[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / LoopSimplifyCFG.cpp
blobeb8de34c3af1272b71143962cbefad78698207e2
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LoopPassManager.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 using namespace llvm;
41 #define DEBUG_TYPE "loop-simplifycfg"
43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
44 cl::init(true));
46 STATISTIC(NumTerminatorsFolded,
47 "Number of terminators folded to unconditional branches");
48 STATISTIC(NumLoopBlocksDeleted,
49 "Number of loop blocks deleted");
50 STATISTIC(NumLoopExitsDeleted,
51 "Number of loop exiting edges deleted");
53 /// If \p BB is a switch or a conditional branch, but only one of its successors
54 /// can be reached from this block in runtime, return this successor. Otherwise,
55 /// return nullptr.
56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
57 Instruction *TI = BB->getTerminator();
58 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
59 if (BI->isUnconditional())
60 return nullptr;
61 if (BI->getSuccessor(0) == BI->getSuccessor(1))
62 return BI->getSuccessor(0);
63 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
64 if (!Cond)
65 return nullptr;
66 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
69 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
70 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
71 if (!CI)
72 return nullptr;
73 for (auto Case : SI->cases())
74 if (Case.getCaseValue() == CI)
75 return Case.getCaseSuccessor();
76 return SI->getDefaultDest();
79 return nullptr;
82 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
83 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
84 Loop *LastLoop = nullptr) {
85 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
86 "First loop is supposed to be inside of last loop!");
87 assert(FirstLoop->contains(BB) && "Must be a loop block!");
88 for (Loop *Current = FirstLoop; Current != LastLoop;
89 Current = Current->getParentLoop())
90 Current->removeBlockFromLoop(BB);
93 /// Find innermost loop that contains at least one block from \p BBs and
94 /// contains the header of loop \p L.
95 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
96 Loop &L, LoopInfo &LI) {
97 Loop *Innermost = nullptr;
98 for (BasicBlock *BB : BBs) {
99 Loop *BBL = LI.getLoopFor(BB);
100 while (BBL && !BBL->contains(L.getHeader()))
101 BBL = BBL->getParentLoop();
102 if (BBL == &L)
103 BBL = BBL->getParentLoop();
104 if (!BBL)
105 continue;
106 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
107 Innermost = BBL;
109 return Innermost;
112 namespace {
113 /// Helper class that can turn branches and switches with constant conditions
114 /// into unconditional branches.
115 class ConstantTerminatorFoldingImpl {
116 private:
117 Loop &L;
118 LoopInfo &LI;
119 DominatorTree &DT;
120 ScalarEvolution &SE;
121 MemorySSAUpdater *MSSAU;
122 LoopBlocksDFS DFS;
123 DomTreeUpdater DTU;
124 SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
126 // Whether or not the current loop has irreducible CFG.
127 bool HasIrreducibleCFG = false;
128 // Whether or not the current loop will still exist after terminator constant
129 // folding will be done. In theory, there are two ways how it can happen:
130 // 1. Loop's latch(es) become unreachable from loop header;
131 // 2. Loop's header becomes unreachable from method entry.
132 // In practice, the second situation is impossible because we only modify the
133 // current loop and its preheader and do not affect preheader's reachibility
134 // from any other block. So this variable set to true means that loop's latch
135 // has become unreachable from loop header.
136 bool DeleteCurrentLoop = false;
138 // The blocks of the original loop that will still be reachable from entry
139 // after the constant folding.
140 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
141 // The blocks of the original loop that will become unreachable from entry
142 // after the constant folding.
143 SmallVector<BasicBlock *, 8> DeadLoopBlocks;
144 // The exits of the original loop that will still be reachable from entry
145 // after the constant folding.
146 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
147 // The exits of the original loop that will become unreachable from entry
148 // after the constant folding.
149 SmallVector<BasicBlock *, 8> DeadExitBlocks;
150 // The blocks that will still be a part of the current loop after folding.
151 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
152 // The blocks that have terminators with constant condition that can be
153 // folded. Note: fold candidates should be in L but not in any of its
154 // subloops to avoid complex LI updates.
155 SmallVector<BasicBlock *, 8> FoldCandidates;
157 void dump() const {
158 dbgs() << "Constant terminator folding for loop " << L << "\n";
159 dbgs() << "After terminator constant-folding, the loop will";
160 if (!DeleteCurrentLoop)
161 dbgs() << " not";
162 dbgs() << " be destroyed\n";
163 auto PrintOutVector = [&](const char *Message,
164 const SmallVectorImpl<BasicBlock *> &S) {
165 dbgs() << Message << "\n";
166 for (const BasicBlock *BB : S)
167 dbgs() << "\t" << BB->getName() << "\n";
169 auto PrintOutSet = [&](const char *Message,
170 const SmallPtrSetImpl<BasicBlock *> &S) {
171 dbgs() << Message << "\n";
172 for (const BasicBlock *BB : S)
173 dbgs() << "\t" << BB->getName() << "\n";
175 PrintOutVector("Blocks in which we can constant-fold terminator:",
176 FoldCandidates);
177 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
178 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
179 PrintOutSet("Live exit blocks:", LiveExitBlocks);
180 PrintOutVector("Dead exit blocks:", DeadExitBlocks);
181 if (!DeleteCurrentLoop)
182 PrintOutSet("The following blocks will still be part of the loop:",
183 BlocksInLoopAfterFolding);
186 /// Whether or not the current loop has irreducible CFG.
187 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
188 assert(DFS.isComplete() && "DFS is expected to be finished");
189 // Index of a basic block in RPO traversal.
190 DenseMap<const BasicBlock *, unsigned> RPO;
191 unsigned Current = 0;
192 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
193 RPO[*I] = Current++;
195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
196 BasicBlock *BB = *I;
197 for (auto *Succ : successors(BB))
198 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
199 // If an edge goes from a block with greater order number into a block
200 // with lesses number, and it is not a loop backedge, then it can only
201 // be a part of irreducible non-loop cycle.
202 return true;
204 return false;
207 /// Fill all information about status of blocks and exits of the current loop
208 /// if constant folding of all branches will be done.
209 void analyze() {
210 DFS.perform(&LI);
211 assert(DFS.isComplete() && "DFS is expected to be finished");
213 // TODO: The algorithm below relies on both RPO and Postorder traversals.
214 // When the loop has only reducible CFG inside, then the invariant "all
215 // predecessors of X are processed before X in RPO" is preserved. However
216 // an irreducible loop can break this invariant (e.g. latch does not have to
217 // be the last block in the traversal in this case, and the algorithm relies
218 // on this). We can later decide to support such cases by altering the
219 // algorithms, but so far we just give up analyzing them.
220 if (hasIrreducibleCFG(DFS)) {
221 HasIrreducibleCFG = true;
222 return;
225 // Collect live and dead loop blocks and exits.
226 LiveLoopBlocks.insert(L.getHeader());
227 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
228 BasicBlock *BB = *I;
230 // If a loop block wasn't marked as live so far, then it's dead.
231 if (!LiveLoopBlocks.count(BB)) {
232 DeadLoopBlocks.push_back(BB);
233 continue;
236 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
238 // If a block has only one live successor, it's a candidate on constant
239 // folding. Only handle blocks from current loop: branches in child loops
240 // are skipped because if they can be folded, they should be folded during
241 // the processing of child loops.
242 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
243 if (TakeFoldCandidate)
244 FoldCandidates.push_back(BB);
246 // Handle successors.
247 for (BasicBlock *Succ : successors(BB))
248 if (!TakeFoldCandidate || TheOnlySucc == Succ) {
249 if (L.contains(Succ))
250 LiveLoopBlocks.insert(Succ);
251 else
252 LiveExitBlocks.insert(Succ);
256 // Sanity check: amount of dead and live loop blocks should match the total
257 // number of blocks in loop.
258 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
259 "Malformed block sets?");
261 // Now, all exit blocks that are not marked as live are dead.
262 SmallVector<BasicBlock *, 8> ExitBlocks;
263 L.getExitBlocks(ExitBlocks);
264 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
265 for (auto *ExitBlock : ExitBlocks)
266 if (!LiveExitBlocks.count(ExitBlock) &&
267 UniqueDeadExits.insert(ExitBlock).second)
268 DeadExitBlocks.push_back(ExitBlock);
270 // Whether or not the edge From->To will still be present in graph after the
271 // folding.
272 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
273 if (!LiveLoopBlocks.count(From))
274 return false;
275 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
276 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
279 // The loop will not be destroyed if its latch is live.
280 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
282 // If we are going to delete the current loop completely, no extra analysis
283 // is needed.
284 if (DeleteCurrentLoop)
285 return;
287 // Otherwise, we should check which blocks will still be a part of the
288 // current loop after the transform.
289 BlocksInLoopAfterFolding.insert(L.getLoopLatch());
290 // If the loop is live, then we should compute what blocks are still in
291 // loop after all branch folding has been done. A block is in loop if
292 // it has a live edge to another block that is in the loop; by definition,
293 // latch is in the loop.
294 auto BlockIsInLoop = [&](BasicBlock *BB) {
295 return any_of(successors(BB), [&](BasicBlock *Succ) {
296 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
299 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
300 BasicBlock *BB = *I;
301 if (BlockIsInLoop(BB))
302 BlocksInLoopAfterFolding.insert(BB);
305 // Sanity check: header must be in loop.
306 assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
307 "Header not in loop?");
308 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
309 "All blocks that stay in loop should be live!");
312 /// We need to preserve static reachibility of all loop exit blocks (this is)
313 /// required by loop pass manager. In order to do it, we make the following
314 /// trick:
316 /// preheader:
317 /// <preheader code>
318 /// br label %loop_header
320 /// loop_header:
321 /// ...
322 /// br i1 false, label %dead_exit, label %loop_block
323 /// ...
325 /// We cannot simply remove edge from the loop to dead exit because in this
326 /// case dead_exit (and its successors) may become unreachable. To avoid that,
327 /// we insert the following fictive preheader:
329 /// preheader:
330 /// <preheader code>
331 /// switch i32 0, label %preheader-split,
332 /// [i32 1, label %dead_exit_1],
333 /// [i32 2, label %dead_exit_2],
334 /// ...
335 /// [i32 N, label %dead_exit_N],
337 /// preheader-split:
338 /// br label %loop_header
340 /// loop_header:
341 /// ...
342 /// br i1 false, label %dead_exit_N, label %loop_block
343 /// ...
345 /// Doing so, we preserve static reachibility of all dead exits and can later
346 /// remove edges from the loop to these blocks.
347 void handleDeadExits() {
348 // If no dead exits, nothing to do.
349 if (DeadExitBlocks.empty())
350 return;
352 // Construct split preheader and the dummy switch to thread edges from it to
353 // dead exits.
354 BasicBlock *Preheader = L.getLoopPreheader();
355 BasicBlock *NewPreheader = Preheader->splitBasicBlock(
356 Preheader->getTerminator(),
357 Twine(Preheader->getName()).concat("-split"));
358 DTUpdates.push_back({DominatorTree::Delete, Preheader, L.getHeader()});
359 DTUpdates.push_back({DominatorTree::Insert, NewPreheader, L.getHeader()});
360 DTUpdates.push_back({DominatorTree::Insert, Preheader, NewPreheader});
361 IRBuilder<> Builder(Preheader->getTerminator());
362 SwitchInst *DummySwitch =
363 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
364 Preheader->getTerminator()->eraseFromParent();
366 unsigned DummyIdx = 1;
367 for (BasicBlock *BB : DeadExitBlocks) {
368 SmallVector<Instruction *, 4> DeadPhis;
369 for (auto &PN : BB->phis())
370 DeadPhis.push_back(&PN);
372 // Eliminate all Phis from dead exits.
373 for (Instruction *PN : DeadPhis) {
374 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
375 PN->eraseFromParent();
377 assert(DummyIdx != 0 && "Too many dead exits!");
378 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
379 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
380 ++NumLoopExitsDeleted;
383 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
384 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
385 OuterLoop->addBasicBlockToLoop(NewPreheader, LI);
387 // When we break dead edges, the outer loop may become unreachable from
388 // the current loop. We need to fix loop info accordingly. For this, we
389 // find the most nested loop that still contains L and remove L from all
390 // loops that are inside of it.
391 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
393 // Okay, our loop is no longer in the outer loop (and maybe not in some of
394 // its parents as well). Make the fixup.
395 if (StillReachable != OuterLoop) {
396 LI.changeLoopFor(NewPreheader, StillReachable);
397 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
398 for (auto *BB : L.blocks())
399 removeBlockFromLoops(BB, OuterLoop, StillReachable);
400 OuterLoop->removeChildLoop(&L);
401 if (StillReachable)
402 StillReachable->addChildLoop(&L);
403 else
404 LI.addTopLevelLoop(&L);
406 // Some values from loops in [OuterLoop, StillReachable) could be used
407 // in the current loop. Now it is not their child anymore, so such uses
408 // require LCSSA Phis.
409 Loop *FixLCSSALoop = OuterLoop;
410 while (FixLCSSALoop->getParentLoop() != StillReachable)
411 FixLCSSALoop = FixLCSSALoop->getParentLoop();
412 assert(FixLCSSALoop && "Should be a loop!");
413 // We need all DT updates to be done before forming LCSSA.
414 DTU.applyUpdates(DTUpdates);
415 DTUpdates.clear();
416 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
421 /// Delete loop blocks that have become unreachable after folding. Make all
422 /// relevant updates to DT and LI.
423 void deleteDeadLoopBlocks() {
424 if (MSSAU) {
425 SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
426 DeadLoopBlocks.end());
427 MSSAU->removeBlocks(DeadLoopBlocksSet);
430 // The function LI.erase has some invariants that need to be preserved when
431 // it tries to remove a loop which is not the top-level loop. In particular,
432 // it requires loop's preheader to be strictly in loop's parent. We cannot
433 // just remove blocks one by one, because after removal of preheader we may
434 // break this invariant for the dead loop. So we detatch and erase all dead
435 // loops beforehand.
436 for (auto *BB : DeadLoopBlocks)
437 if (LI.isLoopHeader(BB)) {
438 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
439 Loop *DL = LI.getLoopFor(BB);
440 if (DL->getParentLoop()) {
441 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
442 for (auto *BB : DL->getBlocks())
443 PL->removeBlockFromLoop(BB);
444 DL->getParentLoop()->removeChildLoop(DL);
445 LI.addTopLevelLoop(DL);
447 LI.erase(DL);
450 for (auto *BB : DeadLoopBlocks) {
451 assert(BB != L.getHeader() &&
452 "Header of the current loop cannot be dead!");
453 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
454 << "\n");
455 LI.removeBlock(BB);
458 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
459 DTU.applyUpdates(DTUpdates);
460 DTUpdates.clear();
461 for (auto *BB : DeadLoopBlocks)
462 DTU.deleteBB(BB);
464 NumLoopBlocksDeleted += DeadLoopBlocks.size();
467 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
468 /// unconditional branches.
469 void foldTerminators() {
470 for (BasicBlock *BB : FoldCandidates) {
471 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
472 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
473 assert(TheOnlySucc && "Should have one live successor!");
475 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
476 << " with an unconditional branch to the block "
477 << TheOnlySucc->getName() << "\n");
479 SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
480 // Remove all BB's successors except for the live one.
481 unsigned TheOnlySuccDuplicates = 0;
482 for (auto *Succ : successors(BB))
483 if (Succ != TheOnlySucc) {
484 DeadSuccessors.insert(Succ);
485 // If our successor lies in a different loop, we don't want to remove
486 // the one-input Phi because it is a LCSSA Phi.
487 bool PreserveLCSSAPhi = !L.contains(Succ);
488 Succ->removePredecessor(BB, PreserveLCSSAPhi);
489 if (MSSAU)
490 MSSAU->removeEdge(BB, Succ);
491 } else
492 ++TheOnlySuccDuplicates;
494 assert(TheOnlySuccDuplicates > 0 && "Should be!");
495 // If TheOnlySucc was BB's successor more than once, after transform it
496 // will be its successor only once. Remove redundant inputs from
497 // TheOnlySucc's Phis.
498 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
499 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
500 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
501 if (MSSAU && TheOnlySuccDuplicates > 1)
502 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
504 IRBuilder<> Builder(BB->getContext());
505 Instruction *Term = BB->getTerminator();
506 Builder.SetInsertPoint(Term);
507 Builder.CreateBr(TheOnlySucc);
508 Term->eraseFromParent();
510 for (auto *DeadSucc : DeadSuccessors)
511 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
513 ++NumTerminatorsFolded;
517 public:
518 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
519 ScalarEvolution &SE,
520 MemorySSAUpdater *MSSAU)
521 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
522 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
523 bool run() {
524 assert(L.getLoopLatch() && "Should be single latch!");
526 // Collect all available information about status of blocks after constant
527 // folding.
528 analyze();
530 LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
531 << ": ");
533 if (HasIrreducibleCFG) {
534 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
535 return false;
538 // Nothing to constant-fold.
539 if (FoldCandidates.empty()) {
540 LLVM_DEBUG(
541 dbgs() << "No constant terminator folding candidates found in loop "
542 << L.getHeader()->getName() << "\n");
543 return false;
546 // TODO: Support deletion of the current loop.
547 if (DeleteCurrentLoop) {
548 LLVM_DEBUG(
549 dbgs()
550 << "Give up constant terminator folding in loop "
551 << L.getHeader()->getName()
552 << ": we don't currently support deletion of the current loop.\n");
553 return false;
556 // TODO: Support blocks that are not dead, but also not in loop after the
557 // folding.
558 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
559 L.getNumBlocks()) {
560 LLVM_DEBUG(
561 dbgs() << "Give up constant terminator folding in loop "
562 << L.getHeader()->getName()
563 << ": we don't currently"
564 " support blocks that are not dead, but will stop "
565 "being a part of the loop after constant-folding.\n");
566 return false;
569 SE.forgetTopmostLoop(&L);
570 // Dump analysis results.
571 LLVM_DEBUG(dump());
573 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
574 << " terminators in loop " << L.getHeader()->getName()
575 << "\n");
577 // Make the actual transforms.
578 handleDeadExits();
579 foldTerminators();
581 if (!DeadLoopBlocks.empty()) {
582 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
583 << " dead blocks in loop " << L.getHeader()->getName()
584 << "\n");
585 deleteDeadLoopBlocks();
586 } else {
587 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
588 DTU.applyUpdates(DTUpdates);
589 DTUpdates.clear();
592 #ifndef NDEBUG
593 // Make sure that we have preserved all data structures after the transform.
594 assert(DT.verify() && "DT broken after transform!");
595 assert(DT.isReachableFromEntry(L.getHeader()));
596 LI.verify(DT);
597 #endif
599 return true;
602 } // namespace
604 /// Turn branches and switches with known constant conditions into unconditional
605 /// branches.
606 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
607 ScalarEvolution &SE,
608 MemorySSAUpdater *MSSAU) {
609 if (!EnableTermFolding)
610 return false;
612 // To keep things simple, only process loops with single latch. We
613 // canonicalize most loops to this form. We can support multi-latch if needed.
614 if (!L.getLoopLatch())
615 return false;
617 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
618 return BranchFolder.run();
621 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
622 LoopInfo &LI, MemorySSAUpdater *MSSAU) {
623 bool Changed = false;
624 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
625 // Copy blocks into a temporary array to avoid iterator invalidation issues
626 // as we remove them.
627 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
629 for (auto &Block : Blocks) {
630 // Attempt to merge blocks in the trivial case. Don't modify blocks which
631 // belong to other loops.
632 BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
633 if (!Succ)
634 continue;
636 BasicBlock *Pred = Succ->getSinglePredecessor();
637 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
638 continue;
640 // Merge Succ into Pred and delete it.
641 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
643 Changed = true;
646 return Changed;
649 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
650 ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
651 bool Changed = false;
653 // Constant-fold terminators with known constant conditions.
654 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU);
656 // Eliminate unconditional branches by merging blocks into their predecessors.
657 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
659 if (Changed)
660 SE.forgetTopmostLoop(&L);
662 return Changed;
665 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
666 LoopStandardAnalysisResults &AR,
667 LPMUpdater &) {
668 Optional<MemorySSAUpdater> MSSAU;
669 if (EnableMSSALoopDependency && AR.MSSA)
670 MSSAU = MemorySSAUpdater(AR.MSSA);
671 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
672 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
673 return PreservedAnalyses::all();
675 return getLoopPassPreservedAnalyses();
678 namespace {
679 class LoopSimplifyCFGLegacyPass : public LoopPass {
680 public:
681 static char ID; // Pass ID, replacement for typeid
682 LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
683 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
686 bool runOnLoop(Loop *L, LPPassManager &) override {
687 if (skipLoop(L))
688 return false;
690 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
691 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
692 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
693 Optional<MemorySSAUpdater> MSSAU;
694 if (EnableMSSALoopDependency) {
695 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
696 MSSAU = MemorySSAUpdater(MSSA);
697 if (VerifyMemorySSA)
698 MSSA->verifyMemorySSA();
700 return simplifyLoopCFG(*L, DT, LI, SE,
701 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
704 void getAnalysisUsage(AnalysisUsage &AU) const override {
705 if (EnableMSSALoopDependency) {
706 AU.addRequired<MemorySSAWrapperPass>();
707 AU.addPreserved<MemorySSAWrapperPass>();
709 AU.addPreserved<DependenceAnalysisWrapperPass>();
710 getLoopAnalysisUsage(AU);
715 char LoopSimplifyCFGLegacyPass::ID = 0;
716 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
717 "Simplify loop CFG", false, false)
718 INITIALIZE_PASS_DEPENDENCY(LoopPass)
719 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
720 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
721 "Simplify loop CFG", false, false)
723 Pass *llvm::createLoopSimplifyCFGPass() {
724 return new LoopSimplifyCFGLegacyPass();