[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / SpeculateAroundPHIs.cpp
blob51e97cf1c782ce6b3a589273b70646053597a237
1 //===- SpeculateAroundPHIs.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/SpeculateAroundPHIs.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/ADT/Sequence.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/IR/IRBuilder.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 using namespace llvm;
25 #define DEBUG_TYPE "spec-phis"
27 STATISTIC(NumPHIsSpeculated, "Number of PHI nodes we speculated around");
28 STATISTIC(NumEdgesSplit,
29 "Number of critical edges which were split for speculation");
30 STATISTIC(NumSpeculatedInstructions,
31 "Number of instructions we speculated around the PHI nodes");
32 STATISTIC(NumNewRedundantInstructions,
33 "Number of new, redundant instructions inserted");
35 /// Check whether speculating the users of a PHI node around the PHI
36 /// will be safe.
37 ///
38 /// This checks both that all of the users are safe and also that all of their
39 /// operands are either recursively safe or already available along an incoming
40 /// edge to the PHI.
41 ///
42 /// This routine caches both all the safe nodes explored in `PotentialSpecSet`
43 /// and the chain of nodes that definitively reach any unsafe node in
44 /// `UnsafeSet`. By preserving these between repeated calls to this routine for
45 /// PHIs in the same basic block, the exploration here can be reused. However,
46 /// these caches must no be reused for PHIs in a different basic block as they
47 /// reflect what is available along incoming edges.
48 static bool
49 isSafeToSpeculatePHIUsers(PHINode &PN, DominatorTree &DT,
50 SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
51 SmallPtrSetImpl<Instruction *> &UnsafeSet) {
52 auto *PhiBB = PN.getParent();
53 SmallPtrSet<Instruction *, 4> Visited;
54 SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack;
56 // Walk each user of the PHI node.
57 for (Use &U : PN.uses()) {
58 auto *UI = cast<Instruction>(U.getUser());
60 // Ensure the use post-dominates the PHI node. This ensures that, in the
61 // absence of unwinding, the use will actually be reached.
62 // FIXME: We use a blunt hammer of requiring them to be in the same basic
63 // block. We should consider using actual post-dominance here in the
64 // future.
65 if (UI->getParent() != PhiBB) {
66 LLVM_DEBUG(dbgs() << " Unsafe: use in a different BB: " << *UI << "\n");
67 return false;
70 // FIXME: This check is much too conservative. We're not going to move these
71 // instructions onto new dynamic paths through the program unless there is
72 // a call instruction between the use and the PHI node. And memory isn't
73 // changing unless there is a store in that same sequence. We should
74 // probably change this to do at least a limited scan of the intervening
75 // instructions and allow handling stores in easily proven safe cases.
76 if (mayBeMemoryDependent(*UI)) {
77 LLVM_DEBUG(dbgs() << " Unsafe: can't speculate use: " << *UI << "\n");
78 return false;
81 // Now do a depth-first search of everything these users depend on to make
82 // sure they are transitively safe. This is a depth-first search, but we
83 // check nodes in preorder to minimize the amount of checking.
84 Visited.insert(UI);
85 DFSStack.push_back({UI, UI->value_op_begin()});
86 do {
87 User::value_op_iterator OpIt;
88 std::tie(UI, OpIt) = DFSStack.pop_back_val();
90 while (OpIt != UI->value_op_end()) {
91 auto *OpI = dyn_cast<Instruction>(*OpIt);
92 // Increment to the next operand for whenever we continue.
93 ++OpIt;
94 // No need to visit non-instructions, which can't form dependencies.
95 if (!OpI)
96 continue;
98 // Now do the main pre-order checks that this operand is a viable
99 // dependency of something we want to speculate.
101 // First do a few checks for instructions that won't require
102 // speculation at all because they are trivially available on the
103 // incoming edge (either through dominance or through an incoming value
104 // to a PHI).
106 // The cases in the current block will be trivially dominated by the
107 // edge.
108 auto *ParentBB = OpI->getParent();
109 if (ParentBB == PhiBB) {
110 if (isa<PHINode>(OpI)) {
111 // We can trivially map through phi nodes in the same block.
112 continue;
114 } else if (DT.dominates(ParentBB, PhiBB)) {
115 // Instructions from dominating blocks are already available.
116 continue;
119 // Once we know that we're considering speculating the operand, check
120 // if we've already explored this subgraph and found it to be safe.
121 if (PotentialSpecSet.count(OpI))
122 continue;
124 // If we've already explored this subgraph and found it unsafe, bail.
125 // If when we directly test whether this is safe it fails, bail.
126 if (UnsafeSet.count(OpI) || ParentBB != PhiBB ||
127 mayBeMemoryDependent(*OpI)) {
128 LLVM_DEBUG(dbgs() << " Unsafe: can't speculate transitive use: "
129 << *OpI << "\n");
130 // Record the stack of instructions which reach this node as unsafe
131 // so we prune subsequent searches.
132 UnsafeSet.insert(OpI);
133 for (auto &StackPair : DFSStack) {
134 Instruction *I = StackPair.first;
135 UnsafeSet.insert(I);
137 return false;
140 // Skip any operands we're already recursively checking.
141 if (!Visited.insert(OpI).second)
142 continue;
144 // Push onto the stack and descend. We can directly continue this
145 // loop when ascending.
146 DFSStack.push_back({UI, OpIt});
147 UI = OpI;
148 OpIt = OpI->value_op_begin();
151 // This node and all its operands are safe. Go ahead and cache that for
152 // reuse later.
153 PotentialSpecSet.insert(UI);
155 // Continue with the next node on the stack.
156 } while (!DFSStack.empty());
159 #ifndef NDEBUG
160 // Every visited operand should have been marked as safe for speculation at
161 // this point. Verify this and return success.
162 for (auto *I : Visited)
163 assert(PotentialSpecSet.count(I) &&
164 "Failed to mark a visited instruction as safe!");
165 #endif
166 return true;
169 /// Check whether, in isolation, a given PHI node is both safe and profitable
170 /// to speculate users around.
172 /// This handles checking whether there are any constant operands to a PHI
173 /// which could represent a useful speculation candidate, whether the users of
174 /// the PHI are safe to speculate including all their transitive dependencies,
175 /// and whether after speculation there will be some cost savings (profit) to
176 /// folding the operands into the users of the PHI node. Returns true if both
177 /// safe and profitable with relevant cost savings updated in the map and with
178 /// an update to the `PotentialSpecSet`. Returns false if either safety or
179 /// profitability are absent. Some new entries may be made to the
180 /// `PotentialSpecSet` even when this routine returns false, but they remain
181 /// conservatively correct.
183 /// The profitability check here is a local one, but it checks this in an
184 /// interesting way. Beyond checking that the total cost of materializing the
185 /// constants will be less than the cost of folding them into their users, it
186 /// also checks that no one incoming constant will have a higher cost when
187 /// folded into its users rather than materialized. This higher cost could
188 /// result in a dynamic *path* that is more expensive even when the total cost
189 /// is lower. Currently, all of the interesting cases where this optimization
190 /// should fire are ones where it is a no-loss operation in this sense. If we
191 /// ever want to be more aggressive here, we would need to balance the
192 /// different incoming edges' cost by looking at their respective
193 /// probabilities.
194 static bool isSafeAndProfitableToSpeculateAroundPHI(
195 PHINode &PN, SmallDenseMap<PHINode *, int, 16> &CostSavingsMap,
196 SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
197 SmallPtrSetImpl<Instruction *> &UnsafeSet, DominatorTree &DT,
198 TargetTransformInfo &TTI) {
199 // First see whether there is any cost savings to speculating around this
200 // PHI, and build up a map of the constant inputs to how many times they
201 // occur.
202 bool NonFreeMat = false;
203 struct CostsAndCount {
204 int MatCost = TargetTransformInfo::TCC_Free;
205 int FoldedCost = TargetTransformInfo::TCC_Free;
206 int Count = 0;
208 SmallDenseMap<ConstantInt *, CostsAndCount, 16> CostsAndCounts;
209 SmallPtrSet<BasicBlock *, 16> IncomingConstantBlocks;
210 for (int i : llvm::seq<int>(0, PN.getNumIncomingValues())) {
211 auto *IncomingC = dyn_cast<ConstantInt>(PN.getIncomingValue(i));
212 if (!IncomingC)
213 continue;
215 // Only visit each incoming edge with a constant input once.
216 if (!IncomingConstantBlocks.insert(PN.getIncomingBlock(i)).second)
217 continue;
219 auto InsertResult = CostsAndCounts.insert({IncomingC, {}});
220 // Count how many edges share a given incoming costant.
221 ++InsertResult.first->second.Count;
222 // Only compute the cost the first time we see a particular constant.
223 if (!InsertResult.second)
224 continue;
226 int &MatCost = InsertResult.first->second.MatCost;
227 MatCost = TTI.getIntImmCost(IncomingC->getValue(), IncomingC->getType());
228 NonFreeMat |= MatCost != TTI.TCC_Free;
230 if (!NonFreeMat) {
231 LLVM_DEBUG(dbgs() << " Free: " << PN << "\n");
232 // No profit in free materialization.
233 return false;
236 // Now check that the uses of this PHI can actually be speculated,
237 // otherwise we'll still have to materialize the PHI value.
238 if (!isSafeToSpeculatePHIUsers(PN, DT, PotentialSpecSet, UnsafeSet)) {
239 LLVM_DEBUG(dbgs() << " Unsafe PHI: " << PN << "\n");
240 return false;
243 // Compute how much (if any) savings are available by speculating around this
244 // PHI.
245 for (Use &U : PN.uses()) {
246 auto *UserI = cast<Instruction>(U.getUser());
247 // Now check whether there is any savings to folding the incoming constants
248 // into this use.
249 unsigned Idx = U.getOperandNo();
251 // If we have a binary operator that is commutative, an actual constant
252 // operand would end up on the RHS, so pretend the use of the PHI is on the
253 // RHS.
255 // Technically, this is a bit weird if *both* operands are PHIs we're
256 // speculating. But if that is the case, giving an "optimistic" cost isn't
257 // a bad thing because after speculation it will constant fold. And
258 // moreover, such cases should likely have been constant folded already by
259 // some other pass, so we shouldn't worry about "modeling" them terribly
260 // accurately here. Similarly, if the other operand is a constant, it still
261 // seems fine to be "optimistic" in our cost modeling, because when the
262 // incoming operand from the PHI node is also a constant, we will end up
263 // constant folding.
264 if (UserI->isBinaryOp() && UserI->isCommutative() && Idx != 1)
265 // Assume we will commute the constant to the RHS to be canonical.
266 Idx = 1;
268 // Get the intrinsic ID if this user is an intrinsic.
269 Intrinsic::ID IID = Intrinsic::not_intrinsic;
270 if (auto *UserII = dyn_cast<IntrinsicInst>(UserI))
271 IID = UserII->getIntrinsicID();
273 for (auto &IncomingConstantAndCostsAndCount : CostsAndCounts) {
274 ConstantInt *IncomingC = IncomingConstantAndCostsAndCount.first;
275 int MatCost = IncomingConstantAndCostsAndCount.second.MatCost;
276 int &FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost;
277 if (IID)
278 FoldedCost += TTI.getIntImmCost(IID, Idx, IncomingC->getValue(),
279 IncomingC->getType());
280 else
281 FoldedCost +=
282 TTI.getIntImmCost(UserI->getOpcode(), Idx, IncomingC->getValue(),
283 IncomingC->getType());
285 // If we accumulate more folded cost for this incoming constant than
286 // materialized cost, then we'll regress any edge with this constant so
287 // just bail. We're only interested in cases where folding the incoming
288 // constants is at least break-even on all paths.
289 if (FoldedCost > MatCost) {
290 LLVM_DEBUG(dbgs() << " Not profitable to fold imm: " << *IncomingC
291 << "\n"
292 " Materializing cost: "
293 << MatCost
294 << "\n"
295 " Accumulated folded cost: "
296 << FoldedCost << "\n");
297 return false;
302 // Compute the total cost savings afforded by this PHI node.
303 int TotalMatCost = TTI.TCC_Free, TotalFoldedCost = TTI.TCC_Free;
304 for (auto IncomingConstantAndCostsAndCount : CostsAndCounts) {
305 int MatCost = IncomingConstantAndCostsAndCount.second.MatCost;
306 int FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost;
307 int Count = IncomingConstantAndCostsAndCount.second.Count;
309 TotalMatCost += MatCost * Count;
310 TotalFoldedCost += FoldedCost * Count;
312 assert(TotalFoldedCost <= TotalMatCost && "If each constant's folded cost is "
313 "less that its materialized cost, "
314 "the sum must be as well.");
316 LLVM_DEBUG(dbgs() << " Cost savings " << (TotalMatCost - TotalFoldedCost)
317 << ": " << PN << "\n");
318 CostSavingsMap[&PN] = TotalMatCost - TotalFoldedCost;
319 return true;
322 /// Simple helper to walk all the users of a list of phis depth first, and call
323 /// a visit function on each one in post-order.
325 /// All of the PHIs should be in the same basic block, and this is primarily
326 /// used to make a single depth-first walk across their collective users
327 /// without revisiting any subgraphs. Callers should provide a fast, idempotent
328 /// callable to test whether a node has been visited and the more important
329 /// callable to actually visit a particular node.
331 /// Depth-first and postorder here refer to the *operand* graph -- we start
332 /// from a collection of users of PHI nodes and walk "up" the operands
333 /// depth-first.
334 template <typename IsVisitedT, typename VisitT>
335 static void visitPHIUsersAndDepsInPostOrder(ArrayRef<PHINode *> PNs,
336 IsVisitedT IsVisited,
337 VisitT Visit) {
338 SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack;
339 for (auto *PN : PNs)
340 for (Use &U : PN->uses()) {
341 auto *UI = cast<Instruction>(U.getUser());
342 if (IsVisited(UI))
343 // Already visited this user, continue across the roots.
344 continue;
346 // Otherwise, walk the operand graph depth-first and visit each
347 // dependency in postorder.
348 DFSStack.push_back({UI, UI->value_op_begin()});
349 do {
350 User::value_op_iterator OpIt;
351 std::tie(UI, OpIt) = DFSStack.pop_back_val();
352 while (OpIt != UI->value_op_end()) {
353 auto *OpI = dyn_cast<Instruction>(*OpIt);
354 // Increment to the next operand for whenever we continue.
355 ++OpIt;
356 // No need to visit non-instructions, which can't form dependencies,
357 // or instructions outside of our potential dependency set that we
358 // were given. Finally, if we've already visited the node, continue
359 // to the next.
360 if (!OpI || IsVisited(OpI))
361 continue;
363 // Push onto the stack and descend. We can directly continue this
364 // loop when ascending.
365 DFSStack.push_back({UI, OpIt});
366 UI = OpI;
367 OpIt = OpI->value_op_begin();
370 // Finished visiting children, visit this node.
371 assert(!IsVisited(UI) && "Should not have already visited a node!");
372 Visit(UI);
373 } while (!DFSStack.empty());
377 /// Find profitable PHIs to speculate.
379 /// For a PHI node to be profitable, we need the cost of speculating its users
380 /// (and their dependencies) to not exceed the savings of folding the PHI's
381 /// constant operands into the speculated users.
383 /// Computing this is surprisingly challenging. Because users of two different
384 /// PHI nodes can depend on each other or on common other instructions, it may
385 /// be profitable to speculate two PHI nodes together even though neither one
386 /// in isolation is profitable. The straightforward way to find all the
387 /// profitable PHIs would be to check each combination of PHIs' cost, but this
388 /// is exponential in complexity.
390 /// Even if we assume that we only care about cases where we can consider each
391 /// PHI node in isolation (rather than considering cases where none are
392 /// profitable in isolation but some subset are profitable as a set), we still
393 /// have a challenge. The obvious way to find all individually profitable PHIs
394 /// is to iterate until reaching a fixed point, but this will be quadratic in
395 /// complexity. =/
397 /// This code currently uses a linear-to-compute order for a greedy approach.
398 /// It won't find cases where a set of PHIs must be considered together, but it
399 /// handles most cases of order dependence without quadratic iteration. The
400 /// specific order used is the post-order across the operand DAG. When the last
401 /// user of a PHI is visited in this postorder walk, we check it for
402 /// profitability.
404 /// There is an orthogonal extra complexity to all of this: computing the cost
405 /// itself can easily become a linear computation making everything again (at
406 /// best) quadratic. Using a postorder over the operand graph makes it
407 /// particularly easy to avoid this through dynamic programming. As we do the
408 /// postorder walk, we build the transitive cost of that subgraph. It is also
409 /// straightforward to then update these costs when we mark a PHI for
410 /// speculation so that subsequent PHIs don't re-pay the cost of already
411 /// speculated instructions.
412 static SmallVector<PHINode *, 16>
413 findProfitablePHIs(ArrayRef<PHINode *> PNs,
414 const SmallDenseMap<PHINode *, int, 16> &CostSavingsMap,
415 const SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
416 int NumPreds, DominatorTree &DT, TargetTransformInfo &TTI) {
417 SmallVector<PHINode *, 16> SpecPNs;
419 // First, establish a reverse mapping from immediate users of the PHI nodes
420 // to the nodes themselves, and count how many users each PHI node has in
421 // a way we can update while processing them.
422 SmallDenseMap<Instruction *, TinyPtrVector<PHINode *>, 16> UserToPNMap;
423 SmallDenseMap<PHINode *, int, 16> PNUserCountMap;
424 SmallPtrSet<Instruction *, 16> UserSet;
425 for (auto *PN : PNs) {
426 assert(UserSet.empty() && "Must start with an empty user set!");
427 for (Use &U : PN->uses())
428 UserSet.insert(cast<Instruction>(U.getUser()));
429 PNUserCountMap[PN] = UserSet.size();
430 for (auto *UI : UserSet)
431 UserToPNMap.insert({UI, {}}).first->second.push_back(PN);
432 UserSet.clear();
435 // Now do a DFS across the operand graph of the users, computing cost as we
436 // go and when all costs for a given PHI are known, checking that PHI for
437 // profitability.
438 SmallDenseMap<Instruction *, int, 16> SpecCostMap;
439 visitPHIUsersAndDepsInPostOrder(
440 PNs,
441 /*IsVisited*/
442 [&](Instruction *I) {
443 // We consider anything that isn't potentially speculated to be
444 // "visited" as it is already handled. Similarly, anything that *is*
445 // potentially speculated but for which we have an entry in our cost
446 // map, we're done.
447 return !PotentialSpecSet.count(I) || SpecCostMap.count(I);
449 /*Visit*/
450 [&](Instruction *I) {
451 // We've fully visited the operands, so sum their cost with this node
452 // and update the cost map.
453 int Cost = TTI.TCC_Free;
454 for (Value *OpV : I->operand_values())
455 if (auto *OpI = dyn_cast<Instruction>(OpV)) {
456 auto CostMapIt = SpecCostMap.find(OpI);
457 if (CostMapIt != SpecCostMap.end())
458 Cost += CostMapIt->second;
460 Cost += TTI.getUserCost(I);
461 bool Inserted = SpecCostMap.insert({I, Cost}).second;
462 (void)Inserted;
463 assert(Inserted && "Must not re-insert a cost during the DFS!");
465 // Now check if this node had a corresponding PHI node using it. If so,
466 // we need to decrement the outstanding user count for it.
467 auto UserPNsIt = UserToPNMap.find(I);
468 if (UserPNsIt == UserToPNMap.end())
469 return;
470 auto &UserPNs = UserPNsIt->second;
471 auto UserPNsSplitIt = std::stable_partition(
472 UserPNs.begin(), UserPNs.end(), [&](PHINode *UserPN) {
473 int &PNUserCount = PNUserCountMap.find(UserPN)->second;
474 assert(
475 PNUserCount > 0 &&
476 "Should never re-visit a PN after its user count hits zero!");
477 --PNUserCount;
478 return PNUserCount != 0;
481 // FIXME: Rather than one at a time, we should sum the savings as the
482 // cost will be completely shared.
483 SmallVector<Instruction *, 16> SpecWorklist;
484 for (auto *PN : llvm::make_range(UserPNsSplitIt, UserPNs.end())) {
485 int SpecCost = TTI.TCC_Free;
486 for (Use &U : PN->uses())
487 SpecCost +=
488 SpecCostMap.find(cast<Instruction>(U.getUser()))->second;
489 SpecCost *= (NumPreds - 1);
490 // When the user count of a PHI node hits zero, we should check its
491 // profitability. If profitable, we should mark it for speculation
492 // and zero out the cost of everything it depends on.
493 int CostSavings = CostSavingsMap.find(PN)->second;
494 if (SpecCost > CostSavings) {
495 LLVM_DEBUG(dbgs() << " Not profitable, speculation cost: " << *PN
496 << "\n"
497 " Cost savings: "
498 << CostSavings
499 << "\n"
500 " Speculation cost: "
501 << SpecCost << "\n");
502 continue;
505 // We're going to speculate this user-associated PHI. Copy it out and
506 // add its users to the worklist to update their cost.
507 SpecPNs.push_back(PN);
508 for (Use &U : PN->uses()) {
509 auto *UI = cast<Instruction>(U.getUser());
510 auto CostMapIt = SpecCostMap.find(UI);
511 if (CostMapIt->second == 0)
512 continue;
513 // Zero out this cost entry to avoid duplicates.
514 CostMapIt->second = 0;
515 SpecWorklist.push_back(UI);
519 // Now walk all the operands of the users in the worklist transitively
520 // to zero out all the memoized costs.
521 while (!SpecWorklist.empty()) {
522 Instruction *SpecI = SpecWorklist.pop_back_val();
523 assert(SpecCostMap.find(SpecI)->second == 0 &&
524 "Didn't zero out a cost!");
526 // Walk the operands recursively to zero out their cost as well.
527 for (auto *OpV : SpecI->operand_values()) {
528 auto *OpI = dyn_cast<Instruction>(OpV);
529 if (!OpI)
530 continue;
531 auto CostMapIt = SpecCostMap.find(OpI);
532 if (CostMapIt == SpecCostMap.end() || CostMapIt->second == 0)
533 continue;
534 CostMapIt->second = 0;
535 SpecWorklist.push_back(OpI);
540 return SpecPNs;
543 /// Speculate users around a set of PHI nodes.
545 /// This routine does the actual speculation around a set of PHI nodes where we
546 /// have determined this to be both safe and profitable.
548 /// This routine handles any spliting of critical edges necessary to create
549 /// a safe block to speculate into as well as cloning the instructions and
550 /// rewriting all uses.
551 static void speculatePHIs(ArrayRef<PHINode *> SpecPNs,
552 SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
553 SmallSetVector<BasicBlock *, 16> &PredSet,
554 DominatorTree &DT) {
555 LLVM_DEBUG(dbgs() << " Speculating around " << SpecPNs.size() << " PHIs!\n");
556 NumPHIsSpeculated += SpecPNs.size();
558 // Split any critical edges so that we have a block to hoist into.
559 auto *ParentBB = SpecPNs[0]->getParent();
560 SmallVector<BasicBlock *, 16> SpecPreds;
561 SpecPreds.reserve(PredSet.size());
562 for (auto *PredBB : PredSet) {
563 auto *NewPredBB = SplitCriticalEdge(
564 PredBB, ParentBB,
565 CriticalEdgeSplittingOptions(&DT).setMergeIdenticalEdges());
566 if (NewPredBB) {
567 ++NumEdgesSplit;
568 LLVM_DEBUG(dbgs() << " Split critical edge from: " << PredBB->getName()
569 << "\n");
570 SpecPreds.push_back(NewPredBB);
571 } else {
572 assert(PredBB->getSingleSuccessor() == ParentBB &&
573 "We need a non-critical predecessor to speculate into.");
574 assert(!isa<InvokeInst>(PredBB->getTerminator()) &&
575 "Cannot have a non-critical invoke!");
577 // Already non-critical, use existing pred.
578 SpecPreds.push_back(PredBB);
582 SmallPtrSet<Instruction *, 16> SpecSet;
583 SmallVector<Instruction *, 16> SpecList;
584 visitPHIUsersAndDepsInPostOrder(SpecPNs,
585 /*IsVisited*/
586 [&](Instruction *I) {
587 // This is visited if we don't need to
588 // speculate it or we already have
589 // speculated it.
590 return !PotentialSpecSet.count(I) ||
591 SpecSet.count(I);
593 /*Visit*/
594 [&](Instruction *I) {
595 // All operands scheduled, schedule this
596 // node.
597 SpecSet.insert(I);
598 SpecList.push_back(I);
601 int NumSpecInsts = SpecList.size() * SpecPreds.size();
602 int NumRedundantInsts = NumSpecInsts - SpecList.size();
603 LLVM_DEBUG(dbgs() << " Inserting " << NumSpecInsts
604 << " speculated instructions, " << NumRedundantInsts
605 << " redundancies\n");
606 NumSpeculatedInstructions += NumSpecInsts;
607 NumNewRedundantInstructions += NumRedundantInsts;
609 // Each predecessor is numbered by its index in `SpecPreds`, so for each
610 // instruction we speculate, the speculated instruction is stored in that
611 // index of the vector associated with the original instruction. We also
612 // store the incoming values for each predecessor from any PHIs used.
613 SmallDenseMap<Instruction *, SmallVector<Value *, 2>, 16> SpeculatedValueMap;
615 // Inject the synthetic mappings to rewrite PHIs to the appropriate incoming
616 // value. This handles both the PHIs we are speculating around and any other
617 // PHIs that happen to be used.
618 for (auto *OrigI : SpecList)
619 for (auto *OpV : OrigI->operand_values()) {
620 auto *OpPN = dyn_cast<PHINode>(OpV);
621 if (!OpPN || OpPN->getParent() != ParentBB)
622 continue;
624 auto InsertResult = SpeculatedValueMap.insert({OpPN, {}});
625 if (!InsertResult.second)
626 continue;
628 auto &SpeculatedVals = InsertResult.first->second;
630 // Populating our structure for mapping is particularly annoying because
631 // finding an incoming value for a particular predecessor block in a PHI
632 // node is a linear time operation! To avoid quadratic behavior, we build
633 // a map for this PHI node's incoming values and then translate it into
634 // the more compact representation used below.
635 SmallDenseMap<BasicBlock *, Value *, 16> IncomingValueMap;
636 for (int i : llvm::seq<int>(0, OpPN->getNumIncomingValues()))
637 IncomingValueMap[OpPN->getIncomingBlock(i)] = OpPN->getIncomingValue(i);
639 for (auto *PredBB : SpecPreds)
640 SpeculatedVals.push_back(IncomingValueMap.find(PredBB)->second);
643 // Speculate into each predecessor.
644 for (int PredIdx : llvm::seq<int>(0, SpecPreds.size())) {
645 auto *PredBB = SpecPreds[PredIdx];
646 assert(PredBB->getSingleSuccessor() == ParentBB &&
647 "We need a non-critical predecessor to speculate into.");
649 for (auto *OrigI : SpecList) {
650 auto *NewI = OrigI->clone();
651 NewI->setName(Twine(OrigI->getName()) + "." + Twine(PredIdx));
652 NewI->insertBefore(PredBB->getTerminator());
654 // Rewrite all the operands to the previously speculated instructions.
655 // Because we're walking in-order, the defs must precede the uses and we
656 // should already have these mappings.
657 for (Use &U : NewI->operands()) {
658 auto *OpI = dyn_cast<Instruction>(U.get());
659 if (!OpI)
660 continue;
661 auto MapIt = SpeculatedValueMap.find(OpI);
662 if (MapIt == SpeculatedValueMap.end())
663 continue;
664 const auto &SpeculatedVals = MapIt->second;
665 assert(SpeculatedVals[PredIdx] &&
666 "Must have a speculated value for this predecessor!");
667 assert(SpeculatedVals[PredIdx]->getType() == OpI->getType() &&
668 "Speculated value has the wrong type!");
670 // Rewrite the use to this predecessor's speculated instruction.
671 U.set(SpeculatedVals[PredIdx]);
674 // Commute instructions which now have a constant in the LHS but not the
675 // RHS.
676 if (NewI->isBinaryOp() && NewI->isCommutative() &&
677 isa<Constant>(NewI->getOperand(0)) &&
678 !isa<Constant>(NewI->getOperand(1)))
679 NewI->getOperandUse(0).swap(NewI->getOperandUse(1));
681 SpeculatedValueMap[OrigI].push_back(NewI);
682 assert(SpeculatedValueMap[OrigI][PredIdx] == NewI &&
683 "Mismatched speculated instruction index!");
687 // Walk the speculated instruction list and if they have uses, insert a PHI
688 // for them from the speculated versions, and replace the uses with the PHI.
689 // Then erase the instructions as they have been fully speculated. The walk
690 // needs to be in reverse so that we don't think there are users when we'll
691 // actually eventually remove them later.
692 IRBuilder<> IRB(SpecPNs[0]);
693 for (auto *OrigI : llvm::reverse(SpecList)) {
694 // Check if we need a PHI for any remaining users and if so, insert it.
695 if (!OrigI->use_empty()) {
696 auto *SpecIPN = IRB.CreatePHI(OrigI->getType(), SpecPreds.size(),
697 Twine(OrigI->getName()) + ".phi");
698 // Add the incoming values we speculated.
699 auto &SpeculatedVals = SpeculatedValueMap.find(OrigI)->second;
700 for (int PredIdx : llvm::seq<int>(0, SpecPreds.size()))
701 SpecIPN->addIncoming(SpeculatedVals[PredIdx], SpecPreds[PredIdx]);
703 // And replace the uses with the PHI node.
704 OrigI->replaceAllUsesWith(SpecIPN);
707 // It is important to immediately erase this so that it stops using other
708 // instructions. This avoids inserting needless PHIs of them.
709 OrigI->eraseFromParent();
712 // All of the uses of the speculated phi nodes should be removed at this
713 // point, so erase them.
714 for (auto *SpecPN : SpecPNs) {
715 assert(SpecPN->use_empty() && "All users should have been speculated!");
716 SpecPN->eraseFromParent();
720 /// Try to speculate around a series of PHIs from a single basic block.
722 /// This routine checks whether any of these PHIs are profitable to speculate
723 /// users around. If safe and profitable, it does the speculation. It returns
724 /// true when at least some speculation occurs.
725 static bool tryToSpeculatePHIs(SmallVectorImpl<PHINode *> &PNs,
726 DominatorTree &DT, TargetTransformInfo &TTI) {
727 LLVM_DEBUG(dbgs() << "Evaluating phi nodes for speculation:\n");
729 // Savings in cost from speculating around a PHI node.
730 SmallDenseMap<PHINode *, int, 16> CostSavingsMap;
732 // Remember the set of instructions that are candidates for speculation so
733 // that we can quickly walk things within that space. This prunes out
734 // instructions already available along edges, etc.
735 SmallPtrSet<Instruction *, 16> PotentialSpecSet;
737 // Remember the set of instructions that are (transitively) unsafe to
738 // speculate into the incoming edges of this basic block. This avoids
739 // recomputing them for each PHI node we check. This set is specific to this
740 // block though as things are pruned out of it based on what is available
741 // along incoming edges.
742 SmallPtrSet<Instruction *, 16> UnsafeSet;
744 // For each PHI node in this block, check whether there are immediate folding
745 // opportunities from speculation, and whether that speculation will be
746 // valid. This determise the set of safe PHIs to speculate.
747 PNs.erase(llvm::remove_if(PNs,
748 [&](PHINode *PN) {
749 return !isSafeAndProfitableToSpeculateAroundPHI(
750 *PN, CostSavingsMap, PotentialSpecSet,
751 UnsafeSet, DT, TTI);
753 PNs.end());
754 // If no PHIs were profitable, skip.
755 if (PNs.empty()) {
756 LLVM_DEBUG(dbgs() << " No safe and profitable PHIs found!\n");
757 return false;
760 // We need to know how much speculation will cost which is determined by how
761 // many incoming edges will need a copy of each speculated instruction.
762 SmallSetVector<BasicBlock *, 16> PredSet;
763 for (auto *PredBB : PNs[0]->blocks()) {
764 if (!PredSet.insert(PredBB))
765 continue;
767 // We cannot speculate when a predecessor is an indirect branch.
768 // FIXME: We also can't reliably create a non-critical edge block for
769 // speculation if the predecessor is an invoke. This doesn't seem
770 // fundamental and we should probably be splitting critical edges
771 // differently.
772 if (isa<IndirectBrInst>(PredBB->getTerminator()) ||
773 isa<InvokeInst>(PredBB->getTerminator())) {
774 LLVM_DEBUG(dbgs() << " Invalid: predecessor terminator: "
775 << PredBB->getName() << "\n");
776 return false;
779 if (PredSet.size() < 2) {
780 LLVM_DEBUG(dbgs() << " Unimportant: phi with only one predecessor\n");
781 return false;
784 SmallVector<PHINode *, 16> SpecPNs = findProfitablePHIs(
785 PNs, CostSavingsMap, PotentialSpecSet, PredSet.size(), DT, TTI);
786 if (SpecPNs.empty())
787 // Nothing to do.
788 return false;
790 speculatePHIs(SpecPNs, PotentialSpecSet, PredSet, DT);
791 return true;
794 PreservedAnalyses SpeculateAroundPHIsPass::run(Function &F,
795 FunctionAnalysisManager &AM) {
796 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
797 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
799 bool Changed = false;
800 for (auto *BB : ReversePostOrderTraversal<Function *>(&F)) {
801 SmallVector<PHINode *, 16> PNs;
802 auto BBI = BB->begin();
803 while (auto *PN = dyn_cast<PHINode>(&*BBI)) {
804 PNs.push_back(PN);
805 ++BBI;
808 if (PNs.empty())
809 continue;
811 Changed |= tryToSpeculatePHIs(PNs, DT, TTI);
814 if (!Changed)
815 return PreservedAnalyses::all();
817 PreservedAnalyses PA;
818 return PA;