1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LoopPassManager.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #define DEBUG_TYPE "loop-simplifycfg"
43 static cl::opt
<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
46 STATISTIC(NumTerminatorsFolded
,
47 "Number of terminators folded to unconditional branches");
48 STATISTIC(NumLoopBlocksDeleted
,
49 "Number of loop blocks deleted");
50 STATISTIC(NumLoopExitsDeleted
,
51 "Number of loop exiting edges deleted");
53 /// If \p BB is a switch or a conditional branch, but only one of its successors
54 /// can be reached from this block in runtime, return this successor. Otherwise,
56 static BasicBlock
*getOnlyLiveSuccessor(BasicBlock
*BB
) {
57 Instruction
*TI
= BB
->getTerminator();
58 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
59 if (BI
->isUnconditional())
61 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
62 return BI
->getSuccessor(0);
63 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition());
66 return Cond
->isZero() ? BI
->getSuccessor(1) : BI
->getSuccessor(0);
69 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
70 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
73 for (auto Case
: SI
->cases())
74 if (Case
.getCaseValue() == CI
)
75 return Case
.getCaseSuccessor();
76 return SI
->getDefaultDest();
82 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
83 static void removeBlockFromLoops(BasicBlock
*BB
, Loop
*FirstLoop
,
84 Loop
*LastLoop
= nullptr) {
85 assert((!LastLoop
|| LastLoop
->contains(FirstLoop
->getHeader())) &&
86 "First loop is supposed to be inside of last loop!");
87 assert(FirstLoop
->contains(BB
) && "Must be a loop block!");
88 for (Loop
*Current
= FirstLoop
; Current
!= LastLoop
;
89 Current
= Current
->getParentLoop())
90 Current
->removeBlockFromLoop(BB
);
93 /// Find innermost loop that contains at least one block from \p BBs and
94 /// contains the header of loop \p L.
95 static Loop
*getInnermostLoopFor(SmallPtrSetImpl
<BasicBlock
*> &BBs
,
96 Loop
&L
, LoopInfo
&LI
) {
97 Loop
*Innermost
= nullptr;
98 for (BasicBlock
*BB
: BBs
) {
99 Loop
*BBL
= LI
.getLoopFor(BB
);
100 while (BBL
&& !BBL
->contains(L
.getHeader()))
101 BBL
= BBL
->getParentLoop();
103 BBL
= BBL
->getParentLoop();
106 if (!Innermost
|| BBL
->getLoopDepth() > Innermost
->getLoopDepth())
113 /// Helper class that can turn branches and switches with constant conditions
114 /// into unconditional branches.
115 class ConstantTerminatorFoldingImpl
{
121 MemorySSAUpdater
*MSSAU
;
124 SmallVector
<DominatorTree::UpdateType
, 16> DTUpdates
;
126 // Whether or not the current loop has irreducible CFG.
127 bool HasIrreducibleCFG
= false;
128 // Whether or not the current loop will still exist after terminator constant
129 // folding will be done. In theory, there are two ways how it can happen:
130 // 1. Loop's latch(es) become unreachable from loop header;
131 // 2. Loop's header becomes unreachable from method entry.
132 // In practice, the second situation is impossible because we only modify the
133 // current loop and its preheader and do not affect preheader's reachibility
134 // from any other block. So this variable set to true means that loop's latch
135 // has become unreachable from loop header.
136 bool DeleteCurrentLoop
= false;
138 // The blocks of the original loop that will still be reachable from entry
139 // after the constant folding.
140 SmallPtrSet
<BasicBlock
*, 8> LiveLoopBlocks
;
141 // The blocks of the original loop that will become unreachable from entry
142 // after the constant folding.
143 SmallVector
<BasicBlock
*, 8> DeadLoopBlocks
;
144 // The exits of the original loop that will still be reachable from entry
145 // after the constant folding.
146 SmallPtrSet
<BasicBlock
*, 8> LiveExitBlocks
;
147 // The exits of the original loop that will become unreachable from entry
148 // after the constant folding.
149 SmallVector
<BasicBlock
*, 8> DeadExitBlocks
;
150 // The blocks that will still be a part of the current loop after folding.
151 SmallPtrSet
<BasicBlock
*, 8> BlocksInLoopAfterFolding
;
152 // The blocks that have terminators with constant condition that can be
153 // folded. Note: fold candidates should be in L but not in any of its
154 // subloops to avoid complex LI updates.
155 SmallVector
<BasicBlock
*, 8> FoldCandidates
;
158 dbgs() << "Constant terminator folding for loop " << L
<< "\n";
159 dbgs() << "After terminator constant-folding, the loop will";
160 if (!DeleteCurrentLoop
)
162 dbgs() << " be destroyed\n";
163 auto PrintOutVector
= [&](const char *Message
,
164 const SmallVectorImpl
<BasicBlock
*> &S
) {
165 dbgs() << Message
<< "\n";
166 for (const BasicBlock
*BB
: S
)
167 dbgs() << "\t" << BB
->getName() << "\n";
169 auto PrintOutSet
= [&](const char *Message
,
170 const SmallPtrSetImpl
<BasicBlock
*> &S
) {
171 dbgs() << Message
<< "\n";
172 for (const BasicBlock
*BB
: S
)
173 dbgs() << "\t" << BB
->getName() << "\n";
175 PrintOutVector("Blocks in which we can constant-fold terminator:",
177 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks
);
178 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks
);
179 PrintOutSet("Live exit blocks:", LiveExitBlocks
);
180 PrintOutVector("Dead exit blocks:", DeadExitBlocks
);
181 if (!DeleteCurrentLoop
)
182 PrintOutSet("The following blocks will still be part of the loop:",
183 BlocksInLoopAfterFolding
);
186 /// Whether or not the current loop has irreducible CFG.
187 bool hasIrreducibleCFG(LoopBlocksDFS
&DFS
) {
188 assert(DFS
.isComplete() && "DFS is expected to be finished");
189 // Index of a basic block in RPO traversal.
190 DenseMap
<const BasicBlock
*, unsigned> RPO
;
191 unsigned Current
= 0;
192 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
)
195 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
) {
197 for (auto *Succ
: successors(BB
))
198 if (L
.contains(Succ
) && !LI
.isLoopHeader(Succ
) && RPO
[BB
] > RPO
[Succ
])
199 // If an edge goes from a block with greater order number into a block
200 // with lesses number, and it is not a loop backedge, then it can only
201 // be a part of irreducible non-loop cycle.
207 /// Fill all information about status of blocks and exits of the current loop
208 /// if constant folding of all branches will be done.
211 assert(DFS
.isComplete() && "DFS is expected to be finished");
213 // TODO: The algorithm below relies on both RPO and Postorder traversals.
214 // When the loop has only reducible CFG inside, then the invariant "all
215 // predecessors of X are processed before X in RPO" is preserved. However
216 // an irreducible loop can break this invariant (e.g. latch does not have to
217 // be the last block in the traversal in this case, and the algorithm relies
218 // on this). We can later decide to support such cases by altering the
219 // algorithms, but so far we just give up analyzing them.
220 if (hasIrreducibleCFG(DFS
)) {
221 HasIrreducibleCFG
= true;
225 // Collect live and dead loop blocks and exits.
226 LiveLoopBlocks
.insert(L
.getHeader());
227 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
) {
230 // If a loop block wasn't marked as live so far, then it's dead.
231 if (!LiveLoopBlocks
.count(BB
)) {
232 DeadLoopBlocks
.push_back(BB
);
236 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(BB
);
238 // If a block has only one live successor, it's a candidate on constant
239 // folding. Only handle blocks from current loop: branches in child loops
240 // are skipped because if they can be folded, they should be folded during
241 // the processing of child loops.
242 bool TakeFoldCandidate
= TheOnlySucc
&& LI
.getLoopFor(BB
) == &L
;
243 if (TakeFoldCandidate
)
244 FoldCandidates
.push_back(BB
);
246 // Handle successors.
247 for (BasicBlock
*Succ
: successors(BB
))
248 if (!TakeFoldCandidate
|| TheOnlySucc
== Succ
) {
249 if (L
.contains(Succ
))
250 LiveLoopBlocks
.insert(Succ
);
252 LiveExitBlocks
.insert(Succ
);
256 // Sanity check: amount of dead and live loop blocks should match the total
257 // number of blocks in loop.
258 assert(L
.getNumBlocks() == LiveLoopBlocks
.size() + DeadLoopBlocks
.size() &&
259 "Malformed block sets?");
261 // Now, all exit blocks that are not marked as live are dead.
262 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
263 L
.getExitBlocks(ExitBlocks
);
264 SmallPtrSet
<BasicBlock
*, 8> UniqueDeadExits
;
265 for (auto *ExitBlock
: ExitBlocks
)
266 if (!LiveExitBlocks
.count(ExitBlock
) &&
267 UniqueDeadExits
.insert(ExitBlock
).second
)
268 DeadExitBlocks
.push_back(ExitBlock
);
270 // Whether or not the edge From->To will still be present in graph after the
272 auto IsEdgeLive
= [&](BasicBlock
*From
, BasicBlock
*To
) {
273 if (!LiveLoopBlocks
.count(From
))
275 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(From
);
276 return !TheOnlySucc
|| TheOnlySucc
== To
|| LI
.getLoopFor(From
) != &L
;
279 // The loop will not be destroyed if its latch is live.
280 DeleteCurrentLoop
= !IsEdgeLive(L
.getLoopLatch(), L
.getHeader());
282 // If we are going to delete the current loop completely, no extra analysis
284 if (DeleteCurrentLoop
)
287 // Otherwise, we should check which blocks will still be a part of the
288 // current loop after the transform.
289 BlocksInLoopAfterFolding
.insert(L
.getLoopLatch());
290 // If the loop is live, then we should compute what blocks are still in
291 // loop after all branch folding has been done. A block is in loop if
292 // it has a live edge to another block that is in the loop; by definition,
293 // latch is in the loop.
294 auto BlockIsInLoop
= [&](BasicBlock
*BB
) {
295 return any_of(successors(BB
), [&](BasicBlock
*Succ
) {
296 return BlocksInLoopAfterFolding
.count(Succ
) && IsEdgeLive(BB
, Succ
);
299 for (auto I
= DFS
.beginPostorder(), E
= DFS
.endPostorder(); I
!= E
; ++I
) {
301 if (BlockIsInLoop(BB
))
302 BlocksInLoopAfterFolding
.insert(BB
);
305 // Sanity check: header must be in loop.
306 assert(BlocksInLoopAfterFolding
.count(L
.getHeader()) &&
307 "Header not in loop?");
308 assert(BlocksInLoopAfterFolding
.size() <= LiveLoopBlocks
.size() &&
309 "All blocks that stay in loop should be live!");
312 /// We need to preserve static reachibility of all loop exit blocks (this is)
313 /// required by loop pass manager. In order to do it, we make the following
318 /// br label %loop_header
322 /// br i1 false, label %dead_exit, label %loop_block
325 /// We cannot simply remove edge from the loop to dead exit because in this
326 /// case dead_exit (and its successors) may become unreachable. To avoid that,
327 /// we insert the following fictive preheader:
331 /// switch i32 0, label %preheader-split,
332 /// [i32 1, label %dead_exit_1],
333 /// [i32 2, label %dead_exit_2],
335 /// [i32 N, label %dead_exit_N],
338 /// br label %loop_header
342 /// br i1 false, label %dead_exit_N, label %loop_block
345 /// Doing so, we preserve static reachibility of all dead exits and can later
346 /// remove edges from the loop to these blocks.
347 void handleDeadExits() {
348 // If no dead exits, nothing to do.
349 if (DeadExitBlocks
.empty())
352 // Construct split preheader and the dummy switch to thread edges from it to
354 BasicBlock
*Preheader
= L
.getLoopPreheader();
355 BasicBlock
*NewPreheader
= Preheader
->splitBasicBlock(
356 Preheader
->getTerminator(),
357 Twine(Preheader
->getName()).concat("-split"));
358 DTUpdates
.push_back({DominatorTree::Delete
, Preheader
, L
.getHeader()});
359 DTUpdates
.push_back({DominatorTree::Insert
, NewPreheader
, L
.getHeader()});
360 DTUpdates
.push_back({DominatorTree::Insert
, Preheader
, NewPreheader
});
361 IRBuilder
<> Builder(Preheader
->getTerminator());
362 SwitchInst
*DummySwitch
=
363 Builder
.CreateSwitch(Builder
.getInt32(0), NewPreheader
);
364 Preheader
->getTerminator()->eraseFromParent();
366 unsigned DummyIdx
= 1;
367 for (BasicBlock
*BB
: DeadExitBlocks
) {
368 SmallVector
<Instruction
*, 4> DeadPhis
;
369 for (auto &PN
: BB
->phis())
370 DeadPhis
.push_back(&PN
);
372 // Eliminate all Phis from dead exits.
373 for (Instruction
*PN
: DeadPhis
) {
374 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
375 PN
->eraseFromParent();
377 assert(DummyIdx
!= 0 && "Too many dead exits!");
378 DummySwitch
->addCase(Builder
.getInt32(DummyIdx
++), BB
);
379 DTUpdates
.push_back({DominatorTree::Insert
, Preheader
, BB
});
380 ++NumLoopExitsDeleted
;
383 assert(L
.getLoopPreheader() == NewPreheader
&& "Malformed CFG?");
384 if (Loop
*OuterLoop
= LI
.getLoopFor(Preheader
)) {
385 OuterLoop
->addBasicBlockToLoop(NewPreheader
, LI
);
387 // When we break dead edges, the outer loop may become unreachable from
388 // the current loop. We need to fix loop info accordingly. For this, we
389 // find the most nested loop that still contains L and remove L from all
390 // loops that are inside of it.
391 Loop
*StillReachable
= getInnermostLoopFor(LiveExitBlocks
, L
, LI
);
393 // Okay, our loop is no longer in the outer loop (and maybe not in some of
394 // its parents as well). Make the fixup.
395 if (StillReachable
!= OuterLoop
) {
396 LI
.changeLoopFor(NewPreheader
, StillReachable
);
397 removeBlockFromLoops(NewPreheader
, OuterLoop
, StillReachable
);
398 for (auto *BB
: L
.blocks())
399 removeBlockFromLoops(BB
, OuterLoop
, StillReachable
);
400 OuterLoop
->removeChildLoop(&L
);
402 StillReachable
->addChildLoop(&L
);
404 LI
.addTopLevelLoop(&L
);
406 // Some values from loops in [OuterLoop, StillReachable) could be used
407 // in the current loop. Now it is not their child anymore, so such uses
408 // require LCSSA Phis.
409 Loop
*FixLCSSALoop
= OuterLoop
;
410 while (FixLCSSALoop
->getParentLoop() != StillReachable
)
411 FixLCSSALoop
= FixLCSSALoop
->getParentLoop();
412 assert(FixLCSSALoop
&& "Should be a loop!");
413 // We need all DT updates to be done before forming LCSSA.
414 DTU
.applyUpdates(DTUpdates
);
416 formLCSSARecursively(*FixLCSSALoop
, DT
, &LI
, &SE
);
421 /// Delete loop blocks that have become unreachable after folding. Make all
422 /// relevant updates to DT and LI.
423 void deleteDeadLoopBlocks() {
425 SmallPtrSet
<BasicBlock
*, 8> DeadLoopBlocksSet(DeadLoopBlocks
.begin(),
426 DeadLoopBlocks
.end());
427 MSSAU
->removeBlocks(DeadLoopBlocksSet
);
430 // The function LI.erase has some invariants that need to be preserved when
431 // it tries to remove a loop which is not the top-level loop. In particular,
432 // it requires loop's preheader to be strictly in loop's parent. We cannot
433 // just remove blocks one by one, because after removal of preheader we may
434 // break this invariant for the dead loop. So we detatch and erase all dead
436 for (auto *BB
: DeadLoopBlocks
)
437 if (LI
.isLoopHeader(BB
)) {
438 assert(LI
.getLoopFor(BB
) != &L
&& "Attempt to remove current loop!");
439 Loop
*DL
= LI
.getLoopFor(BB
);
440 if (DL
->getParentLoop()) {
441 for (auto *PL
= DL
->getParentLoop(); PL
; PL
= PL
->getParentLoop())
442 for (auto *BB
: DL
->getBlocks())
443 PL
->removeBlockFromLoop(BB
);
444 DL
->getParentLoop()->removeChildLoop(DL
);
445 LI
.addTopLevelLoop(DL
);
450 for (auto *BB
: DeadLoopBlocks
) {
451 assert(BB
!= L
.getHeader() &&
452 "Header of the current loop cannot be dead!");
453 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB
->getName()
458 DetatchDeadBlocks(DeadLoopBlocks
, &DTUpdates
, /*KeepOneInputPHIs*/true);
459 DTU
.applyUpdates(DTUpdates
);
461 for (auto *BB
: DeadLoopBlocks
)
464 NumLoopBlocksDeleted
+= DeadLoopBlocks
.size();
467 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
468 /// unconditional branches.
469 void foldTerminators() {
470 for (BasicBlock
*BB
: FoldCandidates
) {
471 assert(LI
.getLoopFor(BB
) == &L
&& "Should be a loop block!");
472 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(BB
);
473 assert(TheOnlySucc
&& "Should have one live successor!");
475 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB
->getName()
476 << " with an unconditional branch to the block "
477 << TheOnlySucc
->getName() << "\n");
479 SmallPtrSet
<BasicBlock
*, 2> DeadSuccessors
;
480 // Remove all BB's successors except for the live one.
481 unsigned TheOnlySuccDuplicates
= 0;
482 for (auto *Succ
: successors(BB
))
483 if (Succ
!= TheOnlySucc
) {
484 DeadSuccessors
.insert(Succ
);
485 // If our successor lies in a different loop, we don't want to remove
486 // the one-input Phi because it is a LCSSA Phi.
487 bool PreserveLCSSAPhi
= !L
.contains(Succ
);
488 Succ
->removePredecessor(BB
, PreserveLCSSAPhi
);
490 MSSAU
->removeEdge(BB
, Succ
);
492 ++TheOnlySuccDuplicates
;
494 assert(TheOnlySuccDuplicates
> 0 && "Should be!");
495 // If TheOnlySucc was BB's successor more than once, after transform it
496 // will be its successor only once. Remove redundant inputs from
497 // TheOnlySucc's Phis.
498 bool PreserveLCSSAPhi
= !L
.contains(TheOnlySucc
);
499 for (unsigned Dup
= 1; Dup
< TheOnlySuccDuplicates
; ++Dup
)
500 TheOnlySucc
->removePredecessor(BB
, PreserveLCSSAPhi
);
501 if (MSSAU
&& TheOnlySuccDuplicates
> 1)
502 MSSAU
->removeDuplicatePhiEdgesBetween(BB
, TheOnlySucc
);
504 IRBuilder
<> Builder(BB
->getContext());
505 Instruction
*Term
= BB
->getTerminator();
506 Builder
.SetInsertPoint(Term
);
507 Builder
.CreateBr(TheOnlySucc
);
508 Term
->eraseFromParent();
510 for (auto *DeadSucc
: DeadSuccessors
)
511 DTUpdates
.push_back({DominatorTree::Delete
, BB
, DeadSucc
});
513 ++NumTerminatorsFolded
;
518 ConstantTerminatorFoldingImpl(Loop
&L
, LoopInfo
&LI
, DominatorTree
&DT
,
520 MemorySSAUpdater
*MSSAU
)
521 : L(L
), LI(LI
), DT(DT
), SE(SE
), MSSAU(MSSAU
), DFS(&L
),
522 DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
) {}
524 assert(L
.getLoopLatch() && "Should be single latch!");
526 // Collect all available information about status of blocks after constant
530 LLVM_DEBUG(dbgs() << "In function " << L
.getHeader()->getParent()->getName()
533 if (HasIrreducibleCFG
) {
534 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
538 // Nothing to constant-fold.
539 if (FoldCandidates
.empty()) {
541 dbgs() << "No constant terminator folding candidates found in loop "
542 << L
.getHeader()->getName() << "\n");
546 // TODO: Support deletion of the current loop.
547 if (DeleteCurrentLoop
) {
550 << "Give up constant terminator folding in loop "
551 << L
.getHeader()->getName()
552 << ": we don't currently support deletion of the current loop.\n");
556 // TODO: Support blocks that are not dead, but also not in loop after the
558 if (BlocksInLoopAfterFolding
.size() + DeadLoopBlocks
.size() !=
561 dbgs() << "Give up constant terminator folding in loop "
562 << L
.getHeader()->getName()
563 << ": we don't currently"
564 " support blocks that are not dead, but will stop "
565 "being a part of the loop after constant-folding.\n");
569 SE
.forgetTopmostLoop(&L
);
570 // Dump analysis results.
573 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates
.size()
574 << " terminators in loop " << L
.getHeader()->getName()
577 // Make the actual transforms.
581 if (!DeadLoopBlocks
.empty()) {
582 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks
.size()
583 << " dead blocks in loop " << L
.getHeader()->getName()
585 deleteDeadLoopBlocks();
587 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
588 DTU
.applyUpdates(DTUpdates
);
593 // Make sure that we have preserved all data structures after the transform.
594 assert(DT
.verify() && "DT broken after transform!");
595 assert(DT
.isReachableFromEntry(L
.getHeader()));
604 /// Turn branches and switches with known constant conditions into unconditional
606 static bool constantFoldTerminators(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
608 MemorySSAUpdater
*MSSAU
) {
609 if (!EnableTermFolding
)
612 // To keep things simple, only process loops with single latch. We
613 // canonicalize most loops to this form. We can support multi-latch if needed.
614 if (!L
.getLoopLatch())
617 ConstantTerminatorFoldingImpl
BranchFolder(L
, LI
, DT
, SE
, MSSAU
);
618 return BranchFolder
.run();
621 static bool mergeBlocksIntoPredecessors(Loop
&L
, DominatorTree
&DT
,
622 LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
623 bool Changed
= false;
624 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
625 // Copy blocks into a temporary array to avoid iterator invalidation issues
626 // as we remove them.
627 SmallVector
<WeakTrackingVH
, 16> Blocks(L
.blocks());
629 for (auto &Block
: Blocks
) {
630 // Attempt to merge blocks in the trivial case. Don't modify blocks which
631 // belong to other loops.
632 BasicBlock
*Succ
= cast_or_null
<BasicBlock
>(Block
);
636 BasicBlock
*Pred
= Succ
->getSinglePredecessor();
637 if (!Pred
|| !Pred
->getSingleSuccessor() || LI
.getLoopFor(Pred
) != &L
)
640 // Merge Succ into Pred and delete it.
641 MergeBlockIntoPredecessor(Succ
, &DTU
, &LI
, MSSAU
);
649 static bool simplifyLoopCFG(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
650 ScalarEvolution
&SE
, MemorySSAUpdater
*MSSAU
) {
651 bool Changed
= false;
653 // Constant-fold terminators with known constant conditions.
654 Changed
|= constantFoldTerminators(L
, DT
, LI
, SE
, MSSAU
);
656 // Eliminate unconditional branches by merging blocks into their predecessors.
657 Changed
|= mergeBlocksIntoPredecessors(L
, DT
, LI
, MSSAU
);
660 SE
.forgetTopmostLoop(&L
);
665 PreservedAnalyses
LoopSimplifyCFGPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
666 LoopStandardAnalysisResults
&AR
,
668 Optional
<MemorySSAUpdater
> MSSAU
;
669 if (EnableMSSALoopDependency
&& AR
.MSSA
)
670 MSSAU
= MemorySSAUpdater(AR
.MSSA
);
671 if (!simplifyLoopCFG(L
, AR
.DT
, AR
.LI
, AR
.SE
,
672 MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr))
673 return PreservedAnalyses::all();
675 return getLoopPassPreservedAnalyses();
679 class LoopSimplifyCFGLegacyPass
: public LoopPass
{
681 static char ID
; // Pass ID, replacement for typeid
682 LoopSimplifyCFGLegacyPass() : LoopPass(ID
) {
683 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
686 bool runOnLoop(Loop
*L
, LPPassManager
&) override
{
690 DominatorTree
&DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
691 LoopInfo
&LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
692 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
693 Optional
<MemorySSAUpdater
> MSSAU
;
694 if (EnableMSSALoopDependency
) {
695 MemorySSA
*MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
696 MSSAU
= MemorySSAUpdater(MSSA
);
698 MSSA
->verifyMemorySSA();
700 return simplifyLoopCFG(*L
, DT
, LI
, SE
,
701 MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr);
704 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
705 if (EnableMSSALoopDependency
) {
706 AU
.addRequired
<MemorySSAWrapperPass
>();
707 AU
.addPreserved
<MemorySSAWrapperPass
>();
709 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
710 getLoopAnalysisUsage(AU
);
715 char LoopSimplifyCFGLegacyPass::ID
= 0;
716 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass
, "loop-simplifycfg",
717 "Simplify loop CFG", false, false)
718 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
719 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
720 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass
, "loop-simplifycfg",
721 "Simplify loop CFG", false, false)
723 Pass
*llvm::createLoopSimplifyCFGPass() {
724 return new LoopSimplifyCFGLegacyPass();