[llvm-exegesis] [NFC] Fixing typo.
[llvm-complete.git] / utils / TableGen / CodeGenRegisters.h
blobf04a90f8fde52309d39d5c67fb1e58d47dc5d3e1
1 //===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
17 #include "InfoByHwMode.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SparseBitVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MachineValueType.h"
31 #include "llvm/TableGen/Record.h"
32 #include "llvm/TableGen/SetTheory.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <deque>
36 #include <list>
37 #include <map>
38 #include <string>
39 #include <utility>
40 #include <vector>
42 namespace llvm {
44 class CodeGenRegBank;
45 template <typename T, typename Vector, typename Set> class SetVector;
47 /// Used to encode a step in a register lane mask transformation.
48 /// Mask the bits specified in Mask, then rotate them Rol bits to the left
49 /// assuming a wraparound at 32bits.
50 struct MaskRolPair {
51 LaneBitmask Mask;
52 uint8_t RotateLeft;
54 bool operator==(const MaskRolPair Other) const {
55 return Mask == Other.Mask && RotateLeft == Other.RotateLeft;
57 bool operator!=(const MaskRolPair Other) const {
58 return Mask != Other.Mask || RotateLeft != Other.RotateLeft;
62 /// CodeGenSubRegIndex - Represents a sub-register index.
63 class CodeGenSubRegIndex {
64 Record *const TheDef;
65 std::string Name;
66 std::string Namespace;
68 public:
69 uint16_t Size;
70 uint16_t Offset;
71 const unsigned EnumValue;
72 mutable LaneBitmask LaneMask;
73 mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform;
75 /// A list of subregister indexes concatenated resulting in this
76 /// subregister index. This is the reverse of CodeGenRegBank::ConcatIdx.
77 SmallVector<CodeGenSubRegIndex*,4> ConcatenationOf;
79 // Are all super-registers containing this SubRegIndex covered by their
80 // sub-registers?
81 bool AllSuperRegsCovered;
82 // A subregister index is "artificial" if every subregister obtained
83 // from applying this index is artificial. Artificial subregister
84 // indexes are not used to create new register classes.
85 bool Artificial;
87 CodeGenSubRegIndex(Record *R, unsigned Enum);
88 CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum);
90 const std::string &getName() const { return Name; }
91 const std::string &getNamespace() const { return Namespace; }
92 std::string getQualifiedName() const;
94 // Map of composite subreg indices.
95 typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *,
96 deref<llvm::less>> CompMap;
98 // Returns the subreg index that results from composing this with Idx.
99 // Returns NULL if this and Idx don't compose.
100 CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const {
101 CompMap::const_iterator I = Composed.find(Idx);
102 return I == Composed.end() ? nullptr : I->second;
105 // Add a composite subreg index: this+A = B.
106 // Return a conflicting composite, or NULL
107 CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A,
108 CodeGenSubRegIndex *B) {
109 assert(A && B);
110 std::pair<CompMap::iterator, bool> Ins =
111 Composed.insert(std::make_pair(A, B));
112 // Synthetic subreg indices that aren't contiguous (for instance ARM
113 // register tuples) don't have a bit range, so it's OK to let
114 // B->Offset == -1. For the other cases, accumulate the offset and set
115 // the size here. Only do so if there is no offset yet though.
116 if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) &&
117 (B->Offset == (uint16_t)-1)) {
118 B->Offset = Offset + A->Offset;
119 B->Size = A->Size;
121 return (Ins.second || Ins.first->second == B) ? nullptr
122 : Ins.first->second;
125 // Update the composite maps of components specified in 'ComposedOf'.
126 void updateComponents(CodeGenRegBank&);
128 // Return the map of composites.
129 const CompMap &getComposites() const { return Composed; }
131 // Compute LaneMask from Composed. Return LaneMask.
132 LaneBitmask computeLaneMask() const;
134 void setConcatenationOf(ArrayRef<CodeGenSubRegIndex*> Parts);
136 /// Replaces subregister indexes in the `ConcatenationOf` list with
137 /// list of subregisters they are composed of (if any). Do this recursively.
138 void computeConcatTransitiveClosure();
140 private:
141 CompMap Composed;
144 inline bool operator<(const CodeGenSubRegIndex &A,
145 const CodeGenSubRegIndex &B) {
146 return A.EnumValue < B.EnumValue;
149 /// CodeGenRegister - Represents a register definition.
150 struct CodeGenRegister {
151 Record *TheDef;
152 unsigned EnumValue;
153 unsigned CostPerUse;
154 bool CoveredBySubRegs;
155 bool HasDisjunctSubRegs;
156 bool Artificial;
158 // Map SubRegIndex -> Register.
159 typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *, deref<llvm::less>>
160 SubRegMap;
162 CodeGenRegister(Record *R, unsigned Enum);
164 const StringRef getName() const;
166 // Extract more information from TheDef. This is used to build an object
167 // graph after all CodeGenRegister objects have been created.
168 void buildObjectGraph(CodeGenRegBank&);
170 // Lazily compute a map of all sub-registers.
171 // This includes unique entries for all sub-sub-registers.
172 const SubRegMap &computeSubRegs(CodeGenRegBank&);
174 // Compute extra sub-registers by combining the existing sub-registers.
175 void computeSecondarySubRegs(CodeGenRegBank&);
177 // Add this as a super-register to all sub-registers after the sub-register
178 // graph has been built.
179 void computeSuperRegs(CodeGenRegBank&);
181 const SubRegMap &getSubRegs() const {
182 assert(SubRegsComplete && "Must precompute sub-registers");
183 return SubRegs;
186 // Add sub-registers to OSet following a pre-order defined by the .td file.
187 void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
188 CodeGenRegBank&) const;
190 // Return the sub-register index naming Reg as a sub-register of this
191 // register. Returns NULL if Reg is not a sub-register.
192 CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const {
193 return SubReg2Idx.lookup(Reg);
196 typedef std::vector<const CodeGenRegister*> SuperRegList;
198 // Get the list of super-registers in topological order, small to large.
199 // This is valid after computeSubRegs visits all registers during RegBank
200 // construction.
201 const SuperRegList &getSuperRegs() const {
202 assert(SubRegsComplete && "Must precompute sub-registers");
203 return SuperRegs;
206 // Get the list of ad hoc aliases. The graph is symmetric, so the list
207 // contains all registers in 'Aliases', and all registers that mention this
208 // register in 'Aliases'.
209 ArrayRef<CodeGenRegister*> getExplicitAliases() const {
210 return ExplicitAliases;
213 // Get the topological signature of this register. This is a small integer
214 // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have
215 // identical sub-register structure. That is, they support the same set of
216 // sub-register indices mapping to the same kind of sub-registers
217 // (TopoSig-wise).
218 unsigned getTopoSig() const {
219 assert(SuperRegsComplete && "TopoSigs haven't been computed yet.");
220 return TopoSig;
223 // List of register units in ascending order.
224 typedef SparseBitVector<> RegUnitList;
225 typedef SmallVector<LaneBitmask, 16> RegUnitLaneMaskList;
227 // How many entries in RegUnitList are native?
228 RegUnitList NativeRegUnits;
230 // Get the list of register units.
231 // This is only valid after computeSubRegs() completes.
232 const RegUnitList &getRegUnits() const { return RegUnits; }
234 ArrayRef<LaneBitmask> getRegUnitLaneMasks() const {
235 return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count());
238 // Get the native register units. This is a prefix of getRegUnits().
239 RegUnitList getNativeRegUnits() const {
240 return NativeRegUnits;
243 void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) {
244 RegUnitLaneMasks = LaneMasks;
247 // Inherit register units from subregisters.
248 // Return true if the RegUnits changed.
249 bool inheritRegUnits(CodeGenRegBank &RegBank);
251 // Adopt a register unit for pressure tracking.
252 // A unit is adopted iff its unit number is >= NativeRegUnits.count().
253 void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); }
255 // Get the sum of this register's register unit weights.
256 unsigned getWeight(const CodeGenRegBank &RegBank) const;
258 // Canonically ordered set.
259 typedef std::vector<const CodeGenRegister*> Vec;
261 private:
262 bool SubRegsComplete;
263 bool SuperRegsComplete;
264 unsigned TopoSig;
266 // The sub-registers explicit in the .td file form a tree.
267 SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices;
268 SmallVector<CodeGenRegister*, 8> ExplicitSubRegs;
270 // Explicit ad hoc aliases, symmetrized to form an undirected graph.
271 SmallVector<CodeGenRegister*, 8> ExplicitAliases;
273 // Super-registers where this is the first explicit sub-register.
274 SuperRegList LeadingSuperRegs;
276 SubRegMap SubRegs;
277 SuperRegList SuperRegs;
278 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx;
279 RegUnitList RegUnits;
280 RegUnitLaneMaskList RegUnitLaneMasks;
283 inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) {
284 return A.EnumValue < B.EnumValue;
287 inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) {
288 return A.EnumValue == B.EnumValue;
291 class CodeGenRegisterClass {
292 CodeGenRegister::Vec Members;
293 // Allocation orders. Order[0] always contains all registers in Members.
294 std::vector<SmallVector<Record*, 16>> Orders;
295 // Bit mask of sub-classes including this, indexed by their EnumValue.
296 BitVector SubClasses;
297 // List of super-classes, topologocally ordered to have the larger classes
298 // first. This is the same as sorting by EnumValue.
299 SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
300 Record *TheDef;
301 std::string Name;
303 // For a synthesized class, inherit missing properties from the nearest
304 // super-class.
305 void inheritProperties(CodeGenRegBank&);
307 // Map SubRegIndex -> sub-class. This is the largest sub-class where all
308 // registers have a SubRegIndex sub-register.
309 DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *>
310 SubClassWithSubReg;
312 // Map SubRegIndex -> set of super-reg classes. This is all register
313 // classes SuperRC such that:
315 // R:SubRegIndex in this RC for all R in SuperRC.
317 DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>>
318 SuperRegClasses;
320 // Bit vector of TopoSigs for the registers in this class. This will be
321 // very sparse on regular architectures.
322 BitVector TopoSigs;
324 public:
325 unsigned EnumValue;
326 StringRef Namespace;
327 SmallVector<ValueTypeByHwMode, 4> VTs;
328 RegSizeInfoByHwMode RSI;
329 int CopyCost;
330 bool Allocatable;
331 StringRef AltOrderSelect;
332 uint8_t AllocationPriority;
333 /// Contains the combination of the lane masks of all subregisters.
334 LaneBitmask LaneMask;
335 /// True if there are at least 2 subregisters which do not interfere.
336 bool HasDisjunctSubRegs;
337 bool CoveredBySubRegs;
338 /// A register class is artificial if all its members are artificial.
339 bool Artificial;
341 // Return the Record that defined this class, or NULL if the class was
342 // created by TableGen.
343 Record *getDef() const { return TheDef; }
345 const std::string &getName() const { return Name; }
346 std::string getQualifiedName() const;
347 ArrayRef<ValueTypeByHwMode> getValueTypes() const { return VTs; }
348 unsigned getNumValueTypes() const { return VTs.size(); }
350 const ValueTypeByHwMode &getValueTypeNum(unsigned VTNum) const {
351 if (VTNum < VTs.size())
352 return VTs[VTNum];
353 llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!");
356 // Return true if this this class contains the register.
357 bool contains(const CodeGenRegister*) const;
359 // Returns true if RC is a subclass.
360 // RC is a sub-class of this class if it is a valid replacement for any
361 // instruction operand where a register of this classis required. It must
362 // satisfy these conditions:
364 // 1. All RC registers are also in this.
365 // 2. The RC spill size must not be smaller than our spill size.
366 // 3. RC spill alignment must be compatible with ours.
368 bool hasSubClass(const CodeGenRegisterClass *RC) const {
369 return SubClasses.test(RC->EnumValue);
372 // getSubClassWithSubReg - Returns the largest sub-class where all
373 // registers have a SubIdx sub-register.
374 CodeGenRegisterClass *
375 getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const {
376 return SubClassWithSubReg.lookup(SubIdx);
379 /// Find largest subclass where all registers have SubIdx subregisters in
380 /// SubRegClass and the largest subregister class that contains those
381 /// subregisters without (as far as possible) also containing additional registers.
383 /// This can be used to find a suitable pair of classes for subregister copies.
384 /// \return std::pair<SubClass, SubRegClass> where SubClass is a SubClass is
385 /// a class where every register has SubIdx and SubRegClass is a class where
386 /// every register is covered by the SubIdx subregister of SubClass.
387 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
388 getMatchingSubClassWithSubRegs(CodeGenRegBank &RegBank,
389 const CodeGenSubRegIndex *SubIdx) const;
391 void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx,
392 CodeGenRegisterClass *SubRC) {
393 SubClassWithSubReg[SubIdx] = SubRC;
396 // getSuperRegClasses - Returns a bit vector of all register classes
397 // containing only SubIdx super-registers of this class.
398 void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
399 BitVector &Out) const;
401 // addSuperRegClass - Add a class containing only SubIdx super-registers.
402 void addSuperRegClass(CodeGenSubRegIndex *SubIdx,
403 CodeGenRegisterClass *SuperRC) {
404 SuperRegClasses[SubIdx].insert(SuperRC);
407 // getSubClasses - Returns a constant BitVector of subclasses indexed by
408 // EnumValue.
409 // The SubClasses vector includes an entry for this class.
410 const BitVector &getSubClasses() const { return SubClasses; }
412 // getSuperClasses - Returns a list of super classes ordered by EnumValue.
413 // The array does not include an entry for this class.
414 ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
415 return SuperClasses;
418 // Returns an ordered list of class members.
419 // The order of registers is the same as in the .td file.
420 // No = 0 is the default allocation order, No = 1 is the first alternative.
421 ArrayRef<Record*> getOrder(unsigned No = 0) const {
422 return Orders[No];
425 // Return the total number of allocation orders available.
426 unsigned getNumOrders() const { return Orders.size(); }
428 // Get the set of registers. This set contains the same registers as
429 // getOrder(0).
430 const CodeGenRegister::Vec &getMembers() const { return Members; }
432 // Get a bit vector of TopoSigs present in this register class.
433 const BitVector &getTopoSigs() const { return TopoSigs; }
435 // Populate a unique sorted list of units from a register set.
436 void buildRegUnitSet(const CodeGenRegBank &RegBank,
437 std::vector<unsigned> &RegUnits) const;
439 CodeGenRegisterClass(CodeGenRegBank&, Record *R);
441 // A key representing the parts of a register class used for forming
442 // sub-classes. Note the ordering provided by this key is not the same as
443 // the topological order used for the EnumValues.
444 struct Key {
445 const CodeGenRegister::Vec *Members;
446 RegSizeInfoByHwMode RSI;
448 Key(const CodeGenRegister::Vec *M, const RegSizeInfoByHwMode &I)
449 : Members(M), RSI(I) {}
451 Key(const CodeGenRegisterClass &RC)
452 : Members(&RC.getMembers()), RSI(RC.RSI) {}
454 // Lexicographical order of (Members, RegSizeInfoByHwMode).
455 bool operator<(const Key&) const;
458 // Create a non-user defined register class.
459 CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props);
461 // Called by CodeGenRegBank::CodeGenRegBank().
462 static void computeSubClasses(CodeGenRegBank&);
465 // Register units are used to model interference and register pressure.
466 // Every register is assigned one or more register units such that two
467 // registers overlap if and only if they have a register unit in common.
469 // Normally, one register unit is created per leaf register. Non-leaf
470 // registers inherit the units of their sub-registers.
471 struct RegUnit {
472 // Weight assigned to this RegUnit for estimating register pressure.
473 // This is useful when equalizing weights in register classes with mixed
474 // register topologies.
475 unsigned Weight;
477 // Each native RegUnit corresponds to one or two root registers. The full
478 // set of registers containing this unit can be computed as the union of
479 // these two registers and their super-registers.
480 const CodeGenRegister *Roots[2];
482 // Index into RegClassUnitSets where we can find the list of UnitSets that
483 // contain this unit.
484 unsigned RegClassUnitSetsIdx;
485 // A register unit is artificial if at least one of its roots is
486 // artificial.
487 bool Artificial;
489 RegUnit() : Weight(0), RegClassUnitSetsIdx(0), Artificial(false) {
490 Roots[0] = Roots[1] = nullptr;
493 ArrayRef<const CodeGenRegister*> getRoots() const {
494 assert(!(Roots[1] && !Roots[0]) && "Invalid roots array");
495 return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]);
499 // Each RegUnitSet is a sorted vector with a name.
500 struct RegUnitSet {
501 typedef std::vector<unsigned>::const_iterator iterator;
503 std::string Name;
504 std::vector<unsigned> Units;
505 unsigned Weight = 0; // Cache the sum of all unit weights.
506 unsigned Order = 0; // Cache the sort key.
508 RegUnitSet() = default;
511 // Base vector for identifying TopoSigs. The contents uniquely identify a
512 // TopoSig, only computeSuperRegs needs to know how.
513 typedef SmallVector<unsigned, 16> TopoSigId;
515 // CodeGenRegBank - Represent a target's registers and the relations between
516 // them.
517 class CodeGenRegBank {
518 SetTheory Sets;
520 const CodeGenHwModes &CGH;
522 std::deque<CodeGenSubRegIndex> SubRegIndices;
523 DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx;
525 CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace);
527 typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>,
528 CodeGenSubRegIndex*> ConcatIdxMap;
529 ConcatIdxMap ConcatIdx;
531 // Registers.
532 std::deque<CodeGenRegister> Registers;
533 StringMap<CodeGenRegister*> RegistersByName;
534 DenseMap<Record*, CodeGenRegister*> Def2Reg;
535 unsigned NumNativeRegUnits;
537 std::map<TopoSigId, unsigned> TopoSigs;
539 // Includes native (0..NumNativeRegUnits-1) and adopted register units.
540 SmallVector<RegUnit, 8> RegUnits;
542 // Register classes.
543 std::list<CodeGenRegisterClass> RegClasses;
544 DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
545 typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
546 RCKeyMap Key2RC;
548 // Remember each unique set of register units. Initially, this contains a
549 // unique set for each register class. Simliar sets are coalesced with
550 // pruneUnitSets and new supersets are inferred during computeRegUnitSets.
551 std::vector<RegUnitSet> RegUnitSets;
553 // Map RegisterClass index to the index of the RegUnitSet that contains the
554 // class's units and any inferred RegUnit supersets.
556 // NOTE: This could grow beyond the number of register classes when we map
557 // register units to lists of unit sets. If the list of unit sets does not
558 // already exist for a register class, we create a new entry in this vector.
559 std::vector<std::vector<unsigned>> RegClassUnitSets;
561 // Give each register unit set an order based on sorting criteria.
562 std::vector<unsigned> RegUnitSetOrder;
564 // Keep track of synthesized definitions generated in TupleExpander.
565 std::vector<std::unique_ptr<Record>> SynthDefs;
567 // Add RC to *2RC maps.
568 void addToMaps(CodeGenRegisterClass*);
570 // Create a synthetic sub-class if it is missing.
571 CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC,
572 const CodeGenRegister::Vec *Membs,
573 StringRef Name);
575 // Infer missing register classes.
576 void computeInferredRegisterClasses();
577 void inferCommonSubClass(CodeGenRegisterClass *RC);
578 void inferSubClassWithSubReg(CodeGenRegisterClass *RC);
580 void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) {
581 inferMatchingSuperRegClass(RC, RegClasses.begin());
584 void inferMatchingSuperRegClass(
585 CodeGenRegisterClass *RC,
586 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC);
588 // Iteratively prune unit sets.
589 void pruneUnitSets();
591 // Compute a weight for each register unit created during getSubRegs.
592 void computeRegUnitWeights();
594 // Create a RegUnitSet for each RegClass and infer superclasses.
595 void computeRegUnitSets();
597 // Populate the Composite map from sub-register relationships.
598 void computeComposites();
600 // Compute a lane mask for each sub-register index.
601 void computeSubRegLaneMasks();
603 /// Computes a lane mask for each register unit enumerated by a physical
604 /// register.
605 void computeRegUnitLaneMasks();
607 public:
608 CodeGenRegBank(RecordKeeper&, const CodeGenHwModes&);
610 SetTheory &getSets() { return Sets; }
612 const CodeGenHwModes &getHwModes() const { return CGH; }
614 // Sub-register indices. The first NumNamedIndices are defined by the user
615 // in the .td files. The rest are synthesized such that all sub-registers
616 // have a unique name.
617 const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const {
618 return SubRegIndices;
621 // Find a SubRegIndex form its Record def.
622 CodeGenSubRegIndex *getSubRegIdx(Record*);
624 // Find or create a sub-register index representing the A+B composition.
625 CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A,
626 CodeGenSubRegIndex *B);
628 // Find or create a sub-register index representing the concatenation of
629 // non-overlapping sibling indices.
630 CodeGenSubRegIndex *
631 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&);
633 const std::deque<CodeGenRegister> &getRegisters() { return Registers; }
635 const StringMap<CodeGenRegister*> &getRegistersByName() {
636 return RegistersByName;
639 // Find a register from its Record def.
640 CodeGenRegister *getReg(Record*);
642 // Get a Register's index into the Registers array.
643 unsigned getRegIndex(const CodeGenRegister *Reg) const {
644 return Reg->EnumValue - 1;
647 // Return the number of allocated TopoSigs. The first TopoSig representing
648 // leaf registers is allocated number 0.
649 unsigned getNumTopoSigs() const {
650 return TopoSigs.size();
653 // Find or create a TopoSig for the given TopoSigId.
654 // This function is only for use by CodeGenRegister::computeSuperRegs().
655 // Others should simply use Reg->getTopoSig().
656 unsigned getTopoSig(const TopoSigId &Id) {
657 return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second;
660 // Create a native register unit that is associated with one or two root
661 // registers.
662 unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) {
663 RegUnits.resize(RegUnits.size() + 1);
664 RegUnit &RU = RegUnits.back();
665 RU.Roots[0] = R0;
666 RU.Roots[1] = R1;
667 RU.Artificial = R0->Artificial;
668 if (R1)
669 RU.Artificial |= R1->Artificial;
670 return RegUnits.size() - 1;
673 // Create a new non-native register unit that can be adopted by a register
674 // to increase its pressure. Note that NumNativeRegUnits is not increased.
675 unsigned newRegUnit(unsigned Weight) {
676 RegUnits.resize(RegUnits.size() + 1);
677 RegUnits.back().Weight = Weight;
678 return RegUnits.size() - 1;
681 // Native units are the singular unit of a leaf register. Register aliasing
682 // is completely characterized by native units. Adopted units exist to give
683 // register additional weight but don't affect aliasing.
684 bool isNativeUnit(unsigned RUID) {
685 return RUID < NumNativeRegUnits;
688 unsigned getNumNativeRegUnits() const {
689 return NumNativeRegUnits;
692 RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; }
693 const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; }
695 std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; }
697 const std::list<CodeGenRegisterClass> &getRegClasses() const {
698 return RegClasses;
701 // Find a register class from its def.
702 CodeGenRegisterClass *getRegClass(Record*);
704 /// getRegisterClassForRegister - Find the register class that contains the
705 /// specified physical register. If the register is not in a register
706 /// class, return null. If the register is in multiple classes, and the
707 /// classes have a superset-subset relationship and the same set of types,
708 /// return the superclass. Otherwise return null.
709 const CodeGenRegisterClass* getRegClassForRegister(Record *R);
711 // Get the sum of unit weights.
712 unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const {
713 unsigned Weight = 0;
714 for (std::vector<unsigned>::const_iterator
715 I = Units.begin(), E = Units.end(); I != E; ++I)
716 Weight += getRegUnit(*I).Weight;
717 return Weight;
720 unsigned getRegSetIDAt(unsigned Order) const {
721 return RegUnitSetOrder[Order];
724 const RegUnitSet &getRegSetAt(unsigned Order) const {
725 return RegUnitSets[RegUnitSetOrder[Order]];
728 // Increase a RegUnitWeight.
729 void increaseRegUnitWeight(unsigned RUID, unsigned Inc) {
730 getRegUnit(RUID).Weight += Inc;
733 // Get the number of register pressure dimensions.
734 unsigned getNumRegPressureSets() const { return RegUnitSets.size(); }
736 // Get a set of register unit IDs for a given dimension of pressure.
737 const RegUnitSet &getRegPressureSet(unsigned Idx) const {
738 return RegUnitSets[Idx];
741 // The number of pressure set lists may be larget than the number of
742 // register classes if some register units appeared in a list of sets that
743 // did not correspond to an existing register class.
744 unsigned getNumRegClassPressureSetLists() const {
745 return RegClassUnitSets.size();
748 // Get a list of pressure set IDs for a register class. Liveness of a
749 // register in this class impacts each pressure set in this list by the
750 // weight of the register. An exact solution requires all registers in a
751 // class to have the same class, but it is not strictly guaranteed.
752 ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const {
753 return RegClassUnitSets[RCIdx];
756 // Computed derived records such as missing sub-register indices.
757 void computeDerivedInfo();
759 // Compute the set of registers completely covered by the registers in Regs.
760 // The returned BitVector will have a bit set for each register in Regs,
761 // all sub-registers, and all super-registers that are covered by the
762 // registers in Regs.
764 // This is used to compute the mask of call-preserved registers from a list
765 // of callee-saves.
766 BitVector computeCoveredRegisters(ArrayRef<Record*> Regs);
768 // Bit mask of lanes that cover their registers. A sub-register index whose
769 // LaneMask is contained in CoveringLanes will be completely covered by
770 // another sub-register with the same or larger lane mask.
771 LaneBitmask CoveringLanes;
773 // Helper function for printing debug information. Handles artificial
774 // (non-native) reg units.
775 void printRegUnitName(unsigned Unit) const;
778 } // end namespace llvm
780 #endif // LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H