1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops that contain branches on loop-invariant conditions
10 // to multiple loops. For example, it turns the left into the right code:
19 // This can increase the size of the code exponentially (doubling it every time
20 // a loop is unswitched) so we only unswitch if the resultant code will be
21 // smaller than a threshold.
23 // This pass expects LICM to be run before it to hoist invariant conditions out
24 // of the loop, to make the unswitching opportunity obvious.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/CodeMetrics.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopIterator.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Scalar/LoopPassManager.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
84 #define DEBUG_TYPE "loop-unswitch"
86 STATISTIC(NumBranches
, "Number of branches unswitched");
87 STATISTIC(NumSwitches
, "Number of switches unswitched");
88 STATISTIC(NumGuards
, "Number of guards unswitched");
89 STATISTIC(NumSelects
, "Number of selects unswitched");
90 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
91 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
92 STATISTIC(TotalInsts
, "Total number of instructions analyzed");
94 // The specific value of 100 here was chosen based only on intuition and a
95 // few specific examples.
96 static cl::opt
<unsigned>
97 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
98 cl::init(100), cl::Hidden
);
102 class LUAnalysisCache
{
103 using UnswitchedValsMap
=
104 DenseMap
<const SwitchInst
*, SmallPtrSet
<const Value
*, 8>>;
105 using UnswitchedValsIt
= UnswitchedValsMap::iterator
;
107 struct LoopProperties
{
108 unsigned CanBeUnswitchedCount
;
109 unsigned WasUnswitchedCount
;
110 unsigned SizeEstimation
;
111 UnswitchedValsMap UnswitchedVals
;
114 // Here we use std::map instead of DenseMap, since we need to keep valid
115 // LoopProperties pointer for current loop for better performance.
116 using LoopPropsMap
= std::map
<const Loop
*, LoopProperties
>;
117 using LoopPropsMapIt
= LoopPropsMap::iterator
;
119 LoopPropsMap LoopsProperties
;
120 UnswitchedValsMap
*CurLoopInstructions
= nullptr;
121 LoopProperties
*CurrentLoopProperties
= nullptr;
123 // A loop unswitching with an estimated cost above this threshold
124 // is not performed. MaxSize is turned into unswitching quota for
125 // the current loop, and reduced correspondingly, though note that
126 // the quota is returned by releaseMemory() when the loop has been
127 // processed, so that MaxSize will return to its previous
128 // value. So in most cases MaxSize will equal the Threshold flag
129 // when a new loop is processed. An exception to that is that
130 // MaxSize will have a smaller value while processing nested loops
131 // that were introduced due to loop unswitching of an outer loop.
133 // FIXME: The way that MaxSize works is subtle and depends on the
134 // pass manager processing loops and calling releaseMemory() in a
135 // specific order. It would be good to find a more straightforward
136 // way of doing what MaxSize does.
140 LUAnalysisCache() : MaxSize(Threshold
) {}
142 // Analyze loop. Check its size, calculate is it possible to unswitch
143 // it. Returns true if we can unswitch this loop.
144 bool countLoop(const Loop
*L
, const TargetTransformInfo
&TTI
,
145 AssumptionCache
*AC
);
147 // Clean all data related to given loop.
148 void forgetLoop(const Loop
*L
);
150 // Mark case value as unswitched.
151 // Since SI instruction can be partly unswitched, in order to avoid
152 // extra unswitching in cloned loops keep track all unswitched values.
153 void setUnswitched(const SwitchInst
*SI
, const Value
*V
);
155 // Check was this case value unswitched before or not.
156 bool isUnswitched(const SwitchInst
*SI
, const Value
*V
);
158 // Returns true if another unswitching could be done within the cost
160 bool CostAllowsUnswitching();
162 // Clone all loop-unswitch related loop properties.
163 // Redistribute unswitching quotas.
164 // Note, that new loop data is stored inside the VMap.
165 void cloneData(const Loop
*NewLoop
, const Loop
*OldLoop
,
166 const ValueToValueMapTy
&VMap
);
169 class LoopUnswitch
: public LoopPass
{
170 LoopInfo
*LI
; // Loop information
174 // Used to check if second loop needs processing after
175 // RewriteLoopBodyWithConditionConstant rewrites first loop.
176 std::vector
<Loop
*> LoopProcessWorklist
;
178 LUAnalysisCache BranchesInfo
;
180 bool OptimizeForSize
;
181 bool redoLoop
= false;
183 Loop
*currentLoop
= nullptr;
184 DominatorTree
*DT
= nullptr;
185 MemorySSA
*MSSA
= nullptr;
186 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
187 BasicBlock
*loopHeader
= nullptr;
188 BasicBlock
*loopPreheader
= nullptr;
191 SimpleLoopSafetyInfo SafetyInfo
;
193 // LoopBlocks contains all of the basic blocks of the loop, including the
194 // preheader of the loop, the body of the loop, and the exit blocks of the
195 // loop, in that order.
196 std::vector
<BasicBlock
*> LoopBlocks
;
197 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
198 std::vector
<BasicBlock
*> NewBlocks
;
200 bool hasBranchDivergence
;
203 static char ID
; // Pass ID, replacement for typeid
205 explicit LoopUnswitch(bool Os
= false, bool hasBranchDivergence
= false)
206 : LoopPass(ID
), OptimizeForSize(Os
),
207 hasBranchDivergence(hasBranchDivergence
) {
208 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
211 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
212 bool processCurrentLoop();
213 bool isUnreachableDueToPreviousUnswitching(BasicBlock
*);
215 /// This transformation requires natural loop information & requires that
216 /// loop preheaders be inserted into the CFG.
218 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
219 AU
.addRequired
<AssumptionCacheTracker
>();
220 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
221 if (EnableMSSALoopDependency
) {
222 AU
.addRequired
<MemorySSAWrapperPass
>();
223 AU
.addPreserved
<MemorySSAWrapperPass
>();
225 if (hasBranchDivergence
)
226 AU
.addRequired
<LegacyDivergenceAnalysis
>();
227 getLoopAnalysisUsage(AU
);
231 void releaseMemory() override
{
232 BranchesInfo
.forgetLoop(currentLoop
);
235 void initLoopData() {
236 loopHeader
= currentLoop
->getHeader();
237 loopPreheader
= currentLoop
->getLoopPreheader();
240 /// Split all of the edges from inside the loop to their exit blocks.
241 /// Update the appropriate Phi nodes as we do so.
242 void SplitExitEdges(Loop
*L
,
243 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
);
245 bool TryTrivialLoopUnswitch(bool &Changed
);
247 bool UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
,
248 Instruction
*TI
= nullptr);
249 void UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
250 BasicBlock
*ExitBlock
, Instruction
*TI
);
251 void UnswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
,
254 void RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
255 Constant
*Val
, bool isEqual
);
257 void EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
258 BasicBlock
*TrueDest
,
259 BasicBlock
*FalseDest
,
260 BranchInst
*OldBranch
, Instruction
*TI
);
262 void SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
264 /// Given that the Invariant is not equal to Val. Simplify instructions
266 Value
*SimplifyInstructionWithNotEqual(Instruction
*Inst
, Value
*Invariant
,
270 } // end anonymous namespace
272 // Analyze loop. Check its size, calculate is it possible to unswitch
273 // it. Returns true if we can unswitch this loop.
274 bool LUAnalysisCache::countLoop(const Loop
*L
, const TargetTransformInfo
&TTI
,
275 AssumptionCache
*AC
) {
276 LoopPropsMapIt PropsIt
;
278 std::tie(PropsIt
, Inserted
) =
279 LoopsProperties
.insert(std::make_pair(L
, LoopProperties()));
281 LoopProperties
&Props
= PropsIt
->second
;
286 // Limit the number of instructions to avoid causing significant code
287 // expansion, and the number of basic blocks, to avoid loops with
288 // large numbers of branches which cause loop unswitching to go crazy.
289 // This is a very ad-hoc heuristic.
291 SmallPtrSet
<const Value
*, 32> EphValues
;
292 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
294 // FIXME: This is overly conservative because it does not take into
295 // consideration code simplification opportunities and code that can
296 // be shared by the resultant unswitched loops.
298 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end(); I
!= E
;
300 Metrics
.analyzeBasicBlock(*I
, TTI
, EphValues
);
302 Props
.SizeEstimation
= Metrics
.NumInsts
;
303 Props
.CanBeUnswitchedCount
= MaxSize
/ (Props
.SizeEstimation
);
304 Props
.WasUnswitchedCount
= 0;
305 MaxSize
-= Props
.SizeEstimation
* Props
.CanBeUnswitchedCount
;
307 if (Metrics
.notDuplicatable
) {
308 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L
->getHeader()->getName()
309 << ", contents cannot be "
315 // Be careful. This links are good only before new loop addition.
316 CurrentLoopProperties
= &Props
;
317 CurLoopInstructions
= &Props
.UnswitchedVals
;
322 // Clean all data related to given loop.
323 void LUAnalysisCache::forgetLoop(const Loop
*L
) {
324 LoopPropsMapIt LIt
= LoopsProperties
.find(L
);
326 if (LIt
!= LoopsProperties
.end()) {
327 LoopProperties
&Props
= LIt
->second
;
328 MaxSize
+= (Props
.CanBeUnswitchedCount
+ Props
.WasUnswitchedCount
) *
329 Props
.SizeEstimation
;
330 LoopsProperties
.erase(LIt
);
333 CurrentLoopProperties
= nullptr;
334 CurLoopInstructions
= nullptr;
337 // Mark case value as unswitched.
338 // Since SI instruction can be partly unswitched, in order to avoid
339 // extra unswitching in cloned loops keep track all unswitched values.
340 void LUAnalysisCache::setUnswitched(const SwitchInst
*SI
, const Value
*V
) {
341 (*CurLoopInstructions
)[SI
].insert(V
);
344 // Check was this case value unswitched before or not.
345 bool LUAnalysisCache::isUnswitched(const SwitchInst
*SI
, const Value
*V
) {
346 return (*CurLoopInstructions
)[SI
].count(V
);
349 bool LUAnalysisCache::CostAllowsUnswitching() {
350 return CurrentLoopProperties
->CanBeUnswitchedCount
> 0;
353 // Clone all loop-unswitch related loop properties.
354 // Redistribute unswitching quotas.
355 // Note, that new loop data is stored inside the VMap.
356 void LUAnalysisCache::cloneData(const Loop
*NewLoop
, const Loop
*OldLoop
,
357 const ValueToValueMapTy
&VMap
) {
358 LoopProperties
&NewLoopProps
= LoopsProperties
[NewLoop
];
359 LoopProperties
&OldLoopProps
= *CurrentLoopProperties
;
360 UnswitchedValsMap
&Insts
= OldLoopProps
.UnswitchedVals
;
362 // Reallocate "can-be-unswitched quota"
364 --OldLoopProps
.CanBeUnswitchedCount
;
365 ++OldLoopProps
.WasUnswitchedCount
;
366 NewLoopProps
.WasUnswitchedCount
= 0;
367 unsigned Quota
= OldLoopProps
.CanBeUnswitchedCount
;
368 NewLoopProps
.CanBeUnswitchedCount
= Quota
/ 2;
369 OldLoopProps
.CanBeUnswitchedCount
= Quota
- Quota
/ 2;
371 NewLoopProps
.SizeEstimation
= OldLoopProps
.SizeEstimation
;
373 // Clone unswitched values info:
374 // for new loop switches we clone info about values that was
375 // already unswitched and has redundant successors.
376 for (UnswitchedValsIt I
= Insts
.begin(); I
!= Insts
.end(); ++I
) {
377 const SwitchInst
*OldInst
= I
->first
;
378 Value
*NewI
= VMap
.lookup(OldInst
);
379 const SwitchInst
*NewInst
= cast_or_null
<SwitchInst
>(NewI
);
380 assert(NewInst
&& "All instructions that are in SrcBB must be in VMap.");
382 NewLoopProps
.UnswitchedVals
[NewInst
] = OldLoopProps
.UnswitchedVals
[OldInst
];
386 char LoopUnswitch::ID
= 0;
388 INITIALIZE_PASS_BEGIN(LoopUnswitch
, "loop-unswitch", "Unswitch loops",
390 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
391 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
392 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
393 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis
)
394 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
395 INITIALIZE_PASS_END(LoopUnswitch
, "loop-unswitch", "Unswitch loops",
398 Pass
*llvm::createLoopUnswitchPass(bool Os
, bool hasBranchDivergence
) {
399 return new LoopUnswitch(Os
, hasBranchDivergence
);
402 /// Operator chain lattice.
404 OC_OpChainNone
, ///< There is no operator.
405 OC_OpChainOr
, ///< There are only ORs.
406 OC_OpChainAnd
, ///< There are only ANDs.
407 OC_OpChainMixed
///< There are ANDs and ORs.
410 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
411 /// an invariant piece, return the invariant. Otherwise, return null.
413 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
414 /// mixed operator chain, as we can not reliably find a value which will simplify
415 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
416 /// to simplify the chain.
418 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
419 /// simplify the condition itself to a loop variant condition, but at the
420 /// cost of creating an entirely new loop.
421 static Value
*FindLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
,
422 OperatorChain
&ParentChain
,
423 DenseMap
<Value
*, Value
*> &Cache
) {
424 auto CacheIt
= Cache
.find(Cond
);
425 if (CacheIt
!= Cache
.end())
426 return CacheIt
->second
;
428 // We started analyze new instruction, increment scanned instructions counter.
431 // We can never unswitch on vector conditions.
432 if (Cond
->getType()->isVectorTy())
435 // Constants should be folded, not unswitched on!
436 if (isa
<Constant
>(Cond
)) return nullptr;
438 // TODO: Handle: br (VARIANT|INVARIANT).
440 // Hoist simple values out.
441 if (L
->makeLoopInvariant(Cond
, Changed
)) {
446 // Walk up the operator chain to find partial invariant conditions.
447 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
448 if (BO
->getOpcode() == Instruction::And
||
449 BO
->getOpcode() == Instruction::Or
) {
450 // Given the previous operator, compute the current operator chain status.
451 OperatorChain NewChain
;
452 switch (ParentChain
) {
454 NewChain
= BO
->getOpcode() == Instruction::And
? OC_OpChainAnd
:
458 NewChain
= BO
->getOpcode() == Instruction::Or
? OC_OpChainOr
:
462 NewChain
= BO
->getOpcode() == Instruction::And
? OC_OpChainAnd
:
465 case OC_OpChainMixed
:
466 NewChain
= OC_OpChainMixed
;
470 // If we reach a Mixed state, we do not want to keep walking up as we can not
471 // reliably find a value that will simplify the chain. With this check, we
472 // will return null on the first sight of mixed chain and the caller will
473 // either backtrack to find partial LIV in other operand or return null.
474 if (NewChain
!= OC_OpChainMixed
) {
475 // Update the current operator chain type before we search up the chain.
476 ParentChain
= NewChain
;
477 // If either the left or right side is invariant, we can unswitch on this,
478 // which will cause the branch to go away in one loop and the condition to
479 // simplify in the other one.
480 if (Value
*LHS
= FindLIVLoopCondition(BO
->getOperand(0), L
, Changed
,
481 ParentChain
, Cache
)) {
485 // We did not manage to find a partial LIV in operand(0). Backtrack and try
487 ParentChain
= NewChain
;
488 if (Value
*RHS
= FindLIVLoopCondition(BO
->getOperand(1), L
, Changed
,
489 ParentChain
, Cache
)) {
496 Cache
[Cond
] = nullptr;
500 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
501 /// an invariant piece, return the invariant along with the operator chain type.
502 /// Otherwise, return null.
503 static std::pair
<Value
*, OperatorChain
> FindLIVLoopCondition(Value
*Cond
,
506 DenseMap
<Value
*, Value
*> Cache
;
507 OperatorChain OpChain
= OC_OpChainNone
;
508 Value
*FCond
= FindLIVLoopCondition(Cond
, L
, Changed
, OpChain
, Cache
);
510 // In case we do find a LIV, it can not be obtained by walking up a mixed
512 assert((!FCond
|| OpChain
!= OC_OpChainMixed
) &&
513 "Do not expect a partial LIV with mixed operator chain");
514 return {FCond
, OpChain
};
517 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPM_Ref
) {
521 AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
522 *L
->getHeader()->getParent());
523 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
525 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
526 if (EnableMSSALoopDependency
) {
527 MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
528 MSSAU
= make_unique
<MemorySSAUpdater
>(MSSA
);
529 assert(DT
&& "Cannot update MemorySSA without a valid DomTree.");
532 Function
*F
= currentLoop
->getHeader()->getParent();
534 SanitizeMemory
= F
->hasFnAttribute(Attribute::SanitizeMemory
);
536 SafetyInfo
.computeLoopSafetyInfo(L
);
538 if (MSSA
&& VerifyMemorySSA
)
539 MSSA
->verifyMemorySSA();
541 bool Changed
= false;
543 assert(currentLoop
->isLCSSAForm(*DT
));
544 if (MSSA
&& VerifyMemorySSA
)
545 MSSA
->verifyMemorySSA();
547 Changed
|= processCurrentLoop();
550 if (MSSA
&& VerifyMemorySSA
)
551 MSSA
->verifyMemorySSA();
556 // Return true if the BasicBlock BB is unreachable from the loop header.
557 // Return false, otherwise.
558 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock
*BB
) {
559 auto *Node
= DT
->getNode(BB
)->getIDom();
560 BasicBlock
*DomBB
= Node
->getBlock();
561 while (currentLoop
->contains(DomBB
)) {
562 BranchInst
*BInst
= dyn_cast
<BranchInst
>(DomBB
->getTerminator());
564 Node
= DT
->getNode(DomBB
)->getIDom();
565 DomBB
= Node
->getBlock();
567 if (!BInst
|| !BInst
->isConditional())
570 Value
*Cond
= BInst
->getCondition();
571 if (!isa
<ConstantInt
>(Cond
))
574 BasicBlock
*UnreachableSucc
=
575 Cond
== ConstantInt::getTrue(Cond
->getContext())
576 ? BInst
->getSuccessor(1)
577 : BInst
->getSuccessor(0);
579 if (DT
->dominates(UnreachableSucc
, BB
))
585 /// FIXME: Remove this workaround when freeze related patches are done.
586 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
587 /// whether branch on undef/poison has undefine behavior. Here it is to
588 /// rule out some common cases that we found such discrepancy already
589 /// causing problems. Detail could be found in PR31652. Note if the
590 /// func returns true, it is unsafe. But if it is false, it doesn't mean
591 /// it is necessarily safe.
592 static bool EqualityPropUnSafe(Value
&LoopCond
) {
593 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(&LoopCond
);
594 if (!CI
|| !CI
->isEquality())
597 Value
*LHS
= CI
->getOperand(0);
598 Value
*RHS
= CI
->getOperand(1);
599 if (isa
<UndefValue
>(LHS
) || isa
<UndefValue
>(RHS
))
602 auto hasUndefInPHI
= [](PHINode
&PN
) {
603 for (Value
*Opd
: PN
.incoming_values()) {
604 if (isa
<UndefValue
>(Opd
))
609 PHINode
*LPHI
= dyn_cast
<PHINode
>(LHS
);
610 PHINode
*RPHI
= dyn_cast
<PHINode
>(RHS
);
611 if ((LPHI
&& hasUndefInPHI(*LPHI
)) || (RPHI
&& hasUndefInPHI(*RPHI
)))
614 auto hasUndefInSelect
= [](SelectInst
&SI
) {
615 if (isa
<UndefValue
>(SI
.getTrueValue()) ||
616 isa
<UndefValue
>(SI
.getFalseValue()))
620 SelectInst
*LSI
= dyn_cast
<SelectInst
>(LHS
);
621 SelectInst
*RSI
= dyn_cast
<SelectInst
>(RHS
);
622 if ((LSI
&& hasUndefInSelect(*LSI
)) || (RSI
&& hasUndefInSelect(*RSI
)))
627 /// Do actual work and unswitch loop if possible and profitable.
628 bool LoopUnswitch::processCurrentLoop() {
629 bool Changed
= false;
633 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
637 // Loops with indirectbr cannot be cloned.
638 if (!currentLoop
->isSafeToClone())
641 // Without dedicated exits, splitting the exit edge may fail.
642 if (!currentLoop
->hasDedicatedExits())
645 LLVMContext
&Context
= loopHeader
->getContext();
647 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
648 if (!BranchesInfo
.countLoop(
649 currentLoop
, getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
650 *currentLoop
->getHeader()->getParent()),
654 // Try trivial unswitch first before loop over other basic blocks in the loop.
655 if (TryTrivialLoopUnswitch(Changed
)) {
659 // Do not do non-trivial unswitch while optimizing for size.
660 // FIXME: Use Function::optForSize().
661 if (OptimizeForSize
||
662 loopHeader
->getParent()->hasFnAttribute(Attribute::OptimizeForSize
))
665 // Run through the instructions in the loop, keeping track of three things:
667 // - That we do not unswitch loops containing convergent operations, as we
668 // might be making them control dependent on the unswitch value when they
670 // FIXME: This could be refined to only bail if the convergent operation is
671 // not already control-dependent on the unswitch value.
673 // - That basic blocks in the loop contain invokes whose predecessor edges we
676 // - The set of guard intrinsics encountered (these are non terminator
677 // instructions that are also profitable to be unswitched).
679 SmallVector
<IntrinsicInst
*, 4> Guards
;
681 for (const auto BB
: currentLoop
->blocks()) {
682 for (auto &I
: *BB
) {
683 auto CS
= CallSite(&I
);
685 if (CS
.hasFnAttr(Attribute::Convergent
))
687 if (auto *II
= dyn_cast
<InvokeInst
>(&I
))
688 if (!II
->getUnwindDest()->canSplitPredecessors())
690 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
691 if (II
->getIntrinsicID() == Intrinsic::experimental_guard
)
692 Guards
.push_back(II
);
696 for (IntrinsicInst
*Guard
: Guards
) {
698 FindLIVLoopCondition(Guard
->getOperand(0), currentLoop
, Changed
).first
;
700 UnswitchIfProfitable(LoopCond
, ConstantInt::getTrue(Context
))) {
701 // NB! Unswitching (if successful) could have erased some of the
702 // instructions in Guards leaving dangling pointers there. This is fine
703 // because we're returning now, and won't look at Guards again.
709 // Loop over all of the basic blocks in the loop. If we find an interior
710 // block that is branching on a loop-invariant condition, we can unswitch this
712 for (Loop::block_iterator I
= currentLoop
->block_begin(),
713 E
= currentLoop
->block_end(); I
!= E
; ++I
) {
714 Instruction
*TI
= (*I
)->getTerminator();
716 // Unswitching on a potentially uninitialized predicate is not
717 // MSan-friendly. Limit this to the cases when the original predicate is
718 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
719 // in the code that did not have one.
720 // This is a workaround for the discrepancy between LLVM IR and MSan
721 // semantics. See PR28054 for more details.
722 if (SanitizeMemory
&&
723 !SafetyInfo
.isGuaranteedToExecute(*TI
, DT
, currentLoop
))
726 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
727 // Some branches may be rendered unreachable because of previous
729 // Unswitch only those branches that are reachable.
730 if (isUnreachableDueToPreviousUnswitching(*I
))
733 // If this isn't branching on an invariant condition, we can't unswitch
735 if (BI
->isConditional()) {
736 // See if this, or some part of it, is loop invariant. If so, we can
737 // unswitch on it if we desire.
738 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
739 currentLoop
, Changed
).first
;
740 if (LoopCond
&& !EqualityPropUnSafe(*LoopCond
) &&
741 UnswitchIfProfitable(LoopCond
, ConstantInt::getTrue(Context
), TI
)) {
746 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
747 Value
*SC
= SI
->getCondition();
749 OperatorChain OpChain
;
750 std::tie(LoopCond
, OpChain
) =
751 FindLIVLoopCondition(SC
, currentLoop
, Changed
);
753 unsigned NumCases
= SI
->getNumCases();
754 if (LoopCond
&& NumCases
) {
755 // Find a value to unswitch on:
756 // FIXME: this should chose the most expensive case!
757 // FIXME: scan for a case with a non-critical edge?
758 Constant
*UnswitchVal
= nullptr;
759 // Find a case value such that at least one case value is unswitched
761 if (OpChain
== OC_OpChainAnd
) {
762 // If the chain only has ANDs and the switch has a case value of 0.
763 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
764 auto *AllZero
= cast
<ConstantInt
>(Constant::getNullValue(SC
->getType()));
765 if (BranchesInfo
.isUnswitched(SI
, AllZero
))
767 // We are unswitching 0 out.
768 UnswitchVal
= AllZero
;
769 } else if (OpChain
== OC_OpChainOr
) {
770 // If the chain only has ORs and the switch has a case value of ~0.
771 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
772 auto *AllOne
= cast
<ConstantInt
>(Constant::getAllOnesValue(SC
->getType()));
773 if (BranchesInfo
.isUnswitched(SI
, AllOne
))
775 // We are unswitching ~0 out.
776 UnswitchVal
= AllOne
;
778 assert(OpChain
== OC_OpChainNone
&&
779 "Expect to unswitch on trivial chain");
780 // Do not process same value again and again.
781 // At this point we have some cases already unswitched and
782 // some not yet unswitched. Let's find the first not yet unswitched one.
783 for (auto Case
: SI
->cases()) {
784 Constant
*UnswitchValCandidate
= Case
.getCaseValue();
785 if (!BranchesInfo
.isUnswitched(SI
, UnswitchValCandidate
)) {
786 UnswitchVal
= UnswitchValCandidate
;
795 if (UnswitchIfProfitable(LoopCond
, UnswitchVal
)) {
797 // In case of a full LIV, UnswitchVal is the value we unswitched out.
798 // In case of a partial LIV, we only unswitch when its an AND-chain
799 // or OR-chain. In both cases switch input value simplifies to
801 BranchesInfo
.setUnswitched(SI
, UnswitchVal
);
807 // Scan the instructions to check for unswitchable values.
808 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
810 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
811 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
812 currentLoop
, Changed
).first
;
813 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
814 ConstantInt::getTrue(Context
))) {
823 /// Check to see if all paths from BB exit the loop with no side effects
824 /// (including infinite loops).
826 /// If true, we return true and set ExitBB to the block we
829 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
831 std::set
<BasicBlock
*> &Visited
) {
832 if (!Visited
.insert(BB
).second
) {
833 // Already visited. Without more analysis, this could indicate an infinite
837 if (!L
->contains(BB
)) {
838 // Otherwise, this is a loop exit, this is fine so long as this is the
840 if (ExitBB
) return false;
845 // Otherwise, this is an unvisited intra-loop node. Check all successors.
846 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
) {
847 // Check to see if the successor is a trivial loop exit.
848 if (!isTrivialLoopExitBlockHelper(L
, *SI
, ExitBB
, Visited
))
852 // Okay, everything after this looks good, check to make sure that this block
853 // doesn't include any side effects.
854 for (Instruction
&I
: *BB
)
855 if (I
.mayHaveSideEffects())
861 /// Return true if the specified block unconditionally leads to an exit from
862 /// the specified loop, and has no side-effects in the process. If so, return
863 /// the block that is exited to, otherwise return null.
864 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
865 std::set
<BasicBlock
*> Visited
;
866 Visited
.insert(L
->getHeader()); // Branches to header make infinite loops.
867 BasicBlock
*ExitBB
= nullptr;
868 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
873 /// We have found that we can unswitch currentLoop when LoopCond == Val to
874 /// simplify the loop. If we decide that this is profitable,
875 /// unswitch the loop, reprocess the pieces, then return true.
876 bool LoopUnswitch::UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
,
878 // Check to see if it would be profitable to unswitch current loop.
879 if (!BranchesInfo
.CostAllowsUnswitching()) {
880 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
881 << currentLoop
->getHeader()->getName()
882 << " at non-trivial condition '" << *Val
883 << "' == " << *LoopCond
<< "\n"
884 << ". Cost too high.\n");
887 if (hasBranchDivergence
&&
888 getAnalysis
<LegacyDivergenceAnalysis
>().isDivergent(LoopCond
)) {
889 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
890 << currentLoop
->getHeader()->getName()
891 << " at non-trivial condition '" << *Val
892 << "' == " << *LoopCond
<< "\n"
893 << ". Condition is divergent.\n");
897 UnswitchNontrivialCondition(LoopCond
, Val
, currentLoop
, TI
);
901 /// Recursively clone the specified loop and all of its children,
902 /// mapping the blocks with the specified map.
903 static Loop
*CloneLoop(Loop
*L
, Loop
*PL
, ValueToValueMapTy
&VM
,
904 LoopInfo
*LI
, LPPassManager
*LPM
) {
905 Loop
&New
= *LI
->AllocateLoop();
907 PL
->addChildLoop(&New
);
909 LI
->addTopLevelLoop(&New
);
912 // Add all of the blocks in L to the new loop.
913 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
915 if (LI
->getLoopFor(*I
) == L
)
916 New
.addBasicBlockToLoop(cast
<BasicBlock
>(VM
[*I
]), *LI
);
918 // Add all of the subloops to the new loop.
920 CloneLoop(I
, &New
, VM
, LI
, LPM
);
925 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
926 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
927 /// and remove (but not erase!) it from the function.
928 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
929 BasicBlock
*TrueDest
,
930 BasicBlock
*FalseDest
,
931 BranchInst
*OldBranch
,
933 assert(OldBranch
->isUnconditional() && "Preheader is not split correctly");
934 assert(TrueDest
!= FalseDest
&& "Branch targets should be different");
935 // Insert a conditional branch on LIC to the two preheaders. The original
936 // code is the true version and the new code is the false version.
937 Value
*BranchVal
= LIC
;
938 bool Swapped
= false;
939 if (!isa
<ConstantInt
>(Val
) ||
940 Val
->getType() != Type::getInt1Ty(LIC
->getContext()))
941 BranchVal
= new ICmpInst(OldBranch
, ICmpInst::ICMP_EQ
, LIC
, Val
);
942 else if (Val
!= ConstantInt::getTrue(Val
->getContext())) {
943 // We want to enter the new loop when the condition is true.
944 std::swap(TrueDest
, FalseDest
);
948 // Old branch will be removed, so save its parent and successor to update the
950 auto *OldBranchSucc
= OldBranch
->getSuccessor(0);
951 auto *OldBranchParent
= OldBranch
->getParent();
953 // Insert the new branch.
955 IRBuilder
<>(OldBranch
).CreateCondBr(BranchVal
, TrueDest
, FalseDest
, TI
);
957 BI
->swapProfMetadata();
959 // Remove the old branch so there is only one branch at the end. This is
960 // needed to perform DomTree's internal DFS walk on the function's CFG.
961 OldBranch
->removeFromParent();
963 // Inform the DT about the new branch.
965 // First, add both successors.
966 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
967 if (TrueDest
!= OldBranchSucc
)
968 Updates
.push_back({DominatorTree::Insert
, OldBranchParent
, TrueDest
});
969 if (FalseDest
!= OldBranchSucc
)
970 Updates
.push_back({DominatorTree::Insert
, OldBranchParent
, FalseDest
});
971 // If both of the new successors are different from the old one, inform the
972 // DT that the edge was deleted.
973 if (OldBranchSucc
!= TrueDest
&& OldBranchSucc
!= FalseDest
) {
974 Updates
.push_back({DominatorTree::Delete
, OldBranchParent
, OldBranchSucc
});
976 DT
->applyUpdates(Updates
);
979 MSSAU
->applyUpdates(Updates
, *DT
);
982 // If either edge is critical, split it. This helps preserve LoopSimplify
983 // form for enclosing loops.
985 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
.get()).setPreserveLCSSA();
986 SplitCriticalEdge(BI
, 0, Options
);
987 SplitCriticalEdge(BI
, 1, Options
);
990 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
991 /// from its header block to its latch block, where the path through the loop
992 /// that doesn't execute its body has no side-effects), unswitch it. This
993 /// doesn't involve any code duplication, just moving the conditional branch
994 /// outside of the loop and updating loop info.
995 void LoopUnswitch::UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
996 BasicBlock
*ExitBlock
,
998 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
999 << loopHeader
->getName() << " [" << L
->getBlocks().size()
1000 << " blocks] in Function "
1001 << L
->getHeader()->getParent()->getName()
1002 << " on cond: " << *Val
<< " == " << *Cond
<< "\n");
1003 // We are going to make essential changes to CFG. This may invalidate cached
1004 // information for L or one of its parent loops in SCEV.
1005 if (auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>())
1006 SEWP
->getSE().forgetTopmostLoop(L
);
1008 // First step, split the preheader, so that we know that there is a safe place
1009 // to insert the conditional branch. We will change loopPreheader to have a
1010 // conditional branch on Cond.
1011 BasicBlock
*NewPH
= SplitEdge(loopPreheader
, loopHeader
, DT
, LI
, MSSAU
.get());
1013 // Now that we have a place to insert the conditional branch, create a place
1014 // to branch to: this is the exit block out of the loop that we should
1015 // short-circuit to.
1017 // Split this block now, so that the loop maintains its exit block, and so
1018 // that the jump from the preheader can execute the contents of the exit block
1019 // without actually branching to it (the exit block should be dominated by the
1020 // loop header, not the preheader).
1021 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
1022 BasicBlock
*NewExit
=
1023 SplitBlock(ExitBlock
, &ExitBlock
->front(), DT
, LI
, MSSAU
.get());
1025 // Okay, now we have a position to branch from and a position to branch to,
1026 // insert the new conditional branch.
1027 auto *OldBranch
= dyn_cast
<BranchInst
>(loopPreheader
->getTerminator());
1028 assert(OldBranch
&& "Failed to split the preheader");
1029 EmitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
, OldBranch
, TI
);
1030 LPM
->deleteSimpleAnalysisValue(OldBranch
, L
);
1032 // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1033 // Delete it, as it is no longer needed.
1036 // We need to reprocess this loop, it could be unswitched again.
1039 // Now that we know that the loop is never entered when this condition is a
1040 // particular value, rewrite the loop with this info. We know that this will
1041 // at least eliminate the old branch.
1042 RewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, false);
1047 /// Check if the first non-constant condition starting from the loop header is
1048 /// a trivial unswitch condition: that is, a condition controls whether or not
1049 /// the loop does anything at all. If it is a trivial condition, unswitching
1050 /// produces no code duplications (equivalently, it produces a simpler loop and
1051 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1053 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed
) {
1054 BasicBlock
*CurrentBB
= currentLoop
->getHeader();
1055 Instruction
*CurrentTerm
= CurrentBB
->getTerminator();
1056 LLVMContext
&Context
= CurrentBB
->getContext();
1058 // If loop header has only one reachable successor (currently via an
1059 // unconditional branch or constant foldable conditional branch, but
1060 // should also consider adding constant foldable switch instruction in
1061 // future), we should keep looking for trivial condition candidates in
1062 // the successor as well. An alternative is to constant fold conditions
1063 // and merge successors into loop header (then we only need to check header's
1064 // terminator). The reason for not doing this in LoopUnswitch pass is that
1065 // it could potentially break LoopPassManager's invariants. Folding dead
1066 // branches could either eliminate the current loop or make other loops
1067 // unreachable. LCSSA form might also not be preserved after deleting
1068 // branches. The following code keeps traversing loop header's successors
1069 // until it finds the trivial condition candidate (condition that is not a
1070 // constant). Since unswitching generates branches with constant conditions,
1071 // this scenario could be very common in practice.
1072 SmallPtrSet
<BasicBlock
*, 8> Visited
;
1075 // If we exit loop or reach a previous visited block, then
1076 // we can not reach any trivial condition candidates (unfoldable
1077 // branch instructions or switch instructions) and no unswitch
1078 // can happen. Exit and return false.
1079 if (!currentLoop
->contains(CurrentBB
) || !Visited
.insert(CurrentBB
).second
)
1082 // Check if this loop will execute any side-effecting instructions (e.g.
1083 // stores, calls, volatile loads) in the part of the loop that the code
1084 // *would* execute. Check the header first.
1085 for (Instruction
&I
: *CurrentBB
)
1086 if (I
.mayHaveSideEffects())
1089 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurrentTerm
)) {
1090 if (BI
->isUnconditional()) {
1091 CurrentBB
= BI
->getSuccessor(0);
1092 } else if (BI
->getCondition() == ConstantInt::getTrue(Context
)) {
1093 CurrentBB
= BI
->getSuccessor(0);
1094 } else if (BI
->getCondition() == ConstantInt::getFalse(Context
)) {
1095 CurrentBB
= BI
->getSuccessor(1);
1097 // Found a trivial condition candidate: non-foldable conditional branch.
1100 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
1101 // At this point, any constant-foldable instructions should have probably
1103 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition());
1106 // Find the target block we are definitely going to.
1107 CurrentBB
= SI
->findCaseValue(Cond
)->getCaseSuccessor();
1109 // We do not understand these terminator instructions.
1113 CurrentTerm
= CurrentBB
->getTerminator();
1116 // CondVal is the condition that controls the trivial condition.
1117 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1118 Constant
*CondVal
= nullptr;
1119 BasicBlock
*LoopExitBB
= nullptr;
1121 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurrentTerm
)) {
1122 // If this isn't branching on an invariant condition, we can't unswitch it.
1123 if (!BI
->isConditional())
1126 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
1127 currentLoop
, Changed
).first
;
1129 // Unswitch only if the trivial condition itself is an LIV (not
1130 // partial LIV which could occur in and/or)
1131 if (!LoopCond
|| LoopCond
!= BI
->getCondition())
1134 // Check to see if a successor of the branch is guaranteed to
1135 // exit through a unique exit block without having any
1136 // side-effects. If so, determine the value of Cond that causes
1138 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
1139 BI
->getSuccessor(0)))) {
1140 CondVal
= ConstantInt::getTrue(Context
);
1141 } else if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
1142 BI
->getSuccessor(1)))) {
1143 CondVal
= ConstantInt::getFalse(Context
);
1146 // If we didn't find a single unique LoopExit block, or if the loop exit
1147 // block contains phi nodes, this isn't trivial.
1148 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
1149 return false; // Can't handle this.
1151 if (EqualityPropUnSafe(*LoopCond
))
1154 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, LoopExitBB
,
1158 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
1159 // If this isn't switching on an invariant condition, we can't unswitch it.
1160 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
1161 currentLoop
, Changed
).first
;
1163 // Unswitch only if the trivial condition itself is an LIV (not
1164 // partial LIV which could occur in and/or)
1165 if (!LoopCond
|| LoopCond
!= SI
->getCondition())
1168 // Check to see if a successor of the switch is guaranteed to go to the
1169 // latch block or exit through a one exit block without having any
1170 // side-effects. If so, determine the value of Cond that causes it to do
1172 // Note that we can't trivially unswitch on the default case or
1173 // on already unswitched cases.
1174 for (auto Case
: SI
->cases()) {
1175 BasicBlock
*LoopExitCandidate
;
1176 if ((LoopExitCandidate
=
1177 isTrivialLoopExitBlock(currentLoop
, Case
.getCaseSuccessor()))) {
1178 // Okay, we found a trivial case, remember the value that is trivial.
1179 ConstantInt
*CaseVal
= Case
.getCaseValue();
1181 // Check that it was not unswitched before, since already unswitched
1182 // trivial vals are looks trivial too.
1183 if (BranchesInfo
.isUnswitched(SI
, CaseVal
))
1185 LoopExitBB
= LoopExitCandidate
;
1191 // If we didn't find a single unique LoopExit block, or if the loop exit
1192 // block contains phi nodes, this isn't trivial.
1193 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
1194 return false; // Can't handle this.
1196 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, LoopExitBB
,
1199 // We are only unswitching full LIV.
1200 BranchesInfo
.setUnswitched(SI
, CondVal
);
1207 /// Split all of the edges from inside the loop to their exit blocks.
1208 /// Update the appropriate Phi nodes as we do so.
1209 void LoopUnswitch::SplitExitEdges(Loop
*L
,
1210 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
){
1212 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
1213 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
1214 SmallVector
<BasicBlock
*, 4> Preds(pred_begin(ExitBlock
),
1215 pred_end(ExitBlock
));
1217 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1218 // general, if we call it on all predecessors of all exits then it does.
1219 SplitBlockPredecessors(ExitBlock
, Preds
, ".us-lcssa", DT
, LI
, MSSAU
.get(),
1220 /*PreserveLCSSA*/ true);
1224 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1225 /// Split it into loop versions and test the condition outside of either loop.
1226 /// Return the loops created as Out1/Out2.
1227 void LoopUnswitch::UnswitchNontrivialCondition(Value
*LIC
, Constant
*Val
,
1228 Loop
*L
, Instruction
*TI
) {
1229 Function
*F
= loopHeader
->getParent();
1230 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1231 << loopHeader
->getName() << " [" << L
->getBlocks().size()
1232 << " blocks] in Function " << F
->getName() << " when '"
1233 << *Val
<< "' == " << *LIC
<< "\n");
1235 // We are going to make essential changes to CFG. This may invalidate cached
1236 // information for L or one of its parent loops in SCEV.
1237 if (auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>())
1238 SEWP
->getSE().forgetTopmostLoop(L
);
1243 // First step, split the preheader and exit blocks, and add these blocks to
1244 // the LoopBlocks list.
1245 BasicBlock
*NewPreheader
=
1246 SplitEdge(loopPreheader
, loopHeader
, DT
, LI
, MSSAU
.get());
1247 LoopBlocks
.push_back(NewPreheader
);
1249 // We want the loop to come after the preheader, but before the exit blocks.
1250 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
1252 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1253 L
->getUniqueExitBlocks(ExitBlocks
);
1255 // Split all of the edges from inside the loop to their exit blocks. Update
1256 // the appropriate Phi nodes as we do so.
1257 SplitExitEdges(L
, ExitBlocks
);
1259 // The exit blocks may have been changed due to edge splitting, recompute.
1261 L
->getUniqueExitBlocks(ExitBlocks
);
1263 // Add exit blocks to the loop blocks.
1264 LoopBlocks
.insert(LoopBlocks
.end(), ExitBlocks
.begin(), ExitBlocks
.end());
1266 // Next step, clone all of the basic blocks that make up the loop (including
1267 // the loop preheader and exit blocks), keeping track of the mapping between
1268 // the instructions and blocks.
1269 NewBlocks
.reserve(LoopBlocks
.size());
1270 ValueToValueMapTy VMap
;
1271 for (unsigned i
= 0, e
= LoopBlocks
.size(); i
!= e
; ++i
) {
1272 BasicBlock
*NewBB
= CloneBasicBlock(LoopBlocks
[i
], VMap
, ".us", F
);
1274 NewBlocks
.push_back(NewBB
);
1275 VMap
[LoopBlocks
[i
]] = NewBB
; // Keep the BB mapping.
1276 LPM
->cloneBasicBlockSimpleAnalysis(LoopBlocks
[i
], NewBB
, L
);
1279 // Splice the newly inserted blocks into the function right before the
1280 // original preheader.
1281 F
->getBasicBlockList().splice(NewPreheader
->getIterator(),
1282 F
->getBasicBlockList(),
1283 NewBlocks
[0]->getIterator(), F
->end());
1285 // Now we create the new Loop object for the versioned loop.
1286 Loop
*NewLoop
= CloneLoop(L
, L
->getParentLoop(), VMap
, LI
, LPM
);
1288 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1289 // Probably clone more loop-unswitch related loop properties.
1290 BranchesInfo
.cloneData(NewLoop
, L
, VMap
);
1292 Loop
*ParentLoop
= L
->getParentLoop();
1294 // Make sure to add the cloned preheader and exit blocks to the parent loop
1296 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], *LI
);
1299 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
1300 BasicBlock
*NewExit
= cast
<BasicBlock
>(VMap
[ExitBlocks
[i
]]);
1301 // The new exit block should be in the same loop as the old one.
1302 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[i
]))
1303 ExitBBLoop
->addBasicBlockToLoop(NewExit
, *LI
);
1305 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
1306 "Exit block should have been split to have one successor!");
1307 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
1309 // If the successor of the exit block had PHI nodes, add an entry for
1311 for (PHINode
&PN
: ExitSucc
->phis()) {
1312 Value
*V
= PN
.getIncomingValueForBlock(ExitBlocks
[i
]);
1313 ValueToValueMapTy::iterator It
= VMap
.find(V
);
1314 if (It
!= VMap
.end()) V
= It
->second
;
1315 PN
.addIncoming(V
, NewExit
);
1318 if (LandingPadInst
*LPad
= NewExit
->getLandingPadInst()) {
1319 PHINode
*PN
= PHINode::Create(LPad
->getType(), 0, "",
1320 &*ExitSucc
->getFirstInsertionPt());
1322 for (pred_iterator I
= pred_begin(ExitSucc
), E
= pred_end(ExitSucc
);
1324 BasicBlock
*BB
= *I
;
1325 LandingPadInst
*LPI
= BB
->getLandingPadInst();
1326 LPI
->replaceAllUsesWith(PN
);
1327 PN
->addIncoming(LPI
, BB
);
1332 // Rewrite the code to refer to itself.
1333 for (unsigned i
= 0, e
= NewBlocks
.size(); i
!= e
; ++i
) {
1334 for (Instruction
&I
: *NewBlocks
[i
]) {
1335 RemapInstruction(&I
, VMap
,
1336 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1337 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
1338 if (II
->getIntrinsicID() == Intrinsic::assume
)
1339 AC
->registerAssumption(II
);
1343 // Rewrite the original preheader to select between versions of the loop.
1344 BranchInst
*OldBR
= cast
<BranchInst
>(loopPreheader
->getTerminator());
1345 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
1346 "Preheader splitting did not work correctly!");
1349 // Update MemorySSA after cloning, and before splitting to unreachables,
1350 // since that invalidates the 1:1 mapping of clones in VMap.
1351 LoopBlocksRPO
LBRPO(L
);
1353 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, VMap
);
1356 // Emit the new branch that selects between the two versions of this loop.
1357 EmitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
,
1359 LPM
->deleteSimpleAnalysisValue(OldBR
, L
);
1361 // Update MemoryPhis in Exit blocks.
1362 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMap
, *DT
);
1363 if (VerifyMemorySSA
)
1364 MSSA
->verifyMemorySSA();
1367 // The OldBr was replaced by a new one and removed (but not erased) by
1368 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1371 LoopProcessWorklist
.push_back(NewLoop
);
1374 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1376 // deletes the instruction (for example by simplifying a PHI that feeds into
1377 // the condition that we're unswitching on), we don't rewrite the second
1379 WeakTrackingVH
LICHandle(LIC
);
1381 // Now we rewrite the original code to know that the condition is true and the
1382 // new code to know that the condition is false.
1383 RewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, false);
1385 // It's possible that simplifying one loop could cause the other to be
1386 // changed to another value or a constant. If its a constant, don't simplify
1388 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
&&
1389 LICHandle
&& !isa
<Constant
>(LICHandle
))
1390 RewriteLoopBodyWithConditionConstant(NewLoop
, LICHandle
, Val
, true);
1392 if (MSSA
&& VerifyMemorySSA
)
1393 MSSA
->verifyMemorySSA();
1396 /// Remove all instances of I from the worklist vector specified.
1397 static void RemoveFromWorklist(Instruction
*I
,
1398 std::vector
<Instruction
*> &Worklist
) {
1400 Worklist
.erase(std::remove(Worklist
.begin(), Worklist
.end(), I
),
1404 /// When we find that I really equals V, remove I from the
1405 /// program, replacing all uses with V and update the worklist.
1406 static void ReplaceUsesOfWith(Instruction
*I
, Value
*V
,
1407 std::vector
<Instruction
*> &Worklist
,
1408 Loop
*L
, LPPassManager
*LPM
) {
1409 LLVM_DEBUG(dbgs() << "Replace with '" << *V
<< "': " << *I
<< "\n");
1411 // Add uses to the worklist, which may be dead now.
1412 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1413 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
1414 Worklist
.push_back(Use
);
1416 // Add users to the worklist which may be simplified now.
1417 for (User
*U
: I
->users())
1418 Worklist
.push_back(cast
<Instruction
>(U
));
1419 LPM
->deleteSimpleAnalysisValue(I
, L
);
1420 RemoveFromWorklist(I
, Worklist
);
1421 I
->replaceAllUsesWith(V
);
1422 if (!I
->mayHaveSideEffects())
1423 I
->eraseFromParent();
1427 /// We know either that the value LIC has the value specified by Val in the
1428 /// specified loop, or we know it does NOT have that value.
1429 /// Rewrite any uses of LIC or of properties correlated to it.
1430 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
1433 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
1435 // FIXME: Support correlated properties, like:
1442 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1443 // selects, switches.
1444 std::vector
<Instruction
*> Worklist
;
1445 LLVMContext
&Context
= Val
->getContext();
1447 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1448 // in the loop with the appropriate one directly.
1449 if (IsEqual
|| (isa
<ConstantInt
>(Val
) &&
1450 Val
->getType()->isIntegerTy(1))) {
1455 Replacement
= ConstantInt::get(Type::getInt1Ty(Val
->getContext()),
1456 !cast
<ConstantInt
>(Val
)->getZExtValue());
1458 for (User
*U
: LIC
->users()) {
1459 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
1460 if (!UI
|| !L
->contains(UI
))
1462 Worklist
.push_back(UI
);
1465 for (Instruction
*UI
: Worklist
)
1466 UI
->replaceUsesOfWith(LIC
, Replacement
);
1468 SimplifyCode(Worklist
, L
);
1472 // Otherwise, we don't know the precise value of LIC, but we do know that it
1473 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1474 // can. This case occurs when we unswitch switch statements.
1475 for (User
*U
: LIC
->users()) {
1476 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
1477 if (!UI
|| !L
->contains(UI
))
1480 // At this point, we know LIC is definitely not Val. Try to use some simple
1481 // logic to simplify the user w.r.t. to the context.
1482 if (Value
*Replacement
= SimplifyInstructionWithNotEqual(UI
, LIC
, Val
)) {
1483 if (LI
->replacementPreservesLCSSAForm(UI
, Replacement
)) {
1484 // This in-loop instruction has been simplified w.r.t. its context,
1485 // i.e. LIC != Val, make sure we propagate its replacement value to
1488 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1489 // the LIC->users() iterator !. However, we can make this instruction
1490 // dead by replacing all its users and push it onto the worklist so that
1491 // it can be properly deleted and its operands simplified.
1492 UI
->replaceAllUsesWith(Replacement
);
1496 // This is a LIC user, push it into the worklist so that SimplifyCode can
1497 // attempt to simplify it.
1498 Worklist
.push_back(UI
);
1500 // If we know that LIC is not Val, use this info to simplify code.
1501 SwitchInst
*SI
= dyn_cast
<SwitchInst
>(UI
);
1502 if (!SI
|| !isa
<ConstantInt
>(Val
)) continue;
1504 // NOTE: if a case value for the switch is unswitched out, we record it
1505 // after the unswitch finishes. We can not record it here as the switch
1506 // is not a direct user of the partial LIV.
1507 SwitchInst::CaseHandle DeadCase
=
1508 *SI
->findCaseValue(cast
<ConstantInt
>(Val
));
1509 // Default case is live for multiple values.
1510 if (DeadCase
== *SI
->case_default())
1513 // Found a dead case value. Don't remove PHI nodes in the
1514 // successor if they become single-entry, those PHI nodes may
1515 // be in the Users list.
1517 BasicBlock
*Switch
= SI
->getParent();
1518 BasicBlock
*SISucc
= DeadCase
.getCaseSuccessor();
1519 BasicBlock
*Latch
= L
->getLoopLatch();
1521 if (!SI
->findCaseDest(SISucc
)) continue; // Edge is critical.
1522 // If the DeadCase successor dominates the loop latch, then the
1523 // transformation isn't safe since it will delete the sole predecessor edge
1525 if (Latch
&& DT
->dominates(SISucc
, Latch
))
1528 // FIXME: This is a hack. We need to keep the successor around
1529 // and hooked up so as to preserve the loop structure, because
1530 // trying to update it is complicated. So instead we preserve the
1531 // loop structure and put the block on a dead code path.
1532 SplitEdge(Switch
, SISucc
, DT
, LI
, MSSAU
.get());
1533 // Compute the successors instead of relying on the return value
1534 // of SplitEdge, since it may have split the switch successor
1536 BasicBlock
*NewSISucc
= DeadCase
.getCaseSuccessor();
1537 BasicBlock
*OldSISucc
= *succ_begin(NewSISucc
);
1538 // Create an "unreachable" destination.
1539 BasicBlock
*Abort
= BasicBlock::Create(Context
, "us-unreachable",
1540 Switch
->getParent(),
1542 new UnreachableInst(Context
, Abort
);
1543 // Force the new case destination to branch to the "unreachable"
1544 // block while maintaining a (dead) CFG edge to the old block.
1545 NewSISucc
->getTerminator()->eraseFromParent();
1546 BranchInst::Create(Abort
, OldSISucc
,
1547 ConstantInt::getTrue(Context
), NewSISucc
);
1548 // Release the PHI operands for this edge.
1549 for (PHINode
&PN
: NewSISucc
->phis())
1550 PN
.setIncomingValue(PN
.getBasicBlockIndex(Switch
),
1551 UndefValue::get(PN
.getType()));
1552 // Tell the domtree about the new block. We don't fully update the
1553 // domtree here -- instead we force it to do a full recomputation
1554 // after the pass is complete -- but we do need to inform it of
1556 DT
->addNewBlock(Abort
, NewSISucc
);
1559 SimplifyCode(Worklist
, L
);
1562 /// Now that we have simplified some instructions in the loop, walk over it and
1563 /// constant prop, dce, and fold control flow where possible. Note that this is
1564 /// effectively a very simple loop-structure-aware optimizer. During processing
1565 /// of this loop, L could very well be deleted, so it must not be used.
1567 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1570 void LoopUnswitch::SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
1571 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
1572 while (!Worklist
.empty()) {
1573 Instruction
*I
= Worklist
.back();
1574 Worklist
.pop_back();
1577 if (isInstructionTriviallyDead(I
)) {
1578 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I
<< "\n");
1580 // Add uses to the worklist, which may be dead now.
1581 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1582 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
1583 Worklist
.push_back(Use
);
1584 LPM
->deleteSimpleAnalysisValue(I
, L
);
1585 RemoveFromWorklist(I
, Worklist
);
1587 MSSAU
->removeMemoryAccess(I
);
1588 I
->eraseFromParent();
1593 // See if instruction simplification can hack this up. This is common for
1594 // things like "select false, X, Y" after unswitching made the condition be
1595 // 'false'. TODO: update the domtree properly so we can pass it here.
1596 if (Value
*V
= SimplifyInstruction(I
, DL
))
1597 if (LI
->replacementPreservesLCSSAForm(I
, V
)) {
1598 ReplaceUsesOfWith(I
, V
, Worklist
, L
, LPM
);
1602 // Special case hacks that appear commonly in unswitched code.
1603 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1604 if (BI
->isUnconditional()) {
1605 // If BI's parent is the only pred of the successor, fold the two blocks
1607 BasicBlock
*Pred
= BI
->getParent();
1608 BasicBlock
*Succ
= BI
->getSuccessor(0);
1609 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1610 if (!SinglePred
) continue; // Nothing to do.
1611 assert(SinglePred
== Pred
&& "CFG broken");
1613 LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred
->getName() << " <- "
1614 << Succ
->getName() << "\n");
1616 // Resolve any single entry PHI nodes in Succ.
1617 while (PHINode
*PN
= dyn_cast
<PHINode
>(Succ
->begin()))
1618 ReplaceUsesOfWith(PN
, PN
->getIncomingValue(0), Worklist
, L
, LPM
);
1620 // If Succ has any successors with PHI nodes, update them to have
1621 // entries coming from Pred instead of Succ.
1622 Succ
->replaceAllUsesWith(Pred
);
1624 // Move all of the successor contents from Succ to Pred.
1625 Pred
->getInstList().splice(BI
->getIterator(), Succ
->getInstList(),
1626 Succ
->begin(), Succ
->end());
1628 MSSAU
->moveAllAfterMergeBlocks(Succ
, Pred
, BI
);
1629 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1630 RemoveFromWorklist(BI
, Worklist
);
1631 BI
->eraseFromParent();
1633 // Remove Succ from the loop tree.
1634 LI
->removeBlock(Succ
);
1635 LPM
->deleteSimpleAnalysisValue(Succ
, L
);
1636 Succ
->eraseFromParent();
1646 /// Simple simplifications we can do given the information that Cond is
1647 /// definitely not equal to Val.
1648 Value
*LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction
*Inst
,
1651 // icmp eq cond, val -> false
1652 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Inst
);
1653 if (CI
&& CI
->isEquality()) {
1654 Value
*Op0
= CI
->getOperand(0);
1655 Value
*Op1
= CI
->getOperand(1);
1656 if ((Op0
== Invariant
&& Op1
== Val
) || (Op0
== Val
&& Op1
== Invariant
)) {
1657 LLVMContext
&Ctx
= Inst
->getContext();
1658 if (CI
->getPredicate() == CmpInst::ICMP_EQ
)
1659 return ConstantInt::getFalse(Ctx
);
1661 return ConstantInt::getTrue(Ctx
);
1665 // FIXME: there may be other opportunities, e.g. comparison with floating
1666 // point, or Invariant - Val != 0, etc.