[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / include / llvm / IR / Type.h
blobf2aa49030aaae97f56823f1eb8d3fc54b4b2dfae
1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Type class. For more "Type"
10 // stuff, look in DerivedTypes.h.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include <cassert>
25 #include <cstdint>
26 #include <iterator>
28 namespace llvm {
30 template<class GraphType> struct GraphTraits;
31 class IntegerType;
32 class LLVMContext;
33 class PointerType;
34 class raw_ostream;
35 class StringRef;
37 /// The instances of the Type class are immutable: once they are created,
38 /// they are never changed. Also note that only one instance of a particular
39 /// type is ever created. Thus seeing if two types are equal is a matter of
40 /// doing a trivial pointer comparison. To enforce that no two equal instances
41 /// are created, Type instances can only be created via static factory methods
42 /// in class Type and in derived classes. Once allocated, Types are never
43 /// free'd.
44 ///
45 class Type {
46 public:
47 //===--------------------------------------------------------------------===//
48 /// Definitions of all of the base types for the Type system. Based on this
49 /// value, you can cast to a class defined in DerivedTypes.h.
50 /// Note: If you add an element to this, you need to add an element to the
51 /// Type::getPrimitiveType function, or else things will break!
52 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53 ///
54 enum TypeID {
55 // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
56 VoidTyID = 0, ///< 0: type with no size
57 HalfTyID, ///< 1: 16-bit floating point type
58 FloatTyID, ///< 2: 32-bit floating point type
59 DoubleTyID, ///< 3: 64-bit floating point type
60 X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
61 FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
62 PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
63 LabelTyID, ///< 7: Labels
64 MetadataTyID, ///< 8: Metadata
65 X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
66 TokenTyID, ///< 10: Tokens
68 // Derived types... see DerivedTypes.h file.
69 // Make sure FirstDerivedTyID stays up to date!
70 IntegerTyID, ///< 11: Arbitrary bit width integers
71 FunctionTyID, ///< 12: Functions
72 StructTyID, ///< 13: Structures
73 ArrayTyID, ///< 14: Arrays
74 PointerTyID, ///< 15: Pointers
75 VectorTyID ///< 16: SIMD 'packed' format, or other vector type
78 private:
79 /// This refers to the LLVMContext in which this type was uniqued.
80 LLVMContext &Context;
82 TypeID ID : 8; // The current base type of this type.
83 unsigned SubclassData : 24; // Space for subclasses to store data.
84 // Note that this should be synchronized with
85 // MAX_INT_BITS value in IntegerType class.
87 protected:
88 friend class LLVMContextImpl;
90 explicit Type(LLVMContext &C, TypeID tid)
91 : Context(C), ID(tid), SubclassData(0) {}
92 ~Type() = default;
94 unsigned getSubclassData() const { return SubclassData; }
96 void setSubclassData(unsigned val) {
97 SubclassData = val;
98 // Ensure we don't have any accidental truncation.
99 assert(getSubclassData() == val && "Subclass data too large for field");
102 /// Keeps track of how many Type*'s there are in the ContainedTys list.
103 unsigned NumContainedTys = 0;
105 /// A pointer to the array of Types contained by this Type. For example, this
106 /// includes the arguments of a function type, the elements of a structure,
107 /// the pointee of a pointer, the element type of an array, etc. This pointer
108 /// may be 0 for types that don't contain other types (Integer, Double,
109 /// Float).
110 Type * const *ContainedTys = nullptr;
112 static bool isSequentialType(TypeID TyID) {
113 return TyID == ArrayTyID || TyID == VectorTyID;
116 public:
117 /// Print the current type.
118 /// Omit the type details if \p NoDetails == true.
119 /// E.g., let %st = type { i32, i16 }
120 /// When \p NoDetails is true, we only print %st.
121 /// Put differently, \p NoDetails prints the type as if
122 /// inlined with the operands when printing an instruction.
123 void print(raw_ostream &O, bool IsForDebug = false,
124 bool NoDetails = false) const;
126 void dump() const;
128 /// Return the LLVMContext in which this type was uniqued.
129 LLVMContext &getContext() const { return Context; }
131 //===--------------------------------------------------------------------===//
132 // Accessors for working with types.
135 /// Return the type id for the type. This will return one of the TypeID enum
136 /// elements defined above.
137 TypeID getTypeID() const { return ID; }
139 /// Return true if this is 'void'.
140 bool isVoidTy() const { return getTypeID() == VoidTyID; }
142 /// Return true if this is 'half', a 16-bit IEEE fp type.
143 bool isHalfTy() const { return getTypeID() == HalfTyID; }
145 /// Return true if this is 'float', a 32-bit IEEE fp type.
146 bool isFloatTy() const { return getTypeID() == FloatTyID; }
148 /// Return true if this is 'double', a 64-bit IEEE fp type.
149 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151 /// Return true if this is x86 long double.
152 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154 /// Return true if this is 'fp128'.
155 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157 /// Return true if this is powerpc long double.
158 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160 /// Return true if this is one of the six floating-point types
161 bool isFloatingPointTy() const {
162 return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
163 getTypeID() == DoubleTyID ||
164 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
165 getTypeID() == PPC_FP128TyID;
168 const fltSemantics &getFltSemantics() const {
169 switch (getTypeID()) {
170 case HalfTyID: return APFloat::IEEEhalf();
171 case FloatTyID: return APFloat::IEEEsingle();
172 case DoubleTyID: return APFloat::IEEEdouble();
173 case X86_FP80TyID: return APFloat::x87DoubleExtended();
174 case FP128TyID: return APFloat::IEEEquad();
175 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
176 default: llvm_unreachable("Invalid floating type");
180 /// Return true if this is X86 MMX.
181 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
183 /// Return true if this is a FP type or a vector of FP.
184 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
186 /// Return true if this is 'label'.
187 bool isLabelTy() const { return getTypeID() == LabelTyID; }
189 /// Return true if this is 'metadata'.
190 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
192 /// Return true if this is 'token'.
193 bool isTokenTy() const { return getTypeID() == TokenTyID; }
195 /// True if this is an instance of IntegerType.
196 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
198 /// Return true if this is an IntegerType of the given width.
199 bool isIntegerTy(unsigned Bitwidth) const;
201 /// Return true if this is an integer type or a vector of integer types.
202 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
204 /// Return true if this is an integer type or a vector of integer types of
205 /// the given width.
206 bool isIntOrIntVectorTy(unsigned BitWidth) const {
207 return getScalarType()->isIntegerTy(BitWidth);
210 /// Return true if this is an integer type or a pointer type.
211 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
213 /// True if this is an instance of FunctionType.
214 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
216 /// True if this is an instance of StructType.
217 bool isStructTy() const { return getTypeID() == StructTyID; }
219 /// True if this is an instance of ArrayType.
220 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
222 /// True if this is an instance of PointerType.
223 bool isPointerTy() const { return getTypeID() == PointerTyID; }
225 /// Return true if this is a pointer type or a vector of pointer types.
226 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
228 /// True if this is an instance of VectorType.
229 bool isVectorTy() const { return getTypeID() == VectorTyID; }
231 /// Return true if this type could be converted with a lossless BitCast to
232 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
233 /// same size only where no re-interpretation of the bits is done.
234 /// Determine if this type could be losslessly bitcast to Ty
235 bool canLosslesslyBitCastTo(Type *Ty) const;
237 /// Return true if this type is empty, that is, it has no elements or all of
238 /// its elements are empty.
239 bool isEmptyTy() const;
241 /// Return true if the type is "first class", meaning it is a valid type for a
242 /// Value.
243 bool isFirstClassType() const {
244 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
247 /// Return true if the type is a valid type for a register in codegen. This
248 /// includes all first-class types except struct and array types.
249 bool isSingleValueType() const {
250 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
251 isPointerTy() || isVectorTy();
254 /// Return true if the type is an aggregate type. This means it is valid as
255 /// the first operand of an insertvalue or extractvalue instruction. This
256 /// includes struct and array types, but does not include vector types.
257 bool isAggregateType() const {
258 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
261 /// Return true if it makes sense to take the size of this type. To get the
262 /// actual size for a particular target, it is reasonable to use the
263 /// DataLayout subsystem to do this.
264 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
265 // If it's a primitive, it is always sized.
266 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
267 getTypeID() == PointerTyID ||
268 getTypeID() == X86_MMXTyID)
269 return true;
270 // If it is not something that can have a size (e.g. a function or label),
271 // it doesn't have a size.
272 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
273 getTypeID() != VectorTyID)
274 return false;
275 // Otherwise we have to try harder to decide.
276 return isSizedDerivedType(Visited);
279 /// Return the basic size of this type if it is a primitive type. These are
280 /// fixed by LLVM and are not target-dependent.
281 /// This will return zero if the type does not have a size or is not a
282 /// primitive type.
284 /// Note that this may not reflect the size of memory allocated for an
285 /// instance of the type or the number of bytes that are written when an
286 /// instance of the type is stored to memory. The DataLayout class provides
287 /// additional query functions to provide this information.
289 unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
291 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
292 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
293 /// type.
294 unsigned getScalarSizeInBits() const LLVM_READONLY;
296 /// Return the width of the mantissa of this type. This is only valid on
297 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
298 /// ppc long double), this method returns -1.
299 int getFPMantissaWidth() const;
301 /// If this is a vector type, return the element type, otherwise return
302 /// 'this'.
303 Type *getScalarType() const {
304 if (isVectorTy())
305 return getVectorElementType();
306 return const_cast<Type*>(this);
309 //===--------------------------------------------------------------------===//
310 // Type Iteration support.
312 using subtype_iterator = Type * const *;
314 subtype_iterator subtype_begin() const { return ContainedTys; }
315 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
316 ArrayRef<Type*> subtypes() const {
317 return makeArrayRef(subtype_begin(), subtype_end());
320 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
322 subtype_reverse_iterator subtype_rbegin() const {
323 return subtype_reverse_iterator(subtype_end());
325 subtype_reverse_iterator subtype_rend() const {
326 return subtype_reverse_iterator(subtype_begin());
329 /// This method is used to implement the type iterator (defined at the end of
330 /// the file). For derived types, this returns the types 'contained' in the
331 /// derived type.
332 Type *getContainedType(unsigned i) const {
333 assert(i < NumContainedTys && "Index out of range!");
334 return ContainedTys[i];
337 /// Return the number of types in the derived type.
338 unsigned getNumContainedTypes() const { return NumContainedTys; }
340 //===--------------------------------------------------------------------===//
341 // Helper methods corresponding to subclass methods. This forces a cast to
342 // the specified subclass and calls its accessor. "getVectorNumElements" (for
343 // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
344 // only intended to cover the core methods that are frequently used, helper
345 // methods should not be added here.
347 inline unsigned getIntegerBitWidth() const;
349 inline Type *getFunctionParamType(unsigned i) const;
350 inline unsigned getFunctionNumParams() const;
351 inline bool isFunctionVarArg() const;
353 inline StringRef getStructName() const;
354 inline unsigned getStructNumElements() const;
355 inline Type *getStructElementType(unsigned N) const;
357 inline Type *getSequentialElementType() const {
358 assert(isSequentialType(getTypeID()) && "Not a sequential type!");
359 return ContainedTys[0];
362 inline uint64_t getArrayNumElements() const;
364 Type *getArrayElementType() const {
365 assert(getTypeID() == ArrayTyID);
366 return ContainedTys[0];
369 inline bool getVectorIsScalable() const;
370 inline unsigned getVectorNumElements() const;
371 Type *getVectorElementType() const {
372 assert(getTypeID() == VectorTyID);
373 return ContainedTys[0];
376 Type *getPointerElementType() const {
377 assert(getTypeID() == PointerTyID);
378 return ContainedTys[0];
381 /// Get the address space of this pointer or pointer vector type.
382 inline unsigned getPointerAddressSpace() const;
384 //===--------------------------------------------------------------------===//
385 // Static members exported by the Type class itself. Useful for getting
386 // instances of Type.
389 /// Return a type based on an identifier.
390 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
392 //===--------------------------------------------------------------------===//
393 // These are the builtin types that are always available.
395 static Type *getVoidTy(LLVMContext &C);
396 static Type *getLabelTy(LLVMContext &C);
397 static Type *getHalfTy(LLVMContext &C);
398 static Type *getFloatTy(LLVMContext &C);
399 static Type *getDoubleTy(LLVMContext &C);
400 static Type *getMetadataTy(LLVMContext &C);
401 static Type *getX86_FP80Ty(LLVMContext &C);
402 static Type *getFP128Ty(LLVMContext &C);
403 static Type *getPPC_FP128Ty(LLVMContext &C);
404 static Type *getX86_MMXTy(LLVMContext &C);
405 static Type *getTokenTy(LLVMContext &C);
406 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
407 static IntegerType *getInt1Ty(LLVMContext &C);
408 static IntegerType *getInt8Ty(LLVMContext &C);
409 static IntegerType *getInt16Ty(LLVMContext &C);
410 static IntegerType *getInt32Ty(LLVMContext &C);
411 static IntegerType *getInt64Ty(LLVMContext &C);
412 static IntegerType *getInt128Ty(LLVMContext &C);
413 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
414 int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
415 if (std::is_integral<ScalarTy>::value) {
416 return (Type*) Type::getIntNTy(C, noOfBits);
417 } else if (std::is_floating_point<ScalarTy>::value) {
418 switch (noOfBits) {
419 case 32:
420 return Type::getFloatTy(C);
421 case 64:
422 return Type::getDoubleTy(C);
425 llvm_unreachable("Unsupported type in Type::getScalarTy");
428 //===--------------------------------------------------------------------===//
429 // Convenience methods for getting pointer types with one of the above builtin
430 // types as pointee.
432 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
433 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
434 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
435 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
436 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
437 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
438 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
439 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
440 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
441 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
442 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
443 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
444 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
446 /// Return a pointer to the current type. This is equivalent to
447 /// PointerType::get(Foo, AddrSpace).
448 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
450 private:
451 /// Derived types like structures and arrays are sized iff all of the members
452 /// of the type are sized as well. Since asking for their size is relatively
453 /// uncommon, move this operation out-of-line.
454 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
457 // Printing of types.
458 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
459 T.print(OS);
460 return OS;
463 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
464 template <> struct isa_impl<PointerType, Type> {
465 static inline bool doit(const Type &Ty) {
466 return Ty.getTypeID() == Type::PointerTyID;
470 // Create wrappers for C Binding types (see CBindingWrapping.h).
471 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
473 /* Specialized opaque type conversions.
475 inline Type **unwrap(LLVMTypeRef* Tys) {
476 return reinterpret_cast<Type**>(Tys);
479 inline LLVMTypeRef *wrap(Type **Tys) {
480 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
483 } // end namespace llvm
485 #endif // LLVM_IR_TYPE_H