1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass moves instructions into successor blocks, when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/Sink.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Scalar.h"
29 #define DEBUG_TYPE "sink"
31 STATISTIC(NumSunk
, "Number of instructions sunk");
32 STATISTIC(NumSinkIter
, "Number of sinking iterations");
34 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
35 /// occur in blocks dominated by the specified block.
36 static bool AllUsesDominatedByBlock(Instruction
*Inst
, BasicBlock
*BB
,
38 // Ignoring debug uses is necessary so debug info doesn't affect the code.
39 // This may leave a referencing dbg_value in the original block, before
40 // the definition of the vreg. Dwarf generator handles this although the
41 // user might not get the right info at runtime.
42 for (Use
&U
: Inst
->uses()) {
43 // Determine the block of the use.
44 Instruction
*UseInst
= cast
<Instruction
>(U
.getUser());
45 BasicBlock
*UseBlock
= UseInst
->getParent();
46 if (PHINode
*PN
= dyn_cast
<PHINode
>(UseInst
)) {
47 // PHI nodes use the operand in the predecessor block, not the block with
49 unsigned Num
= PHINode::getIncomingValueNumForOperand(U
.getOperandNo());
50 UseBlock
= PN
->getIncomingBlock(Num
);
52 // Check that it dominates.
53 if (!DT
.dominates(BB
, UseBlock
))
59 static bool isSafeToMove(Instruction
*Inst
, AliasAnalysis
&AA
,
60 SmallPtrSetImpl
<Instruction
*> &Stores
) {
62 if (Inst
->mayWriteToMemory()) {
67 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Inst
)) {
68 MemoryLocation Loc
= MemoryLocation::get(L
);
69 for (Instruction
*S
: Stores
)
70 if (isModSet(AA
.getModRefInfo(S
, Loc
)))
74 if (Inst
->isTerminator() || isa
<PHINode
>(Inst
) || Inst
->isEHPad() ||
78 if (auto *Call
= dyn_cast
<CallBase
>(Inst
)) {
79 // Convergent operations cannot be made control-dependent on additional
81 if (Call
->hasFnAttr(Attribute::Convergent
))
84 for (Instruction
*S
: Stores
)
85 if (isModSet(AA
.getModRefInfo(S
, Call
)))
92 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
93 /// in the specified basic block.
94 static bool IsAcceptableTarget(Instruction
*Inst
, BasicBlock
*SuccToSinkTo
,
95 DominatorTree
&DT
, LoopInfo
&LI
) {
96 assert(Inst
&& "Instruction to be sunk is null");
97 assert(SuccToSinkTo
&& "Candidate sink target is null");
99 // It is not possible to sink an instruction into its own block. This can
100 // happen with loops.
101 if (Inst
->getParent() == SuccToSinkTo
)
104 // It's never legal to sink an instruction into a block which terminates in an
106 if (SuccToSinkTo
->getTerminator()->isExceptionalTerminator())
109 // If the block has multiple predecessors, this would introduce computation
110 // on different code paths. We could split the critical edge, but for now we
112 // FIXME: Split critical edges if not backedges.
113 if (SuccToSinkTo
->getUniquePredecessor() != Inst
->getParent()) {
114 // We cannot sink a load across a critical edge - there may be stores in
116 if (Inst
->mayReadFromMemory())
119 // We don't want to sink across a critical edge if we don't dominate the
120 // successor. We could be introducing calculations to new code paths.
121 if (!DT
.dominates(Inst
->getParent(), SuccToSinkTo
))
124 // Don't sink instructions into a loop.
125 Loop
*succ
= LI
.getLoopFor(SuccToSinkTo
);
126 Loop
*cur
= LI
.getLoopFor(Inst
->getParent());
127 if (succ
!= nullptr && succ
!= cur
)
131 // Finally, check that all the uses of the instruction are actually
132 // dominated by the candidate
133 return AllUsesDominatedByBlock(Inst
, SuccToSinkTo
, DT
);
136 /// SinkInstruction - Determine whether it is safe to sink the specified machine
137 /// instruction out of its current block into a successor.
138 static bool SinkInstruction(Instruction
*Inst
,
139 SmallPtrSetImpl
<Instruction
*> &Stores
,
140 DominatorTree
&DT
, LoopInfo
&LI
, AAResults
&AA
) {
142 // Don't sink static alloca instructions. CodeGen assumes allocas outside the
143 // entry block are dynamically sized stack objects.
144 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Inst
))
145 if (AI
->isStaticAlloca())
148 // Check if it's safe to move the instruction.
149 if (!isSafeToMove(Inst
, AA
, Stores
))
152 // FIXME: This should include support for sinking instructions within the
153 // block they are currently in to shorten the live ranges. We often get
154 // instructions sunk into the top of a large block, but it would be better to
155 // also sink them down before their first use in the block. This xform has to
156 // be careful not to *increase* register pressure though, e.g. sinking
157 // "x = y + z" down if it kills y and z would increase the live ranges of y
158 // and z and only shrink the live range of x.
160 // SuccToSinkTo - This is the successor to sink this instruction to, once we
162 BasicBlock
*SuccToSinkTo
= nullptr;
164 // Instructions can only be sunk if all their uses are in blocks
165 // dominated by one of the successors.
166 // Look at all the dominated blocks and see if we can sink it in one.
167 DomTreeNode
*DTN
= DT
.getNode(Inst
->getParent());
168 for (DomTreeNode::iterator I
= DTN
->begin(), E
= DTN
->end();
169 I
!= E
&& SuccToSinkTo
== nullptr; ++I
) {
170 BasicBlock
*Candidate
= (*I
)->getBlock();
171 // A node always immediate-dominates its children on the dominator
173 if (IsAcceptableTarget(Inst
, Candidate
, DT
, LI
))
174 SuccToSinkTo
= Candidate
;
177 // If no suitable postdominator was found, look at all the successors and
178 // decide which one we should sink to, if any.
179 for (succ_iterator I
= succ_begin(Inst
->getParent()),
180 E
= succ_end(Inst
->getParent()); I
!= E
&& !SuccToSinkTo
; ++I
) {
181 if (IsAcceptableTarget(Inst
, *I
, DT
, LI
))
185 // If we couldn't find a block to sink to, ignore this instruction.
189 LLVM_DEBUG(dbgs() << "Sink" << *Inst
<< " (";
190 Inst
->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> ";
191 SuccToSinkTo
->printAsOperand(dbgs(), false); dbgs() << ")\n");
193 // Move the instruction.
194 Inst
->moveBefore(&*SuccToSinkTo
->getFirstInsertionPt());
198 static bool ProcessBlock(BasicBlock
&BB
, DominatorTree
&DT
, LoopInfo
&LI
,
200 // Can't sink anything out of a block that has less than two successors.
201 if (BB
.getTerminator()->getNumSuccessors() <= 1) return false;
203 // Don't bother sinking code out of unreachable blocks. In addition to being
204 // unprofitable, it can also lead to infinite looping, because in an
205 // unreachable loop there may be nowhere to stop.
206 if (!DT
.isReachableFromEntry(&BB
)) return false;
208 bool MadeChange
= false;
210 // Walk the basic block bottom-up. Remember if we saw a store.
211 BasicBlock::iterator I
= BB
.end();
213 bool ProcessedBegin
= false;
214 SmallPtrSet
<Instruction
*, 8> Stores
;
216 Instruction
*Inst
= &*I
; // The instruction to sink.
218 // Predecrement I (if it's not begin) so that it isn't invalidated by
220 ProcessedBegin
= I
== BB
.begin();
224 if (isa
<DbgInfoIntrinsic
>(Inst
))
227 if (SinkInstruction(Inst
, Stores
, DT
, LI
, AA
)) {
232 // If we just processed the first instruction in the block, we're done.
233 } while (!ProcessedBegin
);
238 static bool iterativelySinkInstructions(Function
&F
, DominatorTree
&DT
,
239 LoopInfo
&LI
, AAResults
&AA
) {
240 bool MadeChange
, EverMadeChange
= false;
244 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter
<< "\n");
245 // Process all basic blocks.
246 for (BasicBlock
&I
: F
)
247 MadeChange
|= ProcessBlock(I
, DT
, LI
, AA
);
248 EverMadeChange
|= MadeChange
;
250 } while (MadeChange
);
252 return EverMadeChange
;
255 PreservedAnalyses
SinkingPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
256 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
257 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
258 auto &AA
= AM
.getResult
<AAManager
>(F
);
260 if (!iterativelySinkInstructions(F
, DT
, LI
, AA
))
261 return PreservedAnalyses::all();
263 PreservedAnalyses PA
;
264 PA
.preserveSet
<CFGAnalyses
>();
269 class SinkingLegacyPass
: public FunctionPass
{
271 static char ID
; // Pass identification
272 SinkingLegacyPass() : FunctionPass(ID
) {
273 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
276 bool runOnFunction(Function
&F
) override
{
277 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
278 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
279 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
281 return iterativelySinkInstructions(F
, DT
, LI
, AA
);
284 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
285 AU
.setPreservesCFG();
286 FunctionPass::getAnalysisUsage(AU
);
287 AU
.addRequired
<AAResultsWrapperPass
>();
288 AU
.addRequired
<DominatorTreeWrapperPass
>();
289 AU
.addRequired
<LoopInfoWrapperPass
>();
290 AU
.addPreserved
<DominatorTreeWrapperPass
>();
291 AU
.addPreserved
<LoopInfoWrapperPass
>();
294 } // end anonymous namespace
296 char SinkingLegacyPass::ID
= 0;
297 INITIALIZE_PASS_BEGIN(SinkingLegacyPass
, "sink", "Code sinking", false, false)
298 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
299 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
301 INITIALIZE_PASS_END(SinkingLegacyPass
, "sink", "Code sinking", false, false)
303 FunctionPass
*llvm::createSinkingPass() { return new SinkingLegacyPass(); }