[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / include / llvm / Object / ELFTypes.h
blob7d1ade4d5437db87ea8687561497c55c98c719fc
1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_OBJECT_ELFTYPES_H
10 #define LLVM_OBJECT_ELFTYPES_H
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Object/Error.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/Error.h"
18 #include <cassert>
19 #include <cstdint>
20 #include <cstring>
21 #include <type_traits>
23 namespace llvm {
24 namespace object {
26 using support::endianness;
28 template <class ELFT> struct Elf_Ehdr_Impl;
29 template <class ELFT> struct Elf_Shdr_Impl;
30 template <class ELFT> struct Elf_Sym_Impl;
31 template <class ELFT> struct Elf_Dyn_Impl;
32 template <class ELFT> struct Elf_Phdr_Impl;
33 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
34 template <class ELFT> struct Elf_Verdef_Impl;
35 template <class ELFT> struct Elf_Verdaux_Impl;
36 template <class ELFT> struct Elf_Verneed_Impl;
37 template <class ELFT> struct Elf_Vernaux_Impl;
38 template <class ELFT> struct Elf_Versym_Impl;
39 template <class ELFT> struct Elf_Hash_Impl;
40 template <class ELFT> struct Elf_GnuHash_Impl;
41 template <class ELFT> struct Elf_Chdr_Impl;
42 template <class ELFT> struct Elf_Nhdr_Impl;
43 template <class ELFT> class Elf_Note_Impl;
44 template <class ELFT> class Elf_Note_Iterator_Impl;
45 template <class ELFT> struct Elf_CGProfile_Impl;
47 template <endianness E, bool Is64> struct ELFType {
48 private:
49 template <typename Ty>
50 using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
52 public:
53 static const endianness TargetEndianness = E;
54 static const bool Is64Bits = Is64;
56 using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type;
57 using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
58 using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
59 using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
60 using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
61 using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
62 using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
63 using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
64 using Relr = packed<uint>;
65 using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
66 using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
67 using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
68 using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
69 using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
70 using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
71 using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
72 using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
73 using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
74 using Note = Elf_Note_Impl<ELFType<E, Is64>>;
75 using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
76 using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
77 using DynRange = ArrayRef<Dyn>;
78 using ShdrRange = ArrayRef<Shdr>;
79 using SymRange = ArrayRef<Sym>;
80 using RelRange = ArrayRef<Rel>;
81 using RelaRange = ArrayRef<Rela>;
82 using RelrRange = ArrayRef<Relr>;
83 using PhdrRange = ArrayRef<Phdr>;
85 using Half = packed<uint16_t>;
86 using Word = packed<uint32_t>;
87 using Sword = packed<int32_t>;
88 using Xword = packed<uint64_t>;
89 using Sxword = packed<int64_t>;
90 using Addr = packed<uint>;
91 using Off = packed<uint>;
94 using ELF32LE = ELFType<support::little, false>;
95 using ELF32BE = ELFType<support::big, false>;
96 using ELF64LE = ELFType<support::little, true>;
97 using ELF64BE = ELFType<support::big, true>;
99 // Use an alignment of 2 for the typedefs since that is the worst case for
100 // ELF files in archives.
102 // I really don't like doing this, but the alternative is copypasta.
103 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \
104 using Elf_Addr = typename ELFT::Addr; \
105 using Elf_Off = typename ELFT::Off; \
106 using Elf_Half = typename ELFT::Half; \
107 using Elf_Word = typename ELFT::Word; \
108 using Elf_Sword = typename ELFT::Sword; \
109 using Elf_Xword = typename ELFT::Xword; \
110 using Elf_Sxword = typename ELFT::Sxword;
112 #define LLVM_ELF_COMMA ,
113 #define LLVM_ELF_IMPORT_TYPES(E, W) \
114 LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
116 // Section header.
117 template <class ELFT> struct Elf_Shdr_Base;
119 template <endianness TargetEndianness>
120 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
121 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
122 Elf_Word sh_name; // Section name (index into string table)
123 Elf_Word sh_type; // Section type (SHT_*)
124 Elf_Word sh_flags; // Section flags (SHF_*)
125 Elf_Addr sh_addr; // Address where section is to be loaded
126 Elf_Off sh_offset; // File offset of section data, in bytes
127 Elf_Word sh_size; // Size of section, in bytes
128 Elf_Word sh_link; // Section type-specific header table index link
129 Elf_Word sh_info; // Section type-specific extra information
130 Elf_Word sh_addralign; // Section address alignment
131 Elf_Word sh_entsize; // Size of records contained within the section
134 template <endianness TargetEndianness>
135 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
136 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
137 Elf_Word sh_name; // Section name (index into string table)
138 Elf_Word sh_type; // Section type (SHT_*)
139 Elf_Xword sh_flags; // Section flags (SHF_*)
140 Elf_Addr sh_addr; // Address where section is to be loaded
141 Elf_Off sh_offset; // File offset of section data, in bytes
142 Elf_Xword sh_size; // Size of section, in bytes
143 Elf_Word sh_link; // Section type-specific header table index link
144 Elf_Word sh_info; // Section type-specific extra information
145 Elf_Xword sh_addralign; // Section address alignment
146 Elf_Xword sh_entsize; // Size of records contained within the section
149 template <class ELFT>
150 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
151 using Elf_Shdr_Base<ELFT>::sh_entsize;
152 using Elf_Shdr_Base<ELFT>::sh_size;
154 /// Get the number of entities this section contains if it has any.
155 unsigned getEntityCount() const {
156 if (sh_entsize == 0)
157 return 0;
158 return sh_size / sh_entsize;
162 template <class ELFT> struct Elf_Sym_Base;
164 template <endianness TargetEndianness>
165 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
166 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
167 Elf_Word st_name; // Symbol name (index into string table)
168 Elf_Addr st_value; // Value or address associated with the symbol
169 Elf_Word st_size; // Size of the symbol
170 unsigned char st_info; // Symbol's type and binding attributes
171 unsigned char st_other; // Must be zero; reserved
172 Elf_Half st_shndx; // Which section (header table index) it's defined in
175 template <endianness TargetEndianness>
176 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
177 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
178 Elf_Word st_name; // Symbol name (index into string table)
179 unsigned char st_info; // Symbol's type and binding attributes
180 unsigned char st_other; // Must be zero; reserved
181 Elf_Half st_shndx; // Which section (header table index) it's defined in
182 Elf_Addr st_value; // Value or address associated with the symbol
183 Elf_Xword st_size; // Size of the symbol
186 template <class ELFT>
187 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
188 using Elf_Sym_Base<ELFT>::st_info;
189 using Elf_Sym_Base<ELFT>::st_shndx;
190 using Elf_Sym_Base<ELFT>::st_other;
191 using Elf_Sym_Base<ELFT>::st_value;
193 // These accessors and mutators correspond to the ELF32_ST_BIND,
194 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
195 unsigned char getBinding() const { return st_info >> 4; }
196 unsigned char getType() const { return st_info & 0x0f; }
197 uint64_t getValue() const { return st_value; }
198 void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
199 void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
201 void setBindingAndType(unsigned char b, unsigned char t) {
202 st_info = (b << 4) + (t & 0x0f);
205 /// Access to the STV_xxx flag stored in the first two bits of st_other.
206 /// STV_DEFAULT: 0
207 /// STV_INTERNAL: 1
208 /// STV_HIDDEN: 2
209 /// STV_PROTECTED: 3
210 unsigned char getVisibility() const { return st_other & 0x3; }
211 void setVisibility(unsigned char v) {
212 assert(v < 4 && "Invalid value for visibility");
213 st_other = (st_other & ~0x3) | v;
216 bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
218 bool isCommon() const {
219 return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
222 bool isDefined() const { return !isUndefined(); }
224 bool isProcessorSpecific() const {
225 return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
228 bool isOSSpecific() const {
229 return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
232 bool isReserved() const {
233 // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
234 // true and some compilers warn about it.
235 return st_shndx >= ELF::SHN_LORESERVE;
238 bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
240 bool isExternal() const {
241 return getBinding() != ELF::STB_LOCAL;
244 Expected<StringRef> getName(StringRef StrTab) const;
247 template <class ELFT>
248 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
249 uint32_t Offset = this->st_name;
250 if (Offset >= StrTab.size())
251 return createStringError(object_error::parse_failed,
252 "st_name (0x%" PRIx32
253 ") is past the end of the string table"
254 " of size 0x%zx",
255 Offset, StrTab.size());
256 return StringRef(StrTab.data() + Offset);
259 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
260 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
261 template <class ELFT>
262 struct Elf_Versym_Impl {
263 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
264 Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
267 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
268 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
269 template <class ELFT>
270 struct Elf_Verdef_Impl {
271 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
272 using Elf_Verdaux = Elf_Verdaux_Impl<ELFT>;
273 Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
274 Elf_Half vd_flags; // Bitwise flags (VER_DEF_*)
275 Elf_Half vd_ndx; // Version index, used in .gnu.version entries
276 Elf_Half vd_cnt; // Number of Verdaux entries
277 Elf_Word vd_hash; // Hash of name
278 Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes)
279 Elf_Word vd_next; // Offset to the next Verdef entry (in bytes)
281 /// Get the first Verdaux entry for this Verdef.
282 const Elf_Verdaux *getAux() const {
283 return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
287 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
288 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
289 template <class ELFT>
290 struct Elf_Verdaux_Impl {
291 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
292 Elf_Word vda_name; // Version name (offset in string table)
293 Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
296 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
297 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
298 template <class ELFT>
299 struct Elf_Verneed_Impl {
300 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
301 Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
302 Elf_Half vn_cnt; // Number of associated Vernaux entries
303 Elf_Word vn_file; // Library name (string table offset)
304 Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes)
305 Elf_Word vn_next; // Offset to next Verneed entry (in bytes)
308 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
309 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
310 template <class ELFT>
311 struct Elf_Vernaux_Impl {
312 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
313 Elf_Word vna_hash; // Hash of dependency name
314 Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
315 Elf_Half vna_other; // Version index, used in .gnu.version entries
316 Elf_Word vna_name; // Dependency name
317 Elf_Word vna_next; // Offset to next Vernaux entry (in bytes)
320 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
321 /// table section (.dynamic) look like.
322 template <class ELFT> struct Elf_Dyn_Base;
324 template <endianness TargetEndianness>
325 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
326 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
327 Elf_Sword d_tag;
328 union {
329 Elf_Word d_val;
330 Elf_Addr d_ptr;
331 } d_un;
334 template <endianness TargetEndianness>
335 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
336 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
337 Elf_Sxword d_tag;
338 union {
339 Elf_Xword d_val;
340 Elf_Addr d_ptr;
341 } d_un;
344 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
345 template <class ELFT>
346 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
347 using Elf_Dyn_Base<ELFT>::d_tag;
348 using Elf_Dyn_Base<ELFT>::d_un;
349 using intX_t = typename std::conditional<ELFT::Is64Bits,
350 int64_t, int32_t>::type;
351 using uintX_t = typename std::conditional<ELFT::Is64Bits,
352 uint64_t, uint32_t>::type;
353 intX_t getTag() const { return d_tag; }
354 uintX_t getVal() const { return d_un.d_val; }
355 uintX_t getPtr() const { return d_un.d_ptr; }
358 template <endianness TargetEndianness>
359 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
360 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
361 static const bool IsRela = false;
362 Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
363 Elf_Word r_info; // Symbol table index and type of relocation to apply
365 uint32_t getRInfo(bool isMips64EL) const {
366 assert(!isMips64EL);
367 return r_info;
369 void setRInfo(uint32_t R, bool IsMips64EL) {
370 assert(!IsMips64EL);
371 r_info = R;
374 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
375 // and ELF32_R_INFO macros defined in the ELF specification:
376 uint32_t getSymbol(bool isMips64EL) const {
377 return this->getRInfo(isMips64EL) >> 8;
379 unsigned char getType(bool isMips64EL) const {
380 return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
382 void setSymbol(uint32_t s, bool IsMips64EL) {
383 setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
385 void setType(unsigned char t, bool IsMips64EL) {
386 setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
388 void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
389 this->setRInfo((s << 8) + t, IsMips64EL);
393 template <endianness TargetEndianness>
394 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
395 : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
396 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
397 static const bool IsRela = true;
398 Elf_Sword r_addend; // Compute value for relocatable field by adding this
401 template <endianness TargetEndianness>
402 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
403 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
404 static const bool IsRela = false;
405 Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
406 Elf_Xword r_info; // Symbol table index and type of relocation to apply
408 uint64_t getRInfo(bool isMips64EL) const {
409 uint64_t t = r_info;
410 if (!isMips64EL)
411 return t;
412 // Mips64 little endian has a "special" encoding of r_info. Instead of one
413 // 64 bit little endian number, it is a little endian 32 bit number followed
414 // by a 32 bit big endian number.
415 return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
416 ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
419 void setRInfo(uint64_t R, bool IsMips64EL) {
420 if (IsMips64EL)
421 r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
422 ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
423 else
424 r_info = R;
427 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
428 // and ELF64_R_INFO macros defined in the ELF specification:
429 uint32_t getSymbol(bool isMips64EL) const {
430 return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
432 uint32_t getType(bool isMips64EL) const {
433 return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
435 void setSymbol(uint32_t s, bool IsMips64EL) {
436 setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
438 void setType(uint32_t t, bool IsMips64EL) {
439 setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
441 void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
442 this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
446 template <endianness TargetEndianness>
447 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
448 : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
449 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
450 static const bool IsRela = true;
451 Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
454 template <class ELFT>
455 struct Elf_Ehdr_Impl {
456 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
457 unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
458 Elf_Half e_type; // Type of file (see ET_*)
459 Elf_Half e_machine; // Required architecture for this file (see EM_*)
460 Elf_Word e_version; // Must be equal to 1
461 Elf_Addr e_entry; // Address to jump to in order to start program
462 Elf_Off e_phoff; // Program header table's file offset, in bytes
463 Elf_Off e_shoff; // Section header table's file offset, in bytes
464 Elf_Word e_flags; // Processor-specific flags
465 Elf_Half e_ehsize; // Size of ELF header, in bytes
466 Elf_Half e_phentsize; // Size of an entry in the program header table
467 Elf_Half e_phnum; // Number of entries in the program header table
468 Elf_Half e_shentsize; // Size of an entry in the section header table
469 Elf_Half e_shnum; // Number of entries in the section header table
470 Elf_Half e_shstrndx; // Section header table index of section name
471 // string table
473 bool checkMagic() const {
474 return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
477 unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
478 unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
481 template <endianness TargetEndianness>
482 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
483 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
484 Elf_Word p_type; // Type of segment
485 Elf_Off p_offset; // FileOffset where segment is located, in bytes
486 Elf_Addr p_vaddr; // Virtual Address of beginning of segment
487 Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
488 Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
489 Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
490 Elf_Word p_flags; // Segment flags
491 Elf_Word p_align; // Segment alignment constraint
494 template <endianness TargetEndianness>
495 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
496 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
497 Elf_Word p_type; // Type of segment
498 Elf_Word p_flags; // Segment flags
499 Elf_Off p_offset; // FileOffset where segment is located, in bytes
500 Elf_Addr p_vaddr; // Virtual Address of beginning of segment
501 Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
502 Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
503 Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
504 Elf_Xword p_align; // Segment alignment constraint
507 // ELFT needed for endianness.
508 template <class ELFT>
509 struct Elf_Hash_Impl {
510 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
511 Elf_Word nbucket;
512 Elf_Word nchain;
514 ArrayRef<Elf_Word> buckets() const {
515 return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
518 ArrayRef<Elf_Word> chains() const {
519 return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
520 &nbucket + 2 + nbucket + nchain);
524 // .gnu.hash section
525 template <class ELFT>
526 struct Elf_GnuHash_Impl {
527 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
528 Elf_Word nbuckets;
529 Elf_Word symndx;
530 Elf_Word maskwords;
531 Elf_Word shift2;
533 ArrayRef<Elf_Off> filter() const {
534 return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
535 maskwords);
538 ArrayRef<Elf_Word> buckets() const {
539 return ArrayRef<Elf_Word>(
540 reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
543 ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
544 return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
548 // Compressed section headers.
549 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
550 template <endianness TargetEndianness>
551 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
552 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
553 Elf_Word ch_type;
554 Elf_Word ch_size;
555 Elf_Word ch_addralign;
558 template <endianness TargetEndianness>
559 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
560 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
561 Elf_Word ch_type;
562 Elf_Word ch_reserved;
563 Elf_Xword ch_size;
564 Elf_Xword ch_addralign;
567 /// Note header
568 template <class ELFT>
569 struct Elf_Nhdr_Impl {
570 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
571 Elf_Word n_namesz;
572 Elf_Word n_descsz;
573 Elf_Word n_type;
575 /// The alignment of the name and descriptor.
577 /// Implementations differ from the specification here: in practice all
578 /// variants align both the name and descriptor to 4-bytes.
579 static const unsigned int Align = 4;
581 /// Get the size of the note, including name, descriptor, and padding.
582 size_t getSize() const {
583 return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
587 /// An ELF note.
589 /// Wraps a note header, providing methods for accessing the name and
590 /// descriptor safely.
591 template <class ELFT>
592 class Elf_Note_Impl {
593 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
595 const Elf_Nhdr_Impl<ELFT> &Nhdr;
597 template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
599 public:
600 Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
602 /// Get the note's name, excluding the terminating null byte.
603 StringRef getName() const {
604 if (!Nhdr.n_namesz)
605 return StringRef();
606 return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
607 Nhdr.n_namesz - 1);
610 /// Get the note's descriptor.
611 ArrayRef<uint8_t> getDesc() const {
612 if (!Nhdr.n_descsz)
613 return ArrayRef<uint8_t>();
614 return ArrayRef<uint8_t>(
615 reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
616 alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz),
617 Nhdr.n_descsz);
620 /// Get the note's type.
621 Elf_Word getType() const { return Nhdr.n_type; }
624 template <class ELFT>
625 class Elf_Note_Iterator_Impl
626 : std::iterator<std::forward_iterator_tag, Elf_Note_Impl<ELFT>> {
627 // Nhdr being a nullptr marks the end of iteration.
628 const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
629 size_t RemainingSize = 0u;
630 Error *Err = nullptr;
632 template <class ELFFileELFT> friend class ELFFile;
634 // Stop iteration and indicate an overflow.
635 void stopWithOverflowError() {
636 Nhdr = nullptr;
637 *Err = make_error<StringError>("ELF note overflows container",
638 object_error::parse_failed);
641 // Advance Nhdr by NoteSize bytes, starting from NhdrPos.
643 // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
644 // upon returning. Handles stopping iteration when reaching the end of the
645 // container, either cleanly or with an overflow error.
646 void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
647 RemainingSize -= NoteSize;
648 if (RemainingSize == 0u) {
649 // Ensure that if the iterator walks to the end, the error is checked
650 // afterwards.
651 *Err = Error::success();
652 Nhdr = nullptr;
653 } else if (sizeof(*Nhdr) > RemainingSize)
654 stopWithOverflowError();
655 else {
656 Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
657 if (Nhdr->getSize() > RemainingSize)
658 stopWithOverflowError();
659 else
660 *Err = Error::success();
664 Elf_Note_Iterator_Impl() {}
665 explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
666 Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
667 : RemainingSize(Size), Err(&Err) {
668 consumeError(std::move(Err));
669 assert(Start && "ELF note iterator starting at NULL");
670 advanceNhdr(Start, 0u);
673 public:
674 Elf_Note_Iterator_Impl &operator++() {
675 assert(Nhdr && "incremented ELF note end iterator");
676 const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
677 size_t NoteSize = Nhdr->getSize();
678 advanceNhdr(NhdrPos, NoteSize);
679 return *this;
681 bool operator==(Elf_Note_Iterator_Impl Other) const {
682 if (!Nhdr && Other.Err)
683 (void)(bool)(*Other.Err);
684 if (!Other.Nhdr && Err)
685 (void)(bool)(*Err);
686 return Nhdr == Other.Nhdr;
688 bool operator!=(Elf_Note_Iterator_Impl Other) const {
689 return !(*this == Other);
691 Elf_Note_Impl<ELFT> operator*() const {
692 assert(Nhdr && "dereferenced ELF note end iterator");
693 return Elf_Note_Impl<ELFT>(*Nhdr);
697 template <class ELFT> struct Elf_CGProfile_Impl {
698 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
699 Elf_Word cgp_from;
700 Elf_Word cgp_to;
701 Elf_Xword cgp_weight;
704 // MIPS .reginfo section
705 template <class ELFT>
706 struct Elf_Mips_RegInfo;
708 template <support::endianness TargetEndianness>
709 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
710 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
711 Elf_Word ri_gprmask; // bit-mask of used general registers
712 Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers
713 Elf_Addr ri_gp_value; // gp register value
716 template <support::endianness TargetEndianness>
717 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
718 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
719 Elf_Word ri_gprmask; // bit-mask of used general registers
720 Elf_Word ri_pad; // unused padding field
721 Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers
722 Elf_Addr ri_gp_value; // gp register value
725 // .MIPS.options section
726 template <class ELFT> struct Elf_Mips_Options {
727 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
728 uint8_t kind; // Determines interpretation of variable part of descriptor
729 uint8_t size; // Byte size of descriptor, including this header
730 Elf_Half section; // Section header index of section affected,
731 // or 0 for global options
732 Elf_Word info; // Kind-specific information
734 Elf_Mips_RegInfo<ELFT> &getRegInfo() {
735 assert(kind == ELF::ODK_REGINFO);
736 return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
737 (uint8_t *)this + sizeof(Elf_Mips_Options));
739 const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
740 return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
744 // .MIPS.abiflags section content
745 template <class ELFT> struct Elf_Mips_ABIFlags {
746 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
747 Elf_Half version; // Version of the structure
748 uint8_t isa_level; // ISA level: 1-5, 32, and 64
749 uint8_t isa_rev; // ISA revision (0 for MIPS I - MIPS V)
750 uint8_t gpr_size; // General purpose registers size
751 uint8_t cpr1_size; // Co-processor 1 registers size
752 uint8_t cpr2_size; // Co-processor 2 registers size
753 uint8_t fp_abi; // Floating-point ABI flag
754 Elf_Word isa_ext; // Processor-specific extension
755 Elf_Word ases; // ASEs flags
756 Elf_Word flags1; // General flags
757 Elf_Word flags2; // General flags
760 } // end namespace object.
761 } // end namespace llvm.
763 #endif // LLVM_OBJECT_ELFTYPES_H