1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LoopAccessAnalysis.h"
34 #include "llvm/Analysis/LoopAnalysisManager.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemorySSA.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionExpander.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopVersioning.h"
59 #include <forward_list>
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
69 static cl::opt
<unsigned> CheckPerElim(
70 "runtime-check-per-loop-load-elim", cl::Hidden
,
71 cl::desc("Max number of memchecks allowed per eliminated load on average"),
74 static cl::opt
<unsigned> LoadElimSCEVCheckThreshold(
75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden
,
76 cl::desc("The maximum number of SCEV checks allowed for Loop "
79 STATISTIC(NumLoopLoadEliminted
, "Number of loads eliminated by LLE");
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate
{
88 StoreToLoadForwardingCandidate(LoadInst
*Load
, StoreInst
*Store
)
89 : Load(Load
), Store(Store
) {}
91 /// Return true if the dependence from the store to the load has a
92 /// distance of one. E.g. A[i+1] = A[i]
93 bool isDependenceDistanceOfOne(PredicatedScalarEvolution
&PSE
,
95 Value
*LoadPtr
= Load
->getPointerOperand();
96 Value
*StorePtr
= Store
->getPointerOperand();
97 Type
*LoadPtrType
= LoadPtr
->getType();
98 Type
*LoadType
= LoadPtrType
->getPointerElementType();
100 assert(LoadPtrType
->getPointerAddressSpace() ==
101 StorePtr
->getType()->getPointerAddressSpace() &&
102 LoadType
== StorePtr
->getType()->getPointerElementType() &&
103 "Should be a known dependence");
105 // Currently we only support accesses with unit stride. FIXME: we should be
106 // able to handle non unit stirde as well as long as the stride is equal to
107 // the dependence distance.
108 if (getPtrStride(PSE
, LoadPtr
, L
) != 1 ||
109 getPtrStride(PSE
, StorePtr
, L
) != 1)
112 auto &DL
= Load
->getParent()->getModule()->getDataLayout();
113 unsigned TypeByteSize
= DL
.getTypeAllocSize(const_cast<Type
*>(LoadType
));
115 auto *LoadPtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(LoadPtr
));
116 auto *StorePtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(StorePtr
));
118 // We don't need to check non-wrapping here because forward/backward
119 // dependence wouldn't be valid if these weren't monotonic accesses.
120 auto *Dist
= cast
<SCEVConstant
>(
121 PSE
.getSE()->getMinusSCEV(StorePtrSCEV
, LoadPtrSCEV
));
122 const APInt
&Val
= Dist
->getAPInt();
123 return Val
== TypeByteSize
;
126 Value
*getLoadPtr() const { return Load
->getPointerOperand(); }
129 friend raw_ostream
&operator<<(raw_ostream
&OS
,
130 const StoreToLoadForwardingCandidate
&Cand
) {
131 OS
<< *Cand
.Store
<< " -->\n";
132 OS
.indent(2) << *Cand
.Load
<< "\n";
138 } // end anonymous namespace
140 /// Check if the store dominates all latches, so as long as there is no
141 /// intervening store this value will be loaded in the next iteration.
142 static bool doesStoreDominatesAllLatches(BasicBlock
*StoreBlock
, Loop
*L
,
144 SmallVector
<BasicBlock
*, 8> Latches
;
145 L
->getLoopLatches(Latches
);
146 return llvm::all_of(Latches
, [&](const BasicBlock
*Latch
) {
147 return DT
->dominates(StoreBlock
, Latch
);
151 /// Return true if the load is not executed on all paths in the loop.
152 static bool isLoadConditional(LoadInst
*Load
, Loop
*L
) {
153 return Load
->getParent() != L
->getHeader();
158 /// The per-loop class that does most of the work.
159 class LoadEliminationForLoop
{
161 LoadEliminationForLoop(Loop
*L
, LoopInfo
*LI
, const LoopAccessInfo
&LAI
,
163 : L(L
), LI(LI
), LAI(LAI
), DT(DT
), PSE(LAI
.getPSE()) {}
165 /// Look through the loop-carried and loop-independent dependences in
166 /// this loop and find store->load dependences.
168 /// Note that no candidate is returned if LAA has failed to analyze the loop
169 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
170 std::forward_list
<StoreToLoadForwardingCandidate
>
171 findStoreToLoadDependences(const LoopAccessInfo
&LAI
) {
172 std::forward_list
<StoreToLoadForwardingCandidate
> Candidates
;
174 const auto *Deps
= LAI
.getDepChecker().getDependences();
178 // Find store->load dependences (consequently true dep). Both lexically
179 // forward and backward dependences qualify. Disqualify loads that have
180 // other unknown dependences.
182 SmallPtrSet
<Instruction
*, 4> LoadsWithUnknownDepedence
;
184 for (const auto &Dep
: *Deps
) {
185 Instruction
*Source
= Dep
.getSource(LAI
);
186 Instruction
*Destination
= Dep
.getDestination(LAI
);
188 if (Dep
.Type
== MemoryDepChecker::Dependence::Unknown
) {
189 if (isa
<LoadInst
>(Source
))
190 LoadsWithUnknownDepedence
.insert(Source
);
191 if (isa
<LoadInst
>(Destination
))
192 LoadsWithUnknownDepedence
.insert(Destination
);
196 if (Dep
.isBackward())
197 // Note that the designations source and destination follow the program
198 // order, i.e. source is always first. (The direction is given by the
200 std::swap(Source
, Destination
);
202 assert(Dep
.isForward() && "Needs to be a forward dependence");
204 auto *Store
= dyn_cast
<StoreInst
>(Source
);
207 auto *Load
= dyn_cast
<LoadInst
>(Destination
);
211 // Only progagate the value if they are of the same type.
212 if (Store
->getPointerOperandType() != Load
->getPointerOperandType())
215 Candidates
.emplace_front(Load
, Store
);
218 if (!LoadsWithUnknownDepedence
.empty())
219 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&C
) {
220 return LoadsWithUnknownDepedence
.count(C
.Load
);
226 /// Return the index of the instruction according to program order.
227 unsigned getInstrIndex(Instruction
*Inst
) {
228 auto I
= InstOrder
.find(Inst
);
229 assert(I
!= InstOrder
.end() && "No index for instruction");
233 /// If a load has multiple candidates associated (i.e. different
234 /// stores), it means that it could be forwarding from multiple stores
235 /// depending on control flow. Remove these candidates.
237 /// Here, we rely on LAA to include the relevant loop-independent dependences.
238 /// LAA is known to omit these in the very simple case when the read and the
239 /// write within an alias set always takes place using the *same* pointer.
241 /// However, we know that this is not the case here, i.e. we can rely on LAA
242 /// to provide us with loop-independent dependences for the cases we're
243 /// interested. Consider the case for example where a loop-independent
244 /// dependece S1->S2 invalidates the forwarding S3->S2.
248 /// A[i+1] = ... (S3)
250 /// LAA will perform dependence analysis here because there are two
251 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
252 void removeDependencesFromMultipleStores(
253 std::forward_list
<StoreToLoadForwardingCandidate
> &Candidates
) {
254 // If Store is nullptr it means that we have multiple stores forwarding to
256 using LoadToSingleCandT
=
257 DenseMap
<LoadInst
*, const StoreToLoadForwardingCandidate
*>;
258 LoadToSingleCandT LoadToSingleCand
;
260 for (const auto &Cand
: Candidates
) {
262 LoadToSingleCandT::iterator Iter
;
264 std::tie(Iter
, NewElt
) =
265 LoadToSingleCand
.insert(std::make_pair(Cand
.Load
, &Cand
));
267 const StoreToLoadForwardingCandidate
*&OtherCand
= Iter
->second
;
268 // Already multiple stores forward to this load.
269 if (OtherCand
== nullptr)
272 // Handle the very basic case when the two stores are in the same block
273 // so deciding which one forwards is easy. The later one forwards as
274 // long as they both have a dependence distance of one to the load.
275 if (Cand
.Store
->getParent() == OtherCand
->Store
->getParent() &&
276 Cand
.isDependenceDistanceOfOne(PSE
, L
) &&
277 OtherCand
->isDependenceDistanceOfOne(PSE
, L
)) {
278 // They are in the same block, the later one will forward to the load.
279 if (getInstrIndex(OtherCand
->Store
) < getInstrIndex(Cand
.Store
))
286 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&Cand
) {
287 if (LoadToSingleCand
[Cand
.Load
] != &Cand
) {
289 dbgs() << "Removing from candidates: \n"
291 << " The load may have multiple stores forwarding to "
299 /// Given two pointers operations by their RuntimePointerChecking
300 /// indices, return true if they require an alias check.
302 /// We need a check if one is a pointer for a candidate load and the other is
303 /// a pointer for a possibly intervening store.
304 bool needsChecking(unsigned PtrIdx1
, unsigned PtrIdx2
,
305 const SmallPtrSet
<Value
*, 4> &PtrsWrittenOnFwdingPath
,
306 const std::set
<Value
*> &CandLoadPtrs
) {
308 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx1
).PointerValue
;
310 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx2
).PointerValue
;
311 return ((PtrsWrittenOnFwdingPath
.count(Ptr1
) && CandLoadPtrs
.count(Ptr2
)) ||
312 (PtrsWrittenOnFwdingPath
.count(Ptr2
) && CandLoadPtrs
.count(Ptr1
)));
315 /// Return pointers that are possibly written to on the path from a
316 /// forwarding store to a load.
318 /// These pointers need to be alias-checked against the forwarding candidates.
319 SmallPtrSet
<Value
*, 4> findPointersWrittenOnForwardingPath(
320 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
321 // From FirstStore to LastLoad neither of the elimination candidate loads
322 // should overlap with any of the stores.
327 // ld1 B[i] <-------,
328 // ld0 A[i] <----, | * LastLoad
331 // st3 B[i+1] -- | -' * FirstStore
335 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
339 std::max_element(Candidates
.begin(), Candidates
.end(),
340 [&](const StoreToLoadForwardingCandidate
&A
,
341 const StoreToLoadForwardingCandidate
&B
) {
342 return getInstrIndex(A
.Load
) < getInstrIndex(B
.Load
);
345 StoreInst
*FirstStore
=
346 std::min_element(Candidates
.begin(), Candidates
.end(),
347 [&](const StoreToLoadForwardingCandidate
&A
,
348 const StoreToLoadForwardingCandidate
&B
) {
349 return getInstrIndex(A
.Store
) <
350 getInstrIndex(B
.Store
);
354 // We're looking for stores after the first forwarding store until the end
355 // of the loop, then from the beginning of the loop until the last
356 // forwarded-to load. Collect the pointer for the stores.
357 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
;
359 auto InsertStorePtr
= [&](Instruction
*I
) {
360 if (auto *S
= dyn_cast
<StoreInst
>(I
))
361 PtrsWrittenOnFwdingPath
.insert(S
->getPointerOperand());
363 const auto &MemInstrs
= LAI
.getDepChecker().getMemoryInstructions();
364 std::for_each(MemInstrs
.begin() + getInstrIndex(FirstStore
) + 1,
365 MemInstrs
.end(), InsertStorePtr
);
366 std::for_each(MemInstrs
.begin(), &MemInstrs
[getInstrIndex(LastLoad
)],
369 return PtrsWrittenOnFwdingPath
;
372 /// Determine the pointer alias checks to prove that there are no
373 /// intervening stores.
374 SmallVector
<RuntimePointerChecking::PointerCheck
, 4> collectMemchecks(
375 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
377 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
=
378 findPointersWrittenOnForwardingPath(Candidates
);
380 // Collect the pointers of the candidate loads.
381 // FIXME: SmallPtrSet does not work with std::inserter.
382 std::set
<Value
*> CandLoadPtrs
;
383 transform(Candidates
,
384 std::inserter(CandLoadPtrs
, CandLoadPtrs
.begin()),
385 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr
));
387 const auto &AllChecks
= LAI
.getRuntimePointerChecking()->getChecks();
388 SmallVector
<RuntimePointerChecking::PointerCheck
, 4> Checks
;
390 copy_if(AllChecks
, std::back_inserter(Checks
),
391 [&](const RuntimePointerChecking::PointerCheck
&Check
) {
392 for (auto PtrIdx1
: Check
.first
->Members
)
393 for (auto PtrIdx2
: Check
.second
->Members
)
394 if (needsChecking(PtrIdx1
, PtrIdx2
, PtrsWrittenOnFwdingPath
,
400 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks
.size()
402 LLVM_DEBUG(LAI
.getRuntimePointerChecking()->printChecks(dbgs(), Checks
));
407 /// Perform the transformation for a candidate.
409 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate
&Cand
,
414 // store %y, %gep_i_plus_1
419 // %x.initial = load %gep_0
421 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
422 // %x = load %gep_i <---- now dead
423 // = ... %x.storeforward
424 // store %y, %gep_i_plus_1
426 Value
*Ptr
= Cand
.Load
->getPointerOperand();
427 auto *PtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Ptr
));
428 auto *PH
= L
->getLoopPreheader();
429 Value
*InitialPtr
= SEE
.expandCodeFor(PtrSCEV
->getStart(), Ptr
->getType(),
430 PH
->getTerminator());
431 Value
*Initial
= new LoadInst(
432 Cand
.Load
->getType(), InitialPtr
, "load_initial",
433 /* isVolatile */ false, Cand
.Load
->getAlignment(), PH
->getTerminator());
435 PHINode
*PHI
= PHINode::Create(Initial
->getType(), 2, "store_forwarded",
436 &L
->getHeader()->front());
437 PHI
->addIncoming(Initial
, PH
);
438 PHI
->addIncoming(Cand
.Store
->getOperand(0), L
->getLoopLatch());
440 Cand
.Load
->replaceAllUsesWith(PHI
);
443 /// Top-level driver for each loop: find store->load forwarding
444 /// candidates, add run-time checks and perform transformation.
446 LLVM_DEBUG(dbgs() << "\nIn \"" << L
->getHeader()->getParent()->getName()
447 << "\" checking " << *L
<< "\n");
449 // Look for store-to-load forwarding cases across the
455 // store %y, %gep_i_plus_1
460 // %x.initial = load %gep_0
462 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
463 // %x = load %gep_i <---- now dead
464 // = ... %x.storeforward
465 // store %y, %gep_i_plus_1
467 // First start with store->load dependences.
468 auto StoreToLoadDependences
= findStoreToLoadDependences(LAI
);
469 if (StoreToLoadDependences
.empty())
472 // Generate an index for each load and store according to the original
473 // program order. This will be used later.
474 InstOrder
= LAI
.getDepChecker().generateInstructionOrderMap();
476 // To keep things simple for now, remove those where the load is potentially
477 // fed by multiple stores.
478 removeDependencesFromMultipleStores(StoreToLoadDependences
);
479 if (StoreToLoadDependences
.empty())
482 // Filter the candidates further.
483 SmallVector
<StoreToLoadForwardingCandidate
, 4> Candidates
;
484 unsigned NumForwarding
= 0;
485 for (const StoreToLoadForwardingCandidate Cand
: StoreToLoadDependences
) {
486 LLVM_DEBUG(dbgs() << "Candidate " << Cand
);
488 // Make sure that the stored values is available everywhere in the loop in
489 // the next iteration.
490 if (!doesStoreDominatesAllLatches(Cand
.Store
->getParent(), L
, DT
))
493 // If the load is conditional we can't hoist its 0-iteration instance to
494 // the preheader because that would make it unconditional. Thus we would
495 // access a memory location that the original loop did not access.
496 if (isLoadConditional(Cand
.Load
, L
))
499 // Check whether the SCEV difference is the same as the induction step,
500 // thus we load the value in the next iteration.
501 if (!Cand
.isDependenceDistanceOfOne(PSE
, L
))
508 << ". Valid store-to-load forwarding across the loop backedge\n");
509 Candidates
.push_back(Cand
);
511 if (Candidates
.empty())
514 // Check intervening may-alias stores. These need runtime checks for alias
516 SmallVector
<RuntimePointerChecking::PointerCheck
, 4> Checks
=
517 collectMemchecks(Candidates
);
519 // Too many checks are likely to outweigh the benefits of forwarding.
520 if (Checks
.size() > Candidates
.size() * CheckPerElim
) {
521 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
525 if (LAI
.getPSE().getUnionPredicate().getComplexity() >
526 LoadElimSCEVCheckThreshold
) {
527 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
531 if (!Checks
.empty() || !LAI
.getPSE().getUnionPredicate().isAlwaysTrue()) {
532 if (L
->getHeader()->getParent()->optForSize()) {
534 dbgs() << "Versioning is needed but not allowed when optimizing "
539 if (!L
->isLoopSimplifyForm()) {
540 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
544 // Point of no-return, start the transformation. First, version the loop
547 LoopVersioning
LV(LAI
, L
, LI
, DT
, PSE
.getSE(), false);
548 LV
.setAliasChecks(std::move(Checks
));
549 LV
.setSCEVChecks(LAI
.getPSE().getUnionPredicate());
553 // Next, propagate the value stored by the store to the users of the load.
554 // Also for the first iteration, generate the initial value of the load.
555 SCEVExpander
SEE(*PSE
.getSE(), L
->getHeader()->getModule()->getDataLayout(),
557 for (const auto &Cand
: Candidates
)
558 propagateStoredValueToLoadUsers(Cand
, SEE
);
559 NumLoopLoadEliminted
+= NumForwarding
;
567 /// Maps the load/store instructions to their index according to
569 DenseMap
<Instruction
*, unsigned> InstOrder
;
573 const LoopAccessInfo
&LAI
;
575 PredicatedScalarEvolution PSE
;
578 } // end anonymous namespace
581 eliminateLoadsAcrossLoops(Function
&F
, LoopInfo
&LI
, DominatorTree
&DT
,
582 function_ref
<const LoopAccessInfo
&(Loop
&)> GetLAI
) {
583 // Build up a worklist of inner-loops to transform to avoid iterator
585 // FIXME: This logic comes from other passes that actually change the loop
586 // nest structure. It isn't clear this is necessary (or useful) for a pass
587 // which merely optimizes the use of loads in a loop.
588 SmallVector
<Loop
*, 8> Worklist
;
590 for (Loop
*TopLevelLoop
: LI
)
591 for (Loop
*L
: depth_first(TopLevelLoop
))
592 // We only handle inner-most loops.
594 Worklist
.push_back(L
);
596 // Now walk the identified inner loops.
597 bool Changed
= false;
598 for (Loop
*L
: Worklist
) {
599 // The actual work is performed by LoadEliminationForLoop.
600 LoadEliminationForLoop
LEL(L
, &LI
, GetLAI(*L
), &DT
);
601 Changed
|= LEL
.processLoop();
608 /// The pass. Most of the work is delegated to the per-loop
609 /// LoadEliminationForLoop class.
610 class LoopLoadElimination
: public FunctionPass
{
614 LoopLoadElimination() : FunctionPass(ID
) {
615 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
618 bool runOnFunction(Function
&F
) override
{
622 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
623 auto &LAA
= getAnalysis
<LoopAccessLegacyAnalysis
>();
624 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
626 // Process each loop nest in the function.
627 return eliminateLoadsAcrossLoops(
629 [&LAA
](Loop
&L
) -> const LoopAccessInfo
& { return LAA
.getInfo(&L
); });
632 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
633 AU
.addRequiredID(LoopSimplifyID
);
634 AU
.addRequired
<LoopInfoWrapperPass
>();
635 AU
.addPreserved
<LoopInfoWrapperPass
>();
636 AU
.addRequired
<LoopAccessLegacyAnalysis
>();
637 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
638 AU
.addRequired
<DominatorTreeWrapperPass
>();
639 AU
.addPreserved
<DominatorTreeWrapperPass
>();
640 AU
.addPreserved
<GlobalsAAWrapperPass
>();
644 } // end anonymous namespace
646 char LoopLoadElimination::ID
;
648 static const char LLE_name
[] = "Loop Load Elimination";
650 INITIALIZE_PASS_BEGIN(LoopLoadElimination
, LLE_OPTION
, LLE_name
, false, false)
651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
652 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis
)
653 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
655 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
656 INITIALIZE_PASS_END(LoopLoadElimination
, LLE_OPTION
, LLE_name
, false, false)
658 FunctionPass
*llvm::createLoopLoadEliminationPass() {
659 return new LoopLoadElimination();
662 PreservedAnalyses
LoopLoadEliminationPass::run(Function
&F
,
663 FunctionAnalysisManager
&AM
) {
664 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
665 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
666 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
667 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
668 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
669 auto &AA
= AM
.getResult
<AAManager
>(F
);
670 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
671 MemorySSA
*MSSA
= EnableMSSALoopDependency
672 ? &AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA()
675 auto &LAM
= AM
.getResult
<LoopAnalysisManagerFunctionProxy
>(F
).getManager();
676 bool Changed
= eliminateLoadsAcrossLoops(
677 F
, LI
, DT
, [&](Loop
&L
) -> const LoopAccessInfo
& {
678 LoopStandardAnalysisResults AR
= {AA
, AC
, DT
, LI
, SE
, TLI
, TTI
, MSSA
};
679 return LAM
.getResult
<LoopAccessAnalysis
>(L
, AR
);
683 return PreservedAnalyses::all();
685 PreservedAnalyses PA
;