
)) {
2223 SmallVector
<uint32_t, 4> Weights
;
2224 for (auto Prob
: BBSuccProbs
)
2225 Weights
.push_back(Prob
.getNumerator());
2227 auto TI
= BB
->getTerminator();
2229 LLVMContext::MD_prof
,
2230 MDBuilder(TI
->getParent()->getContext()).createBranchWeights(Weights
));
2234 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2235 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2236 /// If we can duplicate the contents of BB up into PredBB do so now, this
2237 /// improves the odds that the branch will be on an analyzable instruction like
2239 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2240 BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
2241 assert(!PredBBs
.empty() && "Can't handle an empty set");
2243 // If BB is a loop header, then duplicating this block outside the loop would
2244 // cause us to transform this into an irreducible loop, don't do this.
2245 // See the comments above FindLoopHeaders for justifications and caveats.
2246 if (LoopHeaders
.count(BB
)) {
2247 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
2248 << "' into predecessor block '" << PredBBs
[0]->getName()
2249 << "' - it might create an irreducible loop!\n");
2253 unsigned DuplicationCost
=
2254 getJumpThreadDuplicationCost(BB
, BB
->getTerminator(), BBDupThreshold
);
2255 if (DuplicationCost
> BBDupThreshold
) {
2256 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
2257 << "' - Cost is too high: " << DuplicationCost
<< "\n");
2261 // And finally, do it! Start by factoring the predecessors if needed.
2262 std::vector
<DominatorTree::UpdateType
> Updates
;
2264 if (PredBBs
.size() == 1)
2265 PredBB
= PredBBs
[0];
2267 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
2268 << " common predecessors.\n");
2269 PredBB
= SplitBlockPreds(BB
, PredBBs
, ".thr_comm");
2271 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
2273 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2275 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB
->getName()
2276 << "' into end of '" << PredBB
->getName()
2277 << "' to eliminate branch on phi. Cost: "
2278 << DuplicationCost
<< " block is:" << *BB
<< "\n");
2280 // Unless PredBB ends with an unconditional branch, split the edge so that we
2281 // can just clone the bits from BB into the end of the new PredBB.
2282 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2284 if (!OldPredBranch
|| !OldPredBranch
->isUnconditional()) {
2285 BasicBlock
*OldPredBB
= PredBB
;
2286 PredBB
= SplitEdge(OldPredBB
, BB
);
2287 Updates
.push_back({DominatorTree::Insert
, OldPredBB
, PredBB
});
2288 Updates
.push_back({DominatorTree::Insert
, PredBB
, BB
});
2289 Updates
.push_back({DominatorTree::Delete
, OldPredBB
, BB
});
2290 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
2293 // We are going to have to map operands from the original BB block into the
2294 // PredBB block. Evaluate PHI nodes in BB.
2295 DenseMap
<Instruction
*, Value
*> ValueMapping
;
2297 BasicBlock::iterator BI
= BB
->begin();
2298 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
2299 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2300 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2301 // mapping and using it to remap operands in the cloned instructions.
2302 for (; BI
!= BB
->end(); ++BI
) {
2303 Instruction
*New
= BI
->clone();
2305 // Remap operands to patch up intra-block references.
2306 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2307 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2308 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
2309 if (I
!= ValueMapping
.end())
2310 New
->setOperand(i
, I
->second
);
2313 // If this instruction can be simplified after the operands are updated,
2314 // just use the simplified value instead. This frequently happens due to
2316 if (Value
*IV
= SimplifyInstruction(
2318 {BB
->getModule()->getDataLayout(), TLI
, nullptr, nullptr, New
})) {
2319 ValueMapping
[&*BI
] = IV
;
2320 if (!New
->mayHaveSideEffects()) {
2325 ValueMapping
[&*BI
] = New
;
2328 // Otherwise, insert the new instruction into the block.
2329 New
->setName(BI
->getName());
2330 PredBB
->getInstList().insert(OldPredBranch
->getIterator(), New
);
2331 // Update Dominance from simplified New instruction operands.
2332 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2333 if (BasicBlock
*SuccBB
= dyn_cast
<BasicBlock
>(New
->getOperand(i
)))
2334 Updates
.push_back({DominatorTree::Insert
, PredBB
, SuccBB
});
2338 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2339 // add entries to the PHI nodes for branch from PredBB now.
2340 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
2341 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
2343 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
2346 // If there were values defined in BB that are used outside the block, then we
2347 // now have to update all uses of the value to use either the original value,
2348 // the cloned value, or some PHI derived value. This can require arbitrary
2349 // PHI insertion, of which we are prepared to do, clean these up now.
2350 SSAUpdater SSAUpdate
;
2351 SmallVector
<Use
*, 16> UsesToRename
;
2352 for (Instruction
&I
: *BB
) {
2353 // Scan all uses of this instruction to see if it is used outside of its
2354 // block, and if so, record them in UsesToRename.
2355 for (Use
&U
: I
.uses()) {
2356 Instruction
*User
= cast
<Instruction
>(U
.getUser());
2357 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
2358 if (UserPN
->getIncomingBlock(U
) == BB
)
2360 } else if (User
->getParent() == BB
)
2363 UsesToRename
.push_back(&U
);
2366 // If there are no uses outside the block, we're done with this instruction.
2367 if (UsesToRename
.empty())
2370 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I
<< "\n");
2372 // We found a use of I outside of BB. Rename all uses of I that are outside
2373 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2374 // with the two values we know.
2375 SSAUpdate
.Initialize(I
.getType(), I
.getName());
2376 SSAUpdate
.AddAvailableValue(BB
, &I
);
2377 SSAUpdate
.AddAvailableValue(PredBB
, ValueMapping
[&I
]);
2379 while (!UsesToRename
.empty())
2380 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
2381 LLVM_DEBUG(dbgs() << "\n");
2384 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2386 BB
->removePredecessor(PredBB
, true);
2388 // Remove the unconditional branch at the end of the PredBB block.
2389 OldPredBranch
->eraseFromParent();
2390 DTU
->applyUpdates(Updates
);
2396 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2397 // a Select instruction in Pred. BB has other predecessors and SI is used in
2398 // a PHI node in BB. SI has no other use.
2399 // A new basic block, NewBB, is created and SI is converted to compare and
2400 // conditional branch. SI is erased from parent.
2401 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock
*Pred
, BasicBlock
*BB
,
2402 SelectInst
*SI
, PHINode
*SIUse
,
2404 // Expand the select.
2413 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2414 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), "select.unfold",
2415 BB
->getParent(), BB
);
2416 // Move the unconditional branch to NewBB.
2417 PredTerm
->removeFromParent();
2418 NewBB
->getInstList().insert(NewBB
->end(), PredTerm
);
2419 // Create a conditional branch and update PHI nodes.
2420 BranchInst::Create(NewBB
, BB
, SI
->getCondition(), Pred
);
2421 SIUse
->setIncomingValue(Idx
, SI
->getFalseValue());
2422 SIUse
->addIncoming(SI
->getTrueValue(), NewBB
);
2424 // The select is now dead.
2425 SI
->eraseFromParent();
2426 DTU
->applyUpdates({{DominatorTree::Insert
, NewBB
, BB
},
2427 {DominatorTree::Insert
, Pred
, NewBB
}});
2429 // Update any other PHI nodes in BB.
2430 for (BasicBlock::iterator BI
= BB
->begin();
2431 PHINode
*Phi
= dyn_cast
<PHINode
>(BI
); ++BI
)
2433 Phi
->addIncoming(Phi
->getIncomingValueForBlock(Pred
), NewBB
);
2436 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst
*SI
, BasicBlock
*BB
) {
2437 PHINode
*CondPHI
= dyn_cast
<PHINode
>(SI
->getCondition());
2439 if (!CondPHI
|| CondPHI
->getParent() != BB
)
2442 for (unsigned I
= 0, E
= CondPHI
->getNumIncomingValues(); I
!= E
; ++I
) {
2443 BasicBlock
*Pred
= CondPHI
->getIncomingBlock(I
);
2444 SelectInst
*PredSI
= dyn_cast
<SelectInst
>(CondPHI
->getIncomingValue(I
));
2446 // The second and third condition can be potentially relaxed. Currently
2447 // the conditions help to simplify the code and allow us to reuse existing
2448 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2449 if (!PredSI
|| PredSI
->getParent() != Pred
|| !PredSI
->hasOneUse())
2452 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2453 if (!PredTerm
|| !PredTerm
->isUnconditional())
2456 UnfoldSelectInstr(Pred
, BB
, PredSI
, CondPHI
, I
);
2462 /// TryToUnfoldSelect - Look for blocks of the form
2468 /// %p = phi [%a, %bb1] ...
2472 /// And expand the select into a branch structure if one of its arms allows %c
2473 /// to be folded. This later enables threading from bb1 over bb2.
2474 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst
*CondCmp
, BasicBlock
*BB
) {
2475 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2476 PHINode
*CondLHS
= dyn_cast
<PHINode
>(CondCmp
->getOperand(0));
2477 Constant
*CondRHS
= cast
<Constant
>(CondCmp
->getOperand(1));
2479 if (!CondBr
|| !CondBr
->isConditional() || !CondLHS
||
2480 CondLHS
->getParent() != BB
)
2483 for (unsigned I
= 0, E
= CondLHS
->getNumIncomingValues(); I
!= E
; ++I
) {
2484 BasicBlock
*Pred
= CondLHS
->getIncomingBlock(I
);
2485 SelectInst
*SI
= dyn_cast
<SelectInst
>(CondLHS
->getIncomingValue(I
));
2487 // Look if one of the incoming values is a select in the corresponding
2489 if (!SI
|| SI
->getParent() != Pred
|| !SI
->hasOneUse())
2492 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2493 if (!PredTerm
|| !PredTerm
->isUnconditional())
2496 // Now check if one of the select values would allow us to constant fold the
2497 // terminator in BB. We don't do the transform if both sides fold, those
2498 // cases will be threaded in any case.
2499 if (DTU
->hasPendingDomTreeUpdates())
2503 LazyValueInfo::Tristate LHSFolds
=
2504 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(1),
2505 CondRHS
, Pred
, BB
, CondCmp
);
2506 LazyValueInfo::Tristate RHSFolds
=
2507 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(2),
2508 CondRHS
, Pred
, BB
, CondCmp
);
2509 if ((LHSFolds
!= LazyValueInfo::Unknown
||
2510 RHSFolds
!= LazyValueInfo::Unknown
) &&
2511 LHSFolds
!= RHSFolds
) {
2512 UnfoldSelectInstr(Pred
, BB
, SI
, CondLHS
, I
);
2519 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2520 /// same BB in the form
2522 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2523 /// %s = select %p, trueval, falseval
2528 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2530 /// %s = select %c, trueval, falseval
2532 /// And expand the select into a branch structure. This later enables
2533 /// jump-threading over bb in this pass.
2535 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2536 /// select if the associated PHI has at least one constant. If the unfolded
2537 /// select is not jump-threaded, it will be folded again in the later
2539 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock
*BB
) {
2540 // If threading this would thread across a loop header, don't thread the edge.
2541 // See the comments above FindLoopHeaders for justifications and caveats.
2542 if (LoopHeaders
.count(BB
))
2545 for (BasicBlock::iterator BI
= BB
->begin();
2546 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
2547 // Look for a Phi having at least one constant incoming value.
2548 if (llvm::all_of(PN
->incoming_values(),
2549 [](Value
*V
) { return !isa
<ConstantInt
>(V
); }))
2552 auto isUnfoldCandidate
= [BB
](SelectInst
*SI
, Value
*V
) {
2553 // Check if SI is in BB and use V as condition.
2554 if (SI
->getParent() != BB
)
2556 Value
*Cond
= SI
->getCondition();
2557 return (Cond
&& Cond
== V
&& Cond
->getType()->isIntegerTy(1));
2560 SelectInst
*SI
= nullptr;
2561 for (Use
&U
: PN
->uses()) {
2562 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(U
.getUser())) {
2563 // Look for a ICmp in BB that compares PN with a constant and is the
2564 // condition of a Select.
2565 if (Cmp
->getParent() == BB
&& Cmp
->hasOneUse() &&
2566 isa
<ConstantInt
>(Cmp
->getOperand(1 - U
.getOperandNo())))
2567 if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(Cmp
->user_back()))
2568 if (isUnfoldCandidate(SelectI
, Cmp
->use_begin()->get())) {
2572 } else if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(U
.getUser())) {
2573 // Look for a Select in BB that uses PN as condition.
2574 if (isUnfoldCandidate(SelectI
, U
.get())) {
2583 // Expand the select.
2585 SplitBlockAndInsertIfThen(SI
->getCondition(), SI
, false);
2586 BasicBlock
*SplitBB
= SI
->getParent();
2587 BasicBlock
*NewBB
= Term
->getParent();
2588 PHINode
*NewPN
= PHINode::Create(SI
->getType(), 2, "", SI
);
2589 NewPN
->addIncoming(SI
->getTrueValue(), Term
->getParent());
2590 NewPN
->addIncoming(SI
->getFalseValue(), BB
);
2591 SI
->replaceAllUsesWith(NewPN
);
2592 SI
->eraseFromParent();
2593 // NewBB and SplitBB are newly created blocks which require insertion.
2594 std::vector
<DominatorTree::UpdateType
> Updates
;
2595 Updates
.reserve((2 * SplitBB
->getTerminator()->getNumSuccessors()) + 3);
2596 Updates
.push_back({DominatorTree::Insert
, BB
, SplitBB
});
2597 Updates
.push_back({DominatorTree::Insert
, BB
, NewBB
});
2598 Updates
.push_back({DominatorTree::Insert
, NewBB
, SplitBB
});
2599 // BB's successors were moved to SplitBB, update DTU accordingly.
2600 for (auto *Succ
: successors(SplitBB
)) {
2601 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
2602 Updates
.push_back({DominatorTree::Insert
, SplitBB
, Succ
});
2604 DTU
->applyUpdates(Updates
);
2610 /// Try to propagate a guard from the current BB into one of its predecessors
2611 /// in case if another branch of execution implies that the condition of this
2612 /// guard is always true. Currently we only process the simplest case that
2617 /// br i1 %cond, label %T1, label %F1
2623 /// %condGuard = ...
2624 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2626 /// And cond either implies condGuard or !condGuard. In this case all the
2627 /// instructions before the guard can be duplicated in both branches, and the
2628 /// guard is then threaded to one of them.
2629 bool JumpThreadingPass::ProcessGuards(BasicBlock
*BB
) {
2630 using namespace PatternMatch
;
2632 // We only want to deal with two predecessors.
2633 BasicBlock
*Pred1
, *Pred2
;
2634 auto PI
= pred_begin(BB
), PE
= pred_end(BB
);
2646 // Try to thread one of the guards of the block.
2647 // TODO: Look up deeper than to immediate predecessor?
2648 auto *Parent
= Pred1
->getSinglePredecessor();
2649 if (!Parent
|| Parent
!= Pred2
->getSinglePredecessor())
2652 if (auto *BI
= dyn_cast
<BranchInst
>(Parent
->getTerminator()))
2654 if (isGuard(&I
) && ThreadGuard(BB
, cast
<IntrinsicInst
>(&I
), BI
))
2660 /// Try to propagate the guard from BB which is the lower block of a diamond
2661 /// to one of its branches, in case if diamond's condition implies guard's
2663 bool JumpThreadingPass::ThreadGuard(BasicBlock
*BB
, IntrinsicInst
*Guard
,
2665 assert(BI
->getNumSuccessors() == 2 && "Wrong number of successors?");
2666 assert(BI
->isConditional() && "Unconditional branch has 2 successors?");
2667 Value
*GuardCond
= Guard
->getArgOperand(0);
2668 Value
*BranchCond
= BI
->getCondition();
2669 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
2670 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
2672 auto &DL
= BB
->getModule()->getDataLayout();
2673 bool TrueDestIsSafe
= false;
2674 bool FalseDestIsSafe
= false;
2676 // True dest is safe if BranchCond => GuardCond.
2677 auto Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
);
2679 TrueDestIsSafe
= true;
2681 // False dest is safe if !BranchCond => GuardCond.
2682 Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
, /* LHSIsTrue */ false);
2684 FalseDestIsSafe
= true;
2687 if (!TrueDestIsSafe
&& !FalseDestIsSafe
)
2690 BasicBlock
*PredUnguardedBlock
= TrueDestIsSafe
? TrueDest
: FalseDest
;
2691 BasicBlock
*PredGuardedBlock
= FalseDestIsSafe
? TrueDest
: FalseDest
;
2693 ValueToValueMapTy UnguardedMapping
, GuardedMapping
;
2694 Instruction
*AfterGuard
= Guard
->getNextNode();
2695 unsigned Cost
= getJumpThreadDuplicationCost(BB
, AfterGuard
, BBDupThreshold
);
2696 if (Cost
> BBDupThreshold
)
2698 // Duplicate all instructions before the guard and the guard itself to the
2699 // branch where implication is not proved.
2700 BasicBlock
*GuardedBlock
= DuplicateInstructionsInSplitBetween(
2701 BB
, PredGuardedBlock
, AfterGuard
, GuardedMapping
, *DTU
);
2702 assert(GuardedBlock
&& "Could not create the guarded block?");
2703 // Duplicate all instructions before the guard in the unguarded branch.
2704 // Since we have successfully duplicated the guarded block and this block
2705 // has fewer instructions, we expect it to succeed.
2706 BasicBlock
*UnguardedBlock
= DuplicateInstructionsInSplitBetween(
2707 BB
, PredUnguardedBlock
, Guard
, UnguardedMapping
, *DTU
);
2708 assert(UnguardedBlock
&& "Could not create the unguarded block?");
2709 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard
<< " to block "
2710 << GuardedBlock
->getName() << "\n");
2711 // Some instructions before the guard may still have uses. For them, we need
2712 // to create Phi nodes merging their copies in both guarded and unguarded
2713 // branches. Those instructions that have no uses can be just removed.
2714 SmallVector
<Instruction
*, 4> ToRemove
;
2715 for (auto BI
= BB
->begin(); &*BI
!= AfterGuard
; ++BI
)
2716 if (!isa
<PHINode
>(&*BI
))
2717 ToRemove
.push_back(&*BI
);
2719 Instruction
*InsertionPoint
= &*BB
->getFirstInsertionPt();
2720 assert(InsertionPoint
&& "Empty block?");
2721 // Substitute with Phis & remove.
2722 for (auto *Inst
: reverse(ToRemove
)) {
2723 if (!Inst
->use_empty()) {
2724 PHINode
*NewPN
= PHINode::Create(Inst
->getType(), 2);
2725 NewPN
->addIncoming(UnguardedMapping
[Inst
], UnguardedBlock
);
2726 NewPN
->addIncoming(GuardedMapping
[Inst
], GuardedBlock
);
2727 NewPN
->insertBefore(InsertionPoint
);
2728 Inst
->replaceAllUsesWith(NewPN
);
2730 Inst
->eraseFromParent();