[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / LoopLoadElimination.cpp
blob60d27d3058c4611324006d1f527ee9f5ee90250e
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LoopAccessAnalysis.h"
34 #include "llvm/Analysis/LoopAnalysisManager.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemorySSA.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionExpander.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopVersioning.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <forward_list>
60 #include <set>
61 #include <tuple>
62 #include <utility>
64 using namespace llvm;
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
69 static cl::opt<unsigned> CheckPerElim(
70 "runtime-check-per-loop-load-elim", cl::Hidden,
71 cl::desc("Max number of memchecks allowed per eliminated load on average"),
72 cl::init(1));
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76 cl::desc("The maximum number of SCEV checks allowed for Loop "
77 "Load Elimination"));
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
81 namespace {
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85 LoadInst *Load;
86 StoreInst *Store;
88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89 : Load(Load), Store(Store) {}
91 /// Return true if the dependence from the store to the load has a
92 /// distance of one. E.g. A[i+1] = A[i]
93 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
94 Loop *L) const {
95 Value *LoadPtr = Load->getPointerOperand();
96 Value *StorePtr = Store->getPointerOperand();
97 Type *LoadPtrType = LoadPtr->getType();
98 Type *LoadType = LoadPtrType->getPointerElementType();
100 assert(LoadPtrType->getPointerAddressSpace() ==
101 StorePtr->getType()->getPointerAddressSpace() &&
102 LoadType == StorePtr->getType()->getPointerElementType() &&
103 "Should be a known dependence");
105 // Currently we only support accesses with unit stride. FIXME: we should be
106 // able to handle non unit stirde as well as long as the stride is equal to
107 // the dependence distance.
108 if (getPtrStride(PSE, LoadPtr, L) != 1 ||
109 getPtrStride(PSE, StorePtr, L) != 1)
110 return false;
112 auto &DL = Load->getParent()->getModule()->getDataLayout();
113 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
115 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
116 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
118 // We don't need to check non-wrapping here because forward/backward
119 // dependence wouldn't be valid if these weren't monotonic accesses.
120 auto *Dist = cast<SCEVConstant>(
121 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
122 const APInt &Val = Dist->getAPInt();
123 return Val == TypeByteSize;
126 Value *getLoadPtr() const { return Load->getPointerOperand(); }
128 #ifndef NDEBUG
129 friend raw_ostream &operator<<(raw_ostream &OS,
130 const StoreToLoadForwardingCandidate &Cand) {
131 OS << *Cand.Store << " -->\n";
132 OS.indent(2) << *Cand.Load << "\n";
133 return OS;
135 #endif
138 } // end anonymous namespace
140 /// Check if the store dominates all latches, so as long as there is no
141 /// intervening store this value will be loaded in the next iteration.
142 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
143 DominatorTree *DT) {
144 SmallVector<BasicBlock *, 8> Latches;
145 L->getLoopLatches(Latches);
146 return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
147 return DT->dominates(StoreBlock, Latch);
151 /// Return true if the load is not executed on all paths in the loop.
152 static bool isLoadConditional(LoadInst *Load, Loop *L) {
153 return Load->getParent() != L->getHeader();
156 namespace {
158 /// The per-loop class that does most of the work.
159 class LoadEliminationForLoop {
160 public:
161 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
162 DominatorTree *DT)
163 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
165 /// Look through the loop-carried and loop-independent dependences in
166 /// this loop and find store->load dependences.
168 /// Note that no candidate is returned if LAA has failed to analyze the loop
169 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
170 std::forward_list<StoreToLoadForwardingCandidate>
171 findStoreToLoadDependences(const LoopAccessInfo &LAI) {
172 std::forward_list<StoreToLoadForwardingCandidate> Candidates;
174 const auto *Deps = LAI.getDepChecker().getDependences();
175 if (!Deps)
176 return Candidates;
178 // Find store->load dependences (consequently true dep). Both lexically
179 // forward and backward dependences qualify. Disqualify loads that have
180 // other unknown dependences.
182 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
184 for (const auto &Dep : *Deps) {
185 Instruction *Source = Dep.getSource(LAI);
186 Instruction *Destination = Dep.getDestination(LAI);
188 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
189 if (isa<LoadInst>(Source))
190 LoadsWithUnknownDepedence.insert(Source);
191 if (isa<LoadInst>(Destination))
192 LoadsWithUnknownDepedence.insert(Destination);
193 continue;
196 if (Dep.isBackward())
197 // Note that the designations source and destination follow the program
198 // order, i.e. source is always first. (The direction is given by the
199 // DepType.)
200 std::swap(Source, Destination);
201 else
202 assert(Dep.isForward() && "Needs to be a forward dependence");
204 auto *Store = dyn_cast<StoreInst>(Source);
205 if (!Store)
206 continue;
207 auto *Load = dyn_cast<LoadInst>(Destination);
208 if (!Load)
209 continue;
211 // Only progagate the value if they are of the same type.
212 if (Store->getPointerOperandType() != Load->getPointerOperandType())
213 continue;
215 Candidates.emplace_front(Load, Store);
218 if (!LoadsWithUnknownDepedence.empty())
219 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
220 return LoadsWithUnknownDepedence.count(C.Load);
223 return Candidates;
226 /// Return the index of the instruction according to program order.
227 unsigned getInstrIndex(Instruction *Inst) {
228 auto I = InstOrder.find(Inst);
229 assert(I != InstOrder.end() && "No index for instruction");
230 return I->second;
233 /// If a load has multiple candidates associated (i.e. different
234 /// stores), it means that it could be forwarding from multiple stores
235 /// depending on control flow. Remove these candidates.
237 /// Here, we rely on LAA to include the relevant loop-independent dependences.
238 /// LAA is known to omit these in the very simple case when the read and the
239 /// write within an alias set always takes place using the *same* pointer.
241 /// However, we know that this is not the case here, i.e. we can rely on LAA
242 /// to provide us with loop-independent dependences for the cases we're
243 /// interested. Consider the case for example where a loop-independent
244 /// dependece S1->S2 invalidates the forwarding S3->S2.
246 /// A[i] = ... (S1)
247 /// ... = A[i] (S2)
248 /// A[i+1] = ... (S3)
250 /// LAA will perform dependence analysis here because there are two
251 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
252 void removeDependencesFromMultipleStores(
253 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
254 // If Store is nullptr it means that we have multiple stores forwarding to
255 // this store.
256 using LoadToSingleCandT =
257 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
258 LoadToSingleCandT LoadToSingleCand;
260 for (const auto &Cand : Candidates) {
261 bool NewElt;
262 LoadToSingleCandT::iterator Iter;
264 std::tie(Iter, NewElt) =
265 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
266 if (!NewElt) {
267 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
268 // Already multiple stores forward to this load.
269 if (OtherCand == nullptr)
270 continue;
272 // Handle the very basic case when the two stores are in the same block
273 // so deciding which one forwards is easy. The later one forwards as
274 // long as they both have a dependence distance of one to the load.
275 if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
276 Cand.isDependenceDistanceOfOne(PSE, L) &&
277 OtherCand->isDependenceDistanceOfOne(PSE, L)) {
278 // They are in the same block, the later one will forward to the load.
279 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
280 OtherCand = &Cand;
281 } else
282 OtherCand = nullptr;
286 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
287 if (LoadToSingleCand[Cand.Load] != &Cand) {
288 LLVM_DEBUG(
289 dbgs() << "Removing from candidates: \n"
290 << Cand
291 << " The load may have multiple stores forwarding to "
292 << "it\n");
293 return true;
295 return false;
299 /// Given two pointers operations by their RuntimePointerChecking
300 /// indices, return true if they require an alias check.
302 /// We need a check if one is a pointer for a candidate load and the other is
303 /// a pointer for a possibly intervening store.
304 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
305 const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
306 const std::set<Value *> &CandLoadPtrs) {
307 Value *Ptr1 =
308 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
309 Value *Ptr2 =
310 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
311 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
312 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
315 /// Return pointers that are possibly written to on the path from a
316 /// forwarding store to a load.
318 /// These pointers need to be alias-checked against the forwarding candidates.
319 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
320 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
321 // From FirstStore to LastLoad neither of the elimination candidate loads
322 // should overlap with any of the stores.
324 // E.g.:
326 // st1 C[i]
327 // ld1 B[i] <-------,
328 // ld0 A[i] <----, | * LastLoad
329 // ... | |
330 // st2 E[i] | |
331 // st3 B[i+1] -- | -' * FirstStore
332 // st0 A[i+1] ---'
333 // st4 D[i]
335 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
336 // ld0.
338 LoadInst *LastLoad =
339 std::max_element(Candidates.begin(), Candidates.end(),
340 [&](const StoreToLoadForwardingCandidate &A,
341 const StoreToLoadForwardingCandidate &B) {
342 return getInstrIndex(A.Load) < getInstrIndex(B.Load);
344 ->Load;
345 StoreInst *FirstStore =
346 std::min_element(Candidates.begin(), Candidates.end(),
347 [&](const StoreToLoadForwardingCandidate &A,
348 const StoreToLoadForwardingCandidate &B) {
349 return getInstrIndex(A.Store) <
350 getInstrIndex(B.Store);
352 ->Store;
354 // We're looking for stores after the first forwarding store until the end
355 // of the loop, then from the beginning of the loop until the last
356 // forwarded-to load. Collect the pointer for the stores.
357 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
359 auto InsertStorePtr = [&](Instruction *I) {
360 if (auto *S = dyn_cast<StoreInst>(I))
361 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
363 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
364 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
365 MemInstrs.end(), InsertStorePtr);
366 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
367 InsertStorePtr);
369 return PtrsWrittenOnFwdingPath;
372 /// Determine the pointer alias checks to prove that there are no
373 /// intervening stores.
374 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
375 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
377 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
378 findPointersWrittenOnForwardingPath(Candidates);
380 // Collect the pointers of the candidate loads.
381 // FIXME: SmallPtrSet does not work with std::inserter.
382 std::set<Value *> CandLoadPtrs;
383 transform(Candidates,
384 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
385 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
387 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
388 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
390 copy_if(AllChecks, std::back_inserter(Checks),
391 [&](const RuntimePointerChecking::PointerCheck &Check) {
392 for (auto PtrIdx1 : Check.first->Members)
393 for (auto PtrIdx2 : Check.second->Members)
394 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
395 CandLoadPtrs))
396 return true;
397 return false;
400 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
401 << "):\n");
402 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
404 return Checks;
407 /// Perform the transformation for a candidate.
408 void
409 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
410 SCEVExpander &SEE) {
411 // loop:
412 // %x = load %gep_i
413 // = ... %x
414 // store %y, %gep_i_plus_1
416 // =>
418 // ph:
419 // %x.initial = load %gep_0
420 // loop:
421 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
422 // %x = load %gep_i <---- now dead
423 // = ... %x.storeforward
424 // store %y, %gep_i_plus_1
426 Value *Ptr = Cand.Load->getPointerOperand();
427 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
428 auto *PH = L->getLoopPreheader();
429 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
430 PH->getTerminator());
431 Value *Initial = new LoadInst(
432 Cand.Load->getType(), InitialPtr, "load_initial",
433 /* isVolatile */ false, Cand.Load->getAlignment(), PH->getTerminator());
435 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
436 &L->getHeader()->front());
437 PHI->addIncoming(Initial, PH);
438 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
440 Cand.Load->replaceAllUsesWith(PHI);
443 /// Top-level driver for each loop: find store->load forwarding
444 /// candidates, add run-time checks and perform transformation.
445 bool processLoop() {
446 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
447 << "\" checking " << *L << "\n");
449 // Look for store-to-load forwarding cases across the
450 // backedge. E.g.:
452 // loop:
453 // %x = load %gep_i
454 // = ... %x
455 // store %y, %gep_i_plus_1
457 // =>
459 // ph:
460 // %x.initial = load %gep_0
461 // loop:
462 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
463 // %x = load %gep_i <---- now dead
464 // = ... %x.storeforward
465 // store %y, %gep_i_plus_1
467 // First start with store->load dependences.
468 auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
469 if (StoreToLoadDependences.empty())
470 return false;
472 // Generate an index for each load and store according to the original
473 // program order. This will be used later.
474 InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
476 // To keep things simple for now, remove those where the load is potentially
477 // fed by multiple stores.
478 removeDependencesFromMultipleStores(StoreToLoadDependences);
479 if (StoreToLoadDependences.empty())
480 return false;
482 // Filter the candidates further.
483 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
484 unsigned NumForwarding = 0;
485 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
486 LLVM_DEBUG(dbgs() << "Candidate " << Cand);
488 // Make sure that the stored values is available everywhere in the loop in
489 // the next iteration.
490 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
491 continue;
493 // If the load is conditional we can't hoist its 0-iteration instance to
494 // the preheader because that would make it unconditional. Thus we would
495 // access a memory location that the original loop did not access.
496 if (isLoadConditional(Cand.Load, L))
497 continue;
499 // Check whether the SCEV difference is the same as the induction step,
500 // thus we load the value in the next iteration.
501 if (!Cand.isDependenceDistanceOfOne(PSE, L))
502 continue;
504 ++NumForwarding;
505 LLVM_DEBUG(
506 dbgs()
507 << NumForwarding
508 << ". Valid store-to-load forwarding across the loop backedge\n");
509 Candidates.push_back(Cand);
511 if (Candidates.empty())
512 return false;
514 // Check intervening may-alias stores. These need runtime checks for alias
515 // disambiguation.
516 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
517 collectMemchecks(Candidates);
519 // Too many checks are likely to outweigh the benefits of forwarding.
520 if (Checks.size() > Candidates.size() * CheckPerElim) {
521 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
522 return false;
525 if (LAI.getPSE().getUnionPredicate().getComplexity() >
526 LoadElimSCEVCheckThreshold) {
527 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
528 return false;
531 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
532 if (L->getHeader()->getParent()->optForSize()) {
533 LLVM_DEBUG(
534 dbgs() << "Versioning is needed but not allowed when optimizing "
535 "for size.\n");
536 return false;
539 if (!L->isLoopSimplifyForm()) {
540 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
541 return false;
544 // Point of no-return, start the transformation. First, version the loop
545 // if necessary.
547 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
548 LV.setAliasChecks(std::move(Checks));
549 LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
550 LV.versionLoop();
553 // Next, propagate the value stored by the store to the users of the load.
554 // Also for the first iteration, generate the initial value of the load.
555 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
556 "storeforward");
557 for (const auto &Cand : Candidates)
558 propagateStoredValueToLoadUsers(Cand, SEE);
559 NumLoopLoadEliminted += NumForwarding;
561 return true;
564 private:
565 Loop *L;
567 /// Maps the load/store instructions to their index according to
568 /// program order.
569 DenseMap<Instruction *, unsigned> InstOrder;
571 // Analyses used.
572 LoopInfo *LI;
573 const LoopAccessInfo &LAI;
574 DominatorTree *DT;
575 PredicatedScalarEvolution PSE;
578 } // end anonymous namespace
580 static bool
581 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
582 function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
583 // Build up a worklist of inner-loops to transform to avoid iterator
584 // invalidation.
585 // FIXME: This logic comes from other passes that actually change the loop
586 // nest structure. It isn't clear this is necessary (or useful) for a pass
587 // which merely optimizes the use of loads in a loop.
588 SmallVector<Loop *, 8> Worklist;
590 for (Loop *TopLevelLoop : LI)
591 for (Loop *L : depth_first(TopLevelLoop))
592 // We only handle inner-most loops.
593 if (L->empty())
594 Worklist.push_back(L);
596 // Now walk the identified inner loops.
597 bool Changed = false;
598 for (Loop *L : Worklist) {
599 // The actual work is performed by LoadEliminationForLoop.
600 LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
601 Changed |= LEL.processLoop();
603 return Changed;
606 namespace {
608 /// The pass. Most of the work is delegated to the per-loop
609 /// LoadEliminationForLoop class.
610 class LoopLoadElimination : public FunctionPass {
611 public:
612 static char ID;
614 LoopLoadElimination() : FunctionPass(ID) {
615 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
618 bool runOnFunction(Function &F) override {
619 if (skipFunction(F))
620 return false;
622 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
623 auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
624 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
626 // Process each loop nest in the function.
627 return eliminateLoadsAcrossLoops(
628 F, LI, DT,
629 [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
632 void getAnalysisUsage(AnalysisUsage &AU) const override {
633 AU.addRequiredID(LoopSimplifyID);
634 AU.addRequired<LoopInfoWrapperPass>();
635 AU.addPreserved<LoopInfoWrapperPass>();
636 AU.addRequired<LoopAccessLegacyAnalysis>();
637 AU.addRequired<ScalarEvolutionWrapperPass>();
638 AU.addRequired<DominatorTreeWrapperPass>();
639 AU.addPreserved<DominatorTreeWrapperPass>();
640 AU.addPreserved<GlobalsAAWrapperPass>();
644 } // end anonymous namespace
646 char LoopLoadElimination::ID;
648 static const char LLE_name[] = "Loop Load Elimination";
650 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
652 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
653 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
655 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
656 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
658 FunctionPass *llvm::createLoopLoadEliminationPass() {
659 return new LoopLoadElimination();
662 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
663 FunctionAnalysisManager &AM) {
664 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
665 auto &LI = AM.getResult<LoopAnalysis>(F);
666 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
667 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
668 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
669 auto &AA = AM.getResult<AAManager>(F);
670 auto &AC = AM.getResult<AssumptionAnalysis>(F);
671 MemorySSA *MSSA = EnableMSSALoopDependency
672 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
673 : nullptr;
675 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
676 bool Changed = eliminateLoadsAcrossLoops(
677 F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
678 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
679 return LAM.getResult<LoopAccessAnalysis>(L, AR);
682 if (!Changed)
683 return PreservedAnalyses::all();
685 PreservedAnalyses PA;
686 return PA;