1 //===- StructurizeCFG.cpp -------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/DenseMap.h"
10 #include "llvm/ADT/MapVector.h"
11 #include "llvm/ADT/PostOrderIterator.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/SSAUpdater.h"
50 using namespace llvm::PatternMatch
;
52 #define DEBUG_TYPE "structurizecfg"
54 // The name for newly created blocks.
55 static const char *const FlowBlockName
= "Flow";
59 static cl::opt
<bool> ForceSkipUniformRegions(
60 "structurizecfg-skip-uniform-regions",
62 cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
65 // Definition of the complex types used in this pass.
67 using BBValuePair
= std::pair
<BasicBlock
*, Value
*>;
69 using RNVector
= SmallVector
<RegionNode
*, 8>;
70 using BBVector
= SmallVector
<BasicBlock
*, 8>;
71 using BranchVector
= SmallVector
<BranchInst
*, 8>;
72 using BBValueVector
= SmallVector
<BBValuePair
, 2>;
74 using BBSet
= SmallPtrSet
<BasicBlock
*, 8>;
76 using PhiMap
= MapVector
<PHINode
*, BBValueVector
>;
77 using BB2BBVecMap
= MapVector
<BasicBlock
*, BBVector
>;
79 using BBPhiMap
= DenseMap
<BasicBlock
*, PhiMap
>;
80 using BBPredicates
= DenseMap
<BasicBlock
*, Value
*>;
81 using PredMap
= DenseMap
<BasicBlock
*, BBPredicates
>;
82 using BB2BBMap
= DenseMap
<BasicBlock
*, BasicBlock
*>;
84 /// Finds the nearest common dominator of a set of BasicBlocks.
86 /// For every BB you add to the set, you can specify whether we "remember" the
87 /// block. When you get the common dominator, you can also ask whether it's one
88 /// of the blocks we remembered.
89 class NearestCommonDominator
{
91 BasicBlock
*Result
= nullptr;
92 bool ResultIsRemembered
= false;
94 /// Add BB to the resulting dominator.
95 void addBlock(BasicBlock
*BB
, bool Remember
) {
98 ResultIsRemembered
= Remember
;
102 BasicBlock
*NewResult
= DT
->findNearestCommonDominator(Result
, BB
);
103 if (NewResult
!= Result
)
104 ResultIsRemembered
= false;
106 ResultIsRemembered
|= Remember
;
111 explicit NearestCommonDominator(DominatorTree
*DomTree
) : DT(DomTree
) {}
113 void addBlock(BasicBlock
*BB
) {
114 addBlock(BB
, /* Remember = */ false);
117 void addAndRememberBlock(BasicBlock
*BB
) {
118 addBlock(BB
, /* Remember = */ true);
121 /// Get the nearest common dominator of all the BBs added via addBlock() and
122 /// addAndRememberBlock().
123 BasicBlock
*result() { return Result
; }
125 /// Is the BB returned by getResult() one of the blocks we added to the set
126 /// with addAndRememberBlock()?
127 bool resultIsRememberedBlock() { return ResultIsRemembered
; }
130 /// Transforms the control flow graph on one single entry/exit region
133 /// After the transform all "If"/"Then"/"Else" style control flow looks like
145 /// | | 1 = "If" block, calculates the condition
146 /// 4 | 2 = "Then" subregion, runs if the condition is true
147 /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
148 /// |/ 4 = "Else" optional subregion, runs if the condition is false
149 /// 5 5 = "End" block, also rejoins the control flow
152 /// Control flow is expressed as a branch where the true exit goes into the
153 /// "Then"/"Else" region, while the false exit skips the region
154 /// The condition for the optional "Else" region is expressed as a PHI node.
155 /// The incoming values of the PHI node are true for the "If" edge and false
156 /// for the "Then" edge.
158 /// Additionally to that even complicated loops look like this:
165 /// | / 1 = "Entry" block
166 /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
167 /// 3 3 = "Flow" block, with back edge to entry block
171 /// The back edge of the "Flow" block is always on the false side of the branch
172 /// while the true side continues the general flow. So the loop condition
173 /// consist of a network of PHI nodes where the true incoming values expresses
174 /// breaks and the false values expresses continue states.
175 class StructurizeCFG
: public RegionPass
{
176 bool SkipUniformRegions
;
179 ConstantInt
*BoolTrue
;
180 ConstantInt
*BoolFalse
;
181 UndefValue
*BoolUndef
;
184 Region
*ParentRegion
;
186 LegacyDivergenceAnalysis
*DA
;
190 SmallVector
<RegionNode
*, 8> Order
;
193 BBPhiMap DeletedPhis
;
194 BB2BBVecMap AddedPhis
;
197 BranchVector Conditions
;
201 BranchVector LoopConds
;
203 RegionNode
*PrevNode
;
207 Loop
*getAdjustedLoop(RegionNode
*RN
);
208 unsigned getAdjustedLoopDepth(RegionNode
*RN
);
210 void analyzeLoops(RegionNode
*N
);
212 Value
*invert(Value
*Condition
);
214 Value
*buildCondition(BranchInst
*Term
, unsigned Idx
, bool Invert
);
216 void gatherPredicates(RegionNode
*N
);
220 void insertConditions(bool Loops
);
222 void delPhiValues(BasicBlock
*From
, BasicBlock
*To
);
224 void addPhiValues(BasicBlock
*From
, BasicBlock
*To
);
228 void killTerminator(BasicBlock
*BB
);
230 void changeExit(RegionNode
*Node
, BasicBlock
*NewExit
,
231 bool IncludeDominator
);
233 BasicBlock
*getNextFlow(BasicBlock
*Dominator
);
235 BasicBlock
*needPrefix(bool NeedEmpty
);
237 BasicBlock
*needPostfix(BasicBlock
*Flow
, bool ExitUseAllowed
);
239 void setPrevNode(BasicBlock
*BB
);
241 bool dominatesPredicates(BasicBlock
*BB
, RegionNode
*Node
);
243 bool isPredictableTrue(RegionNode
*Node
);
245 void wireFlow(bool ExitUseAllowed
, BasicBlock
*LoopEnd
);
247 void handleLoops(bool ExitUseAllowed
, BasicBlock
*LoopEnd
);
256 explicit StructurizeCFG(bool SkipUniformRegions_
= false)
258 SkipUniformRegions(SkipUniformRegions_
) {
259 if (ForceSkipUniformRegions
.getNumOccurrences())
260 SkipUniformRegions
= ForceSkipUniformRegions
.getValue();
261 initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
264 bool doInitialization(Region
*R
, RGPassManager
&RGM
) override
;
266 bool runOnRegion(Region
*R
, RGPassManager
&RGM
) override
;
268 StringRef
getPassName() const override
{ return "Structurize control flow"; }
270 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
271 if (SkipUniformRegions
)
272 AU
.addRequired
<LegacyDivergenceAnalysis
>();
273 AU
.addRequiredID(LowerSwitchID
);
274 AU
.addRequired
<DominatorTreeWrapperPass
>();
275 AU
.addRequired
<LoopInfoWrapperPass
>();
277 AU
.addPreserved
<DominatorTreeWrapperPass
>();
278 RegionPass::getAnalysisUsage(AU
);
282 } // end anonymous namespace
284 char StructurizeCFG::ID
= 0;
286 INITIALIZE_PASS_BEGIN(StructurizeCFG
, "structurizecfg", "Structurize the CFG",
288 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis
)
289 INITIALIZE_PASS_DEPENDENCY(LowerSwitch
)
290 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
291 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass
)
292 INITIALIZE_PASS_END(StructurizeCFG
, "structurizecfg", "Structurize the CFG",
295 /// Initialize the types and constants used in the pass
296 bool StructurizeCFG::doInitialization(Region
*R
, RGPassManager
&RGM
) {
297 LLVMContext
&Context
= R
->getEntry()->getContext();
299 Boolean
= Type::getInt1Ty(Context
);
300 BoolTrue
= ConstantInt::getTrue(Context
);
301 BoolFalse
= ConstantInt::getFalse(Context
);
302 BoolUndef
= UndefValue::get(Boolean
);
307 /// Use the exit block to determine the loop if RN is a SubRegion.
308 Loop
*StructurizeCFG::getAdjustedLoop(RegionNode
*RN
) {
309 if (RN
->isSubRegion()) {
310 Region
*SubRegion
= RN
->getNodeAs
<Region
>();
311 return LI
->getLoopFor(SubRegion
->getExit());
314 return LI
->getLoopFor(RN
->getEntry());
317 /// Use the exit block to determine the loop depth if RN is a SubRegion.
318 unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode
*RN
) {
319 if (RN
->isSubRegion()) {
320 Region
*SubR
= RN
->getNodeAs
<Region
>();
321 return LI
->getLoopDepth(SubR
->getExit());
324 return LI
->getLoopDepth(RN
->getEntry());
327 /// Build up the general order of nodes
328 void StructurizeCFG::orderNodes() {
329 ReversePostOrderTraversal
<Region
*> RPOT(ParentRegion
);
330 SmallDenseMap
<Loop
*, unsigned, 8> LoopBlocks
;
332 // The reverse post-order traversal of the list gives us an ordering close
333 // to what we want. The only problem with it is that sometimes backedges
334 // for outer loops will be visited before backedges for inner loops.
335 for (RegionNode
*RN
: RPOT
) {
336 Loop
*Loop
= getAdjustedLoop(RN
);
340 unsigned CurrentLoopDepth
= 0;
341 Loop
*CurrentLoop
= nullptr;
342 for (auto I
= RPOT
.begin(), E
= RPOT
.end(); I
!= E
; ++I
) {
343 RegionNode
*RN
= cast
<RegionNode
>(*I
);
344 unsigned LoopDepth
= getAdjustedLoopDepth(RN
);
346 if (is_contained(Order
, *I
))
349 if (LoopDepth
< CurrentLoopDepth
) {
350 // Make sure we have visited all blocks in this loop before moving back to
354 while (unsigned &BlockCount
= LoopBlocks
[CurrentLoop
]) {
356 if (getAdjustedLoop(cast
<RegionNode
>(*LoopI
)) == CurrentLoop
) {
358 Order
.push_back(*LoopI
);
363 CurrentLoop
= getAdjustedLoop(RN
);
365 LoopBlocks
[CurrentLoop
]--;
367 CurrentLoopDepth
= LoopDepth
;
371 // This pass originally used a post-order traversal and then operated on
372 // the list in reverse. Now that we are using a reverse post-order traversal
373 // rather than re-working the whole pass to operate on the list in order,
374 // we just reverse the list and continue to operate on it in reverse.
375 std::reverse(Order
.begin(), Order
.end());
378 /// Determine the end of the loops
379 void StructurizeCFG::analyzeLoops(RegionNode
*N
) {
380 if (N
->isSubRegion()) {
381 // Test for exit as back edge
382 BasicBlock
*Exit
= N
->getNodeAs
<Region
>()->getExit();
383 if (Visited
.count(Exit
))
384 Loops
[Exit
] = N
->getEntry();
387 // Test for successors as back edge
388 BasicBlock
*BB
= N
->getNodeAs
<BasicBlock
>();
389 BranchInst
*Term
= cast
<BranchInst
>(BB
->getTerminator());
391 for (BasicBlock
*Succ
: Term
->successors())
392 if (Visited
.count(Succ
))
397 /// Invert the given condition
398 Value
*StructurizeCFG::invert(Value
*Condition
) {
399 // First: Check if it's a constant
400 if (Constant
*C
= dyn_cast
<Constant
>(Condition
))
401 return ConstantExpr::getNot(C
);
403 // Second: If the condition is already inverted, return the original value
405 if (match(Condition
, m_Not(m_Value(NotCondition
))))
408 if (Instruction
*Inst
= dyn_cast
<Instruction
>(Condition
)) {
409 // Third: Check all the users for an invert
410 BasicBlock
*Parent
= Inst
->getParent();
411 for (User
*U
: Condition
->users())
412 if (Instruction
*I
= dyn_cast
<Instruction
>(U
))
413 if (I
->getParent() == Parent
&& match(I
, m_Not(m_Specific(Condition
))))
416 // Last option: Create a new instruction
417 return BinaryOperator::CreateNot(Condition
, "", Parent
->getTerminator());
420 if (Argument
*Arg
= dyn_cast
<Argument
>(Condition
)) {
421 BasicBlock
&EntryBlock
= Arg
->getParent()->getEntryBlock();
422 return BinaryOperator::CreateNot(Condition
,
423 Arg
->getName() + ".inv",
424 EntryBlock
.getTerminator());
427 llvm_unreachable("Unhandled condition to invert");
430 /// Build the condition for one edge
431 Value
*StructurizeCFG::buildCondition(BranchInst
*Term
, unsigned Idx
,
433 Value
*Cond
= Invert
? BoolFalse
: BoolTrue
;
434 if (Term
->isConditional()) {
435 Cond
= Term
->getCondition();
437 if (Idx
!= (unsigned)Invert
)
443 /// Analyze the predecessors of each block and build up predicates
444 void StructurizeCFG::gatherPredicates(RegionNode
*N
) {
445 RegionInfo
*RI
= ParentRegion
->getRegionInfo();
446 BasicBlock
*BB
= N
->getEntry();
447 BBPredicates
&Pred
= Predicates
[BB
];
448 BBPredicates
&LPred
= LoopPreds
[BB
];
450 for (BasicBlock
*P
: predecessors(BB
)) {
451 // Ignore it if it's a branch from outside into our region entry
452 if (!ParentRegion
->contains(P
))
455 Region
*R
= RI
->getRegionFor(P
);
456 if (R
== ParentRegion
) {
457 // It's a top level block in our region
458 BranchInst
*Term
= cast
<BranchInst
>(P
->getTerminator());
459 for (unsigned i
= 0, e
= Term
->getNumSuccessors(); i
!= e
; ++i
) {
460 BasicBlock
*Succ
= Term
->getSuccessor(i
);
464 if (Visited
.count(P
)) {
465 // Normal forward edge
466 if (Term
->isConditional()) {
467 // Try to treat it like an ELSE block
468 BasicBlock
*Other
= Term
->getSuccessor(!i
);
469 if (Visited
.count(Other
) && !Loops
.count(Other
) &&
470 !Pred
.count(Other
) && !Pred
.count(P
)) {
472 Pred
[Other
] = BoolFalse
;
477 Pred
[P
] = buildCondition(Term
, i
, false);
480 LPred
[P
] = buildCondition(Term
, i
, true);
484 // It's an exit from a sub region
485 while (R
->getParent() != ParentRegion
)
488 // Edge from inside a subregion to its entry, ignore it
492 BasicBlock
*Entry
= R
->getEntry();
493 if (Visited
.count(Entry
))
494 Pred
[Entry
] = BoolTrue
;
496 LPred
[Entry
] = BoolFalse
;
501 /// Collect various loop and predicate infos
502 void StructurizeCFG::collectInfos() {
510 // Reset the visited nodes
513 for (RegionNode
*RN
: reverse(Order
)) {
514 LLVM_DEBUG(dbgs() << "Visiting: "
515 << (RN
->isSubRegion() ? "SubRegion with entry: " : "")
516 << RN
->getEntry()->getName() << " Loop Depth: "
517 << LI
->getLoopDepth(RN
->getEntry()) << "\n");
519 // Analyze all the conditions leading to a node
520 gatherPredicates(RN
);
522 // Remember that we've seen this node
523 Visited
.insert(RN
->getEntry());
525 // Find the last back edges
530 /// Insert the missing branch conditions
531 void StructurizeCFG::insertConditions(bool Loops
) {
532 BranchVector
&Conds
= Loops
? LoopConds
: Conditions
;
533 Value
*Default
= Loops
? BoolTrue
: BoolFalse
;
534 SSAUpdater PhiInserter
;
536 for (BranchInst
*Term
: Conds
) {
537 assert(Term
->isConditional());
539 BasicBlock
*Parent
= Term
->getParent();
540 BasicBlock
*SuccTrue
= Term
->getSuccessor(0);
541 BasicBlock
*SuccFalse
= Term
->getSuccessor(1);
543 PhiInserter
.Initialize(Boolean
, "");
544 PhiInserter
.AddAvailableValue(&Func
->getEntryBlock(), Default
);
545 PhiInserter
.AddAvailableValue(Loops
? SuccFalse
: Parent
, Default
);
547 BBPredicates
&Preds
= Loops
? LoopPreds
[SuccFalse
] : Predicates
[SuccTrue
];
549 NearestCommonDominator
Dominator(DT
);
550 Dominator
.addBlock(Parent
);
552 Value
*ParentValue
= nullptr;
553 for (std::pair
<BasicBlock
*, Value
*> BBAndPred
: Preds
) {
554 BasicBlock
*BB
= BBAndPred
.first
;
555 Value
*Pred
= BBAndPred
.second
;
561 PhiInserter
.AddAvailableValue(BB
, Pred
);
562 Dominator
.addAndRememberBlock(BB
);
566 Term
->setCondition(ParentValue
);
568 if (!Dominator
.resultIsRememberedBlock())
569 PhiInserter
.AddAvailableValue(Dominator
.result(), Default
);
571 Term
->setCondition(PhiInserter
.GetValueInMiddleOfBlock(Parent
));
576 /// Remove all PHI values coming from "From" into "To" and remember
577 /// them in DeletedPhis
578 void StructurizeCFG::delPhiValues(BasicBlock
*From
, BasicBlock
*To
) {
579 PhiMap
&Map
= DeletedPhis
[To
];
580 for (PHINode
&Phi
: To
->phis()) {
581 while (Phi
.getBasicBlockIndex(From
) != -1) {
582 Value
*Deleted
= Phi
.removeIncomingValue(From
, false);
583 Map
[&Phi
].push_back(std::make_pair(From
, Deleted
));
588 /// Add a dummy PHI value as soon as we knew the new predecessor
589 void StructurizeCFG::addPhiValues(BasicBlock
*From
, BasicBlock
*To
) {
590 for (PHINode
&Phi
: To
->phis()) {
591 Value
*Undef
= UndefValue::get(Phi
.getType());
592 Phi
.addIncoming(Undef
, From
);
594 AddedPhis
[To
].push_back(From
);
597 /// Add the real PHI value as soon as everything is set up
598 void StructurizeCFG::setPhiValues() {
599 SmallVector
<PHINode
*, 8> InsertedPhis
;
600 SSAUpdater
Updater(&InsertedPhis
);
601 for (const auto &AddedPhi
: AddedPhis
) {
602 BasicBlock
*To
= AddedPhi
.first
;
603 const BBVector
&From
= AddedPhi
.second
;
605 if (!DeletedPhis
.count(To
))
608 PhiMap
&Map
= DeletedPhis
[To
];
609 for (const auto &PI
: Map
) {
610 PHINode
*Phi
= PI
.first
;
611 Value
*Undef
= UndefValue::get(Phi
->getType());
612 Updater
.Initialize(Phi
->getType(), "");
613 Updater
.AddAvailableValue(&Func
->getEntryBlock(), Undef
);
614 Updater
.AddAvailableValue(To
, Undef
);
616 NearestCommonDominator
Dominator(DT
);
617 Dominator
.addBlock(To
);
618 for (const auto &VI
: PI
.second
) {
619 Updater
.AddAvailableValue(VI
.first
, VI
.second
);
620 Dominator
.addAndRememberBlock(VI
.first
);
623 if (!Dominator
.resultIsRememberedBlock())
624 Updater
.AddAvailableValue(Dominator
.result(), Undef
);
626 for (BasicBlock
*FI
: From
) {
627 int Idx
= Phi
->getBasicBlockIndex(FI
);
629 Phi
->setIncomingValue(Idx
, Updater
.GetValueAtEndOfBlock(FI
));
633 DeletedPhis
.erase(To
);
635 assert(DeletedPhis
.empty());
637 // Simplify any phis inserted by the SSAUpdater if possible
642 SimplifyQuery
Q(Func
->getParent()->getDataLayout());
644 for (size_t i
= 0; i
< InsertedPhis
.size(); ++i
) {
645 PHINode
*Phi
= InsertedPhis
[i
];
646 if (Value
*V
= SimplifyInstruction(Phi
, Q
)) {
647 Phi
->replaceAllUsesWith(V
);
648 Phi
->eraseFromParent();
649 InsertedPhis
[i
] = InsertedPhis
.back();
650 InsertedPhis
.pop_back();
658 /// Remove phi values from all successors and then remove the terminator.
659 void StructurizeCFG::killTerminator(BasicBlock
*BB
) {
660 Instruction
*Term
= BB
->getTerminator();
664 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
666 delPhiValues(BB
, *SI
);
669 DA
->removeValue(Term
);
670 Term
->eraseFromParent();
673 /// Let node exit(s) point to NewExit
674 void StructurizeCFG::changeExit(RegionNode
*Node
, BasicBlock
*NewExit
,
675 bool IncludeDominator
) {
676 if (Node
->isSubRegion()) {
677 Region
*SubRegion
= Node
->getNodeAs
<Region
>();
678 BasicBlock
*OldExit
= SubRegion
->getExit();
679 BasicBlock
*Dominator
= nullptr;
681 // Find all the edges from the sub region to the exit
682 for (auto BBI
= pred_begin(OldExit
), E
= pred_end(OldExit
); BBI
!= E
;) {
683 // Incrememt BBI before mucking with BB's terminator.
684 BasicBlock
*BB
= *BBI
++;
686 if (!SubRegion
->contains(BB
))
689 // Modify the edges to point to the new exit
690 delPhiValues(BB
, OldExit
);
691 BB
->getTerminator()->replaceUsesOfWith(OldExit
, NewExit
);
692 addPhiValues(BB
, NewExit
);
694 // Find the new dominator (if requested)
695 if (IncludeDominator
) {
699 Dominator
= DT
->findNearestCommonDominator(Dominator
, BB
);
703 // Change the dominator (if requested)
705 DT
->changeImmediateDominator(NewExit
, Dominator
);
707 // Update the region info
708 SubRegion
->replaceExit(NewExit
);
710 BasicBlock
*BB
= Node
->getNodeAs
<BasicBlock
>();
712 BranchInst::Create(NewExit
, BB
);
713 addPhiValues(BB
, NewExit
);
714 if (IncludeDominator
)
715 DT
->changeImmediateDominator(NewExit
, BB
);
719 /// Create a new flow node and update dominator tree and region info
720 BasicBlock
*StructurizeCFG::getNextFlow(BasicBlock
*Dominator
) {
721 LLVMContext
&Context
= Func
->getContext();
722 BasicBlock
*Insert
= Order
.empty() ? ParentRegion
->getExit() :
723 Order
.back()->getEntry();
724 BasicBlock
*Flow
= BasicBlock::Create(Context
, FlowBlockName
,
726 DT
->addNewBlock(Flow
, Dominator
);
727 ParentRegion
->getRegionInfo()->setRegionFor(Flow
, ParentRegion
);
731 /// Create a new or reuse the previous node as flow node
732 BasicBlock
*StructurizeCFG::needPrefix(bool NeedEmpty
) {
733 BasicBlock
*Entry
= PrevNode
->getEntry();
735 if (!PrevNode
->isSubRegion()) {
736 killTerminator(Entry
);
737 if (!NeedEmpty
|| Entry
->getFirstInsertionPt() == Entry
->end())
741 // create a new flow node
742 BasicBlock
*Flow
= getNextFlow(Entry
);
745 changeExit(PrevNode
, Flow
, true);
746 PrevNode
= ParentRegion
->getBBNode(Flow
);
750 /// Returns the region exit if possible, otherwise just a new flow node
751 BasicBlock
*StructurizeCFG::needPostfix(BasicBlock
*Flow
,
752 bool ExitUseAllowed
) {
753 if (!Order
.empty() || !ExitUseAllowed
)
754 return getNextFlow(Flow
);
756 BasicBlock
*Exit
= ParentRegion
->getExit();
757 DT
->changeImmediateDominator(Exit
, Flow
);
758 addPhiValues(Flow
, Exit
);
762 /// Set the previous node
763 void StructurizeCFG::setPrevNode(BasicBlock
*BB
) {
764 PrevNode
= ParentRegion
->contains(BB
) ? ParentRegion
->getBBNode(BB
)
768 /// Does BB dominate all the predicates of Node?
769 bool StructurizeCFG::dominatesPredicates(BasicBlock
*BB
, RegionNode
*Node
) {
770 BBPredicates
&Preds
= Predicates
[Node
->getEntry()];
771 return llvm::all_of(Preds
, [&](std::pair
<BasicBlock
*, Value
*> Pred
) {
772 return DT
->dominates(BB
, Pred
.first
);
776 /// Can we predict that this node will always be called?
777 bool StructurizeCFG::isPredictableTrue(RegionNode
*Node
) {
778 BBPredicates
&Preds
= Predicates
[Node
->getEntry()];
779 bool Dominated
= false;
781 // Regionentry is always true
785 for (std::pair
<BasicBlock
*, Value
*> Pred
: Preds
) {
786 BasicBlock
*BB
= Pred
.first
;
787 Value
*V
= Pred
.second
;
792 if (!Dominated
&& DT
->dominates(BB
, PrevNode
->getEntry()))
796 // TODO: The dominator check is too strict
800 /// Take one node from the order vector and wire it up
801 void StructurizeCFG::wireFlow(bool ExitUseAllowed
,
802 BasicBlock
*LoopEnd
) {
803 RegionNode
*Node
= Order
.pop_back_val();
804 Visited
.insert(Node
->getEntry());
806 if (isPredictableTrue(Node
)) {
807 // Just a linear flow
809 changeExit(PrevNode
, Node
->getEntry(), true);
813 // Insert extra prefix node (or reuse last one)
814 BasicBlock
*Flow
= needPrefix(false);
816 // Insert extra postfix node (or use exit instead)
817 BasicBlock
*Entry
= Node
->getEntry();
818 BasicBlock
*Next
= needPostfix(Flow
, ExitUseAllowed
);
820 // let it point to entry and next block
821 Conditions
.push_back(BranchInst::Create(Entry
, Next
, BoolUndef
, Flow
));
822 addPhiValues(Flow
, Entry
);
823 DT
->changeImmediateDominator(Entry
, Flow
);
826 while (!Order
.empty() && !Visited
.count(LoopEnd
) &&
827 dominatesPredicates(Entry
, Order
.back())) {
828 handleLoops(false, LoopEnd
);
831 changeExit(PrevNode
, Next
, false);
836 void StructurizeCFG::handleLoops(bool ExitUseAllowed
,
837 BasicBlock
*LoopEnd
) {
838 RegionNode
*Node
= Order
.back();
839 BasicBlock
*LoopStart
= Node
->getEntry();
841 if (!Loops
.count(LoopStart
)) {
842 wireFlow(ExitUseAllowed
, LoopEnd
);
846 if (!isPredictableTrue(Node
))
847 LoopStart
= needPrefix(true);
849 LoopEnd
= Loops
[Node
->getEntry()];
850 wireFlow(false, LoopEnd
);
851 while (!Visited
.count(LoopEnd
)) {
852 handleLoops(false, LoopEnd
);
855 // If the start of the loop is the entry block, we can't branch to it so
856 // insert a new dummy entry block.
857 Function
*LoopFunc
= LoopStart
->getParent();
858 if (LoopStart
== &LoopFunc
->getEntryBlock()) {
859 LoopStart
->setName("entry.orig");
861 BasicBlock
*NewEntry
=
862 BasicBlock::Create(LoopStart
->getContext(),
866 BranchInst::Create(LoopStart
, NewEntry
);
867 DT
->setNewRoot(NewEntry
);
870 // Create an extra loop end node
871 LoopEnd
= needPrefix(false);
872 BasicBlock
*Next
= needPostfix(LoopEnd
, ExitUseAllowed
);
873 LoopConds
.push_back(BranchInst::Create(Next
, LoopStart
,
874 BoolUndef
, LoopEnd
));
875 addPhiValues(LoopEnd
, LoopStart
);
879 /// After this function control flow looks like it should be, but
880 /// branches and PHI nodes only have undefined conditions.
881 void StructurizeCFG::createFlow() {
882 BasicBlock
*Exit
= ParentRegion
->getExit();
883 bool EntryDominatesExit
= DT
->dominates(ParentRegion
->getEntry(), Exit
);
893 while (!Order
.empty()) {
894 handleLoops(EntryDominatesExit
, nullptr);
898 changeExit(PrevNode
, Exit
, EntryDominatesExit
);
900 assert(EntryDominatesExit
);
903 /// Handle a rare case where the disintegrated nodes instructions
904 /// no longer dominate all their uses. Not sure if this is really necessary
905 void StructurizeCFG::rebuildSSA() {
907 for (BasicBlock
*BB
: ParentRegion
->blocks())
908 for (Instruction
&I
: *BB
) {
909 bool Initialized
= false;
910 // We may modify the use list as we iterate over it, so be careful to
911 // compute the next element in the use list at the top of the loop.
912 for (auto UI
= I
.use_begin(), E
= I
.use_end(); UI
!= E
;) {
914 Instruction
*User
= cast
<Instruction
>(U
.getUser());
915 if (User
->getParent() == BB
) {
917 } else if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
918 if (UserPN
->getIncomingBlock(U
) == BB
)
922 if (DT
->dominates(&I
, User
))
926 Value
*Undef
= UndefValue::get(I
.getType());
927 Updater
.Initialize(I
.getType(), "");
928 Updater
.AddAvailableValue(&Func
->getEntryBlock(), Undef
);
929 Updater
.AddAvailableValue(BB
, &I
);
932 Updater
.RewriteUseAfterInsertions(U
);
937 static bool hasOnlyUniformBranches(Region
*R
, unsigned UniformMDKindID
,
938 const LegacyDivergenceAnalysis
&DA
) {
939 for (auto E
: R
->elements()) {
940 if (!E
->isSubRegion()) {
941 auto Br
= dyn_cast
<BranchInst
>(E
->getEntry()->getTerminator());
942 if (!Br
|| !Br
->isConditional())
945 if (!DA
.isUniform(Br
))
947 LLVM_DEBUG(dbgs() << "BB: " << Br
->getParent()->getName()
948 << " has uniform terminator\n");
950 // Explicitly refuse to treat regions as uniform if they have non-uniform
951 // subregions. We cannot rely on DivergenceAnalysis for branches in
952 // subregions because those branches may have been removed and re-created,
953 // so we look for our metadata instead.
955 // Warning: It would be nice to treat regions as uniform based only on
956 // their direct child basic blocks' terminators, regardless of whether
957 // subregions are uniform or not. However, this requires a very careful
958 // look at SIAnnotateControlFlow to make sure nothing breaks there.
959 for (auto BB
: E
->getNodeAs
<Region
>()->blocks()) {
960 auto Br
= dyn_cast
<BranchInst
>(BB
->getTerminator());
961 if (!Br
|| !Br
->isConditional())
964 if (!Br
->getMetadata(UniformMDKindID
))
972 /// Run the transformation for each region found
973 bool StructurizeCFG::runOnRegion(Region
*R
, RGPassManager
&RGM
) {
974 if (R
->isTopLevelRegion())
979 if (SkipUniformRegions
) {
980 // TODO: We could probably be smarter here with how we handle sub-regions.
981 // We currently rely on the fact that metadata is set by earlier invocations
982 // of the pass on sub-regions, and that this metadata doesn't get lost --
983 // but we shouldn't rely on metadata for correctness!
984 unsigned UniformMDKindID
=
985 R
->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
986 DA
= &getAnalysis
<LegacyDivergenceAnalysis
>();
988 if (hasOnlyUniformBranches(R
, UniformMDKindID
, *DA
)) {
989 LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
992 // Mark all direct child block terminators as having been treated as
993 // uniform. To account for a possible future in which non-uniform
994 // sub-regions are treated more cleverly, indirect children are not
995 // marked as uniform.
996 MDNode
*MD
= MDNode::get(R
->getEntry()->getParent()->getContext(), {});
997 for (RegionNode
*E
: R
->elements()) {
998 if (E
->isSubRegion())
1001 if (Instruction
*Term
= E
->getEntry()->getTerminator())
1002 Term
->setMetadata(UniformMDKindID
, MD
);
1009 Func
= R
->getEntry()->getParent();
1012 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1013 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1018 insertConditions(false);
1019 insertConditions(true);
1026 DeletedPhis
.clear();
1037 Pass
*llvm::createStructurizeCFGPass(bool SkipUniformRegions
) {
1038 return new StructurizeCFG(SkipUniformRegions
);