1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/Utils/Local.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ValueMapper.h"
58 #define DEBUG_TYPE "simple-loop-unswitch"
62 STATISTIC(NumBranches
, "Number of branches unswitched");
63 STATISTIC(NumSwitches
, "Number of switches unswitched");
64 STATISTIC(NumGuards
, "Number of guards turned into branches for unswitching");
65 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
67 NumCostMultiplierSkipped
,
68 "Number of unswitch candidates that had their cost multiplier skipped");
70 static cl::opt
<bool> EnableNonTrivialUnswitch(
71 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden
,
72 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
73 "following the configuration passed into the pass."));
76 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden
,
77 cl::desc("The cost threshold for unswitching a loop."));
79 static cl::opt
<bool> EnableUnswitchCostMultiplier(
80 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden
,
81 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
82 "explosion in nontrivial unswitch."));
83 static cl::opt
<int> UnswitchSiblingsToplevelDiv(
84 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden
,
85 cl::desc("Toplevel siblings divisor for cost multiplier."));
86 static cl::opt
<int> UnswitchNumInitialUnscaledCandidates(
87 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden
,
88 cl::desc("Number of unswitch candidates that are ignored when calculating "
90 static cl::opt
<bool> UnswitchGuards(
91 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden
,
92 cl::desc("If enabled, simple loop unswitching will also consider "
93 "llvm.experimental.guard intrinsics as unswitch candidates."));
95 /// Collect all of the loop invariant input values transitively used by the
96 /// homogeneous instruction graph from a given root.
98 /// This essentially walks from a root recursively through loop variant operands
99 /// which have the exact same opcode and finds all inputs which are loop
100 /// invariant. For some operations these can be re-associated and unswitched out
101 /// of the loop entirely.
102 static TinyPtrVector
<Value
*>
103 collectHomogenousInstGraphLoopInvariants(Loop
&L
, Instruction
&Root
,
105 assert(!L
.isLoopInvariant(&Root
) &&
106 "Only need to walk the graph if root itself is not invariant.");
107 TinyPtrVector
<Value
*> Invariants
;
109 // Build a worklist and recurse through operators collecting invariants.
110 SmallVector
<Instruction
*, 4> Worklist
;
111 SmallPtrSet
<Instruction
*, 8> Visited
;
112 Worklist
.push_back(&Root
);
113 Visited
.insert(&Root
);
115 Instruction
&I
= *Worklist
.pop_back_val();
116 for (Value
*OpV
: I
.operand_values()) {
117 // Skip constants as unswitching isn't interesting for them.
118 if (isa
<Constant
>(OpV
))
121 // Add it to our result if loop invariant.
122 if (L
.isLoopInvariant(OpV
)) {
123 Invariants
.push_back(OpV
);
127 // If not an instruction with the same opcode, nothing we can do.
128 Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
);
129 if (!OpI
|| OpI
->getOpcode() != Root
.getOpcode())
132 // Visit this operand.
133 if (Visited
.insert(OpI
).second
)
134 Worklist
.push_back(OpI
);
136 } while (!Worklist
.empty());
141 static void replaceLoopInvariantUses(Loop
&L
, Value
*Invariant
,
142 Constant
&Replacement
) {
143 assert(!isa
<Constant
>(Invariant
) && "Why are we unswitching on a constant?");
145 // Replace uses of LIC in the loop with the given constant.
146 for (auto UI
= Invariant
->use_begin(), UE
= Invariant
->use_end(); UI
!= UE
;) {
147 // Grab the use and walk past it so we can clobber it in the use list.
149 Instruction
*UserI
= dyn_cast
<Instruction
>(U
->getUser());
151 // Replace this use within the loop body.
152 if (UserI
&& L
.contains(UserI
))
153 U
->set(&Replacement
);
157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
158 /// incoming values along this edge.
159 static bool areLoopExitPHIsLoopInvariant(Loop
&L
, BasicBlock
&ExitingBB
,
160 BasicBlock
&ExitBB
) {
161 for (Instruction
&I
: ExitBB
) {
162 auto *PN
= dyn_cast
<PHINode
>(&I
);
164 // No more PHIs to check.
167 // If the incoming value for this edge isn't loop invariant the unswitch
169 if (!L
.isLoopInvariant(PN
->getIncomingValueForBlock(&ExitingBB
)))
172 llvm_unreachable("Basic blocks should never be empty!");
175 /// Insert code to test a set of loop invariant values, and conditionally branch
177 static void buildPartialUnswitchConditionalBranch(BasicBlock
&BB
,
178 ArrayRef
<Value
*> Invariants
,
180 BasicBlock
&UnswitchedSucc
,
181 BasicBlock
&NormalSucc
) {
182 IRBuilder
<> IRB(&BB
);
183 Value
*Cond
= Invariants
.front();
184 for (Value
*Invariant
:
185 make_range(std::next(Invariants
.begin()), Invariants
.end()))
187 Cond
= IRB
.CreateOr(Cond
, Invariant
);
189 Cond
= IRB
.CreateAnd(Cond
, Invariant
);
191 IRB
.CreateCondBr(Cond
, Direction
? &UnswitchedSucc
: &NormalSucc
,
192 Direction
? &NormalSucc
: &UnswitchedSucc
);
195 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
197 /// Requires that the loop exit and unswitched basic block are the same, and
198 /// that the exiting block was a unique predecessor of that block. Rewrites the
199 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
200 /// PHI nodes from the old preheader that now contains the unswitched
202 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock
&UnswitchedBB
,
203 BasicBlock
&OldExitingBB
,
205 for (PHINode
&PN
: UnswitchedBB
.phis()) {
206 // When the loop exit is directly unswitched we just need to update the
207 // incoming basic block. We loop to handle weird cases with repeated
208 // incoming blocks, but expect to typically only have one operand here.
209 for (auto i
: seq
<int>(0, PN
.getNumOperands())) {
210 assert(PN
.getIncomingBlock(i
) == &OldExitingBB
&&
211 "Found incoming block different from unique predecessor!");
212 PN
.setIncomingBlock(i
, &OldPH
);
217 /// Rewrite the PHI nodes in the loop exit basic block and the split off
218 /// unswitched block.
220 /// Because the exit block remains an exit from the loop, this rewrites the
221 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
222 /// nodes into the unswitched basic block to select between the value in the
223 /// old preheader and the loop exit.
224 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock
&ExitBB
,
225 BasicBlock
&UnswitchedBB
,
226 BasicBlock
&OldExitingBB
,
229 assert(&ExitBB
!= &UnswitchedBB
&&
230 "Must have different loop exit and unswitched blocks!");
231 Instruction
*InsertPt
= &*UnswitchedBB
.begin();
232 for (PHINode
&PN
: ExitBB
.phis()) {
233 auto *NewPN
= PHINode::Create(PN
.getType(), /*NumReservedValues*/ 2,
234 PN
.getName() + ".split", InsertPt
);
236 // Walk backwards over the old PHI node's inputs to minimize the cost of
237 // removing each one. We have to do this weird loop manually so that we
238 // create the same number of new incoming edges in the new PHI as we expect
239 // each case-based edge to be included in the unswitched switch in some
241 // FIXME: This is really, really gross. It would be much cleaner if LLVM
242 // allowed us to create a single entry for a predecessor block without
243 // having separate entries for each "edge" even though these edges are
244 // required to produce identical results.
245 for (int i
= PN
.getNumIncomingValues() - 1; i
>= 0; --i
) {
246 if (PN
.getIncomingBlock(i
) != &OldExitingBB
)
249 Value
*Incoming
= PN
.getIncomingValue(i
);
251 // No more edge from the old exiting block to the exit block.
252 PN
.removeIncomingValue(i
);
254 NewPN
->addIncoming(Incoming
, &OldPH
);
257 // Now replace the old PHI with the new one and wire the old one in as an
258 // input to the new one.
259 PN
.replaceAllUsesWith(NewPN
);
260 NewPN
->addIncoming(&PN
, &ExitBB
);
264 /// Hoist the current loop up to the innermost loop containing a remaining exit.
266 /// Because we've removed an exit from the loop, we may have changed the set of
267 /// loops reachable and need to move the current loop up the loop nest or even
268 /// to an entirely separate nest.
269 static void hoistLoopToNewParent(Loop
&L
, BasicBlock
&Preheader
,
270 DominatorTree
&DT
, LoopInfo
&LI
) {
271 // If the loop is already at the top level, we can't hoist it anywhere.
272 Loop
*OldParentL
= L
.getParentLoop();
276 SmallVector
<BasicBlock
*, 4> Exits
;
277 L
.getExitBlocks(Exits
);
278 Loop
*NewParentL
= nullptr;
279 for (auto *ExitBB
: Exits
)
280 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
))
281 if (!NewParentL
|| NewParentL
->contains(ExitL
))
284 if (NewParentL
== OldParentL
)
287 // The new parent loop (if different) should always contain the old one.
289 assert(NewParentL
->contains(OldParentL
) &&
290 "Can only hoist this loop up the nest!");
292 // The preheader will need to move with the body of this loop. However,
293 // because it isn't in this loop we also need to update the primary loop map.
294 assert(OldParentL
== LI
.getLoopFor(&Preheader
) &&
295 "Parent loop of this loop should contain this loop's preheader!");
296 LI
.changeLoopFor(&Preheader
, NewParentL
);
298 // Remove this loop from its old parent.
299 OldParentL
->removeChildLoop(&L
);
301 // Add the loop either to the new parent or as a top-level loop.
303 NewParentL
->addChildLoop(&L
);
305 LI
.addTopLevelLoop(&L
);
307 // Remove this loops blocks from the old parent and every other loop up the
308 // nest until reaching the new parent. Also update all of these
309 // no-longer-containing loops to reflect the nesting change.
310 for (Loop
*OldContainingL
= OldParentL
; OldContainingL
!= NewParentL
;
311 OldContainingL
= OldContainingL
->getParentLoop()) {
312 llvm::erase_if(OldContainingL
->getBlocksVector(),
313 [&](const BasicBlock
*BB
) {
314 return BB
== &Preheader
|| L
.contains(BB
);
317 OldContainingL
->getBlocksSet().erase(&Preheader
);
318 for (BasicBlock
*BB
: L
.blocks())
319 OldContainingL
->getBlocksSet().erase(BB
);
321 // Because we just hoisted a loop out of this one, we have essentially
322 // created new exit paths from it. That means we need to form LCSSA PHI
323 // nodes for values used in the no-longer-nested loop.
324 formLCSSA(*OldContainingL
, DT
, &LI
, nullptr);
326 // We shouldn't need to form dedicated exits because the exit introduced
327 // here is the (just split by unswitching) preheader. However, after trivial
328 // unswitching it is possible to get new non-dedicated exits out of parent
329 // loop so let's conservatively form dedicated exit blocks and figure out
330 // if we can optimize later.
331 formDedicatedExitBlocks(OldContainingL
, &DT
, &LI
, /*PreserveLCSSA*/ true);
335 /// Unswitch a trivial branch if the condition is loop invariant.
337 /// This routine should only be called when loop code leading to the branch has
338 /// been validated as trivial (no side effects). This routine checks if the
339 /// condition is invariant and one of the successors is a loop exit. This
340 /// allows us to unswitch without duplicating the loop, making it trivial.
342 /// If this routine fails to unswitch the branch it returns false.
344 /// If the branch can be unswitched, this routine splits the preheader and
345 /// hoists the branch above that split. Preserves loop simplified form
346 /// (splitting the exit block as necessary). It simplifies the branch within
347 /// the loop to an unconditional branch but doesn't remove it entirely. Further
348 /// cleanup can be done with some simplify-cfg like pass.
350 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
351 /// invalidated by this.
352 static bool unswitchTrivialBranch(Loop
&L
, BranchInst
&BI
, DominatorTree
&DT
,
353 LoopInfo
&LI
, ScalarEvolution
*SE
,
354 MemorySSAUpdater
*MSSAU
) {
355 assert(BI
.isConditional() && "Can only unswitch a conditional branch!");
356 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI
<< "\n");
358 // The loop invariant values that we want to unswitch.
359 TinyPtrVector
<Value
*> Invariants
;
361 // When true, we're fully unswitching the branch rather than just unswitching
362 // some input conditions to the branch.
363 bool FullUnswitch
= false;
365 if (L
.isLoopInvariant(BI
.getCondition())) {
366 Invariants
.push_back(BI
.getCondition());
369 if (auto *CondInst
= dyn_cast
<Instruction
>(BI
.getCondition()))
370 Invariants
= collectHomogenousInstGraphLoopInvariants(L
, *CondInst
, LI
);
371 if (Invariants
.empty())
372 // Couldn't find invariant inputs!
376 // Check that one of the branch's successors exits, and which one.
377 bool ExitDirection
= true;
378 int LoopExitSuccIdx
= 0;
379 auto *LoopExitBB
= BI
.getSuccessor(0);
380 if (L
.contains(LoopExitBB
)) {
381 ExitDirection
= false;
383 LoopExitBB
= BI
.getSuccessor(1);
384 if (L
.contains(LoopExitBB
))
387 auto *ContinueBB
= BI
.getSuccessor(1 - LoopExitSuccIdx
);
388 auto *ParentBB
= BI
.getParent();
389 if (!areLoopExitPHIsLoopInvariant(L
, *ParentBB
, *LoopExitBB
))
392 // When unswitching only part of the branch's condition, we need the exit
393 // block to be reached directly from the partially unswitched input. This can
394 // be done when the exit block is along the true edge and the branch condition
395 // is a graph of `or` operations, or the exit block is along the false edge
396 // and the condition is a graph of `and` operations.
399 if (cast
<Instruction
>(BI
.getCondition())->getOpcode() != Instruction::Or
)
402 if (cast
<Instruction
>(BI
.getCondition())->getOpcode() != Instruction::And
)
408 dbgs() << " unswitching trivial invariant conditions for: " << BI
410 for (Value
*Invariant
: Invariants
) {
411 dbgs() << " " << *Invariant
<< " == true";
412 if (Invariant
!= Invariants
.back())
418 // If we have scalar evolutions, we need to invalidate them including this
419 // loop and the loop containing the exit block.
421 if (Loop
*ExitL
= LI
.getLoopFor(LoopExitBB
))
422 SE
->forgetLoop(ExitL
);
424 // Forget the entire nest as this exits the entire nest.
425 SE
->forgetTopmostLoop(&L
);
428 if (MSSAU
&& VerifyMemorySSA
)
429 MSSAU
->getMemorySSA()->verifyMemorySSA();
431 // Split the preheader, so that we know that there is a safe place to insert
432 // the conditional branch. We will change the preheader to have a conditional
433 // branch on LoopCond.
434 BasicBlock
*OldPH
= L
.getLoopPreheader();
435 BasicBlock
*NewPH
= SplitEdge(OldPH
, L
.getHeader(), &DT
, &LI
, MSSAU
);
437 // Now that we have a place to insert the conditional branch, create a place
438 // to branch to: this is the exit block out of the loop that we are
439 // unswitching. We need to split this if there are other loop predecessors.
440 // Because the loop is in simplified form, *any* other predecessor is enough.
441 BasicBlock
*UnswitchedBB
;
442 if (FullUnswitch
&& LoopExitBB
->getUniquePredecessor()) {
443 assert(LoopExitBB
->getUniquePredecessor() == BI
.getParent() &&
444 "A branch's parent isn't a predecessor!");
445 UnswitchedBB
= LoopExitBB
;
448 SplitBlock(LoopExitBB
, &LoopExitBB
->front(), &DT
, &LI
, MSSAU
);
451 if (MSSAU
&& VerifyMemorySSA
)
452 MSSAU
->getMemorySSA()->verifyMemorySSA();
454 // Actually move the invariant uses into the unswitched position. If possible,
455 // we do this by moving the instructions, but when doing partial unswitching
456 // we do it by building a new merge of the values in the unswitched position.
457 OldPH
->getTerminator()->eraseFromParent();
459 // If fully unswitching, we can use the existing branch instruction.
460 // Splice it into the old PH to gate reaching the new preheader and re-point
462 OldPH
->getInstList().splice(OldPH
->end(), BI
.getParent()->getInstList(),
465 // Temporarily clone the terminator, to make MSSA update cheaper by
466 // separating "insert edge" updates from "remove edge" ones.
467 ParentBB
->getInstList().push_back(BI
.clone());
469 // Create a new unconditional branch that will continue the loop as a new
471 BranchInst::Create(ContinueBB
, ParentBB
);
473 BI
.setSuccessor(LoopExitSuccIdx
, UnswitchedBB
);
474 BI
.setSuccessor(1 - LoopExitSuccIdx
, NewPH
);
476 // Only unswitching a subset of inputs to the condition, so we will need to
477 // build a new branch that merges the invariant inputs.
479 assert(cast
<Instruction
>(BI
.getCondition())->getOpcode() ==
481 "Must have an `or` of `i1`s for the condition!");
483 assert(cast
<Instruction
>(BI
.getCondition())->getOpcode() ==
485 "Must have an `and` of `i1`s for the condition!");
486 buildPartialUnswitchConditionalBranch(*OldPH
, Invariants
, ExitDirection
,
487 *UnswitchedBB
, *NewPH
);
490 // Update the dominator tree with the added edge.
491 DT
.insertEdge(OldPH
, UnswitchedBB
);
493 // After the dominator tree was updated with the added edge, update MemorySSA
496 SmallVector
<CFGUpdate
, 1> Updates
;
497 Updates
.push_back({cfg::UpdateKind::Insert
, OldPH
, UnswitchedBB
});
498 MSSAU
->applyInsertUpdates(Updates
, DT
);
501 // Finish updating dominator tree and memory ssa for full unswitch.
504 // Remove the cloned branch instruction.
505 ParentBB
->getTerminator()->eraseFromParent();
506 // Create unconditional branch now.
507 BranchInst::Create(ContinueBB
, ParentBB
);
508 MSSAU
->removeEdge(ParentBB
, LoopExitBB
);
510 DT
.deleteEdge(ParentBB
, LoopExitBB
);
513 if (MSSAU
&& VerifyMemorySSA
)
514 MSSAU
->getMemorySSA()->verifyMemorySSA();
516 // Rewrite the relevant PHI nodes.
517 if (UnswitchedBB
== LoopExitBB
)
518 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB
, *ParentBB
, *OldPH
);
520 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB
, *UnswitchedBB
,
521 *ParentBB
, *OldPH
, FullUnswitch
);
523 // The constant we can replace all of our invariants with inside the loop
524 // body. If any of the invariants have a value other than this the loop won't
526 ConstantInt
*Replacement
= ExitDirection
527 ? ConstantInt::getFalse(BI
.getContext())
528 : ConstantInt::getTrue(BI
.getContext());
530 // Since this is an i1 condition we can also trivially replace uses of it
531 // within the loop with a constant.
532 for (Value
*Invariant
: Invariants
)
533 replaceLoopInvariantUses(L
, Invariant
, *Replacement
);
535 // If this was full unswitching, we may have changed the nesting relationship
536 // for this loop so hoist it to its correct parent if needed.
538 hoistLoopToNewParent(L
, *NewPH
, DT
, LI
);
540 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
546 /// Unswitch a trivial switch if the condition is loop invariant.
548 /// This routine should only be called when loop code leading to the switch has
549 /// been validated as trivial (no side effects). This routine checks if the
550 /// condition is invariant and that at least one of the successors is a loop
551 /// exit. This allows us to unswitch without duplicating the loop, making it
554 /// If this routine fails to unswitch the switch it returns false.
556 /// If the switch can be unswitched, this routine splits the preheader and
557 /// copies the switch above that split. If the default case is one of the
558 /// exiting cases, it copies the non-exiting cases and points them at the new
559 /// preheader. If the default case is not exiting, it copies the exiting cases
560 /// and points the default at the preheader. It preserves loop simplified form
561 /// (splitting the exit blocks as necessary). It simplifies the switch within
562 /// the loop by removing now-dead cases. If the default case is one of those
563 /// unswitched, it replaces its destination with a new basic block containing
564 /// only unreachable. Such basic blocks, while technically loop exits, are not
565 /// considered for unswitching so this is a stable transform and the same
566 /// switch will not be revisited. If after unswitching there is only a single
567 /// in-loop successor, the switch is further simplified to an unconditional
568 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
570 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
571 /// invalidated by this.
572 static bool unswitchTrivialSwitch(Loop
&L
, SwitchInst
&SI
, DominatorTree
&DT
,
573 LoopInfo
&LI
, ScalarEvolution
*SE
,
574 MemorySSAUpdater
*MSSAU
) {
575 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI
<< "\n");
576 Value
*LoopCond
= SI
.getCondition();
578 // If this isn't switching on an invariant condition, we can't unswitch it.
579 if (!L
.isLoopInvariant(LoopCond
))
582 auto *ParentBB
= SI
.getParent();
584 SmallVector
<int, 4> ExitCaseIndices
;
585 for (auto Case
: SI
.cases()) {
586 auto *SuccBB
= Case
.getCaseSuccessor();
587 if (!L
.contains(SuccBB
) &&
588 areLoopExitPHIsLoopInvariant(L
, *ParentBB
, *SuccBB
))
589 ExitCaseIndices
.push_back(Case
.getCaseIndex());
591 BasicBlock
*DefaultExitBB
= nullptr;
592 if (!L
.contains(SI
.getDefaultDest()) &&
593 areLoopExitPHIsLoopInvariant(L
, *ParentBB
, *SI
.getDefaultDest()) &&
594 !isa
<UnreachableInst
>(SI
.getDefaultDest()->getTerminator()))
595 DefaultExitBB
= SI
.getDefaultDest();
596 else if (ExitCaseIndices
.empty())
599 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
601 if (MSSAU
&& VerifyMemorySSA
)
602 MSSAU
->getMemorySSA()->verifyMemorySSA();
604 // We may need to invalidate SCEVs for the outermost loop reached by any of
609 // Clear out the default destination temporarily to allow accurate
610 // predecessor lists to be examined below.
611 SI
.setDefaultDest(nullptr);
612 // Check the loop containing this exit.
613 Loop
*ExitL
= LI
.getLoopFor(DefaultExitBB
);
614 if (!ExitL
|| ExitL
->contains(OuterL
))
618 // Store the exit cases into a separate data structure and remove them from
620 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 4> ExitCases
;
621 ExitCases
.reserve(ExitCaseIndices
.size());
622 // We walk the case indices backwards so that we remove the last case first
623 // and don't disrupt the earlier indices.
624 for (unsigned Index
: reverse(ExitCaseIndices
)) {
625 auto CaseI
= SI
.case_begin() + Index
;
626 // Compute the outer loop from this exit.
627 Loop
*ExitL
= LI
.getLoopFor(CaseI
->getCaseSuccessor());
628 if (!ExitL
|| ExitL
->contains(OuterL
))
630 // Save the value of this case.
631 ExitCases
.push_back({CaseI
->getCaseValue(), CaseI
->getCaseSuccessor()});
632 // Delete the unswitched cases.
633 SI
.removeCase(CaseI
);
638 SE
->forgetLoop(OuterL
);
640 SE
->forgetTopmostLoop(&L
);
643 // Check if after this all of the remaining cases point at the same
645 BasicBlock
*CommonSuccBB
= nullptr;
646 if (SI
.getNumCases() > 0 &&
647 std::all_of(std::next(SI
.case_begin()), SI
.case_end(),
648 [&SI
](const SwitchInst::CaseHandle
&Case
) {
649 return Case
.getCaseSuccessor() ==
650 SI
.case_begin()->getCaseSuccessor();
652 CommonSuccBB
= SI
.case_begin()->getCaseSuccessor();
653 if (!DefaultExitBB
) {
654 // If we're not unswitching the default, we need it to match any cases to
655 // have a common successor or if we have no cases it is the common
657 if (SI
.getNumCases() == 0)
658 CommonSuccBB
= SI
.getDefaultDest();
659 else if (SI
.getDefaultDest() != CommonSuccBB
)
660 CommonSuccBB
= nullptr;
663 // Split the preheader, so that we know that there is a safe place to insert
665 BasicBlock
*OldPH
= L
.getLoopPreheader();
666 BasicBlock
*NewPH
= SplitEdge(OldPH
, L
.getHeader(), &DT
, &LI
, MSSAU
);
667 OldPH
->getTerminator()->eraseFromParent();
669 // Now add the unswitched switch.
670 auto *NewSI
= SwitchInst::Create(LoopCond
, NewPH
, ExitCases
.size(), OldPH
);
672 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
673 // First, we split any exit blocks with remaining in-loop predecessors. Then
674 // we update the PHIs in one of two ways depending on if there was a split.
675 // We walk in reverse so that we split in the same order as the cases
676 // appeared. This is purely for convenience of reading the resulting IR, but
677 // it doesn't cost anything really.
678 SmallPtrSet
<BasicBlock
*, 2> UnswitchedExitBBs
;
679 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 2> SplitExitBBMap
;
680 // Handle the default exit if necessary.
681 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
682 // ranges aren't quite powerful enough yet.
684 if (pred_empty(DefaultExitBB
)) {
685 UnswitchedExitBBs
.insert(DefaultExitBB
);
686 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB
, *ParentBB
, *OldPH
);
689 SplitBlock(DefaultExitBB
, &DefaultExitBB
->front(), &DT
, &LI
, MSSAU
);
690 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB
, *SplitBB
,
692 /*FullUnswitch*/ true);
693 DefaultExitBB
= SplitExitBBMap
[DefaultExitBB
] = SplitBB
;
696 // Note that we must use a reference in the for loop so that we update the
698 for (auto &CasePair
: reverse(ExitCases
)) {
699 // Grab a reference to the exit block in the pair so that we can update it.
700 BasicBlock
*ExitBB
= CasePair
.second
;
702 // If this case is the last edge into the exit block, we can simply reuse it
703 // as it will no longer be a loop exit. No mapping necessary.
704 if (pred_empty(ExitBB
)) {
705 // Only rewrite once.
706 if (UnswitchedExitBBs
.insert(ExitBB
).second
)
707 rewritePHINodesForUnswitchedExitBlock(*ExitBB
, *ParentBB
, *OldPH
);
711 // Otherwise we need to split the exit block so that we retain an exit
712 // block from the loop and a target for the unswitched condition.
713 BasicBlock
*&SplitExitBB
= SplitExitBBMap
[ExitBB
];
715 // If this is the first time we see this, do the split and remember it.
716 SplitExitBB
= SplitBlock(ExitBB
, &ExitBB
->front(), &DT
, &LI
, MSSAU
);
717 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB
, *SplitExitBB
,
719 /*FullUnswitch*/ true);
721 // Update the case pair to point to the split block.
722 CasePair
.second
= SplitExitBB
;
725 // Now add the unswitched cases. We do this in reverse order as we built them
727 for (auto CasePair
: reverse(ExitCases
)) {
728 ConstantInt
*CaseVal
= CasePair
.first
;
729 BasicBlock
*UnswitchedBB
= CasePair
.second
;
731 NewSI
->addCase(CaseVal
, UnswitchedBB
);
734 // If the default was unswitched, re-point it and add explicit cases for
735 // entering the loop.
737 NewSI
->setDefaultDest(DefaultExitBB
);
739 // We removed all the exit cases, so we just copy the cases to the
740 // unswitched switch.
741 for (auto Case
: SI
.cases())
742 NewSI
->addCase(Case
.getCaseValue(), NewPH
);
745 // If we ended up with a common successor for every path through the switch
746 // after unswitching, rewrite it to an unconditional branch to make it easy
747 // to recognize. Otherwise we potentially have to recognize the default case
748 // pointing at unreachable and other complexity.
750 BasicBlock
*BB
= SI
.getParent();
751 // We may have had multiple edges to this common successor block, so remove
752 // them as predecessors. We skip the first one, either the default or the
753 // actual first case.
754 bool SkippedFirst
= DefaultExitBB
== nullptr;
755 for (auto Case
: SI
.cases()) {
756 assert(Case
.getCaseSuccessor() == CommonSuccBB
&&
757 "Non-common successor!");
763 CommonSuccBB
->removePredecessor(BB
,
764 /*KeepOneInputPHIs*/ true);
766 // Now nuke the switch and replace it with a direct branch.
767 SI
.eraseFromParent();
768 BranchInst::Create(CommonSuccBB
, BB
);
769 } else if (DefaultExitBB
) {
770 assert(SI
.getNumCases() > 0 &&
771 "If we had no cases we'd have a common successor!");
772 // Move the last case to the default successor. This is valid as if the
773 // default got unswitched it cannot be reached. This has the advantage of
774 // being simple and keeping the number of edges from this switch to
775 // successors the same, and avoiding any PHI update complexity.
776 auto LastCaseI
= std::prev(SI
.case_end());
777 SI
.setDefaultDest(LastCaseI
->getCaseSuccessor());
778 SI
.removeCase(LastCaseI
);
781 // Walk the unswitched exit blocks and the unswitched split blocks and update
782 // the dominator tree based on the CFG edits. While we are walking unordered
783 // containers here, the API for applyUpdates takes an unordered list of
784 // updates and requires them to not contain duplicates.
785 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
786 for (auto *UnswitchedExitBB
: UnswitchedExitBBs
) {
787 DTUpdates
.push_back({DT
.Delete
, ParentBB
, UnswitchedExitBB
});
788 DTUpdates
.push_back({DT
.Insert
, OldPH
, UnswitchedExitBB
});
790 for (auto SplitUnswitchedPair
: SplitExitBBMap
) {
791 auto *UnswitchedBB
= SplitUnswitchedPair
.second
;
792 DTUpdates
.push_back({DT
.Delete
, ParentBB
, UnswitchedBB
});
793 DTUpdates
.push_back({DT
.Insert
, OldPH
, UnswitchedBB
});
795 DT
.applyUpdates(DTUpdates
);
798 MSSAU
->applyUpdates(DTUpdates
, DT
);
800 MSSAU
->getMemorySSA()->verifyMemorySSA();
803 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
805 // We may have changed the nesting relationship for this loop so hoist it to
806 // its correct parent if needed.
807 hoistLoopToNewParent(L
, *NewPH
, DT
, LI
);
811 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
815 /// This routine scans the loop to find a branch or switch which occurs before
816 /// any side effects occur. These can potentially be unswitched without
817 /// duplicating the loop. If a branch or switch is successfully unswitched the
818 /// scanning continues to see if subsequent branches or switches have become
819 /// trivial. Once all trivial candidates have been unswitched, this routine
822 /// The return value indicates whether anything was unswitched (and therefore
825 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
826 /// invalidated by this.
827 static bool unswitchAllTrivialConditions(Loop
&L
, DominatorTree
&DT
,
828 LoopInfo
&LI
, ScalarEvolution
*SE
,
829 MemorySSAUpdater
*MSSAU
) {
830 bool Changed
= false;
832 // If loop header has only one reachable successor we should keep looking for
833 // trivial condition candidates in the successor as well. An alternative is
834 // to constant fold conditions and merge successors into loop header (then we
835 // only need to check header's terminator). The reason for not doing this in
836 // LoopUnswitch pass is that it could potentially break LoopPassManager's
837 // invariants. Folding dead branches could either eliminate the current loop
838 // or make other loops unreachable. LCSSA form might also not be preserved
839 // after deleting branches. The following code keeps traversing loop header's
840 // successors until it finds the trivial condition candidate (condition that
841 // is not a constant). Since unswitching generates branches with constant
842 // conditions, this scenario could be very common in practice.
843 BasicBlock
*CurrentBB
= L
.getHeader();
844 SmallPtrSet
<BasicBlock
*, 8> Visited
;
845 Visited
.insert(CurrentBB
);
847 // Check if there are any side-effecting instructions (e.g. stores, calls,
848 // volatile loads) in the part of the loop that the code *would* execute
849 // without unswitching.
850 if (MSSAU
) // Possible early exit with MSSA
851 if (auto *Defs
= MSSAU
->getMemorySSA()->getBlockDefs(CurrentBB
))
852 if (!isa
<MemoryPhi
>(*Defs
->begin()) || (++Defs
->begin() != Defs
->end()))
854 if (llvm::any_of(*CurrentBB
,
855 [](Instruction
&I
) { return I
.mayHaveSideEffects(); }))
858 Instruction
*CurrentTerm
= CurrentBB
->getTerminator();
860 if (auto *SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
861 // Don't bother trying to unswitch past a switch with a constant
862 // condition. This should be removed prior to running this pass by
864 if (isa
<Constant
>(SI
->getCondition()))
867 if (!unswitchTrivialSwitch(L
, *SI
, DT
, LI
, SE
, MSSAU
))
868 // Couldn't unswitch this one so we're done.
871 // Mark that we managed to unswitch something.
874 // If unswitching turned the terminator into an unconditional branch then
875 // we can continue. The unswitching logic specifically works to fold any
876 // cases it can into an unconditional branch to make it easier to
878 auto *BI
= dyn_cast
<BranchInst
>(CurrentBB
->getTerminator());
879 if (!BI
|| BI
->isConditional())
882 CurrentBB
= BI
->getSuccessor(0);
886 auto *BI
= dyn_cast
<BranchInst
>(CurrentTerm
);
888 // We do not understand other terminator instructions.
891 // Don't bother trying to unswitch past an unconditional branch or a branch
892 // with a constant value. These should be removed by simplify-cfg prior to
893 // running this pass.
894 if (!BI
->isConditional() || isa
<Constant
>(BI
->getCondition()))
897 // Found a trivial condition candidate: non-foldable conditional branch. If
898 // we fail to unswitch this, we can't do anything else that is trivial.
899 if (!unswitchTrivialBranch(L
, *BI
, DT
, LI
, SE
, MSSAU
))
902 // Mark that we managed to unswitch something.
905 // If we only unswitched some of the conditions feeding the branch, we won't
906 // have collapsed it to a single successor.
907 BI
= cast
<BranchInst
>(CurrentBB
->getTerminator());
908 if (BI
->isConditional())
911 // Follow the newly unconditional branch into its successor.
912 CurrentBB
= BI
->getSuccessor(0);
914 // When continuing, if we exit the loop or reach a previous visited block,
915 // then we can not reach any trivial condition candidates (unfoldable
916 // branch instructions or switch instructions) and no unswitch can happen.
917 } while (L
.contains(CurrentBB
) && Visited
.insert(CurrentBB
).second
);
922 /// Build the cloned blocks for an unswitched copy of the given loop.
924 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
925 /// after the split block (`SplitBB`) that will be used to select between the
926 /// cloned and original loop.
928 /// This routine handles cloning all of the necessary loop blocks and exit
929 /// blocks including rewriting their instructions and the relevant PHI nodes.
930 /// Any loop blocks or exit blocks which are dominated by a different successor
931 /// than the one for this clone of the loop blocks can be trivially skipped. We
932 /// use the `DominatingSucc` map to determine whether a block satisfies that
933 /// property with a simple map lookup.
935 /// It also correctly creates the unconditional branch in the cloned
936 /// unswitched parent block to only point at the unswitched successor.
938 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
939 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
940 /// the cloned blocks (and their loops) are left without full `LoopInfo`
941 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
942 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
943 /// instead the caller must recompute an accurate DT. It *does* correctly
944 /// update the `AssumptionCache` provided in `AC`.
945 static BasicBlock
*buildClonedLoopBlocks(
946 Loop
&L
, BasicBlock
*LoopPH
, BasicBlock
*SplitBB
,
947 ArrayRef
<BasicBlock
*> ExitBlocks
, BasicBlock
*ParentBB
,
948 BasicBlock
*UnswitchedSuccBB
, BasicBlock
*ContinueSuccBB
,
949 const SmallDenseMap
<BasicBlock
*, BasicBlock
*, 16> &DominatingSucc
,
950 ValueToValueMapTy
&VMap
,
951 SmallVectorImpl
<DominatorTree::UpdateType
> &DTUpdates
, AssumptionCache
&AC
,
952 DominatorTree
&DT
, LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
953 SmallVector
<BasicBlock
*, 4> NewBlocks
;
954 NewBlocks
.reserve(L
.getNumBlocks() + ExitBlocks
.size());
956 // We will need to clone a bunch of blocks, wrap up the clone operation in
958 auto CloneBlock
= [&](BasicBlock
*OldBB
) {
959 // Clone the basic block and insert it before the new preheader.
960 BasicBlock
*NewBB
= CloneBasicBlock(OldBB
, VMap
, ".us", OldBB
->getParent());
961 NewBB
->moveBefore(LoopPH
);
963 // Record this block and the mapping.
964 NewBlocks
.push_back(NewBB
);
970 // We skip cloning blocks when they have a dominating succ that is not the
971 // succ we are cloning for.
972 auto SkipBlock
= [&](BasicBlock
*BB
) {
973 auto It
= DominatingSucc
.find(BB
);
974 return It
!= DominatingSucc
.end() && It
->second
!= UnswitchedSuccBB
;
977 // First, clone the preheader.
978 auto *ClonedPH
= CloneBlock(LoopPH
);
980 // Then clone all the loop blocks, skipping the ones that aren't necessary.
981 for (auto *LoopBB
: L
.blocks())
982 if (!SkipBlock(LoopBB
))
985 // Split all the loop exit edges so that when we clone the exit blocks, if
986 // any of the exit blocks are *also* a preheader for some other loop, we
987 // don't create multiple predecessors entering the loop header.
988 for (auto *ExitBB
: ExitBlocks
) {
989 if (SkipBlock(ExitBB
))
992 // When we are going to clone an exit, we don't need to clone all the
993 // instructions in the exit block and we want to ensure we have an easy
994 // place to merge the CFG, so split the exit first. This is always safe to
995 // do because there cannot be any non-loop predecessors of a loop exit in
996 // loop simplified form.
997 auto *MergeBB
= SplitBlock(ExitBB
, &ExitBB
->front(), &DT
, &LI
, MSSAU
);
999 // Rearrange the names to make it easier to write test cases by having the
1000 // exit block carry the suffix rather than the merge block carrying the
1002 MergeBB
->takeName(ExitBB
);
1003 ExitBB
->setName(Twine(MergeBB
->getName()) + ".split");
1005 // Now clone the original exit block.
1006 auto *ClonedExitBB
= CloneBlock(ExitBB
);
1007 assert(ClonedExitBB
->getTerminator()->getNumSuccessors() == 1 &&
1008 "Exit block should have been split to have one successor!");
1009 assert(ClonedExitBB
->getTerminator()->getSuccessor(0) == MergeBB
&&
1010 "Cloned exit block has the wrong successor!");
1012 // Remap any cloned instructions and create a merge phi node for them.
1013 for (auto ZippedInsts
: llvm::zip_first(
1014 llvm::make_range(ExitBB
->begin(), std::prev(ExitBB
->end())),
1015 llvm::make_range(ClonedExitBB
->begin(),
1016 std::prev(ClonedExitBB
->end())))) {
1017 Instruction
&I
= std::get
<0>(ZippedInsts
);
1018 Instruction
&ClonedI
= std::get
<1>(ZippedInsts
);
1020 // The only instructions in the exit block should be PHI nodes and
1021 // potentially a landing pad.
1023 (isa
<PHINode
>(I
) || isa
<LandingPadInst
>(I
) || isa
<CatchPadInst
>(I
)) &&
1024 "Bad instruction in exit block!");
1025 // We should have a value map between the instruction and its clone.
1026 assert(VMap
.lookup(&I
) == &ClonedI
&& "Mismatch in the value map!");
1029 PHINode::Create(I
.getType(), /*NumReservedValues*/ 2, ".us-phi",
1030 &*MergeBB
->getFirstInsertionPt());
1031 I
.replaceAllUsesWith(MergePN
);
1032 MergePN
->addIncoming(&I
, ExitBB
);
1033 MergePN
->addIncoming(&ClonedI
, ClonedExitBB
);
1037 // Rewrite the instructions in the cloned blocks to refer to the instructions
1038 // in the cloned blocks. We have to do this as a second pass so that we have
1039 // everything available. Also, we have inserted new instructions which may
1040 // include assume intrinsics, so we update the assumption cache while
1042 for (auto *ClonedBB
: NewBlocks
)
1043 for (Instruction
&I
: *ClonedBB
) {
1044 RemapInstruction(&I
, VMap
,
1045 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1046 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
1047 if (II
->getIntrinsicID() == Intrinsic::assume
)
1048 AC
.registerAssumption(II
);
1051 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1052 // have spurious incoming values.
1053 for (auto *LoopBB
: L
.blocks())
1054 if (SkipBlock(LoopBB
))
1055 for (auto *SuccBB
: successors(LoopBB
))
1056 if (auto *ClonedSuccBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(SuccBB
)))
1057 for (PHINode
&PN
: ClonedSuccBB
->phis())
1058 PN
.removeIncomingValue(LoopBB
, /*DeletePHIIfEmpty*/ false);
1060 // Remove the cloned parent as a predecessor of any successor we ended up
1061 // cloning other than the unswitched one.
1062 auto *ClonedParentBB
= cast
<BasicBlock
>(VMap
.lookup(ParentBB
));
1063 for (auto *SuccBB
: successors(ParentBB
)) {
1064 if (SuccBB
== UnswitchedSuccBB
)
1067 auto *ClonedSuccBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(SuccBB
));
1071 ClonedSuccBB
->removePredecessor(ClonedParentBB
,
1072 /*KeepOneInputPHIs*/ true);
1075 // Replace the cloned branch with an unconditional branch to the cloned
1076 // unswitched successor.
1077 auto *ClonedSuccBB
= cast
<BasicBlock
>(VMap
.lookup(UnswitchedSuccBB
));
1078 ClonedParentBB
->getTerminator()->eraseFromParent();
1079 BranchInst::Create(ClonedSuccBB
, ClonedParentBB
);
1081 // If there are duplicate entries in the PHI nodes because of multiple edges
1082 // to the unswitched successor, we need to nuke all but one as we replaced it
1083 // with a direct branch.
1084 for (PHINode
&PN
: ClonedSuccBB
->phis()) {
1086 // Loop over the incoming operands backwards so we can easily delete as we
1087 // go without invalidating the index.
1088 for (int i
= PN
.getNumOperands() - 1; i
>= 0; --i
) {
1089 if (PN
.getIncomingBlock(i
) != ClonedParentBB
)
1095 PN
.removeIncomingValue(i
, /*DeletePHIIfEmpty*/ false);
1099 // Record the domtree updates for the new blocks.
1100 SmallPtrSet
<BasicBlock
*, 4> SuccSet
;
1101 for (auto *ClonedBB
: NewBlocks
) {
1102 for (auto *SuccBB
: successors(ClonedBB
))
1103 if (SuccSet
.insert(SuccBB
).second
)
1104 DTUpdates
.push_back({DominatorTree::Insert
, ClonedBB
, SuccBB
});
1111 /// Recursively clone the specified loop and all of its children.
1113 /// The target parent loop for the clone should be provided, or can be null if
1114 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1115 /// with the provided value map. The entire original loop must be present in
1116 /// the value map. The cloned loop is returned.
1117 static Loop
*cloneLoopNest(Loop
&OrigRootL
, Loop
*RootParentL
,
1118 const ValueToValueMapTy
&VMap
, LoopInfo
&LI
) {
1119 auto AddClonedBlocksToLoop
= [&](Loop
&OrigL
, Loop
&ClonedL
) {
1120 assert(ClonedL
.getBlocks().empty() && "Must start with an empty loop!");
1121 ClonedL
.reserveBlocks(OrigL
.getNumBlocks());
1122 for (auto *BB
: OrigL
.blocks()) {
1123 auto *ClonedBB
= cast
<BasicBlock
>(VMap
.lookup(BB
));
1124 ClonedL
.addBlockEntry(ClonedBB
);
1125 if (LI
.getLoopFor(BB
) == &OrigL
)
1126 LI
.changeLoopFor(ClonedBB
, &ClonedL
);
1130 // We specially handle the first loop because it may get cloned into
1131 // a different parent and because we most commonly are cloning leaf loops.
1132 Loop
*ClonedRootL
= LI
.AllocateLoop();
1134 RootParentL
->addChildLoop(ClonedRootL
);
1136 LI
.addTopLevelLoop(ClonedRootL
);
1137 AddClonedBlocksToLoop(OrigRootL
, *ClonedRootL
);
1139 if (OrigRootL
.empty())
1142 // If we have a nest, we can quickly clone the entire loop nest using an
1143 // iterative approach because it is a tree. We keep the cloned parent in the
1144 // data structure to avoid repeatedly querying through a map to find it.
1145 SmallVector
<std::pair
<Loop
*, Loop
*>, 16> LoopsToClone
;
1146 // Build up the loops to clone in reverse order as we'll clone them from the
1148 for (Loop
*ChildL
: llvm::reverse(OrigRootL
))
1149 LoopsToClone
.push_back({ClonedRootL
, ChildL
});
1151 Loop
*ClonedParentL
, *L
;
1152 std::tie(ClonedParentL
, L
) = LoopsToClone
.pop_back_val();
1153 Loop
*ClonedL
= LI
.AllocateLoop();
1154 ClonedParentL
->addChildLoop(ClonedL
);
1155 AddClonedBlocksToLoop(*L
, *ClonedL
);
1156 for (Loop
*ChildL
: llvm::reverse(*L
))
1157 LoopsToClone
.push_back({ClonedL
, ChildL
});
1158 } while (!LoopsToClone
.empty());
1163 /// Build the cloned loops of an original loop from unswitching.
1165 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1166 /// operation. We need to re-verify that there even is a loop (as the backedge
1167 /// may not have been cloned), and even if there are remaining backedges the
1168 /// backedge set may be different. However, we know that each child loop is
1169 /// undisturbed, we only need to find where to place each child loop within
1170 /// either any parent loop or within a cloned version of the original loop.
1172 /// Because child loops may end up cloned outside of any cloned version of the
1173 /// original loop, multiple cloned sibling loops may be created. All of them
1174 /// are returned so that the newly introduced loop nest roots can be
1176 static void buildClonedLoops(Loop
&OrigL
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1177 const ValueToValueMapTy
&VMap
, LoopInfo
&LI
,
1178 SmallVectorImpl
<Loop
*> &NonChildClonedLoops
) {
1179 Loop
*ClonedL
= nullptr;
1181 auto *OrigPH
= OrigL
.getLoopPreheader();
1182 auto *OrigHeader
= OrigL
.getHeader();
1184 auto *ClonedPH
= cast
<BasicBlock
>(VMap
.lookup(OrigPH
));
1185 auto *ClonedHeader
= cast
<BasicBlock
>(VMap
.lookup(OrigHeader
));
1187 // We need to know the loops of the cloned exit blocks to even compute the
1188 // accurate parent loop. If we only clone exits to some parent of the
1189 // original parent, we want to clone into that outer loop. We also keep track
1190 // of the loops that our cloned exit blocks participate in.
1191 Loop
*ParentL
= nullptr;
1192 SmallVector
<BasicBlock
*, 4> ClonedExitsInLoops
;
1193 SmallDenseMap
<BasicBlock
*, Loop
*, 16> ExitLoopMap
;
1194 ClonedExitsInLoops
.reserve(ExitBlocks
.size());
1195 for (auto *ExitBB
: ExitBlocks
)
1196 if (auto *ClonedExitBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(ExitBB
)))
1197 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
)) {
1198 ExitLoopMap
[ClonedExitBB
] = ExitL
;
1199 ClonedExitsInLoops
.push_back(ClonedExitBB
);
1200 if (!ParentL
|| (ParentL
!= ExitL
&& ParentL
->contains(ExitL
)))
1203 assert((!ParentL
|| ParentL
== OrigL
.getParentLoop() ||
1204 ParentL
->contains(OrigL
.getParentLoop())) &&
1205 "The computed parent loop should always contain (or be) the parent of "
1206 "the original loop.");
1208 // We build the set of blocks dominated by the cloned header from the set of
1209 // cloned blocks out of the original loop. While not all of these will
1210 // necessarily be in the cloned loop, it is enough to establish that they
1211 // aren't in unreachable cycles, etc.
1212 SmallSetVector
<BasicBlock
*, 16> ClonedLoopBlocks
;
1213 for (auto *BB
: OrigL
.blocks())
1214 if (auto *ClonedBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
)))
1215 ClonedLoopBlocks
.insert(ClonedBB
);
1217 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1218 // skipped cloning some region of this loop which can in turn skip some of
1219 // the backedges so we have to rebuild the blocks in the loop based on the
1220 // backedges that remain after cloning.
1221 SmallVector
<BasicBlock
*, 16> Worklist
;
1222 SmallPtrSet
<BasicBlock
*, 16> BlocksInClonedLoop
;
1223 for (auto *Pred
: predecessors(ClonedHeader
)) {
1224 // The only possible non-loop header predecessor is the preheader because
1225 // we know we cloned the loop in simplified form.
1226 if (Pred
== ClonedPH
)
1229 // Because the loop was in simplified form, the only non-loop predecessor
1230 // should be the preheader.
1231 assert(ClonedLoopBlocks
.count(Pred
) && "Found a predecessor of the loop "
1232 "header other than the preheader "
1233 "that is not part of the loop!");
1235 // Insert this block into the loop set and on the first visit (and if it
1236 // isn't the header we're currently walking) put it into the worklist to
1238 if (BlocksInClonedLoop
.insert(Pred
).second
&& Pred
!= ClonedHeader
)
1239 Worklist
.push_back(Pred
);
1242 // If we had any backedges then there *is* a cloned loop. Put the header into
1243 // the loop set and then walk the worklist backwards to find all the blocks
1244 // that remain within the loop after cloning.
1245 if (!BlocksInClonedLoop
.empty()) {
1246 BlocksInClonedLoop
.insert(ClonedHeader
);
1248 while (!Worklist
.empty()) {
1249 BasicBlock
*BB
= Worklist
.pop_back_val();
1250 assert(BlocksInClonedLoop
.count(BB
) &&
1251 "Didn't put block into the loop set!");
1253 // Insert any predecessors that are in the possible set into the cloned
1254 // set, and if the insert is successful, add them to the worklist. Note
1255 // that we filter on the blocks that are definitely reachable via the
1256 // backedge to the loop header so we may prune out dead code within the
1258 for (auto *Pred
: predecessors(BB
))
1259 if (ClonedLoopBlocks
.count(Pred
) &&
1260 BlocksInClonedLoop
.insert(Pred
).second
)
1261 Worklist
.push_back(Pred
);
1264 ClonedL
= LI
.AllocateLoop();
1266 ParentL
->addBasicBlockToLoop(ClonedPH
, LI
);
1267 ParentL
->addChildLoop(ClonedL
);
1269 LI
.addTopLevelLoop(ClonedL
);
1271 NonChildClonedLoops
.push_back(ClonedL
);
1273 ClonedL
->reserveBlocks(BlocksInClonedLoop
.size());
1274 // We don't want to just add the cloned loop blocks based on how we
1275 // discovered them. The original order of blocks was carefully built in
1276 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1277 // that logic, we just re-walk the original blocks (and those of the child
1278 // loops) and filter them as we add them into the cloned loop.
1279 for (auto *BB
: OrigL
.blocks()) {
1280 auto *ClonedBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
));
1281 if (!ClonedBB
|| !BlocksInClonedLoop
.count(ClonedBB
))
1284 // Directly add the blocks that are only in this loop.
1285 if (LI
.getLoopFor(BB
) == &OrigL
) {
1286 ClonedL
->addBasicBlockToLoop(ClonedBB
, LI
);
1290 // We want to manually add it to this loop and parents.
1291 // Registering it with LoopInfo will happen when we clone the top
1292 // loop for this block.
1293 for (Loop
*PL
= ClonedL
; PL
; PL
= PL
->getParentLoop())
1294 PL
->addBlockEntry(ClonedBB
);
1297 // Now add each child loop whose header remains within the cloned loop. All
1298 // of the blocks within the loop must satisfy the same constraints as the
1299 // header so once we pass the header checks we can just clone the entire
1301 for (Loop
*ChildL
: OrigL
) {
1302 auto *ClonedChildHeader
=
1303 cast_or_null
<BasicBlock
>(VMap
.lookup(ChildL
->getHeader()));
1304 if (!ClonedChildHeader
|| !BlocksInClonedLoop
.count(ClonedChildHeader
))
1308 // We should never have a cloned child loop header but fail to have
1309 // all of the blocks for that child loop.
1310 for (auto *ChildLoopBB
: ChildL
->blocks())
1311 assert(BlocksInClonedLoop
.count(
1312 cast
<BasicBlock
>(VMap
.lookup(ChildLoopBB
))) &&
1313 "Child cloned loop has a header within the cloned outer "
1314 "loop but not all of its blocks!");
1317 cloneLoopNest(*ChildL
, ClonedL
, VMap
, LI
);
1321 // Now that we've handled all the components of the original loop that were
1322 // cloned into a new loop, we still need to handle anything from the original
1323 // loop that wasn't in a cloned loop.
1325 // Figure out what blocks are left to place within any loop nest containing
1326 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1328 SmallPtrSet
<BasicBlock
*, 16> UnloopedBlockSet
;
1329 if (BlocksInClonedLoop
.empty())
1330 UnloopedBlockSet
.insert(ClonedPH
);
1331 for (auto *ClonedBB
: ClonedLoopBlocks
)
1332 if (!BlocksInClonedLoop
.count(ClonedBB
))
1333 UnloopedBlockSet
.insert(ClonedBB
);
1335 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1336 // backwards across these to process them inside out. The order shouldn't
1337 // matter as we're just trying to build up the map from inside-out; we use
1338 // the map in a more stably ordered way below.
1339 auto OrderedClonedExitsInLoops
= ClonedExitsInLoops
;
1340 llvm::sort(OrderedClonedExitsInLoops
, [&](BasicBlock
*LHS
, BasicBlock
*RHS
) {
1341 return ExitLoopMap
.lookup(LHS
)->getLoopDepth() <
1342 ExitLoopMap
.lookup(RHS
)->getLoopDepth();
1345 // Populate the existing ExitLoopMap with everything reachable from each
1346 // exit, starting from the inner most exit.
1347 while (!UnloopedBlockSet
.empty() && !OrderedClonedExitsInLoops
.empty()) {
1348 assert(Worklist
.empty() && "Didn't clear worklist!");
1350 BasicBlock
*ExitBB
= OrderedClonedExitsInLoops
.pop_back_val();
1351 Loop
*ExitL
= ExitLoopMap
.lookup(ExitBB
);
1353 // Walk the CFG back until we hit the cloned PH adding everything reachable
1354 // and in the unlooped set to this exit block's loop.
1355 Worklist
.push_back(ExitBB
);
1357 BasicBlock
*BB
= Worklist
.pop_back_val();
1358 // We can stop recursing at the cloned preheader (if we get there).
1362 for (BasicBlock
*PredBB
: predecessors(BB
)) {
1363 // If this pred has already been moved to our set or is part of some
1364 // (inner) loop, no update needed.
1365 if (!UnloopedBlockSet
.erase(PredBB
)) {
1367 (BlocksInClonedLoop
.count(PredBB
) || ExitLoopMap
.count(PredBB
)) &&
1368 "Predecessor not mapped to a loop!");
1372 // We just insert into the loop set here. We'll add these blocks to the
1373 // exit loop after we build up the set in an order that doesn't rely on
1374 // predecessor order (which in turn relies on use list order).
1375 bool Inserted
= ExitLoopMap
.insert({PredBB
, ExitL
}).second
;
1377 assert(Inserted
&& "Should only visit an unlooped block once!");
1379 // And recurse through to its predecessors.
1380 Worklist
.push_back(PredBB
);
1382 } while (!Worklist
.empty());
1385 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1386 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1387 // in their original order adding them to the correct loop.
1389 // We need a stable insertion order. We use the order of the original loop
1390 // order and map into the correct parent loop.
1391 for (auto *BB
: llvm::concat
<BasicBlock
*const>(
1392 makeArrayRef(ClonedPH
), ClonedLoopBlocks
, ClonedExitsInLoops
))
1393 if (Loop
*OuterL
= ExitLoopMap
.lookup(BB
))
1394 OuterL
->addBasicBlockToLoop(BB
, LI
);
1397 for (auto &BBAndL
: ExitLoopMap
) {
1398 auto *BB
= BBAndL
.first
;
1399 auto *OuterL
= BBAndL
.second
;
1400 assert(LI
.getLoopFor(BB
) == OuterL
&&
1401 "Failed to put all blocks into outer loops!");
1405 // Now that all the blocks are placed into the correct containing loop in the
1406 // absence of child loops, find all the potentially cloned child loops and
1407 // clone them into whatever outer loop we placed their header into.
1408 for (Loop
*ChildL
: OrigL
) {
1409 auto *ClonedChildHeader
=
1410 cast_or_null
<BasicBlock
>(VMap
.lookup(ChildL
->getHeader()));
1411 if (!ClonedChildHeader
|| BlocksInClonedLoop
.count(ClonedChildHeader
))
1415 for (auto *ChildLoopBB
: ChildL
->blocks())
1416 assert(VMap
.count(ChildLoopBB
) &&
1417 "Cloned a child loop header but not all of that loops blocks!");
1420 NonChildClonedLoops
.push_back(cloneLoopNest(
1421 *ChildL
, ExitLoopMap
.lookup(ClonedChildHeader
), VMap
, LI
));
1426 deleteDeadClonedBlocks(Loop
&L
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1427 ArrayRef
<std::unique_ptr
<ValueToValueMapTy
>> VMaps
,
1428 DominatorTree
&DT
, MemorySSAUpdater
*MSSAU
) {
1429 // Find all the dead clones, and remove them from their successors.
1430 SmallVector
<BasicBlock
*, 16> DeadBlocks
;
1431 for (BasicBlock
*BB
: llvm::concat
<BasicBlock
*const>(L
.blocks(), ExitBlocks
))
1432 for (auto &VMap
: VMaps
)
1433 if (BasicBlock
*ClonedBB
= cast_or_null
<BasicBlock
>(VMap
->lookup(BB
)))
1434 if (!DT
.isReachableFromEntry(ClonedBB
)) {
1435 for (BasicBlock
*SuccBB
: successors(ClonedBB
))
1436 SuccBB
->removePredecessor(ClonedBB
);
1437 DeadBlocks
.push_back(ClonedBB
);
1440 // Remove all MemorySSA in the dead blocks
1442 SmallPtrSet
<BasicBlock
*, 16> DeadBlockSet(DeadBlocks
.begin(),
1444 MSSAU
->removeBlocks(DeadBlockSet
);
1447 // Drop any remaining references to break cycles.
1448 for (BasicBlock
*BB
: DeadBlocks
)
1449 BB
->dropAllReferences();
1450 // Erase them from the IR.
1451 for (BasicBlock
*BB
: DeadBlocks
)
1452 BB
->eraseFromParent();
1455 static void deleteDeadBlocksFromLoop(Loop
&L
,
1456 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
1457 DominatorTree
&DT
, LoopInfo
&LI
,
1458 MemorySSAUpdater
*MSSAU
) {
1459 // Find all the dead blocks tied to this loop, and remove them from their
1461 SmallPtrSet
<BasicBlock
*, 16> DeadBlockSet
;
1463 // Start with loop/exit blocks and get a transitive closure of reachable dead
1465 SmallVector
<BasicBlock
*, 16> DeathCandidates(ExitBlocks
.begin(),
1467 DeathCandidates
.append(L
.blocks().begin(), L
.blocks().end());
1468 while (!DeathCandidates
.empty()) {
1469 auto *BB
= DeathCandidates
.pop_back_val();
1470 if (!DeadBlockSet
.count(BB
) && !DT
.isReachableFromEntry(BB
)) {
1471 for (BasicBlock
*SuccBB
: successors(BB
)) {
1472 SuccBB
->removePredecessor(BB
);
1473 DeathCandidates
.push_back(SuccBB
);
1475 DeadBlockSet
.insert(BB
);
1479 // Remove all MemorySSA in the dead blocks
1481 MSSAU
->removeBlocks(DeadBlockSet
);
1483 // Filter out the dead blocks from the exit blocks list so that it can be
1484 // used in the caller.
1485 llvm::erase_if(ExitBlocks
,
1486 [&](BasicBlock
*BB
) { return DeadBlockSet
.count(BB
); });
1488 // Walk from this loop up through its parents removing all of the dead blocks.
1489 for (Loop
*ParentL
= &L
; ParentL
; ParentL
= ParentL
->getParentLoop()) {
1490 for (auto *BB
: DeadBlockSet
)
1491 ParentL
->getBlocksSet().erase(BB
);
1492 llvm::erase_if(ParentL
->getBlocksVector(),
1493 [&](BasicBlock
*BB
) { return DeadBlockSet
.count(BB
); });
1496 // Now delete the dead child loops. This raw delete will clear them
1498 llvm::erase_if(L
.getSubLoopsVector(), [&](Loop
*ChildL
) {
1499 if (!DeadBlockSet
.count(ChildL
->getHeader()))
1502 assert(llvm::all_of(ChildL
->blocks(),
1503 [&](BasicBlock
*ChildBB
) {
1504 return DeadBlockSet
.count(ChildBB
);
1506 "If the child loop header is dead all blocks in the child loop must "
1507 "be dead as well!");
1512 // Remove the loop mappings for the dead blocks and drop all the references
1513 // from these blocks to others to handle cyclic references as we start
1514 // deleting the blocks themselves.
1515 for (auto *BB
: DeadBlockSet
) {
1516 // Check that the dominator tree has already been updated.
1517 assert(!DT
.getNode(BB
) && "Should already have cleared domtree!");
1518 LI
.changeLoopFor(BB
, nullptr);
1519 BB
->dropAllReferences();
1522 // Actually delete the blocks now that they've been fully unhooked from the
1524 for (auto *BB
: DeadBlockSet
)
1525 BB
->eraseFromParent();
1528 /// Recompute the set of blocks in a loop after unswitching.
1530 /// This walks from the original headers predecessors to rebuild the loop. We
1531 /// take advantage of the fact that new blocks can't have been added, and so we
1532 /// filter by the original loop's blocks. This also handles potentially
1533 /// unreachable code that we don't want to explore but might be found examining
1534 /// the predecessors of the header.
1536 /// If the original loop is no longer a loop, this will return an empty set. If
1537 /// it remains a loop, all the blocks within it will be added to the set
1538 /// (including those blocks in inner loops).
1539 static SmallPtrSet
<const BasicBlock
*, 16> recomputeLoopBlockSet(Loop
&L
,
1541 SmallPtrSet
<const BasicBlock
*, 16> LoopBlockSet
;
1543 auto *PH
= L
.getLoopPreheader();
1544 auto *Header
= L
.getHeader();
1546 // A worklist to use while walking backwards from the header.
1547 SmallVector
<BasicBlock
*, 16> Worklist
;
1549 // First walk the predecessors of the header to find the backedges. This will
1550 // form the basis of our walk.
1551 for (auto *Pred
: predecessors(Header
)) {
1552 // Skip the preheader.
1556 // Because the loop was in simplified form, the only non-loop predecessor
1557 // is the preheader.
1558 assert(L
.contains(Pred
) && "Found a predecessor of the loop header other "
1559 "than the preheader that is not part of the "
1562 // Insert this block into the loop set and on the first visit and, if it
1563 // isn't the header we're currently walking, put it into the worklist to
1565 if (LoopBlockSet
.insert(Pred
).second
&& Pred
!= Header
)
1566 Worklist
.push_back(Pred
);
1569 // If no backedges were found, we're done.
1570 if (LoopBlockSet
.empty())
1571 return LoopBlockSet
;
1573 // We found backedges, recurse through them to identify the loop blocks.
1574 while (!Worklist
.empty()) {
1575 BasicBlock
*BB
= Worklist
.pop_back_val();
1576 assert(LoopBlockSet
.count(BB
) && "Didn't put block into the loop set!");
1578 // No need to walk past the header.
1582 // Because we know the inner loop structure remains valid we can use the
1583 // loop structure to jump immediately across the entire nested loop.
1584 // Further, because it is in loop simplified form, we can directly jump
1585 // to its preheader afterward.
1586 if (Loop
*InnerL
= LI
.getLoopFor(BB
))
1588 assert(L
.contains(InnerL
) &&
1589 "Should not reach a loop *outside* this loop!");
1590 // The preheader is the only possible predecessor of the loop so
1591 // insert it into the set and check whether it was already handled.
1592 auto *InnerPH
= InnerL
->getLoopPreheader();
1593 assert(L
.contains(InnerPH
) && "Cannot contain an inner loop block "
1594 "but not contain the inner loop "
1596 if (!LoopBlockSet
.insert(InnerPH
).second
)
1597 // The only way to reach the preheader is through the loop body
1598 // itself so if it has been visited the loop is already handled.
1601 // Insert all of the blocks (other than those already present) into
1602 // the loop set. We expect at least the block that led us to find the
1603 // inner loop to be in the block set, but we may also have other loop
1604 // blocks if they were already enqueued as predecessors of some other
1605 // outer loop block.
1606 for (auto *InnerBB
: InnerL
->blocks()) {
1607 if (InnerBB
== BB
) {
1608 assert(LoopBlockSet
.count(InnerBB
) &&
1609 "Block should already be in the set!");
1613 LoopBlockSet
.insert(InnerBB
);
1616 // Add the preheader to the worklist so we will continue past the
1618 Worklist
.push_back(InnerPH
);
1622 // Insert any predecessors that were in the original loop into the new
1623 // set, and if the insert is successful, add them to the worklist.
1624 for (auto *Pred
: predecessors(BB
))
1625 if (L
.contains(Pred
) && LoopBlockSet
.insert(Pred
).second
)
1626 Worklist
.push_back(Pred
);
1629 assert(LoopBlockSet
.count(Header
) && "Cannot fail to add the header!");
1631 // We've found all the blocks participating in the loop, return our completed
1633 return LoopBlockSet
;
1636 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1638 /// The removal may have removed some child loops entirely but cannot have
1639 /// disturbed any remaining child loops. However, they may need to be hoisted
1640 /// to the parent loop (or to be top-level loops). The original loop may be
1641 /// completely removed.
1643 /// The sibling loops resulting from this update are returned. If the original
1644 /// loop remains a valid loop, it will be the first entry in this list with all
1645 /// of the newly sibling loops following it.
1647 /// Returns true if the loop remains a loop after unswitching, and false if it
1648 /// is no longer a loop after unswitching (and should not continue to be
1650 static bool rebuildLoopAfterUnswitch(Loop
&L
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1652 SmallVectorImpl
<Loop
*> &HoistedLoops
) {
1653 auto *PH
= L
.getLoopPreheader();
1655 // Compute the actual parent loop from the exit blocks. Because we may have
1656 // pruned some exits the loop may be different from the original parent.
1657 Loop
*ParentL
= nullptr;
1658 SmallVector
<Loop
*, 4> ExitLoops
;
1659 SmallVector
<BasicBlock
*, 4> ExitsInLoops
;
1660 ExitsInLoops
.reserve(ExitBlocks
.size());
1661 for (auto *ExitBB
: ExitBlocks
)
1662 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
)) {
1663 ExitLoops
.push_back(ExitL
);
1664 ExitsInLoops
.push_back(ExitBB
);
1665 if (!ParentL
|| (ParentL
!= ExitL
&& ParentL
->contains(ExitL
)))
1669 // Recompute the blocks participating in this loop. This may be empty if it
1670 // is no longer a loop.
1671 auto LoopBlockSet
= recomputeLoopBlockSet(L
, LI
);
1673 // If we still have a loop, we need to re-set the loop's parent as the exit
1674 // block set changing may have moved it within the loop nest. Note that this
1675 // can only happen when this loop has a parent as it can only hoist the loop
1677 if (!LoopBlockSet
.empty() && L
.getParentLoop() != ParentL
) {
1678 // Remove this loop's (original) blocks from all of the intervening loops.
1679 for (Loop
*IL
= L
.getParentLoop(); IL
!= ParentL
;
1680 IL
= IL
->getParentLoop()) {
1681 IL
->getBlocksSet().erase(PH
);
1682 for (auto *BB
: L
.blocks())
1683 IL
->getBlocksSet().erase(BB
);
1684 llvm::erase_if(IL
->getBlocksVector(), [&](BasicBlock
*BB
) {
1685 return BB
== PH
|| L
.contains(BB
);
1689 LI
.changeLoopFor(PH
, ParentL
);
1690 L
.getParentLoop()->removeChildLoop(&L
);
1692 ParentL
->addChildLoop(&L
);
1694 LI
.addTopLevelLoop(&L
);
1697 // Now we update all the blocks which are no longer within the loop.
1698 auto &Blocks
= L
.getBlocksVector();
1700 LoopBlockSet
.empty()
1702 : std::stable_partition(
1703 Blocks
.begin(), Blocks
.end(),
1704 [&](BasicBlock
*BB
) { return LoopBlockSet
.count(BB
); });
1706 // Before we erase the list of unlooped blocks, build a set of them.
1707 SmallPtrSet
<BasicBlock
*, 16> UnloopedBlocks(BlocksSplitI
, Blocks
.end());
1708 if (LoopBlockSet
.empty())
1709 UnloopedBlocks
.insert(PH
);
1711 // Now erase these blocks from the loop.
1712 for (auto *BB
: make_range(BlocksSplitI
, Blocks
.end()))
1713 L
.getBlocksSet().erase(BB
);
1714 Blocks
.erase(BlocksSplitI
, Blocks
.end());
1716 // Sort the exits in ascending loop depth, we'll work backwards across these
1717 // to process them inside out.
1718 std::stable_sort(ExitsInLoops
.begin(), ExitsInLoops
.end(),
1719 [&](BasicBlock
*LHS
, BasicBlock
*RHS
) {
1720 return LI
.getLoopDepth(LHS
) < LI
.getLoopDepth(RHS
);
1723 // We'll build up a set for each exit loop.
1724 SmallPtrSet
<BasicBlock
*, 16> NewExitLoopBlocks
;
1725 Loop
*PrevExitL
= L
.getParentLoop(); // The deepest possible exit loop.
1727 auto RemoveUnloopedBlocksFromLoop
=
1728 [](Loop
&L
, SmallPtrSetImpl
<BasicBlock
*> &UnloopedBlocks
) {
1729 for (auto *BB
: UnloopedBlocks
)
1730 L
.getBlocksSet().erase(BB
);
1731 llvm::erase_if(L
.getBlocksVector(), [&](BasicBlock
*BB
) {
1732 return UnloopedBlocks
.count(BB
);
1736 SmallVector
<BasicBlock
*, 16> Worklist
;
1737 while (!UnloopedBlocks
.empty() && !ExitsInLoops
.empty()) {
1738 assert(Worklist
.empty() && "Didn't clear worklist!");
1739 assert(NewExitLoopBlocks
.empty() && "Didn't clear loop set!");
1741 // Grab the next exit block, in decreasing loop depth order.
1742 BasicBlock
*ExitBB
= ExitsInLoops
.pop_back_val();
1743 Loop
&ExitL
= *LI
.getLoopFor(ExitBB
);
1744 assert(ExitL
.contains(&L
) && "Exit loop must contain the inner loop!");
1746 // Erase all of the unlooped blocks from the loops between the previous
1747 // exit loop and this exit loop. This works because the ExitInLoops list is
1748 // sorted in increasing order of loop depth and thus we visit loops in
1749 // decreasing order of loop depth.
1750 for (; PrevExitL
!= &ExitL
; PrevExitL
= PrevExitL
->getParentLoop())
1751 RemoveUnloopedBlocksFromLoop(*PrevExitL
, UnloopedBlocks
);
1753 // Walk the CFG back until we hit the cloned PH adding everything reachable
1754 // and in the unlooped set to this exit block's loop.
1755 Worklist
.push_back(ExitBB
);
1757 BasicBlock
*BB
= Worklist
.pop_back_val();
1758 // We can stop recursing at the cloned preheader (if we get there).
1762 for (BasicBlock
*PredBB
: predecessors(BB
)) {
1763 // If this pred has already been moved to our set or is part of some
1764 // (inner) loop, no update needed.
1765 if (!UnloopedBlocks
.erase(PredBB
)) {
1766 assert((NewExitLoopBlocks
.count(PredBB
) ||
1767 ExitL
.contains(LI
.getLoopFor(PredBB
))) &&
1768 "Predecessor not in a nested loop (or already visited)!");
1772 // We just insert into the loop set here. We'll add these blocks to the
1773 // exit loop after we build up the set in a deterministic order rather
1774 // than the predecessor-influenced visit order.
1775 bool Inserted
= NewExitLoopBlocks
.insert(PredBB
).second
;
1777 assert(Inserted
&& "Should only visit an unlooped block once!");
1779 // And recurse through to its predecessors.
1780 Worklist
.push_back(PredBB
);
1782 } while (!Worklist
.empty());
1784 // If blocks in this exit loop were directly part of the original loop (as
1785 // opposed to a child loop) update the map to point to this exit loop. This
1786 // just updates a map and so the fact that the order is unstable is fine.
1787 for (auto *BB
: NewExitLoopBlocks
)
1788 if (Loop
*BBL
= LI
.getLoopFor(BB
))
1789 if (BBL
== &L
|| !L
.contains(BBL
))
1790 LI
.changeLoopFor(BB
, &ExitL
);
1792 // We will remove the remaining unlooped blocks from this loop in the next
1793 // iteration or below.
1794 NewExitLoopBlocks
.clear();
1797 // Any remaining unlooped blocks are no longer part of any loop unless they
1798 // are part of some child loop.
1799 for (; PrevExitL
; PrevExitL
= PrevExitL
->getParentLoop())
1800 RemoveUnloopedBlocksFromLoop(*PrevExitL
, UnloopedBlocks
);
1801 for (auto *BB
: UnloopedBlocks
)
1802 if (Loop
*BBL
= LI
.getLoopFor(BB
))
1803 if (BBL
== &L
|| !L
.contains(BBL
))
1804 LI
.changeLoopFor(BB
, nullptr);
1806 // Sink all the child loops whose headers are no longer in the loop set to
1807 // the parent (or to be top level loops). We reach into the loop and directly
1808 // update its subloop vector to make this batch update efficient.
1809 auto &SubLoops
= L
.getSubLoopsVector();
1810 auto SubLoopsSplitI
=
1811 LoopBlockSet
.empty()
1813 : std::stable_partition(
1814 SubLoops
.begin(), SubLoops
.end(), [&](Loop
*SubL
) {
1815 return LoopBlockSet
.count(SubL
->getHeader());
1817 for (auto *HoistedL
: make_range(SubLoopsSplitI
, SubLoops
.end())) {
1818 HoistedLoops
.push_back(HoistedL
);
1819 HoistedL
->setParentLoop(nullptr);
1821 // To compute the new parent of this hoisted loop we look at where we
1822 // placed the preheader above. We can't lookup the header itself because we
1823 // retained the mapping from the header to the hoisted loop. But the
1824 // preheader and header should have the exact same new parent computed
1825 // based on the set of exit blocks from the original loop as the preheader
1826 // is a predecessor of the header and so reached in the reverse walk. And
1827 // because the loops were all in simplified form the preheader of the
1828 // hoisted loop can't be part of some *other* loop.
1829 if (auto *NewParentL
= LI
.getLoopFor(HoistedL
->getLoopPreheader()))
1830 NewParentL
->addChildLoop(HoistedL
);
1832 LI
.addTopLevelLoop(HoistedL
);
1834 SubLoops
.erase(SubLoopsSplitI
, SubLoops
.end());
1836 // Actually delete the loop if nothing remained within it.
1837 if (Blocks
.empty()) {
1838 assert(SubLoops
.empty() &&
1839 "Failed to remove all subloops from the original loop!");
1840 if (Loop
*ParentL
= L
.getParentLoop())
1841 ParentL
->removeChildLoop(llvm::find(*ParentL
, &L
));
1843 LI
.removeLoop(llvm::find(LI
, &L
));
1851 /// Helper to visit a dominator subtree, invoking a callable on each node.
1853 /// Returning false at any point will stop walking past that node of the tree.
1854 template <typename CallableT
>
1855 void visitDomSubTree(DominatorTree
&DT
, BasicBlock
*BB
, CallableT Callable
) {
1856 SmallVector
<DomTreeNode
*, 4> DomWorklist
;
1857 DomWorklist
.push_back(DT
[BB
]);
1859 SmallPtrSet
<DomTreeNode
*, 4> Visited
;
1860 Visited
.insert(DT
[BB
]);
1863 DomTreeNode
*N
= DomWorklist
.pop_back_val();
1866 if (!Callable(N
->getBlock()))
1869 // Accumulate the child nodes.
1870 for (DomTreeNode
*ChildN
: *N
) {
1871 assert(Visited
.insert(ChildN
).second
&&
1872 "Cannot visit a node twice when walking a tree!");
1873 DomWorklist
.push_back(ChildN
);
1875 } while (!DomWorklist
.empty());
1878 static void unswitchNontrivialInvariants(
1879 Loop
&L
, Instruction
&TI
, ArrayRef
<Value
*> Invariants
,
1880 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
, DominatorTree
&DT
, LoopInfo
&LI
,
1881 AssumptionCache
&AC
, function_ref
<void(bool, ArrayRef
<Loop
*>)> UnswitchCB
,
1882 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
) {
1883 auto *ParentBB
= TI
.getParent();
1884 BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
);
1885 SwitchInst
*SI
= BI
? nullptr : cast
<SwitchInst
>(&TI
);
1887 // We can only unswitch switches, conditional branches with an invariant
1888 // condition, or combining invariant conditions with an instruction.
1889 assert((SI
|| BI
->isConditional()) &&
1890 "Can only unswitch switches and conditional branch!");
1891 bool FullUnswitch
= SI
|| BI
->getCondition() == Invariants
[0];
1893 assert(Invariants
.size() == 1 &&
1894 "Cannot have other invariants with full unswitching!");
1896 assert(isa
<Instruction
>(BI
->getCondition()) &&
1897 "Partial unswitching requires an instruction as the condition!");
1899 if (MSSAU
&& VerifyMemorySSA
)
1900 MSSAU
->getMemorySSA()->verifyMemorySSA();
1902 // Constant and BBs tracking the cloned and continuing successor. When we are
1903 // unswitching the entire condition, this can just be trivially chosen to
1904 // unswitch towards `true`. However, when we are unswitching a set of
1905 // invariants combined with `and` or `or`, the combining operation determines
1906 // the best direction to unswitch: we want to unswitch the direction that will
1907 // collapse the branch.
1908 bool Direction
= true;
1910 if (!FullUnswitch
) {
1911 if (cast
<Instruction
>(BI
->getCondition())->getOpcode() != Instruction::Or
) {
1912 assert(cast
<Instruction
>(BI
->getCondition())->getOpcode() ==
1914 "Only `or` and `and` instructions can combine invariants being "
1921 BasicBlock
*RetainedSuccBB
=
1922 BI
? BI
->getSuccessor(1 - ClonedSucc
) : SI
->getDefaultDest();
1923 SmallSetVector
<BasicBlock
*, 4> UnswitchedSuccBBs
;
1925 UnswitchedSuccBBs
.insert(BI
->getSuccessor(ClonedSucc
));
1927 for (auto Case
: SI
->cases())
1928 if (Case
.getCaseSuccessor() != RetainedSuccBB
)
1929 UnswitchedSuccBBs
.insert(Case
.getCaseSuccessor());
1931 assert(!UnswitchedSuccBBs
.count(RetainedSuccBB
) &&
1932 "Should not unswitch the same successor we are retaining!");
1934 // The branch should be in this exact loop. Any inner loop's invariant branch
1935 // should be handled by unswitching that inner loop. The caller of this
1936 // routine should filter out any candidates that remain (but were skipped for
1937 // whatever reason).
1938 assert(LI
.getLoopFor(ParentBB
) == &L
&& "Branch in an inner loop!");
1940 // Compute the parent loop now before we start hacking on things.
1941 Loop
*ParentL
= L
.getParentLoop();
1942 // Get blocks in RPO order for MSSA update, before changing the CFG.
1943 LoopBlocksRPO
LBRPO(&L
);
1947 // Compute the outer-most loop containing one of our exit blocks. This is the
1948 // furthest up our loopnest which can be mutated, which we will use below to
1950 Loop
*OuterExitL
= &L
;
1951 for (auto *ExitBB
: ExitBlocks
) {
1952 Loop
*NewOuterExitL
= LI
.getLoopFor(ExitBB
);
1953 if (!NewOuterExitL
) {
1954 // We exited the entire nest with this block, so we're done.
1955 OuterExitL
= nullptr;
1958 if (NewOuterExitL
!= OuterExitL
&& NewOuterExitL
->contains(OuterExitL
))
1959 OuterExitL
= NewOuterExitL
;
1962 // At this point, we're definitely going to unswitch something so invalidate
1963 // any cached information in ScalarEvolution for the outer most loop
1964 // containing an exit block and all nested loops.
1967 SE
->forgetLoop(OuterExitL
);
1969 SE
->forgetTopmostLoop(&L
);
1972 // If the edge from this terminator to a successor dominates that successor,
1973 // store a map from each block in its dominator subtree to it. This lets us
1974 // tell when cloning for a particular successor if a block is dominated by
1975 // some *other* successor with a single data structure. We use this to
1976 // significantly reduce cloning.
1977 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 16> DominatingSucc
;
1978 for (auto *SuccBB
: llvm::concat
<BasicBlock
*const>(
1979 makeArrayRef(RetainedSuccBB
), UnswitchedSuccBBs
))
1980 if (SuccBB
->getUniquePredecessor() ||
1981 llvm::all_of(predecessors(SuccBB
), [&](BasicBlock
*PredBB
) {
1982 return PredBB
== ParentBB
|| DT
.dominates(SuccBB
, PredBB
);
1984 visitDomSubTree(DT
, SuccBB
, [&](BasicBlock
*BB
) {
1985 DominatingSucc
[BB
] = SuccBB
;
1989 // Split the preheader, so that we know that there is a safe place to insert
1990 // the conditional branch. We will change the preheader to have a conditional
1991 // branch on LoopCond. The original preheader will become the split point
1992 // between the unswitched versions, and we will have a new preheader for the
1994 BasicBlock
*SplitBB
= L
.getLoopPreheader();
1995 BasicBlock
*LoopPH
= SplitEdge(SplitBB
, L
.getHeader(), &DT
, &LI
, MSSAU
);
1997 // Keep track of the dominator tree updates needed.
1998 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
2000 // Clone the loop for each unswitched successor.
2001 SmallVector
<std::unique_ptr
<ValueToValueMapTy
>, 4> VMaps
;
2002 VMaps
.reserve(UnswitchedSuccBBs
.size());
2003 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 4> ClonedPHs
;
2004 for (auto *SuccBB
: UnswitchedSuccBBs
) {
2005 VMaps
.emplace_back(new ValueToValueMapTy());
2006 ClonedPHs
[SuccBB
] = buildClonedLoopBlocks(
2007 L
, LoopPH
, SplitBB
, ExitBlocks
, ParentBB
, SuccBB
, RetainedSuccBB
,
2008 DominatingSucc
, *VMaps
.back(), DTUpdates
, AC
, DT
, LI
, MSSAU
);
2011 // The stitching of the branched code back together depends on whether we're
2012 // doing full unswitching or not with the exception that we always want to
2013 // nuke the initial terminator placed in the split block.
2014 SplitBB
->getTerminator()->eraseFromParent();
2016 // Splice the terminator from the original loop and rewrite its
2018 SplitBB
->getInstList().splice(SplitBB
->end(), ParentBB
->getInstList(), TI
);
2020 // Keep a clone of the terminator for MSSA updates.
2021 Instruction
*NewTI
= TI
.clone();
2022 ParentBB
->getInstList().push_back(NewTI
);
2024 // First wire up the moved terminator to the preheaders.
2026 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2027 BI
->setSuccessor(ClonedSucc
, ClonedPH
);
2028 BI
->setSuccessor(1 - ClonedSucc
, LoopPH
);
2029 DTUpdates
.push_back({DominatorTree::Insert
, SplitBB
, ClonedPH
});
2031 assert(SI
&& "Must either be a branch or switch!");
2033 // Walk the cases and directly update their successors.
2034 assert(SI
->getDefaultDest() == RetainedSuccBB
&&
2035 "Not retaining default successor!");
2036 SI
->setDefaultDest(LoopPH
);
2037 for (auto &Case
: SI
->cases())
2038 if (Case
.getCaseSuccessor() == RetainedSuccBB
)
2039 Case
.setSuccessor(LoopPH
);
2041 Case
.setSuccessor(ClonedPHs
.find(Case
.getCaseSuccessor())->second
);
2043 // We need to use the set to populate domtree updates as even when there
2044 // are multiple cases pointing at the same successor we only want to
2045 // remove and insert one edge in the domtree.
2046 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2047 DTUpdates
.push_back(
2048 {DominatorTree::Insert
, SplitBB
, ClonedPHs
.find(SuccBB
)->second
});
2052 DT
.applyUpdates(DTUpdates
);
2055 // Remove all but one edge to the retained block and all unswitched
2056 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2057 // when we know we only keep a single edge for each case.
2058 MSSAU
->removeDuplicatePhiEdgesBetween(ParentBB
, RetainedSuccBB
);
2059 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2060 MSSAU
->removeDuplicatePhiEdgesBetween(ParentBB
, SuccBB
);
2062 for (auto &VMap
: VMaps
)
2063 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, *VMap
,
2064 /*IgnoreIncomingWithNoClones=*/true);
2065 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMaps
, DT
);
2067 // Remove all edges to unswitched blocks.
2068 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2069 MSSAU
->removeEdge(ParentBB
, SuccBB
);
2072 // Now unhook the successor relationship as we'll be replacing
2073 // the terminator with a direct branch. This is much simpler for branches
2074 // than switches so we handle those first.
2076 // Remove the parent as a predecessor of the unswitched successor.
2077 assert(UnswitchedSuccBBs
.size() == 1 &&
2078 "Only one possible unswitched block for a branch!");
2079 BasicBlock
*UnswitchedSuccBB
= *UnswitchedSuccBBs
.begin();
2080 UnswitchedSuccBB
->removePredecessor(ParentBB
,
2081 /*KeepOneInputPHIs*/ true);
2082 DTUpdates
.push_back({DominatorTree::Delete
, ParentBB
, UnswitchedSuccBB
});
2084 // Note that we actually want to remove the parent block as a predecessor
2085 // of *every* case successor. The case successor is either unswitched,
2086 // completely eliminating an edge from the parent to that successor, or it
2087 // is a duplicate edge to the retained successor as the retained successor
2088 // is always the default successor and as we'll replace this with a direct
2089 // branch we no longer need the duplicate entries in the PHI nodes.
2090 SwitchInst
*NewSI
= cast
<SwitchInst
>(NewTI
);
2091 assert(NewSI
->getDefaultDest() == RetainedSuccBB
&&
2092 "Not retaining default successor!");
2093 for (auto &Case
: NewSI
->cases())
2094 Case
.getCaseSuccessor()->removePredecessor(
2096 /*KeepOneInputPHIs*/ true);
2098 // We need to use the set to populate domtree updates as even when there
2099 // are multiple cases pointing at the same successor we only want to
2100 // remove and insert one edge in the domtree.
2101 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2102 DTUpdates
.push_back({DominatorTree::Delete
, ParentBB
, SuccBB
});
2105 // After MSSAU update, remove the cloned terminator instruction NewTI.
2106 ParentBB
->getTerminator()->eraseFromParent();
2108 // Create a new unconditional branch to the continuing block (as opposed to
2110 BranchInst::Create(RetainedSuccBB
, ParentBB
);
2112 assert(BI
&& "Only branches have partial unswitching.");
2113 assert(UnswitchedSuccBBs
.size() == 1 &&
2114 "Only one possible unswitched block for a branch!");
2115 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2116 // When doing a partial unswitch, we have to do a bit more work to build up
2117 // the branch in the split block.
2118 buildPartialUnswitchConditionalBranch(*SplitBB
, Invariants
, Direction
,
2119 *ClonedPH
, *LoopPH
);
2120 DTUpdates
.push_back({DominatorTree::Insert
, SplitBB
, ClonedPH
});
2123 // Apply the updates accumulated above to get an up-to-date dominator tree.
2124 DT
.applyUpdates(DTUpdates
);
2125 if (!FullUnswitch
&& MSSAU
) {
2126 // Update MSSA for partial unswitch, after DT update.
2127 SmallVector
<CFGUpdate
, 1> Updates
;
2129 {cfg::UpdateKind::Insert
, SplitBB
, ClonedPHs
.begin()->second
});
2130 MSSAU
->applyInsertUpdates(Updates
, DT
);
2133 // Now that we have an accurate dominator tree, first delete the dead cloned
2134 // blocks so that we can accurately build any cloned loops. It is important to
2135 // not delete the blocks from the original loop yet because we still want to
2136 // reference the original loop to understand the cloned loop's structure.
2137 deleteDeadClonedBlocks(L
, ExitBlocks
, VMaps
, DT
, MSSAU
);
2139 // Build the cloned loop structure itself. This may be substantially
2140 // different from the original structure due to the simplified CFG. This also
2141 // handles inserting all the cloned blocks into the correct loops.
2142 SmallVector
<Loop
*, 4> NonChildClonedLoops
;
2143 for (std::unique_ptr
<ValueToValueMapTy
> &VMap
: VMaps
)
2144 buildClonedLoops(L
, ExitBlocks
, *VMap
, LI
, NonChildClonedLoops
);
2146 // Now that our cloned loops have been built, we can update the original loop.
2147 // First we delete the dead blocks from it and then we rebuild the loop
2148 // structure taking these deletions into account.
2149 deleteDeadBlocksFromLoop(L
, ExitBlocks
, DT
, LI
, MSSAU
);
2151 if (MSSAU
&& VerifyMemorySSA
)
2152 MSSAU
->getMemorySSA()->verifyMemorySSA();
2154 SmallVector
<Loop
*, 4> HoistedLoops
;
2155 bool IsStillLoop
= rebuildLoopAfterUnswitch(L
, ExitBlocks
, LI
, HoistedLoops
);
2157 if (MSSAU
&& VerifyMemorySSA
)
2158 MSSAU
->getMemorySSA()->verifyMemorySSA();
2160 // This transformation has a high risk of corrupting the dominator tree, and
2161 // the below steps to rebuild loop structures will result in hard to debug
2162 // errors in that case so verify that the dominator tree is sane first.
2163 // FIXME: Remove this when the bugs stop showing up and rely on existing
2164 // verification steps.
2165 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
2168 // If we unswitched a branch which collapses the condition to a known
2169 // constant we want to replace all the uses of the invariants within both
2170 // the original and cloned blocks. We do this here so that we can use the
2171 // now updated dominator tree to identify which side the users are on.
2172 assert(UnswitchedSuccBBs
.size() == 1 &&
2173 "Only one possible unswitched block for a branch!");
2174 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2176 // When considering multiple partially-unswitched invariants
2177 // we cant just go replace them with constants in both branches.
2179 // For 'AND' we infer that true branch ("continue") means true
2180 // for each invariant operand.
2181 // For 'OR' we can infer that false branch ("continue") means false
2182 // for each invariant operand.
2183 // So it happens that for multiple-partial case we dont replace
2184 // in the unswitched branch.
2185 bool ReplaceUnswitched
= FullUnswitch
|| (Invariants
.size() == 1);
2187 ConstantInt
*UnswitchedReplacement
=
2188 Direction
? ConstantInt::getTrue(BI
->getContext())
2189 : ConstantInt::getFalse(BI
->getContext());
2190 ConstantInt
*ContinueReplacement
=
2191 Direction
? ConstantInt::getFalse(BI
->getContext())
2192 : ConstantInt::getTrue(BI
->getContext());
2193 for (Value
*Invariant
: Invariants
)
2194 for (auto UI
= Invariant
->use_begin(), UE
= Invariant
->use_end();
2196 // Grab the use and walk past it so we can clobber it in the use list.
2198 Instruction
*UserI
= dyn_cast
<Instruction
>(U
->getUser());
2202 // Replace it with the 'continue' side if in the main loop body, and the
2203 // unswitched if in the cloned blocks.
2204 if (DT
.dominates(LoopPH
, UserI
->getParent()))
2205 U
->set(ContinueReplacement
);
2206 else if (ReplaceUnswitched
&&
2207 DT
.dominates(ClonedPH
, UserI
->getParent()))
2208 U
->set(UnswitchedReplacement
);
2212 // We can change which blocks are exit blocks of all the cloned sibling
2213 // loops, the current loop, and any parent loops which shared exit blocks
2214 // with the current loop. As a consequence, we need to re-form LCSSA for
2215 // them. But we shouldn't need to re-form LCSSA for any child loops.
2216 // FIXME: This could be made more efficient by tracking which exit blocks are
2217 // new, and focusing on them, but that isn't likely to be necessary.
2219 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2220 // loop nest and update every loop that could have had its exits changed. We
2221 // also need to cover any intervening loops. We add all of these loops to
2222 // a list and sort them by loop depth to achieve this without updating
2223 // unnecessary loops.
2224 auto UpdateLoop
= [&](Loop
&UpdateL
) {
2226 UpdateL
.verifyLoop();
2227 for (Loop
*ChildL
: UpdateL
) {
2228 ChildL
->verifyLoop();
2229 assert(ChildL
->isRecursivelyLCSSAForm(DT
, LI
) &&
2230 "Perturbed a child loop's LCSSA form!");
2233 // First build LCSSA for this loop so that we can preserve it when
2234 // forming dedicated exits. We don't want to perturb some other loop's
2235 // LCSSA while doing that CFG edit.
2236 formLCSSA(UpdateL
, DT
, &LI
, nullptr);
2238 // For loops reached by this loop's original exit blocks we may
2239 // introduced new, non-dedicated exits. At least try to re-form dedicated
2240 // exits for these loops. This may fail if they couldn't have dedicated
2241 // exits to start with.
2242 formDedicatedExitBlocks(&UpdateL
, &DT
, &LI
, /*PreserveLCSSA*/ true);
2245 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2246 // and we can do it in any order as they don't nest relative to each other.
2248 // Also check if any of the loops we have updated have become top-level loops
2249 // as that will necessitate widening the outer loop scope.
2250 for (Loop
*UpdatedL
:
2251 llvm::concat
<Loop
*>(NonChildClonedLoops
, HoistedLoops
)) {
2252 UpdateLoop(*UpdatedL
);
2253 if (!UpdatedL
->getParentLoop())
2254 OuterExitL
= nullptr;
2258 if (!L
.getParentLoop())
2259 OuterExitL
= nullptr;
2262 // If the original loop had exit blocks, walk up through the outer most loop
2263 // of those exit blocks to update LCSSA and form updated dedicated exits.
2264 if (OuterExitL
!= &L
)
2265 for (Loop
*OuterL
= ParentL
; OuterL
!= OuterExitL
;
2266 OuterL
= OuterL
->getParentLoop())
2267 UpdateLoop(*OuterL
);
2270 // Verify the entire loop structure to catch any incorrect updates before we
2271 // progress in the pass pipeline.
2275 // Now that we've unswitched something, make callbacks to report the changes.
2276 // For that we need to merge together the updated loops and the cloned loops
2277 // and check whether the original loop survived.
2278 SmallVector
<Loop
*, 4> SibLoops
;
2279 for (Loop
*UpdatedL
: llvm::concat
<Loop
*>(NonChildClonedLoops
, HoistedLoops
))
2280 if (UpdatedL
->getParentLoop() == ParentL
)
2281 SibLoops
.push_back(UpdatedL
);
2282 UnswitchCB(IsStillLoop
, SibLoops
);
2284 if (MSSAU
&& VerifyMemorySSA
)
2285 MSSAU
->getMemorySSA()->verifyMemorySSA();
2293 /// Recursively compute the cost of a dominator subtree based on the per-block
2294 /// cost map provided.
2296 /// The recursive computation is memozied into the provided DT-indexed cost map
2297 /// to allow querying it for most nodes in the domtree without it becoming
2300 computeDomSubtreeCost(DomTreeNode
&N
,
2301 const SmallDenseMap
<BasicBlock
*, int, 4> &BBCostMap
,
2302 SmallDenseMap
<DomTreeNode
*, int, 4> &DTCostMap
) {
2303 // Don't accumulate cost (or recurse through) blocks not in our block cost
2304 // map and thus not part of the duplication cost being considered.
2305 auto BBCostIt
= BBCostMap
.find(N
.getBlock());
2306 if (BBCostIt
== BBCostMap
.end())
2309 // Lookup this node to see if we already computed its cost.
2310 auto DTCostIt
= DTCostMap
.find(&N
);
2311 if (DTCostIt
!= DTCostMap
.end())
2312 return DTCostIt
->second
;
2314 // If not, we have to compute it. We can't use insert above and update
2315 // because computing the cost may insert more things into the map.
2316 int Cost
= std::accumulate(
2317 N
.begin(), N
.end(), BBCostIt
->second
, [&](int Sum
, DomTreeNode
*ChildN
) {
2318 return Sum
+ computeDomSubtreeCost(*ChildN
, BBCostMap
, DTCostMap
);
2320 bool Inserted
= DTCostMap
.insert({&N
, Cost
}).second
;
2322 assert(Inserted
&& "Should not insert a node while visiting children!");
2326 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2327 /// making the following replacement:
2329 /// --code before guard--
2330 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2331 /// --code after guard--
2335 /// --code before guard--
2336 /// br i1 %cond, label %guarded, label %deopt
2339 /// --code after guard--
2342 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2345 /// It also makes all relevant DT and LI updates, so that all structures are in
2346 /// valid state after this transform.
2348 turnGuardIntoBranch(IntrinsicInst
*GI
, Loop
&L
,
2349 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
2350 DominatorTree
&DT
, LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
2351 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
2352 LLVM_DEBUG(dbgs() << "Turning " << *GI
<< " into a branch.\n");
2353 BasicBlock
*CheckBB
= GI
->getParent();
2355 if (MSSAU
&& VerifyMemorySSA
)
2356 MSSAU
->getMemorySSA()->verifyMemorySSA();
2358 // Remove all CheckBB's successors from DomTree. A block can be seen among
2359 // successors more than once, but for DomTree it should be added only once.
2360 SmallPtrSet
<BasicBlock
*, 4> Successors
;
2361 for (auto *Succ
: successors(CheckBB
))
2362 if (Successors
.insert(Succ
).second
)
2363 DTUpdates
.push_back({DominatorTree::Delete
, CheckBB
, Succ
});
2365 Instruction
*DeoptBlockTerm
=
2366 SplitBlockAndInsertIfThen(GI
->getArgOperand(0), GI
, true);
2367 BranchInst
*CheckBI
= cast
<BranchInst
>(CheckBB
->getTerminator());
2368 // SplitBlockAndInsertIfThen inserts control flow that branches to
2369 // DeoptBlockTerm if the condition is true. We want the opposite.
2370 CheckBI
->swapSuccessors();
2372 BasicBlock
*GuardedBlock
= CheckBI
->getSuccessor(0);
2373 GuardedBlock
->setName("guarded");
2374 CheckBI
->getSuccessor(1)->setName("deopt");
2375 BasicBlock
*DeoptBlock
= CheckBI
->getSuccessor(1);
2377 // We now have a new exit block.
2378 ExitBlocks
.push_back(CheckBI
->getSuccessor(1));
2381 MSSAU
->moveAllAfterSpliceBlocks(CheckBB
, GuardedBlock
, GI
);
2383 GI
->moveBefore(DeoptBlockTerm
);
2384 GI
->setArgOperand(0, ConstantInt::getFalse(GI
->getContext()));
2386 // Add new successors of CheckBB into DomTree.
2387 for (auto *Succ
: successors(CheckBB
))
2388 DTUpdates
.push_back({DominatorTree::Insert
, CheckBB
, Succ
});
2390 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2392 for (auto *Succ
: Successors
)
2393 DTUpdates
.push_back({DominatorTree::Insert
, GuardedBlock
, Succ
});
2395 // Make proper changes to DT.
2396 DT
.applyUpdates(DTUpdates
);
2397 // Inform LI of a new loop block.
2398 L
.addBasicBlockToLoop(GuardedBlock
, LI
);
2401 MemoryDef
*MD
= cast
<MemoryDef
>(MSSAU
->getMemorySSA()->getMemoryAccess(GI
));
2402 MSSAU
->moveToPlace(MD
, DeoptBlock
, MemorySSA::End
);
2403 if (VerifyMemorySSA
)
2404 MSSAU
->getMemorySSA()->verifyMemorySSA();
2411 /// Cost multiplier is a way to limit potentially exponential behavior
2412 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2413 /// candidates available. Also accounting for the number of "sibling" loops with
2414 /// the idea to account for previous unswitches that already happened on this
2415 /// cluster of loops. There was an attempt to keep this formula simple,
2416 /// just enough to limit the worst case behavior. Even if it is not that simple
2417 /// now it is still not an attempt to provide a detailed heuristic size
2420 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2421 /// unswitch candidates, making adequate predictions instead of wild guesses.
2422 /// That requires knowing not just the number of "remaining" candidates but
2423 /// also costs of unswitching for each of these candidates.
2424 static int calculateUnswitchCostMultiplier(
2425 Instruction
&TI
, Loop
&L
, LoopInfo
&LI
, DominatorTree
&DT
,
2426 ArrayRef
<std::pair
<Instruction
*, TinyPtrVector
<Value
*>>>
2427 UnswitchCandidates
) {
2429 // Guards and other exiting conditions do not contribute to exponential
2430 // explosion as soon as they dominate the latch (otherwise there might be
2431 // another path to the latch remaining that does not allow to eliminate the
2432 // loop copy on unswitch).
2433 BasicBlock
*Latch
= L
.getLoopLatch();
2434 BasicBlock
*CondBlock
= TI
.getParent();
2435 if (DT
.dominates(CondBlock
, Latch
) &&
2437 llvm::count_if(successors(&TI
), [&L
](BasicBlock
*SuccBB
) {
2438 return L
.contains(SuccBB
);
2440 NumCostMultiplierSkipped
++;
2444 auto *ParentL
= L
.getParentLoop();
2445 int SiblingsCount
= (ParentL
? ParentL
->getSubLoopsVector().size()
2446 : std::distance(LI
.begin(), LI
.end()));
2447 // Count amount of clones that all the candidates might cause during
2448 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2449 int UnswitchedClones
= 0;
2450 for (auto Candidate
: UnswitchCandidates
) {
2451 Instruction
*CI
= Candidate
.first
;
2452 BasicBlock
*CondBlock
= CI
->getParent();
2453 bool SkipExitingSuccessors
= DT
.dominates(CondBlock
, Latch
);
2455 if (!SkipExitingSuccessors
)
2459 int NonExitingSuccessors
= llvm::count_if(
2460 successors(CondBlock
), [SkipExitingSuccessors
, &L
](BasicBlock
*SuccBB
) {
2461 return !SkipExitingSuccessors
|| L
.contains(SuccBB
);
2463 UnswitchedClones
+= Log2_32(NonExitingSuccessors
);
2466 // Ignore up to the "unscaled candidates" number of unswitch candidates
2467 // when calculating the power-of-two scaling of the cost. The main idea
2468 // with this control is to allow a small number of unswitches to happen
2469 // and rely more on siblings multiplier (see below) when the number
2470 // of candidates is small.
2471 unsigned ClonesPower
=
2472 std::max(UnswitchedClones
- (int)UnswitchNumInitialUnscaledCandidates
, 0);
2474 // Allowing top-level loops to spread a bit more than nested ones.
2475 int SiblingsMultiplier
=
2476 std::max((ParentL
? SiblingsCount
2477 : SiblingsCount
/ (int)UnswitchSiblingsToplevelDiv
),
2479 // Compute the cost multiplier in a way that won't overflow by saturating
2480 // at an upper bound.
2482 if (ClonesPower
> Log2_32(UnswitchThreshold
) ||
2483 SiblingsMultiplier
> UnswitchThreshold
)
2484 CostMultiplier
= UnswitchThreshold
;
2486 CostMultiplier
= std::min(SiblingsMultiplier
* (1 << ClonesPower
),
2487 (int)UnswitchThreshold
);
2489 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2490 << " (siblings " << SiblingsMultiplier
<< " * clones "
2491 << (1 << ClonesPower
) << ")"
2492 << " for unswitch candidate: " << TI
<< "\n");
2493 return CostMultiplier
;
2497 unswitchBestCondition(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
2498 AssumptionCache
&AC
, TargetTransformInfo
&TTI
,
2499 function_ref
<void(bool, ArrayRef
<Loop
*>)> UnswitchCB
,
2500 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
) {
2501 // Collect all invariant conditions within this loop (as opposed to an inner
2502 // loop which would be handled when visiting that inner loop).
2503 SmallVector
<std::pair
<Instruction
*, TinyPtrVector
<Value
*>>, 4>
2506 // Whether or not we should also collect guards in the loop.
2507 bool CollectGuards
= false;
2508 if (UnswitchGuards
) {
2509 auto *GuardDecl
= L
.getHeader()->getParent()->getParent()->getFunction(
2510 Intrinsic::getName(Intrinsic::experimental_guard
));
2511 if (GuardDecl
&& !GuardDecl
->use_empty())
2512 CollectGuards
= true;
2515 for (auto *BB
: L
.blocks()) {
2516 if (LI
.getLoopFor(BB
) != &L
)
2522 auto *Cond
= cast
<IntrinsicInst
>(&I
)->getArgOperand(0);
2523 // TODO: Support AND, OR conditions and partial unswitching.
2524 if (!isa
<Constant
>(Cond
) && L
.isLoopInvariant(Cond
))
2525 UnswitchCandidates
.push_back({&I
, {Cond
}});
2528 if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
2529 // We can only consider fully loop-invariant switch conditions as we need
2530 // to completely eliminate the switch after unswitching.
2531 if (!isa
<Constant
>(SI
->getCondition()) &&
2532 L
.isLoopInvariant(SI
->getCondition()))
2533 UnswitchCandidates
.push_back({SI
, {SI
->getCondition()}});
2537 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2538 if (!BI
|| !BI
->isConditional() || isa
<Constant
>(BI
->getCondition()) ||
2539 BI
->getSuccessor(0) == BI
->getSuccessor(1))
2542 if (L
.isLoopInvariant(BI
->getCondition())) {
2543 UnswitchCandidates
.push_back({BI
, {BI
->getCondition()}});
2547 Instruction
&CondI
= *cast
<Instruction
>(BI
->getCondition());
2548 if (CondI
.getOpcode() != Instruction::And
&&
2549 CondI
.getOpcode() != Instruction::Or
)
2552 TinyPtrVector
<Value
*> Invariants
=
2553 collectHomogenousInstGraphLoopInvariants(L
, CondI
, LI
);
2554 if (Invariants
.empty())
2557 UnswitchCandidates
.push_back({BI
, std::move(Invariants
)});
2560 // If we didn't find any candidates, we're done.
2561 if (UnswitchCandidates
.empty())
2564 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2565 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2566 // irreducible control flow into reducible control flow and introduce new
2567 // loops "out of thin air". If we ever discover important use cases for doing
2568 // this, we can add support to loop unswitch, but it is a lot of complexity
2569 // for what seems little or no real world benefit.
2570 LoopBlocksRPO
RPOT(&L
);
2572 if (containsIrreducibleCFG
<const BasicBlock
*>(RPOT
, LI
))
2575 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
2576 L
.getUniqueExitBlocks(ExitBlocks
);
2578 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2579 // don't know how to split those exit blocks.
2580 // FIXME: We should teach SplitBlock to handle this and remove this
2582 for (auto *ExitBB
: ExitBlocks
)
2583 if (isa
<CleanupPadInst
>(ExitBB
->getFirstNonPHI())) {
2584 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2589 dbgs() << "Considering " << UnswitchCandidates
.size()
2590 << " non-trivial loop invariant conditions for unswitching.\n");
2592 // Given that unswitching these terminators will require duplicating parts of
2593 // the loop, so we need to be able to model that cost. Compute the ephemeral
2594 // values and set up a data structure to hold per-BB costs. We cache each
2595 // block's cost so that we don't recompute this when considering different
2596 // subsets of the loop for duplication during unswitching.
2597 SmallPtrSet
<const Value
*, 4> EphValues
;
2598 CodeMetrics::collectEphemeralValues(&L
, &AC
, EphValues
);
2599 SmallDenseMap
<BasicBlock
*, int, 4> BBCostMap
;
2601 // Compute the cost of each block, as well as the total loop cost. Also, bail
2602 // out if we see instructions which are incompatible with loop unswitching
2603 // (convergent, noduplicate, or cross-basic-block tokens).
2604 // FIXME: We might be able to safely handle some of these in non-duplicated
2607 for (auto *BB
: L
.blocks()) {
2609 for (auto &I
: *BB
) {
2610 if (EphValues
.count(&I
))
2613 if (I
.getType()->isTokenTy() && I
.isUsedOutsideOfBlock(BB
))
2615 if (auto CS
= CallSite(&I
))
2616 if (CS
.isConvergent() || CS
.cannotDuplicate())
2619 Cost
+= TTI
.getUserCost(&I
);
2621 assert(Cost
>= 0 && "Must not have negative costs!");
2623 assert(LoopCost
>= 0 && "Must not have negative loop costs!");
2624 BBCostMap
[BB
] = Cost
;
2626 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost
<< "\n");
2628 // Now we find the best candidate by searching for the one with the following
2629 // properties in order:
2631 // 1) An unswitching cost below the threshold
2632 // 2) The smallest number of duplicated unswitch candidates (to avoid
2633 // creating redundant subsequent unswitching)
2634 // 3) The smallest cost after unswitching.
2636 // We prioritize reducing fanout of unswitch candidates provided the cost
2637 // remains below the threshold because this has a multiplicative effect.
2639 // This requires memoizing each dominator subtree to avoid redundant work.
2641 // FIXME: Need to actually do the number of candidates part above.
2642 SmallDenseMap
<DomTreeNode
*, int, 4> DTCostMap
;
2643 // Given a terminator which might be unswitched, computes the non-duplicated
2644 // cost for that terminator.
2645 auto ComputeUnswitchedCost
= [&](Instruction
&TI
, bool FullUnswitch
) {
2646 BasicBlock
&BB
= *TI
.getParent();
2647 SmallPtrSet
<BasicBlock
*, 4> Visited
;
2649 int Cost
= LoopCost
;
2650 for (BasicBlock
*SuccBB
: successors(&BB
)) {
2651 // Don't count successors more than once.
2652 if (!Visited
.insert(SuccBB
).second
)
2655 // If this is a partial unswitch candidate, then it must be a conditional
2656 // branch with a condition of either `or` or `and`. In that case, one of
2657 // the successors is necessarily duplicated, so don't even try to remove
2659 if (!FullUnswitch
) {
2660 auto &BI
= cast
<BranchInst
>(TI
);
2661 if (cast
<Instruction
>(BI
.getCondition())->getOpcode() ==
2663 if (SuccBB
== BI
.getSuccessor(1))
2666 assert(cast
<Instruction
>(BI
.getCondition())->getOpcode() ==
2668 "Only `and` and `or` conditions can result in a partial "
2670 if (SuccBB
== BI
.getSuccessor(0))
2675 // This successor's domtree will not need to be duplicated after
2676 // unswitching if the edge to the successor dominates it (and thus the
2677 // entire tree). This essentially means there is no other path into this
2678 // subtree and so it will end up live in only one clone of the loop.
2679 if (SuccBB
->getUniquePredecessor() ||
2680 llvm::all_of(predecessors(SuccBB
), [&](BasicBlock
*PredBB
) {
2681 return PredBB
== &BB
|| DT
.dominates(SuccBB
, PredBB
);
2683 Cost
-= computeDomSubtreeCost(*DT
[SuccBB
], BBCostMap
, DTCostMap
);
2685 "Non-duplicated cost should never exceed total loop cost!");
2689 // Now scale the cost by the number of unique successors minus one. We
2690 // subtract one because there is already at least one copy of the entire
2691 // loop. This is computing the new cost of unswitching a condition.
2692 // Note that guards always have 2 unique successors that are implicit and
2693 // will be materialized if we decide to unswitch it.
2694 int SuccessorsCount
= isGuard(&TI
) ? 2 : Visited
.size();
2695 assert(SuccessorsCount
> 1 &&
2696 "Cannot unswitch a condition without multiple distinct successors!");
2697 return Cost
* (SuccessorsCount
- 1);
2699 Instruction
*BestUnswitchTI
= nullptr;
2700 int BestUnswitchCost
;
2701 ArrayRef
<Value
*> BestUnswitchInvariants
;
2702 for (auto &TerminatorAndInvariants
: UnswitchCandidates
) {
2703 Instruction
&TI
= *TerminatorAndInvariants
.first
;
2704 ArrayRef
<Value
*> Invariants
= TerminatorAndInvariants
.second
;
2705 BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
);
2706 int CandidateCost
= ComputeUnswitchedCost(
2707 TI
, /*FullUnswitch*/ !BI
|| (Invariants
.size() == 1 &&
2708 Invariants
[0] == BI
->getCondition()));
2709 // Calculate cost multiplier which is a tool to limit potentially
2710 // exponential behavior of loop-unswitch.
2711 if (EnableUnswitchCostMultiplier
) {
2712 int CostMultiplier
=
2713 calculateUnswitchCostMultiplier(TI
, L
, LI
, DT
, UnswitchCandidates
);
2715 (CostMultiplier
> 0 && CostMultiplier
<= UnswitchThreshold
) &&
2716 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2717 CandidateCost
*= CostMultiplier
;
2718 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2719 << " (multiplier: " << CostMultiplier
<< ")"
2720 << " for unswitch candidate: " << TI
<< "\n");
2722 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2723 << " for unswitch candidate: " << TI
<< "\n");
2726 if (!BestUnswitchTI
|| CandidateCost
< BestUnswitchCost
) {
2727 BestUnswitchTI
= &TI
;
2728 BestUnswitchCost
= CandidateCost
;
2729 BestUnswitchInvariants
= Invariants
;
2733 if (BestUnswitchCost
>= UnswitchThreshold
) {
2734 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2735 << BestUnswitchCost
<< "\n");
2739 // If the best candidate is a guard, turn it into a branch.
2740 if (isGuard(BestUnswitchTI
))
2741 BestUnswitchTI
= turnGuardIntoBranch(cast
<IntrinsicInst
>(BestUnswitchTI
), L
,
2742 ExitBlocks
, DT
, LI
, MSSAU
);
2744 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
2745 << BestUnswitchCost
<< ") terminator: " << *BestUnswitchTI
2747 unswitchNontrivialInvariants(L
, *BestUnswitchTI
, BestUnswitchInvariants
,
2748 ExitBlocks
, DT
, LI
, AC
, UnswitchCB
, SE
, MSSAU
);
2752 /// Unswitch control flow predicated on loop invariant conditions.
2754 /// This first hoists all branches or switches which are trivial (IE, do not
2755 /// require duplicating any part of the loop) out of the loop body. It then
2756 /// looks at other loop invariant control flows and tries to unswitch those as
2757 /// well by cloning the loop if the result is small enough.
2759 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2760 /// updated based on the unswitch.
2761 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2763 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2764 /// true, we will attempt to do non-trivial unswitching as well as trivial
2767 /// The `UnswitchCB` callback provided will be run after unswitching is
2768 /// complete, with the first parameter set to `true` if the provided loop
2769 /// remains a loop, and a list of new sibling loops created.
2771 /// If `SE` is non-null, we will update that analysis based on the unswitching
2773 static bool unswitchLoop(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
2774 AssumptionCache
&AC
, TargetTransformInfo
&TTI
,
2776 function_ref
<void(bool, ArrayRef
<Loop
*>)> UnswitchCB
,
2777 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
) {
2778 assert(L
.isRecursivelyLCSSAForm(DT
, LI
) &&
2779 "Loops must be in LCSSA form before unswitching.");
2780 bool Changed
= false;
2782 // Must be in loop simplified form: we need a preheader and dedicated exits.
2783 if (!L
.isLoopSimplifyForm())
2786 // Try trivial unswitch first before loop over other basic blocks in the loop.
2787 if (unswitchAllTrivialConditions(L
, DT
, LI
, SE
, MSSAU
)) {
2788 // If we unswitched successfully we will want to clean up the loop before
2789 // processing it further so just mark it as unswitched and return.
2790 UnswitchCB(/*CurrentLoopValid*/ true, {});
2794 // If we're not doing non-trivial unswitching, we're done. We both accept
2795 // a parameter but also check a local flag that can be used for testing
2797 if (!NonTrivial
&& !EnableNonTrivialUnswitch
)
2800 // For non-trivial unswitching, because it often creates new loops, we rely on
2801 // the pass manager to iterate on the loops rather than trying to immediately
2802 // reach a fixed point. There is no substantial advantage to iterating
2803 // internally, and if any of the new loops are simplified enough to contain
2804 // trivial unswitching we want to prefer those.
2806 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2807 // a partial unswitch when possible below the threshold.
2808 if (unswitchBestCondition(L
, DT
, LI
, AC
, TTI
, UnswitchCB
, SE
, MSSAU
))
2811 // No other opportunities to unswitch.
2815 PreservedAnalyses
SimpleLoopUnswitchPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
2816 LoopStandardAnalysisResults
&AR
,
2818 Function
&F
= *L
.getHeader()->getParent();
2821 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F
.getName() << ": " << L
2824 // Save the current loop name in a variable so that we can report it even
2825 // after it has been deleted.
2826 std::string LoopName
= L
.getName();
2828 auto UnswitchCB
= [&L
, &U
, &LoopName
](bool CurrentLoopValid
,
2829 ArrayRef
<Loop
*> NewLoops
) {
2830 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2831 if (!NewLoops
.empty())
2832 U
.addSiblingLoops(NewLoops
);
2834 // If the current loop remains valid, we should revisit it to catch any
2835 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2836 if (CurrentLoopValid
)
2837 U
.revisitCurrentLoop();
2839 U
.markLoopAsDeleted(L
, LoopName
);
2842 Optional
<MemorySSAUpdater
> MSSAU
;
2844 MSSAU
= MemorySSAUpdater(AR
.MSSA
);
2845 if (VerifyMemorySSA
)
2846 AR
.MSSA
->verifyMemorySSA();
2848 if (!unswitchLoop(L
, AR
.DT
, AR
.LI
, AR
.AC
, AR
.TTI
, NonTrivial
, UnswitchCB
,
2849 &AR
.SE
, MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr))
2850 return PreservedAnalyses::all();
2852 if (AR
.MSSA
&& VerifyMemorySSA
)
2853 AR
.MSSA
->verifyMemorySSA();
2855 // Historically this pass has had issues with the dominator tree so verify it
2856 // in asserts builds.
2857 assert(AR
.DT
.verify(DominatorTree::VerificationLevel::Fast
));
2858 return getLoopPassPreservedAnalyses();
2863 class SimpleLoopUnswitchLegacyPass
: public LoopPass
{
2867 static char ID
; // Pass ID, replacement for typeid
2869 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial
= false)
2870 : LoopPass(ID
), NonTrivial(NonTrivial
) {
2871 initializeSimpleLoopUnswitchLegacyPassPass(
2872 *PassRegistry::getPassRegistry());
2875 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
2877 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2878 AU
.addRequired
<AssumptionCacheTracker
>();
2879 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
2880 if (EnableMSSALoopDependency
) {
2881 AU
.addRequired
<MemorySSAWrapperPass
>();
2882 AU
.addPreserved
<MemorySSAWrapperPass
>();
2884 getLoopAnalysisUsage(AU
);
2888 } // end anonymous namespace
2890 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
2894 Function
&F
= *L
->getHeader()->getParent();
2896 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F
.getName() << ": " << *L
2899 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2900 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
2901 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
2902 auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
2903 MemorySSA
*MSSA
= nullptr;
2904 Optional
<MemorySSAUpdater
> MSSAU
;
2905 if (EnableMSSALoopDependency
) {
2906 MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
2907 MSSAU
= MemorySSAUpdater(MSSA
);
2910 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
2911 auto *SE
= SEWP
? &SEWP
->getSE() : nullptr;
2913 auto UnswitchCB
= [&L
, &LPM
](bool CurrentLoopValid
,
2914 ArrayRef
<Loop
*> NewLoops
) {
2915 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2916 for (auto *NewL
: NewLoops
)
2919 // If the current loop remains valid, re-add it to the queue. This is
2920 // a little wasteful as we'll finish processing the current loop as well,
2921 // but it is the best we can do in the old PM.
2922 if (CurrentLoopValid
)
2925 LPM
.markLoopAsDeleted(*L
);
2928 if (MSSA
&& VerifyMemorySSA
)
2929 MSSA
->verifyMemorySSA();
2931 bool Changed
= unswitchLoop(*L
, DT
, LI
, AC
, TTI
, NonTrivial
, UnswitchCB
, SE
,
2932 MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr);
2934 if (MSSA
&& VerifyMemorySSA
)
2935 MSSA
->verifyMemorySSA();
2937 // If anything was unswitched, also clear any cached information about this
2939 LPM
.deleteSimpleAnalysisLoop(L
);
2941 // Historically this pass has had issues with the dominator tree so verify it
2942 // in asserts builds.
2943 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
2948 char SimpleLoopUnswitchLegacyPass::ID
= 0;
2949 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass
, "simple-loop-unswitch",
2950 "Simple unswitch loops", false, false)
2951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
2952 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2953 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
2954 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
2955 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
2956 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
2957 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass
, "simple-loop-unswitch",
2958 "Simple unswitch loops", false, false)
2960 Pass
*llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial
) {
2961 return new SimpleLoopUnswitchLegacyPass(NonTrivial
);