1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the declarations of classes that represent "derived
10 // types". These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
13 // The implementations of these classes live in the Type.cpp file.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/ScalableSize.h"
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
39 /// Integer representation type
40 class IntegerType
: public Type
{
41 friend class LLVMContextImpl
;
44 explicit IntegerType(LLVMContext
&C
, unsigned NumBits
) : Type(C
, IntegerTyID
){
45 setSubclassData(NumBits
);
49 /// This enum is just used to hold constants we need for IntegerType.
51 MIN_INT_BITS
= 1, ///< Minimum number of bits that can be specified
52 MAX_INT_BITS
= (1<<24)-1 ///< Maximum number of bits that can be specified
53 ///< Note that bit width is stored in the Type classes SubclassData field
54 ///< which has 24 bits. This yields a maximum bit width of 16,777,215
58 /// This static method is the primary way of constructing an IntegerType.
59 /// If an IntegerType with the same NumBits value was previously instantiated,
60 /// that instance will be returned. Otherwise a new one will be created. Only
61 /// one instance with a given NumBits value is ever created.
62 /// Get or create an IntegerType instance.
63 static IntegerType
*get(LLVMContext
&C
, unsigned NumBits
);
65 /// Get the number of bits in this IntegerType
66 unsigned getBitWidth() const { return getSubclassData(); }
68 /// Return a bitmask with ones set for all of the bits that can be set by an
69 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
70 uint64_t getBitMask() const {
71 return ~uint64_t(0UL) >> (64-getBitWidth());
74 /// Return a uint64_t with just the most significant bit set (the sign bit, if
75 /// the value is treated as a signed number).
76 uint64_t getSignBit() const {
77 return 1ULL << (getBitWidth()-1);
80 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
81 /// @returns a bit mask with ones set for all the bits of this type.
82 /// Get a bit mask for this type.
83 APInt
getMask() const;
85 /// This method determines if the width of this IntegerType is a power-of-2
86 /// in terms of 8 bit bytes.
87 /// @returns true if this is a power-of-2 byte width.
88 /// Is this a power-of-2 byte-width IntegerType ?
89 bool isPowerOf2ByteWidth() const;
91 /// Methods for support type inquiry through isa, cast, and dyn_cast.
92 static bool classof(const Type
*T
) {
93 return T
->getTypeID() == IntegerTyID
;
97 unsigned Type::getIntegerBitWidth() const {
98 return cast
<IntegerType
>(this)->getBitWidth();
101 /// Class to represent function types
103 class FunctionType
: public Type
{
104 FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
, bool IsVarArgs
);
107 FunctionType(const FunctionType
&) = delete;
108 FunctionType
&operator=(const FunctionType
&) = delete;
110 /// This static method is the primary way of constructing a FunctionType.
111 static FunctionType
*get(Type
*Result
,
112 ArrayRef
<Type
*> Params
, bool isVarArg
);
114 /// Create a FunctionType taking no parameters.
115 static FunctionType
*get(Type
*Result
, bool isVarArg
);
117 /// Return true if the specified type is valid as a return type.
118 static bool isValidReturnType(Type
*RetTy
);
120 /// Return true if the specified type is valid as an argument type.
121 static bool isValidArgumentType(Type
*ArgTy
);
123 bool isVarArg() const { return getSubclassData()!=0; }
124 Type
*getReturnType() const { return ContainedTys
[0]; }
126 using param_iterator
= Type::subtype_iterator
;
128 param_iterator
param_begin() const { return ContainedTys
+ 1; }
129 param_iterator
param_end() const { return &ContainedTys
[NumContainedTys
]; }
130 ArrayRef
<Type
*> params() const {
131 return makeArrayRef(param_begin(), param_end());
134 /// Parameter type accessors.
135 Type
*getParamType(unsigned i
) const { return ContainedTys
[i
+1]; }
137 /// Return the number of fixed parameters this function type requires.
138 /// This does not consider varargs.
139 unsigned getNumParams() const { return NumContainedTys
- 1; }
141 /// Methods for support type inquiry through isa, cast, and dyn_cast.
142 static bool classof(const Type
*T
) {
143 return T
->getTypeID() == FunctionTyID
;
146 static_assert(alignof(FunctionType
) >= alignof(Type
*),
147 "Alignment sufficient for objects appended to FunctionType");
149 bool Type::isFunctionVarArg() const {
150 return cast
<FunctionType
>(this)->isVarArg();
153 Type
*Type::getFunctionParamType(unsigned i
) const {
154 return cast
<FunctionType
>(this)->getParamType(i
);
157 unsigned Type::getFunctionNumParams() const {
158 return cast
<FunctionType
>(this)->getNumParams();
161 /// A handy container for a FunctionType+Callee-pointer pair, which can be
162 /// passed around as a single entity. This assists in replacing the use of
163 /// PointerType::getElementType() to access the function's type, since that's
164 /// slated for removal as part of the [opaque pointer types] project.
165 class FunctionCallee
{
167 // Allow implicit conversion from types which have a getFunctionType member
168 // (e.g. Function and InlineAsm).
169 template <typename T
, typename U
= decltype(&T::getFunctionType
)>
170 FunctionCallee(T
*Fn
)
171 : FnTy(Fn
? Fn
->getFunctionType() : nullptr), Callee(Fn
) {}
173 FunctionCallee(FunctionType
*FnTy
, Value
*Callee
)
174 : FnTy(FnTy
), Callee(Callee
) {
175 assert((FnTy
== nullptr) == (Callee
== nullptr));
178 FunctionCallee(std::nullptr_t
) {}
180 FunctionCallee() = default;
182 FunctionType
*getFunctionType() { return FnTy
; }
184 Value
*getCallee() { return Callee
; }
186 explicit operator bool() { return Callee
; }
189 FunctionType
*FnTy
= nullptr;
190 Value
*Callee
= nullptr;
193 /// Common super class of ArrayType, StructType and VectorType.
194 class CompositeType
: public Type
{
196 explicit CompositeType(LLVMContext
&C
, TypeID tid
) : Type(C
, tid
) {}
199 /// Given an index value into the type, return the type of the element.
200 Type
*getTypeAtIndex(const Value
*V
) const;
201 Type
*getTypeAtIndex(unsigned Idx
) const;
202 bool indexValid(const Value
*V
) const;
203 bool indexValid(unsigned Idx
) const;
205 /// Methods for support type inquiry through isa, cast, and dyn_cast.
206 static bool classof(const Type
*T
) {
207 return T
->getTypeID() == ArrayTyID
||
208 T
->getTypeID() == StructTyID
||
209 T
->getTypeID() == VectorTyID
;
213 /// Class to represent struct types. There are two different kinds of struct
214 /// types: Literal structs and Identified structs.
216 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
217 /// always have a body when created. You can get one of these by using one of
218 /// the StructType::get() forms.
220 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
221 /// uniqued. The names for identified structs are managed at the LLVMContext
222 /// level, so there can only be a single identified struct with a given name in
223 /// a particular LLVMContext. Identified structs may also optionally be opaque
224 /// (have no body specified). You get one of these by using one of the
225 /// StructType::create() forms.
227 /// Independent of what kind of struct you have, the body of a struct type are
228 /// laid out in memory consecutively with the elements directly one after the
229 /// other (if the struct is packed) or (if not packed) with padding between the
230 /// elements as defined by DataLayout (which is required to match what the code
231 /// generator for a target expects).
233 class StructType
: public CompositeType
{
234 StructType(LLVMContext
&C
) : CompositeType(C
, StructTyID
) {}
237 /// This is the contents of the SubClassData field.
244 /// For a named struct that actually has a name, this is a pointer to the
245 /// symbol table entry (maintained by LLVMContext) for the struct.
246 /// This is null if the type is an literal struct or if it is a identified
247 /// type that has an empty name.
248 void *SymbolTableEntry
= nullptr;
251 StructType(const StructType
&) = delete;
252 StructType
&operator=(const StructType
&) = delete;
254 /// This creates an identified struct.
255 static StructType
*create(LLVMContext
&Context
, StringRef Name
);
256 static StructType
*create(LLVMContext
&Context
);
258 static StructType
*create(ArrayRef
<Type
*> Elements
, StringRef Name
,
259 bool isPacked
= false);
260 static StructType
*create(ArrayRef
<Type
*> Elements
);
261 static StructType
*create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
262 StringRef Name
, bool isPacked
= false);
263 static StructType
*create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
);
264 template <class... Tys
>
265 static typename
std::enable_if
<are_base_of
<Type
, Tys
...>::value
,
267 create(StringRef Name
, Type
*elt1
, Tys
*... elts
) {
268 assert(elt1
&& "Cannot create a struct type with no elements with this");
269 SmallVector
<llvm::Type
*, 8> StructFields({elt1
, elts
...});
270 return create(StructFields
, Name
);
273 /// This static method is the primary way to create a literal StructType.
274 static StructType
*get(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
275 bool isPacked
= false);
277 /// Create an empty structure type.
278 static StructType
*get(LLVMContext
&Context
, bool isPacked
= false);
280 /// This static method is a convenience method for creating structure types by
281 /// specifying the elements as arguments. Note that this method always returns
282 /// a non-packed struct, and requires at least one element type.
283 template <class... Tys
>
284 static typename
std::enable_if
<are_base_of
<Type
, Tys
...>::value
,
286 get(Type
*elt1
, Tys
*... elts
) {
287 assert(elt1
&& "Cannot create a struct type with no elements with this");
288 LLVMContext
&Ctx
= elt1
->getContext();
289 SmallVector
<llvm::Type
*, 8> StructFields({elt1
, elts
...});
290 return llvm::StructType::get(Ctx
, StructFields
);
293 bool isPacked() const { return (getSubclassData() & SCDB_Packed
) != 0; }
295 /// Return true if this type is uniqued by structural equivalence, false if it
296 /// is a struct definition.
297 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral
) != 0; }
299 /// Return true if this is a type with an identity that has no body specified
300 /// yet. These prints as 'opaque' in .ll files.
301 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody
) == 0; }
303 /// isSized - Return true if this is a sized type.
304 bool isSized(SmallPtrSetImpl
<Type
*> *Visited
= nullptr) const;
306 /// Return true if this is a named struct that has a non-empty name.
307 bool hasName() const { return SymbolTableEntry
!= nullptr; }
309 /// Return the name for this struct type if it has an identity.
310 /// This may return an empty string for an unnamed struct type. Do not call
311 /// this on an literal type.
312 StringRef
getName() const;
314 /// Change the name of this type to the specified name, or to a name with a
315 /// suffix if there is a collision. Do not call this on an literal type.
316 void setName(StringRef Name
);
318 /// Specify a body for an opaque identified type.
319 void setBody(ArrayRef
<Type
*> Elements
, bool isPacked
= false);
321 template <typename
... Tys
>
322 typename
std::enable_if
<are_base_of
<Type
, Tys
...>::value
, void>::type
323 setBody(Type
*elt1
, Tys
*... elts
) {
324 assert(elt1
&& "Cannot create a struct type with no elements with this");
325 SmallVector
<llvm::Type
*, 8> StructFields({elt1
, elts
...});
326 setBody(StructFields
);
329 /// Return true if the specified type is valid as a element type.
330 static bool isValidElementType(Type
*ElemTy
);
332 // Iterator access to the elements.
333 using element_iterator
= Type::subtype_iterator
;
335 element_iterator
element_begin() const { return ContainedTys
; }
336 element_iterator
element_end() const { return &ContainedTys
[NumContainedTys
];}
337 ArrayRef
<Type
*> const elements() const {
338 return makeArrayRef(element_begin(), element_end());
341 /// Return true if this is layout identical to the specified struct.
342 bool isLayoutIdentical(StructType
*Other
) const;
344 /// Random access to the elements
345 unsigned getNumElements() const { return NumContainedTys
; }
346 Type
*getElementType(unsigned N
) const {
347 assert(N
< NumContainedTys
&& "Element number out of range!");
348 return ContainedTys
[N
];
351 /// Methods for support type inquiry through isa, cast, and dyn_cast.
352 static bool classof(const Type
*T
) {
353 return T
->getTypeID() == StructTyID
;
357 StringRef
Type::getStructName() const {
358 return cast
<StructType
>(this)->getName();
361 unsigned Type::getStructNumElements() const {
362 return cast
<StructType
>(this)->getNumElements();
365 Type
*Type::getStructElementType(unsigned N
) const {
366 return cast
<StructType
>(this)->getElementType(N
);
369 /// This is the superclass of the array and vector type classes. Both of these
370 /// represent "arrays" in memory. The array type represents a specifically sized
371 /// array, and the vector type represents a specifically sized array that allows
372 /// for use of SIMD instructions. SequentialType holds the common features of
373 /// both, which stem from the fact that both lay their components out in memory
375 class SequentialType
: public CompositeType
{
376 Type
*ContainedType
; ///< Storage for the single contained type.
377 uint64_t NumElements
;
380 SequentialType(TypeID TID
, Type
*ElType
, uint64_t NumElements
)
381 : CompositeType(ElType
->getContext(), TID
), ContainedType(ElType
),
382 NumElements(NumElements
) {
383 ContainedTys
= &ContainedType
;
388 SequentialType(const SequentialType
&) = delete;
389 SequentialType
&operator=(const SequentialType
&) = delete;
391 /// For scalable vectors, this will return the minimum number of elements
393 uint64_t getNumElements() const { return NumElements
; }
394 Type
*getElementType() const { return ContainedType
; }
396 /// Methods for support type inquiry through isa, cast, and dyn_cast.
397 static bool classof(const Type
*T
) {
398 return T
->getTypeID() == ArrayTyID
|| T
->getTypeID() == VectorTyID
;
402 /// Class to represent array types.
403 class ArrayType
: public SequentialType
{
404 ArrayType(Type
*ElType
, uint64_t NumEl
);
407 ArrayType(const ArrayType
&) = delete;
408 ArrayType
&operator=(const ArrayType
&) = delete;
410 /// This static method is the primary way to construct an ArrayType
411 static ArrayType
*get(Type
*ElementType
, uint64_t NumElements
);
413 /// Return true if the specified type is valid as a element type.
414 static bool isValidElementType(Type
*ElemTy
);
416 /// Methods for support type inquiry through isa, cast, and dyn_cast.
417 static bool classof(const Type
*T
) {
418 return T
->getTypeID() == ArrayTyID
;
422 uint64_t Type::getArrayNumElements() const {
423 return cast
<ArrayType
>(this)->getNumElements();
426 /// Class to represent vector types.
427 class VectorType
: public SequentialType
{
428 /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
429 /// minimum number of elements of type Ty contained within the vector, and
430 /// 'vscale x' indicates that the total element count is an integer multiple
431 /// of 'n', where the multiple is either guaranteed to be one, or is
432 /// statically unknown at compile time.
434 /// If the multiple is known to be 1, then the extra term is discarded in
437 /// <4 x i32> - a vector containing 4 i32s
438 /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
441 VectorType(Type
*ElType
, unsigned NumEl
, bool Scalable
= false);
442 VectorType(Type
*ElType
, ElementCount EC
);
444 // If true, the total number of elements is an unknown multiple of the
445 // minimum 'NumElements' from SequentialType. Otherwise the total number
446 // of elements is exactly equal to 'NumElements'.
450 VectorType(const VectorType
&) = delete;
451 VectorType
&operator=(const VectorType
&) = delete;
453 /// This static method is the primary way to construct an VectorType.
454 static VectorType
*get(Type
*ElementType
, ElementCount EC
);
455 static VectorType
*get(Type
*ElementType
, unsigned NumElements
,
456 bool Scalable
= false) {
457 return VectorType::get(ElementType
, {NumElements
, Scalable
});
460 /// This static method gets a VectorType with the same number of elements as
461 /// the input type, and the element type is an integer type of the same width
462 /// as the input element type.
463 static VectorType
*getInteger(VectorType
*VTy
) {
464 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
465 assert(EltBits
&& "Element size must be of a non-zero size");
466 Type
*EltTy
= IntegerType::get(VTy
->getContext(), EltBits
);
467 return VectorType::get(EltTy
, VTy
->getElementCount());
470 /// This static method is like getInteger except that the element types are
471 /// twice as wide as the elements in the input type.
472 static VectorType
*getExtendedElementVectorType(VectorType
*VTy
) {
473 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
474 Type
*EltTy
= IntegerType::get(VTy
->getContext(), EltBits
* 2);
475 return VectorType::get(EltTy
, VTy
->getElementCount());
478 /// This static method is like getInteger except that the element types are
479 /// half as wide as the elements in the input type.
480 static VectorType
*getTruncatedElementVectorType(VectorType
*VTy
) {
481 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
482 assert((EltBits
& 1) == 0 &&
483 "Cannot truncate vector element with odd bit-width");
484 Type
*EltTy
= IntegerType::get(VTy
->getContext(), EltBits
/ 2);
485 return VectorType::get(EltTy
, VTy
->getElementCount());
488 /// This static method returns a VectorType with half as many elements as the
489 /// input type and the same element type.
490 static VectorType
*getHalfElementsVectorType(VectorType
*VTy
) {
491 auto EltCnt
= VTy
->getElementCount();
492 assert ((EltCnt
.Min
& 1) == 0 &&
493 "Cannot halve vector with odd number of elements.");
494 return VectorType::get(VTy
->getElementType(), EltCnt
/2);
497 /// This static method returns a VectorType with twice as many elements as the
498 /// input type and the same element type.
499 static VectorType
*getDoubleElementsVectorType(VectorType
*VTy
) {
500 auto EltCnt
= VTy
->getElementCount();
501 assert((VTy
->getNumElements() * 2ull) <= UINT_MAX
&&
502 "Too many elements in vector");
503 return VectorType::get(VTy
->getElementType(), EltCnt
*2);
506 /// Return true if the specified type is valid as a element type.
507 static bool isValidElementType(Type
*ElemTy
);
509 /// Return an ElementCount instance to represent the (possibly scalable)
510 /// number of elements in the vector.
511 ElementCount
getElementCount() const {
512 uint64_t MinimumEltCnt
= getNumElements();
513 assert(MinimumEltCnt
<= UINT_MAX
&& "Too many elements in vector");
514 return { (unsigned)MinimumEltCnt
, Scalable
};
517 /// Returns whether or not this is a scalable vector (meaning the total
518 /// element count is a multiple of the minimum).
519 bool isScalable() const {
523 /// Return the minimum number of bits in the Vector type.
524 /// Returns zero when the vector is a vector of pointers.
525 unsigned getBitWidth() const {
526 return getNumElements() * getElementType()->getPrimitiveSizeInBits();
529 /// Methods for support type inquiry through isa, cast, and dyn_cast.
530 static bool classof(const Type
*T
) {
531 return T
->getTypeID() == VectorTyID
;
535 unsigned Type::getVectorNumElements() const {
536 return cast
<VectorType
>(this)->getNumElements();
539 bool Type::getVectorIsScalable() const {
540 return cast
<VectorType
>(this)->isScalable();
543 /// Class to represent pointers.
544 class PointerType
: public Type
{
545 explicit PointerType(Type
*ElType
, unsigned AddrSpace
);
550 PointerType(const PointerType
&) = delete;
551 PointerType
&operator=(const PointerType
&) = delete;
553 /// This constructs a pointer to an object of the specified type in a numbered
555 static PointerType
*get(Type
*ElementType
, unsigned AddressSpace
);
557 /// This constructs a pointer to an object of the specified type in the
558 /// generic address space (address space zero).
559 static PointerType
*getUnqual(Type
*ElementType
) {
560 return PointerType::get(ElementType
, 0);
563 Type
*getElementType() const { return PointeeTy
; }
565 /// Return true if the specified type is valid as a element type.
566 static bool isValidElementType(Type
*ElemTy
);
568 /// Return true if we can load or store from a pointer to this type.
569 static bool isLoadableOrStorableType(Type
*ElemTy
);
571 /// Return the address space of the Pointer type.
572 inline unsigned getAddressSpace() const { return getSubclassData(); }
574 /// Implement support type inquiry through isa, cast, and dyn_cast.
575 static bool classof(const Type
*T
) {
576 return T
->getTypeID() == PointerTyID
;
580 unsigned Type::getPointerAddressSpace() const {
581 return cast
<PointerType
>(getScalarType())->getAddressSpace();
584 } // end namespace llvm
586 #endif // LLVM_IR_DERIVEDTYPES_H