1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the declaration of the Type class. For more "Type"
10 // stuff, look in DerivedTypes.h.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/ErrorHandling.h"
30 template<class GraphType
> struct GraphTraits
;
37 /// The instances of the Type class are immutable: once they are created,
38 /// they are never changed. Also note that only one instance of a particular
39 /// type is ever created. Thus seeing if two types are equal is a matter of
40 /// doing a trivial pointer comparison. To enforce that no two equal instances
41 /// are created, Type instances can only be created via static factory methods
42 /// in class Type and in derived classes. Once allocated, Types are never
47 //===--------------------------------------------------------------------===//
48 /// Definitions of all of the base types for the Type system. Based on this
49 /// value, you can cast to a class defined in DerivedTypes.h.
50 /// Note: If you add an element to this, you need to add an element to the
51 /// Type::getPrimitiveType function, or else things will break!
52 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
55 // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
56 VoidTyID
= 0, ///< 0: type with no size
57 HalfTyID
, ///< 1: 16-bit floating point type
58 FloatTyID
, ///< 2: 32-bit floating point type
59 DoubleTyID
, ///< 3: 64-bit floating point type
60 X86_FP80TyID
, ///< 4: 80-bit floating point type (X87)
61 FP128TyID
, ///< 5: 128-bit floating point type (112-bit mantissa)
62 PPC_FP128TyID
, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
63 LabelTyID
, ///< 7: Labels
64 MetadataTyID
, ///< 8: Metadata
65 X86_MMXTyID
, ///< 9: MMX vectors (64 bits, X86 specific)
66 TokenTyID
, ///< 10: Tokens
68 // Derived types... see DerivedTypes.h file.
69 // Make sure FirstDerivedTyID stays up to date!
70 IntegerTyID
, ///< 11: Arbitrary bit width integers
71 FunctionTyID
, ///< 12: Functions
72 StructTyID
, ///< 13: Structures
73 ArrayTyID
, ///< 14: Arrays
74 PointerTyID
, ///< 15: Pointers
75 VectorTyID
///< 16: SIMD 'packed' format, or other vector type
79 /// This refers to the LLVMContext in which this type was uniqued.
82 TypeID ID
: 8; // The current base type of this type.
83 unsigned SubclassData
: 24; // Space for subclasses to store data.
84 // Note that this should be synchronized with
85 // MAX_INT_BITS value in IntegerType class.
88 friend class LLVMContextImpl
;
90 explicit Type(LLVMContext
&C
, TypeID tid
)
91 : Context(C
), ID(tid
), SubclassData(0) {}
94 unsigned getSubclassData() const { return SubclassData
; }
96 void setSubclassData(unsigned val
) {
98 // Ensure we don't have any accidental truncation.
99 assert(getSubclassData() == val
&& "Subclass data too large for field");
102 /// Keeps track of how many Type*'s there are in the ContainedTys list.
103 unsigned NumContainedTys
= 0;
105 /// A pointer to the array of Types contained by this Type. For example, this
106 /// includes the arguments of a function type, the elements of a structure,
107 /// the pointee of a pointer, the element type of an array, etc. This pointer
108 /// may be 0 for types that don't contain other types (Integer, Double,
110 Type
* const *ContainedTys
= nullptr;
112 static bool isSequentialType(TypeID TyID
) {
113 return TyID
== ArrayTyID
|| TyID
== VectorTyID
;
117 /// Print the current type.
118 /// Omit the type details if \p NoDetails == true.
119 /// E.g., let %st = type { i32, i16 }
120 /// When \p NoDetails is true, we only print %st.
121 /// Put differently, \p NoDetails prints the type as if
122 /// inlined with the operands when printing an instruction.
123 void print(raw_ostream
&O
, bool IsForDebug
= false,
124 bool NoDetails
= false) const;
128 /// Return the LLVMContext in which this type was uniqued.
129 LLVMContext
&getContext() const { return Context
; }
131 //===--------------------------------------------------------------------===//
132 // Accessors for working with types.
135 /// Return the type id for the type. This will return one of the TypeID enum
136 /// elements defined above.
137 TypeID
getTypeID() const { return ID
; }
139 /// Return true if this is 'void'.
140 bool isVoidTy() const { return getTypeID() == VoidTyID
; }
142 /// Return true if this is 'half', a 16-bit IEEE fp type.
143 bool isHalfTy() const { return getTypeID() == HalfTyID
; }
145 /// Return true if this is 'float', a 32-bit IEEE fp type.
146 bool isFloatTy() const { return getTypeID() == FloatTyID
; }
148 /// Return true if this is 'double', a 64-bit IEEE fp type.
149 bool isDoubleTy() const { return getTypeID() == DoubleTyID
; }
151 /// Return true if this is x86 long double.
152 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID
; }
154 /// Return true if this is 'fp128'.
155 bool isFP128Ty() const { return getTypeID() == FP128TyID
; }
157 /// Return true if this is powerpc long double.
158 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID
; }
160 /// Return true if this is one of the six floating-point types
161 bool isFloatingPointTy() const {
162 return getTypeID() == HalfTyID
|| getTypeID() == FloatTyID
||
163 getTypeID() == DoubleTyID
||
164 getTypeID() == X86_FP80TyID
|| getTypeID() == FP128TyID
||
165 getTypeID() == PPC_FP128TyID
;
168 const fltSemantics
&getFltSemantics() const {
169 switch (getTypeID()) {
170 case HalfTyID
: return APFloat::IEEEhalf();
171 case FloatTyID
: return APFloat::IEEEsingle();
172 case DoubleTyID
: return APFloat::IEEEdouble();
173 case X86_FP80TyID
: return APFloat::x87DoubleExtended();
174 case FP128TyID
: return APFloat::IEEEquad();
175 case PPC_FP128TyID
: return APFloat::PPCDoubleDouble();
176 default: llvm_unreachable("Invalid floating type");
180 /// Return true if this is X86 MMX.
181 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID
; }
183 /// Return true if this is a FP type or a vector of FP.
184 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
186 /// Return true if this is 'label'.
187 bool isLabelTy() const { return getTypeID() == LabelTyID
; }
189 /// Return true if this is 'metadata'.
190 bool isMetadataTy() const { return getTypeID() == MetadataTyID
; }
192 /// Return true if this is 'token'.
193 bool isTokenTy() const { return getTypeID() == TokenTyID
; }
195 /// True if this is an instance of IntegerType.
196 bool isIntegerTy() const { return getTypeID() == IntegerTyID
; }
198 /// Return true if this is an IntegerType of the given width.
199 bool isIntegerTy(unsigned Bitwidth
) const;
201 /// Return true if this is an integer type or a vector of integer types.
202 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
204 /// Return true if this is an integer type or a vector of integer types of
206 bool isIntOrIntVectorTy(unsigned BitWidth
) const {
207 return getScalarType()->isIntegerTy(BitWidth
);
210 /// Return true if this is an integer type or a pointer type.
211 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
213 /// True if this is an instance of FunctionType.
214 bool isFunctionTy() const { return getTypeID() == FunctionTyID
; }
216 /// True if this is an instance of StructType.
217 bool isStructTy() const { return getTypeID() == StructTyID
; }
219 /// True if this is an instance of ArrayType.
220 bool isArrayTy() const { return getTypeID() == ArrayTyID
; }
222 /// True if this is an instance of PointerType.
223 bool isPointerTy() const { return getTypeID() == PointerTyID
; }
225 /// Return true if this is a pointer type or a vector of pointer types.
226 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
228 /// True if this is an instance of VectorType.
229 bool isVectorTy() const { return getTypeID() == VectorTyID
; }
231 /// Return true if this type could be converted with a lossless BitCast to
232 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
233 /// same size only where no re-interpretation of the bits is done.
234 /// Determine if this type could be losslessly bitcast to Ty
235 bool canLosslesslyBitCastTo(Type
*Ty
) const;
237 /// Return true if this type is empty, that is, it has no elements or all of
238 /// its elements are empty.
239 bool isEmptyTy() const;
241 /// Return true if the type is "first class", meaning it is a valid type for a
243 bool isFirstClassType() const {
244 return getTypeID() != FunctionTyID
&& getTypeID() != VoidTyID
;
247 /// Return true if the type is a valid type for a register in codegen. This
248 /// includes all first-class types except struct and array types.
249 bool isSingleValueType() const {
250 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
251 isPointerTy() || isVectorTy();
254 /// Return true if the type is an aggregate type. This means it is valid as
255 /// the first operand of an insertvalue or extractvalue instruction. This
256 /// includes struct and array types, but does not include vector types.
257 bool isAggregateType() const {
258 return getTypeID() == StructTyID
|| getTypeID() == ArrayTyID
;
261 /// Return true if it makes sense to take the size of this type. To get the
262 /// actual size for a particular target, it is reasonable to use the
263 /// DataLayout subsystem to do this.
264 bool isSized(SmallPtrSetImpl
<Type
*> *Visited
= nullptr) const {
265 // If it's a primitive, it is always sized.
266 if (getTypeID() == IntegerTyID
|| isFloatingPointTy() ||
267 getTypeID() == PointerTyID
||
268 getTypeID() == X86_MMXTyID
)
270 // If it is not something that can have a size (e.g. a function or label),
271 // it doesn't have a size.
272 if (getTypeID() != StructTyID
&& getTypeID() != ArrayTyID
&&
273 getTypeID() != VectorTyID
)
275 // Otherwise we have to try harder to decide.
276 return isSizedDerivedType(Visited
);
279 /// Return the basic size of this type if it is a primitive type. These are
280 /// fixed by LLVM and are not target-dependent.
281 /// This will return zero if the type does not have a size or is not a
284 /// Note that this may not reflect the size of memory allocated for an
285 /// instance of the type or the number of bytes that are written when an
286 /// instance of the type is stored to memory. The DataLayout class provides
287 /// additional query functions to provide this information.
289 unsigned getPrimitiveSizeInBits() const LLVM_READONLY
;
291 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
292 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
294 unsigned getScalarSizeInBits() const LLVM_READONLY
;
296 /// Return the width of the mantissa of this type. This is only valid on
297 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
298 /// ppc long double), this method returns -1.
299 int getFPMantissaWidth() const;
301 /// If this is a vector type, return the element type, otherwise return
303 Type
*getScalarType() const {
305 return getVectorElementType();
306 return const_cast<Type
*>(this);
309 //===--------------------------------------------------------------------===//
310 // Type Iteration support.
312 using subtype_iterator
= Type
* const *;
314 subtype_iterator
subtype_begin() const { return ContainedTys
; }
315 subtype_iterator
subtype_end() const { return &ContainedTys
[NumContainedTys
];}
316 ArrayRef
<Type
*> subtypes() const {
317 return makeArrayRef(subtype_begin(), subtype_end());
320 using subtype_reverse_iterator
= std::reverse_iterator
<subtype_iterator
>;
322 subtype_reverse_iterator
subtype_rbegin() const {
323 return subtype_reverse_iterator(subtype_end());
325 subtype_reverse_iterator
subtype_rend() const {
326 return subtype_reverse_iterator(subtype_begin());
329 /// This method is used to implement the type iterator (defined at the end of
330 /// the file). For derived types, this returns the types 'contained' in the
332 Type
*getContainedType(unsigned i
) const {
333 assert(i
< NumContainedTys
&& "Index out of range!");
334 return ContainedTys
[i
];
337 /// Return the number of types in the derived type.
338 unsigned getNumContainedTypes() const { return NumContainedTys
; }
340 //===--------------------------------------------------------------------===//
341 // Helper methods corresponding to subclass methods. This forces a cast to
342 // the specified subclass and calls its accessor. "getVectorNumElements" (for
343 // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
344 // only intended to cover the core methods that are frequently used, helper
345 // methods should not be added here.
347 inline unsigned getIntegerBitWidth() const;
349 inline Type
*getFunctionParamType(unsigned i
) const;
350 inline unsigned getFunctionNumParams() const;
351 inline bool isFunctionVarArg() const;
353 inline StringRef
getStructName() const;
354 inline unsigned getStructNumElements() const;
355 inline Type
*getStructElementType(unsigned N
) const;
357 inline Type
*getSequentialElementType() const {
358 assert(isSequentialType(getTypeID()) && "Not a sequential type!");
359 return ContainedTys
[0];
362 inline uint64_t getArrayNumElements() const;
364 Type
*getArrayElementType() const {
365 assert(getTypeID() == ArrayTyID
);
366 return ContainedTys
[0];
369 inline bool getVectorIsScalable() const;
370 inline unsigned getVectorNumElements() const;
371 Type
*getVectorElementType() const {
372 assert(getTypeID() == VectorTyID
);
373 return ContainedTys
[0];
376 Type
*getPointerElementType() const {
377 assert(getTypeID() == PointerTyID
);
378 return ContainedTys
[0];
381 /// Get the address space of this pointer or pointer vector type.
382 inline unsigned getPointerAddressSpace() const;
384 //===--------------------------------------------------------------------===//
385 // Static members exported by the Type class itself. Useful for getting
386 // instances of Type.
389 /// Return a type based on an identifier.
390 static Type
*getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
);
392 //===--------------------------------------------------------------------===//
393 // These are the builtin types that are always available.
395 static Type
*getVoidTy(LLVMContext
&C
);
396 static Type
*getLabelTy(LLVMContext
&C
);
397 static Type
*getHalfTy(LLVMContext
&C
);
398 static Type
*getFloatTy(LLVMContext
&C
);
399 static Type
*getDoubleTy(LLVMContext
&C
);
400 static Type
*getMetadataTy(LLVMContext
&C
);
401 static Type
*getX86_FP80Ty(LLVMContext
&C
);
402 static Type
*getFP128Ty(LLVMContext
&C
);
403 static Type
*getPPC_FP128Ty(LLVMContext
&C
);
404 static Type
*getX86_MMXTy(LLVMContext
&C
);
405 static Type
*getTokenTy(LLVMContext
&C
);
406 static IntegerType
*getIntNTy(LLVMContext
&C
, unsigned N
);
407 static IntegerType
*getInt1Ty(LLVMContext
&C
);
408 static IntegerType
*getInt8Ty(LLVMContext
&C
);
409 static IntegerType
*getInt16Ty(LLVMContext
&C
);
410 static IntegerType
*getInt32Ty(LLVMContext
&C
);
411 static IntegerType
*getInt64Ty(LLVMContext
&C
);
412 static IntegerType
*getInt128Ty(LLVMContext
&C
);
413 template <typename ScalarTy
> static Type
*getScalarTy(LLVMContext
&C
) {
414 int noOfBits
= sizeof(ScalarTy
) * CHAR_BIT
;
415 if (std::is_integral
<ScalarTy
>::value
) {
416 return (Type
*) Type::getIntNTy(C
, noOfBits
);
417 } else if (std::is_floating_point
<ScalarTy
>::value
) {
420 return Type::getFloatTy(C
);
422 return Type::getDoubleTy(C
);
425 llvm_unreachable("Unsupported type in Type::getScalarTy");
428 //===--------------------------------------------------------------------===//
429 // Convenience methods for getting pointer types with one of the above builtin
432 static PointerType
*getHalfPtrTy(LLVMContext
&C
, unsigned AS
= 0);
433 static PointerType
*getFloatPtrTy(LLVMContext
&C
, unsigned AS
= 0);
434 static PointerType
*getDoublePtrTy(LLVMContext
&C
, unsigned AS
= 0);
435 static PointerType
*getX86_FP80PtrTy(LLVMContext
&C
, unsigned AS
= 0);
436 static PointerType
*getFP128PtrTy(LLVMContext
&C
, unsigned AS
= 0);
437 static PointerType
*getPPC_FP128PtrTy(LLVMContext
&C
, unsigned AS
= 0);
438 static PointerType
*getX86_MMXPtrTy(LLVMContext
&C
, unsigned AS
= 0);
439 static PointerType
*getIntNPtrTy(LLVMContext
&C
, unsigned N
, unsigned AS
= 0);
440 static PointerType
*getInt1PtrTy(LLVMContext
&C
, unsigned AS
= 0);
441 static PointerType
*getInt8PtrTy(LLVMContext
&C
, unsigned AS
= 0);
442 static PointerType
*getInt16PtrTy(LLVMContext
&C
, unsigned AS
= 0);
443 static PointerType
*getInt32PtrTy(LLVMContext
&C
, unsigned AS
= 0);
444 static PointerType
*getInt64PtrTy(LLVMContext
&C
, unsigned AS
= 0);
446 /// Return a pointer to the current type. This is equivalent to
447 /// PointerType::get(Foo, AddrSpace).
448 PointerType
*getPointerTo(unsigned AddrSpace
= 0) const;
451 /// Derived types like structures and arrays are sized iff all of the members
452 /// of the type are sized as well. Since asking for their size is relatively
453 /// uncommon, move this operation out-of-line.
454 bool isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
= nullptr) const;
457 // Printing of types.
458 inline raw_ostream
&operator<<(raw_ostream
&OS
, const Type
&T
) {
463 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
464 template <> struct isa_impl
<PointerType
, Type
> {
465 static inline bool doit(const Type
&Ty
) {
466 return Ty
.getTypeID() == Type::PointerTyID
;
470 // Create wrappers for C Binding types (see CBindingWrapping.h).
471 DEFINE_ISA_CONVERSION_FUNCTIONS(Type
, LLVMTypeRef
)
473 /* Specialized opaque type conversions.
475 inline Type
**unwrap(LLVMTypeRef
* Tys
) {
476 return reinterpret_cast<Type
**>(Tys
);
479 inline LLVMTypeRef
*wrap(Type
**Tys
) {
480 return reinterpret_cast<LLVMTypeRef
*>(const_cast<Type
**>(Tys
));
483 } // end namespace llvm
485 #endif // LLVM_IR_TYPE_H