[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / include / llvm / Support / OnDiskHashTable.h
blobc4c0ac97bdb882b37eb3395c0eda4b8cb04d7f9d
1 //===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Defines facilities for reading and writing on-disk hash tables.
11 ///
12 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
14 #define LLVM_SUPPORT_ONDISKHASHTABLE_H
16 #include "llvm/Support/Alignment.h"
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/Support/DataTypes.h"
19 #include "llvm/Support/EndianStream.h"
20 #include "llvm/Support/Host.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <cassert>
24 #include <cstdlib>
26 namespace llvm {
28 /// Generates an on disk hash table.
29 ///
30 /// This needs an \c Info that handles storing values into the hash table's
31 /// payload and computes the hash for a given key. This should provide the
32 /// following interface:
33 ///
34 /// \code
35 /// class ExampleInfo {
36 /// public:
37 /// typedef ExampleKey key_type; // Must be copy constructible
38 /// typedef ExampleKey &key_type_ref;
39 /// typedef ExampleData data_type; // Must be copy constructible
40 /// typedef ExampleData &data_type_ref;
41 /// typedef uint32_t hash_value_type; // The type the hash function returns.
42 /// typedef uint32_t offset_type; // The type for offsets into the table.
43 ///
44 /// /// Calculate the hash for Key
45 /// static hash_value_type ComputeHash(key_type_ref Key);
46 /// /// Return the lengths, in bytes, of the given Key/Data pair.
47 /// static std::pair<offset_type, offset_type>
48 /// EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
49 /// /// Write Key to Out. KeyLen is the length from EmitKeyDataLength.
50 /// static void EmitKey(raw_ostream &Out, key_type_ref Key,
51 /// offset_type KeyLen);
52 /// /// Write Data to Out. DataLen is the length from EmitKeyDataLength.
53 /// static void EmitData(raw_ostream &Out, key_type_ref Key,
54 /// data_type_ref Data, offset_type DataLen);
55 /// /// Determine if two keys are equal. Optional, only needed by contains.
56 /// static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
57 /// };
58 /// \endcode
59 template <typename Info> class OnDiskChainedHashTableGenerator {
60 /// A single item in the hash table.
61 class Item {
62 public:
63 typename Info::key_type Key;
64 typename Info::data_type Data;
65 Item *Next;
66 const typename Info::hash_value_type Hash;
68 Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
69 Info &InfoObj)
70 : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
73 typedef typename Info::offset_type offset_type;
74 offset_type NumBuckets;
75 offset_type NumEntries;
76 llvm::SpecificBumpPtrAllocator<Item> BA;
78 /// A linked list of values in a particular hash bucket.
79 struct Bucket {
80 offset_type Off;
81 unsigned Length;
82 Item *Head;
85 Bucket *Buckets;
87 private:
88 /// Insert an item into the appropriate hash bucket.
89 void insert(Bucket *Buckets, size_t Size, Item *E) {
90 Bucket &B = Buckets[E->Hash & (Size - 1)];
91 E->Next = B.Head;
92 ++B.Length;
93 B.Head = E;
96 /// Resize the hash table, moving the old entries into the new buckets.
97 void resize(size_t NewSize) {
98 Bucket *NewBuckets = static_cast<Bucket *>(
99 safe_calloc(NewSize, sizeof(Bucket)));
100 // Populate NewBuckets with the old entries.
101 for (size_t I = 0; I < NumBuckets; ++I)
102 for (Item *E = Buckets[I].Head; E;) {
103 Item *N = E->Next;
104 E->Next = nullptr;
105 insert(NewBuckets, NewSize, E);
106 E = N;
109 free(Buckets);
110 NumBuckets = NewSize;
111 Buckets = NewBuckets;
114 public:
115 /// Insert an entry into the table.
116 void insert(typename Info::key_type_ref Key,
117 typename Info::data_type_ref Data) {
118 Info InfoObj;
119 insert(Key, Data, InfoObj);
122 /// Insert an entry into the table.
124 /// Uses the provided Info instead of a stack allocated one.
125 void insert(typename Info::key_type_ref Key,
126 typename Info::data_type_ref Data, Info &InfoObj) {
127 ++NumEntries;
128 if (4 * NumEntries >= 3 * NumBuckets)
129 resize(NumBuckets * 2);
130 insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
133 /// Determine whether an entry has been inserted.
134 bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
135 unsigned Hash = InfoObj.ComputeHash(Key);
136 for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
137 if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
138 return true;
139 return false;
142 /// Emit the table to Out, which must not be at offset 0.
143 offset_type Emit(raw_ostream &Out) {
144 Info InfoObj;
145 return Emit(Out, InfoObj);
148 /// Emit the table to Out, which must not be at offset 0.
150 /// Uses the provided Info instead of a stack allocated one.
151 offset_type Emit(raw_ostream &Out, Info &InfoObj) {
152 using namespace llvm::support;
153 endian::Writer LE(Out, little);
155 // Now we're done adding entries, resize the bucket list if it's
156 // significantly too large. (This only happens if the number of
157 // entries is small and we're within our initial allocation of
158 // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
160 // As a special case, if there are two or fewer entries, just
161 // form a single bucket. A linear scan is fine in that case, and
162 // this is very common in C++ class lookup tables. This also
163 // guarantees we produce at least one bucket for an empty table.
165 // FIXME: Try computing a perfect hash function at this point.
166 unsigned TargetNumBuckets =
167 NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3);
168 if (TargetNumBuckets != NumBuckets)
169 resize(TargetNumBuckets);
171 // Emit the payload of the table.
172 for (offset_type I = 0; I < NumBuckets; ++I) {
173 Bucket &B = Buckets[I];
174 if (!B.Head)
175 continue;
177 // Store the offset for the data of this bucket.
178 B.Off = Out.tell();
179 assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
181 // Write out the number of items in the bucket.
182 LE.write<uint16_t>(B.Length);
183 assert(B.Length != 0 && "Bucket has a head but zero length?");
185 // Write out the entries in the bucket.
186 for (Item *I = B.Head; I; I = I->Next) {
187 LE.write<typename Info::hash_value_type>(I->Hash);
188 const std::pair<offset_type, offset_type> &Len =
189 InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
190 #ifdef NDEBUG
191 InfoObj.EmitKey(Out, I->Key, Len.first);
192 InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
193 #else
194 // In asserts mode, check that the users length matches the data they
195 // wrote.
196 uint64_t KeyStart = Out.tell();
197 InfoObj.EmitKey(Out, I->Key, Len.first);
198 uint64_t DataStart = Out.tell();
199 InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
200 uint64_t End = Out.tell();
201 assert(offset_type(DataStart - KeyStart) == Len.first &&
202 "key length does not match bytes written");
203 assert(offset_type(End - DataStart) == Len.second &&
204 "data length does not match bytes written");
205 #endif
209 // Pad with zeros so that we can start the hashtable at an aligned address.
210 offset_type TableOff = Out.tell();
211 uint64_t N =
212 llvm::offsetToAlignment(TableOff, llvm::Align(alignof(offset_type)));
213 TableOff += N;
214 while (N--)
215 LE.write<uint8_t>(0);
217 // Emit the hashtable itself.
218 LE.write<offset_type>(NumBuckets);
219 LE.write<offset_type>(NumEntries);
220 for (offset_type I = 0; I < NumBuckets; ++I)
221 LE.write<offset_type>(Buckets[I].Off);
223 return TableOff;
226 OnDiskChainedHashTableGenerator() {
227 NumEntries = 0;
228 NumBuckets = 64;
229 // Note that we do not need to run the constructors of the individual
230 // Bucket objects since 'calloc' returns bytes that are all 0.
231 Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
234 ~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
237 /// Provides lookup on an on disk hash table.
239 /// This needs an \c Info that handles reading values from the hash table's
240 /// payload and computes the hash for a given key. This should provide the
241 /// following interface:
243 /// \code
244 /// class ExampleLookupInfo {
245 /// public:
246 /// typedef ExampleData data_type;
247 /// typedef ExampleInternalKey internal_key_type; // The stored key type.
248 /// typedef ExampleKey external_key_type; // The type to pass to find().
249 /// typedef uint32_t hash_value_type; // The type the hash function returns.
250 /// typedef uint32_t offset_type; // The type for offsets into the table.
252 /// /// Compare two keys for equality.
253 /// static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
254 /// /// Calculate the hash for the given key.
255 /// static hash_value_type ComputeHash(internal_key_type &IKey);
256 /// /// Translate from the semantic type of a key in the hash table to the
257 /// /// type that is actually stored and used for hashing and comparisons.
258 /// /// The internal and external types are often the same, in which case this
259 /// /// can simply return the passed in value.
260 /// static const internal_key_type &GetInternalKey(external_key_type &EKey);
261 /// /// Read the key and data length from Buffer, leaving it pointing at the
262 /// /// following byte.
263 /// static std::pair<offset_type, offset_type>
264 /// ReadKeyDataLength(const unsigned char *&Buffer);
265 /// /// Read the key from Buffer, given the KeyLen as reported from
266 /// /// ReadKeyDataLength.
267 /// const internal_key_type &ReadKey(const unsigned char *Buffer,
268 /// offset_type KeyLen);
269 /// /// Read the data for Key from Buffer, given the DataLen as reported from
270 /// /// ReadKeyDataLength.
271 /// data_type ReadData(StringRef Key, const unsigned char *Buffer,
272 /// offset_type DataLen);
273 /// };
274 /// \endcode
275 template <typename Info> class OnDiskChainedHashTable {
276 const typename Info::offset_type NumBuckets;
277 const typename Info::offset_type NumEntries;
278 const unsigned char *const Buckets;
279 const unsigned char *const Base;
280 Info InfoObj;
282 public:
283 typedef Info InfoType;
284 typedef typename Info::internal_key_type internal_key_type;
285 typedef typename Info::external_key_type external_key_type;
286 typedef typename Info::data_type data_type;
287 typedef typename Info::hash_value_type hash_value_type;
288 typedef typename Info::offset_type offset_type;
290 OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
291 const unsigned char *Buckets,
292 const unsigned char *Base,
293 const Info &InfoObj = Info())
294 : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
295 Base(Base), InfoObj(InfoObj) {
296 assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
297 "'buckets' must have a 4-byte alignment");
300 /// Read the number of buckets and the number of entries from a hash table
301 /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
302 /// pointer past them.
303 static std::pair<offset_type, offset_type>
304 readNumBucketsAndEntries(const unsigned char *&Buckets) {
305 assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
306 "buckets should be 4-byte aligned.");
307 using namespace llvm::support;
308 offset_type NumBuckets =
309 endian::readNext<offset_type, little, aligned>(Buckets);
310 offset_type NumEntries =
311 endian::readNext<offset_type, little, aligned>(Buckets);
312 return std::make_pair(NumBuckets, NumEntries);
315 offset_type getNumBuckets() const { return NumBuckets; }
316 offset_type getNumEntries() const { return NumEntries; }
317 const unsigned char *getBase() const { return Base; }
318 const unsigned char *getBuckets() const { return Buckets; }
320 bool isEmpty() const { return NumEntries == 0; }
322 class iterator {
323 internal_key_type Key;
324 const unsigned char *const Data;
325 const offset_type Len;
326 Info *InfoObj;
328 public:
329 iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
330 iterator(const internal_key_type K, const unsigned char *D, offset_type L,
331 Info *InfoObj)
332 : Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
334 data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
336 const unsigned char *getDataPtr() const { return Data; }
337 offset_type getDataLen() const { return Len; }
339 bool operator==(const iterator &X) const { return X.Data == Data; }
340 bool operator!=(const iterator &X) const { return X.Data != Data; }
343 /// Look up the stored data for a particular key.
344 iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
345 const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
346 hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
347 return find_hashed(IKey, KeyHash, InfoPtr);
350 /// Look up the stored data for a particular key with a known hash.
351 iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
352 Info *InfoPtr = nullptr) {
353 using namespace llvm::support;
355 if (!InfoPtr)
356 InfoPtr = &InfoObj;
358 // Each bucket is just an offset into the hash table file.
359 offset_type Idx = KeyHash & (NumBuckets - 1);
360 const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;
362 offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket);
363 if (Offset == 0)
364 return iterator(); // Empty bucket.
365 const unsigned char *Items = Base + Offset;
367 // 'Items' starts with a 16-bit unsigned integer representing the
368 // number of items in this bucket.
369 unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items);
371 for (unsigned i = 0; i < Len; ++i) {
372 // Read the hash.
373 hash_value_type ItemHash =
374 endian::readNext<hash_value_type, little, unaligned>(Items);
376 // Determine the length of the key and the data.
377 const std::pair<offset_type, offset_type> &L =
378 Info::ReadKeyDataLength(Items);
379 offset_type ItemLen = L.first + L.second;
381 // Compare the hashes. If they are not the same, skip the entry entirely.
382 if (ItemHash != KeyHash) {
383 Items += ItemLen;
384 continue;
387 // Read the key.
388 const internal_key_type &X =
389 InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
391 // If the key doesn't match just skip reading the value.
392 if (!InfoPtr->EqualKey(X, IKey)) {
393 Items += ItemLen;
394 continue;
397 // The key matches!
398 return iterator(X, Items + L.first, L.second, InfoPtr);
401 return iterator();
404 iterator end() const { return iterator(); }
406 Info &getInfoObj() { return InfoObj; }
408 /// Create the hash table.
410 /// \param Buckets is the beginning of the hash table itself, which follows
411 /// the payload of entire structure. This is the value returned by
412 /// OnDiskHashTableGenerator::Emit.
414 /// \param Base is the point from which all offsets into the structure are
415 /// based. This is offset 0 in the stream that was used when Emitting the
416 /// table.
417 static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
418 const unsigned char *const Base,
419 const Info &InfoObj = Info()) {
420 assert(Buckets > Base);
421 auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
422 return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
423 NumBucketsAndEntries.second,
424 Buckets, Base, InfoObj);
428 /// Provides lookup and iteration over an on disk hash table.
430 /// \copydetails llvm::OnDiskChainedHashTable
431 template <typename Info>
432 class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
433 const unsigned char *Payload;
435 public:
436 typedef OnDiskChainedHashTable<Info> base_type;
437 typedef typename base_type::internal_key_type internal_key_type;
438 typedef typename base_type::external_key_type external_key_type;
439 typedef typename base_type::data_type data_type;
440 typedef typename base_type::hash_value_type hash_value_type;
441 typedef typename base_type::offset_type offset_type;
443 private:
444 /// Iterates over all of the keys in the table.
445 class iterator_base {
446 const unsigned char *Ptr;
447 offset_type NumItemsInBucketLeft;
448 offset_type NumEntriesLeft;
450 public:
451 typedef external_key_type value_type;
453 iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
454 : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
455 iterator_base()
456 : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}
458 friend bool operator==(const iterator_base &X, const iterator_base &Y) {
459 return X.NumEntriesLeft == Y.NumEntriesLeft;
461 friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
462 return X.NumEntriesLeft != Y.NumEntriesLeft;
465 /// Move to the next item.
466 void advance() {
467 using namespace llvm::support;
468 if (!NumItemsInBucketLeft) {
469 // 'Items' starts with a 16-bit unsigned integer representing the
470 // number of items in this bucket.
471 NumItemsInBucketLeft =
472 endian::readNext<uint16_t, little, unaligned>(Ptr);
474 Ptr += sizeof(hash_value_type); // Skip the hash.
475 // Determine the length of the key and the data.
476 const std::pair<offset_type, offset_type> &L =
477 Info::ReadKeyDataLength(Ptr);
478 Ptr += L.first + L.second;
479 assert(NumItemsInBucketLeft);
480 --NumItemsInBucketLeft;
481 assert(NumEntriesLeft);
482 --NumEntriesLeft;
485 /// Get the start of the item as written by the trait (after the hash and
486 /// immediately before the key and value length).
487 const unsigned char *getItem() const {
488 return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
492 public:
493 OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
494 const unsigned char *Buckets,
495 const unsigned char *Payload,
496 const unsigned char *Base,
497 const Info &InfoObj = Info())
498 : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
499 Payload(Payload) {}
501 /// Iterates over all of the keys in the table.
502 class key_iterator : public iterator_base {
503 Info *InfoObj;
505 public:
506 typedef external_key_type value_type;
508 key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
509 Info *InfoObj)
510 : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
511 key_iterator() : iterator_base(), InfoObj() {}
513 key_iterator &operator++() {
514 this->advance();
515 return *this;
517 key_iterator operator++(int) { // Postincrement
518 key_iterator tmp = *this;
519 ++*this;
520 return tmp;
523 internal_key_type getInternalKey() const {
524 auto *LocalPtr = this->getItem();
526 // Determine the length of the key and the data.
527 auto L = Info::ReadKeyDataLength(LocalPtr);
529 // Read the key.
530 return InfoObj->ReadKey(LocalPtr, L.first);
533 value_type operator*() const {
534 return InfoObj->GetExternalKey(getInternalKey());
538 key_iterator key_begin() {
539 return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
541 key_iterator key_end() { return key_iterator(); }
543 iterator_range<key_iterator> keys() {
544 return make_range(key_begin(), key_end());
547 /// Iterates over all the entries in the table, returning the data.
548 class data_iterator : public iterator_base {
549 Info *InfoObj;
551 public:
552 typedef data_type value_type;
554 data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
555 Info *InfoObj)
556 : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
557 data_iterator() : iterator_base(), InfoObj() {}
559 data_iterator &operator++() { // Preincrement
560 this->advance();
561 return *this;
563 data_iterator operator++(int) { // Postincrement
564 data_iterator tmp = *this;
565 ++*this;
566 return tmp;
569 value_type operator*() const {
570 auto *LocalPtr = this->getItem();
572 // Determine the length of the key and the data.
573 auto L = Info::ReadKeyDataLength(LocalPtr);
575 // Read the key.
576 const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
577 return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
581 data_iterator data_begin() {
582 return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
584 data_iterator data_end() { return data_iterator(); }
586 iterator_range<data_iterator> data() {
587 return make_range(data_begin(), data_end());
590 /// Create the hash table.
592 /// \param Buckets is the beginning of the hash table itself, which follows
593 /// the payload of entire structure. This is the value returned by
594 /// OnDiskHashTableGenerator::Emit.
596 /// \param Payload is the beginning of the data contained in the table. This
597 /// is Base plus any padding or header data that was stored, ie, the offset
598 /// that the stream was at when calling Emit.
600 /// \param Base is the point from which all offsets into the structure are
601 /// based. This is offset 0 in the stream that was used when Emitting the
602 /// table.
603 static OnDiskIterableChainedHashTable *
604 Create(const unsigned char *Buckets, const unsigned char *const Payload,
605 const unsigned char *const Base, const Info &InfoObj = Info()) {
606 assert(Buckets > Base);
607 auto NumBucketsAndEntries =
608 OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
609 return new OnDiskIterableChainedHashTable<Info>(
610 NumBucketsAndEntries.first, NumBucketsAndEntries.second,
611 Buckets, Payload, Base, InfoObj);
615 } // end namespace llvm
617 #endif