1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains routines that help analyze properties that chains of
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Intrinsics.h"
32 class AssumptionCache
;
36 class WithOverflowInst
;
41 class OptimizationRemarkEmitter
;
43 class TargetLibraryInfo
;
46 /// Determine which bits of V are known to be either zero or one and return
47 /// them in the KnownZero/KnownOne bit sets.
49 /// This function is defined on values with integer type, values with pointer
50 /// type, and vectors of integers. In the case
51 /// where V is a vector, the known zero and known one values are the
52 /// same width as the vector element, and the bit is set only if it is true
53 /// for all of the elements in the vector.
54 void computeKnownBits(const Value
*V
, KnownBits
&Known
,
55 const DataLayout
&DL
, unsigned Depth
= 0,
56 AssumptionCache
*AC
= nullptr,
57 const Instruction
*CxtI
= nullptr,
58 const DominatorTree
*DT
= nullptr,
59 OptimizationRemarkEmitter
*ORE
= nullptr,
60 bool UseInstrInfo
= true);
62 /// Returns the known bits rather than passing by reference.
63 KnownBits
computeKnownBits(const Value
*V
, const DataLayout
&DL
,
64 unsigned Depth
= 0, AssumptionCache
*AC
= nullptr,
65 const Instruction
*CxtI
= nullptr,
66 const DominatorTree
*DT
= nullptr,
67 OptimizationRemarkEmitter
*ORE
= nullptr,
68 bool UseInstrInfo
= true);
70 /// Compute known bits from the range metadata.
71 /// \p KnownZero the set of bits that are known to be zero
72 /// \p KnownOne the set of bits that are known to be one
73 void computeKnownBitsFromRangeMetadata(const MDNode
&Ranges
,
76 /// Return true if LHS and RHS have no common bits set.
77 bool haveNoCommonBitsSet(const Value
*LHS
, const Value
*RHS
,
79 AssumptionCache
*AC
= nullptr,
80 const Instruction
*CxtI
= nullptr,
81 const DominatorTree
*DT
= nullptr,
82 bool UseInstrInfo
= true);
84 /// Return true if the given value is known to have exactly one bit set when
85 /// defined. For vectors return true if every element is known to be a power
86 /// of two when defined. Supports values with integer or pointer type and
87 /// vectors of integers. If 'OrZero' is set, then return true if the given
88 /// value is either a power of two or zero.
89 bool isKnownToBeAPowerOfTwo(const Value
*V
, const DataLayout
&DL
,
90 bool OrZero
= false, unsigned Depth
= 0,
91 AssumptionCache
*AC
= nullptr,
92 const Instruction
*CxtI
= nullptr,
93 const DominatorTree
*DT
= nullptr,
94 bool UseInstrInfo
= true);
96 bool isOnlyUsedInZeroEqualityComparison(const Instruction
*CxtI
);
98 /// Return true if the given value is known to be non-zero when defined. For
99 /// vectors, return true if every element is known to be non-zero when
100 /// defined. For pointers, if the context instruction and dominator tree are
101 /// specified, perform context-sensitive analysis and return true if the
102 /// pointer couldn't possibly be null at the specified instruction.
103 /// Supports values with integer or pointer type and vectors of integers.
104 bool isKnownNonZero(const Value
*V
, const DataLayout
&DL
, unsigned Depth
= 0,
105 AssumptionCache
*AC
= nullptr,
106 const Instruction
*CxtI
= nullptr,
107 const DominatorTree
*DT
= nullptr,
108 bool UseInstrInfo
= true);
110 /// Return true if the two given values are negation.
111 /// Currently can recoginze Value pair:
112 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
113 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
114 bool isKnownNegation(const Value
*X
, const Value
*Y
, bool NeedNSW
= false);
116 /// Returns true if the give value is known to be non-negative.
117 bool isKnownNonNegative(const Value
*V
, const DataLayout
&DL
,
119 AssumptionCache
*AC
= nullptr,
120 const Instruction
*CxtI
= nullptr,
121 const DominatorTree
*DT
= nullptr,
122 bool UseInstrInfo
= true);
124 /// Returns true if the given value is known be positive (i.e. non-negative
126 bool isKnownPositive(const Value
*V
, const DataLayout
&DL
, unsigned Depth
= 0,
127 AssumptionCache
*AC
= nullptr,
128 const Instruction
*CxtI
= nullptr,
129 const DominatorTree
*DT
= nullptr,
130 bool UseInstrInfo
= true);
132 /// Returns true if the given value is known be negative (i.e. non-positive
134 bool isKnownNegative(const Value
*V
, const DataLayout
&DL
, unsigned Depth
= 0,
135 AssumptionCache
*AC
= nullptr,
136 const Instruction
*CxtI
= nullptr,
137 const DominatorTree
*DT
= nullptr,
138 bool UseInstrInfo
= true);
140 /// Return true if the given values are known to be non-equal when defined.
141 /// Supports scalar integer types only.
142 bool isKnownNonEqual(const Value
*V1
, const Value
*V2
, const DataLayout
&DL
,
143 AssumptionCache
*AC
= nullptr,
144 const Instruction
*CxtI
= nullptr,
145 const DominatorTree
*DT
= nullptr,
146 bool UseInstrInfo
= true);
148 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
149 /// simplify operations downstream. Mask is known to be zero for bits that V
152 /// This function is defined on values with integer type, values with pointer
153 /// type, and vectors of integers. In the case
154 /// where V is a vector, the mask, known zero, and known one values are the
155 /// same width as the vector element, and the bit is set only if it is true
156 /// for all of the elements in the vector.
157 bool MaskedValueIsZero(const Value
*V
, const APInt
&Mask
,
158 const DataLayout
&DL
,
159 unsigned Depth
= 0, AssumptionCache
*AC
= nullptr,
160 const Instruction
*CxtI
= nullptr,
161 const DominatorTree
*DT
= nullptr,
162 bool UseInstrInfo
= true);
164 /// Return the number of times the sign bit of the register is replicated into
165 /// the other bits. We know that at least 1 bit is always equal to the sign
166 /// bit (itself), but other cases can give us information. For example,
167 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
168 /// equal to each other, so we return 3. For vectors, return the number of
169 /// sign bits for the vector element with the mininum number of known sign
171 unsigned ComputeNumSignBits(const Value
*Op
, const DataLayout
&DL
,
172 unsigned Depth
= 0, AssumptionCache
*AC
= nullptr,
173 const Instruction
*CxtI
= nullptr,
174 const DominatorTree
*DT
= nullptr,
175 bool UseInstrInfo
= true);
177 /// This function computes the integer multiple of Base that equals V. If
178 /// successful, it returns true and returns the multiple in Multiple. If
179 /// unsuccessful, it returns false. Also, if V can be simplified to an
180 /// integer, then the simplified V is returned in Val. Look through sext only
181 /// if LookThroughSExt=true.
182 bool ComputeMultiple(Value
*V
, unsigned Base
, Value
*&Multiple
,
183 bool LookThroughSExt
= false,
186 /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
187 /// intrinsics are treated as-if they were intrinsics.
188 Intrinsic::ID
getIntrinsicForCallSite(ImmutableCallSite ICS
,
189 const TargetLibraryInfo
*TLI
);
191 /// Return true if we can prove that the specified FP value is never equal to
193 bool CannotBeNegativeZero(const Value
*V
, const TargetLibraryInfo
*TLI
,
196 /// Return true if we can prove that the specified FP value is either NaN or
197 /// never less than -0.0.
204 bool CannotBeOrderedLessThanZero(const Value
*V
, const TargetLibraryInfo
*TLI
);
206 /// Return true if the floating-point scalar value is not a NaN or if the
207 /// floating-point vector value has no NaN elements. Return false if a value
208 /// could ever be NaN.
209 bool isKnownNeverNaN(const Value
*V
, const TargetLibraryInfo
*TLI
,
212 /// Return true if we can prove that the specified FP value's sign bit is 0.
214 /// NaN --> true/false (depending on the NaN's sign bit)
219 bool SignBitMustBeZero(const Value
*V
, const TargetLibraryInfo
*TLI
);
221 /// If the specified value can be set by repeating the same byte in memory,
222 /// return the i8 value that it is represented with. This is true for all i8
223 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
224 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
225 /// i16 0x1234), return null. If the value is entirely undef and padding,
227 Value
*isBytewiseValue(Value
*V
, const DataLayout
&DL
);
229 /// Given an aggregrate and an sequence of indices, see if the scalar value
230 /// indexed is already around as a register, for example if it were inserted
231 /// directly into the aggregrate.
233 /// If InsertBefore is not null, this function will duplicate (modified)
234 /// insertvalues when a part of a nested struct is extracted.
235 Value
*FindInsertedValue(Value
*V
,
236 ArrayRef
<unsigned> idx_range
,
237 Instruction
*InsertBefore
= nullptr);
239 /// Analyze the specified pointer to see if it can be expressed as a base
240 /// pointer plus a constant offset. Return the base and offset to the caller.
242 /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
243 /// creates and later unpacks the required APInt.
244 inline Value
*GetPointerBaseWithConstantOffset(Value
*Ptr
, int64_t &Offset
,
245 const DataLayout
&DL
,
246 bool AllowNonInbounds
= true) {
247 APInt
OffsetAPInt(DL
.getIndexTypeSizeInBits(Ptr
->getType()), 0);
249 Ptr
->stripAndAccumulateConstantOffsets(DL
, OffsetAPInt
, AllowNonInbounds
);
251 Offset
= OffsetAPInt
.getSExtValue();
255 GetPointerBaseWithConstantOffset(const Value
*Ptr
, int64_t &Offset
,
256 const DataLayout
&DL
,
257 bool AllowNonInbounds
= true) {
258 return GetPointerBaseWithConstantOffset(const_cast<Value
*>(Ptr
), Offset
, DL
,
262 /// Returns true if the GEP is based on a pointer to a string (array of
263 // \p CharSize integers) and is indexing into this string.
264 bool isGEPBasedOnPointerToString(const GEPOperator
*GEP
,
265 unsigned CharSize
= 8);
267 /// Represents offset+length into a ConstantDataArray.
268 struct ConstantDataArraySlice
{
269 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
270 /// initializer, it just doesn't fit the ConstantDataArray interface).
271 const ConstantDataArray
*Array
;
273 /// Slice starts at this Offset.
276 /// Length of the slice.
279 /// Moves the Offset and adjusts Length accordingly.
280 void move(uint64_t Delta
) {
281 assert(Delta
< Length
);
286 /// Convenience accessor for elements in the slice.
287 uint64_t operator[](unsigned I
) const {
288 return Array
==nullptr ? 0 : Array
->getElementAsInteger(I
+ Offset
);
292 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
293 /// If successful \p Slice will point to a ConstantDataArray info object
294 /// with an appropriate offset.
295 bool getConstantDataArrayInfo(const Value
*V
, ConstantDataArraySlice
&Slice
,
296 unsigned ElementSize
, uint64_t Offset
= 0);
298 /// This function computes the length of a null-terminated C string pointed to
299 /// by V. If successful, it returns true and returns the string in Str. If
300 /// unsuccessful, it returns false. This does not include the trailing null
301 /// character by default. If TrimAtNul is set to false, then this returns any
302 /// trailing null characters as well as any other characters that come after
304 bool getConstantStringInfo(const Value
*V
, StringRef
&Str
,
305 uint64_t Offset
= 0, bool TrimAtNul
= true);
307 /// If we can compute the length of the string pointed to by the specified
308 /// pointer, return 'len+1'. If we can't, return 0.
309 uint64_t GetStringLength(const Value
*V
, unsigned CharSize
= 8);
311 /// This function returns call pointer argument that is considered the same by
312 /// aliasing rules. You CAN'T use it to replace one value with another. If
313 /// \p MustPreserveNullness is true, the call must preserve the nullness of
315 const Value
*getArgumentAliasingToReturnedPointer(const CallBase
*Call
,
316 bool MustPreserveNullness
);
318 getArgumentAliasingToReturnedPointer(CallBase
*Call
,
319 bool MustPreserveNullness
) {
320 return const_cast<Value
*>(getArgumentAliasingToReturnedPointer(
321 const_cast<const CallBase
*>(Call
), MustPreserveNullness
));
324 /// {launder,strip}.invariant.group returns pointer that aliases its argument,
325 /// and it only captures pointer by returning it.
326 /// These intrinsics are not marked as nocapture, because returning is
327 /// considered as capture. The arguments are not marked as returned neither,
328 /// because it would make it useless. If \p MustPreserveNullness is true,
329 /// the intrinsic must preserve the nullness of the pointer.
330 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
331 const CallBase
*Call
, bool MustPreserveNullness
);
333 /// This method strips off any GEP address adjustments and pointer casts from
334 /// the specified value, returning the original object being addressed. Note
335 /// that the returned value has pointer type if the specified value does. If
336 /// the MaxLookup value is non-zero, it limits the number of instructions to
338 Value
*GetUnderlyingObject(Value
*V
, const DataLayout
&DL
,
339 unsigned MaxLookup
= 6);
340 inline const Value
*GetUnderlyingObject(const Value
*V
, const DataLayout
&DL
,
341 unsigned MaxLookup
= 6) {
342 return GetUnderlyingObject(const_cast<Value
*>(V
), DL
, MaxLookup
);
345 /// This method is similar to GetUnderlyingObject except that it can
346 /// look through phi and select instructions and return multiple objects.
348 /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
349 /// accesses different objects in each iteration, we don't look through the
350 /// phi node. E.g. consider this loop nest:
355 /// A[i][j] = A[i-1][j] * B[j]
358 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
359 /// of the outer loop:
361 /// Curr = A[0]; // Prev_0
363 /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
366 /// Curr[j] = Prev[j] * B[j]
370 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
371 /// should not assume that Curr and Prev share the same underlying object thus
372 /// it shouldn't look through the phi above.
373 void GetUnderlyingObjects(const Value
*V
,
374 SmallVectorImpl
<const Value
*> &Objects
,
375 const DataLayout
&DL
, LoopInfo
*LI
= nullptr,
376 unsigned MaxLookup
= 6);
378 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
379 /// ptrtoint+arithmetic+inttoptr sequences.
380 bool getUnderlyingObjectsForCodeGen(const Value
*V
,
381 SmallVectorImpl
<Value
*> &Objects
,
382 const DataLayout
&DL
);
384 /// Return true if the only users of this pointer are lifetime markers.
385 bool onlyUsedByLifetimeMarkers(const Value
*V
);
387 /// Return true if speculation of the given load must be suppressed to avoid
388 /// ordering or interfering with an active sanitizer. If not suppressed,
389 /// dereferenceability and alignment must be proven separately. Note: This
390 /// is only needed for raw reasoning; if you use the interface below
391 /// (isSafeToSpeculativelyExecute), this is handled internally.
392 bool mustSuppressSpeculation(const LoadInst
&LI
);
394 /// Return true if the instruction does not have any effects besides
395 /// calculating the result and does not have undefined behavior.
397 /// This method never returns true for an instruction that returns true for
398 /// mayHaveSideEffects; however, this method also does some other checks in
399 /// addition. It checks for undefined behavior, like dividing by zero or
400 /// loading from an invalid pointer (but not for undefined results, like a
401 /// shift with a shift amount larger than the width of the result). It checks
402 /// for malloc and alloca because speculatively executing them might cause a
403 /// memory leak. It also returns false for instructions related to control
404 /// flow, specifically terminators and PHI nodes.
406 /// If the CtxI is specified this method performs context-sensitive analysis
407 /// and returns true if it is safe to execute the instruction immediately
410 /// If the CtxI is NOT specified this method only looks at the instruction
411 /// itself and its operands, so if this method returns true, it is safe to
412 /// move the instruction as long as the correct dominance relationships for
413 /// the operands and users hold.
415 /// This method can return true for instructions that read memory;
416 /// for such instructions, moving them may change the resulting value.
417 bool isSafeToSpeculativelyExecute(const Value
*V
,
418 const Instruction
*CtxI
= nullptr,
419 const DominatorTree
*DT
= nullptr);
421 /// Returns true if the result or effects of the given instructions \p I
422 /// depend on or influence global memory.
423 /// Memory dependence arises for example if the instruction reads from
424 /// memory or may produce effects or undefined behaviour. Memory dependent
425 /// instructions generally cannot be reorderd with respect to other memory
426 /// dependent instructions or moved into non-dominated basic blocks.
427 /// Instructions which just compute a value based on the values of their
428 /// operands are not memory dependent.
429 bool mayBeMemoryDependent(const Instruction
&I
);
431 /// Return true if it is an intrinsic that cannot be speculated but also
433 bool isAssumeLikeIntrinsic(const Instruction
*I
);
435 /// Return true if it is valid to use the assumptions provided by an
436 /// assume intrinsic, I, at the point in the control-flow identified by the
437 /// context instruction, CxtI.
438 bool isValidAssumeForContext(const Instruction
*I
, const Instruction
*CxtI
,
439 const DominatorTree
*DT
= nullptr);
441 enum class OverflowResult
{
442 /// Always overflows in the direction of signed/unsigned min value.
444 /// Always overflows in the direction of signed/unsigned max value.
446 /// May or may not overflow.
452 OverflowResult
computeOverflowForUnsignedMul(const Value
*LHS
,
454 const DataLayout
&DL
,
456 const Instruction
*CxtI
,
457 const DominatorTree
*DT
,
458 bool UseInstrInfo
= true);
459 OverflowResult
computeOverflowForSignedMul(const Value
*LHS
, const Value
*RHS
,
460 const DataLayout
&DL
,
462 const Instruction
*CxtI
,
463 const DominatorTree
*DT
,
464 bool UseInstrInfo
= true);
465 OverflowResult
computeOverflowForUnsignedAdd(const Value
*LHS
,
467 const DataLayout
&DL
,
469 const Instruction
*CxtI
,
470 const DominatorTree
*DT
,
471 bool UseInstrInfo
= true);
472 OverflowResult
computeOverflowForSignedAdd(const Value
*LHS
, const Value
*RHS
,
473 const DataLayout
&DL
,
474 AssumptionCache
*AC
= nullptr,
475 const Instruction
*CxtI
= nullptr,
476 const DominatorTree
*DT
= nullptr);
477 /// This version also leverages the sign bit of Add if known.
478 OverflowResult
computeOverflowForSignedAdd(const AddOperator
*Add
,
479 const DataLayout
&DL
,
480 AssumptionCache
*AC
= nullptr,
481 const Instruction
*CxtI
= nullptr,
482 const DominatorTree
*DT
= nullptr);
483 OverflowResult
computeOverflowForUnsignedSub(const Value
*LHS
, const Value
*RHS
,
484 const DataLayout
&DL
,
486 const Instruction
*CxtI
,
487 const DominatorTree
*DT
);
488 OverflowResult
computeOverflowForSignedSub(const Value
*LHS
, const Value
*RHS
,
489 const DataLayout
&DL
,
491 const Instruction
*CxtI
,
492 const DominatorTree
*DT
);
494 /// Returns true if the arithmetic part of the \p WO 's result is
495 /// used only along the paths control dependent on the computation
496 /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
497 bool isOverflowIntrinsicNoWrap(const WithOverflowInst
*WO
,
498 const DominatorTree
&DT
);
501 /// Determine the possible constant range of an integer or vector of integer
502 /// value. This is intended as a cheap, non-recursive check.
503 ConstantRange
computeConstantRange(const Value
*V
, bool UseInstrInfo
= true);
505 /// Return true if this function can prove that the instruction I will
506 /// always transfer execution to one of its successors (including the next
507 /// instruction that follows within a basic block). E.g. this is not
508 /// guaranteed for function calls that could loop infinitely.
510 /// In other words, this function returns false for instructions that may
511 /// transfer execution or fail to transfer execution in a way that is not
512 /// captured in the CFG nor in the sequence of instructions within a basic
515 /// Undefined behavior is assumed not to happen, so e.g. division is
516 /// guaranteed to transfer execution to the following instruction even
517 /// though division by zero might cause undefined behavior.
518 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction
*I
);
520 /// Returns true if this block does not contain a potential implicit exit.
521 /// This is equivelent to saying that all instructions within the basic block
522 /// are guaranteed to transfer execution to their successor within the basic
523 /// block. This has the same assumptions w.r.t. undefined behavior as the
524 /// instruction variant of this function.
525 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock
*BB
);
527 /// Return true if this function can prove that the instruction I
528 /// is executed for every iteration of the loop L.
530 /// Note that this currently only considers the loop header.
531 bool isGuaranteedToExecuteForEveryIteration(const Instruction
*I
,
534 /// Return true if this function can prove that I is guaranteed to yield
535 /// full-poison (all bits poison) if at least one of its operands are
536 /// full-poison (all bits poison).
538 /// The exact rules for how poison propagates through instructions have
539 /// not been settled as of 2015-07-10, so this function is conservative
540 /// and only considers poison to be propagated in uncontroversial
541 /// cases. There is no attempt to track values that may be only partially
543 bool propagatesFullPoison(const Instruction
*I
);
545 /// Return either nullptr or an operand of I such that I will trigger
546 /// undefined behavior if I is executed and that operand has a full-poison
547 /// value (all bits poison).
548 const Value
*getGuaranteedNonFullPoisonOp(const Instruction
*I
);
550 /// Return true if the given instruction must trigger undefined behavior.
551 /// when I is executed with any operands which appear in KnownPoison holding
552 /// a full-poison value at the point of execution.
553 bool mustTriggerUB(const Instruction
*I
,
554 const SmallSet
<const Value
*, 16>& KnownPoison
);
556 /// Return true if this function can prove that if PoisonI is executed
557 /// and yields a full-poison value (all bits poison), then that will
558 /// trigger undefined behavior.
560 /// Note that this currently only considers the basic block that is
562 bool programUndefinedIfFullPoison(const Instruction
*PoisonI
);
564 /// Specific patterns of select instructions we can match.
565 enum SelectPatternFlavor
{
567 SPF_SMIN
, /// Signed minimum
568 SPF_UMIN
, /// Unsigned minimum
569 SPF_SMAX
, /// Signed maximum
570 SPF_UMAX
, /// Unsigned maximum
571 SPF_FMINNUM
, /// Floating point minnum
572 SPF_FMAXNUM
, /// Floating point maxnum
573 SPF_ABS
, /// Absolute value
574 SPF_NABS
/// Negated absolute value
577 /// Behavior when a floating point min/max is given one NaN and one
578 /// non-NaN as input.
579 enum SelectPatternNaNBehavior
{
580 SPNB_NA
= 0, /// NaN behavior not applicable.
581 SPNB_RETURNS_NAN
, /// Given one NaN input, returns the NaN.
582 SPNB_RETURNS_OTHER
, /// Given one NaN input, returns the non-NaN.
583 SPNB_RETURNS_ANY
/// Given one NaN input, can return either (or
584 /// it has been determined that no operands can
588 struct SelectPatternResult
{
589 SelectPatternFlavor Flavor
;
590 SelectPatternNaNBehavior NaNBehavior
; /// Only applicable if Flavor is
591 /// SPF_FMINNUM or SPF_FMAXNUM.
592 bool Ordered
; /// When implementing this min/max pattern as
593 /// fcmp; select, does the fcmp have to be
596 /// Return true if \p SPF is a min or a max pattern.
597 static bool isMinOrMax(SelectPatternFlavor SPF
) {
598 return SPF
!= SPF_UNKNOWN
&& SPF
!= SPF_ABS
&& SPF
!= SPF_NABS
;
602 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
603 /// and providing the out parameter results if we successfully match.
605 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
606 /// the negation instruction from the idiom.
608 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
609 /// not match that of the original select. If this is the case, the cast
610 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
611 /// type of LHS and RHS into the type of V is returned in CastOp.
614 /// %1 = icmp slt i32 %a, i32 4
615 /// %2 = sext i32 %a to i64
616 /// %3 = select i1 %1, i64 %2, i64 4
618 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
620 SelectPatternResult
matchSelectPattern(Value
*V
, Value
*&LHS
, Value
*&RHS
,
621 Instruction::CastOps
*CastOp
= nullptr,
623 inline SelectPatternResult
624 matchSelectPattern(const Value
*V
, const Value
*&LHS
, const Value
*&RHS
,
625 Instruction::CastOps
*CastOp
= nullptr) {
626 Value
*L
= const_cast<Value
*>(LHS
);
627 Value
*R
= const_cast<Value
*>(RHS
);
628 auto Result
= matchSelectPattern(const_cast<Value
*>(V
), L
, R
);
634 /// Determine the pattern that a select with the given compare as its
635 /// predicate and given values as its true/false operands would match.
636 SelectPatternResult
matchDecomposedSelectPattern(
637 CmpInst
*CmpI
, Value
*TrueVal
, Value
*FalseVal
, Value
*&LHS
, Value
*&RHS
,
638 Instruction::CastOps
*CastOp
= nullptr, unsigned Depth
= 0);
640 /// Return the canonical comparison predicate for the specified
641 /// minimum/maximum flavor.
642 CmpInst::Predicate
getMinMaxPred(SelectPatternFlavor SPF
,
643 bool Ordered
= false);
645 /// Return the inverse minimum/maximum flavor of the specified flavor.
646 /// For example, signed minimum is the inverse of signed maximum.
647 SelectPatternFlavor
getInverseMinMaxFlavor(SelectPatternFlavor SPF
);
649 /// Return the canonical inverse comparison predicate for the specified
650 /// minimum/maximum flavor.
651 CmpInst::Predicate
getInverseMinMaxPred(SelectPatternFlavor SPF
);
653 /// Return true if RHS is known to be implied true by LHS. Return false if
654 /// RHS is known to be implied false by LHS. Otherwise, return None if no
655 /// implication can be made.
656 /// A & B must be i1 (boolean) values or a vector of such values. Note that
657 /// the truth table for implication is the same as <=u on i1 values (but not
658 /// <=s!). The truth table for both is:
663 Optional
<bool> isImpliedCondition(const Value
*LHS
, const Value
*RHS
,
664 const DataLayout
&DL
, bool LHSIsTrue
= true,
667 /// Return the boolean condition value in the context of the given instruction
668 /// if it is known based on dominating conditions.
669 Optional
<bool> isImpliedByDomCondition(const Value
*Cond
,
670 const Instruction
*ContextI
,
671 const DataLayout
&DL
);
673 /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
674 /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
675 /// this case offset would be -8.
676 Optional
<int64_t> isPointerOffset(const Value
*Ptr1
, const Value
*Ptr2
,
677 const DataLayout
&DL
);
678 } // end namespace llvm
680 #endif // LLVM_ANALYSIS_VALUETRACKING_H