1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form. In cases that this kicks in, it can be a significant
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
19 //===----------------------------------------------------------------------===//
23 // Future loop memory idioms to recognize:
24 // memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
27 // Future integer operation idioms to recognize:
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set. It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
37 //===----------------------------------------------------------------------===//
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/MapVector.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/StringRef.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/LoopAccessAnalysis.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/MemoryLocation.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionExpander.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/Attributes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/GlobalValue.h"
69 #include "llvm/IR/GlobalVariable.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/LLVMContext.h"
77 #include "llvm/IR/Module.h"
78 #include "llvm/IR/PassManager.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/User.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/IR/ValueHandle.h"
83 #include "llvm/Pass.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/CommandLine.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Scalar.h"
89 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
90 #include "llvm/Transforms/Utils/BuildLibCalls.h"
91 #include "llvm/Transforms/Utils/LoopUtils.h"
100 #define DEBUG_TYPE "loop-idiom"
102 STATISTIC(NumMemSet
, "Number of memset's formed from loop stores");
103 STATISTIC(NumMemCpy
, "Number of memcpy's formed from loop load+stores");
105 static cl::opt
<bool> UseLIRCodeSizeHeurs(
106 "use-lir-code-size-heurs",
107 cl::desc("Use loop idiom recognition code size heuristics when compiling"
109 cl::init(true), cl::Hidden
);
113 class LoopIdiomRecognize
{
114 Loop
*CurLoop
= nullptr;
119 TargetLibraryInfo
*TLI
;
120 const TargetTransformInfo
*TTI
;
121 const DataLayout
*DL
;
122 bool ApplyCodeSizeHeuristics
;
125 explicit LoopIdiomRecognize(AliasAnalysis
*AA
, DominatorTree
*DT
,
126 LoopInfo
*LI
, ScalarEvolution
*SE
,
127 TargetLibraryInfo
*TLI
,
128 const TargetTransformInfo
*TTI
,
129 const DataLayout
*DL
)
130 : AA(AA
), DT(DT
), LI(LI
), SE(SE
), TLI(TLI
), TTI(TTI
), DL(DL
) {}
132 bool runOnLoop(Loop
*L
);
135 using StoreList
= SmallVector
<StoreInst
*, 8>;
136 using StoreListMap
= MapVector
<Value
*, StoreList
>;
138 StoreListMap StoreRefsForMemset
;
139 StoreListMap StoreRefsForMemsetPattern
;
140 StoreList StoreRefsForMemcpy
;
142 bool HasMemsetPattern
;
145 /// Return code for isLegalStore()
146 enum LegalStoreKind
{
151 UnorderedAtomicMemcpy
,
152 DontUse
// Dummy retval never to be used. Allows catching errors in retval
156 /// \name Countable Loop Idiom Handling
159 bool runOnCountableLoop();
160 bool runOnLoopBlock(BasicBlock
*BB
, const SCEV
*BECount
,
161 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
);
163 void collectStores(BasicBlock
*BB
);
164 LegalStoreKind
isLegalStore(StoreInst
*SI
);
165 enum class ForMemset
{ No
, Yes
};
166 bool processLoopStores(SmallVectorImpl
<StoreInst
*> &SL
, const SCEV
*BECount
,
168 bool processLoopMemSet(MemSetInst
*MSI
, const SCEV
*BECount
);
170 bool processLoopStridedStore(Value
*DestPtr
, unsigned StoreSize
,
171 unsigned StoreAlignment
, Value
*StoredVal
,
172 Instruction
*TheStore
,
173 SmallPtrSetImpl
<Instruction
*> &Stores
,
174 const SCEVAddRecExpr
*Ev
, const SCEV
*BECount
,
175 bool NegStride
, bool IsLoopMemset
= false);
176 bool processLoopStoreOfLoopLoad(StoreInst
*SI
, const SCEV
*BECount
);
177 bool avoidLIRForMultiBlockLoop(bool IsMemset
= false,
178 bool IsLoopMemset
= false);
181 /// \name Noncountable Loop Idiom Handling
184 bool runOnNoncountableLoop();
186 bool recognizePopcount();
187 void transformLoopToPopcount(BasicBlock
*PreCondBB
, Instruction
*CntInst
,
188 PHINode
*CntPhi
, Value
*Var
);
189 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
190 void transformLoopToCountable(Intrinsic::ID IntrinID
, BasicBlock
*PreCondBB
,
191 Instruction
*CntInst
, PHINode
*CntPhi
,
192 Value
*Var
, Instruction
*DefX
,
193 const DebugLoc
&DL
, bool ZeroCheck
,
194 bool IsCntPhiUsedOutsideLoop
);
199 class LoopIdiomRecognizeLegacyPass
: public LoopPass
{
203 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID
) {
204 initializeLoopIdiomRecognizeLegacyPassPass(
205 *PassRegistry::getPassRegistry());
208 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
212 AliasAnalysis
*AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
213 DominatorTree
*DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
214 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
215 ScalarEvolution
*SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
216 TargetLibraryInfo
*TLI
=
217 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
218 const TargetTransformInfo
*TTI
=
219 &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
220 *L
->getHeader()->getParent());
221 const DataLayout
*DL
= &L
->getHeader()->getModule()->getDataLayout();
223 LoopIdiomRecognize
LIR(AA
, DT
, LI
, SE
, TLI
, TTI
, DL
);
224 return LIR
.runOnLoop(L
);
227 /// This transformation requires natural loop information & requires that
228 /// loop preheaders be inserted into the CFG.
229 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
230 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
231 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
232 getLoopAnalysisUsage(AU
);
236 } // end anonymous namespace
238 char LoopIdiomRecognizeLegacyPass::ID
= 0;
240 PreservedAnalyses
LoopIdiomRecognizePass::run(Loop
&L
, LoopAnalysisManager
&AM
,
241 LoopStandardAnalysisResults
&AR
,
243 const auto *DL
= &L
.getHeader()->getModule()->getDataLayout();
245 LoopIdiomRecognize
LIR(&AR
.AA
, &AR
.DT
, &AR
.LI
, &AR
.SE
, &AR
.TLI
, &AR
.TTI
, DL
);
246 if (!LIR
.runOnLoop(&L
))
247 return PreservedAnalyses::all();
249 return getLoopPassPreservedAnalyses();
252 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass
, "loop-idiom",
253 "Recognize loop idioms", false, false)
254 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
255 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
256 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
257 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass
, "loop-idiom",
258 "Recognize loop idioms", false, false)
260 Pass
*llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
262 static void deleteDeadInstruction(Instruction
*I
) {
263 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
264 I
->eraseFromParent();
267 //===----------------------------------------------------------------------===//
269 // Implementation of LoopIdiomRecognize
271 //===----------------------------------------------------------------------===//
273 bool LoopIdiomRecognize::runOnLoop(Loop
*L
) {
275 // If the loop could not be converted to canonical form, it must have an
276 // indirectbr in it, just give up.
277 if (!L
->getLoopPreheader())
280 // Disable loop idiom recognition if the function's name is a common idiom.
281 StringRef Name
= L
->getHeader()->getParent()->getName();
282 if (Name
== "memset" || Name
== "memcpy")
285 // Determine if code size heuristics need to be applied.
286 ApplyCodeSizeHeuristics
=
287 L
->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs
;
289 HasMemset
= TLI
->has(LibFunc_memset
);
290 HasMemsetPattern
= TLI
->has(LibFunc_memset_pattern16
);
291 HasMemcpy
= TLI
->has(LibFunc_memcpy
);
293 if (HasMemset
|| HasMemsetPattern
|| HasMemcpy
)
294 if (SE
->hasLoopInvariantBackedgeTakenCount(L
))
295 return runOnCountableLoop();
297 return runOnNoncountableLoop();
300 bool LoopIdiomRecognize::runOnCountableLoop() {
301 const SCEV
*BECount
= SE
->getBackedgeTakenCount(CurLoop
);
302 assert(!isa
<SCEVCouldNotCompute
>(BECount
) &&
303 "runOnCountableLoop() called on a loop without a predictable"
304 "backedge-taken count");
306 // If this loop executes exactly one time, then it should be peeled, not
307 // optimized by this pass.
308 if (const SCEVConstant
*BECst
= dyn_cast
<SCEVConstant
>(BECount
))
309 if (BECst
->getAPInt() == 0)
312 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
313 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
315 LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F["
316 << CurLoop
->getHeader()->getParent()->getName()
317 << "] Loop %" << CurLoop
->getHeader()->getName() << "\n");
319 bool MadeChange
= false;
321 // The following transforms hoist stores/memsets into the loop pre-header.
322 // Give up if the loop has instructions may throw.
323 SimpleLoopSafetyInfo SafetyInfo
;
324 SafetyInfo
.computeLoopSafetyInfo(CurLoop
);
325 if (SafetyInfo
.anyBlockMayThrow())
328 // Scan all the blocks in the loop that are not in subloops.
329 for (auto *BB
: CurLoop
->getBlocks()) {
330 // Ignore blocks in subloops.
331 if (LI
->getLoopFor(BB
) != CurLoop
)
334 MadeChange
|= runOnLoopBlock(BB
, BECount
, ExitBlocks
);
339 static APInt
getStoreStride(const SCEVAddRecExpr
*StoreEv
) {
340 const SCEVConstant
*ConstStride
= cast
<SCEVConstant
>(StoreEv
->getOperand(1));
341 return ConstStride
->getAPInt();
344 /// getMemSetPatternValue - If a strided store of the specified value is safe to
345 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
346 /// be passed in. Otherwise, return null.
348 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
349 /// just replicate their input array and then pass on to memset_pattern16.
350 static Constant
*getMemSetPatternValue(Value
*V
, const DataLayout
*DL
) {
351 // FIXME: This could check for UndefValue because it can be merged into any
352 // other valid pattern.
354 // If the value isn't a constant, we can't promote it to being in a constant
355 // array. We could theoretically do a store to an alloca or something, but
356 // that doesn't seem worthwhile.
357 Constant
*C
= dyn_cast
<Constant
>(V
);
361 // Only handle simple values that are a power of two bytes in size.
362 uint64_t Size
= DL
->getTypeSizeInBits(V
->getType());
363 if (Size
== 0 || (Size
& 7) || (Size
& (Size
- 1)))
366 // Don't care enough about darwin/ppc to implement this.
367 if (DL
->isBigEndian())
370 // Convert to size in bytes.
373 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
374 // if the top and bottom are the same (e.g. for vectors and large integers).
378 // If the constant is exactly 16 bytes, just use it.
382 // Otherwise, we'll use an array of the constants.
383 unsigned ArraySize
= 16 / Size
;
384 ArrayType
*AT
= ArrayType::get(V
->getType(), ArraySize
);
385 return ConstantArray::get(AT
, std::vector
<Constant
*>(ArraySize
, C
));
388 LoopIdiomRecognize::LegalStoreKind
389 LoopIdiomRecognize::isLegalStore(StoreInst
*SI
) {
390 // Don't touch volatile stores.
391 if (SI
->isVolatile())
392 return LegalStoreKind::None
;
393 // We only want simple or unordered-atomic stores.
394 if (!SI
->isUnordered())
395 return LegalStoreKind::None
;
397 // Don't convert stores of non-integral pointer types to memsets (which stores
399 if (DL
->isNonIntegralPointerType(SI
->getValueOperand()->getType()))
400 return LegalStoreKind::None
;
402 // Avoid merging nontemporal stores.
403 if (SI
->getMetadata(LLVMContext::MD_nontemporal
))
404 return LegalStoreKind::None
;
406 Value
*StoredVal
= SI
->getValueOperand();
407 Value
*StorePtr
= SI
->getPointerOperand();
409 // Reject stores that are so large that they overflow an unsigned.
410 uint64_t SizeInBits
= DL
->getTypeSizeInBits(StoredVal
->getType());
411 if ((SizeInBits
& 7) || (SizeInBits
>> 32) != 0)
412 return LegalStoreKind::None
;
414 // See if the pointer expression is an AddRec like {base,+,1} on the current
415 // loop, which indicates a strided store. If we have something else, it's a
416 // random store we can't handle.
417 const SCEVAddRecExpr
*StoreEv
=
418 dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(StorePtr
));
419 if (!StoreEv
|| StoreEv
->getLoop() != CurLoop
|| !StoreEv
->isAffine())
420 return LegalStoreKind::None
;
422 // Check to see if we have a constant stride.
423 if (!isa
<SCEVConstant
>(StoreEv
->getOperand(1)))
424 return LegalStoreKind::None
;
426 // See if the store can be turned into a memset.
428 // If the stored value is a byte-wise value (like i32 -1), then it may be
429 // turned into a memset of i8 -1, assuming that all the consecutive bytes
430 // are stored. A store of i32 0x01020304 can never be turned into a memset,
431 // but it can be turned into memset_pattern if the target supports it.
432 Value
*SplatValue
= isBytewiseValue(StoredVal
);
433 Constant
*PatternValue
= nullptr;
435 // Note: memset and memset_pattern on unordered-atomic is yet not supported
436 bool UnorderedAtomic
= SI
->isUnordered() && !SI
->isSimple();
438 // If we're allowed to form a memset, and the stored value would be
439 // acceptable for memset, use it.
440 if (!UnorderedAtomic
&& HasMemset
&& SplatValue
&&
441 // Verify that the stored value is loop invariant. If not, we can't
442 // promote the memset.
443 CurLoop
->isLoopInvariant(SplatValue
)) {
444 // It looks like we can use SplatValue.
445 return LegalStoreKind::Memset
;
446 } else if (!UnorderedAtomic
&& HasMemsetPattern
&&
447 // Don't create memset_pattern16s with address spaces.
448 StorePtr
->getType()->getPointerAddressSpace() == 0 &&
449 (PatternValue
= getMemSetPatternValue(StoredVal
, DL
))) {
450 // It looks like we can use PatternValue!
451 return LegalStoreKind::MemsetPattern
;
454 // Otherwise, see if the store can be turned into a memcpy.
456 // Check to see if the stride matches the size of the store. If so, then we
457 // know that every byte is touched in the loop.
458 APInt Stride
= getStoreStride(StoreEv
);
459 unsigned StoreSize
= DL
->getTypeStoreSize(SI
->getValueOperand()->getType());
460 if (StoreSize
!= Stride
&& StoreSize
!= -Stride
)
461 return LegalStoreKind::None
;
463 // The store must be feeding a non-volatile load.
464 LoadInst
*LI
= dyn_cast
<LoadInst
>(SI
->getValueOperand());
466 // Only allow non-volatile loads
467 if (!LI
|| LI
->isVolatile())
468 return LegalStoreKind::None
;
469 // Only allow simple or unordered-atomic loads
470 if (!LI
->isUnordered())
471 return LegalStoreKind::None
;
473 // See if the pointer expression is an AddRec like {base,+,1} on the current
474 // loop, which indicates a strided load. If we have something else, it's a
475 // random load we can't handle.
476 const SCEVAddRecExpr
*LoadEv
=
477 dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(LI
->getPointerOperand()));
478 if (!LoadEv
|| LoadEv
->getLoop() != CurLoop
|| !LoadEv
->isAffine())
479 return LegalStoreKind::None
;
481 // The store and load must share the same stride.
482 if (StoreEv
->getOperand(1) != LoadEv
->getOperand(1))
483 return LegalStoreKind::None
;
485 // Success. This store can be converted into a memcpy.
486 UnorderedAtomic
= UnorderedAtomic
|| LI
->isAtomic();
487 return UnorderedAtomic
? LegalStoreKind::UnorderedAtomicMemcpy
488 : LegalStoreKind::Memcpy
;
490 // This store can't be transformed into a memset/memcpy.
491 return LegalStoreKind::None
;
494 void LoopIdiomRecognize::collectStores(BasicBlock
*BB
) {
495 StoreRefsForMemset
.clear();
496 StoreRefsForMemsetPattern
.clear();
497 StoreRefsForMemcpy
.clear();
498 for (Instruction
&I
: *BB
) {
499 StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
);
503 // Make sure this is a strided store with a constant stride.
504 switch (isLegalStore(SI
)) {
505 case LegalStoreKind::None
:
508 case LegalStoreKind::Memset
: {
509 // Find the base pointer.
510 Value
*Ptr
= GetUnderlyingObject(SI
->getPointerOperand(), *DL
);
511 StoreRefsForMemset
[Ptr
].push_back(SI
);
513 case LegalStoreKind::MemsetPattern
: {
514 // Find the base pointer.
515 Value
*Ptr
= GetUnderlyingObject(SI
->getPointerOperand(), *DL
);
516 StoreRefsForMemsetPattern
[Ptr
].push_back(SI
);
518 case LegalStoreKind::Memcpy
:
519 case LegalStoreKind::UnorderedAtomicMemcpy
:
520 StoreRefsForMemcpy
.push_back(SI
);
523 assert(false && "unhandled return value");
529 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
530 /// with the specified backedge count. This block is known to be in the current
531 /// loop and not in any subloops.
532 bool LoopIdiomRecognize::runOnLoopBlock(
533 BasicBlock
*BB
, const SCEV
*BECount
,
534 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
535 // We can only promote stores in this block if they are unconditionally
536 // executed in the loop. For a block to be unconditionally executed, it has
537 // to dominate all the exit blocks of the loop. Verify this now.
538 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
539 if (!DT
->dominates(BB
, ExitBlocks
[i
]))
542 bool MadeChange
= false;
543 // Look for store instructions, which may be optimized to memset/memcpy.
546 // Look for a single store or sets of stores with a common base, which can be
547 // optimized into a memset (memset_pattern). The latter most commonly happens
548 // with structs and handunrolled loops.
549 for (auto &SL
: StoreRefsForMemset
)
550 MadeChange
|= processLoopStores(SL
.second
, BECount
, ForMemset::Yes
);
552 for (auto &SL
: StoreRefsForMemsetPattern
)
553 MadeChange
|= processLoopStores(SL
.second
, BECount
, ForMemset::No
);
555 // Optimize the store into a memcpy, if it feeds an similarly strided load.
556 for (auto &SI
: StoreRefsForMemcpy
)
557 MadeChange
|= processLoopStoreOfLoopLoad(SI
, BECount
);
559 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;) {
560 Instruction
*Inst
= &*I
++;
561 // Look for memset instructions, which may be optimized to a larger memset.
562 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(Inst
)) {
563 WeakTrackingVH
InstPtr(&*I
);
564 if (!processLoopMemSet(MSI
, BECount
))
568 // If processing the memset invalidated our iterator, start over from the
579 /// See if this store(s) can be promoted to a memset.
580 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl
<StoreInst
*> &SL
,
581 const SCEV
*BECount
, ForMemset For
) {
582 // Try to find consecutive stores that can be transformed into memsets.
583 SetVector
<StoreInst
*> Heads
, Tails
;
584 SmallDenseMap
<StoreInst
*, StoreInst
*> ConsecutiveChain
;
586 // Do a quadratic search on all of the given stores and find
587 // all of the pairs of stores that follow each other.
588 SmallVector
<unsigned, 16> IndexQueue
;
589 for (unsigned i
= 0, e
= SL
.size(); i
< e
; ++i
) {
590 assert(SL
[i
]->isSimple() && "Expected only non-volatile stores.");
592 Value
*FirstStoredVal
= SL
[i
]->getValueOperand();
593 Value
*FirstStorePtr
= SL
[i
]->getPointerOperand();
594 const SCEVAddRecExpr
*FirstStoreEv
=
595 cast
<SCEVAddRecExpr
>(SE
->getSCEV(FirstStorePtr
));
596 APInt FirstStride
= getStoreStride(FirstStoreEv
);
597 unsigned FirstStoreSize
= DL
->getTypeStoreSize(SL
[i
]->getValueOperand()->getType());
599 // See if we can optimize just this store in isolation.
600 if (FirstStride
== FirstStoreSize
|| -FirstStride
== FirstStoreSize
) {
605 Value
*FirstSplatValue
= nullptr;
606 Constant
*FirstPatternValue
= nullptr;
608 if (For
== ForMemset::Yes
)
609 FirstSplatValue
= isBytewiseValue(FirstStoredVal
);
611 FirstPatternValue
= getMemSetPatternValue(FirstStoredVal
, DL
);
613 assert((FirstSplatValue
|| FirstPatternValue
) &&
614 "Expected either splat value or pattern value.");
617 // If a store has multiple consecutive store candidates, search Stores
618 // array according to the sequence: from i+1 to e, then from i-1 to 0.
619 // This is because usually pairing with immediate succeeding or preceding
620 // candidate create the best chance to find memset opportunity.
622 for (j
= i
+ 1; j
< e
; ++j
)
623 IndexQueue
.push_back(j
);
624 for (j
= i
; j
> 0; --j
)
625 IndexQueue
.push_back(j
- 1);
627 for (auto &k
: IndexQueue
) {
628 assert(SL
[k
]->isSimple() && "Expected only non-volatile stores.");
629 Value
*SecondStorePtr
= SL
[k
]->getPointerOperand();
630 const SCEVAddRecExpr
*SecondStoreEv
=
631 cast
<SCEVAddRecExpr
>(SE
->getSCEV(SecondStorePtr
));
632 APInt SecondStride
= getStoreStride(SecondStoreEv
);
634 if (FirstStride
!= SecondStride
)
637 Value
*SecondStoredVal
= SL
[k
]->getValueOperand();
638 Value
*SecondSplatValue
= nullptr;
639 Constant
*SecondPatternValue
= nullptr;
641 if (For
== ForMemset::Yes
)
642 SecondSplatValue
= isBytewiseValue(SecondStoredVal
);
644 SecondPatternValue
= getMemSetPatternValue(SecondStoredVal
, DL
);
646 assert((SecondSplatValue
|| SecondPatternValue
) &&
647 "Expected either splat value or pattern value.");
649 if (isConsecutiveAccess(SL
[i
], SL
[k
], *DL
, *SE
, false)) {
650 if (For
== ForMemset::Yes
) {
651 if (isa
<UndefValue
>(FirstSplatValue
))
652 FirstSplatValue
= SecondSplatValue
;
653 if (FirstSplatValue
!= SecondSplatValue
)
656 if (isa
<UndefValue
>(FirstPatternValue
))
657 FirstPatternValue
= SecondPatternValue
;
658 if (FirstPatternValue
!= SecondPatternValue
)
663 ConsecutiveChain
[SL
[i
]] = SL
[k
];
669 // We may run into multiple chains that merge into a single chain. We mark the
670 // stores that we transformed so that we don't visit the same store twice.
671 SmallPtrSet
<Value
*, 16> TransformedStores
;
672 bool Changed
= false;
674 // For stores that start but don't end a link in the chain:
675 for (SetVector
<StoreInst
*>::iterator it
= Heads
.begin(), e
= Heads
.end();
677 if (Tails
.count(*it
))
680 // We found a store instr that starts a chain. Now follow the chain and try
682 SmallPtrSet
<Instruction
*, 8> AdjacentStores
;
685 StoreInst
*HeadStore
= I
;
686 unsigned StoreSize
= 0;
688 // Collect the chain into a list.
689 while (Tails
.count(I
) || Heads
.count(I
)) {
690 if (TransformedStores
.count(I
))
692 AdjacentStores
.insert(I
);
694 StoreSize
+= DL
->getTypeStoreSize(I
->getValueOperand()->getType());
695 // Move to the next value in the chain.
696 I
= ConsecutiveChain
[I
];
699 Value
*StoredVal
= HeadStore
->getValueOperand();
700 Value
*StorePtr
= HeadStore
->getPointerOperand();
701 const SCEVAddRecExpr
*StoreEv
= cast
<SCEVAddRecExpr
>(SE
->getSCEV(StorePtr
));
702 APInt Stride
= getStoreStride(StoreEv
);
704 // Check to see if the stride matches the size of the stores. If so, then
705 // we know that every byte is touched in the loop.
706 if (StoreSize
!= Stride
&& StoreSize
!= -Stride
)
709 bool NegStride
= StoreSize
== -Stride
;
711 if (processLoopStridedStore(StorePtr
, StoreSize
, HeadStore
->getAlignment(),
712 StoredVal
, HeadStore
, AdjacentStores
, StoreEv
,
713 BECount
, NegStride
)) {
714 TransformedStores
.insert(AdjacentStores
.begin(), AdjacentStores
.end());
722 /// processLoopMemSet - See if this memset can be promoted to a large memset.
723 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst
*MSI
,
724 const SCEV
*BECount
) {
725 // We can only handle non-volatile memsets with a constant size.
726 if (MSI
->isVolatile() || !isa
<ConstantInt
>(MSI
->getLength()))
729 // If we're not allowed to hack on memset, we fail.
733 Value
*Pointer
= MSI
->getDest();
735 // See if the pointer expression is an AddRec like {base,+,1} on the current
736 // loop, which indicates a strided store. If we have something else, it's a
737 // random store we can't handle.
738 const SCEVAddRecExpr
*Ev
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Pointer
));
739 if (!Ev
|| Ev
->getLoop() != CurLoop
|| !Ev
->isAffine())
742 // Reject memsets that are so large that they overflow an unsigned.
743 uint64_t SizeInBytes
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
744 if ((SizeInBytes
>> 32) != 0)
747 // Check to see if the stride matches the size of the memset. If so, then we
748 // know that every byte is touched in the loop.
749 const SCEVConstant
*ConstStride
= dyn_cast
<SCEVConstant
>(Ev
->getOperand(1));
753 APInt Stride
= ConstStride
->getAPInt();
754 if (SizeInBytes
!= Stride
&& SizeInBytes
!= -Stride
)
757 // Verify that the memset value is loop invariant. If not, we can't promote
759 Value
*SplatValue
= MSI
->getValue();
760 if (!SplatValue
|| !CurLoop
->isLoopInvariant(SplatValue
))
763 SmallPtrSet
<Instruction
*, 1> MSIs
;
765 bool NegStride
= SizeInBytes
== -Stride
;
766 return processLoopStridedStore(Pointer
, (unsigned)SizeInBytes
,
767 MSI
->getDestAlignment(), SplatValue
, MSI
, MSIs
,
768 Ev
, BECount
, NegStride
, /*IsLoopMemset=*/true);
771 /// mayLoopAccessLocation - Return true if the specified loop might access the
772 /// specified pointer location, which is a loop-strided access. The 'Access'
773 /// argument specifies what the verboten forms of access are (read or write).
775 mayLoopAccessLocation(Value
*Ptr
, ModRefInfo Access
, Loop
*L
,
776 const SCEV
*BECount
, unsigned StoreSize
,
778 SmallPtrSetImpl
<Instruction
*> &IgnoredStores
) {
779 // Get the location that may be stored across the loop. Since the access is
780 // strided positively through memory, we say that the modified location starts
781 // at the pointer and has infinite size.
782 LocationSize AccessSize
= LocationSize::unknown();
784 // If the loop iterates a fixed number of times, we can refine the access size
785 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
786 if (const SCEVConstant
*BECst
= dyn_cast
<SCEVConstant
>(BECount
))
787 AccessSize
= LocationSize::precise((BECst
->getValue()->getZExtValue() + 1) *
790 // TODO: For this to be really effective, we have to dive into the pointer
791 // operand in the store. Store to &A[i] of 100 will always return may alias
792 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
793 // which will then no-alias a store to &A[100].
794 MemoryLocation
StoreLoc(Ptr
, AccessSize
);
796 for (Loop::block_iterator BI
= L
->block_begin(), E
= L
->block_end(); BI
!= E
;
798 for (Instruction
&I
: **BI
)
799 if (IgnoredStores
.count(&I
) == 0 &&
801 intersectModRef(AA
.getModRefInfo(&I
, StoreLoc
), Access
)))
807 // If we have a negative stride, Start refers to the end of the memory location
808 // we're trying to memset. Therefore, we need to recompute the base pointer,
809 // which is just Start - BECount*Size.
810 static const SCEV
*getStartForNegStride(const SCEV
*Start
, const SCEV
*BECount
,
811 Type
*IntPtr
, unsigned StoreSize
,
812 ScalarEvolution
*SE
) {
813 const SCEV
*Index
= SE
->getTruncateOrZeroExtend(BECount
, IntPtr
);
815 Index
= SE
->getMulExpr(Index
, SE
->getConstant(IntPtr
, StoreSize
),
817 return SE
->getMinusSCEV(Start
, Index
);
820 /// Compute the number of bytes as a SCEV from the backedge taken count.
822 /// This also maps the SCEV into the provided type and tries to handle the
823 /// computation in a way that will fold cleanly.
824 static const SCEV
*getNumBytes(const SCEV
*BECount
, Type
*IntPtr
,
825 unsigned StoreSize
, Loop
*CurLoop
,
826 const DataLayout
*DL
, ScalarEvolution
*SE
) {
827 const SCEV
*NumBytesS
;
828 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
829 // pointer size if it isn't already.
831 // If we're going to need to zero extend the BE count, check if we can add
832 // one to it prior to zero extending without overflow. Provided this is safe,
833 // it allows better simplification of the +1.
834 if (DL
->getTypeSizeInBits(BECount
->getType()) <
835 DL
->getTypeSizeInBits(IntPtr
) &&
836 SE
->isLoopEntryGuardedByCond(
837 CurLoop
, ICmpInst::ICMP_NE
, BECount
,
838 SE
->getNegativeSCEV(SE
->getOne(BECount
->getType())))) {
839 NumBytesS
= SE
->getZeroExtendExpr(
840 SE
->getAddExpr(BECount
, SE
->getOne(BECount
->getType()), SCEV::FlagNUW
),
843 NumBytesS
= SE
->getAddExpr(SE
->getTruncateOrZeroExtend(BECount
, IntPtr
),
844 SE
->getOne(IntPtr
), SCEV::FlagNUW
);
847 // And scale it based on the store size.
848 if (StoreSize
!= 1) {
849 NumBytesS
= SE
->getMulExpr(NumBytesS
, SE
->getConstant(IntPtr
, StoreSize
),
855 /// processLoopStridedStore - We see a strided store of some value. If we can
856 /// transform this into a memset or memset_pattern in the loop preheader, do so.
857 bool LoopIdiomRecognize::processLoopStridedStore(
858 Value
*DestPtr
, unsigned StoreSize
, unsigned StoreAlignment
,
859 Value
*StoredVal
, Instruction
*TheStore
,
860 SmallPtrSetImpl
<Instruction
*> &Stores
, const SCEVAddRecExpr
*Ev
,
861 const SCEV
*BECount
, bool NegStride
, bool IsLoopMemset
) {
862 Value
*SplatValue
= isBytewiseValue(StoredVal
);
863 Constant
*PatternValue
= nullptr;
866 PatternValue
= getMemSetPatternValue(StoredVal
, DL
);
868 assert((SplatValue
|| PatternValue
) &&
869 "Expected either splat value or pattern value.");
871 // The trip count of the loop and the base pointer of the addrec SCEV is
872 // guaranteed to be loop invariant, which means that it should dominate the
873 // header. This allows us to insert code for it in the preheader.
874 unsigned DestAS
= DestPtr
->getType()->getPointerAddressSpace();
875 BasicBlock
*Preheader
= CurLoop
->getLoopPreheader();
876 IRBuilder
<> Builder(Preheader
->getTerminator());
877 SCEVExpander
Expander(*SE
, *DL
, "loop-idiom");
879 Type
*DestInt8PtrTy
= Builder
.getInt8PtrTy(DestAS
);
880 Type
*IntPtr
= Builder
.getIntPtrTy(*DL
, DestAS
);
882 const SCEV
*Start
= Ev
->getStart();
883 // Handle negative strided loops.
885 Start
= getStartForNegStride(Start
, BECount
, IntPtr
, StoreSize
, SE
);
887 // TODO: ideally we should still be able to generate memset if SCEV expander
888 // is taught to generate the dependencies at the latest point.
889 if (!isSafeToExpand(Start
, *SE
))
892 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
893 // this into a memset in the loop preheader now if we want. However, this
894 // would be unsafe to do if there is anything else in the loop that may read
895 // or write to the aliased location. Check for any overlap by generating the
896 // base pointer and checking the region.
898 Expander
.expandCodeFor(Start
, DestInt8PtrTy
, Preheader
->getTerminator());
899 if (mayLoopAccessLocation(BasePtr
, ModRefInfo::ModRef
, CurLoop
, BECount
,
900 StoreSize
, *AA
, Stores
)) {
902 // If we generated new code for the base pointer, clean up.
903 RecursivelyDeleteTriviallyDeadInstructions(BasePtr
, TLI
);
907 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset
))
910 // Okay, everything looks good, insert the memset.
912 const SCEV
*NumBytesS
=
913 getNumBytes(BECount
, IntPtr
, StoreSize
, CurLoop
, DL
, SE
);
915 // TODO: ideally we should still be able to generate memset if SCEV expander
916 // is taught to generate the dependencies at the latest point.
917 if (!isSafeToExpand(NumBytesS
, *SE
))
921 Expander
.expandCodeFor(NumBytesS
, IntPtr
, Preheader
->getTerminator());
926 Builder
.CreateMemSet(BasePtr
, SplatValue
, NumBytes
, StoreAlignment
);
928 // Everything is emitted in default address space
929 Type
*Int8PtrTy
= DestInt8PtrTy
;
931 Module
*M
= TheStore
->getModule();
932 StringRef FuncName
= "memset_pattern16";
933 FunctionCallee MSP
= M
->getOrInsertFunction(FuncName
, Builder
.getVoidTy(),
934 Int8PtrTy
, Int8PtrTy
, IntPtr
);
935 inferLibFuncAttributes(M
, FuncName
, *TLI
);
937 // Otherwise we should form a memset_pattern16. PatternValue is known to be
938 // an constant array of 16-bytes. Plop the value into a mergable global.
939 GlobalVariable
*GV
= new GlobalVariable(*M
, PatternValue
->getType(), true,
940 GlobalValue::PrivateLinkage
,
941 PatternValue
, ".memset_pattern");
942 GV
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
); // Ok to merge these.
943 GV
->setAlignment(16);
944 Value
*PatternPtr
= ConstantExpr::getBitCast(GV
, Int8PtrTy
);
945 NewCall
= Builder
.CreateCall(MSP
, {BasePtr
, PatternPtr
, NumBytes
});
948 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall
<< "\n"
949 << " from store to: " << *Ev
<< " at: " << *TheStore
951 NewCall
->setDebugLoc(TheStore
->getDebugLoc());
953 // Okay, the memset has been formed. Zap the original store and anything that
955 for (auto *I
: Stores
)
956 deleteDeadInstruction(I
);
961 /// If the stored value is a strided load in the same loop with the same stride
962 /// this may be transformable into a memcpy. This kicks in for stuff like
963 /// for (i) A[i] = B[i];
964 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst
*SI
,
965 const SCEV
*BECount
) {
966 assert(SI
->isUnordered() && "Expected only non-volatile non-ordered stores.");
968 Value
*StorePtr
= SI
->getPointerOperand();
969 const SCEVAddRecExpr
*StoreEv
= cast
<SCEVAddRecExpr
>(SE
->getSCEV(StorePtr
));
970 APInt Stride
= getStoreStride(StoreEv
);
971 unsigned StoreSize
= DL
->getTypeStoreSize(SI
->getValueOperand()->getType());
972 bool NegStride
= StoreSize
== -Stride
;
974 // The store must be feeding a non-volatile load.
975 LoadInst
*LI
= cast
<LoadInst
>(SI
->getValueOperand());
976 assert(LI
->isUnordered() && "Expected only non-volatile non-ordered loads.");
978 // See if the pointer expression is an AddRec like {base,+,1} on the current
979 // loop, which indicates a strided load. If we have something else, it's a
980 // random load we can't handle.
981 const SCEVAddRecExpr
*LoadEv
=
982 cast
<SCEVAddRecExpr
>(SE
->getSCEV(LI
->getPointerOperand()));
984 // The trip count of the loop and the base pointer of the addrec SCEV is
985 // guaranteed to be loop invariant, which means that it should dominate the
986 // header. This allows us to insert code for it in the preheader.
987 BasicBlock
*Preheader
= CurLoop
->getLoopPreheader();
988 IRBuilder
<> Builder(Preheader
->getTerminator());
989 SCEVExpander
Expander(*SE
, *DL
, "loop-idiom");
991 const SCEV
*StrStart
= StoreEv
->getStart();
992 unsigned StrAS
= SI
->getPointerAddressSpace();
993 Type
*IntPtrTy
= Builder
.getIntPtrTy(*DL
, StrAS
);
995 // Handle negative strided loops.
997 StrStart
= getStartForNegStride(StrStart
, BECount
, IntPtrTy
, StoreSize
, SE
);
999 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1000 // this into a memcpy in the loop preheader now if we want. However, this
1001 // would be unsafe to do if there is anything else in the loop that may read
1002 // or write the memory region we're storing to. This includes the load that
1003 // feeds the stores. Check for an alias by generating the base address and
1004 // checking everything.
1005 Value
*StoreBasePtr
= Expander
.expandCodeFor(
1006 StrStart
, Builder
.getInt8PtrTy(StrAS
), Preheader
->getTerminator());
1008 SmallPtrSet
<Instruction
*, 1> Stores
;
1010 if (mayLoopAccessLocation(StoreBasePtr
, ModRefInfo::ModRef
, CurLoop
, BECount
,
1011 StoreSize
, *AA
, Stores
)) {
1013 // If we generated new code for the base pointer, clean up.
1014 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr
, TLI
);
1018 const SCEV
*LdStart
= LoadEv
->getStart();
1019 unsigned LdAS
= LI
->getPointerAddressSpace();
1021 // Handle negative strided loops.
1023 LdStart
= getStartForNegStride(LdStart
, BECount
, IntPtrTy
, StoreSize
, SE
);
1025 // For a memcpy, we have to make sure that the input array is not being
1026 // mutated by the loop.
1027 Value
*LoadBasePtr
= Expander
.expandCodeFor(
1028 LdStart
, Builder
.getInt8PtrTy(LdAS
), Preheader
->getTerminator());
1030 if (mayLoopAccessLocation(LoadBasePtr
, ModRefInfo::Mod
, CurLoop
, BECount
,
1031 StoreSize
, *AA
, Stores
)) {
1033 // If we generated new code for the base pointer, clean up.
1034 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr
, TLI
);
1035 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr
, TLI
);
1039 if (avoidLIRForMultiBlockLoop())
1042 // Okay, everything is safe, we can transform this!
1044 const SCEV
*NumBytesS
=
1045 getNumBytes(BECount
, IntPtrTy
, StoreSize
, CurLoop
, DL
, SE
);
1048 Expander
.expandCodeFor(NumBytesS
, IntPtrTy
, Preheader
->getTerminator());
1050 CallInst
*NewCall
= nullptr;
1051 // Check whether to generate an unordered atomic memcpy:
1052 // If the load or store are atomic, then they must necessarily be unordered
1053 // by previous checks.
1054 if (!SI
->isAtomic() && !LI
->isAtomic())
1055 NewCall
= Builder
.CreateMemCpy(StoreBasePtr
, SI
->getAlignment(),
1056 LoadBasePtr
, LI
->getAlignment(), NumBytes
);
1058 // We cannot allow unaligned ops for unordered load/store, so reject
1059 // anything where the alignment isn't at least the element size.
1060 unsigned Align
= std::min(SI
->getAlignment(), LI
->getAlignment());
1061 if (Align
< StoreSize
)
1064 // If the element.atomic memcpy is not lowered into explicit
1065 // loads/stores later, then it will be lowered into an element-size
1066 // specific lib call. If the lib call doesn't exist for our store size, then
1067 // we shouldn't generate the memcpy.
1068 if (StoreSize
> TTI
->getAtomicMemIntrinsicMaxElementSize())
1072 // Note that unordered atomic loads/stores are *required* by the spec to
1073 // have an alignment but non-atomic loads/stores may not.
1074 NewCall
= Builder
.CreateElementUnorderedAtomicMemCpy(
1075 StoreBasePtr
, SI
->getAlignment(), LoadBasePtr
, LI
->getAlignment(),
1076 NumBytes
, StoreSize
);
1078 NewCall
->setDebugLoc(SI
->getDebugLoc());
1080 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall
<< "\n"
1081 << " from load ptr=" << *LoadEv
<< " at: " << *LI
<< "\n"
1082 << " from store ptr=" << *StoreEv
<< " at: " << *SI
1085 // Okay, the memcpy has been formed. Zap the original store and anything that
1087 deleteDeadInstruction(SI
);
1092 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1093 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1095 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset
,
1096 bool IsLoopMemset
) {
1097 if (ApplyCodeSizeHeuristics
&& CurLoop
->getNumBlocks() > 1) {
1098 if (!CurLoop
->getParentLoop() && (!IsMemset
|| !IsLoopMemset
)) {
1099 LLVM_DEBUG(dbgs() << " " << CurLoop
->getHeader()->getParent()->getName()
1100 << " : LIR " << (IsMemset
? "Memset" : "Memcpy")
1101 << " avoided: multi-block top-level loop\n");
1109 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1110 return recognizePopcount() || recognizeAndInsertFFS();
1113 /// Check if the given conditional branch is based on the comparison between
1114 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1115 /// true), the control yields to the loop entry. If the branch matches the
1116 /// behavior, the variable involved in the comparison is returned. This function
1117 /// will be called to see if the precondition and postcondition of the loop are
1118 /// in desirable form.
1119 static Value
*matchCondition(BranchInst
*BI
, BasicBlock
*LoopEntry
,
1120 bool JmpOnZero
= false) {
1121 if (!BI
|| !BI
->isConditional())
1124 ICmpInst
*Cond
= dyn_cast
<ICmpInst
>(BI
->getCondition());
1128 ConstantInt
*CmpZero
= dyn_cast
<ConstantInt
>(Cond
->getOperand(1));
1129 if (!CmpZero
|| !CmpZero
->isZero())
1132 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1133 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1135 std::swap(TrueSucc
, FalseSucc
);
1137 ICmpInst::Predicate Pred
= Cond
->getPredicate();
1138 if ((Pred
== ICmpInst::ICMP_NE
&& TrueSucc
== LoopEntry
) ||
1139 (Pred
== ICmpInst::ICMP_EQ
&& FalseSucc
== LoopEntry
))
1140 return Cond
->getOperand(0);
1145 // Check if the recurrence variable `VarX` is in the right form to create
1146 // the idiom. Returns the value coerced to a PHINode if so.
1147 static PHINode
*getRecurrenceVar(Value
*VarX
, Instruction
*DefX
,
1148 BasicBlock
*LoopEntry
) {
1149 auto *PhiX
= dyn_cast
<PHINode
>(VarX
);
1150 if (PhiX
&& PhiX
->getParent() == LoopEntry
&&
1151 (PhiX
->getOperand(0) == DefX
|| PhiX
->getOperand(1) == DefX
))
1156 /// Return true iff the idiom is detected in the loop.
1159 /// 1) \p CntInst is set to the instruction counting the population bit.
1160 /// 2) \p CntPhi is set to the corresponding phi node.
1161 /// 3) \p Var is set to the value whose population bits are being counted.
1163 /// The core idiom we are trying to detect is:
1166 /// goto loop-exit // the precondition of the loop
1167 /// cnt0 = init-val;
1169 /// x1 = phi (x0, x2);
1170 /// cnt1 = phi(cnt0, cnt2);
1172 /// cnt2 = cnt1 + 1;
1174 /// x2 = x1 & (x1 - 1);
1176 /// } while(x != 0);
1180 static bool detectPopcountIdiom(Loop
*CurLoop
, BasicBlock
*PreCondBB
,
1181 Instruction
*&CntInst
, PHINode
*&CntPhi
,
1183 // step 1: Check to see if the look-back branch match this pattern:
1184 // "if (a!=0) goto loop-entry".
1185 BasicBlock
*LoopEntry
;
1186 Instruction
*DefX2
, *CountInst
;
1187 Value
*VarX1
, *VarX0
;
1188 PHINode
*PhiX
, *CountPhi
;
1190 DefX2
= CountInst
= nullptr;
1191 VarX1
= VarX0
= nullptr;
1192 PhiX
= CountPhi
= nullptr;
1193 LoopEntry
= *(CurLoop
->block_begin());
1195 // step 1: Check if the loop-back branch is in desirable form.
1197 if (Value
*T
= matchCondition(
1198 dyn_cast
<BranchInst
>(LoopEntry
->getTerminator()), LoopEntry
))
1199 DefX2
= dyn_cast
<Instruction
>(T
);
1204 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1206 if (!DefX2
|| DefX2
->getOpcode() != Instruction::And
)
1209 BinaryOperator
*SubOneOp
;
1211 if ((SubOneOp
= dyn_cast
<BinaryOperator
>(DefX2
->getOperand(0))))
1212 VarX1
= DefX2
->getOperand(1);
1214 VarX1
= DefX2
->getOperand(0);
1215 SubOneOp
= dyn_cast
<BinaryOperator
>(DefX2
->getOperand(1));
1217 if (!SubOneOp
|| SubOneOp
->getOperand(0) != VarX1
)
1220 ConstantInt
*Dec
= dyn_cast
<ConstantInt
>(SubOneOp
->getOperand(1));
1222 !((SubOneOp
->getOpcode() == Instruction::Sub
&& Dec
->isOne()) ||
1223 (SubOneOp
->getOpcode() == Instruction::Add
&&
1224 Dec
->isMinusOne()))) {
1229 // step 3: Check the recurrence of variable X
1230 PhiX
= getRecurrenceVar(VarX1
, DefX2
, LoopEntry
);
1234 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1236 CountInst
= nullptr;
1237 for (BasicBlock::iterator Iter
= LoopEntry
->getFirstNonPHI()->getIterator(),
1238 IterE
= LoopEntry
->end();
1239 Iter
!= IterE
; Iter
++) {
1240 Instruction
*Inst
= &*Iter
;
1241 if (Inst
->getOpcode() != Instruction::Add
)
1244 ConstantInt
*Inc
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1));
1245 if (!Inc
|| !Inc
->isOne())
1248 PHINode
*Phi
= getRecurrenceVar(Inst
->getOperand(0), Inst
, LoopEntry
);
1252 // Check if the result of the instruction is live of the loop.
1253 bool LiveOutLoop
= false;
1254 for (User
*U
: Inst
->users()) {
1255 if ((cast
<Instruction
>(U
))->getParent() != LoopEntry
) {
1272 // step 5: check if the precondition is in this form:
1273 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1275 auto *PreCondBr
= dyn_cast
<BranchInst
>(PreCondBB
->getTerminator());
1276 Value
*T
= matchCondition(PreCondBr
, CurLoop
->getLoopPreheader());
1277 if (T
!= PhiX
->getOperand(0) && T
!= PhiX
->getOperand(1))
1280 CntInst
= CountInst
;
1288 /// Return true if the idiom is detected in the loop.
1291 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1292 /// or nullptr if there is no such.
1293 /// 2) \p CntPhi is set to the corresponding phi node
1294 /// or nullptr if there is no such.
1295 /// 3) \p Var is set to the value whose CTLZ could be used.
1296 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1298 /// The core idiom we are trying to detect is:
1301 /// goto loop-exit // the precondition of the loop
1302 /// cnt0 = init-val;
1304 /// x = phi (x0, x.next); //PhiX
1305 /// cnt = phi(cnt0, cnt.next);
1307 /// cnt.next = cnt + 1;
1309 /// x.next = x >> 1; // DefX
1311 /// } while(x.next != 0);
1315 static bool detectShiftUntilZeroIdiom(Loop
*CurLoop
, const DataLayout
&DL
,
1316 Intrinsic::ID
&IntrinID
, Value
*&InitX
,
1317 Instruction
*&CntInst
, PHINode
*&CntPhi
,
1318 Instruction
*&DefX
) {
1319 BasicBlock
*LoopEntry
;
1320 Value
*VarX
= nullptr;
1325 LoopEntry
= *(CurLoop
->block_begin());
1327 // step 1: Check if the loop-back branch is in desirable form.
1328 if (Value
*T
= matchCondition(
1329 dyn_cast
<BranchInst
>(LoopEntry
->getTerminator()), LoopEntry
))
1330 DefX
= dyn_cast
<Instruction
>(T
);
1334 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1335 if (!DefX
|| !DefX
->isShift())
1337 IntrinID
= DefX
->getOpcode() == Instruction::Shl
? Intrinsic::cttz
:
1339 ConstantInt
*Shft
= dyn_cast
<ConstantInt
>(DefX
->getOperand(1));
1340 if (!Shft
|| !Shft
->isOne())
1342 VarX
= DefX
->getOperand(0);
1344 // step 3: Check the recurrence of variable X
1345 PHINode
*PhiX
= getRecurrenceVar(VarX
, DefX
, LoopEntry
);
1349 InitX
= PhiX
->getIncomingValueForBlock(CurLoop
->getLoopPreheader());
1351 // Make sure the initial value can't be negative otherwise the ashr in the
1352 // loop might never reach zero which would make the loop infinite.
1353 if (DefX
->getOpcode() == Instruction::AShr
&& !isKnownNonNegative(InitX
, DL
))
1356 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1357 // TODO: We can skip the step. If loop trip count is known (CTLZ),
1358 // then all uses of "cnt.next" could be optimized to the trip count
1359 // plus "cnt0". Currently it is not optimized.
1360 // This step could be used to detect POPCNT instruction:
1361 // cnt.next = cnt + (x.next & 1)
1362 for (BasicBlock::iterator Iter
= LoopEntry
->getFirstNonPHI()->getIterator(),
1363 IterE
= LoopEntry
->end();
1364 Iter
!= IterE
; Iter
++) {
1365 Instruction
*Inst
= &*Iter
;
1366 if (Inst
->getOpcode() != Instruction::Add
)
1369 ConstantInt
*Inc
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1));
1370 if (!Inc
|| !Inc
->isOne())
1373 PHINode
*Phi
= getRecurrenceVar(Inst
->getOperand(0), Inst
, LoopEntry
);
1387 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1388 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1389 /// trip count returns true; otherwise, returns false.
1390 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1391 // Give up if the loop has multiple blocks or multiple backedges.
1392 if (CurLoop
->getNumBackEdges() != 1 || CurLoop
->getNumBlocks() != 1)
1395 Intrinsic::ID IntrinID
;
1397 Instruction
*DefX
= nullptr;
1398 PHINode
*CntPhi
= nullptr;
1399 Instruction
*CntInst
= nullptr;
1400 // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1401 // this is always 6.
1402 size_t IdiomCanonicalSize
= 6;
1404 if (!detectShiftUntilZeroIdiom(CurLoop
, *DL
, IntrinID
, InitX
,
1405 CntInst
, CntPhi
, DefX
))
1408 bool IsCntPhiUsedOutsideLoop
= false;
1409 for (User
*U
: CntPhi
->users())
1410 if (!CurLoop
->contains(cast
<Instruction
>(U
))) {
1411 IsCntPhiUsedOutsideLoop
= true;
1414 bool IsCntInstUsedOutsideLoop
= false;
1415 for (User
*U
: CntInst
->users())
1416 if (!CurLoop
->contains(cast
<Instruction
>(U
))) {
1417 IsCntInstUsedOutsideLoop
= true;
1420 // If both CntInst and CntPhi are used outside the loop the profitability
1422 if (IsCntInstUsedOutsideLoop
&& IsCntPhiUsedOutsideLoop
)
1425 // For some CPUs result of CTLZ(X) intrinsic is undefined
1426 // when X is 0. If we can not guarantee X != 0, we need to check this
1428 bool ZeroCheck
= false;
1429 // It is safe to assume Preheader exist as it was checked in
1430 // parent function RunOnLoop.
1431 BasicBlock
*PH
= CurLoop
->getLoopPreheader();
1433 // If we are using the count instruction outside the loop, make sure we
1434 // have a zero check as a precondition. Without the check the loop would run
1435 // one iteration for before any check of the input value. This means 0 and 1
1436 // would have identical behavior in the original loop and thus
1437 if (!IsCntPhiUsedOutsideLoop
) {
1438 auto *PreCondBB
= PH
->getSinglePredecessor();
1441 auto *PreCondBI
= dyn_cast
<BranchInst
>(PreCondBB
->getTerminator());
1444 if (matchCondition(PreCondBI
, PH
) != InitX
)
1449 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1450 // profitable if we delete the loop.
1452 // the loop has only 6 instructions:
1453 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1454 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1455 // %shr = ashr %n.addr.0, 1
1456 // %tobool = icmp eq %shr, 0
1457 // %inc = add nsw %i.0, 1
1460 const Value
*Args
[] =
1461 {InitX
, ZeroCheck
? ConstantInt::getTrue(InitX
->getContext())
1462 : ConstantInt::getFalse(InitX
->getContext())};
1464 // @llvm.dbg doesn't count as they have no semantic effect.
1465 auto InstWithoutDebugIt
= CurLoop
->getHeader()->instructionsWithoutDebug();
1466 uint32_t HeaderSize
=
1467 std::distance(InstWithoutDebugIt
.begin(), InstWithoutDebugIt
.end());
1469 if (HeaderSize
!= IdiomCanonicalSize
&&
1470 TTI
->getIntrinsicCost(IntrinID
, InitX
->getType(), Args
) >
1471 TargetTransformInfo::TCC_Basic
)
1474 transformLoopToCountable(IntrinID
, PH
, CntInst
, CntPhi
, InitX
, DefX
,
1475 DefX
->getDebugLoc(), ZeroCheck
,
1476 IsCntPhiUsedOutsideLoop
);
1480 /// Recognizes a population count idiom in a non-countable loop.
1482 /// If detected, transforms the relevant code to issue the popcount intrinsic
1483 /// function call, and returns true; otherwise, returns false.
1484 bool LoopIdiomRecognize::recognizePopcount() {
1485 if (TTI
->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware
)
1488 // Counting population are usually conducted by few arithmetic instructions.
1489 // Such instructions can be easily "absorbed" by vacant slots in a
1490 // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1491 // in a compact loop.
1493 // Give up if the loop has multiple blocks or multiple backedges.
1494 if (CurLoop
->getNumBackEdges() != 1 || CurLoop
->getNumBlocks() != 1)
1497 BasicBlock
*LoopBody
= *(CurLoop
->block_begin());
1498 if (LoopBody
->size() >= 20) {
1499 // The loop is too big, bail out.
1503 // It should have a preheader containing nothing but an unconditional branch.
1504 BasicBlock
*PH
= CurLoop
->getLoopPreheader();
1505 if (!PH
|| &PH
->front() != PH
->getTerminator())
1507 auto *EntryBI
= dyn_cast
<BranchInst
>(PH
->getTerminator());
1508 if (!EntryBI
|| EntryBI
->isConditional())
1511 // It should have a precondition block where the generated popcount intrinsic
1512 // function can be inserted.
1513 auto *PreCondBB
= PH
->getSinglePredecessor();
1516 auto *PreCondBI
= dyn_cast
<BranchInst
>(PreCondBB
->getTerminator());
1517 if (!PreCondBI
|| PreCondBI
->isUnconditional())
1520 Instruction
*CntInst
;
1523 if (!detectPopcountIdiom(CurLoop
, PreCondBB
, CntInst
, CntPhi
, Val
))
1526 transformLoopToPopcount(PreCondBB
, CntInst
, CntPhi
, Val
);
1530 static CallInst
*createPopcntIntrinsic(IRBuilder
<> &IRBuilder
, Value
*Val
,
1531 const DebugLoc
&DL
) {
1532 Value
*Ops
[] = {Val
};
1533 Type
*Tys
[] = {Val
->getType()};
1535 Module
*M
= IRBuilder
.GetInsertBlock()->getParent()->getParent();
1536 Function
*Func
= Intrinsic::getDeclaration(M
, Intrinsic::ctpop
, Tys
);
1537 CallInst
*CI
= IRBuilder
.CreateCall(Func
, Ops
);
1538 CI
->setDebugLoc(DL
);
1543 static CallInst
*createFFSIntrinsic(IRBuilder
<> &IRBuilder
, Value
*Val
,
1544 const DebugLoc
&DL
, bool ZeroCheck
,
1545 Intrinsic::ID IID
) {
1546 Value
*Ops
[] = {Val
, ZeroCheck
? IRBuilder
.getTrue() : IRBuilder
.getFalse()};
1547 Type
*Tys
[] = {Val
->getType()};
1549 Module
*M
= IRBuilder
.GetInsertBlock()->getParent()->getParent();
1550 Function
*Func
= Intrinsic::getDeclaration(M
, IID
, Tys
);
1551 CallInst
*CI
= IRBuilder
.CreateCall(Func
, Ops
);
1552 CI
->setDebugLoc(DL
);
1557 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1559 /// CntPhi = PHI [Cnt0, CntInst]
1560 /// PhiX = PHI [InitX, DefX]
1561 /// CntInst = CntPhi + 1
1562 /// DefX = PhiX >> 1
1564 /// Br: loop if (DefX != 0)
1565 /// Use(CntPhi) or Use(CntInst)
1568 /// If CntPhi used outside the loop:
1569 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1570 /// Count = CountPrev + 1
1572 /// Count = BitWidth(InitX) - CTLZ(InitX)
1574 /// CntPhi = PHI [Cnt0, CntInst]
1575 /// PhiX = PHI [InitX, DefX]
1576 /// PhiCount = PHI [Count, Dec]
1577 /// CntInst = CntPhi + 1
1578 /// DefX = PhiX >> 1
1579 /// Dec = PhiCount - 1
1581 /// Br: loop if (Dec != 0)
1582 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1584 /// Use(Count + Cnt0) // Use(CntInst)
1586 /// If LOOP_BODY is empty the loop will be deleted.
1587 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1588 void LoopIdiomRecognize::transformLoopToCountable(
1589 Intrinsic::ID IntrinID
, BasicBlock
*Preheader
, Instruction
*CntInst
,
1590 PHINode
*CntPhi
, Value
*InitX
, Instruction
*DefX
, const DebugLoc
&DL
,
1591 bool ZeroCheck
, bool IsCntPhiUsedOutsideLoop
) {
1592 BranchInst
*PreheaderBr
= cast
<BranchInst
>(Preheader
->getTerminator());
1594 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1595 IRBuilder
<> Builder(PreheaderBr
);
1596 Builder
.SetCurrentDebugLocation(DL
);
1597 Value
*FFS
, *Count
, *CountPrev
, *NewCount
, *InitXNext
;
1599 // Count = BitWidth - CTLZ(InitX);
1600 // If there are uses of CntPhi create:
1601 // CountPrev = BitWidth - CTLZ(InitX >> 1);
1602 if (IsCntPhiUsedOutsideLoop
) {
1603 if (DefX
->getOpcode() == Instruction::AShr
)
1605 Builder
.CreateAShr(InitX
, ConstantInt::get(InitX
->getType(), 1));
1606 else if (DefX
->getOpcode() == Instruction::LShr
)
1608 Builder
.CreateLShr(InitX
, ConstantInt::get(InitX
->getType(), 1));
1609 else if (DefX
->getOpcode() == Instruction::Shl
) // cttz
1611 Builder
.CreateShl(InitX
, ConstantInt::get(InitX
->getType(), 1));
1613 llvm_unreachable("Unexpected opcode!");
1616 FFS
= createFFSIntrinsic(Builder
, InitXNext
, DL
, ZeroCheck
, IntrinID
);
1617 Count
= Builder
.CreateSub(
1618 ConstantInt::get(FFS
->getType(),
1619 FFS
->getType()->getIntegerBitWidth()),
1621 if (IsCntPhiUsedOutsideLoop
) {
1623 Count
= Builder
.CreateAdd(
1625 ConstantInt::get(CountPrev
->getType(), 1));
1628 NewCount
= Builder
.CreateZExtOrTrunc(
1629 IsCntPhiUsedOutsideLoop
? CountPrev
: Count
,
1630 cast
<IntegerType
>(CntInst
->getType()));
1632 // If the counter's initial value is not zero, insert Add Inst.
1633 Value
*CntInitVal
= CntPhi
->getIncomingValueForBlock(Preheader
);
1634 ConstantInt
*InitConst
= dyn_cast
<ConstantInt
>(CntInitVal
);
1635 if (!InitConst
|| !InitConst
->isZero())
1636 NewCount
= Builder
.CreateAdd(NewCount
, CntInitVal
);
1638 // Step 2: Insert new IV and loop condition:
1641 // PhiCount = PHI [Count, Dec]
1643 // Dec = PhiCount - 1
1645 // Br: loop if (Dec != 0)
1646 BasicBlock
*Body
= *(CurLoop
->block_begin());
1647 auto *LbBr
= cast
<BranchInst
>(Body
->getTerminator());
1648 ICmpInst
*LbCond
= cast
<ICmpInst
>(LbBr
->getCondition());
1649 Type
*Ty
= Count
->getType();
1651 PHINode
*TcPhi
= PHINode::Create(Ty
, 2, "tcphi", &Body
->front());
1653 Builder
.SetInsertPoint(LbCond
);
1654 Instruction
*TcDec
= cast
<Instruction
>(
1655 Builder
.CreateSub(TcPhi
, ConstantInt::get(Ty
, 1),
1656 "tcdec", false, true));
1658 TcPhi
->addIncoming(Count
, Preheader
);
1659 TcPhi
->addIncoming(TcDec
, Body
);
1661 CmpInst::Predicate Pred
=
1662 (LbBr
->getSuccessor(0) == Body
) ? CmpInst::ICMP_NE
: CmpInst::ICMP_EQ
;
1663 LbCond
->setPredicate(Pred
);
1664 LbCond
->setOperand(0, TcDec
);
1665 LbCond
->setOperand(1, ConstantInt::get(Ty
, 0));
1667 // Step 3: All the references to the original counter outside
1668 // the loop are replaced with the NewCount
1669 if (IsCntPhiUsedOutsideLoop
)
1670 CntPhi
->replaceUsesOutsideBlock(NewCount
, Body
);
1672 CntInst
->replaceUsesOutsideBlock(NewCount
, Body
);
1674 // step 4: Forget the "non-computable" trip-count SCEV associated with the
1675 // loop. The loop would otherwise not be deleted even if it becomes empty.
1676 SE
->forgetLoop(CurLoop
);
1679 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock
*PreCondBB
,
1680 Instruction
*CntInst
,
1681 PHINode
*CntPhi
, Value
*Var
) {
1682 BasicBlock
*PreHead
= CurLoop
->getLoopPreheader();
1683 auto *PreCondBr
= cast
<BranchInst
>(PreCondBB
->getTerminator());
1684 const DebugLoc
&DL
= CntInst
->getDebugLoc();
1686 // Assuming before transformation, the loop is following:
1687 // if (x) // the precondition
1688 // do { cnt++; x &= x - 1; } while(x);
1690 // Step 1: Insert the ctpop instruction at the end of the precondition block
1691 IRBuilder
<> Builder(PreCondBr
);
1692 Value
*PopCnt
, *PopCntZext
, *NewCount
, *TripCnt
;
1694 PopCnt
= createPopcntIntrinsic(Builder
, Var
, DL
);
1695 NewCount
= PopCntZext
=
1696 Builder
.CreateZExtOrTrunc(PopCnt
, cast
<IntegerType
>(CntPhi
->getType()));
1698 if (NewCount
!= PopCnt
)
1699 (cast
<Instruction
>(NewCount
))->setDebugLoc(DL
);
1701 // TripCnt is exactly the number of iterations the loop has
1704 // If the population counter's initial value is not zero, insert Add Inst.
1705 Value
*CntInitVal
= CntPhi
->getIncomingValueForBlock(PreHead
);
1706 ConstantInt
*InitConst
= dyn_cast
<ConstantInt
>(CntInitVal
);
1707 if (!InitConst
|| !InitConst
->isZero()) {
1708 NewCount
= Builder
.CreateAdd(NewCount
, CntInitVal
);
1709 (cast
<Instruction
>(NewCount
))->setDebugLoc(DL
);
1713 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1714 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1715 // function would be partial dead code, and downstream passes will drag
1716 // it back from the precondition block to the preheader.
1718 ICmpInst
*PreCond
= cast
<ICmpInst
>(PreCondBr
->getCondition());
1720 Value
*Opnd0
= PopCntZext
;
1721 Value
*Opnd1
= ConstantInt::get(PopCntZext
->getType(), 0);
1722 if (PreCond
->getOperand(0) != Var
)
1723 std::swap(Opnd0
, Opnd1
);
1725 ICmpInst
*NewPreCond
= cast
<ICmpInst
>(
1726 Builder
.CreateICmp(PreCond
->getPredicate(), Opnd0
, Opnd1
));
1727 PreCondBr
->setCondition(NewPreCond
);
1729 RecursivelyDeleteTriviallyDeadInstructions(PreCond
, TLI
);
1732 // Step 3: Note that the population count is exactly the trip count of the
1733 // loop in question, which enable us to convert the loop from noncountable
1734 // loop into a countable one. The benefit is twofold:
1736 // - If the loop only counts population, the entire loop becomes dead after
1737 // the transformation. It is a lot easier to prove a countable loop dead
1738 // than to prove a noncountable one. (In some C dialects, an infinite loop
1739 // isn't dead even if it computes nothing useful. In general, DCE needs
1740 // to prove a noncountable loop finite before safely delete it.)
1742 // - If the loop also performs something else, it remains alive.
1743 // Since it is transformed to countable form, it can be aggressively
1744 // optimized by some optimizations which are in general not applicable
1745 // to a noncountable loop.
1747 // After this step, this loop (conceptually) would look like following:
1748 // newcnt = __builtin_ctpop(x);
1751 // do { cnt++; x &= x-1; t--) } while (t > 0);
1752 BasicBlock
*Body
= *(CurLoop
->block_begin());
1754 auto *LbBr
= cast
<BranchInst
>(Body
->getTerminator());
1755 ICmpInst
*LbCond
= cast
<ICmpInst
>(LbBr
->getCondition());
1756 Type
*Ty
= TripCnt
->getType();
1758 PHINode
*TcPhi
= PHINode::Create(Ty
, 2, "tcphi", &Body
->front());
1760 Builder
.SetInsertPoint(LbCond
);
1761 Instruction
*TcDec
= cast
<Instruction
>(
1762 Builder
.CreateSub(TcPhi
, ConstantInt::get(Ty
, 1),
1763 "tcdec", false, true));
1765 TcPhi
->addIncoming(TripCnt
, PreHead
);
1766 TcPhi
->addIncoming(TcDec
, Body
);
1768 CmpInst::Predicate Pred
=
1769 (LbBr
->getSuccessor(0) == Body
) ? CmpInst::ICMP_UGT
: CmpInst::ICMP_SLE
;
1770 LbCond
->setPredicate(Pred
);
1771 LbCond
->setOperand(0, TcDec
);
1772 LbCond
->setOperand(1, ConstantInt::get(Ty
, 0));
1775 // Step 4: All the references to the original population counter outside
1776 // the loop are replaced with the NewCount -- the value returned from
1777 // __builtin_ctpop().
1778 CntInst
->replaceUsesOutsideBlock(NewCount
, Body
);
1780 // step 5: Forget the "non-computable" trip-count SCEV associated with the
1781 // loop. The loop would otherwise not be deleted even if it becomes empty.
1782 SE
->forgetLoop(CurLoop
);