[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / include / llvm / Support / Endian.h
blob87aecedd3a4b4afaa3d6223e2f9e062fcc71d1da
1 //===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares generic functions to read and write endian specific data.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_SUPPORT_ENDIAN_H
14 #define LLVM_SUPPORT_ENDIAN_H
16 #include "llvm/Support/AlignOf.h"
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/Host.h"
19 #include "llvm/Support/SwapByteOrder.h"
20 #include <cassert>
21 #include <cstddef>
22 #include <cstdint>
23 #include <cstring>
24 #include <type_traits>
26 namespace llvm {
27 namespace support {
29 enum endianness {big, little, native};
31 // These are named values for common alignments.
32 enum {aligned = 0, unaligned = 1};
34 namespace detail {
36 /// ::value is either alignment, or alignof(T) if alignment is 0.
37 template<class T, int alignment>
38 struct PickAlignment {
39 enum { value = alignment == 0 ? alignof(T) : alignment };
42 } // end namespace detail
44 namespace endian {
46 constexpr endianness system_endianness() {
47 return sys::IsBigEndianHost ? big : little;
50 template <typename value_type>
51 inline value_type byte_swap(value_type value, endianness endian) {
52 if ((endian != native) && (endian != system_endianness()))
53 sys::swapByteOrder(value);
54 return value;
57 /// Swap the bytes of value to match the given endianness.
58 template<typename value_type, endianness endian>
59 inline value_type byte_swap(value_type value) {
60 return byte_swap(value, endian);
63 /// Read a value of a particular endianness from memory.
64 template <typename value_type, std::size_t alignment>
65 inline value_type read(const void *memory, endianness endian) {
66 value_type ret;
68 memcpy(&ret,
69 LLVM_ASSUME_ALIGNED(
70 memory, (detail::PickAlignment<value_type, alignment>::value)),
71 sizeof(value_type));
72 return byte_swap<value_type>(ret, endian);
75 template<typename value_type,
76 endianness endian,
77 std::size_t alignment>
78 inline value_type read(const void *memory) {
79 return read<value_type, alignment>(memory, endian);
82 /// Read a value of a particular endianness from a buffer, and increment the
83 /// buffer past that value.
84 template <typename value_type, std::size_t alignment, typename CharT>
85 inline value_type readNext(const CharT *&memory, endianness endian) {
86 value_type ret = read<value_type, alignment>(memory, endian);
87 memory += sizeof(value_type);
88 return ret;
91 template<typename value_type, endianness endian, std::size_t alignment,
92 typename CharT>
93 inline value_type readNext(const CharT *&memory) {
94 return readNext<value_type, alignment, CharT>(memory, endian);
97 /// Write a value to memory with a particular endianness.
98 template <typename value_type, std::size_t alignment>
99 inline void write(void *memory, value_type value, endianness endian) {
100 value = byte_swap<value_type>(value, endian);
101 memcpy(LLVM_ASSUME_ALIGNED(
102 memory, (detail::PickAlignment<value_type, alignment>::value)),
103 &value, sizeof(value_type));
106 template<typename value_type,
107 endianness endian,
108 std::size_t alignment>
109 inline void write(void *memory, value_type value) {
110 write<value_type, alignment>(memory, value, endian);
113 template <typename value_type>
114 using make_unsigned_t = typename std::make_unsigned<value_type>::type;
116 /// Read a value of a particular endianness from memory, for a location
117 /// that starts at the given bit offset within the first byte.
118 template <typename value_type, endianness endian, std::size_t alignment>
119 inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
120 assert(startBit < 8);
121 if (startBit == 0)
122 return read<value_type, endian, alignment>(memory);
123 else {
124 // Read two values and compose the result from them.
125 value_type val[2];
126 memcpy(&val[0],
127 LLVM_ASSUME_ALIGNED(
128 memory, (detail::PickAlignment<value_type, alignment>::value)),
129 sizeof(value_type) * 2);
130 val[0] = byte_swap<value_type, endian>(val[0]);
131 val[1] = byte_swap<value_type, endian>(val[1]);
133 // Shift bits from the lower value into place.
134 make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
135 // Mask off upper bits after right shift in case of signed type.
136 make_unsigned_t<value_type> numBitsFirstVal =
137 (sizeof(value_type) * 8) - startBit;
138 lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;
140 // Get the bits from the upper value.
141 make_unsigned_t<value_type> upperVal =
142 val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
143 // Shift them in to place.
144 upperVal <<= numBitsFirstVal;
146 return lowerVal | upperVal;
150 /// Write a value to memory with a particular endianness, for a location
151 /// that starts at the given bit offset within the first byte.
152 template <typename value_type, endianness endian, std::size_t alignment>
153 inline void writeAtBitAlignment(void *memory, value_type value,
154 uint64_t startBit) {
155 assert(startBit < 8);
156 if (startBit == 0)
157 write<value_type, endian, alignment>(memory, value);
158 else {
159 // Read two values and shift the result into them.
160 value_type val[2];
161 memcpy(&val[0],
162 LLVM_ASSUME_ALIGNED(
163 memory, (detail::PickAlignment<value_type, alignment>::value)),
164 sizeof(value_type) * 2);
165 val[0] = byte_swap<value_type, endian>(val[0]);
166 val[1] = byte_swap<value_type, endian>(val[1]);
168 // Mask off any existing bits in the upper part of the lower value that
169 // we want to replace.
170 val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
171 make_unsigned_t<value_type> numBitsFirstVal =
172 (sizeof(value_type) * 8) - startBit;
173 make_unsigned_t<value_type> lowerVal = value;
174 if (startBit > 0) {
175 // Mask off the upper bits in the new value that are not going to go into
176 // the lower value. This avoids a left shift of a negative value, which
177 // is undefined behavior.
178 lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
179 // Now shift the new bits into place
180 lowerVal <<= startBit;
182 val[0] |= lowerVal;
184 // Mask off any existing bits in the lower part of the upper value that
185 // we want to replace.
186 val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
187 // Next shift the bits that go into the upper value into position.
188 make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
189 // Mask off upper bits after right shift in case of signed type.
190 upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
191 val[1] |= upperVal;
193 // Finally, rewrite values.
194 val[0] = byte_swap<value_type, endian>(val[0]);
195 val[1] = byte_swap<value_type, endian>(val[1]);
196 memcpy(LLVM_ASSUME_ALIGNED(
197 memory, (detail::PickAlignment<value_type, alignment>::value)),
198 &val[0], sizeof(value_type) * 2);
202 } // end namespace endian
204 namespace detail {
206 template <typename ValueType, endianness Endian, std::size_t Alignment,
207 std::size_t ALIGN = PickAlignment<ValueType, Alignment>::value>
208 struct packed_endian_specific_integral {
209 using value_type = ValueType;
210 static constexpr endianness endian = Endian;
211 static constexpr std::size_t alignment = Alignment;
213 packed_endian_specific_integral() = default;
215 explicit packed_endian_specific_integral(value_type val) { *this = val; }
217 operator value_type() const {
218 return endian::read<value_type, endian, alignment>(
219 (const void*)Value.buffer);
222 void operator=(value_type newValue) {
223 endian::write<value_type, endian, alignment>(
224 (void*)Value.buffer, newValue);
227 packed_endian_specific_integral &operator+=(value_type newValue) {
228 *this = *this + newValue;
229 return *this;
232 packed_endian_specific_integral &operator-=(value_type newValue) {
233 *this = *this - newValue;
234 return *this;
237 packed_endian_specific_integral &operator|=(value_type newValue) {
238 *this = *this | newValue;
239 return *this;
242 packed_endian_specific_integral &operator&=(value_type newValue) {
243 *this = *this & newValue;
244 return *this;
247 private:
248 struct {
249 alignas(ALIGN) char buffer[sizeof(value_type)];
250 } Value;
252 public:
253 struct ref {
254 explicit ref(void *Ptr) : Ptr(Ptr) {}
256 operator value_type() const {
257 return endian::read<value_type, endian, alignment>(Ptr);
260 void operator=(value_type NewValue) {
261 endian::write<value_type, endian, alignment>(Ptr, NewValue);
264 private:
265 void *Ptr;
269 } // end namespace detail
271 using ulittle16_t =
272 detail::packed_endian_specific_integral<uint16_t, little, unaligned>;
273 using ulittle32_t =
274 detail::packed_endian_specific_integral<uint32_t, little, unaligned>;
275 using ulittle64_t =
276 detail::packed_endian_specific_integral<uint64_t, little, unaligned>;
278 using little16_t =
279 detail::packed_endian_specific_integral<int16_t, little, unaligned>;
280 using little32_t =
281 detail::packed_endian_specific_integral<int32_t, little, unaligned>;
282 using little64_t =
283 detail::packed_endian_specific_integral<int64_t, little, unaligned>;
285 using aligned_ulittle16_t =
286 detail::packed_endian_specific_integral<uint16_t, little, aligned>;
287 using aligned_ulittle32_t =
288 detail::packed_endian_specific_integral<uint32_t, little, aligned>;
289 using aligned_ulittle64_t =
290 detail::packed_endian_specific_integral<uint64_t, little, aligned>;
292 using aligned_little16_t =
293 detail::packed_endian_specific_integral<int16_t, little, aligned>;
294 using aligned_little32_t =
295 detail::packed_endian_specific_integral<int32_t, little, aligned>;
296 using aligned_little64_t =
297 detail::packed_endian_specific_integral<int64_t, little, aligned>;
299 using ubig16_t =
300 detail::packed_endian_specific_integral<uint16_t, big, unaligned>;
301 using ubig32_t =
302 detail::packed_endian_specific_integral<uint32_t, big, unaligned>;
303 using ubig64_t =
304 detail::packed_endian_specific_integral<uint64_t, big, unaligned>;
306 using big16_t =
307 detail::packed_endian_specific_integral<int16_t, big, unaligned>;
308 using big32_t =
309 detail::packed_endian_specific_integral<int32_t, big, unaligned>;
310 using big64_t =
311 detail::packed_endian_specific_integral<int64_t, big, unaligned>;
313 using aligned_ubig16_t =
314 detail::packed_endian_specific_integral<uint16_t, big, aligned>;
315 using aligned_ubig32_t =
316 detail::packed_endian_specific_integral<uint32_t, big, aligned>;
317 using aligned_ubig64_t =
318 detail::packed_endian_specific_integral<uint64_t, big, aligned>;
320 using aligned_big16_t =
321 detail::packed_endian_specific_integral<int16_t, big, aligned>;
322 using aligned_big32_t =
323 detail::packed_endian_specific_integral<int32_t, big, aligned>;
324 using aligned_big64_t =
325 detail::packed_endian_specific_integral<int64_t, big, aligned>;
327 using unaligned_uint16_t =
328 detail::packed_endian_specific_integral<uint16_t, native, unaligned>;
329 using unaligned_uint32_t =
330 detail::packed_endian_specific_integral<uint32_t, native, unaligned>;
331 using unaligned_uint64_t =
332 detail::packed_endian_specific_integral<uint64_t, native, unaligned>;
334 using unaligned_int16_t =
335 detail::packed_endian_specific_integral<int16_t, native, unaligned>;
336 using unaligned_int32_t =
337 detail::packed_endian_specific_integral<int32_t, native, unaligned>;
338 using unaligned_int64_t =
339 detail::packed_endian_specific_integral<int64_t, native, unaligned>;
341 template <typename T>
342 using little_t = detail::packed_endian_specific_integral<T, little, unaligned>;
343 template <typename T>
344 using big_t = detail::packed_endian_specific_integral<T, big, unaligned>;
346 template <typename T>
347 using aligned_little_t =
348 detail::packed_endian_specific_integral<T, little, aligned>;
349 template <typename T>
350 using aligned_big_t = detail::packed_endian_specific_integral<T, big, aligned>;
352 namespace endian {
354 template <typename T> inline T read(const void *P, endianness E) {
355 return read<T, unaligned>(P, E);
358 template <typename T, endianness E> inline T read(const void *P) {
359 return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
362 inline uint16_t read16(const void *P, endianness E) {
363 return read<uint16_t>(P, E);
365 inline uint32_t read32(const void *P, endianness E) {
366 return read<uint32_t>(P, E);
368 inline uint64_t read64(const void *P, endianness E) {
369 return read<uint64_t>(P, E);
372 template <endianness E> inline uint16_t read16(const void *P) {
373 return read<uint16_t, E>(P);
375 template <endianness E> inline uint32_t read32(const void *P) {
376 return read<uint32_t, E>(P);
378 template <endianness E> inline uint64_t read64(const void *P) {
379 return read<uint64_t, E>(P);
382 inline uint16_t read16le(const void *P) { return read16<little>(P); }
383 inline uint32_t read32le(const void *P) { return read32<little>(P); }
384 inline uint64_t read64le(const void *P) { return read64<little>(P); }
385 inline uint16_t read16be(const void *P) { return read16<big>(P); }
386 inline uint32_t read32be(const void *P) { return read32<big>(P); }
387 inline uint64_t read64be(const void *P) { return read64<big>(P); }
389 template <typename T> inline void write(void *P, T V, endianness E) {
390 write<T, unaligned>(P, V, E);
393 template <typename T, endianness E> inline void write(void *P, T V) {
394 *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
397 inline void write16(void *P, uint16_t V, endianness E) {
398 write<uint16_t>(P, V, E);
400 inline void write32(void *P, uint32_t V, endianness E) {
401 write<uint32_t>(P, V, E);
403 inline void write64(void *P, uint64_t V, endianness E) {
404 write<uint64_t>(P, V, E);
407 template <endianness E> inline void write16(void *P, uint16_t V) {
408 write<uint16_t, E>(P, V);
410 template <endianness E> inline void write32(void *P, uint32_t V) {
411 write<uint32_t, E>(P, V);
413 template <endianness E> inline void write64(void *P, uint64_t V) {
414 write<uint64_t, E>(P, V);
417 inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
418 inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
419 inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
420 inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
421 inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
422 inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }
424 } // end namespace endian
426 } // end namespace support
427 } // end namespace llvm
429 #endif // LLVM_SUPPORT_ENDIAN_H