[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / include / llvm / CodeGen / BasicTTIImpl.h
blob75e0f844fd07597ff964cab3582ab2fbc8600023
1 //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file provides a helper that implements much of the TTI interface in
11 /// terms of the target-independent code generator and TargetLowering
12 /// interfaces.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17 #define LLVM_CODEGEN_BASICTTIIMPL_H
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/TargetTransformInfoImpl.h"
27 #include "llvm/CodeGen/ISDOpcodes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/MC/MCSchedule.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <limits>
54 #include <utility>
56 namespace llvm {
58 class Function;
59 class GlobalValue;
60 class LLVMContext;
61 class ScalarEvolution;
62 class SCEV;
63 class TargetMachine;
65 extern cl::opt<unsigned> PartialUnrollingThreshold;
67 /// Base class which can be used to help build a TTI implementation.
68 ///
69 /// This class provides as much implementation of the TTI interface as is
70 /// possible using the target independent parts of the code generator.
71 ///
72 /// In order to subclass it, your class must implement a getST() method to
73 /// return the subtarget, and a getTLI() method to return the target lowering.
74 /// We need these methods implemented in the derived class so that this class
75 /// doesn't have to duplicate storage for them.
76 template <typename T>
77 class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
78 private:
79 using BaseT = TargetTransformInfoImplCRTPBase<T>;
80 using TTI = TargetTransformInfo;
82 /// Estimate a cost of Broadcast as an extract and sequence of insert
83 /// operations.
84 unsigned getBroadcastShuffleOverhead(Type *Ty) {
85 assert(Ty->isVectorTy() && "Can only shuffle vectors");
86 unsigned Cost = 0;
87 // Broadcast cost is equal to the cost of extracting the zero'th element
88 // plus the cost of inserting it into every element of the result vector.
89 Cost += static_cast<T *>(this)->getVectorInstrCost(
90 Instruction::ExtractElement, Ty, 0);
92 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
93 Cost += static_cast<T *>(this)->getVectorInstrCost(
94 Instruction::InsertElement, Ty, i);
96 return Cost;
99 /// Estimate a cost of shuffle as a sequence of extract and insert
100 /// operations.
101 unsigned getPermuteShuffleOverhead(Type *Ty) {
102 assert(Ty->isVectorTy() && "Can only shuffle vectors");
103 unsigned Cost = 0;
104 // Shuffle cost is equal to the cost of extracting element from its argument
105 // plus the cost of inserting them onto the result vector.
107 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
108 // index 0 of first vector, index 1 of second vector,index 2 of first
109 // vector and finally index 3 of second vector and insert them at index
110 // <0,1,2,3> of result vector.
111 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
112 Cost += static_cast<T *>(this)
113 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
114 Cost += static_cast<T *>(this)
115 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
117 return Cost;
120 /// Estimate a cost of subvector extraction as a sequence of extract and
121 /// insert operations.
122 unsigned getExtractSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
123 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&
124 "Can only extract subvectors from vectors");
125 int NumSubElts = SubTy->getVectorNumElements();
126 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&
127 "SK_ExtractSubvector index out of range");
129 unsigned Cost = 0;
130 // Subvector extraction cost is equal to the cost of extracting element from
131 // the source type plus the cost of inserting them into the result vector
132 // type.
133 for (int i = 0; i != NumSubElts; ++i) {
134 Cost += static_cast<T *>(this)->getVectorInstrCost(
135 Instruction::ExtractElement, Ty, i + Index);
136 Cost += static_cast<T *>(this)->getVectorInstrCost(
137 Instruction::InsertElement, SubTy, i);
139 return Cost;
142 /// Estimate a cost of subvector insertion as a sequence of extract and
143 /// insert operations.
144 unsigned getInsertSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
145 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&
146 "Can only insert subvectors into vectors");
147 int NumSubElts = SubTy->getVectorNumElements();
148 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&
149 "SK_InsertSubvector index out of range");
151 unsigned Cost = 0;
152 // Subvector insertion cost is equal to the cost of extracting element from
153 // the source type plus the cost of inserting them into the result vector
154 // type.
155 for (int i = 0; i != NumSubElts; ++i) {
156 Cost += static_cast<T *>(this)->getVectorInstrCost(
157 Instruction::ExtractElement, SubTy, i);
158 Cost += static_cast<T *>(this)->getVectorInstrCost(
159 Instruction::InsertElement, Ty, i + Index);
161 return Cost;
164 /// Local query method delegates up to T which *must* implement this!
165 const TargetSubtargetInfo *getST() const {
166 return static_cast<const T *>(this)->getST();
169 /// Local query method delegates up to T which *must* implement this!
170 const TargetLoweringBase *getTLI() const {
171 return static_cast<const T *>(this)->getTLI();
174 static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
175 switch (M) {
176 case TTI::MIM_Unindexed:
177 return ISD::UNINDEXED;
178 case TTI::MIM_PreInc:
179 return ISD::PRE_INC;
180 case TTI::MIM_PreDec:
181 return ISD::PRE_DEC;
182 case TTI::MIM_PostInc:
183 return ISD::POST_INC;
184 case TTI::MIM_PostDec:
185 return ISD::POST_DEC;
187 llvm_unreachable("Unexpected MemIndexedMode");
190 protected:
191 explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
192 : BaseT(DL) {}
194 using TargetTransformInfoImplBase::DL;
196 public:
197 /// \name Scalar TTI Implementations
198 /// @{
199 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
200 unsigned AddressSpace, unsigned Alignment,
201 bool *Fast) const {
202 EVT E = EVT::getIntegerVT(Context, BitWidth);
203 return getTLI()->allowsMisalignedMemoryAccesses(
204 E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
207 bool hasBranchDivergence() { return false; }
209 bool isSourceOfDivergence(const Value *V) { return false; }
211 bool isAlwaysUniform(const Value *V) { return false; }
213 unsigned getFlatAddressSpace() {
214 // Return an invalid address space.
215 return -1;
218 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
219 Intrinsic::ID IID) const {
220 return false;
223 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
224 Value *OldV, Value *NewV) const {
225 return false;
228 bool isLegalAddImmediate(int64_t imm) {
229 return getTLI()->isLegalAddImmediate(imm);
232 bool isLegalICmpImmediate(int64_t imm) {
233 return getTLI()->isLegalICmpImmediate(imm);
236 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
237 bool HasBaseReg, int64_t Scale,
238 unsigned AddrSpace, Instruction *I = nullptr) {
239 TargetLoweringBase::AddrMode AM;
240 AM.BaseGV = BaseGV;
241 AM.BaseOffs = BaseOffset;
242 AM.HasBaseReg = HasBaseReg;
243 AM.Scale = Scale;
244 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
247 bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
248 const DataLayout &DL) const {
249 EVT VT = getTLI()->getValueType(DL, Ty);
250 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
253 bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
254 const DataLayout &DL) const {
255 EVT VT = getTLI()->getValueType(DL, Ty);
256 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
259 bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
260 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
263 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
264 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
265 TargetLoweringBase::AddrMode AM;
266 AM.BaseGV = BaseGV;
267 AM.BaseOffs = BaseOffset;
268 AM.HasBaseReg = HasBaseReg;
269 AM.Scale = Scale;
270 return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
273 bool isTruncateFree(Type *Ty1, Type *Ty2) {
274 return getTLI()->isTruncateFree(Ty1, Ty2);
277 bool isProfitableToHoist(Instruction *I) {
278 return getTLI()->isProfitableToHoist(I);
281 bool useAA() const { return getST()->useAA(); }
283 bool isTypeLegal(Type *Ty) {
284 EVT VT = getTLI()->getValueType(DL, Ty);
285 return getTLI()->isTypeLegal(VT);
288 int getGEPCost(Type *PointeeType, const Value *Ptr,
289 ArrayRef<const Value *> Operands) {
290 return BaseT::getGEPCost(PointeeType, Ptr, Operands);
293 int getExtCost(const Instruction *I, const Value *Src) {
294 if (getTLI()->isExtFree(I))
295 return TargetTransformInfo::TCC_Free;
297 if (isa<ZExtInst>(I) || isa<SExtInst>(I))
298 if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
299 if (getTLI()->isExtLoad(LI, I, DL))
300 return TargetTransformInfo::TCC_Free;
302 return TargetTransformInfo::TCC_Basic;
305 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
306 ArrayRef<const Value *> Arguments, const User *U) {
307 return BaseT::getIntrinsicCost(IID, RetTy, Arguments, U);
310 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
311 ArrayRef<Type *> ParamTys, const User *U) {
312 if (IID == Intrinsic::cttz) {
313 if (getTLI()->isCheapToSpeculateCttz())
314 return TargetTransformInfo::TCC_Basic;
315 return TargetTransformInfo::TCC_Expensive;
318 if (IID == Intrinsic::ctlz) {
319 if (getTLI()->isCheapToSpeculateCtlz())
320 return TargetTransformInfo::TCC_Basic;
321 return TargetTransformInfo::TCC_Expensive;
324 return BaseT::getIntrinsicCost(IID, RetTy, ParamTys, U);
327 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
328 unsigned &JumpTableSize) {
329 /// Try to find the estimated number of clusters. Note that the number of
330 /// clusters identified in this function could be different from the actual
331 /// numbers found in lowering. This function ignore switches that are
332 /// lowered with a mix of jump table / bit test / BTree. This function was
333 /// initially intended to be used when estimating the cost of switch in
334 /// inline cost heuristic, but it's a generic cost model to be used in other
335 /// places (e.g., in loop unrolling).
336 unsigned N = SI.getNumCases();
337 const TargetLoweringBase *TLI = getTLI();
338 const DataLayout &DL = this->getDataLayout();
340 JumpTableSize = 0;
341 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
343 // Early exit if both a jump table and bit test are not allowed.
344 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
345 return N;
347 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
348 APInt MinCaseVal = MaxCaseVal;
349 for (auto CI : SI.cases()) {
350 const APInt &CaseVal = CI.getCaseValue()->getValue();
351 if (CaseVal.sgt(MaxCaseVal))
352 MaxCaseVal = CaseVal;
353 if (CaseVal.slt(MinCaseVal))
354 MinCaseVal = CaseVal;
357 // Check if suitable for a bit test
358 if (N <= DL.getIndexSizeInBits(0u)) {
359 SmallPtrSet<const BasicBlock *, 4> Dests;
360 for (auto I : SI.cases())
361 Dests.insert(I.getCaseSuccessor());
363 if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
364 DL))
365 return 1;
368 // Check if suitable for a jump table.
369 if (IsJTAllowed) {
370 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
371 return N;
372 uint64_t Range =
373 (MaxCaseVal - MinCaseVal)
374 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
375 // Check whether a range of clusters is dense enough for a jump table
376 if (TLI->isSuitableForJumpTable(&SI, N, Range)) {
377 JumpTableSize = Range;
378 return 1;
381 return N;
384 bool shouldBuildLookupTables() {
385 const TargetLoweringBase *TLI = getTLI();
386 return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
387 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
390 bool haveFastSqrt(Type *Ty) {
391 const TargetLoweringBase *TLI = getTLI();
392 EVT VT = TLI->getValueType(DL, Ty);
393 return TLI->isTypeLegal(VT) &&
394 TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
397 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
398 return true;
401 unsigned getFPOpCost(Type *Ty) {
402 // Check whether FADD is available, as a proxy for floating-point in
403 // general.
404 const TargetLoweringBase *TLI = getTLI();
405 EVT VT = TLI->getValueType(DL, Ty);
406 if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
407 return TargetTransformInfo::TCC_Basic;
408 return TargetTransformInfo::TCC_Expensive;
411 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
412 const TargetLoweringBase *TLI = getTLI();
413 switch (Opcode) {
414 default: break;
415 case Instruction::Trunc:
416 if (TLI->isTruncateFree(OpTy, Ty))
417 return TargetTransformInfo::TCC_Free;
418 return TargetTransformInfo::TCC_Basic;
419 case Instruction::ZExt:
420 if (TLI->isZExtFree(OpTy, Ty))
421 return TargetTransformInfo::TCC_Free;
422 return TargetTransformInfo::TCC_Basic;
424 case Instruction::AddrSpaceCast:
425 if (TLI->isFreeAddrSpaceCast(OpTy->getPointerAddressSpace(),
426 Ty->getPointerAddressSpace()))
427 return TargetTransformInfo::TCC_Free;
428 return TargetTransformInfo::TCC_Basic;
431 return BaseT::getOperationCost(Opcode, Ty, OpTy);
434 unsigned getInliningThresholdMultiplier() { return 1; }
436 int getInlinerVectorBonusPercent() { return 150; }
438 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
439 TTI::UnrollingPreferences &UP) {
440 // This unrolling functionality is target independent, but to provide some
441 // motivation for its intended use, for x86:
443 // According to the Intel 64 and IA-32 Architectures Optimization Reference
444 // Manual, Intel Core models and later have a loop stream detector (and
445 // associated uop queue) that can benefit from partial unrolling.
446 // The relevant requirements are:
447 // - The loop must have no more than 4 (8 for Nehalem and later) branches
448 // taken, and none of them may be calls.
449 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
451 // According to the Software Optimization Guide for AMD Family 15h
452 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
453 // and loop buffer which can benefit from partial unrolling.
454 // The relevant requirements are:
455 // - The loop must have fewer than 16 branches
456 // - The loop must have less than 40 uops in all executed loop branches
458 // The number of taken branches in a loop is hard to estimate here, and
459 // benchmarking has revealed that it is better not to be conservative when
460 // estimating the branch count. As a result, we'll ignore the branch limits
461 // until someone finds a case where it matters in practice.
463 unsigned MaxOps;
464 const TargetSubtargetInfo *ST = getST();
465 if (PartialUnrollingThreshold.getNumOccurrences() > 0)
466 MaxOps = PartialUnrollingThreshold;
467 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
468 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
469 else
470 return;
472 // Scan the loop: don't unroll loops with calls.
473 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
474 ++I) {
475 BasicBlock *BB = *I;
477 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
478 if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
479 ImmutableCallSite CS(&*J);
480 if (const Function *F = CS.getCalledFunction()) {
481 if (!static_cast<T *>(this)->isLoweredToCall(F))
482 continue;
485 return;
489 // Enable runtime and partial unrolling up to the specified size.
490 // Enable using trip count upper bound to unroll loops.
491 UP.Partial = UP.Runtime = UP.UpperBound = true;
492 UP.PartialThreshold = MaxOps;
494 // Avoid unrolling when optimizing for size.
495 UP.OptSizeThreshold = 0;
496 UP.PartialOptSizeThreshold = 0;
498 // Set number of instructions optimized when "back edge"
499 // becomes "fall through" to default value of 2.
500 UP.BEInsns = 2;
503 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
504 AssumptionCache &AC,
505 TargetLibraryInfo *LibInfo,
506 HardwareLoopInfo &HWLoopInfo) {
507 return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
510 int getInstructionLatency(const Instruction *I) {
511 if (isa<LoadInst>(I))
512 return getST()->getSchedModel().DefaultLoadLatency;
514 return BaseT::getInstructionLatency(I);
517 /// @}
519 /// \name Vector TTI Implementations
520 /// @{
522 unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
524 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
526 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
527 /// are set if the result needs to be inserted and/or extracted from vectors.
528 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
529 assert(Ty->isVectorTy() && "Can only scalarize vectors");
530 unsigned Cost = 0;
532 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
533 if (Insert)
534 Cost += static_cast<T *>(this)
535 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
536 if (Extract)
537 Cost += static_cast<T *>(this)
538 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
541 return Cost;
544 /// Estimate the overhead of scalarizing an instructions unique
545 /// non-constant operands. The types of the arguments are ordinarily
546 /// scalar, in which case the costs are multiplied with VF.
547 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
548 unsigned VF) {
549 unsigned Cost = 0;
550 SmallPtrSet<const Value*, 4> UniqueOperands;
551 for (const Value *A : Args) {
552 if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
553 Type *VecTy = nullptr;
554 if (A->getType()->isVectorTy()) {
555 VecTy = A->getType();
556 // If A is a vector operand, VF should be 1 or correspond to A.
557 assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&
558 "Vector argument does not match VF");
560 else
561 VecTy = VectorType::get(A->getType(), VF);
563 Cost += getScalarizationOverhead(VecTy, false, true);
567 return Cost;
570 unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
571 assert(VecTy->isVectorTy());
573 unsigned Cost = 0;
575 Cost += getScalarizationOverhead(VecTy, true, false);
576 if (!Args.empty())
577 Cost += getOperandsScalarizationOverhead(Args,
578 VecTy->getVectorNumElements());
579 else
580 // When no information on arguments is provided, we add the cost
581 // associated with one argument as a heuristic.
582 Cost += getScalarizationOverhead(VecTy, false, true);
584 return Cost;
587 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
589 unsigned getArithmeticInstrCost(
590 unsigned Opcode, Type *Ty,
591 TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
592 TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
593 TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
594 TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
595 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
596 // Check if any of the operands are vector operands.
597 const TargetLoweringBase *TLI = getTLI();
598 int ISD = TLI->InstructionOpcodeToISD(Opcode);
599 assert(ISD && "Invalid opcode");
601 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
603 bool IsFloat = Ty->isFPOrFPVectorTy();
604 // Assume that floating point arithmetic operations cost twice as much as
605 // integer operations.
606 unsigned OpCost = (IsFloat ? 2 : 1);
608 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
609 // The operation is legal. Assume it costs 1.
610 // TODO: Once we have extract/insert subvector cost we need to use them.
611 return LT.first * OpCost;
614 if (!TLI->isOperationExpand(ISD, LT.second)) {
615 // If the operation is custom lowered, then assume that the code is twice
616 // as expensive.
617 return LT.first * 2 * OpCost;
620 // Else, assume that we need to scalarize this op.
621 // TODO: If one of the types get legalized by splitting, handle this
622 // similarly to what getCastInstrCost() does.
623 if (Ty->isVectorTy()) {
624 unsigned Num = Ty->getVectorNumElements();
625 unsigned Cost = static_cast<T *>(this)
626 ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
627 // Return the cost of multiple scalar invocation plus the cost of
628 // inserting and extracting the values.
629 return getScalarizationOverhead(Ty, Args) + Num * Cost;
632 // We don't know anything about this scalar instruction.
633 return OpCost;
636 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
637 Type *SubTp) {
638 switch (Kind) {
639 case TTI::SK_Broadcast:
640 return getBroadcastShuffleOverhead(Tp);
641 case TTI::SK_Select:
642 case TTI::SK_Reverse:
643 case TTI::SK_Transpose:
644 case TTI::SK_PermuteSingleSrc:
645 case TTI::SK_PermuteTwoSrc:
646 return getPermuteShuffleOverhead(Tp);
647 case TTI::SK_ExtractSubvector:
648 return getExtractSubvectorOverhead(Tp, Index, SubTp);
649 case TTI::SK_InsertSubvector:
650 return getInsertSubvectorOverhead(Tp, Index, SubTp);
652 llvm_unreachable("Unknown TTI::ShuffleKind");
655 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
656 const Instruction *I = nullptr) {
657 const TargetLoweringBase *TLI = getTLI();
658 int ISD = TLI->InstructionOpcodeToISD(Opcode);
659 assert(ISD && "Invalid opcode");
660 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
661 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
663 // Check for NOOP conversions.
664 if (SrcLT.first == DstLT.first &&
665 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
667 // Bitcast between types that are legalized to the same type are free.
668 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
669 return 0;
672 if (Opcode == Instruction::Trunc &&
673 TLI->isTruncateFree(SrcLT.second, DstLT.second))
674 return 0;
676 if (Opcode == Instruction::ZExt &&
677 TLI->isZExtFree(SrcLT.second, DstLT.second))
678 return 0;
680 if (Opcode == Instruction::AddrSpaceCast &&
681 TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
682 Dst->getPointerAddressSpace()))
683 return 0;
685 // If this is a zext/sext of a load, return 0 if the corresponding
686 // extending load exists on target.
687 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
688 I && isa<LoadInst>(I->getOperand(0))) {
689 EVT ExtVT = EVT::getEVT(Dst);
690 EVT LoadVT = EVT::getEVT(Src);
691 unsigned LType =
692 ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
693 if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
694 return 0;
697 // If the cast is marked as legal (or promote) then assume low cost.
698 if (SrcLT.first == DstLT.first &&
699 TLI->isOperationLegalOrPromote(ISD, DstLT.second))
700 return 1;
702 // Handle scalar conversions.
703 if (!Src->isVectorTy() && !Dst->isVectorTy()) {
704 // Scalar bitcasts are usually free.
705 if (Opcode == Instruction::BitCast)
706 return 0;
708 // Just check the op cost. If the operation is legal then assume it costs
709 // 1.
710 if (!TLI->isOperationExpand(ISD, DstLT.second))
711 return 1;
713 // Assume that illegal scalar instruction are expensive.
714 return 4;
717 // Check vector-to-vector casts.
718 if (Dst->isVectorTy() && Src->isVectorTy()) {
719 // If the cast is between same-sized registers, then the check is simple.
720 if (SrcLT.first == DstLT.first &&
721 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
723 // Assume that Zext is done using AND.
724 if (Opcode == Instruction::ZExt)
725 return 1;
727 // Assume that sext is done using SHL and SRA.
728 if (Opcode == Instruction::SExt)
729 return 2;
731 // Just check the op cost. If the operation is legal then assume it
732 // costs
733 // 1 and multiply by the type-legalization overhead.
734 if (!TLI->isOperationExpand(ISD, DstLT.second))
735 return SrcLT.first * 1;
738 // If we are legalizing by splitting, query the concrete TTI for the cost
739 // of casting the original vector twice. We also need to factor in the
740 // cost of the split itself. Count that as 1, to be consistent with
741 // TLI->getTypeLegalizationCost().
742 if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
743 TargetLowering::TypeSplitVector) ||
744 (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
745 TargetLowering::TypeSplitVector)) {
746 Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
747 Dst->getVectorNumElements() / 2);
748 Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
749 Src->getVectorNumElements() / 2);
750 T *TTI = static_cast<T *>(this);
751 return TTI->getVectorSplitCost() +
752 (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
755 // In other cases where the source or destination are illegal, assume
756 // the operation will get scalarized.
757 unsigned Num = Dst->getVectorNumElements();
758 unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
759 Opcode, Dst->getScalarType(), Src->getScalarType(), I);
761 // Return the cost of multiple scalar invocation plus the cost of
762 // inserting and extracting the values.
763 return getScalarizationOverhead(Dst, true, true) + Num * Cost;
766 // We already handled vector-to-vector and scalar-to-scalar conversions.
767 // This
768 // is where we handle bitcast between vectors and scalars. We need to assume
769 // that the conversion is scalarized in one way or another.
770 if (Opcode == Instruction::BitCast)
771 // Illegal bitcasts are done by storing and loading from a stack slot.
772 return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
773 : 0) +
774 (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
775 : 0);
777 llvm_unreachable("Unhandled cast");
780 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
781 VectorType *VecTy, unsigned Index) {
782 return static_cast<T *>(this)->getVectorInstrCost(
783 Instruction::ExtractElement, VecTy, Index) +
784 static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
785 VecTy->getElementType());
788 unsigned getCFInstrCost(unsigned Opcode) {
789 // Branches are assumed to be predicted.
790 return 0;
793 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
794 const Instruction *I) {
795 const TargetLoweringBase *TLI = getTLI();
796 int ISD = TLI->InstructionOpcodeToISD(Opcode);
797 assert(ISD && "Invalid opcode");
799 // Selects on vectors are actually vector selects.
800 if (ISD == ISD::SELECT) {
801 assert(CondTy && "CondTy must exist");
802 if (CondTy->isVectorTy())
803 ISD = ISD::VSELECT;
805 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
807 if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
808 !TLI->isOperationExpand(ISD, LT.second)) {
809 // The operation is legal. Assume it costs 1. Multiply
810 // by the type-legalization overhead.
811 return LT.first * 1;
814 // Otherwise, assume that the cast is scalarized.
815 // TODO: If one of the types get legalized by splitting, handle this
816 // similarly to what getCastInstrCost() does.
817 if (ValTy->isVectorTy()) {
818 unsigned Num = ValTy->getVectorNumElements();
819 if (CondTy)
820 CondTy = CondTy->getScalarType();
821 unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
822 Opcode, ValTy->getScalarType(), CondTy, I);
824 // Return the cost of multiple scalar invocation plus the cost of
825 // inserting and extracting the values.
826 return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
829 // Unknown scalar opcode.
830 return 1;
833 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
834 std::pair<unsigned, MVT> LT =
835 getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
837 return LT.first;
840 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
841 unsigned AddressSpace, const Instruction *I = nullptr) {
842 assert(!Src->isVoidTy() && "Invalid type");
843 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
845 // Assuming that all loads of legal types cost 1.
846 unsigned Cost = LT.first;
848 if (Src->isVectorTy() &&
849 Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
850 // This is a vector load that legalizes to a larger type than the vector
851 // itself. Unless the corresponding extending load or truncating store is
852 // legal, then this will scalarize.
853 TargetLowering::LegalizeAction LA = TargetLowering::Expand;
854 EVT MemVT = getTLI()->getValueType(DL, Src);
855 if (Opcode == Instruction::Store)
856 LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
857 else
858 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
860 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
861 // This is a vector load/store for some illegal type that is scalarized.
862 // We must account for the cost of building or decomposing the vector.
863 Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
864 Opcode == Instruction::Store);
868 return Cost;
871 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
872 unsigned Factor,
873 ArrayRef<unsigned> Indices,
874 unsigned Alignment, unsigned AddressSpace,
875 bool UseMaskForCond = false,
876 bool UseMaskForGaps = false) {
877 VectorType *VT = dyn_cast<VectorType>(VecTy);
878 assert(VT && "Expect a vector type for interleaved memory op");
880 unsigned NumElts = VT->getNumElements();
881 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
883 unsigned NumSubElts = NumElts / Factor;
884 VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
886 // Firstly, the cost of load/store operation.
887 unsigned Cost;
888 if (UseMaskForCond || UseMaskForGaps)
889 Cost = static_cast<T *>(this)->getMaskedMemoryOpCost(
890 Opcode, VecTy, Alignment, AddressSpace);
891 else
892 Cost = static_cast<T *>(this)->getMemoryOpCost(Opcode, VecTy, Alignment,
893 AddressSpace);
895 // Legalize the vector type, and get the legalized and unlegalized type
896 // sizes.
897 MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
898 unsigned VecTySize =
899 static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
900 unsigned VecTyLTSize = VecTyLT.getStoreSize();
902 // Return the ceiling of dividing A by B.
903 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
905 // Scale the cost of the memory operation by the fraction of legalized
906 // instructions that will actually be used. We shouldn't account for the
907 // cost of dead instructions since they will be removed.
909 // E.g., An interleaved load of factor 8:
910 // %vec = load <16 x i64>, <16 x i64>* %ptr
911 // %v0 = shufflevector %vec, undef, <0, 8>
913 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
914 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
915 // type). The other loads are unused.
917 // We only scale the cost of loads since interleaved store groups aren't
918 // allowed to have gaps.
919 if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
920 // The number of loads of a legal type it will take to represent a load
921 // of the unlegalized vector type.
922 unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
924 // The number of elements of the unlegalized type that correspond to a
925 // single legal instruction.
926 unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
928 // Determine which legal instructions will be used.
929 BitVector UsedInsts(NumLegalInsts, false);
930 for (unsigned Index : Indices)
931 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
932 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
934 // Scale the cost of the load by the fraction of legal instructions that
935 // will be used.
936 Cost *= UsedInsts.count() / NumLegalInsts;
939 // Then plus the cost of interleave operation.
940 if (Opcode == Instruction::Load) {
941 // The interleave cost is similar to extract sub vectors' elements
942 // from the wide vector, and insert them into sub vectors.
944 // E.g. An interleaved load of factor 2 (with one member of index 0):
945 // %vec = load <8 x i32>, <8 x i32>* %ptr
946 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
947 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
948 // <8 x i32> vector and insert them into a <4 x i32> vector.
950 assert(Indices.size() <= Factor &&
951 "Interleaved memory op has too many members");
953 for (unsigned Index : Indices) {
954 assert(Index < Factor && "Invalid index for interleaved memory op");
956 // Extract elements from loaded vector for each sub vector.
957 for (unsigned i = 0; i < NumSubElts; i++)
958 Cost += static_cast<T *>(this)->getVectorInstrCost(
959 Instruction::ExtractElement, VT, Index + i * Factor);
962 unsigned InsSubCost = 0;
963 for (unsigned i = 0; i < NumSubElts; i++)
964 InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
965 Instruction::InsertElement, SubVT, i);
967 Cost += Indices.size() * InsSubCost;
968 } else {
969 // The interleave cost is extract all elements from sub vectors, and
970 // insert them into the wide vector.
972 // E.g. An interleaved store of factor 2:
973 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
974 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
975 // The cost is estimated as extract all elements from both <4 x i32>
976 // vectors and insert into the <8 x i32> vector.
978 unsigned ExtSubCost = 0;
979 for (unsigned i = 0; i < NumSubElts; i++)
980 ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
981 Instruction::ExtractElement, SubVT, i);
982 Cost += ExtSubCost * Factor;
984 for (unsigned i = 0; i < NumElts; i++)
985 Cost += static_cast<T *>(this)
986 ->getVectorInstrCost(Instruction::InsertElement, VT, i);
989 if (!UseMaskForCond)
990 return Cost;
992 Type *I8Type = Type::getInt8Ty(VT->getContext());
993 VectorType *MaskVT = VectorType::get(I8Type, NumElts);
994 SubVT = VectorType::get(I8Type, NumSubElts);
996 // The Mask shuffling cost is extract all the elements of the Mask
997 // and insert each of them Factor times into the wide vector:
999 // E.g. an interleaved group with factor 3:
1000 // %mask = icmp ult <8 x i32> %vec1, %vec2
1001 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
1002 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
1003 // The cost is estimated as extract all mask elements from the <8xi1> mask
1004 // vector and insert them factor times into the <24xi1> shuffled mask
1005 // vector.
1006 for (unsigned i = 0; i < NumSubElts; i++)
1007 Cost += static_cast<T *>(this)->getVectorInstrCost(
1008 Instruction::ExtractElement, SubVT, i);
1010 for (unsigned i = 0; i < NumElts; i++)
1011 Cost += static_cast<T *>(this)->getVectorInstrCost(
1012 Instruction::InsertElement, MaskVT, i);
1014 // The Gaps mask is invariant and created outside the loop, therefore the
1015 // cost of creating it is not accounted for here. However if we have both
1016 // a MaskForGaps and some other mask that guards the execution of the
1017 // memory access, we need to account for the cost of And-ing the two masks
1018 // inside the loop.
1019 if (UseMaskForGaps)
1020 Cost += static_cast<T *>(this)->getArithmeticInstrCost(
1021 BinaryOperator::And, MaskVT);
1023 return Cost;
1026 /// Get intrinsic cost based on arguments.
1027 unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1028 ArrayRef<Value *> Args, FastMathFlags FMF,
1029 unsigned VF = 1) {
1030 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
1031 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
1032 auto *ConcreteTTI = static_cast<T *>(this);
1034 switch (IID) {
1035 default: {
1036 // Assume that we need to scalarize this intrinsic.
1037 SmallVector<Type *, 4> Types;
1038 for (Value *Op : Args) {
1039 Type *OpTy = Op->getType();
1040 assert(VF == 1 || !OpTy->isVectorTy());
1041 Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
1044 if (VF > 1 && !RetTy->isVoidTy())
1045 RetTy = VectorType::get(RetTy, VF);
1047 // Compute the scalarization overhead based on Args for a vector
1048 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
1049 // CostModel will pass a vector RetTy and VF is 1.
1050 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
1051 if (RetVF > 1 || VF > 1) {
1052 ScalarizationCost = 0;
1053 if (!RetTy->isVoidTy())
1054 ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
1055 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
1058 return ConcreteTTI->getIntrinsicInstrCost(IID, RetTy, Types, FMF,
1059 ScalarizationCost);
1061 case Intrinsic::masked_scatter: {
1062 assert(VF == 1 && "Can't vectorize types here.");
1063 Value *Mask = Args[3];
1064 bool VarMask = !isa<Constant>(Mask);
1065 unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
1066 return ConcreteTTI->getGatherScatterOpCost(
1067 Instruction::Store, Args[0]->getType(), Args[1], VarMask, Alignment);
1069 case Intrinsic::masked_gather: {
1070 assert(VF == 1 && "Can't vectorize types here.");
1071 Value *Mask = Args[2];
1072 bool VarMask = !isa<Constant>(Mask);
1073 unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
1074 return ConcreteTTI->getGatherScatterOpCost(Instruction::Load, RetTy,
1075 Args[0], VarMask, Alignment);
1077 case Intrinsic::experimental_vector_reduce_add:
1078 case Intrinsic::experimental_vector_reduce_mul:
1079 case Intrinsic::experimental_vector_reduce_and:
1080 case Intrinsic::experimental_vector_reduce_or:
1081 case Intrinsic::experimental_vector_reduce_xor:
1082 case Intrinsic::experimental_vector_reduce_v2_fadd:
1083 case Intrinsic::experimental_vector_reduce_v2_fmul:
1084 case Intrinsic::experimental_vector_reduce_smax:
1085 case Intrinsic::experimental_vector_reduce_smin:
1086 case Intrinsic::experimental_vector_reduce_fmax:
1087 case Intrinsic::experimental_vector_reduce_fmin:
1088 case Intrinsic::experimental_vector_reduce_umax:
1089 case Intrinsic::experimental_vector_reduce_umin:
1090 return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF);
1091 case Intrinsic::fshl:
1092 case Intrinsic::fshr: {
1093 Value *X = Args[0];
1094 Value *Y = Args[1];
1095 Value *Z = Args[2];
1096 TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
1097 TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
1098 TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
1099 TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
1100 TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
1101 OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1102 : TTI::OP_None;
1103 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1104 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1105 unsigned Cost = 0;
1106 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Or, RetTy);
1107 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Sub, RetTy);
1108 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Shl, RetTy,
1109 OpKindX, OpKindZ, OpPropsX);
1110 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
1111 OpKindY, OpKindZ, OpPropsY);
1112 // Non-constant shift amounts requires a modulo.
1113 if (OpKindZ != TTI::OK_UniformConstantValue &&
1114 OpKindZ != TTI::OK_NonUniformConstantValue)
1115 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
1116 OpKindZ, OpKindBW, OpPropsZ,
1117 OpPropsBW);
1118 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1119 if (X != Y) {
1120 Type *CondTy = Type::getInt1Ty(RetTy->getContext());
1121 if (RetVF > 1)
1122 CondTy = VectorType::get(CondTy, RetVF);
1123 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1124 CondTy, nullptr);
1125 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1126 CondTy, nullptr);
1128 return Cost;
1133 /// Get intrinsic cost based on argument types.
1134 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1135 /// cost of scalarizing the arguments and the return value will be computed
1136 /// based on types.
1137 unsigned getIntrinsicInstrCost(
1138 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
1139 unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
1140 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
1141 auto *ConcreteTTI = static_cast<T *>(this);
1143 SmallVector<unsigned, 2> ISDs;
1144 unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
1145 switch (IID) {
1146 default: {
1147 // Assume that we need to scalarize this intrinsic.
1148 unsigned ScalarizationCost = ScalarizationCostPassed;
1149 unsigned ScalarCalls = 1;
1150 Type *ScalarRetTy = RetTy;
1151 if (RetTy->isVectorTy()) {
1152 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1153 ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
1154 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
1155 ScalarRetTy = RetTy->getScalarType();
1157 SmallVector<Type *, 4> ScalarTys;
1158 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1159 Type *Ty = Tys[i];
1160 if (Ty->isVectorTy()) {
1161 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1162 ScalarizationCost += getScalarizationOverhead(Ty, false, true);
1163 ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
1164 Ty = Ty->getScalarType();
1166 ScalarTys.push_back(Ty);
1168 if (ScalarCalls == 1)
1169 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1171 unsigned ScalarCost =
1172 ConcreteTTI->getIntrinsicInstrCost(IID, ScalarRetTy, ScalarTys, FMF);
1174 return ScalarCalls * ScalarCost + ScalarizationCost;
1176 // Look for intrinsics that can be lowered directly or turned into a scalar
1177 // intrinsic call.
1178 case Intrinsic::sqrt:
1179 ISDs.push_back(ISD::FSQRT);
1180 break;
1181 case Intrinsic::sin:
1182 ISDs.push_back(ISD::FSIN);
1183 break;
1184 case Intrinsic::cos:
1185 ISDs.push_back(ISD::FCOS);
1186 break;
1187 case Intrinsic::exp:
1188 ISDs.push_back(ISD::FEXP);
1189 break;
1190 case Intrinsic::exp2:
1191 ISDs.push_back(ISD::FEXP2);
1192 break;
1193 case Intrinsic::log:
1194 ISDs.push_back(ISD::FLOG);
1195 break;
1196 case Intrinsic::log10:
1197 ISDs.push_back(ISD::FLOG10);
1198 break;
1199 case Intrinsic::log2:
1200 ISDs.push_back(ISD::FLOG2);
1201 break;
1202 case Intrinsic::fabs:
1203 ISDs.push_back(ISD::FABS);
1204 break;
1205 case Intrinsic::canonicalize:
1206 ISDs.push_back(ISD::FCANONICALIZE);
1207 break;
1208 case Intrinsic::minnum:
1209 ISDs.push_back(ISD::FMINNUM);
1210 if (FMF.noNaNs())
1211 ISDs.push_back(ISD::FMINIMUM);
1212 break;
1213 case Intrinsic::maxnum:
1214 ISDs.push_back(ISD::FMAXNUM);
1215 if (FMF.noNaNs())
1216 ISDs.push_back(ISD::FMAXIMUM);
1217 break;
1218 case Intrinsic::copysign:
1219 ISDs.push_back(ISD::FCOPYSIGN);
1220 break;
1221 case Intrinsic::floor:
1222 ISDs.push_back(ISD::FFLOOR);
1223 break;
1224 case Intrinsic::ceil:
1225 ISDs.push_back(ISD::FCEIL);
1226 break;
1227 case Intrinsic::trunc:
1228 ISDs.push_back(ISD::FTRUNC);
1229 break;
1230 case Intrinsic::nearbyint:
1231 ISDs.push_back(ISD::FNEARBYINT);
1232 break;
1233 case Intrinsic::rint:
1234 ISDs.push_back(ISD::FRINT);
1235 break;
1236 case Intrinsic::round:
1237 ISDs.push_back(ISD::FROUND);
1238 break;
1239 case Intrinsic::pow:
1240 ISDs.push_back(ISD::FPOW);
1241 break;
1242 case Intrinsic::fma:
1243 ISDs.push_back(ISD::FMA);
1244 break;
1245 case Intrinsic::fmuladd:
1246 ISDs.push_back(ISD::FMA);
1247 break;
1248 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1249 case Intrinsic::lifetime_start:
1250 case Intrinsic::lifetime_end:
1251 case Intrinsic::sideeffect:
1252 return 0;
1253 case Intrinsic::masked_store:
1254 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0,
1256 case Intrinsic::masked_load:
1257 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
1258 case Intrinsic::experimental_vector_reduce_add:
1259 return ConcreteTTI->getArithmeticReductionCost(Instruction::Add, Tys[0],
1260 /*IsPairwiseForm=*/false);
1261 case Intrinsic::experimental_vector_reduce_mul:
1262 return ConcreteTTI->getArithmeticReductionCost(Instruction::Mul, Tys[0],
1263 /*IsPairwiseForm=*/false);
1264 case Intrinsic::experimental_vector_reduce_and:
1265 return ConcreteTTI->getArithmeticReductionCost(Instruction::And, Tys[0],
1266 /*IsPairwiseForm=*/false);
1267 case Intrinsic::experimental_vector_reduce_or:
1268 return ConcreteTTI->getArithmeticReductionCost(Instruction::Or, Tys[0],
1269 /*IsPairwiseForm=*/false);
1270 case Intrinsic::experimental_vector_reduce_xor:
1271 return ConcreteTTI->getArithmeticReductionCost(Instruction::Xor, Tys[0],
1272 /*IsPairwiseForm=*/false);
1273 case Intrinsic::experimental_vector_reduce_v2_fadd:
1274 return ConcreteTTI->getArithmeticReductionCost(
1275 Instruction::FAdd, Tys[0],
1276 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1277 // reductions.
1278 case Intrinsic::experimental_vector_reduce_v2_fmul:
1279 return ConcreteTTI->getArithmeticReductionCost(
1280 Instruction::FMul, Tys[0],
1281 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1282 // reductions.
1283 case Intrinsic::experimental_vector_reduce_smax:
1284 case Intrinsic::experimental_vector_reduce_smin:
1285 case Intrinsic::experimental_vector_reduce_fmax:
1286 case Intrinsic::experimental_vector_reduce_fmin:
1287 return ConcreteTTI->getMinMaxReductionCost(
1288 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1289 /*IsUnsigned=*/true);
1290 case Intrinsic::experimental_vector_reduce_umax:
1291 case Intrinsic::experimental_vector_reduce_umin:
1292 return ConcreteTTI->getMinMaxReductionCost(
1293 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1294 /*IsUnsigned=*/false);
1295 case Intrinsic::sadd_sat:
1296 case Intrinsic::ssub_sat: {
1297 Type *CondTy = Type::getInt1Ty(RetTy->getContext());
1298 if (RetVF > 1)
1299 CondTy = VectorType::get(CondTy, RetVF);
1301 Type *OpTy = StructType::create({RetTy, CondTy});
1302 Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
1303 ? Intrinsic::sadd_with_overflow
1304 : Intrinsic::ssub_with_overflow;
1306 // SatMax -> Overflow && SumDiff < 0
1307 // SatMin -> Overflow && SumDiff >= 0
1308 unsigned Cost = 0;
1309 Cost += ConcreteTTI->getIntrinsicInstrCost(
1310 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1311 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1312 CondTy, nullptr);
1313 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1314 CondTy, nullptr);
1315 return Cost;
1317 case Intrinsic::uadd_sat:
1318 case Intrinsic::usub_sat: {
1319 Type *CondTy = Type::getInt1Ty(RetTy->getContext());
1320 if (RetVF > 1)
1321 CondTy = VectorType::get(CondTy, RetVF);
1323 Type *OpTy = StructType::create({RetTy, CondTy});
1324 Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
1325 ? Intrinsic::uadd_with_overflow
1326 : Intrinsic::usub_with_overflow;
1328 unsigned Cost = 0;
1329 Cost += ConcreteTTI->getIntrinsicInstrCost(
1330 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1331 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1332 CondTy, nullptr);
1333 return Cost;
1335 case Intrinsic::smul_fix:
1336 case Intrinsic::umul_fix: {
1337 unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
1338 Type *ExtTy = Type::getIntNTy(RetTy->getContext(), ExtSize);
1339 if (RetVF > 1)
1340 ExtTy = VectorType::get(ExtTy, RetVF);
1342 unsigned ExtOp =
1343 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1345 unsigned Cost = 0;
1346 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, RetTy);
1347 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1348 Cost +=
1349 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy);
1350 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, RetTy,
1351 TTI::OK_AnyValue,
1352 TTI::OK_UniformConstantValue);
1353 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Shl, RetTy,
1354 TTI::OK_AnyValue,
1355 TTI::OK_UniformConstantValue);
1356 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Or, RetTy);
1357 return Cost;
1359 case Intrinsic::sadd_with_overflow:
1360 case Intrinsic::ssub_with_overflow: {
1361 Type *SumTy = RetTy->getContainedType(0);
1362 Type *OverflowTy = RetTy->getContainedType(1);
1363 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
1364 ? BinaryOperator::Add
1365 : BinaryOperator::Sub;
1367 // LHSSign -> LHS >= 0
1368 // RHSSign -> RHS >= 0
1369 // SumSign -> Sum >= 0
1371 // Add:
1372 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1373 // Sub:
1374 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1375 unsigned Cost = 0;
1376 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1377 Cost += 3 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1378 OverflowTy, nullptr);
1379 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(
1380 BinaryOperator::ICmp, OverflowTy, OverflowTy, nullptr);
1381 Cost +=
1382 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::And, OverflowTy);
1383 return Cost;
1385 case Intrinsic::uadd_with_overflow:
1386 case Intrinsic::usub_with_overflow: {
1387 Type *SumTy = RetTy->getContainedType(0);
1388 Type *OverflowTy = RetTy->getContainedType(1);
1389 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
1390 ? BinaryOperator::Add
1391 : BinaryOperator::Sub;
1393 unsigned Cost = 0;
1394 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1395 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1396 OverflowTy, nullptr);
1397 return Cost;
1399 case Intrinsic::smul_with_overflow:
1400 case Intrinsic::umul_with_overflow: {
1401 Type *MulTy = RetTy->getContainedType(0);
1402 Type *OverflowTy = RetTy->getContainedType(1);
1403 unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
1404 Type *ExtTy = Type::getIntNTy(RetTy->getContext(), ExtSize);
1405 if (MulTy->isVectorTy())
1406 ExtTy = VectorType::get(ExtTy, MulTy->getVectorNumElements() );
1408 unsigned ExtOp =
1409 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1411 unsigned Cost = 0;
1412 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, MulTy);
1413 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1414 Cost +=
1415 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy);
1416 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, MulTy,
1417 TTI::OK_AnyValue,
1418 TTI::OK_UniformConstantValue);
1420 if (IID == Intrinsic::smul_with_overflow)
1421 Cost += ConcreteTTI->getArithmeticInstrCost(
1422 Instruction::AShr, MulTy, TTI::OK_AnyValue,
1423 TTI::OK_UniformConstantValue);
1425 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy,
1426 OverflowTy, nullptr);
1427 return Cost;
1429 case Intrinsic::ctpop:
1430 ISDs.push_back(ISD::CTPOP);
1431 // In case of legalization use TCC_Expensive. This is cheaper than a
1432 // library call but still not a cheap instruction.
1433 SingleCallCost = TargetTransformInfo::TCC_Expensive;
1434 break;
1435 // FIXME: ctlz, cttz, ...
1438 const TargetLoweringBase *TLI = getTLI();
1439 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1441 SmallVector<unsigned, 2> LegalCost;
1442 SmallVector<unsigned, 2> CustomCost;
1443 for (unsigned ISD : ISDs) {
1444 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
1445 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
1446 TLI->isFAbsFree(LT.second)) {
1447 return 0;
1450 // The operation is legal. Assume it costs 1.
1451 // If the type is split to multiple registers, assume that there is some
1452 // overhead to this.
1453 // TODO: Once we have extract/insert subvector cost we need to use them.
1454 if (LT.first > 1)
1455 LegalCost.push_back(LT.first * 2);
1456 else
1457 LegalCost.push_back(LT.first * 1);
1458 } else if (!TLI->isOperationExpand(ISD, LT.second)) {
1459 // If the operation is custom lowered then assume
1460 // that the code is twice as expensive.
1461 CustomCost.push_back(LT.first * 2);
1465 auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
1466 if (MinLegalCostI != LegalCost.end())
1467 return *MinLegalCostI;
1469 auto MinCustomCostI =
1470 std::min_element(CustomCost.begin(), CustomCost.end());
1471 if (MinCustomCostI != CustomCost.end())
1472 return *MinCustomCostI;
1474 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1475 // point mul followed by an add.
1476 if (IID == Intrinsic::fmuladd)
1477 return ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
1478 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
1480 // Else, assume that we need to scalarize this intrinsic. For math builtins
1481 // this will emit a costly libcall, adding call overhead and spills. Make it
1482 // very expensive.
1483 if (RetTy->isVectorTy()) {
1484 unsigned ScalarizationCost =
1485 ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
1486 ? ScalarizationCostPassed
1487 : getScalarizationOverhead(RetTy, true, false));
1488 unsigned ScalarCalls = RetTy->getVectorNumElements();
1489 SmallVector<Type *, 4> ScalarTys;
1490 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1491 Type *Ty = Tys[i];
1492 if (Ty->isVectorTy())
1493 Ty = Ty->getScalarType();
1494 ScalarTys.push_back(Ty);
1496 unsigned ScalarCost = ConcreteTTI->getIntrinsicInstrCost(
1497 IID, RetTy->getScalarType(), ScalarTys, FMF);
1498 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1499 if (Tys[i]->isVectorTy()) {
1500 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1501 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
1502 ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
1506 return ScalarCalls * ScalarCost + ScalarizationCost;
1509 // This is going to be turned into a library call, make it expensive.
1510 return SingleCallCost;
1513 /// Compute a cost of the given call instruction.
1515 /// Compute the cost of calling function F with return type RetTy and
1516 /// argument types Tys. F might be nullptr, in this case the cost of an
1517 /// arbitrary call with the specified signature will be returned.
1518 /// This is used, for instance, when we estimate call of a vector
1519 /// counterpart of the given function.
1520 /// \param F Called function, might be nullptr.
1521 /// \param RetTy Return value types.
1522 /// \param Tys Argument types.
1523 /// \returns The cost of Call instruction.
1524 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
1525 return 10;
1528 unsigned getNumberOfParts(Type *Tp) {
1529 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
1530 return LT.first;
1533 unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
1534 const SCEV *) {
1535 return 0;
1538 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1539 /// We're assuming that reduction operation are performing the following way:
1540 /// 1. Non-pairwise reduction
1541 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1542 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1543 /// \----------------v-------------/ \----------v------------/
1544 /// n/2 elements n/2 elements
1545 /// %red1 = op <n x t> %val, <n x t> val1
1546 /// After this operation we have a vector %red1 where only the first n/2
1547 /// elements are meaningful, the second n/2 elements are undefined and can be
1548 /// dropped. All other operations are actually working with the vector of
1549 /// length n/2, not n, though the real vector length is still n.
1550 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1551 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1552 /// \----------------v-------------/ \----------v------------/
1553 /// n/4 elements 3*n/4 elements
1554 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1555 /// length n/2, the resulting vector has length n/4 etc.
1556 /// 2. Pairwise reduction:
1557 /// Everything is the same except for an additional shuffle operation which
1558 /// is used to produce operands for pairwise kind of reductions.
1559 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1560 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1561 /// \-------------v----------/ \----------v------------/
1562 /// n/2 elements n/2 elements
1563 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1564 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1565 /// \-------------v----------/ \----------v------------/
1566 /// n/2 elements n/2 elements
1567 /// %red1 = op <n x t> %val1, <n x t> val2
1568 /// Again, the operation is performed on <n x t> vector, but the resulting
1569 /// vector %red1 is <n/2 x t> vector.
1571 /// The cost model should take into account that the actual length of the
1572 /// vector is reduced on each iteration.
1573 unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1574 bool IsPairwise) {
1575 assert(Ty->isVectorTy() && "Expect a vector type");
1576 Type *ScalarTy = Ty->getVectorElementType();
1577 unsigned NumVecElts = Ty->getVectorNumElements();
1578 unsigned NumReduxLevels = Log2_32(NumVecElts);
1579 unsigned ArithCost = 0;
1580 unsigned ShuffleCost = 0;
1581 auto *ConcreteTTI = static_cast<T *>(this);
1582 std::pair<unsigned, MVT> LT =
1583 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1584 unsigned LongVectorCount = 0;
1585 unsigned MVTLen =
1586 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1587 while (NumVecElts > MVTLen) {
1588 NumVecElts /= 2;
1589 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1590 // Assume the pairwise shuffles add a cost.
1591 ShuffleCost += (IsPairwise + 1) *
1592 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1593 NumVecElts, SubTy);
1594 ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, SubTy);
1595 Ty = SubTy;
1596 ++LongVectorCount;
1599 NumReduxLevels -= LongVectorCount;
1601 // The minimal length of the vector is limited by the real length of vector
1602 // operations performed on the current platform. That's why several final
1603 // reduction operations are performed on the vectors with the same
1604 // architecture-dependent length.
1606 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1607 // reductions need two shuffles on every level, but the last one. On that
1608 // level one of the shuffles is <0, u, u, ...> which is identity.
1609 unsigned NumShuffles = NumReduxLevels;
1610 if (IsPairwise && NumReduxLevels >= 1)
1611 NumShuffles += NumReduxLevels - 1;
1612 ShuffleCost += NumShuffles *
1613 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1614 0, Ty);
1615 ArithCost += NumReduxLevels *
1616 ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
1617 return ShuffleCost + ArithCost +
1618 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
1621 /// Try to calculate op costs for min/max reduction operations.
1622 /// \param CondTy Conditional type for the Select instruction.
1623 unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
1624 bool) {
1625 assert(Ty->isVectorTy() && "Expect a vector type");
1626 Type *ScalarTy = Ty->getVectorElementType();
1627 Type *ScalarCondTy = CondTy->getVectorElementType();
1628 unsigned NumVecElts = Ty->getVectorNumElements();
1629 unsigned NumReduxLevels = Log2_32(NumVecElts);
1630 unsigned CmpOpcode;
1631 if (Ty->isFPOrFPVectorTy()) {
1632 CmpOpcode = Instruction::FCmp;
1633 } else {
1634 assert(Ty->isIntOrIntVectorTy() &&
1635 "expecting floating point or integer type for min/max reduction");
1636 CmpOpcode = Instruction::ICmp;
1638 unsigned MinMaxCost = 0;
1639 unsigned ShuffleCost = 0;
1640 auto *ConcreteTTI = static_cast<T *>(this);
1641 std::pair<unsigned, MVT> LT =
1642 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1643 unsigned LongVectorCount = 0;
1644 unsigned MVTLen =
1645 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1646 while (NumVecElts > MVTLen) {
1647 NumVecElts /= 2;
1648 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1649 CondTy = VectorType::get(ScalarCondTy, NumVecElts);
1651 // Assume the pairwise shuffles add a cost.
1652 ShuffleCost += (IsPairwise + 1) *
1653 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1654 NumVecElts, SubTy);
1655 MinMaxCost +=
1656 ConcreteTTI->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, nullptr) +
1657 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
1658 nullptr);
1659 Ty = SubTy;
1660 ++LongVectorCount;
1663 NumReduxLevels -= LongVectorCount;
1665 // The minimal length of the vector is limited by the real length of vector
1666 // operations performed on the current platform. That's why several final
1667 // reduction opertions are perfomed on the vectors with the same
1668 // architecture-dependent length.
1670 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1671 // reductions need two shuffles on every level, but the last one. On that
1672 // level one of the shuffles is <0, u, u, ...> which is identity.
1673 unsigned NumShuffles = NumReduxLevels;
1674 if (IsPairwise && NumReduxLevels >= 1)
1675 NumShuffles += NumReduxLevels - 1;
1676 ShuffleCost += NumShuffles *
1677 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1678 0, Ty);
1679 MinMaxCost +=
1680 NumReduxLevels *
1681 (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
1682 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
1683 nullptr));
1684 // The last min/max should be in vector registers and we counted it above.
1685 // So just need a single extractelement.
1686 return ShuffleCost + MinMaxCost +
1687 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
1690 unsigned getVectorSplitCost() { return 1; }
1692 /// @}
1695 /// Concrete BasicTTIImpl that can be used if no further customization
1696 /// is needed.
1697 class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
1698 using BaseT = BasicTTIImplBase<BasicTTIImpl>;
1700 friend class BasicTTIImplBase<BasicTTIImpl>;
1702 const TargetSubtargetInfo *ST;
1703 const TargetLoweringBase *TLI;
1705 const TargetSubtargetInfo *getST() const { return ST; }
1706 const TargetLoweringBase *getTLI() const { return TLI; }
1708 public:
1709 explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
1712 } // end namespace llvm
1714 #endif // LLVM_CODEGEN_BASICTTIIMPL_H