[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / Analysis.cpp
blob3ef90d32daf55b21866866e038561f236beb72d1
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
30 using namespace llvm;
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
34 /// index list.
35 unsigned llvm::ComputeLinearIndex(Type *Ty,
36 const unsigned *Indices,
37 const unsigned *IndicesEnd,
38 unsigned CurIndex) {
39 // Base case: We're done.
40 if (Indices && Indices == IndicesEnd)
41 return CurIndex;
43 // Given a struct type, recursively traverse the elements.
44 if (StructType *STy = dyn_cast<StructType>(Ty)) {
45 for (StructType::element_iterator EB = STy->element_begin(),
46 EI = EB,
47 EE = STy->element_end();
48 EI != EE; ++EI) {
49 if (Indices && *Indices == unsigned(EI - EB))
50 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
53 assert(!Indices && "Unexpected out of bound");
54 return CurIndex;
56 // Given an array type, recursively traverse the elements.
57 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58 Type *EltTy = ATy->getElementType();
59 unsigned NumElts = ATy->getNumElements();
60 // Compute the Linear offset when jumping one element of the array
61 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62 if (Indices) {
63 assert(*Indices < NumElts && "Unexpected out of bound");
64 // If the indice is inside the array, compute the index to the requested
65 // elt and recurse inside the element with the end of the indices list
66 CurIndex += EltLinearOffset* *Indices;
67 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
69 CurIndex += EltLinearOffset*NumElts;
70 return CurIndex;
72 // We haven't found the type we're looking for, so keep searching.
73 return CurIndex + 1;
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85 SmallVectorImpl<EVT> *MemVTs,
86 SmallVectorImpl<uint64_t> *Offsets,
87 uint64_t StartingOffset) {
88 // Given a struct type, recursively traverse the elements.
89 if (StructType *STy = dyn_cast<StructType>(Ty)) {
90 const StructLayout *SL = DL.getStructLayout(STy);
91 for (StructType::element_iterator EB = STy->element_begin(),
92 EI = EB,
93 EE = STy->element_end();
94 EI != EE; ++EI)
95 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
96 StartingOffset + SL->getElementOffset(EI - EB));
97 return;
99 // Given an array type, recursively traverse the elements.
100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101 Type *EltTy = ATy->getElementType();
102 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
105 StartingOffset + i * EltSize);
106 return;
108 // Interpret void as zero return values.
109 if (Ty->isVoidTy())
110 return;
111 // Base case: we can get an EVT for this LLVM IR type.
112 ValueVTs.push_back(TLI.getValueType(DL, Ty));
113 if (MemVTs)
114 MemVTs->push_back(TLI.getMemValueType(DL, Ty));
115 if (Offsets)
116 Offsets->push_back(StartingOffset);
119 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
120 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
121 SmallVectorImpl<uint64_t> *Offsets,
122 uint64_t StartingOffset) {
123 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
124 StartingOffset);
127 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
128 SmallVectorImpl<LLT> &ValueTys,
129 SmallVectorImpl<uint64_t> *Offsets,
130 uint64_t StartingOffset) {
131 // Given a struct type, recursively traverse the elements.
132 if (StructType *STy = dyn_cast<StructType>(&Ty)) {
133 const StructLayout *SL = DL.getStructLayout(STy);
134 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
135 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
136 StartingOffset + SL->getElementOffset(I));
137 return;
139 // Given an array type, recursively traverse the elements.
140 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
141 Type *EltTy = ATy->getElementType();
142 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
143 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
144 computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
145 StartingOffset + i * EltSize);
146 return;
148 // Interpret void as zero return values.
149 if (Ty.isVoidTy())
150 return;
151 // Base case: we can get an LLT for this LLVM IR type.
152 ValueTys.push_back(getLLTForType(Ty, DL));
153 if (Offsets != nullptr)
154 Offsets->push_back(StartingOffset * 8);
157 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
158 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
159 V = V->stripPointerCasts();
160 GlobalValue *GV = dyn_cast<GlobalValue>(V);
161 GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
163 if (Var && Var->getName() == "llvm.eh.catch.all.value") {
164 assert(Var->hasInitializer() &&
165 "The EH catch-all value must have an initializer");
166 Value *Init = Var->getInitializer();
167 GV = dyn_cast<GlobalValue>(Init);
168 if (!GV) V = cast<ConstantPointerNull>(Init);
171 assert((GV || isa<ConstantPointerNull>(V)) &&
172 "TypeInfo must be a global variable or NULL");
173 return GV;
176 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
177 /// processed uses a memory 'm' constraint.
178 bool
179 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
180 const TargetLowering &TLI) {
181 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
182 InlineAsm::ConstraintInfo &CI = CInfos[i];
183 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
184 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
185 if (CType == TargetLowering::C_Memory)
186 return true;
189 // Indirect operand accesses access memory.
190 if (CI.isIndirect)
191 return true;
194 return false;
197 /// getFCmpCondCode - Return the ISD condition code corresponding to
198 /// the given LLVM IR floating-point condition code. This includes
199 /// consideration of global floating-point math flags.
201 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
202 switch (Pred) {
203 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
204 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
205 case FCmpInst::FCMP_OGT: return ISD::SETOGT;
206 case FCmpInst::FCMP_OGE: return ISD::SETOGE;
207 case FCmpInst::FCMP_OLT: return ISD::SETOLT;
208 case FCmpInst::FCMP_OLE: return ISD::SETOLE;
209 case FCmpInst::FCMP_ONE: return ISD::SETONE;
210 case FCmpInst::FCMP_ORD: return ISD::SETO;
211 case FCmpInst::FCMP_UNO: return ISD::SETUO;
212 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
213 case FCmpInst::FCMP_UGT: return ISD::SETUGT;
214 case FCmpInst::FCMP_UGE: return ISD::SETUGE;
215 case FCmpInst::FCMP_ULT: return ISD::SETULT;
216 case FCmpInst::FCMP_ULE: return ISD::SETULE;
217 case FCmpInst::FCMP_UNE: return ISD::SETUNE;
218 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
219 default: llvm_unreachable("Invalid FCmp predicate opcode!");
223 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
224 switch (CC) {
225 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
226 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
227 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
228 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
229 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
230 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
231 default: return CC;
235 /// getICmpCondCode - Return the ISD condition code corresponding to
236 /// the given LLVM IR integer condition code.
238 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
239 switch (Pred) {
240 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
241 case ICmpInst::ICMP_NE: return ISD::SETNE;
242 case ICmpInst::ICMP_SLE: return ISD::SETLE;
243 case ICmpInst::ICMP_ULE: return ISD::SETULE;
244 case ICmpInst::ICMP_SGE: return ISD::SETGE;
245 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
246 case ICmpInst::ICMP_SLT: return ISD::SETLT;
247 case ICmpInst::ICMP_ULT: return ISD::SETULT;
248 case ICmpInst::ICMP_SGT: return ISD::SETGT;
249 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
250 default:
251 llvm_unreachable("Invalid ICmp predicate opcode!");
255 static bool isNoopBitcast(Type *T1, Type *T2,
256 const TargetLoweringBase& TLI) {
257 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
258 (isa<VectorType>(T1) && isa<VectorType>(T2) &&
259 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
262 /// Look through operations that will be free to find the earliest source of
263 /// this value.
265 /// @param ValLoc If V has aggegate type, we will be interested in a particular
266 /// scalar component. This records its address; the reverse of this list gives a
267 /// sequence of indices appropriate for an extractvalue to locate the important
268 /// value. This value is updated during the function and on exit will indicate
269 /// similar information for the Value returned.
271 /// @param DataBits If this function looks through truncate instructions, this
272 /// will record the smallest size attained.
273 static const Value *getNoopInput(const Value *V,
274 SmallVectorImpl<unsigned> &ValLoc,
275 unsigned &DataBits,
276 const TargetLoweringBase &TLI,
277 const DataLayout &DL) {
278 while (true) {
279 // Try to look through V1; if V1 is not an instruction, it can't be looked
280 // through.
281 const Instruction *I = dyn_cast<Instruction>(V);
282 if (!I || I->getNumOperands() == 0) return V;
283 const Value *NoopInput = nullptr;
285 Value *Op = I->getOperand(0);
286 if (isa<BitCastInst>(I)) {
287 // Look through truly no-op bitcasts.
288 if (isNoopBitcast(Op->getType(), I->getType(), TLI))
289 NoopInput = Op;
290 } else if (isa<GetElementPtrInst>(I)) {
291 // Look through getelementptr
292 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
293 NoopInput = Op;
294 } else if (isa<IntToPtrInst>(I)) {
295 // Look through inttoptr.
296 // Make sure this isn't a truncating or extending cast. We could
297 // support this eventually, but don't bother for now.
298 if (!isa<VectorType>(I->getType()) &&
299 DL.getPointerSizeInBits() ==
300 cast<IntegerType>(Op->getType())->getBitWidth())
301 NoopInput = Op;
302 } else if (isa<PtrToIntInst>(I)) {
303 // Look through ptrtoint.
304 // Make sure this isn't a truncating or extending cast. We could
305 // support this eventually, but don't bother for now.
306 if (!isa<VectorType>(I->getType()) &&
307 DL.getPointerSizeInBits() ==
308 cast<IntegerType>(I->getType())->getBitWidth())
309 NoopInput = Op;
310 } else if (isa<TruncInst>(I) &&
311 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
312 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
313 NoopInput = Op;
314 } else if (auto CS = ImmutableCallSite(I)) {
315 const Value *ReturnedOp = CS.getReturnedArgOperand();
316 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
317 NoopInput = ReturnedOp;
318 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
319 // Value may come from either the aggregate or the scalar
320 ArrayRef<unsigned> InsertLoc = IVI->getIndices();
321 if (ValLoc.size() >= InsertLoc.size() &&
322 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
323 // The type being inserted is a nested sub-type of the aggregate; we
324 // have to remove those initial indices to get the location we're
325 // interested in for the operand.
326 ValLoc.resize(ValLoc.size() - InsertLoc.size());
327 NoopInput = IVI->getInsertedValueOperand();
328 } else {
329 // The struct we're inserting into has the value we're interested in, no
330 // change of address.
331 NoopInput = Op;
333 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
334 // The part we're interested in will inevitably be some sub-section of the
335 // previous aggregate. Combine the two paths to obtain the true address of
336 // our element.
337 ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
338 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
339 NoopInput = Op;
341 // Terminate if we couldn't find anything to look through.
342 if (!NoopInput)
343 return V;
345 V = NoopInput;
349 /// Return true if this scalar return value only has bits discarded on its path
350 /// from the "tail call" to the "ret". This includes the obvious noop
351 /// instructions handled by getNoopInput above as well as free truncations (or
352 /// extensions prior to the call).
353 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
354 SmallVectorImpl<unsigned> &RetIndices,
355 SmallVectorImpl<unsigned> &CallIndices,
356 bool AllowDifferingSizes,
357 const TargetLoweringBase &TLI,
358 const DataLayout &DL) {
360 // Trace the sub-value needed by the return value as far back up the graph as
361 // possible, in the hope that it will intersect with the value produced by the
362 // call. In the simple case with no "returned" attribute, the hope is actually
363 // that we end up back at the tail call instruction itself.
364 unsigned BitsRequired = UINT_MAX;
365 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
367 // If this slot in the value returned is undef, it doesn't matter what the
368 // call puts there, it'll be fine.
369 if (isa<UndefValue>(RetVal))
370 return true;
372 // Now do a similar search up through the graph to find where the value
373 // actually returned by the "tail call" comes from. In the simple case without
374 // a "returned" attribute, the search will be blocked immediately and the loop
375 // a Noop.
376 unsigned BitsProvided = UINT_MAX;
377 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
379 // There's no hope if we can't actually trace them to (the same part of!) the
380 // same value.
381 if (CallVal != RetVal || CallIndices != RetIndices)
382 return false;
384 // However, intervening truncates may have made the call non-tail. Make sure
385 // all the bits that are needed by the "ret" have been provided by the "tail
386 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
387 // extensions too.
388 if (BitsProvided < BitsRequired ||
389 (!AllowDifferingSizes && BitsProvided != BitsRequired))
390 return false;
392 return true;
395 /// For an aggregate type, determine whether a given index is within bounds or
396 /// not.
397 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
398 if (ArrayType *AT = dyn_cast<ArrayType>(T))
399 return Idx < AT->getNumElements();
401 return Idx < cast<StructType>(T)->getNumElements();
404 /// Move the given iterators to the next leaf type in depth first traversal.
406 /// Performs a depth-first traversal of the type as specified by its arguments,
407 /// stopping at the next leaf node (which may be a legitimate scalar type or an
408 /// empty struct or array).
410 /// @param SubTypes List of the partial components making up the type from
411 /// outermost to innermost non-empty aggregate. The element currently
412 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
414 /// @param Path Set of extractvalue indices leading from the outermost type
415 /// (SubTypes[0]) to the leaf node currently represented.
417 /// @returns true if a new type was found, false otherwise. Calling this
418 /// function again on a finished iterator will repeatedly return
419 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
420 /// aggregate or a non-aggregate
421 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
422 SmallVectorImpl<unsigned> &Path) {
423 // First march back up the tree until we can successfully increment one of the
424 // coordinates in Path.
425 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
426 Path.pop_back();
427 SubTypes.pop_back();
430 // If we reached the top, then the iterator is done.
431 if (Path.empty())
432 return false;
434 // We know there's *some* valid leaf now, so march back down the tree picking
435 // out the left-most element at each node.
436 ++Path.back();
437 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
438 while (DeeperType->isAggregateType()) {
439 CompositeType *CT = cast<CompositeType>(DeeperType);
440 if (!indexReallyValid(CT, 0))
441 return true;
443 SubTypes.push_back(CT);
444 Path.push_back(0);
446 DeeperType = CT->getTypeAtIndex(0U);
449 return true;
452 /// Find the first non-empty, scalar-like type in Next and setup the iterator
453 /// components.
455 /// Assuming Next is an aggregate of some kind, this function will traverse the
456 /// tree from left to right (i.e. depth-first) looking for the first
457 /// non-aggregate type which will play a role in function return.
459 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
460 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
461 /// i32 in that type.
462 static bool firstRealType(Type *Next,
463 SmallVectorImpl<CompositeType *> &SubTypes,
464 SmallVectorImpl<unsigned> &Path) {
465 // First initialise the iterator components to the first "leaf" node
466 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
467 // despite nominally being an aggregate).
468 while (Next->isAggregateType() &&
469 indexReallyValid(cast<CompositeType>(Next), 0)) {
470 SubTypes.push_back(cast<CompositeType>(Next));
471 Path.push_back(0);
472 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
475 // If there's no Path now, Next was originally scalar already (or empty
476 // leaf). We're done.
477 if (Path.empty())
478 return true;
480 // Otherwise, use normal iteration to keep looking through the tree until we
481 // find a non-aggregate type.
482 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
483 if (!advanceToNextLeafType(SubTypes, Path))
484 return false;
487 return true;
490 /// Set the iterator data-structures to the next non-empty, non-aggregate
491 /// subtype.
492 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
493 SmallVectorImpl<unsigned> &Path) {
494 do {
495 if (!advanceToNextLeafType(SubTypes, Path))
496 return false;
498 assert(!Path.empty() && "found a leaf but didn't set the path?");
499 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
501 return true;
505 /// Test if the given instruction is in a position to be optimized
506 /// with a tail-call. This roughly means that it's in a block with
507 /// a return and there's nothing that needs to be scheduled
508 /// between it and the return.
510 /// This function only tests target-independent requirements.
511 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
512 const Instruction *I = CS.getInstruction();
513 const BasicBlock *ExitBB = I->getParent();
514 const Instruction *Term = ExitBB->getTerminator();
515 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
517 // The block must end in a return statement or unreachable.
519 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
520 // an unreachable, for now. The way tailcall optimization is currently
521 // implemented means it will add an epilogue followed by a jump. That is
522 // not profitable. Also, if the callee is a special function (e.g.
523 // longjmp on x86), it can end up causing miscompilation that has not
524 // been fully understood.
525 if (!Ret &&
526 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
527 return false;
529 // If I will have a chain, make sure no other instruction that will have a
530 // chain interposes between I and the return.
531 if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
532 !isSafeToSpeculativelyExecute(I))
533 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
534 if (&*BBI == I)
535 break;
536 // Debug info intrinsics do not get in the way of tail call optimization.
537 if (isa<DbgInfoIntrinsic>(BBI))
538 continue;
539 // A lifetime end or assume intrinsic should not stop tail call
540 // optimization.
541 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
542 if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
543 II->getIntrinsicID() == Intrinsic::assume)
544 continue;
545 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
546 !isSafeToSpeculativelyExecute(&*BBI))
547 return false;
550 const Function *F = ExitBB->getParent();
551 return returnTypeIsEligibleForTailCall(
552 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
555 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
556 const ReturnInst *Ret,
557 const TargetLoweringBase &TLI,
558 bool *AllowDifferingSizes) {
559 // ADS may be null, so don't write to it directly.
560 bool DummyADS;
561 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
562 ADS = true;
564 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
565 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
566 AttributeList::ReturnIndex);
568 // NoAlias and NonNull are completely benign as far as calling convention
569 // goes, they shouldn't affect whether the call is a tail call.
570 CallerAttrs.removeAttribute(Attribute::NoAlias);
571 CalleeAttrs.removeAttribute(Attribute::NoAlias);
572 CallerAttrs.removeAttribute(Attribute::NonNull);
573 CalleeAttrs.removeAttribute(Attribute::NonNull);
575 if (CallerAttrs.contains(Attribute::ZExt)) {
576 if (!CalleeAttrs.contains(Attribute::ZExt))
577 return false;
579 ADS = false;
580 CallerAttrs.removeAttribute(Attribute::ZExt);
581 CalleeAttrs.removeAttribute(Attribute::ZExt);
582 } else if (CallerAttrs.contains(Attribute::SExt)) {
583 if (!CalleeAttrs.contains(Attribute::SExt))
584 return false;
586 ADS = false;
587 CallerAttrs.removeAttribute(Attribute::SExt);
588 CalleeAttrs.removeAttribute(Attribute::SExt);
591 // Drop sext and zext return attributes if the result is not used.
592 // This enables tail calls for code like:
594 // define void @caller() {
595 // entry:
596 // %unused_result = tail call zeroext i1 @callee()
597 // br label %retlabel
598 // retlabel:
599 // ret void
600 // }
601 if (I->use_empty()) {
602 CalleeAttrs.removeAttribute(Attribute::SExt);
603 CalleeAttrs.removeAttribute(Attribute::ZExt);
606 // If they're still different, there's some facet we don't understand
607 // (currently only "inreg", but in future who knows). It may be OK but the
608 // only safe option is to reject the tail call.
609 return CallerAttrs == CalleeAttrs;
612 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
613 const Instruction *I,
614 const ReturnInst *Ret,
615 const TargetLoweringBase &TLI) {
616 // If the block ends with a void return or unreachable, it doesn't matter
617 // what the call's return type is.
618 if (!Ret || Ret->getNumOperands() == 0) return true;
620 // If the return value is undef, it doesn't matter what the call's
621 // return type is.
622 if (isa<UndefValue>(Ret->getOperand(0))) return true;
624 // Make sure the attributes attached to each return are compatible.
625 bool AllowDifferingSizes;
626 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
627 return false;
629 const Value *RetVal = Ret->getOperand(0), *CallVal = I;
630 // Intrinsic like llvm.memcpy has no return value, but the expanded
631 // libcall may or may not have return value. On most platforms, it
632 // will be expanded as memcpy in libc, which returns the first
633 // argument. On other platforms like arm-none-eabi, memcpy may be
634 // expanded as library call without return value, like __aeabi_memcpy.
635 const CallInst *Call = cast<CallInst>(I);
636 if (Function *F = Call->getCalledFunction()) {
637 Intrinsic::ID IID = F->getIntrinsicID();
638 if (((IID == Intrinsic::memcpy &&
639 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
640 (IID == Intrinsic::memmove &&
641 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
642 (IID == Intrinsic::memset &&
643 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
644 RetVal == Call->getArgOperand(0))
645 return true;
648 SmallVector<unsigned, 4> RetPath, CallPath;
649 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
651 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
652 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
654 // Nothing's actually returned, it doesn't matter what the callee put there
655 // it's a valid tail call.
656 if (RetEmpty)
657 return true;
659 // Iterate pairwise through each of the value types making up the tail call
660 // and the corresponding return. For each one we want to know whether it's
661 // essentially going directly from the tail call to the ret, via operations
662 // that end up not generating any code.
664 // We allow a certain amount of covariance here. For example it's permitted
665 // for the tail call to define more bits than the ret actually cares about
666 // (e.g. via a truncate).
667 do {
668 if (CallEmpty) {
669 // We've exhausted the values produced by the tail call instruction, the
670 // rest are essentially undef. The type doesn't really matter, but we need
671 // *something*.
672 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
673 CallVal = UndefValue::get(SlotType);
676 // The manipulations performed when we're looking through an insertvalue or
677 // an extractvalue would happen at the front of the RetPath list, so since
678 // we have to copy it anyway it's more efficient to create a reversed copy.
679 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
680 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
682 // Finally, we can check whether the value produced by the tail call at this
683 // index is compatible with the value we return.
684 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
685 AllowDifferingSizes, TLI,
686 F->getParent()->getDataLayout()))
687 return false;
689 CallEmpty = !nextRealType(CallSubTypes, CallPath);
690 } while(nextRealType(RetSubTypes, RetPath));
692 return true;
695 static void collectEHScopeMembers(
696 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
697 const MachineBasicBlock *MBB) {
698 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
699 while (!Worklist.empty()) {
700 const MachineBasicBlock *Visiting = Worklist.pop_back_val();
701 // Don't follow blocks which start new scopes.
702 if (Visiting->isEHPad() && Visiting != MBB)
703 continue;
705 // Add this MBB to our scope.
706 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
708 // Don't revisit blocks.
709 if (!P.second) {
710 assert(P.first->second == EHScope && "MBB is part of two scopes!");
711 continue;
714 // Returns are boundaries where scope transfer can occur, don't follow
715 // successors.
716 if (Visiting->isEHScopeReturnBlock())
717 continue;
719 for (const MachineBasicBlock *Succ : Visiting->successors())
720 Worklist.push_back(Succ);
724 DenseMap<const MachineBasicBlock *, int>
725 llvm::getEHScopeMembership(const MachineFunction &MF) {
726 DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
728 // We don't have anything to do if there aren't any EH pads.
729 if (!MF.hasEHScopes())
730 return EHScopeMembership;
732 int EntryBBNumber = MF.front().getNumber();
733 bool IsSEH = isAsynchronousEHPersonality(
734 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
736 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
737 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
738 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
739 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
740 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
741 for (const MachineBasicBlock &MBB : MF) {
742 if (MBB.isEHScopeEntry()) {
743 EHScopeBlocks.push_back(&MBB);
744 } else if (IsSEH && MBB.isEHPad()) {
745 SEHCatchPads.push_back(&MBB);
746 } else if (MBB.pred_empty()) {
747 UnreachableBlocks.push_back(&MBB);
750 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
752 // CatchPads are not scopes for SEH so do not consider CatchRet to
753 // transfer control to another scope.
754 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
755 continue;
757 // FIXME: SEH CatchPads are not necessarily in the parent function:
758 // they could be inside a finally block.
759 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
760 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
761 CatchRetSuccessors.push_back(
762 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
765 // We don't have anything to do if there aren't any EH pads.
766 if (EHScopeBlocks.empty())
767 return EHScopeMembership;
769 // Identify all the basic blocks reachable from the function entry.
770 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
771 // All blocks not part of a scope are in the parent function.
772 for (const MachineBasicBlock *MBB : UnreachableBlocks)
773 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
774 // Next, identify all the blocks inside the scopes.
775 for (const MachineBasicBlock *MBB : EHScopeBlocks)
776 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
777 // SEH CatchPads aren't really scopes, handle them separately.
778 for (const MachineBasicBlock *MBB : SEHCatchPads)
779 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
780 // Finally, identify all the targets of a catchret.
781 for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
782 CatchRetSuccessors)
783 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
784 CatchRetPair.first);
785 return EHScopeMembership;