[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / lib / Transforms / Scalar / StructurizeCFG.cpp
blobb3ef31cea0a8814ac7f87a61f942f11d646e2eb5
1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/DenseMap.h"
10 #include "llvm/ADT/MapVector.h"
11 #include "llvm/ADT/PostOrderIterator.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/SSAUpdater.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <utility>
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
52 #define DEBUG_TYPE "structurizecfg"
54 // The name for newly created blocks.
55 static const char *const FlowBlockName = "Flow";
57 namespace {
59 static cl::opt<bool> ForceSkipUniformRegions(
60 "structurizecfg-skip-uniform-regions",
61 cl::Hidden,
62 cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
63 cl::init(false));
65 // Definition of the complex types used in this pass.
67 using BBValuePair = std::pair<BasicBlock *, Value *>;
69 using RNVector = SmallVector<RegionNode *, 8>;
70 using BBVector = SmallVector<BasicBlock *, 8>;
71 using BranchVector = SmallVector<BranchInst *, 8>;
72 using BBValueVector = SmallVector<BBValuePair, 2>;
74 using BBSet = SmallPtrSet<BasicBlock *, 8>;
76 using PhiMap = MapVector<PHINode *, BBValueVector>;
77 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
79 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
80 using BBPredicates = DenseMap<BasicBlock *, Value *>;
81 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
82 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
84 /// Finds the nearest common dominator of a set of BasicBlocks.
85 ///
86 /// For every BB you add to the set, you can specify whether we "remember" the
87 /// block. When you get the common dominator, you can also ask whether it's one
88 /// of the blocks we remembered.
89 class NearestCommonDominator {
90 DominatorTree *DT;
91 BasicBlock *Result = nullptr;
92 bool ResultIsRemembered = false;
94 /// Add BB to the resulting dominator.
95 void addBlock(BasicBlock *BB, bool Remember) {
96 if (!Result) {
97 Result = BB;
98 ResultIsRemembered = Remember;
99 return;
102 BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
103 if (NewResult != Result)
104 ResultIsRemembered = false;
105 if (NewResult == BB)
106 ResultIsRemembered |= Remember;
107 Result = NewResult;
110 public:
111 explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
113 void addBlock(BasicBlock *BB) {
114 addBlock(BB, /* Remember = */ false);
117 void addAndRememberBlock(BasicBlock *BB) {
118 addBlock(BB, /* Remember = */ true);
121 /// Get the nearest common dominator of all the BBs added via addBlock() and
122 /// addAndRememberBlock().
123 BasicBlock *result() { return Result; }
125 /// Is the BB returned by getResult() one of the blocks we added to the set
126 /// with addAndRememberBlock()?
127 bool resultIsRememberedBlock() { return ResultIsRemembered; }
130 /// Transforms the control flow graph on one single entry/exit region
131 /// at a time.
133 /// After the transform all "If"/"Then"/"Else" style control flow looks like
134 /// this:
136 /// \verbatim
137 /// 1
138 /// ||
139 /// | |
140 /// 2 |
141 /// | /
142 /// |/
143 /// 3
144 /// || Where:
145 /// | | 1 = "If" block, calculates the condition
146 /// 4 | 2 = "Then" subregion, runs if the condition is true
147 /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
148 /// |/ 4 = "Else" optional subregion, runs if the condition is false
149 /// 5 5 = "End" block, also rejoins the control flow
150 /// \endverbatim
152 /// Control flow is expressed as a branch where the true exit goes into the
153 /// "Then"/"Else" region, while the false exit skips the region
154 /// The condition for the optional "Else" region is expressed as a PHI node.
155 /// The incoming values of the PHI node are true for the "If" edge and false
156 /// for the "Then" edge.
158 /// Additionally to that even complicated loops look like this:
160 /// \verbatim
161 /// 1
162 /// ||
163 /// | |
164 /// 2 ^ Where:
165 /// | / 1 = "Entry" block
166 /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
167 /// 3 3 = "Flow" block, with back edge to entry block
168 /// |
169 /// \endverbatim
171 /// The back edge of the "Flow" block is always on the false side of the branch
172 /// while the true side continues the general flow. So the loop condition
173 /// consist of a network of PHI nodes where the true incoming values expresses
174 /// breaks and the false values expresses continue states.
175 class StructurizeCFG : public RegionPass {
176 bool SkipUniformRegions;
178 Type *Boolean;
179 ConstantInt *BoolTrue;
180 ConstantInt *BoolFalse;
181 UndefValue *BoolUndef;
183 Function *Func;
184 Region *ParentRegion;
186 LegacyDivergenceAnalysis *DA;
187 DominatorTree *DT;
188 LoopInfo *LI;
190 SmallVector<RegionNode *, 8> Order;
191 BBSet Visited;
193 BBPhiMap DeletedPhis;
194 BB2BBVecMap AddedPhis;
196 PredMap Predicates;
197 BranchVector Conditions;
199 BB2BBMap Loops;
200 PredMap LoopPreds;
201 BranchVector LoopConds;
203 RegionNode *PrevNode;
205 void orderNodes();
207 Loop *getAdjustedLoop(RegionNode *RN);
208 unsigned getAdjustedLoopDepth(RegionNode *RN);
210 void analyzeLoops(RegionNode *N);
212 Value *invert(Value *Condition);
214 Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
216 void gatherPredicates(RegionNode *N);
218 void collectInfos();
220 void insertConditions(bool Loops);
222 void delPhiValues(BasicBlock *From, BasicBlock *To);
224 void addPhiValues(BasicBlock *From, BasicBlock *To);
226 void setPhiValues();
228 void killTerminator(BasicBlock *BB);
230 void changeExit(RegionNode *Node, BasicBlock *NewExit,
231 bool IncludeDominator);
233 BasicBlock *getNextFlow(BasicBlock *Dominator);
235 BasicBlock *needPrefix(bool NeedEmpty);
237 BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
239 void setPrevNode(BasicBlock *BB);
241 bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
243 bool isPredictableTrue(RegionNode *Node);
245 void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
247 void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
249 void createFlow();
251 void rebuildSSA();
253 public:
254 static char ID;
256 explicit StructurizeCFG(bool SkipUniformRegions_ = false)
257 : RegionPass(ID),
258 SkipUniformRegions(SkipUniformRegions_) {
259 if (ForceSkipUniformRegions.getNumOccurrences())
260 SkipUniformRegions = ForceSkipUniformRegions.getValue();
261 initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
264 bool doInitialization(Region *R, RGPassManager &RGM) override;
266 bool runOnRegion(Region *R, RGPassManager &RGM) override;
268 StringRef getPassName() const override { return "Structurize control flow"; }
270 void getAnalysisUsage(AnalysisUsage &AU) const override {
271 if (SkipUniformRegions)
272 AU.addRequired<LegacyDivergenceAnalysis>();
273 AU.addRequiredID(LowerSwitchID);
274 AU.addRequired<DominatorTreeWrapperPass>();
275 AU.addRequired<LoopInfoWrapperPass>();
277 AU.addPreserved<DominatorTreeWrapperPass>();
278 RegionPass::getAnalysisUsage(AU);
282 } // end anonymous namespace
284 char StructurizeCFG::ID = 0;
286 INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
287 false, false)
288 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
289 INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
290 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
291 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
292 INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
293 false, false)
295 /// Initialize the types and constants used in the pass
296 bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
297 LLVMContext &Context = R->getEntry()->getContext();
299 Boolean = Type::getInt1Ty(Context);
300 BoolTrue = ConstantInt::getTrue(Context);
301 BoolFalse = ConstantInt::getFalse(Context);
302 BoolUndef = UndefValue::get(Boolean);
304 return false;
307 /// Use the exit block to determine the loop if RN is a SubRegion.
308 Loop *StructurizeCFG::getAdjustedLoop(RegionNode *RN) {
309 if (RN->isSubRegion()) {
310 Region *SubRegion = RN->getNodeAs<Region>();
311 return LI->getLoopFor(SubRegion->getExit());
314 return LI->getLoopFor(RN->getEntry());
317 /// Use the exit block to determine the loop depth if RN is a SubRegion.
318 unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode *RN) {
319 if (RN->isSubRegion()) {
320 Region *SubR = RN->getNodeAs<Region>();
321 return LI->getLoopDepth(SubR->getExit());
324 return LI->getLoopDepth(RN->getEntry());
327 /// Build up the general order of nodes
328 void StructurizeCFG::orderNodes() {
329 ReversePostOrderTraversal<Region*> RPOT(ParentRegion);
330 SmallDenseMap<Loop*, unsigned, 8> LoopBlocks;
332 // The reverse post-order traversal of the list gives us an ordering close
333 // to what we want. The only problem with it is that sometimes backedges
334 // for outer loops will be visited before backedges for inner loops.
335 for (RegionNode *RN : RPOT) {
336 Loop *Loop = getAdjustedLoop(RN);
337 ++LoopBlocks[Loop];
340 unsigned CurrentLoopDepth = 0;
341 Loop *CurrentLoop = nullptr;
342 for (auto I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
343 RegionNode *RN = cast<RegionNode>(*I);
344 unsigned LoopDepth = getAdjustedLoopDepth(RN);
346 if (is_contained(Order, *I))
347 continue;
349 if (LoopDepth < CurrentLoopDepth) {
350 // Make sure we have visited all blocks in this loop before moving back to
351 // the outer loop.
353 auto LoopI = I;
354 while (unsigned &BlockCount = LoopBlocks[CurrentLoop]) {
355 LoopI++;
356 if (getAdjustedLoop(cast<RegionNode>(*LoopI)) == CurrentLoop) {
357 --BlockCount;
358 Order.push_back(*LoopI);
363 CurrentLoop = getAdjustedLoop(RN);
364 if (CurrentLoop)
365 LoopBlocks[CurrentLoop]--;
367 CurrentLoopDepth = LoopDepth;
368 Order.push_back(*I);
371 // This pass originally used a post-order traversal and then operated on
372 // the list in reverse. Now that we are using a reverse post-order traversal
373 // rather than re-working the whole pass to operate on the list in order,
374 // we just reverse the list and continue to operate on it in reverse.
375 std::reverse(Order.begin(), Order.end());
378 /// Determine the end of the loops
379 void StructurizeCFG::analyzeLoops(RegionNode *N) {
380 if (N->isSubRegion()) {
381 // Test for exit as back edge
382 BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
383 if (Visited.count(Exit))
384 Loops[Exit] = N->getEntry();
386 } else {
387 // Test for successors as back edge
388 BasicBlock *BB = N->getNodeAs<BasicBlock>();
389 BranchInst *Term = cast<BranchInst>(BB->getTerminator());
391 for (BasicBlock *Succ : Term->successors())
392 if (Visited.count(Succ))
393 Loops[Succ] = BB;
397 /// Invert the given condition
398 Value *StructurizeCFG::invert(Value *Condition) {
399 // First: Check if it's a constant
400 if (Constant *C = dyn_cast<Constant>(Condition))
401 return ConstantExpr::getNot(C);
403 // Second: If the condition is already inverted, return the original value
404 Value *NotCondition;
405 if (match(Condition, m_Not(m_Value(NotCondition))))
406 return NotCondition;
408 if (Instruction *Inst = dyn_cast<Instruction>(Condition)) {
409 // Third: Check all the users for an invert
410 BasicBlock *Parent = Inst->getParent();
411 for (User *U : Condition->users())
412 if (Instruction *I = dyn_cast<Instruction>(U))
413 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
414 return I;
416 // Last option: Create a new instruction
417 return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator());
420 if (Argument *Arg = dyn_cast<Argument>(Condition)) {
421 BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock();
422 return BinaryOperator::CreateNot(Condition,
423 Arg->getName() + ".inv",
424 EntryBlock.getTerminator());
427 llvm_unreachable("Unhandled condition to invert");
430 /// Build the condition for one edge
431 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
432 bool Invert) {
433 Value *Cond = Invert ? BoolFalse : BoolTrue;
434 if (Term->isConditional()) {
435 Cond = Term->getCondition();
437 if (Idx != (unsigned)Invert)
438 Cond = invert(Cond);
440 return Cond;
443 /// Analyze the predecessors of each block and build up predicates
444 void StructurizeCFG::gatherPredicates(RegionNode *N) {
445 RegionInfo *RI = ParentRegion->getRegionInfo();
446 BasicBlock *BB = N->getEntry();
447 BBPredicates &Pred = Predicates[BB];
448 BBPredicates &LPred = LoopPreds[BB];
450 for (BasicBlock *P : predecessors(BB)) {
451 // Ignore it if it's a branch from outside into our region entry
452 if (!ParentRegion->contains(P))
453 continue;
455 Region *R = RI->getRegionFor(P);
456 if (R == ParentRegion) {
457 // It's a top level block in our region
458 BranchInst *Term = cast<BranchInst>(P->getTerminator());
459 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
460 BasicBlock *Succ = Term->getSuccessor(i);
461 if (Succ != BB)
462 continue;
464 if (Visited.count(P)) {
465 // Normal forward edge
466 if (Term->isConditional()) {
467 // Try to treat it like an ELSE block
468 BasicBlock *Other = Term->getSuccessor(!i);
469 if (Visited.count(Other) && !Loops.count(Other) &&
470 !Pred.count(Other) && !Pred.count(P)) {
472 Pred[Other] = BoolFalse;
473 Pred[P] = BoolTrue;
474 continue;
477 Pred[P] = buildCondition(Term, i, false);
478 } else {
479 // Back edge
480 LPred[P] = buildCondition(Term, i, true);
483 } else {
484 // It's an exit from a sub region
485 while (R->getParent() != ParentRegion)
486 R = R->getParent();
488 // Edge from inside a subregion to its entry, ignore it
489 if (*R == *N)
490 continue;
492 BasicBlock *Entry = R->getEntry();
493 if (Visited.count(Entry))
494 Pred[Entry] = BoolTrue;
495 else
496 LPred[Entry] = BoolFalse;
501 /// Collect various loop and predicate infos
502 void StructurizeCFG::collectInfos() {
503 // Reset predicate
504 Predicates.clear();
506 // and loop infos
507 Loops.clear();
508 LoopPreds.clear();
510 // Reset the visited nodes
511 Visited.clear();
513 for (RegionNode *RN : reverse(Order)) {
514 LLVM_DEBUG(dbgs() << "Visiting: "
515 << (RN->isSubRegion() ? "SubRegion with entry: " : "")
516 << RN->getEntry()->getName() << " Loop Depth: "
517 << LI->getLoopDepth(RN->getEntry()) << "\n");
519 // Analyze all the conditions leading to a node
520 gatherPredicates(RN);
522 // Remember that we've seen this node
523 Visited.insert(RN->getEntry());
525 // Find the last back edges
526 analyzeLoops(RN);
530 /// Insert the missing branch conditions
531 void StructurizeCFG::insertConditions(bool Loops) {
532 BranchVector &Conds = Loops ? LoopConds : Conditions;
533 Value *Default = Loops ? BoolTrue : BoolFalse;
534 SSAUpdater PhiInserter;
536 for (BranchInst *Term : Conds) {
537 assert(Term->isConditional());
539 BasicBlock *Parent = Term->getParent();
540 BasicBlock *SuccTrue = Term->getSuccessor(0);
541 BasicBlock *SuccFalse = Term->getSuccessor(1);
543 PhiInserter.Initialize(Boolean, "");
544 PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
545 PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
547 BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
549 NearestCommonDominator Dominator(DT);
550 Dominator.addBlock(Parent);
552 Value *ParentValue = nullptr;
553 for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
554 BasicBlock *BB = BBAndPred.first;
555 Value *Pred = BBAndPred.second;
557 if (BB == Parent) {
558 ParentValue = Pred;
559 break;
561 PhiInserter.AddAvailableValue(BB, Pred);
562 Dominator.addAndRememberBlock(BB);
565 if (ParentValue) {
566 Term->setCondition(ParentValue);
567 } else {
568 if (!Dominator.resultIsRememberedBlock())
569 PhiInserter.AddAvailableValue(Dominator.result(), Default);
571 Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
576 /// Remove all PHI values coming from "From" into "To" and remember
577 /// them in DeletedPhis
578 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
579 PhiMap &Map = DeletedPhis[To];
580 for (PHINode &Phi : To->phis()) {
581 while (Phi.getBasicBlockIndex(From) != -1) {
582 Value *Deleted = Phi.removeIncomingValue(From, false);
583 Map[&Phi].push_back(std::make_pair(From, Deleted));
588 /// Add a dummy PHI value as soon as we knew the new predecessor
589 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
590 for (PHINode &Phi : To->phis()) {
591 Value *Undef = UndefValue::get(Phi.getType());
592 Phi.addIncoming(Undef, From);
594 AddedPhis[To].push_back(From);
597 /// Add the real PHI value as soon as everything is set up
598 void StructurizeCFG::setPhiValues() {
599 SmallVector<PHINode *, 8> InsertedPhis;
600 SSAUpdater Updater(&InsertedPhis);
601 for (const auto &AddedPhi : AddedPhis) {
602 BasicBlock *To = AddedPhi.first;
603 const BBVector &From = AddedPhi.second;
605 if (!DeletedPhis.count(To))
606 continue;
608 PhiMap &Map = DeletedPhis[To];
609 for (const auto &PI : Map) {
610 PHINode *Phi = PI.first;
611 Value *Undef = UndefValue::get(Phi->getType());
612 Updater.Initialize(Phi->getType(), "");
613 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
614 Updater.AddAvailableValue(To, Undef);
616 NearestCommonDominator Dominator(DT);
617 Dominator.addBlock(To);
618 for (const auto &VI : PI.second) {
619 Updater.AddAvailableValue(VI.first, VI.second);
620 Dominator.addAndRememberBlock(VI.first);
623 if (!Dominator.resultIsRememberedBlock())
624 Updater.AddAvailableValue(Dominator.result(), Undef);
626 for (BasicBlock *FI : From) {
627 int Idx = Phi->getBasicBlockIndex(FI);
628 assert(Idx != -1);
629 Phi->setIncomingValue(Idx, Updater.GetValueAtEndOfBlock(FI));
633 DeletedPhis.erase(To);
635 assert(DeletedPhis.empty());
637 // Simplify any phis inserted by the SSAUpdater if possible
638 bool Changed;
639 do {
640 Changed = false;
642 SimplifyQuery Q(Func->getParent()->getDataLayout());
643 Q.DT = DT;
644 for (size_t i = 0; i < InsertedPhis.size(); ++i) {
645 PHINode *Phi = InsertedPhis[i];
646 if (Value *V = SimplifyInstruction(Phi, Q)) {
647 Phi->replaceAllUsesWith(V);
648 Phi->eraseFromParent();
649 InsertedPhis[i] = InsertedPhis.back();
650 InsertedPhis.pop_back();
651 i--;
652 Changed = true;
655 } while (Changed);
658 /// Remove phi values from all successors and then remove the terminator.
659 void StructurizeCFG::killTerminator(BasicBlock *BB) {
660 Instruction *Term = BB->getTerminator();
661 if (!Term)
662 return;
664 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
665 SI != SE; ++SI)
666 delPhiValues(BB, *SI);
668 if (DA)
669 DA->removeValue(Term);
670 Term->eraseFromParent();
673 /// Let node exit(s) point to NewExit
674 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
675 bool IncludeDominator) {
676 if (Node->isSubRegion()) {
677 Region *SubRegion = Node->getNodeAs<Region>();
678 BasicBlock *OldExit = SubRegion->getExit();
679 BasicBlock *Dominator = nullptr;
681 // Find all the edges from the sub region to the exit
682 for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
683 // Incrememt BBI before mucking with BB's terminator.
684 BasicBlock *BB = *BBI++;
686 if (!SubRegion->contains(BB))
687 continue;
689 // Modify the edges to point to the new exit
690 delPhiValues(BB, OldExit);
691 BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
692 addPhiValues(BB, NewExit);
694 // Find the new dominator (if requested)
695 if (IncludeDominator) {
696 if (!Dominator)
697 Dominator = BB;
698 else
699 Dominator = DT->findNearestCommonDominator(Dominator, BB);
703 // Change the dominator (if requested)
704 if (Dominator)
705 DT->changeImmediateDominator(NewExit, Dominator);
707 // Update the region info
708 SubRegion->replaceExit(NewExit);
709 } else {
710 BasicBlock *BB = Node->getNodeAs<BasicBlock>();
711 killTerminator(BB);
712 BranchInst::Create(NewExit, BB);
713 addPhiValues(BB, NewExit);
714 if (IncludeDominator)
715 DT->changeImmediateDominator(NewExit, BB);
719 /// Create a new flow node and update dominator tree and region info
720 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
721 LLVMContext &Context = Func->getContext();
722 BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
723 Order.back()->getEntry();
724 BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
725 Func, Insert);
726 DT->addNewBlock(Flow, Dominator);
727 ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
728 return Flow;
731 /// Create a new or reuse the previous node as flow node
732 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
733 BasicBlock *Entry = PrevNode->getEntry();
735 if (!PrevNode->isSubRegion()) {
736 killTerminator(Entry);
737 if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
738 return Entry;
741 // create a new flow node
742 BasicBlock *Flow = getNextFlow(Entry);
744 // and wire it up
745 changeExit(PrevNode, Flow, true);
746 PrevNode = ParentRegion->getBBNode(Flow);
747 return Flow;
750 /// Returns the region exit if possible, otherwise just a new flow node
751 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
752 bool ExitUseAllowed) {
753 if (!Order.empty() || !ExitUseAllowed)
754 return getNextFlow(Flow);
756 BasicBlock *Exit = ParentRegion->getExit();
757 DT->changeImmediateDominator(Exit, Flow);
758 addPhiValues(Flow, Exit);
759 return Exit;
762 /// Set the previous node
763 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
764 PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
765 : nullptr;
768 /// Does BB dominate all the predicates of Node?
769 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
770 BBPredicates &Preds = Predicates[Node->getEntry()];
771 return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
772 return DT->dominates(BB, Pred.first);
776 /// Can we predict that this node will always be called?
777 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
778 BBPredicates &Preds = Predicates[Node->getEntry()];
779 bool Dominated = false;
781 // Regionentry is always true
782 if (!PrevNode)
783 return true;
785 for (std::pair<BasicBlock*, Value*> Pred : Preds) {
786 BasicBlock *BB = Pred.first;
787 Value *V = Pred.second;
789 if (V != BoolTrue)
790 return false;
792 if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
793 Dominated = true;
796 // TODO: The dominator check is too strict
797 return Dominated;
800 /// Take one node from the order vector and wire it up
801 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
802 BasicBlock *LoopEnd) {
803 RegionNode *Node = Order.pop_back_val();
804 Visited.insert(Node->getEntry());
806 if (isPredictableTrue(Node)) {
807 // Just a linear flow
808 if (PrevNode) {
809 changeExit(PrevNode, Node->getEntry(), true);
811 PrevNode = Node;
812 } else {
813 // Insert extra prefix node (or reuse last one)
814 BasicBlock *Flow = needPrefix(false);
816 // Insert extra postfix node (or use exit instead)
817 BasicBlock *Entry = Node->getEntry();
818 BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
820 // let it point to entry and next block
821 Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
822 addPhiValues(Flow, Entry);
823 DT->changeImmediateDominator(Entry, Flow);
825 PrevNode = Node;
826 while (!Order.empty() && !Visited.count(LoopEnd) &&
827 dominatesPredicates(Entry, Order.back())) {
828 handleLoops(false, LoopEnd);
831 changeExit(PrevNode, Next, false);
832 setPrevNode(Next);
836 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
837 BasicBlock *LoopEnd) {
838 RegionNode *Node = Order.back();
839 BasicBlock *LoopStart = Node->getEntry();
841 if (!Loops.count(LoopStart)) {
842 wireFlow(ExitUseAllowed, LoopEnd);
843 return;
846 if (!isPredictableTrue(Node))
847 LoopStart = needPrefix(true);
849 LoopEnd = Loops[Node->getEntry()];
850 wireFlow(false, LoopEnd);
851 while (!Visited.count(LoopEnd)) {
852 handleLoops(false, LoopEnd);
855 // If the start of the loop is the entry block, we can't branch to it so
856 // insert a new dummy entry block.
857 Function *LoopFunc = LoopStart->getParent();
858 if (LoopStart == &LoopFunc->getEntryBlock()) {
859 LoopStart->setName("entry.orig");
861 BasicBlock *NewEntry =
862 BasicBlock::Create(LoopStart->getContext(),
863 "entry",
864 LoopFunc,
865 LoopStart);
866 BranchInst::Create(LoopStart, NewEntry);
867 DT->setNewRoot(NewEntry);
870 // Create an extra loop end node
871 LoopEnd = needPrefix(false);
872 BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
873 LoopConds.push_back(BranchInst::Create(Next, LoopStart,
874 BoolUndef, LoopEnd));
875 addPhiValues(LoopEnd, LoopStart);
876 setPrevNode(Next);
879 /// After this function control flow looks like it should be, but
880 /// branches and PHI nodes only have undefined conditions.
881 void StructurizeCFG::createFlow() {
882 BasicBlock *Exit = ParentRegion->getExit();
883 bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
885 DeletedPhis.clear();
886 AddedPhis.clear();
887 Conditions.clear();
888 LoopConds.clear();
890 PrevNode = nullptr;
891 Visited.clear();
893 while (!Order.empty()) {
894 handleLoops(EntryDominatesExit, nullptr);
897 if (PrevNode)
898 changeExit(PrevNode, Exit, EntryDominatesExit);
899 else
900 assert(EntryDominatesExit);
903 /// Handle a rare case where the disintegrated nodes instructions
904 /// no longer dominate all their uses. Not sure if this is really necessary
905 void StructurizeCFG::rebuildSSA() {
906 SSAUpdater Updater;
907 for (BasicBlock *BB : ParentRegion->blocks())
908 for (Instruction &I : *BB) {
909 bool Initialized = false;
910 // We may modify the use list as we iterate over it, so be careful to
911 // compute the next element in the use list at the top of the loop.
912 for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
913 Use &U = *UI++;
914 Instruction *User = cast<Instruction>(U.getUser());
915 if (User->getParent() == BB) {
916 continue;
917 } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
918 if (UserPN->getIncomingBlock(U) == BB)
919 continue;
922 if (DT->dominates(&I, User))
923 continue;
925 if (!Initialized) {
926 Value *Undef = UndefValue::get(I.getType());
927 Updater.Initialize(I.getType(), "");
928 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
929 Updater.AddAvailableValue(BB, &I);
930 Initialized = true;
932 Updater.RewriteUseAfterInsertions(U);
937 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
938 const LegacyDivergenceAnalysis &DA) {
939 for (auto E : R->elements()) {
940 if (!E->isSubRegion()) {
941 auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
942 if (!Br || !Br->isConditional())
943 continue;
945 if (!DA.isUniform(Br))
946 return false;
947 LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
948 << " has uniform terminator\n");
949 } else {
950 // Explicitly refuse to treat regions as uniform if they have non-uniform
951 // subregions. We cannot rely on DivergenceAnalysis for branches in
952 // subregions because those branches may have been removed and re-created,
953 // so we look for our metadata instead.
955 // Warning: It would be nice to treat regions as uniform based only on
956 // their direct child basic blocks' terminators, regardless of whether
957 // subregions are uniform or not. However, this requires a very careful
958 // look at SIAnnotateControlFlow to make sure nothing breaks there.
959 for (auto BB : E->getNodeAs<Region>()->blocks()) {
960 auto Br = dyn_cast<BranchInst>(BB->getTerminator());
961 if (!Br || !Br->isConditional())
962 continue;
964 if (!Br->getMetadata(UniformMDKindID))
965 return false;
969 return true;
972 /// Run the transformation for each region found
973 bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
974 if (R->isTopLevelRegion())
975 return false;
977 DA = nullptr;
979 if (SkipUniformRegions) {
980 // TODO: We could probably be smarter here with how we handle sub-regions.
981 // We currently rely on the fact that metadata is set by earlier invocations
982 // of the pass on sub-regions, and that this metadata doesn't get lost --
983 // but we shouldn't rely on metadata for correctness!
984 unsigned UniformMDKindID =
985 R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
986 DA = &getAnalysis<LegacyDivergenceAnalysis>();
988 if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
989 LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
990 << '\n');
992 // Mark all direct child block terminators as having been treated as
993 // uniform. To account for a possible future in which non-uniform
994 // sub-regions are treated more cleverly, indirect children are not
995 // marked as uniform.
996 MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
997 for (RegionNode *E : R->elements()) {
998 if (E->isSubRegion())
999 continue;
1001 if (Instruction *Term = E->getEntry()->getTerminator())
1002 Term->setMetadata(UniformMDKindID, MD);
1005 return false;
1009 Func = R->getEntry()->getParent();
1010 ParentRegion = R;
1012 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1013 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1015 orderNodes();
1016 collectInfos();
1017 createFlow();
1018 insertConditions(false);
1019 insertConditions(true);
1020 setPhiValues();
1021 rebuildSSA();
1023 // Cleanup
1024 Order.clear();
1025 Visited.clear();
1026 DeletedPhis.clear();
1027 AddedPhis.clear();
1028 Predicates.clear();
1029 Conditions.clear();
1030 Loops.clear();
1031 LoopPreds.clear();
1032 LoopConds.clear();
1034 return true;
1037 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1038 return new StructurizeCFG(SkipUniformRegions);