[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / CodeGenPrepare.cpp
blobb3a6e284f4f9c6389d62005a116e18ecf8d2687a
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <utility>
99 #include <vector>
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
104 #define DEBUG_TYPE "codegenprepare"
106 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
110 "sunken Cmps");
111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
112 "of sunken Casts");
113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
114 "computations were sunk");
115 STATISTIC(NumMemoryInstsPhiCreated,
116 "Number of phis created when address "
117 "computations were sunk to memory instructions");
118 STATISTIC(NumMemoryInstsSelectCreated,
119 "Number of select created when address "
120 "computations were sunk to memory instructions");
121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
123 STATISTIC(NumAndsAdded,
124 "Number of and mask instructions added to form ext loads");
125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
126 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
131 static cl::opt<bool> DisableBranchOpts(
132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
133 cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 static cl::opt<bool>
136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
137 cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 static cl::opt<bool> DisableSelectToBranch(
140 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
141 cl::desc("Disable select to branch conversion."));
143 static cl::opt<bool> AddrSinkUsingGEPs(
144 "addr-sink-using-gep", cl::Hidden, cl::init(true),
145 cl::desc("Address sinking in CGP using GEPs."));
147 static cl::opt<bool> EnableAndCmpSinking(
148 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
149 cl::desc("Enable sinkinig and/cmp into branches."));
151 static cl::opt<bool> DisableStoreExtract(
152 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 static cl::opt<bool> StressStoreExtract(
156 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 static cl::opt<bool> DisableExtLdPromotion(
160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162 "CodeGenPrepare"));
164 static cl::opt<bool> StressExtLdPromotion(
165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
167 "optimization in CodeGenPrepare"));
169 static cl::opt<bool> DisablePreheaderProtect(
170 "disable-preheader-prot", cl::Hidden, cl::init(false),
171 cl::desc("Disable protection against removing loop preheaders"));
173 static cl::opt<bool> ProfileGuidedSectionPrefix(
174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
175 cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 static cl::opt<unsigned> FreqRatioToSkipMerge(
178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
179 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
180 "(frequency of destination block) is greater than this ratio"));
182 static cl::opt<bool> ForceSplitStore(
183 "force-split-store", cl::Hidden, cl::init(false),
184 cl::desc("Force store splitting no matter what the target query says."));
186 static cl::opt<bool>
187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
188 cl::desc("Enable merging of redundant sexts when one is dominating"
189 " the other."), cl::init(true));
191 static cl::opt<bool> DisableComplexAddrModes(
192 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
193 cl::desc("Disables combining addressing modes with different parts "
194 "in optimizeMemoryInst."));
196 static cl::opt<bool>
197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
198 cl::desc("Allow creation of Phis in Address sinking."));
200 static cl::opt<bool>
201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
202 cl::desc("Allow creation of selects in Address sinking."));
204 static cl::opt<bool> AddrSinkCombineBaseReg(
205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
206 cl::desc("Allow combining of BaseReg field in Address sinking."));
208 static cl::opt<bool> AddrSinkCombineBaseGV(
209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
210 cl::desc("Allow combining of BaseGV field in Address sinking."));
212 static cl::opt<bool> AddrSinkCombineBaseOffs(
213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
214 cl::desc("Allow combining of BaseOffs field in Address sinking."));
216 static cl::opt<bool> AddrSinkCombineScaledReg(
217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
218 cl::desc("Allow combining of ScaledReg field in Address sinking."));
220 static cl::opt<bool>
221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
222 cl::init(true),
223 cl::desc("Enable splitting large offset of GEP."));
225 namespace {
227 enum ExtType {
228 ZeroExtension, // Zero extension has been seen.
229 SignExtension, // Sign extension has been seen.
230 BothExtension // This extension type is used if we saw sext after
231 // ZeroExtension had been set, or if we saw zext after
232 // SignExtension had been set. It makes the type
233 // information of a promoted instruction invalid.
236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
239 using SExts = SmallVector<Instruction *, 16>;
240 using ValueToSExts = DenseMap<Value *, SExts>;
242 class TypePromotionTransaction;
244 class CodeGenPrepare : public FunctionPass {
245 const TargetMachine *TM = nullptr;
246 const TargetSubtargetInfo *SubtargetInfo;
247 const TargetLowering *TLI = nullptr;
248 const TargetRegisterInfo *TRI;
249 const TargetTransformInfo *TTI = nullptr;
250 const TargetLibraryInfo *TLInfo;
251 const LoopInfo *LI;
252 std::unique_ptr<BlockFrequencyInfo> BFI;
253 std::unique_ptr<BranchProbabilityInfo> BPI;
255 /// As we scan instructions optimizing them, this is the next instruction
256 /// to optimize. Transforms that can invalidate this should update it.
257 BasicBlock::iterator CurInstIterator;
259 /// Keeps track of non-local addresses that have been sunk into a block.
260 /// This allows us to avoid inserting duplicate code for blocks with
261 /// multiple load/stores of the same address. The usage of WeakTrackingVH
262 /// enables SunkAddrs to be treated as a cache whose entries can be
263 /// invalidated if a sunken address computation has been erased.
264 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
266 /// Keeps track of all instructions inserted for the current function.
267 SetOfInstrs InsertedInsts;
269 /// Keeps track of the type of the related instruction before their
270 /// promotion for the current function.
271 InstrToOrigTy PromotedInsts;
273 /// Keep track of instructions removed during promotion.
274 SetOfInstrs RemovedInsts;
276 /// Keep track of sext chains based on their initial value.
277 DenseMap<Value *, Instruction *> SeenChainsForSExt;
279 /// Keep track of GEPs accessing the same data structures such as structs or
280 /// arrays that are candidates to be split later because of their large
281 /// size.
282 MapVector<
283 AssertingVH<Value>,
284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
285 LargeOffsetGEPMap;
287 /// Keep track of new GEP base after splitting the GEPs having large offset.
288 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
290 /// Map serial numbers to Large offset GEPs.
291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
293 /// Keep track of SExt promoted.
294 ValueToSExts ValToSExtendedUses;
296 /// True if optimizing for size.
297 bool OptSize;
299 /// DataLayout for the Function being processed.
300 const DataLayout *DL = nullptr;
302 /// Building the dominator tree can be expensive, so we only build it
303 /// lazily and update it when required.
304 std::unique_ptr<DominatorTree> DT;
306 public:
307 static char ID; // Pass identification, replacement for typeid
309 CodeGenPrepare() : FunctionPass(ID) {
310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
313 bool runOnFunction(Function &F) override;
315 StringRef getPassName() const override { return "CodeGen Prepare"; }
317 void getAnalysisUsage(AnalysisUsage &AU) const override {
318 // FIXME: When we can selectively preserve passes, preserve the domtree.
319 AU.addRequired<ProfileSummaryInfoWrapperPass>();
320 AU.addRequired<TargetLibraryInfoWrapperPass>();
321 AU.addRequired<TargetTransformInfoWrapperPass>();
322 AU.addRequired<LoopInfoWrapperPass>();
325 private:
326 template <typename F>
327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
328 // Substituting can cause recursive simplifications, which can invalidate
329 // our iterator. Use a WeakTrackingVH to hold onto it in case this
330 // happens.
331 Value *CurValue = &*CurInstIterator;
332 WeakTrackingVH IterHandle(CurValue);
334 f();
336 // If the iterator instruction was recursively deleted, start over at the
337 // start of the block.
338 if (IterHandle != CurValue) {
339 CurInstIterator = BB->begin();
340 SunkAddrs.clear();
344 // Get the DominatorTree, building if necessary.
345 DominatorTree &getDT(Function &F) {
346 if (!DT)
347 DT = std::make_unique<DominatorTree>(F);
348 return *DT;
351 bool eliminateFallThrough(Function &F);
352 bool eliminateMostlyEmptyBlocks(Function &F);
353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
355 void eliminateMostlyEmptyBlock(BasicBlock *BB);
356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
357 bool isPreheader);
358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
359 bool optimizeInst(Instruction *I, bool &ModifiedDT);
360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
361 Type *AccessTy, unsigned AddrSpace);
362 bool optimizeInlineAsmInst(CallInst *CS);
363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
364 bool optimizeExt(Instruction *&I);
365 bool optimizeExtUses(Instruction *I);
366 bool optimizeLoadExt(LoadInst *Load);
367 bool optimizeShiftInst(BinaryOperator *BO);
368 bool optimizeSelectInst(SelectInst *SI);
369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
370 bool optimizeSwitchInst(SwitchInst *SI);
371 bool optimizeExtractElementInst(Instruction *Inst);
372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
373 bool placeDbgValues(Function &F);
374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
376 bool tryToPromoteExts(TypePromotionTransaction &TPT,
377 const SmallVectorImpl<Instruction *> &Exts,
378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
379 unsigned CreatedInstsCost = 0);
380 bool mergeSExts(Function &F);
381 bool splitLargeGEPOffsets();
382 bool performAddressTypePromotion(
383 Instruction *&Inst,
384 bool AllowPromotionWithoutCommonHeader,
385 bool HasPromoted, TypePromotionTransaction &TPT,
386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
387 bool splitBranchCondition(Function &F, bool &ModifiedDT);
388 bool simplifyOffsetableRelocate(Instruction &I);
390 bool tryToSinkFreeOperands(Instruction *I);
391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
392 Intrinsic::ID IID);
393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
398 } // end anonymous namespace
400 char CodeGenPrepare::ID = 0;
402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
403 "Optimize for code generation", false, false)
404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
406 "Optimize for code generation", false, false)
408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
410 bool CodeGenPrepare::runOnFunction(Function &F) {
411 if (skipFunction(F))
412 return false;
414 DL = &F.getParent()->getDataLayout();
416 bool EverMadeChange = false;
417 // Clear per function information.
418 InsertedInsts.clear();
419 PromotedInsts.clear();
421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
422 TM = &TPC->getTM<TargetMachine>();
423 SubtargetInfo = TM->getSubtargetImpl(F);
424 TLI = SubtargetInfo->getTargetLowering();
425 TRI = SubtargetInfo->getRegisterInfo();
427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
430 BPI.reset(new BranchProbabilityInfo(F, *LI));
431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
432 OptSize = F.hasOptSize();
434 ProfileSummaryInfo *PSI =
435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
436 if (ProfileGuidedSectionPrefix) {
437 if (PSI->isFunctionHotInCallGraph(&F, *BFI))
438 F.setSectionPrefix(".hot");
439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
440 F.setSectionPrefix(".unlikely");
443 /// This optimization identifies DIV instructions that can be
444 /// profitably bypassed and carried out with a shorter, faster divide.
445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
446 TLI->isSlowDivBypassed()) {
447 const DenseMap<unsigned int, unsigned int> &BypassWidths =
448 TLI->getBypassSlowDivWidths();
449 BasicBlock* BB = &*F.begin();
450 while (BB != nullptr) {
451 // bypassSlowDivision may create new BBs, but we don't want to reapply the
452 // optimization to those blocks.
453 BasicBlock* Next = BB->getNextNode();
454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
455 BB = Next;
459 // Eliminate blocks that contain only PHI nodes and an
460 // unconditional branch.
461 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
463 bool ModifiedDT = false;
464 if (!DisableBranchOpts)
465 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
467 // Split some critical edges where one of the sources is an indirect branch,
468 // to help generate sane code for PHIs involving such edges.
469 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
471 bool MadeChange = true;
472 while (MadeChange) {
473 MadeChange = false;
474 DT.reset();
475 for (Function::iterator I = F.begin(); I != F.end(); ) {
476 BasicBlock *BB = &*I++;
477 bool ModifiedDTOnIteration = false;
478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
480 // Restart BB iteration if the dominator tree of the Function was changed
481 if (ModifiedDTOnIteration)
482 break;
484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
485 MadeChange |= mergeSExts(F);
486 if (!LargeOffsetGEPMap.empty())
487 MadeChange |= splitLargeGEPOffsets();
489 // Really free removed instructions during promotion.
490 for (Instruction *I : RemovedInsts)
491 I->deleteValue();
493 EverMadeChange |= MadeChange;
494 SeenChainsForSExt.clear();
495 ValToSExtendedUses.clear();
496 RemovedInsts.clear();
497 LargeOffsetGEPMap.clear();
498 LargeOffsetGEPID.clear();
501 SunkAddrs.clear();
503 if (!DisableBranchOpts) {
504 MadeChange = false;
505 // Use a set vector to get deterministic iteration order. The order the
506 // blocks are removed may affect whether or not PHI nodes in successors
507 // are removed.
508 SmallSetVector<BasicBlock*, 8> WorkList;
509 for (BasicBlock &BB : F) {
510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
511 MadeChange |= ConstantFoldTerminator(&BB, true);
512 if (!MadeChange) continue;
514 for (SmallVectorImpl<BasicBlock*>::iterator
515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
516 if (pred_begin(*II) == pred_end(*II))
517 WorkList.insert(*II);
520 // Delete the dead blocks and any of their dead successors.
521 MadeChange |= !WorkList.empty();
522 while (!WorkList.empty()) {
523 BasicBlock *BB = WorkList.pop_back_val();
524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
526 DeleteDeadBlock(BB);
528 for (SmallVectorImpl<BasicBlock*>::iterator
529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
530 if (pred_begin(*II) == pred_end(*II))
531 WorkList.insert(*II);
534 // Merge pairs of basic blocks with unconditional branches, connected by
535 // a single edge.
536 if (EverMadeChange || MadeChange)
537 MadeChange |= eliminateFallThrough(F);
539 EverMadeChange |= MadeChange;
542 if (!DisableGCOpts) {
543 SmallVector<Instruction *, 2> Statepoints;
544 for (BasicBlock &BB : F)
545 for (Instruction &I : BB)
546 if (isStatepoint(I))
547 Statepoints.push_back(&I);
548 for (auto &I : Statepoints)
549 EverMadeChange |= simplifyOffsetableRelocate(*I);
552 // Do this last to clean up use-before-def scenarios introduced by other
553 // preparatory transforms.
554 EverMadeChange |= placeDbgValues(F);
556 return EverMadeChange;
559 /// Merge basic blocks which are connected by a single edge, where one of the
560 /// basic blocks has a single successor pointing to the other basic block,
561 /// which has a single predecessor.
562 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
563 bool Changed = false;
564 // Scan all of the blocks in the function, except for the entry block.
565 // Use a temporary array to avoid iterator being invalidated when
566 // deleting blocks.
567 SmallVector<WeakTrackingVH, 16> Blocks;
568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
569 Blocks.push_back(&Block);
571 for (auto &Block : Blocks) {
572 auto *BB = cast_or_null<BasicBlock>(Block);
573 if (!BB)
574 continue;
575 // If the destination block has a single pred, then this is a trivial
576 // edge, just collapse it.
577 BasicBlock *SinglePred = BB->getSinglePredecessor();
579 // Don't merge if BB's address is taken.
580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
583 if (Term && !Term->isConditional()) {
584 Changed = true;
585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
587 // Merge BB into SinglePred and delete it.
588 MergeBlockIntoPredecessor(BB);
591 return Changed;
594 /// Find a destination block from BB if BB is mergeable empty block.
595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
596 // If this block doesn't end with an uncond branch, ignore it.
597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
598 if (!BI || !BI->isUnconditional())
599 return nullptr;
601 // If the instruction before the branch (skipping debug info) isn't a phi
602 // node, then other stuff is happening here.
603 BasicBlock::iterator BBI = BI->getIterator();
604 if (BBI != BB->begin()) {
605 --BBI;
606 while (isa<DbgInfoIntrinsic>(BBI)) {
607 if (BBI == BB->begin())
608 break;
609 --BBI;
611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
612 return nullptr;
615 // Do not break infinite loops.
616 BasicBlock *DestBB = BI->getSuccessor(0);
617 if (DestBB == BB)
618 return nullptr;
620 if (!canMergeBlocks(BB, DestBB))
621 DestBB = nullptr;
623 return DestBB;
626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
628 /// edges in ways that are non-optimal for isel. Start by eliminating these
629 /// blocks so we can split them the way we want them.
630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
631 SmallPtrSet<BasicBlock *, 16> Preheaders;
632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
633 while (!LoopList.empty()) {
634 Loop *L = LoopList.pop_back_val();
635 LoopList.insert(LoopList.end(), L->begin(), L->end());
636 if (BasicBlock *Preheader = L->getLoopPreheader())
637 Preheaders.insert(Preheader);
640 bool MadeChange = false;
641 // Copy blocks into a temporary array to avoid iterator invalidation issues
642 // as we remove them.
643 // Note that this intentionally skips the entry block.
644 SmallVector<WeakTrackingVH, 16> Blocks;
645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
646 Blocks.push_back(&Block);
648 for (auto &Block : Blocks) {
649 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
650 if (!BB)
651 continue;
652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
653 if (!DestBB ||
654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
655 continue;
657 eliminateMostlyEmptyBlock(BB);
658 MadeChange = true;
660 return MadeChange;
663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
664 BasicBlock *DestBB,
665 bool isPreheader) {
666 // Do not delete loop preheaders if doing so would create a critical edge.
667 // Loop preheaders can be good locations to spill registers. If the
668 // preheader is deleted and we create a critical edge, registers may be
669 // spilled in the loop body instead.
670 if (!DisablePreheaderProtect && isPreheader &&
671 !(BB->getSinglePredecessor() &&
672 BB->getSinglePredecessor()->getSingleSuccessor()))
673 return false;
675 // Skip merging if the block's successor is also a successor to any callbr
676 // that leads to this block.
677 // FIXME: Is this really needed? Is this a correctness issue?
678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
681 if (DestBB == CBI->getSuccessor(i))
682 return false;
685 // Try to skip merging if the unique predecessor of BB is terminated by a
686 // switch or indirect branch instruction, and BB is used as an incoming block
687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
688 // add COPY instructions in the predecessor of BB instead of BB (if it is not
689 // merged). Note that the critical edge created by merging such blocks wont be
690 // split in MachineSink because the jump table is not analyzable. By keeping
691 // such empty block (BB), ISel will place COPY instructions in BB, not in the
692 // predecessor of BB.
693 BasicBlock *Pred = BB->getUniquePredecessor();
694 if (!Pred ||
695 !(isa<SwitchInst>(Pred->getTerminator()) ||
696 isa<IndirectBrInst>(Pred->getTerminator())))
697 return true;
699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
700 return true;
702 // We use a simple cost heuristic which determine skipping merging is
703 // profitable if the cost of skipping merging is less than the cost of
704 // merging : Cost(skipping merging) < Cost(merging BB), where the
705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
708 // Freq(Pred) / Freq(BB) > 2.
709 // Note that if there are multiple empty blocks sharing the same incoming
710 // value for the PHIs in the DestBB, we consider them together. In such
711 // case, Cost(merging BB) will be the sum of their frequencies.
713 if (!isa<PHINode>(DestBB->begin()))
714 return true;
716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
718 // Find all other incoming blocks from which incoming values of all PHIs in
719 // DestBB are the same as the ones from BB.
720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
721 ++PI) {
722 BasicBlock *DestBBPred = *PI;
723 if (DestBBPred == BB)
724 continue;
726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
727 return DestPN.getIncomingValueForBlock(BB) ==
728 DestPN.getIncomingValueForBlock(DestBBPred);
730 SameIncomingValueBBs.insert(DestBBPred);
733 // See if all BB's incoming values are same as the value from Pred. In this
734 // case, no reason to skip merging because COPYs are expected to be place in
735 // Pred already.
736 if (SameIncomingValueBBs.count(Pred))
737 return true;
739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
740 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
742 for (auto SameValueBB : SameIncomingValueBBs)
743 if (SameValueBB->getUniquePredecessor() == Pred &&
744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
745 BBFreq += BFI->getBlockFreq(SameValueBB);
747 return PredFreq.getFrequency() <=
748 BBFreq.getFrequency() * FreqRatioToSkipMerge;
751 /// Return true if we can merge BB into DestBB if there is a single
752 /// unconditional branch between them, and BB contains no other non-phi
753 /// instructions.
754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
755 const BasicBlock *DestBB) const {
756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
757 // the successor. If there are more complex condition (e.g. preheaders),
758 // don't mess around with them.
759 for (const PHINode &PN : BB->phis()) {
760 for (const User *U : PN.users()) {
761 const Instruction *UI = cast<Instruction>(U);
762 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
763 return false;
764 // If User is inside DestBB block and it is a PHINode then check
765 // incoming value. If incoming value is not from BB then this is
766 // a complex condition (e.g. preheaders) we want to avoid here.
767 if (UI->getParent() == DestBB) {
768 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
771 if (Insn && Insn->getParent() == BB &&
772 Insn->getParent() != UPN->getIncomingBlock(I))
773 return false;
779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
780 // and DestBB may have conflicting incoming values for the block. If so, we
781 // can't merge the block.
782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
783 if (!DestBBPN) return true; // no conflict.
785 // Collect the preds of BB.
786 SmallPtrSet<const BasicBlock*, 16> BBPreds;
787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
788 // It is faster to get preds from a PHI than with pred_iterator.
789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
790 BBPreds.insert(BBPN->getIncomingBlock(i));
791 } else {
792 BBPreds.insert(pred_begin(BB), pred_end(BB));
795 // Walk the preds of DestBB.
796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
798 if (BBPreds.count(Pred)) { // Common predecessor?
799 for (const PHINode &PN : DestBB->phis()) {
800 const Value *V1 = PN.getIncomingValueForBlock(Pred);
801 const Value *V2 = PN.getIncomingValueForBlock(BB);
803 // If V2 is a phi node in BB, look up what the mapped value will be.
804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
805 if (V2PN->getParent() == BB)
806 V2 = V2PN->getIncomingValueForBlock(Pred);
808 // If there is a conflict, bail out.
809 if (V1 != V2) return false;
814 return true;
817 /// Eliminate a basic block that has only phi's and an unconditional branch in
818 /// it.
819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
820 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
821 BasicBlock *DestBB = BI->getSuccessor(0);
823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
824 << *BB << *DestBB);
826 // If the destination block has a single pred, then this is a trivial edge,
827 // just collapse it.
828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
829 if (SinglePred != DestBB) {
830 assert(SinglePred == BB &&
831 "Single predecessor not the same as predecessor");
832 // Merge DestBB into SinglePred/BB and delete it.
833 MergeBlockIntoPredecessor(DestBB);
834 // Note: BB(=SinglePred) will not be deleted on this path.
835 // DestBB(=its single successor) is the one that was deleted.
836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
837 return;
841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
842 // to handle the new incoming edges it is about to have.
843 for (PHINode &PN : DestBB->phis()) {
844 // Remove the incoming value for BB, and remember it.
845 Value *InVal = PN.removeIncomingValue(BB, false);
847 // Two options: either the InVal is a phi node defined in BB or it is some
848 // value that dominates BB.
849 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
850 if (InValPhi && InValPhi->getParent() == BB) {
851 // Add all of the input values of the input PHI as inputs of this phi.
852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
853 PN.addIncoming(InValPhi->getIncomingValue(i),
854 InValPhi->getIncomingBlock(i));
855 } else {
856 // Otherwise, add one instance of the dominating value for each edge that
857 // we will be adding.
858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
861 } else {
862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
863 PN.addIncoming(InVal, *PI);
868 // The PHIs are now updated, change everything that refers to BB to use
869 // DestBB and remove BB.
870 BB->replaceAllUsesWith(DestBB);
871 BB->eraseFromParent();
872 ++NumBlocksElim;
874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
877 // Computes a map of base pointer relocation instructions to corresponding
878 // derived pointer relocation instructions given a vector of all relocate calls
879 static void computeBaseDerivedRelocateMap(
880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
882 &RelocateInstMap) {
883 // Collect information in two maps: one primarily for locating the base object
884 // while filling the second map; the second map is the final structure holding
885 // a mapping between Base and corresponding Derived relocate calls
886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
887 for (auto *ThisRelocate : AllRelocateCalls) {
888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
889 ThisRelocate->getDerivedPtrIndex());
890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
892 for (auto &Item : RelocateIdxMap) {
893 std::pair<unsigned, unsigned> Key = Item.first;
894 if (Key.first == Key.second)
895 // Base relocation: nothing to insert
896 continue;
898 GCRelocateInst *I = Item.second;
899 auto BaseKey = std::make_pair(Key.first, Key.first);
901 // We're iterating over RelocateIdxMap so we cannot modify it.
902 auto MaybeBase = RelocateIdxMap.find(BaseKey);
903 if (MaybeBase == RelocateIdxMap.end())
904 // TODO: We might want to insert a new base object relocate and gep off
905 // that, if there are enough derived object relocates.
906 continue;
908 RelocateInstMap[MaybeBase->second].push_back(I);
912 // Accepts a GEP and extracts the operands into a vector provided they're all
913 // small integer constants
914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
915 SmallVectorImpl<Value *> &OffsetV) {
916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
917 // Only accept small constant integer operands
918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
919 if (!Op || Op->getZExtValue() > 20)
920 return false;
923 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
924 OffsetV.push_back(GEP->getOperand(i));
925 return true;
928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
929 // replace, computes a replacement, and affects it.
930 static bool
931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
932 const SmallVectorImpl<GCRelocateInst *> &Targets) {
933 bool MadeChange = false;
934 // We must ensure the relocation of derived pointer is defined after
935 // relocation of base pointer. If we find a relocation corresponding to base
936 // defined earlier than relocation of base then we move relocation of base
937 // right before found relocation. We consider only relocation in the same
938 // basic block as relocation of base. Relocations from other basic block will
939 // be skipped by optimization and we do not care about them.
940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
941 &*R != RelocatedBase; ++R)
942 if (auto RI = dyn_cast<GCRelocateInst>(R))
943 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
945 RelocatedBase->moveBefore(RI);
946 break;
949 for (GCRelocateInst *ToReplace : Targets) {
950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
951 "Not relocating a derived object of the original base object");
952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
953 // A duplicate relocate call. TODO: coalesce duplicates.
954 continue;
957 if (RelocatedBase->getParent() != ToReplace->getParent()) {
958 // Base and derived relocates are in different basic blocks.
959 // In this case transform is only valid when base dominates derived
960 // relocate. However it would be too expensive to check dominance
961 // for each such relocate, so we skip the whole transformation.
962 continue;
965 Value *Base = ToReplace->getBasePtr();
966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
967 if (!Derived || Derived->getPointerOperand() != Base)
968 continue;
970 SmallVector<Value *, 2> OffsetV;
971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
972 continue;
974 // Create a Builder and replace the target callsite with a gep
975 assert(RelocatedBase->getNextNode() &&
976 "Should always have one since it's not a terminator");
978 // Insert after RelocatedBase
979 IRBuilder<> Builder(RelocatedBase->getNextNode());
980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
982 // If gc_relocate does not match the actual type, cast it to the right type.
983 // In theory, there must be a bitcast after gc_relocate if the type does not
984 // match, and we should reuse it to get the derived pointer. But it could be
985 // cases like this:
986 // bb1:
987 // ...
988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
989 // br label %merge
991 // bb2:
992 // ...
993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
994 // br label %merge
996 // merge:
997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1001 // no matter there is already one or not. In this way, we can handle all cases, and
1002 // the extra bitcast should be optimized away in later passes.
1003 Value *ActualRelocatedBase = RelocatedBase;
1004 if (RelocatedBase->getType() != Base->getType()) {
1005 ActualRelocatedBase =
1006 Builder.CreateBitCast(RelocatedBase, Base->getType());
1008 Value *Replacement = Builder.CreateGEP(
1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1010 Replacement->takeName(ToReplace);
1011 // If the newly generated derived pointer's type does not match the original derived
1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1013 Value *ActualReplacement = Replacement;
1014 if (Replacement->getType() != ToReplace->getType()) {
1015 ActualReplacement =
1016 Builder.CreateBitCast(Replacement, ToReplace->getType());
1018 ToReplace->replaceAllUsesWith(ActualReplacement);
1019 ToReplace->eraseFromParent();
1021 MadeChange = true;
1023 return MadeChange;
1026 // Turns this:
1028 // %base = ...
1029 // %ptr = gep %base + 15
1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1031 // %base' = relocate(%tok, i32 4, i32 4)
1032 // %ptr' = relocate(%tok, i32 4, i32 5)
1033 // %val = load %ptr'
1035 // into this:
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = gc.relocate(%tok, i32 4, i32 4)
1041 // %ptr' = gep %base' + 15
1042 // %val = load %ptr'
1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1044 bool MadeChange = false;
1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1047 for (auto *U : I.users())
1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1049 // Collect all the relocate calls associated with a statepoint
1050 AllRelocateCalls.push_back(Relocate);
1052 // We need atleast one base pointer relocation + one derived pointer
1053 // relocation to mangle
1054 if (AllRelocateCalls.size() < 2)
1055 return false;
1057 // RelocateInstMap is a mapping from the base relocate instruction to the
1058 // corresponding derived relocate instructions
1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1061 if (RelocateInstMap.empty())
1062 return false;
1064 for (auto &Item : RelocateInstMap)
1065 // Item.first is the RelocatedBase to offset against
1066 // Item.second is the vector of Targets to replace
1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1068 return MadeChange;
1071 /// Sink the specified cast instruction into its user blocks.
1072 static bool SinkCast(CastInst *CI) {
1073 BasicBlock *DefBB = CI->getParent();
1075 /// InsertedCasts - Only insert a cast in each block once.
1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1078 bool MadeChange = false;
1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1080 UI != E; ) {
1081 Use &TheUse = UI.getUse();
1082 Instruction *User = cast<Instruction>(*UI);
1084 // Figure out which BB this cast is used in. For PHI's this is the
1085 // appropriate predecessor block.
1086 BasicBlock *UserBB = User->getParent();
1087 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1088 UserBB = PN->getIncomingBlock(TheUse);
1091 // Preincrement use iterator so we don't invalidate it.
1092 ++UI;
1094 // The first insertion point of a block containing an EH pad is after the
1095 // pad. If the pad is the user, we cannot sink the cast past the pad.
1096 if (User->isEHPad())
1097 continue;
1099 // If the block selected to receive the cast is an EH pad that does not
1100 // allow non-PHI instructions before the terminator, we can't sink the
1101 // cast.
1102 if (UserBB->getTerminator()->isEHPad())
1103 continue;
1105 // If this user is in the same block as the cast, don't change the cast.
1106 if (UserBB == DefBB) continue;
1108 // If we have already inserted a cast into this block, use it.
1109 CastInst *&InsertedCast = InsertedCasts[UserBB];
1111 if (!InsertedCast) {
1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113 assert(InsertPt != UserBB->end());
1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1115 CI->getType(), "", &*InsertPt);
1116 InsertedCast->setDebugLoc(CI->getDebugLoc());
1119 // Replace a use of the cast with a use of the new cast.
1120 TheUse = InsertedCast;
1121 MadeChange = true;
1122 ++NumCastUses;
1125 // If we removed all uses, nuke the cast.
1126 if (CI->use_empty()) {
1127 salvageDebugInfo(*CI);
1128 CI->eraseFromParent();
1129 MadeChange = true;
1132 return MadeChange;
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1139 /// Return true if any changes are made.
1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1141 const DataLayout &DL) {
1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1143 // than sinking only nop casts, but is helpful on some platforms.
1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1146 ASC->getDestAddressSpace()))
1147 return false;
1150 // If this is a noop copy,
1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1152 EVT DstVT = TLI.getValueType(DL, CI->getType());
1154 // This is an fp<->int conversion?
1155 if (SrcVT.isInteger() != DstVT.isInteger())
1156 return false;
1158 // If this is an extension, it will be a zero or sign extension, which
1159 // isn't a noop.
1160 if (SrcVT.bitsLT(DstVT)) return false;
1162 // If these values will be promoted, find out what they will be promoted
1163 // to. This helps us consider truncates on PPC as noop copies when they
1164 // are.
1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1166 TargetLowering::TypePromoteInteger)
1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1168 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1169 TargetLowering::TypePromoteInteger)
1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1172 // If, after promotion, these are the same types, this is a noop copy.
1173 if (SrcVT != DstVT)
1174 return false;
1176 return SinkCast(CI);
1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1180 CmpInst *Cmp,
1181 Intrinsic::ID IID) {
1182 if (BO->getParent() != Cmp->getParent()) {
1183 // We used to use a dominator tree here to allow multi-block optimization.
1184 // But that was problematic because:
1185 // 1. It could cause a perf regression by hoisting the math op into the
1186 // critical path.
1187 // 2. It could cause a perf regression by creating a value that was live
1188 // across multiple blocks and increasing register pressure.
1189 // 3. Use of a dominator tree could cause large compile-time regression.
1190 // This is because we recompute the DT on every change in the main CGP
1191 // run-loop. The recomputing is probably unnecessary in many cases, so if
1192 // that was fixed, using a DT here would be ok.
1193 return false;
1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1197 Value *Arg0 = BO->getOperand(0);
1198 Value *Arg1 = BO->getOperand(1);
1199 if (BO->getOpcode() == Instruction::Add &&
1200 IID == Intrinsic::usub_with_overflow) {
1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1205 // Insert at the first instruction of the pair.
1206 Instruction *InsertPt = nullptr;
1207 for (Instruction &Iter : *Cmp->getParent()) {
1208 if (&Iter == BO || &Iter == Cmp) {
1209 InsertPt = &Iter;
1210 break;
1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1215 IRBuilder<> Builder(InsertPt);
1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1219 BO->replaceAllUsesWith(Math);
1220 Cmp->replaceAllUsesWith(OV);
1221 BO->eraseFromParent();
1222 Cmp->eraseFromParent();
1223 return true;
1226 /// Match special-case patterns that check for unsigned add overflow.
1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1228 BinaryOperator *&Add) {
1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1233 // We are not expecting non-canonical/degenerate code. Just bail out.
1234 if (isa<Constant>(A))
1235 return false;
1237 ICmpInst::Predicate Pred = Cmp->getPredicate();
1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1239 B = ConstantInt::get(B->getType(), 1);
1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1241 B = ConstantInt::get(B->getType(), -1);
1242 else
1243 return false;
1245 // Check the users of the variable operand of the compare looking for an add
1246 // with the adjusted constant.
1247 for (User *U : A->users()) {
1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1249 Add = cast<BinaryOperator>(U);
1250 return true;
1253 return false;
1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1257 /// intrinsic. Return true if any changes were made.
1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1259 bool &ModifiedDT) {
1260 Value *A, *B;
1261 BinaryOperator *Add;
1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1264 return false;
1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1267 TLI->getValueType(*DL, Add->getType())))
1268 return false;
1270 // We don't want to move around uses of condition values this late, so we
1271 // check if it is legal to create the call to the intrinsic in the basic
1272 // block containing the icmp.
1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1274 return false;
1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1277 return false;
1279 // Reset callers - do not crash by iterating over a dead instruction.
1280 ModifiedDT = true;
1281 return true;
1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1285 bool &ModifiedDT) {
1286 // We are not expecting non-canonical/degenerate code. Just bail out.
1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1288 if (isa<Constant>(A) && isa<Constant>(B))
1289 return false;
1291 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1292 ICmpInst::Predicate Pred = Cmp->getPredicate();
1293 if (Pred == ICmpInst::ICMP_UGT) {
1294 std::swap(A, B);
1295 Pred = ICmpInst::ICMP_ULT;
1297 // Convert special-case: (A == 0) is the same as (A u< 1).
1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1299 B = ConstantInt::get(B->getType(), 1);
1300 Pred = ICmpInst::ICMP_ULT;
1302 // Convert special-case: (A != 0) is the same as (0 u< A).
1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1304 std::swap(A, B);
1305 Pred = ICmpInst::ICMP_ULT;
1307 if (Pred != ICmpInst::ICMP_ULT)
1308 return false;
1310 // Walk the users of a variable operand of a compare looking for a subtract or
1311 // add with that same operand. Also match the 2nd operand of the compare to
1312 // the add/sub, but that may be a negated constant operand of an add.
1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1314 BinaryOperator *Sub = nullptr;
1315 for (User *U : CmpVariableOperand->users()) {
1316 // A - B, A u< B --> usubo(A, B)
1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1318 Sub = cast<BinaryOperator>(U);
1319 break;
1322 // A + (-C), A u< C (canonicalized form of (sub A, C))
1323 const APInt *CmpC, *AddC;
1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1326 Sub = cast<BinaryOperator>(U);
1327 break;
1330 if (!Sub)
1331 return false;
1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1334 TLI->getValueType(*DL, Sub->getType())))
1335 return false;
1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1338 return false;
1340 // Reset callers - do not crash by iterating over a dead instruction.
1341 ModifiedDT = true;
1342 return true;
1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1346 /// registers that must be created and coalesced. This is a clear win except on
1347 /// targets with multiple condition code registers (PowerPC), where it might
1348 /// lose; some adjustment may be wanted there.
1350 /// Return true if any changes are made.
1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1352 if (TLI.hasMultipleConditionRegisters())
1353 return false;
1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1357 return false;
1359 // Only insert a cmp in each block once.
1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1362 bool MadeChange = false;
1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1364 UI != E; ) {
1365 Use &TheUse = UI.getUse();
1366 Instruction *User = cast<Instruction>(*UI);
1368 // Preincrement use iterator so we don't invalidate it.
1369 ++UI;
1371 // Don't bother for PHI nodes.
1372 if (isa<PHINode>(User))
1373 continue;
1375 // Figure out which BB this cmp is used in.
1376 BasicBlock *UserBB = User->getParent();
1377 BasicBlock *DefBB = Cmp->getParent();
1379 // If this user is in the same block as the cmp, don't change the cmp.
1380 if (UserBB == DefBB) continue;
1382 // If we have already inserted a cmp into this block, use it.
1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1385 if (!InsertedCmp) {
1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1387 assert(InsertPt != UserBB->end());
1388 InsertedCmp =
1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1390 Cmp->getOperand(0), Cmp->getOperand(1), "",
1391 &*InsertPt);
1392 // Propagate the debug info.
1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1396 // Replace a use of the cmp with a use of the new cmp.
1397 TheUse = InsertedCmp;
1398 MadeChange = true;
1399 ++NumCmpUses;
1402 // If we removed all uses, nuke the cmp.
1403 if (Cmp->use_empty()) {
1404 Cmp->eraseFromParent();
1405 MadeChange = true;
1408 return MadeChange;
1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1412 if (sinkCmpExpression(Cmp, *TLI))
1413 return true;
1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1416 return true;
1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1419 return true;
1421 return false;
1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1425 /// used in a compare to allow isel to generate better code for targets where
1426 /// this operation can be combined.
1428 /// Return true if any changes are made.
1429 static bool sinkAndCmp0Expression(Instruction *AndI,
1430 const TargetLowering &TLI,
1431 SetOfInstrs &InsertedInsts) {
1432 // Double-check that we're not trying to optimize an instruction that was
1433 // already optimized by some other part of this pass.
1434 assert(!InsertedInsts.count(AndI) &&
1435 "Attempting to optimize already optimized and instruction");
1436 (void) InsertedInsts;
1438 // Nothing to do for single use in same basic block.
1439 if (AndI->hasOneUse() &&
1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1441 return false;
1443 // Try to avoid cases where sinking/duplicating is likely to increase register
1444 // pressure.
1445 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1446 !isa<ConstantInt>(AndI->getOperand(1)) &&
1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1448 return false;
1450 for (auto *U : AndI->users()) {
1451 Instruction *User = cast<Instruction>(U);
1453 // Only sink 'and' feeding icmp with 0.
1454 if (!isa<ICmpInst>(User))
1455 return false;
1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1458 if (!CmpC || !CmpC->isZero())
1459 return false;
1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1463 return false;
1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1466 LLVM_DEBUG(AndI->getParent()->dump());
1468 // Push the 'and' into the same block as the icmp 0. There should only be
1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1470 // others, so we don't need to keep track of which BBs we insert into.
1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1472 UI != E; ) {
1473 Use &TheUse = UI.getUse();
1474 Instruction *User = cast<Instruction>(*UI);
1476 // Preincrement use iterator so we don't invalidate it.
1477 ++UI;
1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1481 // Keep the 'and' in the same place if the use is already in the same block.
1482 Instruction *InsertPt =
1483 User->getParent() == AndI->getParent() ? AndI : User;
1484 Instruction *InsertedAnd =
1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1486 AndI->getOperand(1), "", InsertPt);
1487 // Propagate the debug info.
1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1490 // Replace a use of the 'and' with a use of the new 'and'.
1491 TheUse = InsertedAnd;
1492 ++NumAndUses;
1493 LLVM_DEBUG(User->getParent()->dump());
1496 // We removed all uses, nuke the and.
1497 AndI->eraseFromParent();
1498 return true;
1501 /// Check if the candidates could be combined with a shift instruction, which
1502 /// includes:
1503 /// 1. Truncate instruction
1504 /// 2. And instruction and the imm is a mask of the low bits:
1505 /// imm & (imm+1) == 0
1506 static bool isExtractBitsCandidateUse(Instruction *User) {
1507 if (!isa<TruncInst>(User)) {
1508 if (User->getOpcode() != Instruction::And ||
1509 !isa<ConstantInt>(User->getOperand(1)))
1510 return false;
1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1514 if ((Cimm & (Cimm + 1)).getBoolValue())
1515 return false;
1517 return true;
1520 /// Sink both shift and truncate instruction to the use of truncate's BB.
1521 static bool
1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1524 const TargetLowering &TLI, const DataLayout &DL) {
1525 BasicBlock *UserBB = User->getParent();
1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1527 TruncInst *TruncI = dyn_cast<TruncInst>(User);
1528 bool MadeChange = false;
1530 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1531 TruncE = TruncI->user_end();
1532 TruncUI != TruncE;) {
1534 Use &TruncTheUse = TruncUI.getUse();
1535 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1536 // Preincrement use iterator so we don't invalidate it.
1538 ++TruncUI;
1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1541 if (!ISDOpcode)
1542 continue;
1544 // If the use is actually a legal node, there will not be an
1545 // implicit truncate.
1546 // FIXME: always querying the result type is just an
1547 // approximation; some nodes' legality is determined by the
1548 // operand or other means. There's no good way to find out though.
1549 if (TLI.isOperationLegalOrCustom(
1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1551 continue;
1553 // Don't bother for PHI nodes.
1554 if (isa<PHINode>(TruncUser))
1555 continue;
1557 BasicBlock *TruncUserBB = TruncUser->getParent();
1559 if (UserBB == TruncUserBB)
1560 continue;
1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1565 if (!InsertedShift && !InsertedTrunc) {
1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1567 assert(InsertPt != TruncUserBB->end());
1568 // Sink the shift
1569 if (ShiftI->getOpcode() == Instruction::AShr)
1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1571 "", &*InsertPt);
1572 else
1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1574 "", &*InsertPt);
1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1577 // Sink the trunc
1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1579 TruncInsertPt++;
1580 assert(TruncInsertPt != TruncUserBB->end());
1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1583 TruncI->getType(), "", &*TruncInsertPt);
1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1586 MadeChange = true;
1588 TruncTheUse = InsertedTrunc;
1591 return MadeChange;
1594 /// Sink the shift *right* instruction into user blocks if the uses could
1595 /// potentially be combined with this shift instruction and generate BitExtract
1596 /// instruction. It will only be applied if the architecture supports BitExtract
1597 /// instruction. Here is an example:
1598 /// BB1:
1599 /// %x.extract.shift = lshr i64 %arg1, 32
1600 /// BB2:
1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1602 /// ==>
1604 /// BB2:
1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1609 /// instruction.
1610 /// Return true if any changes are made.
1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1612 const TargetLowering &TLI,
1613 const DataLayout &DL) {
1614 BasicBlock *DefBB = ShiftI->getParent();
1616 /// Only insert instructions in each block once.
1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1621 bool MadeChange = false;
1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1623 UI != E;) {
1624 Use &TheUse = UI.getUse();
1625 Instruction *User = cast<Instruction>(*UI);
1626 // Preincrement use iterator so we don't invalidate it.
1627 ++UI;
1629 // Don't bother for PHI nodes.
1630 if (isa<PHINode>(User))
1631 continue;
1633 if (!isExtractBitsCandidateUse(User))
1634 continue;
1636 BasicBlock *UserBB = User->getParent();
1638 if (UserBB == DefBB) {
1639 // If the shift and truncate instruction are in the same BB. The use of
1640 // the truncate(TruncUse) may still introduce another truncate if not
1641 // legal. In this case, we would like to sink both shift and truncate
1642 // instruction to the BB of TruncUse.
1643 // for example:
1644 // BB1:
1645 // i64 shift.result = lshr i64 opnd, imm
1646 // trunc.result = trunc shift.result to i16
1648 // BB2:
1649 // ----> We will have an implicit truncate here if the architecture does
1650 // not have i16 compare.
1651 // cmp i16 trunc.result, opnd2
1653 if (isa<TruncInst>(User) && shiftIsLegal
1654 // If the type of the truncate is legal, no truncate will be
1655 // introduced in other basic blocks.
1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1658 MadeChange =
1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1661 continue;
1663 // If we have already inserted a shift into this block, use it.
1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1666 if (!InsertedShift) {
1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1668 assert(InsertPt != UserBB->end());
1670 if (ShiftI->getOpcode() == Instruction::AShr)
1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1672 "", &*InsertPt);
1673 else
1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1675 "", &*InsertPt);
1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1678 MadeChange = true;
1681 // Replace a use of the shift with a use of the new shift.
1682 TheUse = InsertedShift;
1685 // If we removed all uses, or there are none, nuke the shift.
1686 if (ShiftI->use_empty()) {
1687 salvageDebugInfo(*ShiftI);
1688 ShiftI->eraseFromParent();
1689 MadeChange = true;
1692 return MadeChange;
1695 /// If counting leading or trailing zeros is an expensive operation and a zero
1696 /// input is defined, add a check for zero to avoid calling the intrinsic.
1698 /// We want to transform:
1699 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1701 /// into:
1702 /// entry:
1703 /// %cmpz = icmp eq i64 %A, 0
1704 /// br i1 %cmpz, label %cond.end, label %cond.false
1705 /// cond.false:
1706 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1707 /// br label %cond.end
1708 /// cond.end:
1709 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1711 /// If the transform is performed, return true and set ModifiedDT to true.
1712 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1713 const TargetLowering *TLI,
1714 const DataLayout *DL,
1715 bool &ModifiedDT) {
1716 if (!TLI || !DL)
1717 return false;
1719 // If a zero input is undefined, it doesn't make sense to despeculate that.
1720 if (match(CountZeros->getOperand(1), m_One()))
1721 return false;
1723 // If it's cheap to speculate, there's nothing to do.
1724 auto IntrinsicID = CountZeros->getIntrinsicID();
1725 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1726 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1727 return false;
1729 // Only handle legal scalar cases. Anything else requires too much work.
1730 Type *Ty = CountZeros->getType();
1731 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1732 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1733 return false;
1735 // The intrinsic will be sunk behind a compare against zero and branch.
1736 BasicBlock *StartBlock = CountZeros->getParent();
1737 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1739 // Create another block after the count zero intrinsic. A PHI will be added
1740 // in this block to select the result of the intrinsic or the bit-width
1741 // constant if the input to the intrinsic is zero.
1742 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1743 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1745 // Set up a builder to create a compare, conditional branch, and PHI.
1746 IRBuilder<> Builder(CountZeros->getContext());
1747 Builder.SetInsertPoint(StartBlock->getTerminator());
1748 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1750 // Replace the unconditional branch that was created by the first split with
1751 // a compare against zero and a conditional branch.
1752 Value *Zero = Constant::getNullValue(Ty);
1753 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1754 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1755 StartBlock->getTerminator()->eraseFromParent();
1757 // Create a PHI in the end block to select either the output of the intrinsic
1758 // or the bit width of the operand.
1759 Builder.SetInsertPoint(&EndBlock->front());
1760 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1761 CountZeros->replaceAllUsesWith(PN);
1762 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1763 PN->addIncoming(BitWidth, StartBlock);
1764 PN->addIncoming(CountZeros, CallBlock);
1766 // We are explicitly handling the zero case, so we can set the intrinsic's
1767 // undefined zero argument to 'true'. This will also prevent reprocessing the
1768 // intrinsic; we only despeculate when a zero input is defined.
1769 CountZeros->setArgOperand(1, Builder.getTrue());
1770 ModifiedDT = true;
1771 return true;
1774 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1775 BasicBlock *BB = CI->getParent();
1777 // Lower inline assembly if we can.
1778 // If we found an inline asm expession, and if the target knows how to
1779 // lower it to normal LLVM code, do so now.
1780 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1781 if (TLI->ExpandInlineAsm(CI)) {
1782 // Avoid invalidating the iterator.
1783 CurInstIterator = BB->begin();
1784 // Avoid processing instructions out of order, which could cause
1785 // reuse before a value is defined.
1786 SunkAddrs.clear();
1787 return true;
1789 // Sink address computing for memory operands into the block.
1790 if (optimizeInlineAsmInst(CI))
1791 return true;
1794 // Align the pointer arguments to this call if the target thinks it's a good
1795 // idea
1796 unsigned MinSize, PrefAlign;
1797 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1798 for (auto &Arg : CI->arg_operands()) {
1799 // We want to align both objects whose address is used directly and
1800 // objects whose address is used in casts and GEPs, though it only makes
1801 // sense for GEPs if the offset is a multiple of the desired alignment and
1802 // if size - offset meets the size threshold.
1803 if (!Arg->getType()->isPointerTy())
1804 continue;
1805 APInt Offset(DL->getIndexSizeInBits(
1806 cast<PointerType>(Arg->getType())->getAddressSpace()),
1808 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1809 uint64_t Offset2 = Offset.getLimitedValue();
1810 if ((Offset2 & (PrefAlign-1)) != 0)
1811 continue;
1812 AllocaInst *AI;
1813 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1814 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1815 AI->setAlignment(PrefAlign);
1816 // Global variables can only be aligned if they are defined in this
1817 // object (i.e. they are uniquely initialized in this object), and
1818 // over-aligning global variables that have an explicit section is
1819 // forbidden.
1820 GlobalVariable *GV;
1821 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1822 GV->getPointerAlignment(*DL) < PrefAlign &&
1823 DL->getTypeAllocSize(GV->getValueType()) >=
1824 MinSize + Offset2)
1825 GV->setAlignment(PrefAlign);
1827 // If this is a memcpy (or similar) then we may be able to improve the
1828 // alignment
1829 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1830 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1831 if (DestAlign > MI->getDestAlignment())
1832 MI->setDestAlignment(DestAlign);
1833 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1834 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1835 if (SrcAlign > MTI->getSourceAlignment())
1836 MTI->setSourceAlignment(SrcAlign);
1841 // If we have a cold call site, try to sink addressing computation into the
1842 // cold block. This interacts with our handling for loads and stores to
1843 // ensure that we can fold all uses of a potential addressing computation
1844 // into their uses. TODO: generalize this to work over profiling data
1845 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1846 for (auto &Arg : CI->arg_operands()) {
1847 if (!Arg->getType()->isPointerTy())
1848 continue;
1849 unsigned AS = Arg->getType()->getPointerAddressSpace();
1850 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1853 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1854 if (II) {
1855 switch (II->getIntrinsicID()) {
1856 default: break;
1857 case Intrinsic::experimental_widenable_condition: {
1858 // Give up on future widening oppurtunties so that we can fold away dead
1859 // paths and merge blocks before going into block-local instruction
1860 // selection.
1861 if (II->use_empty()) {
1862 II->eraseFromParent();
1863 return true;
1865 Constant *RetVal = ConstantInt::getTrue(II->getContext());
1866 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1867 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1869 return true;
1871 case Intrinsic::objectsize: {
1872 // Lower all uses of llvm.objectsize.*
1873 Value *RetVal =
1874 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1876 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1877 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1879 return true;
1881 case Intrinsic::is_constant: {
1882 // If is_constant hasn't folded away yet, lower it to false now.
1883 Constant *RetVal = ConstantInt::get(II->getType(), 0);
1884 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1885 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1887 return true;
1889 case Intrinsic::aarch64_stlxr:
1890 case Intrinsic::aarch64_stxr: {
1891 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1892 if (!ExtVal || !ExtVal->hasOneUse() ||
1893 ExtVal->getParent() == CI->getParent())
1894 return false;
1895 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1896 ExtVal->moveBefore(CI);
1897 // Mark this instruction as "inserted by CGP", so that other
1898 // optimizations don't touch it.
1899 InsertedInsts.insert(ExtVal);
1900 return true;
1903 case Intrinsic::launder_invariant_group:
1904 case Intrinsic::strip_invariant_group: {
1905 Value *ArgVal = II->getArgOperand(0);
1906 auto it = LargeOffsetGEPMap.find(II);
1907 if (it != LargeOffsetGEPMap.end()) {
1908 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1909 // Make sure not to have to deal with iterator invalidation
1910 // after possibly adding ArgVal to LargeOffsetGEPMap.
1911 auto GEPs = std::move(it->second);
1912 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1913 LargeOffsetGEPMap.erase(II);
1916 II->replaceAllUsesWith(ArgVal);
1917 II->eraseFromParent();
1918 return true;
1920 case Intrinsic::cttz:
1921 case Intrinsic::ctlz:
1922 // If counting zeros is expensive, try to avoid it.
1923 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1926 if (TLI) {
1927 SmallVector<Value*, 2> PtrOps;
1928 Type *AccessTy;
1929 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1930 while (!PtrOps.empty()) {
1931 Value *PtrVal = PtrOps.pop_back_val();
1932 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1933 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1934 return true;
1939 // From here on out we're working with named functions.
1940 if (!CI->getCalledFunction()) return false;
1942 // Lower all default uses of _chk calls. This is very similar
1943 // to what InstCombineCalls does, but here we are only lowering calls
1944 // to fortified library functions (e.g. __memcpy_chk) that have the default
1945 // "don't know" as the objectsize. Anything else should be left alone.
1946 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1947 if (Value *V = Simplifier.optimizeCall(CI)) {
1948 CI->replaceAllUsesWith(V);
1949 CI->eraseFromParent();
1950 return true;
1953 return false;
1956 /// Look for opportunities to duplicate return instructions to the predecessor
1957 /// to enable tail call optimizations. The case it is currently looking for is:
1958 /// @code
1959 /// bb0:
1960 /// %tmp0 = tail call i32 @f0()
1961 /// br label %return
1962 /// bb1:
1963 /// %tmp1 = tail call i32 @f1()
1964 /// br label %return
1965 /// bb2:
1966 /// %tmp2 = tail call i32 @f2()
1967 /// br label %return
1968 /// return:
1969 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1970 /// ret i32 %retval
1971 /// @endcode
1973 /// =>
1975 /// @code
1976 /// bb0:
1977 /// %tmp0 = tail call i32 @f0()
1978 /// ret i32 %tmp0
1979 /// bb1:
1980 /// %tmp1 = tail call i32 @f1()
1981 /// ret i32 %tmp1
1982 /// bb2:
1983 /// %tmp2 = tail call i32 @f2()
1984 /// ret i32 %tmp2
1985 /// @endcode
1986 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1987 if (!TLI)
1988 return false;
1990 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1991 if (!RetI)
1992 return false;
1994 PHINode *PN = nullptr;
1995 BitCastInst *BCI = nullptr;
1996 Value *V = RetI->getReturnValue();
1997 if (V) {
1998 BCI = dyn_cast<BitCastInst>(V);
1999 if (BCI)
2000 V = BCI->getOperand(0);
2002 PN = dyn_cast<PHINode>(V);
2003 if (!PN)
2004 return false;
2007 if (PN && PN->getParent() != BB)
2008 return false;
2010 // Make sure there are no instructions between the PHI and return, or that the
2011 // return is the first instruction in the block.
2012 if (PN) {
2013 BasicBlock::iterator BI = BB->begin();
2014 // Skip over debug and the bitcast.
2015 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2016 if (&*BI != RetI)
2017 return false;
2018 } else {
2019 BasicBlock::iterator BI = BB->begin();
2020 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2021 if (&*BI != RetI)
2022 return false;
2025 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2026 /// call.
2027 const Function *F = BB->getParent();
2028 SmallVector<BasicBlock*, 4> TailCallBBs;
2029 if (PN) {
2030 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2031 // Look through bitcasts.
2032 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2033 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2034 BasicBlock *PredBB = PN->getIncomingBlock(I);
2035 // Make sure the phi value is indeed produced by the tail call.
2036 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2037 TLI->mayBeEmittedAsTailCall(CI) &&
2038 attributesPermitTailCall(F, CI, RetI, *TLI))
2039 TailCallBBs.push_back(PredBB);
2041 } else {
2042 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2043 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2044 if (!VisitedBBs.insert(*PI).second)
2045 continue;
2047 BasicBlock::InstListType &InstList = (*PI)->getInstList();
2048 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2049 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2050 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2051 if (RI == RE)
2052 continue;
2054 CallInst *CI = dyn_cast<CallInst>(&*RI);
2055 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2056 attributesPermitTailCall(F, CI, RetI, *TLI))
2057 TailCallBBs.push_back(*PI);
2061 bool Changed = false;
2062 for (auto const &TailCallBB : TailCallBBs) {
2063 // Make sure the call instruction is followed by an unconditional branch to
2064 // the return block.
2065 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2066 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2067 continue;
2069 // Duplicate the return into TailCallBB.
2070 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2071 ModifiedDT = Changed = true;
2072 ++NumRetsDup;
2075 // If we eliminated all predecessors of the block, delete the block now.
2076 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2077 BB->eraseFromParent();
2079 return Changed;
2082 //===----------------------------------------------------------------------===//
2083 // Memory Optimization
2084 //===----------------------------------------------------------------------===//
2086 namespace {
2088 /// This is an extended version of TargetLowering::AddrMode
2089 /// which holds actual Value*'s for register values.
2090 struct ExtAddrMode : public TargetLowering::AddrMode {
2091 Value *BaseReg = nullptr;
2092 Value *ScaledReg = nullptr;
2093 Value *OriginalValue = nullptr;
2094 bool InBounds = true;
2096 enum FieldName {
2097 NoField = 0x00,
2098 BaseRegField = 0x01,
2099 BaseGVField = 0x02,
2100 BaseOffsField = 0x04,
2101 ScaledRegField = 0x08,
2102 ScaleField = 0x10,
2103 MultipleFields = 0xff
2107 ExtAddrMode() = default;
2109 void print(raw_ostream &OS) const;
2110 void dump() const;
2112 FieldName compare(const ExtAddrMode &other) {
2113 // First check that the types are the same on each field, as differing types
2114 // is something we can't cope with later on.
2115 if (BaseReg && other.BaseReg &&
2116 BaseReg->getType() != other.BaseReg->getType())
2117 return MultipleFields;
2118 if (BaseGV && other.BaseGV &&
2119 BaseGV->getType() != other.BaseGV->getType())
2120 return MultipleFields;
2121 if (ScaledReg && other.ScaledReg &&
2122 ScaledReg->getType() != other.ScaledReg->getType())
2123 return MultipleFields;
2125 // Conservatively reject 'inbounds' mismatches.
2126 if (InBounds != other.InBounds)
2127 return MultipleFields;
2129 // Check each field to see if it differs.
2130 unsigned Result = NoField;
2131 if (BaseReg != other.BaseReg)
2132 Result |= BaseRegField;
2133 if (BaseGV != other.BaseGV)
2134 Result |= BaseGVField;
2135 if (BaseOffs != other.BaseOffs)
2136 Result |= BaseOffsField;
2137 if (ScaledReg != other.ScaledReg)
2138 Result |= ScaledRegField;
2139 // Don't count 0 as being a different scale, because that actually means
2140 // unscaled (which will already be counted by having no ScaledReg).
2141 if (Scale && other.Scale && Scale != other.Scale)
2142 Result |= ScaleField;
2144 if (countPopulation(Result) > 1)
2145 return MultipleFields;
2146 else
2147 return static_cast<FieldName>(Result);
2150 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2151 // with no offset.
2152 bool isTrivial() {
2153 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2154 // trivial if at most one of these terms is nonzero, except that BaseGV and
2155 // BaseReg both being zero actually means a null pointer value, which we
2156 // consider to be 'non-zero' here.
2157 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2160 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2161 switch (Field) {
2162 default:
2163 return nullptr;
2164 case BaseRegField:
2165 return BaseReg;
2166 case BaseGVField:
2167 return BaseGV;
2168 case ScaledRegField:
2169 return ScaledReg;
2170 case BaseOffsField:
2171 return ConstantInt::get(IntPtrTy, BaseOffs);
2175 void SetCombinedField(FieldName Field, Value *V,
2176 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2177 switch (Field) {
2178 default:
2179 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2180 break;
2181 case ExtAddrMode::BaseRegField:
2182 BaseReg = V;
2183 break;
2184 case ExtAddrMode::BaseGVField:
2185 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2186 // in the BaseReg field.
2187 assert(BaseReg == nullptr);
2188 BaseReg = V;
2189 BaseGV = nullptr;
2190 break;
2191 case ExtAddrMode::ScaledRegField:
2192 ScaledReg = V;
2193 // If we have a mix of scaled and unscaled addrmodes then we want scale
2194 // to be the scale and not zero.
2195 if (!Scale)
2196 for (const ExtAddrMode &AM : AddrModes)
2197 if (AM.Scale) {
2198 Scale = AM.Scale;
2199 break;
2201 break;
2202 case ExtAddrMode::BaseOffsField:
2203 // The offset is no longer a constant, so it goes in ScaledReg with a
2204 // scale of 1.
2205 assert(ScaledReg == nullptr);
2206 ScaledReg = V;
2207 Scale = 1;
2208 BaseOffs = 0;
2209 break;
2214 } // end anonymous namespace
2216 #ifndef NDEBUG
2217 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2218 AM.print(OS);
2219 return OS;
2221 #endif
2223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2224 void ExtAddrMode::print(raw_ostream &OS) const {
2225 bool NeedPlus = false;
2226 OS << "[";
2227 if (InBounds)
2228 OS << "inbounds ";
2229 if (BaseGV) {
2230 OS << (NeedPlus ? " + " : "")
2231 << "GV:";
2232 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2233 NeedPlus = true;
2236 if (BaseOffs) {
2237 OS << (NeedPlus ? " + " : "")
2238 << BaseOffs;
2239 NeedPlus = true;
2242 if (BaseReg) {
2243 OS << (NeedPlus ? " + " : "")
2244 << "Base:";
2245 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2246 NeedPlus = true;
2248 if (Scale) {
2249 OS << (NeedPlus ? " + " : "")
2250 << Scale << "*";
2251 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2254 OS << ']';
2257 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2258 print(dbgs());
2259 dbgs() << '\n';
2261 #endif
2263 namespace {
2265 /// This class provides transaction based operation on the IR.
2266 /// Every change made through this class is recorded in the internal state and
2267 /// can be undone (rollback) until commit is called.
2268 class TypePromotionTransaction {
2269 /// This represents the common interface of the individual transaction.
2270 /// Each class implements the logic for doing one specific modification on
2271 /// the IR via the TypePromotionTransaction.
2272 class TypePromotionAction {
2273 protected:
2274 /// The Instruction modified.
2275 Instruction *Inst;
2277 public:
2278 /// Constructor of the action.
2279 /// The constructor performs the related action on the IR.
2280 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2282 virtual ~TypePromotionAction() = default;
2284 /// Undo the modification done by this action.
2285 /// When this method is called, the IR must be in the same state as it was
2286 /// before this action was applied.
2287 /// \pre Undoing the action works if and only if the IR is in the exact same
2288 /// state as it was directly after this action was applied.
2289 virtual void undo() = 0;
2291 /// Advocate every change made by this action.
2292 /// When the results on the IR of the action are to be kept, it is important
2293 /// to call this function, otherwise hidden information may be kept forever.
2294 virtual void commit() {
2295 // Nothing to be done, this action is not doing anything.
2299 /// Utility to remember the position of an instruction.
2300 class InsertionHandler {
2301 /// Position of an instruction.
2302 /// Either an instruction:
2303 /// - Is the first in a basic block: BB is used.
2304 /// - Has a previous instruction: PrevInst is used.
2305 union {
2306 Instruction *PrevInst;
2307 BasicBlock *BB;
2308 } Point;
2310 /// Remember whether or not the instruction had a previous instruction.
2311 bool HasPrevInstruction;
2313 public:
2314 /// Record the position of \p Inst.
2315 InsertionHandler(Instruction *Inst) {
2316 BasicBlock::iterator It = Inst->getIterator();
2317 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2318 if (HasPrevInstruction)
2319 Point.PrevInst = &*--It;
2320 else
2321 Point.BB = Inst->getParent();
2324 /// Insert \p Inst at the recorded position.
2325 void insert(Instruction *Inst) {
2326 if (HasPrevInstruction) {
2327 if (Inst->getParent())
2328 Inst->removeFromParent();
2329 Inst->insertAfter(Point.PrevInst);
2330 } else {
2331 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2332 if (Inst->getParent())
2333 Inst->moveBefore(Position);
2334 else
2335 Inst->insertBefore(Position);
2340 /// Move an instruction before another.
2341 class InstructionMoveBefore : public TypePromotionAction {
2342 /// Original position of the instruction.
2343 InsertionHandler Position;
2345 public:
2346 /// Move \p Inst before \p Before.
2347 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2348 : TypePromotionAction(Inst), Position(Inst) {
2349 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2350 << "\n");
2351 Inst->moveBefore(Before);
2354 /// Move the instruction back to its original position.
2355 void undo() override {
2356 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2357 Position.insert(Inst);
2361 /// Set the operand of an instruction with a new value.
2362 class OperandSetter : public TypePromotionAction {
2363 /// Original operand of the instruction.
2364 Value *Origin;
2366 /// Index of the modified instruction.
2367 unsigned Idx;
2369 public:
2370 /// Set \p Idx operand of \p Inst with \p NewVal.
2371 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2372 : TypePromotionAction(Inst), Idx(Idx) {
2373 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2374 << "for:" << *Inst << "\n"
2375 << "with:" << *NewVal << "\n");
2376 Origin = Inst->getOperand(Idx);
2377 Inst->setOperand(Idx, NewVal);
2380 /// Restore the original value of the instruction.
2381 void undo() override {
2382 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2383 << "for: " << *Inst << "\n"
2384 << "with: " << *Origin << "\n");
2385 Inst->setOperand(Idx, Origin);
2389 /// Hide the operands of an instruction.
2390 /// Do as if this instruction was not using any of its operands.
2391 class OperandsHider : public TypePromotionAction {
2392 /// The list of original operands.
2393 SmallVector<Value *, 4> OriginalValues;
2395 public:
2396 /// Remove \p Inst from the uses of the operands of \p Inst.
2397 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2398 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2399 unsigned NumOpnds = Inst->getNumOperands();
2400 OriginalValues.reserve(NumOpnds);
2401 for (unsigned It = 0; It < NumOpnds; ++It) {
2402 // Save the current operand.
2403 Value *Val = Inst->getOperand(It);
2404 OriginalValues.push_back(Val);
2405 // Set a dummy one.
2406 // We could use OperandSetter here, but that would imply an overhead
2407 // that we are not willing to pay.
2408 Inst->setOperand(It, UndefValue::get(Val->getType()));
2412 /// Restore the original list of uses.
2413 void undo() override {
2414 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2415 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2416 Inst->setOperand(It, OriginalValues[It]);
2420 /// Build a truncate instruction.
2421 class TruncBuilder : public TypePromotionAction {
2422 Value *Val;
2424 public:
2425 /// Build a truncate instruction of \p Opnd producing a \p Ty
2426 /// result.
2427 /// trunc Opnd to Ty.
2428 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2429 IRBuilder<> Builder(Opnd);
2430 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2431 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2434 /// Get the built value.
2435 Value *getBuiltValue() { return Val; }
2437 /// Remove the built instruction.
2438 void undo() override {
2439 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2440 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2441 IVal->eraseFromParent();
2445 /// Build a sign extension instruction.
2446 class SExtBuilder : public TypePromotionAction {
2447 Value *Val;
2449 public:
2450 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2451 /// result.
2452 /// sext Opnd to Ty.
2453 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2454 : TypePromotionAction(InsertPt) {
2455 IRBuilder<> Builder(InsertPt);
2456 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2457 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2460 /// Get the built value.
2461 Value *getBuiltValue() { return Val; }
2463 /// Remove the built instruction.
2464 void undo() override {
2465 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2466 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2467 IVal->eraseFromParent();
2471 /// Build a zero extension instruction.
2472 class ZExtBuilder : public TypePromotionAction {
2473 Value *Val;
2475 public:
2476 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2477 /// result.
2478 /// zext Opnd to Ty.
2479 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2480 : TypePromotionAction(InsertPt) {
2481 IRBuilder<> Builder(InsertPt);
2482 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2483 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2486 /// Get the built value.
2487 Value *getBuiltValue() { return Val; }
2489 /// Remove the built instruction.
2490 void undo() override {
2491 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2492 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2493 IVal->eraseFromParent();
2497 /// Mutate an instruction to another type.
2498 class TypeMutator : public TypePromotionAction {
2499 /// Record the original type.
2500 Type *OrigTy;
2502 public:
2503 /// Mutate the type of \p Inst into \p NewTy.
2504 TypeMutator(Instruction *Inst, Type *NewTy)
2505 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2506 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2507 << "\n");
2508 Inst->mutateType(NewTy);
2511 /// Mutate the instruction back to its original type.
2512 void undo() override {
2513 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2514 << "\n");
2515 Inst->mutateType(OrigTy);
2519 /// Replace the uses of an instruction by another instruction.
2520 class UsesReplacer : public TypePromotionAction {
2521 /// Helper structure to keep track of the replaced uses.
2522 struct InstructionAndIdx {
2523 /// The instruction using the instruction.
2524 Instruction *Inst;
2526 /// The index where this instruction is used for Inst.
2527 unsigned Idx;
2529 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2530 : Inst(Inst), Idx(Idx) {}
2533 /// Keep track of the original uses (pair Instruction, Index).
2534 SmallVector<InstructionAndIdx, 4> OriginalUses;
2535 /// Keep track of the debug users.
2536 SmallVector<DbgValueInst *, 1> DbgValues;
2538 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2540 public:
2541 /// Replace all the use of \p Inst by \p New.
2542 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2543 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2544 << "\n");
2545 // Record the original uses.
2546 for (Use &U : Inst->uses()) {
2547 Instruction *UserI = cast<Instruction>(U.getUser());
2548 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2550 // Record the debug uses separately. They are not in the instruction's
2551 // use list, but they are replaced by RAUW.
2552 findDbgValues(DbgValues, Inst);
2554 // Now, we can replace the uses.
2555 Inst->replaceAllUsesWith(New);
2558 /// Reassign the original uses of Inst to Inst.
2559 void undo() override {
2560 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2561 for (use_iterator UseIt = OriginalUses.begin(),
2562 EndIt = OriginalUses.end();
2563 UseIt != EndIt; ++UseIt) {
2564 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2566 // RAUW has replaced all original uses with references to the new value,
2567 // including the debug uses. Since we are undoing the replacements,
2568 // the original debug uses must also be reinstated to maintain the
2569 // correctness and utility of debug value instructions.
2570 for (auto *DVI: DbgValues) {
2571 LLVMContext &Ctx = Inst->getType()->getContext();
2572 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2573 DVI->setOperand(0, MV);
2578 /// Remove an instruction from the IR.
2579 class InstructionRemover : public TypePromotionAction {
2580 /// Original position of the instruction.
2581 InsertionHandler Inserter;
2583 /// Helper structure to hide all the link to the instruction. In other
2584 /// words, this helps to do as if the instruction was removed.
2585 OperandsHider Hider;
2587 /// Keep track of the uses replaced, if any.
2588 UsesReplacer *Replacer = nullptr;
2590 /// Keep track of instructions removed.
2591 SetOfInstrs &RemovedInsts;
2593 public:
2594 /// Remove all reference of \p Inst and optionally replace all its
2595 /// uses with New.
2596 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2597 /// \pre If !Inst->use_empty(), then New != nullptr
2598 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2599 Value *New = nullptr)
2600 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2601 RemovedInsts(RemovedInsts) {
2602 if (New)
2603 Replacer = new UsesReplacer(Inst, New);
2604 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2605 RemovedInsts.insert(Inst);
2606 /// The instructions removed here will be freed after completing
2607 /// optimizeBlock() for all blocks as we need to keep track of the
2608 /// removed instructions during promotion.
2609 Inst->removeFromParent();
2612 ~InstructionRemover() override { delete Replacer; }
2614 /// Resurrect the instruction and reassign it to the proper uses if
2615 /// new value was provided when build this action.
2616 void undo() override {
2617 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2618 Inserter.insert(Inst);
2619 if (Replacer)
2620 Replacer->undo();
2621 Hider.undo();
2622 RemovedInsts.erase(Inst);
2626 public:
2627 /// Restoration point.
2628 /// The restoration point is a pointer to an action instead of an iterator
2629 /// because the iterator may be invalidated but not the pointer.
2630 using ConstRestorationPt = const TypePromotionAction *;
2632 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2633 : RemovedInsts(RemovedInsts) {}
2635 /// Advocate every changes made in that transaction.
2636 void commit();
2638 /// Undo all the changes made after the given point.
2639 void rollback(ConstRestorationPt Point);
2641 /// Get the current restoration point.
2642 ConstRestorationPt getRestorationPoint() const;
2644 /// \name API for IR modification with state keeping to support rollback.
2645 /// @{
2646 /// Same as Instruction::setOperand.
2647 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2649 /// Same as Instruction::eraseFromParent.
2650 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2652 /// Same as Value::replaceAllUsesWith.
2653 void replaceAllUsesWith(Instruction *Inst, Value *New);
2655 /// Same as Value::mutateType.
2656 void mutateType(Instruction *Inst, Type *NewTy);
2658 /// Same as IRBuilder::createTrunc.
2659 Value *createTrunc(Instruction *Opnd, Type *Ty);
2661 /// Same as IRBuilder::createSExt.
2662 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2664 /// Same as IRBuilder::createZExt.
2665 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2667 /// Same as Instruction::moveBefore.
2668 void moveBefore(Instruction *Inst, Instruction *Before);
2669 /// @}
2671 private:
2672 /// The ordered list of actions made so far.
2673 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2675 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2677 SetOfInstrs &RemovedInsts;
2680 } // end anonymous namespace
2682 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2683 Value *NewVal) {
2684 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2685 Inst, Idx, NewVal));
2688 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2689 Value *NewVal) {
2690 Actions.push_back(
2691 std::make_unique<TypePromotionTransaction::InstructionRemover>(
2692 Inst, RemovedInsts, NewVal));
2695 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2696 Value *New) {
2697 Actions.push_back(
2698 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2701 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2702 Actions.push_back(
2703 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2706 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2707 Type *Ty) {
2708 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2709 Value *Val = Ptr->getBuiltValue();
2710 Actions.push_back(std::move(Ptr));
2711 return Val;
2714 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2715 Value *Opnd, Type *Ty) {
2716 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2717 Value *Val = Ptr->getBuiltValue();
2718 Actions.push_back(std::move(Ptr));
2719 return Val;
2722 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2723 Value *Opnd, Type *Ty) {
2724 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2725 Value *Val = Ptr->getBuiltValue();
2726 Actions.push_back(std::move(Ptr));
2727 return Val;
2730 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2731 Instruction *Before) {
2732 Actions.push_back(
2733 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2734 Inst, Before));
2737 TypePromotionTransaction::ConstRestorationPt
2738 TypePromotionTransaction::getRestorationPoint() const {
2739 return !Actions.empty() ? Actions.back().get() : nullptr;
2742 void TypePromotionTransaction::commit() {
2743 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2744 ++It)
2745 (*It)->commit();
2746 Actions.clear();
2749 void TypePromotionTransaction::rollback(
2750 TypePromotionTransaction::ConstRestorationPt Point) {
2751 while (!Actions.empty() && Point != Actions.back().get()) {
2752 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2753 Curr->undo();
2757 namespace {
2759 /// A helper class for matching addressing modes.
2761 /// This encapsulates the logic for matching the target-legal addressing modes.
2762 class AddressingModeMatcher {
2763 SmallVectorImpl<Instruction*> &AddrModeInsts;
2764 const TargetLowering &TLI;
2765 const TargetRegisterInfo &TRI;
2766 const DataLayout &DL;
2768 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2769 /// the memory instruction that we're computing this address for.
2770 Type *AccessTy;
2771 unsigned AddrSpace;
2772 Instruction *MemoryInst;
2774 /// This is the addressing mode that we're building up. This is
2775 /// part of the return value of this addressing mode matching stuff.
2776 ExtAddrMode &AddrMode;
2778 /// The instructions inserted by other CodeGenPrepare optimizations.
2779 const SetOfInstrs &InsertedInsts;
2781 /// A map from the instructions to their type before promotion.
2782 InstrToOrigTy &PromotedInsts;
2784 /// The ongoing transaction where every action should be registered.
2785 TypePromotionTransaction &TPT;
2787 // A GEP which has too large offset to be folded into the addressing mode.
2788 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2790 /// This is set to true when we should not do profitability checks.
2791 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2792 bool IgnoreProfitability;
2794 AddressingModeMatcher(
2795 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2796 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2797 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2798 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2799 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2800 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2801 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2802 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2803 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2804 IgnoreProfitability = false;
2807 public:
2808 /// Find the maximal addressing mode that a load/store of V can fold,
2809 /// give an access type of AccessTy. This returns a list of involved
2810 /// instructions in AddrModeInsts.
2811 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2812 /// optimizations.
2813 /// \p PromotedInsts maps the instructions to their type before promotion.
2814 /// \p The ongoing transaction where every action should be registered.
2815 static ExtAddrMode
2816 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2817 SmallVectorImpl<Instruction *> &AddrModeInsts,
2818 const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2819 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2820 TypePromotionTransaction &TPT,
2821 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2822 ExtAddrMode Result;
2824 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2825 MemoryInst, Result, InsertedInsts,
2826 PromotedInsts, TPT, LargeOffsetGEP)
2827 .matchAddr(V, 0);
2828 (void)Success; assert(Success && "Couldn't select *anything*?");
2829 return Result;
2832 private:
2833 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2834 bool matchAddr(Value *Addr, unsigned Depth);
2835 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2836 bool *MovedAway = nullptr);
2837 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2838 ExtAddrMode &AMBefore,
2839 ExtAddrMode &AMAfter);
2840 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2841 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2842 Value *PromotedOperand) const;
2845 class PhiNodeSet;
2847 /// An iterator for PhiNodeSet.
2848 class PhiNodeSetIterator {
2849 PhiNodeSet * const Set;
2850 size_t CurrentIndex = 0;
2852 public:
2853 /// The constructor. Start should point to either a valid element, or be equal
2854 /// to the size of the underlying SmallVector of the PhiNodeSet.
2855 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2856 PHINode * operator*() const;
2857 PhiNodeSetIterator& operator++();
2858 bool operator==(const PhiNodeSetIterator &RHS) const;
2859 bool operator!=(const PhiNodeSetIterator &RHS) const;
2862 /// Keeps a set of PHINodes.
2864 /// This is a minimal set implementation for a specific use case:
2865 /// It is very fast when there are very few elements, but also provides good
2866 /// performance when there are many. It is similar to SmallPtrSet, but also
2867 /// provides iteration by insertion order, which is deterministic and stable
2868 /// across runs. It is also similar to SmallSetVector, but provides removing
2869 /// elements in O(1) time. This is achieved by not actually removing the element
2870 /// from the underlying vector, so comes at the cost of using more memory, but
2871 /// that is fine, since PhiNodeSets are used as short lived objects.
2872 class PhiNodeSet {
2873 friend class PhiNodeSetIterator;
2875 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2876 using iterator = PhiNodeSetIterator;
2878 /// Keeps the elements in the order of their insertion in the underlying
2879 /// vector. To achieve constant time removal, it never deletes any element.
2880 SmallVector<PHINode *, 32> NodeList;
2882 /// Keeps the elements in the underlying set implementation. This (and not the
2883 /// NodeList defined above) is the source of truth on whether an element
2884 /// is actually in the collection.
2885 MapType NodeMap;
2887 /// Points to the first valid (not deleted) element when the set is not empty
2888 /// and the value is not zero. Equals to the size of the underlying vector
2889 /// when the set is empty. When the value is 0, as in the beginning, the
2890 /// first element may or may not be valid.
2891 size_t FirstValidElement = 0;
2893 public:
2894 /// Inserts a new element to the collection.
2895 /// \returns true if the element is actually added, i.e. was not in the
2896 /// collection before the operation.
2897 bool insert(PHINode *Ptr) {
2898 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2899 NodeList.push_back(Ptr);
2900 return true;
2902 return false;
2905 /// Removes the element from the collection.
2906 /// \returns whether the element is actually removed, i.e. was in the
2907 /// collection before the operation.
2908 bool erase(PHINode *Ptr) {
2909 auto it = NodeMap.find(Ptr);
2910 if (it != NodeMap.end()) {
2911 NodeMap.erase(Ptr);
2912 SkipRemovedElements(FirstValidElement);
2913 return true;
2915 return false;
2918 /// Removes all elements and clears the collection.
2919 void clear() {
2920 NodeMap.clear();
2921 NodeList.clear();
2922 FirstValidElement = 0;
2925 /// \returns an iterator that will iterate the elements in the order of
2926 /// insertion.
2927 iterator begin() {
2928 if (FirstValidElement == 0)
2929 SkipRemovedElements(FirstValidElement);
2930 return PhiNodeSetIterator(this, FirstValidElement);
2933 /// \returns an iterator that points to the end of the collection.
2934 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2936 /// Returns the number of elements in the collection.
2937 size_t size() const {
2938 return NodeMap.size();
2941 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2942 size_t count(PHINode *Ptr) const {
2943 return NodeMap.count(Ptr);
2946 private:
2947 /// Updates the CurrentIndex so that it will point to a valid element.
2949 /// If the element of NodeList at CurrentIndex is valid, it does not
2950 /// change it. If there are no more valid elements, it updates CurrentIndex
2951 /// to point to the end of the NodeList.
2952 void SkipRemovedElements(size_t &CurrentIndex) {
2953 while (CurrentIndex < NodeList.size()) {
2954 auto it = NodeMap.find(NodeList[CurrentIndex]);
2955 // If the element has been deleted and added again later, NodeMap will
2956 // point to a different index, so CurrentIndex will still be invalid.
2957 if (it != NodeMap.end() && it->second == CurrentIndex)
2958 break;
2959 ++CurrentIndex;
2964 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2965 : Set(Set), CurrentIndex(Start) {}
2967 PHINode * PhiNodeSetIterator::operator*() const {
2968 assert(CurrentIndex < Set->NodeList.size() &&
2969 "PhiNodeSet access out of range");
2970 return Set->NodeList[CurrentIndex];
2973 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2974 assert(CurrentIndex < Set->NodeList.size() &&
2975 "PhiNodeSet access out of range");
2976 ++CurrentIndex;
2977 Set->SkipRemovedElements(CurrentIndex);
2978 return *this;
2981 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2982 return CurrentIndex == RHS.CurrentIndex;
2985 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2986 return !((*this) == RHS);
2989 /// Keep track of simplification of Phi nodes.
2990 /// Accept the set of all phi nodes and erase phi node from this set
2991 /// if it is simplified.
2992 class SimplificationTracker {
2993 DenseMap<Value *, Value *> Storage;
2994 const SimplifyQuery &SQ;
2995 // Tracks newly created Phi nodes. The elements are iterated by insertion
2996 // order.
2997 PhiNodeSet AllPhiNodes;
2998 // Tracks newly created Select nodes.
2999 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3001 public:
3002 SimplificationTracker(const SimplifyQuery &sq)
3003 : SQ(sq) {}
3005 Value *Get(Value *V) {
3006 do {
3007 auto SV = Storage.find(V);
3008 if (SV == Storage.end())
3009 return V;
3010 V = SV->second;
3011 } while (true);
3014 Value *Simplify(Value *Val) {
3015 SmallVector<Value *, 32> WorkList;
3016 SmallPtrSet<Value *, 32> Visited;
3017 WorkList.push_back(Val);
3018 while (!WorkList.empty()) {
3019 auto P = WorkList.pop_back_val();
3020 if (!Visited.insert(P).second)
3021 continue;
3022 if (auto *PI = dyn_cast<Instruction>(P))
3023 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3024 for (auto *U : PI->users())
3025 WorkList.push_back(cast<Value>(U));
3026 Put(PI, V);
3027 PI->replaceAllUsesWith(V);
3028 if (auto *PHI = dyn_cast<PHINode>(PI))
3029 AllPhiNodes.erase(PHI);
3030 if (auto *Select = dyn_cast<SelectInst>(PI))
3031 AllSelectNodes.erase(Select);
3032 PI->eraseFromParent();
3035 return Get(Val);
3038 void Put(Value *From, Value *To) {
3039 Storage.insert({ From, To });
3042 void ReplacePhi(PHINode *From, PHINode *To) {
3043 Value* OldReplacement = Get(From);
3044 while (OldReplacement != From) {
3045 From = To;
3046 To = dyn_cast<PHINode>(OldReplacement);
3047 OldReplacement = Get(From);
3049 assert(Get(To) == To && "Replacement PHI node is already replaced.");
3050 Put(From, To);
3051 From->replaceAllUsesWith(To);
3052 AllPhiNodes.erase(From);
3053 From->eraseFromParent();
3056 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3058 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3060 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3062 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3064 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3066 void destroyNewNodes(Type *CommonType) {
3067 // For safe erasing, replace the uses with dummy value first.
3068 auto Dummy = UndefValue::get(CommonType);
3069 for (auto I : AllPhiNodes) {
3070 I->replaceAllUsesWith(Dummy);
3071 I->eraseFromParent();
3073 AllPhiNodes.clear();
3074 for (auto I : AllSelectNodes) {
3075 I->replaceAllUsesWith(Dummy);
3076 I->eraseFromParent();
3078 AllSelectNodes.clear();
3082 /// A helper class for combining addressing modes.
3083 class AddressingModeCombiner {
3084 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3085 typedef std::pair<PHINode *, PHINode *> PHIPair;
3087 private:
3088 /// The addressing modes we've collected.
3089 SmallVector<ExtAddrMode, 16> AddrModes;
3091 /// The field in which the AddrModes differ, when we have more than one.
3092 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3094 /// Are the AddrModes that we have all just equal to their original values?
3095 bool AllAddrModesTrivial = true;
3097 /// Common Type for all different fields in addressing modes.
3098 Type *CommonType;
3100 /// SimplifyQuery for simplifyInstruction utility.
3101 const SimplifyQuery &SQ;
3103 /// Original Address.
3104 Value *Original;
3106 public:
3107 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3108 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3110 /// Get the combined AddrMode
3111 const ExtAddrMode &getAddrMode() const {
3112 return AddrModes[0];
3115 /// Add a new AddrMode if it's compatible with the AddrModes we already
3116 /// have.
3117 /// \return True iff we succeeded in doing so.
3118 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3119 // Take note of if we have any non-trivial AddrModes, as we need to detect
3120 // when all AddrModes are trivial as then we would introduce a phi or select
3121 // which just duplicates what's already there.
3122 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3124 // If this is the first addrmode then everything is fine.
3125 if (AddrModes.empty()) {
3126 AddrModes.emplace_back(NewAddrMode);
3127 return true;
3130 // Figure out how different this is from the other address modes, which we
3131 // can do just by comparing against the first one given that we only care
3132 // about the cumulative difference.
3133 ExtAddrMode::FieldName ThisDifferentField =
3134 AddrModes[0].compare(NewAddrMode);
3135 if (DifferentField == ExtAddrMode::NoField)
3136 DifferentField = ThisDifferentField;
3137 else if (DifferentField != ThisDifferentField)
3138 DifferentField = ExtAddrMode::MultipleFields;
3140 // If NewAddrMode differs in more than one dimension we cannot handle it.
3141 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3143 // If Scale Field is different then we reject.
3144 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3146 // We also must reject the case when base offset is different and
3147 // scale reg is not null, we cannot handle this case due to merge of
3148 // different offsets will be used as ScaleReg.
3149 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3150 !NewAddrMode.ScaledReg);
3152 // We also must reject the case when GV is different and BaseReg installed
3153 // due to we want to use base reg as a merge of GV values.
3154 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3155 !NewAddrMode.HasBaseReg);
3157 // Even if NewAddMode is the same we still need to collect it due to
3158 // original value is different. And later we will need all original values
3159 // as anchors during finding the common Phi node.
3160 if (CanHandle)
3161 AddrModes.emplace_back(NewAddrMode);
3162 else
3163 AddrModes.clear();
3165 return CanHandle;
3168 /// Combine the addressing modes we've collected into a single
3169 /// addressing mode.
3170 /// \return True iff we successfully combined them or we only had one so
3171 /// didn't need to combine them anyway.
3172 bool combineAddrModes() {
3173 // If we have no AddrModes then they can't be combined.
3174 if (AddrModes.size() == 0)
3175 return false;
3177 // A single AddrMode can trivially be combined.
3178 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3179 return true;
3181 // If the AddrModes we collected are all just equal to the value they are
3182 // derived from then combining them wouldn't do anything useful.
3183 if (AllAddrModesTrivial)
3184 return false;
3186 if (!addrModeCombiningAllowed())
3187 return false;
3189 // Build a map between <original value, basic block where we saw it> to
3190 // value of base register.
3191 // Bail out if there is no common type.
3192 FoldAddrToValueMapping Map;
3193 if (!initializeMap(Map))
3194 return false;
3196 Value *CommonValue = findCommon(Map);
3197 if (CommonValue)
3198 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3199 return CommonValue != nullptr;
3202 private:
3203 /// Initialize Map with anchor values. For address seen
3204 /// we set the value of different field saw in this address.
3205 /// At the same time we find a common type for different field we will
3206 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3207 /// Return false if there is no common type found.
3208 bool initializeMap(FoldAddrToValueMapping &Map) {
3209 // Keep track of keys where the value is null. We will need to replace it
3210 // with constant null when we know the common type.
3211 SmallVector<Value *, 2> NullValue;
3212 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3213 for (auto &AM : AddrModes) {
3214 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3215 if (DV) {
3216 auto *Type = DV->getType();
3217 if (CommonType && CommonType != Type)
3218 return false;
3219 CommonType = Type;
3220 Map[AM.OriginalValue] = DV;
3221 } else {
3222 NullValue.push_back(AM.OriginalValue);
3225 assert(CommonType && "At least one non-null value must be!");
3226 for (auto *V : NullValue)
3227 Map[V] = Constant::getNullValue(CommonType);
3228 return true;
3231 /// We have mapping between value A and other value B where B was a field in
3232 /// addressing mode represented by A. Also we have an original value C
3233 /// representing an address we start with. Traversing from C through phi and
3234 /// selects we ended up with A's in a map. This utility function tries to find
3235 /// a value V which is a field in addressing mode C and traversing through phi
3236 /// nodes and selects we will end up in corresponded values B in a map.
3237 /// The utility will create a new Phi/Selects if needed.
3238 // The simple example looks as follows:
3239 // BB1:
3240 // p1 = b1 + 40
3241 // br cond BB2, BB3
3242 // BB2:
3243 // p2 = b2 + 40
3244 // br BB3
3245 // BB3:
3246 // p = phi [p1, BB1], [p2, BB2]
3247 // v = load p
3248 // Map is
3249 // p1 -> b1
3250 // p2 -> b2
3251 // Request is
3252 // p -> ?
3253 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3254 Value *findCommon(FoldAddrToValueMapping &Map) {
3255 // Tracks the simplification of newly created phi nodes. The reason we use
3256 // this mapping is because we will add new created Phi nodes in AddrToBase.
3257 // Simplification of Phi nodes is recursive, so some Phi node may
3258 // be simplified after we added it to AddrToBase. In reality this
3259 // simplification is possible only if original phi/selects were not
3260 // simplified yet.
3261 // Using this mapping we can find the current value in AddrToBase.
3262 SimplificationTracker ST(SQ);
3264 // First step, DFS to create PHI nodes for all intermediate blocks.
3265 // Also fill traverse order for the second step.
3266 SmallVector<Value *, 32> TraverseOrder;
3267 InsertPlaceholders(Map, TraverseOrder, ST);
3269 // Second Step, fill new nodes by merged values and simplify if possible.
3270 FillPlaceholders(Map, TraverseOrder, ST);
3272 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3273 ST.destroyNewNodes(CommonType);
3274 return nullptr;
3277 // Now we'd like to match New Phi nodes to existed ones.
3278 unsigned PhiNotMatchedCount = 0;
3279 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3280 ST.destroyNewNodes(CommonType);
3281 return nullptr;
3284 auto *Result = ST.Get(Map.find(Original)->second);
3285 if (Result) {
3286 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3287 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3289 return Result;
3292 /// Try to match PHI node to Candidate.
3293 /// Matcher tracks the matched Phi nodes.
3294 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3295 SmallSetVector<PHIPair, 8> &Matcher,
3296 PhiNodeSet &PhiNodesToMatch) {
3297 SmallVector<PHIPair, 8> WorkList;
3298 Matcher.insert({ PHI, Candidate });
3299 SmallSet<PHINode *, 8> MatchedPHIs;
3300 MatchedPHIs.insert(PHI);
3301 WorkList.push_back({ PHI, Candidate });
3302 SmallSet<PHIPair, 8> Visited;
3303 while (!WorkList.empty()) {
3304 auto Item = WorkList.pop_back_val();
3305 if (!Visited.insert(Item).second)
3306 continue;
3307 // We iterate over all incoming values to Phi to compare them.
3308 // If values are different and both of them Phi and the first one is a
3309 // Phi we added (subject to match) and both of them is in the same basic
3310 // block then we can match our pair if values match. So we state that
3311 // these values match and add it to work list to verify that.
3312 for (auto B : Item.first->blocks()) {
3313 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3314 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3315 if (FirstValue == SecondValue)
3316 continue;
3318 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3319 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3321 // One of them is not Phi or
3322 // The first one is not Phi node from the set we'd like to match or
3323 // Phi nodes from different basic blocks then
3324 // we will not be able to match.
3325 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3326 FirstPhi->getParent() != SecondPhi->getParent())
3327 return false;
3329 // If we already matched them then continue.
3330 if (Matcher.count({ FirstPhi, SecondPhi }))
3331 continue;
3332 // So the values are different and does not match. So we need them to
3333 // match. (But we register no more than one match per PHI node, so that
3334 // we won't later try to replace them twice.)
3335 if (!MatchedPHIs.insert(FirstPhi).second)
3336 Matcher.insert({ FirstPhi, SecondPhi });
3337 // But me must check it.
3338 WorkList.push_back({ FirstPhi, SecondPhi });
3341 return true;
3344 /// For the given set of PHI nodes (in the SimplificationTracker) try
3345 /// to find their equivalents.
3346 /// Returns false if this matching fails and creation of new Phi is disabled.
3347 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3348 unsigned &PhiNotMatchedCount) {
3349 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3350 // order, so the replacements (ReplacePhi) are also done in a deterministic
3351 // order.
3352 SmallSetVector<PHIPair, 8> Matched;
3353 SmallPtrSet<PHINode *, 8> WillNotMatch;
3354 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3355 while (PhiNodesToMatch.size()) {
3356 PHINode *PHI = *PhiNodesToMatch.begin();
3358 // Add us, if no Phi nodes in the basic block we do not match.
3359 WillNotMatch.clear();
3360 WillNotMatch.insert(PHI);
3362 // Traverse all Phis until we found equivalent or fail to do that.
3363 bool IsMatched = false;
3364 for (auto &P : PHI->getParent()->phis()) {
3365 if (&P == PHI)
3366 continue;
3367 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3368 break;
3369 // If it does not match, collect all Phi nodes from matcher.
3370 // if we end up with no match, them all these Phi nodes will not match
3371 // later.
3372 for (auto M : Matched)
3373 WillNotMatch.insert(M.first);
3374 Matched.clear();
3376 if (IsMatched) {
3377 // Replace all matched values and erase them.
3378 for (auto MV : Matched)
3379 ST.ReplacePhi(MV.first, MV.second);
3380 Matched.clear();
3381 continue;
3383 // If we are not allowed to create new nodes then bail out.
3384 if (!AllowNewPhiNodes)
3385 return false;
3386 // Just remove all seen values in matcher. They will not match anything.
3387 PhiNotMatchedCount += WillNotMatch.size();
3388 for (auto *P : WillNotMatch)
3389 PhiNodesToMatch.erase(P);
3391 return true;
3393 /// Fill the placeholders with values from predecessors and simplify them.
3394 void FillPlaceholders(FoldAddrToValueMapping &Map,
3395 SmallVectorImpl<Value *> &TraverseOrder,
3396 SimplificationTracker &ST) {
3397 while (!TraverseOrder.empty()) {
3398 Value *Current = TraverseOrder.pop_back_val();
3399 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3400 Value *V = Map[Current];
3402 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3403 // CurrentValue also must be Select.
3404 auto *CurrentSelect = cast<SelectInst>(Current);
3405 auto *TrueValue = CurrentSelect->getTrueValue();
3406 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3407 Select->setTrueValue(ST.Get(Map[TrueValue]));
3408 auto *FalseValue = CurrentSelect->getFalseValue();
3409 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3410 Select->setFalseValue(ST.Get(Map[FalseValue]));
3411 } else {
3412 // Must be a Phi node then.
3413 PHINode *PHI = cast<PHINode>(V);
3414 auto *CurrentPhi = dyn_cast<PHINode>(Current);
3415 // Fill the Phi node with values from predecessors.
3416 for (auto B : predecessors(PHI->getParent())) {
3417 Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3418 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3419 PHI->addIncoming(ST.Get(Map[PV]), B);
3422 Map[Current] = ST.Simplify(V);
3426 /// Starting from original value recursively iterates over def-use chain up to
3427 /// known ending values represented in a map. For each traversed phi/select
3428 /// inserts a placeholder Phi or Select.
3429 /// Reports all new created Phi/Select nodes by adding them to set.
3430 /// Also reports and order in what values have been traversed.
3431 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3432 SmallVectorImpl<Value *> &TraverseOrder,
3433 SimplificationTracker &ST) {
3434 SmallVector<Value *, 32> Worklist;
3435 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3436 "Address must be a Phi or Select node");
3437 auto *Dummy = UndefValue::get(CommonType);
3438 Worklist.push_back(Original);
3439 while (!Worklist.empty()) {
3440 Value *Current = Worklist.pop_back_val();
3441 // if it is already visited or it is an ending value then skip it.
3442 if (Map.find(Current) != Map.end())
3443 continue;
3444 TraverseOrder.push_back(Current);
3446 // CurrentValue must be a Phi node or select. All others must be covered
3447 // by anchors.
3448 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3449 // Is it OK to get metadata from OrigSelect?!
3450 // Create a Select placeholder with dummy value.
3451 SelectInst *Select = SelectInst::Create(
3452 CurrentSelect->getCondition(), Dummy, Dummy,
3453 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3454 Map[Current] = Select;
3455 ST.insertNewSelect(Select);
3456 // We are interested in True and False values.
3457 Worklist.push_back(CurrentSelect->getTrueValue());
3458 Worklist.push_back(CurrentSelect->getFalseValue());
3459 } else {
3460 // It must be a Phi node then.
3461 PHINode *CurrentPhi = cast<PHINode>(Current);
3462 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3463 PHINode *PHI =
3464 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3465 Map[Current] = PHI;
3466 ST.insertNewPhi(PHI);
3467 for (Value *P : CurrentPhi->incoming_values())
3468 Worklist.push_back(P);
3473 bool addrModeCombiningAllowed() {
3474 if (DisableComplexAddrModes)
3475 return false;
3476 switch (DifferentField) {
3477 default:
3478 return false;
3479 case ExtAddrMode::BaseRegField:
3480 return AddrSinkCombineBaseReg;
3481 case ExtAddrMode::BaseGVField:
3482 return AddrSinkCombineBaseGV;
3483 case ExtAddrMode::BaseOffsField:
3484 return AddrSinkCombineBaseOffs;
3485 case ExtAddrMode::ScaledRegField:
3486 return AddrSinkCombineScaledReg;
3490 } // end anonymous namespace
3492 /// Try adding ScaleReg*Scale to the current addressing mode.
3493 /// Return true and update AddrMode if this addr mode is legal for the target,
3494 /// false if not.
3495 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3496 unsigned Depth) {
3497 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3498 // mode. Just process that directly.
3499 if (Scale == 1)
3500 return matchAddr(ScaleReg, Depth);
3502 // If the scale is 0, it takes nothing to add this.
3503 if (Scale == 0)
3504 return true;
3506 // If we already have a scale of this value, we can add to it, otherwise, we
3507 // need an available scale field.
3508 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3509 return false;
3511 ExtAddrMode TestAddrMode = AddrMode;
3513 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3514 // [A+B + A*7] -> [B+A*8].
3515 TestAddrMode.Scale += Scale;
3516 TestAddrMode.ScaledReg = ScaleReg;
3518 // If the new address isn't legal, bail out.
3519 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3520 return false;
3522 // It was legal, so commit it.
3523 AddrMode = TestAddrMode;
3525 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3526 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3527 // X*Scale + C*Scale to addr mode.
3528 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3529 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3530 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3531 TestAddrMode.InBounds = false;
3532 TestAddrMode.ScaledReg = AddLHS;
3533 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3535 // If this addressing mode is legal, commit it and remember that we folded
3536 // this instruction.
3537 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3538 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3539 AddrMode = TestAddrMode;
3540 return true;
3544 // Otherwise, not (x+c)*scale, just return what we have.
3545 return true;
3548 /// This is a little filter, which returns true if an addressing computation
3549 /// involving I might be folded into a load/store accessing it.
3550 /// This doesn't need to be perfect, but needs to accept at least
3551 /// the set of instructions that MatchOperationAddr can.
3552 static bool MightBeFoldableInst(Instruction *I) {
3553 switch (I->getOpcode()) {
3554 case Instruction::BitCast:
3555 case Instruction::AddrSpaceCast:
3556 // Don't touch identity bitcasts.
3557 if (I->getType() == I->getOperand(0)->getType())
3558 return false;
3559 return I->getType()->isIntOrPtrTy();
3560 case Instruction::PtrToInt:
3561 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3562 return true;
3563 case Instruction::IntToPtr:
3564 // We know the input is intptr_t, so this is foldable.
3565 return true;
3566 case Instruction::Add:
3567 return true;
3568 case Instruction::Mul:
3569 case Instruction::Shl:
3570 // Can only handle X*C and X << C.
3571 return isa<ConstantInt>(I->getOperand(1));
3572 case Instruction::GetElementPtr:
3573 return true;
3574 default:
3575 return false;
3579 /// Check whether or not \p Val is a legal instruction for \p TLI.
3580 /// \note \p Val is assumed to be the product of some type promotion.
3581 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3582 /// to be legal, as the non-promoted value would have had the same state.
3583 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3584 const DataLayout &DL, Value *Val) {
3585 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3586 if (!PromotedInst)
3587 return false;
3588 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3589 // If the ISDOpcode is undefined, it was undefined before the promotion.
3590 if (!ISDOpcode)
3591 return true;
3592 // Otherwise, check if the promoted instruction is legal or not.
3593 return TLI.isOperationLegalOrCustom(
3594 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3597 namespace {
3599 /// Hepler class to perform type promotion.
3600 class TypePromotionHelper {
3601 /// Utility function to add a promoted instruction \p ExtOpnd to
3602 /// \p PromotedInsts and record the type of extension we have seen.
3603 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3604 Instruction *ExtOpnd,
3605 bool IsSExt) {
3606 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3607 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3608 if (It != PromotedInsts.end()) {
3609 // If the new extension is same as original, the information in
3610 // PromotedInsts[ExtOpnd] is still correct.
3611 if (It->second.getInt() == ExtTy)
3612 return;
3614 // Now the new extension is different from old extension, we make
3615 // the type information invalid by setting extension type to
3616 // BothExtension.
3617 ExtTy = BothExtension;
3619 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3622 /// Utility function to query the original type of instruction \p Opnd
3623 /// with a matched extension type. If the extension doesn't match, we
3624 /// cannot use the information we had on the original type.
3625 /// BothExtension doesn't match any extension type.
3626 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3627 Instruction *Opnd,
3628 bool IsSExt) {
3629 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3630 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3631 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3632 return It->second.getPointer();
3633 return nullptr;
3636 /// Utility function to check whether or not a sign or zero extension
3637 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3638 /// either using the operands of \p Inst or promoting \p Inst.
3639 /// The type of the extension is defined by \p IsSExt.
3640 /// In other words, check if:
3641 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3642 /// #1 Promotion applies:
3643 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3644 /// #2 Operand reuses:
3645 /// ext opnd1 to ConsideredExtType.
3646 /// \p PromotedInsts maps the instructions to their type before promotion.
3647 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3648 const InstrToOrigTy &PromotedInsts, bool IsSExt);
3650 /// Utility function to determine if \p OpIdx should be promoted when
3651 /// promoting \p Inst.
3652 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3653 return !(isa<SelectInst>(Inst) && OpIdx == 0);
3656 /// Utility function to promote the operand of \p Ext when this
3657 /// operand is a promotable trunc or sext or zext.
3658 /// \p PromotedInsts maps the instructions to their type before promotion.
3659 /// \p CreatedInstsCost[out] contains the cost of all instructions
3660 /// created to promote the operand of Ext.
3661 /// Newly added extensions are inserted in \p Exts.
3662 /// Newly added truncates are inserted in \p Truncs.
3663 /// Should never be called directly.
3664 /// \return The promoted value which is used instead of Ext.
3665 static Value *promoteOperandForTruncAndAnyExt(
3666 Instruction *Ext, TypePromotionTransaction &TPT,
3667 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3668 SmallVectorImpl<Instruction *> *Exts,
3669 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3671 /// Utility function to promote the operand of \p Ext when this
3672 /// operand is promotable and is not a supported trunc or sext.
3673 /// \p PromotedInsts maps the instructions to their type before promotion.
3674 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3675 /// created to promote the operand of Ext.
3676 /// Newly added extensions are inserted in \p Exts.
3677 /// Newly added truncates are inserted in \p Truncs.
3678 /// Should never be called directly.
3679 /// \return The promoted value which is used instead of Ext.
3680 static Value *promoteOperandForOther(Instruction *Ext,
3681 TypePromotionTransaction &TPT,
3682 InstrToOrigTy &PromotedInsts,
3683 unsigned &CreatedInstsCost,
3684 SmallVectorImpl<Instruction *> *Exts,
3685 SmallVectorImpl<Instruction *> *Truncs,
3686 const TargetLowering &TLI, bool IsSExt);
3688 /// \see promoteOperandForOther.
3689 static Value *signExtendOperandForOther(
3690 Instruction *Ext, TypePromotionTransaction &TPT,
3691 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3692 SmallVectorImpl<Instruction *> *Exts,
3693 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3694 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3695 Exts, Truncs, TLI, true);
3698 /// \see promoteOperandForOther.
3699 static Value *zeroExtendOperandForOther(
3700 Instruction *Ext, TypePromotionTransaction &TPT,
3701 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3702 SmallVectorImpl<Instruction *> *Exts,
3703 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3704 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3705 Exts, Truncs, TLI, false);
3708 public:
3709 /// Type for the utility function that promotes the operand of Ext.
3710 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3711 InstrToOrigTy &PromotedInsts,
3712 unsigned &CreatedInstsCost,
3713 SmallVectorImpl<Instruction *> *Exts,
3714 SmallVectorImpl<Instruction *> *Truncs,
3715 const TargetLowering &TLI);
3717 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3718 /// action to promote the operand of \p Ext instead of using Ext.
3719 /// \return NULL if no promotable action is possible with the current
3720 /// sign extension.
3721 /// \p InsertedInsts keeps track of all the instructions inserted by the
3722 /// other CodeGenPrepare optimizations. This information is important
3723 /// because we do not want to promote these instructions as CodeGenPrepare
3724 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3725 /// \p PromotedInsts maps the instructions to their type before promotion.
3726 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3727 const TargetLowering &TLI,
3728 const InstrToOrigTy &PromotedInsts);
3731 } // end anonymous namespace
3733 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3734 Type *ConsideredExtType,
3735 const InstrToOrigTy &PromotedInsts,
3736 bool IsSExt) {
3737 // The promotion helper does not know how to deal with vector types yet.
3738 // To be able to fix that, we would need to fix the places where we
3739 // statically extend, e.g., constants and such.
3740 if (Inst->getType()->isVectorTy())
3741 return false;
3743 // We can always get through zext.
3744 if (isa<ZExtInst>(Inst))
3745 return true;
3747 // sext(sext) is ok too.
3748 if (IsSExt && isa<SExtInst>(Inst))
3749 return true;
3751 // We can get through binary operator, if it is legal. In other words, the
3752 // binary operator must have a nuw or nsw flag.
3753 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3754 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3755 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3756 (IsSExt && BinOp->hasNoSignedWrap())))
3757 return true;
3759 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3760 if ((Inst->getOpcode() == Instruction::And ||
3761 Inst->getOpcode() == Instruction::Or))
3762 return true;
3764 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3765 if (Inst->getOpcode() == Instruction::Xor) {
3766 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3767 // Make sure it is not a NOT.
3768 if (Cst && !Cst->getValue().isAllOnesValue())
3769 return true;
3772 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3773 // It may change a poisoned value into a regular value, like
3774 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3775 // poisoned value regular value
3776 // It should be OK since undef covers valid value.
3777 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3778 return true;
3780 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3781 // It may change a poisoned value into a regular value, like
3782 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3783 // poisoned value regular value
3784 // It should be OK since undef covers valid value.
3785 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3786 const Instruction *ExtInst =
3787 dyn_cast<const Instruction>(*Inst->user_begin());
3788 if (ExtInst->hasOneUse()) {
3789 const Instruction *AndInst =
3790 dyn_cast<const Instruction>(*ExtInst->user_begin());
3791 if (AndInst && AndInst->getOpcode() == Instruction::And) {
3792 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3793 if (Cst &&
3794 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3795 return true;
3800 // Check if we can do the following simplification.
3801 // ext(trunc(opnd)) --> ext(opnd)
3802 if (!isa<TruncInst>(Inst))
3803 return false;
3805 Value *OpndVal = Inst->getOperand(0);
3806 // Check if we can use this operand in the extension.
3807 // If the type is larger than the result type of the extension, we cannot.
3808 if (!OpndVal->getType()->isIntegerTy() ||
3809 OpndVal->getType()->getIntegerBitWidth() >
3810 ConsideredExtType->getIntegerBitWidth())
3811 return false;
3813 // If the operand of the truncate is not an instruction, we will not have
3814 // any information on the dropped bits.
3815 // (Actually we could for constant but it is not worth the extra logic).
3816 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3817 if (!Opnd)
3818 return false;
3820 // Check if the source of the type is narrow enough.
3821 // I.e., check that trunc just drops extended bits of the same kind of
3822 // the extension.
3823 // #1 get the type of the operand and check the kind of the extended bits.
3824 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3825 if (OpndType)
3827 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3828 OpndType = Opnd->getOperand(0)->getType();
3829 else
3830 return false;
3832 // #2 check that the truncate just drops extended bits.
3833 return Inst->getType()->getIntegerBitWidth() >=
3834 OpndType->getIntegerBitWidth();
3837 TypePromotionHelper::Action TypePromotionHelper::getAction(
3838 Instruction *Ext, const SetOfInstrs &InsertedInsts,
3839 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3840 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3841 "Unexpected instruction type");
3842 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3843 Type *ExtTy = Ext->getType();
3844 bool IsSExt = isa<SExtInst>(Ext);
3845 // If the operand of the extension is not an instruction, we cannot
3846 // get through.
3847 // If it, check we can get through.
3848 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3849 return nullptr;
3851 // Do not promote if the operand has been added by codegenprepare.
3852 // Otherwise, it means we are undoing an optimization that is likely to be
3853 // redone, thus causing potential infinite loop.
3854 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3855 return nullptr;
3857 // SExt or Trunc instructions.
3858 // Return the related handler.
3859 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3860 isa<ZExtInst>(ExtOpnd))
3861 return promoteOperandForTruncAndAnyExt;
3863 // Regular instruction.
3864 // Abort early if we will have to insert non-free instructions.
3865 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3866 return nullptr;
3867 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3870 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3871 Instruction *SExt, TypePromotionTransaction &TPT,
3872 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3873 SmallVectorImpl<Instruction *> *Exts,
3874 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3875 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3876 // get through it and this method should not be called.
3877 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3878 Value *ExtVal = SExt;
3879 bool HasMergedNonFreeExt = false;
3880 if (isa<ZExtInst>(SExtOpnd)) {
3881 // Replace s|zext(zext(opnd))
3882 // => zext(opnd).
3883 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3884 Value *ZExt =
3885 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3886 TPT.replaceAllUsesWith(SExt, ZExt);
3887 TPT.eraseInstruction(SExt);
3888 ExtVal = ZExt;
3889 } else {
3890 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3891 // => z|sext(opnd).
3892 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3894 CreatedInstsCost = 0;
3896 // Remove dead code.
3897 if (SExtOpnd->use_empty())
3898 TPT.eraseInstruction(SExtOpnd);
3900 // Check if the extension is still needed.
3901 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3902 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3903 if (ExtInst) {
3904 if (Exts)
3905 Exts->push_back(ExtInst);
3906 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3908 return ExtVal;
3911 // At this point we have: ext ty opnd to ty.
3912 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3913 Value *NextVal = ExtInst->getOperand(0);
3914 TPT.eraseInstruction(ExtInst, NextVal);
3915 return NextVal;
3918 Value *TypePromotionHelper::promoteOperandForOther(
3919 Instruction *Ext, TypePromotionTransaction &TPT,
3920 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3921 SmallVectorImpl<Instruction *> *Exts,
3922 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3923 bool IsSExt) {
3924 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3925 // get through it and this method should not be called.
3926 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3927 CreatedInstsCost = 0;
3928 if (!ExtOpnd->hasOneUse()) {
3929 // ExtOpnd will be promoted.
3930 // All its uses, but Ext, will need to use a truncated value of the
3931 // promoted version.
3932 // Create the truncate now.
3933 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3934 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3935 // Insert it just after the definition.
3936 ITrunc->moveAfter(ExtOpnd);
3937 if (Truncs)
3938 Truncs->push_back(ITrunc);
3941 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3942 // Restore the operand of Ext (which has been replaced by the previous call
3943 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3944 TPT.setOperand(Ext, 0, ExtOpnd);
3947 // Get through the Instruction:
3948 // 1. Update its type.
3949 // 2. Replace the uses of Ext by Inst.
3950 // 3. Extend each operand that needs to be extended.
3952 // Remember the original type of the instruction before promotion.
3953 // This is useful to know that the high bits are sign extended bits.
3954 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3955 // Step #1.
3956 TPT.mutateType(ExtOpnd, Ext->getType());
3957 // Step #2.
3958 TPT.replaceAllUsesWith(Ext, ExtOpnd);
3959 // Step #3.
3960 Instruction *ExtForOpnd = Ext;
3962 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3963 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3964 ++OpIdx) {
3965 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3966 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3967 !shouldExtOperand(ExtOpnd, OpIdx)) {
3968 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3969 continue;
3971 // Check if we can statically extend the operand.
3972 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3973 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3974 LLVM_DEBUG(dbgs() << "Statically extend\n");
3975 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3976 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3977 : Cst->getValue().zext(BitWidth);
3978 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3979 continue;
3981 // UndefValue are typed, so we have to statically sign extend them.
3982 if (isa<UndefValue>(Opnd)) {
3983 LLVM_DEBUG(dbgs() << "Statically extend\n");
3984 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3985 continue;
3988 // Otherwise we have to explicitly sign extend the operand.
3989 // Check if Ext was reused to extend an operand.
3990 if (!ExtForOpnd) {
3991 // If yes, create a new one.
3992 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3993 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3994 : TPT.createZExt(Ext, Opnd, Ext->getType());
3995 if (!isa<Instruction>(ValForExtOpnd)) {
3996 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3997 continue;
3999 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4001 if (Exts)
4002 Exts->push_back(ExtForOpnd);
4003 TPT.setOperand(ExtForOpnd, 0, Opnd);
4005 // Move the sign extension before the insertion point.
4006 TPT.moveBefore(ExtForOpnd, ExtOpnd);
4007 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4008 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4009 // If more sext are required, new instructions will have to be created.
4010 ExtForOpnd = nullptr;
4012 if (ExtForOpnd == Ext) {
4013 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4014 TPT.eraseInstruction(Ext);
4016 return ExtOpnd;
4019 /// Check whether or not promoting an instruction to a wider type is profitable.
4020 /// \p NewCost gives the cost of extension instructions created by the
4021 /// promotion.
4022 /// \p OldCost gives the cost of extension instructions before the promotion
4023 /// plus the number of instructions that have been
4024 /// matched in the addressing mode the promotion.
4025 /// \p PromotedOperand is the value that has been promoted.
4026 /// \return True if the promotion is profitable, false otherwise.
4027 bool AddressingModeMatcher::isPromotionProfitable(
4028 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4029 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4030 << '\n');
4031 // The cost of the new extensions is greater than the cost of the
4032 // old extension plus what we folded.
4033 // This is not profitable.
4034 if (NewCost > OldCost)
4035 return false;
4036 if (NewCost < OldCost)
4037 return true;
4038 // The promotion is neutral but it may help folding the sign extension in
4039 // loads for instance.
4040 // Check that we did not create an illegal instruction.
4041 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4044 /// Given an instruction or constant expr, see if we can fold the operation
4045 /// into the addressing mode. If so, update the addressing mode and return
4046 /// true, otherwise return false without modifying AddrMode.
4047 /// If \p MovedAway is not NULL, it contains the information of whether or
4048 /// not AddrInst has to be folded into the addressing mode on success.
4049 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4050 /// because it has been moved away.
4051 /// Thus AddrInst must not be added in the matched instructions.
4052 /// This state can happen when AddrInst is a sext, since it may be moved away.
4053 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4054 /// not be referenced anymore.
4055 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4056 unsigned Depth,
4057 bool *MovedAway) {
4058 // Avoid exponential behavior on extremely deep expression trees.
4059 if (Depth >= 5) return false;
4061 // By default, all matched instructions stay in place.
4062 if (MovedAway)
4063 *MovedAway = false;
4065 switch (Opcode) {
4066 case Instruction::PtrToInt:
4067 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4068 return matchAddr(AddrInst->getOperand(0), Depth);
4069 case Instruction::IntToPtr: {
4070 auto AS = AddrInst->getType()->getPointerAddressSpace();
4071 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4072 // This inttoptr is a no-op if the integer type is pointer sized.
4073 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4074 return matchAddr(AddrInst->getOperand(0), Depth);
4075 return false;
4077 case Instruction::BitCast:
4078 // BitCast is always a noop, and we can handle it as long as it is
4079 // int->int or pointer->pointer (we don't want int<->fp or something).
4080 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4081 // Don't touch identity bitcasts. These were probably put here by LSR,
4082 // and we don't want to mess around with them. Assume it knows what it
4083 // is doing.
4084 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4085 return matchAddr(AddrInst->getOperand(0), Depth);
4086 return false;
4087 case Instruction::AddrSpaceCast: {
4088 unsigned SrcAS
4089 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4090 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4091 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4092 return matchAddr(AddrInst->getOperand(0), Depth);
4093 return false;
4095 case Instruction::Add: {
4096 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4097 ExtAddrMode BackupAddrMode = AddrMode;
4098 unsigned OldSize = AddrModeInsts.size();
4099 // Start a transaction at this point.
4100 // The LHS may match but not the RHS.
4101 // Therefore, we need a higher level restoration point to undo partially
4102 // matched operation.
4103 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4104 TPT.getRestorationPoint();
4106 AddrMode.InBounds = false;
4107 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4108 matchAddr(AddrInst->getOperand(0), Depth+1))
4109 return true;
4111 // Restore the old addr mode info.
4112 AddrMode = BackupAddrMode;
4113 AddrModeInsts.resize(OldSize);
4114 TPT.rollback(LastKnownGood);
4116 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4117 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4118 matchAddr(AddrInst->getOperand(1), Depth+1))
4119 return true;
4121 // Otherwise we definitely can't merge the ADD in.
4122 AddrMode = BackupAddrMode;
4123 AddrModeInsts.resize(OldSize);
4124 TPT.rollback(LastKnownGood);
4125 break;
4127 //case Instruction::Or:
4128 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4129 //break;
4130 case Instruction::Mul:
4131 case Instruction::Shl: {
4132 // Can only handle X*C and X << C.
4133 AddrMode.InBounds = false;
4134 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4135 if (!RHS || RHS->getBitWidth() > 64)
4136 return false;
4137 int64_t Scale = RHS->getSExtValue();
4138 if (Opcode == Instruction::Shl)
4139 Scale = 1LL << Scale;
4141 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4143 case Instruction::GetElementPtr: {
4144 // Scan the GEP. We check it if it contains constant offsets and at most
4145 // one variable offset.
4146 int VariableOperand = -1;
4147 unsigned VariableScale = 0;
4149 int64_t ConstantOffset = 0;
4150 gep_type_iterator GTI = gep_type_begin(AddrInst);
4151 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4152 if (StructType *STy = GTI.getStructTypeOrNull()) {
4153 const StructLayout *SL = DL.getStructLayout(STy);
4154 unsigned Idx =
4155 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4156 ConstantOffset += SL->getElementOffset(Idx);
4157 } else {
4158 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4159 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4160 const APInt &CVal = CI->getValue();
4161 if (CVal.getMinSignedBits() <= 64) {
4162 ConstantOffset += CVal.getSExtValue() * TypeSize;
4163 continue;
4166 if (TypeSize) { // Scales of zero don't do anything.
4167 // We only allow one variable index at the moment.
4168 if (VariableOperand != -1)
4169 return false;
4171 // Remember the variable index.
4172 VariableOperand = i;
4173 VariableScale = TypeSize;
4178 // A common case is for the GEP to only do a constant offset. In this case,
4179 // just add it to the disp field and check validity.
4180 if (VariableOperand == -1) {
4181 AddrMode.BaseOffs += ConstantOffset;
4182 if (ConstantOffset == 0 ||
4183 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4184 // Check to see if we can fold the base pointer in too.
4185 if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4186 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4187 AddrMode.InBounds = false;
4188 return true;
4190 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4191 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4192 ConstantOffset > 0) {
4193 // Record GEPs with non-zero offsets as candidates for splitting in the
4194 // event that the offset cannot fit into the r+i addressing mode.
4195 // Simple and common case that only one GEP is used in calculating the
4196 // address for the memory access.
4197 Value *Base = AddrInst->getOperand(0);
4198 auto *BaseI = dyn_cast<Instruction>(Base);
4199 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4200 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4201 (BaseI && !isa<CastInst>(BaseI) &&
4202 !isa<GetElementPtrInst>(BaseI))) {
4203 // Make sure the parent block allows inserting non-PHI instructions
4204 // before the terminator.
4205 BasicBlock *Parent =
4206 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4207 if (!Parent->getTerminator()->isEHPad())
4208 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4211 AddrMode.BaseOffs -= ConstantOffset;
4212 return false;
4215 // Save the valid addressing mode in case we can't match.
4216 ExtAddrMode BackupAddrMode = AddrMode;
4217 unsigned OldSize = AddrModeInsts.size();
4219 // See if the scale and offset amount is valid for this target.
4220 AddrMode.BaseOffs += ConstantOffset;
4221 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4222 AddrMode.InBounds = false;
4224 // Match the base operand of the GEP.
4225 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4226 // If it couldn't be matched, just stuff the value in a register.
4227 if (AddrMode.HasBaseReg) {
4228 AddrMode = BackupAddrMode;
4229 AddrModeInsts.resize(OldSize);
4230 return false;
4232 AddrMode.HasBaseReg = true;
4233 AddrMode.BaseReg = AddrInst->getOperand(0);
4236 // Match the remaining variable portion of the GEP.
4237 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4238 Depth)) {
4239 // If it couldn't be matched, try stuffing the base into a register
4240 // instead of matching it, and retrying the match of the scale.
4241 AddrMode = BackupAddrMode;
4242 AddrModeInsts.resize(OldSize);
4243 if (AddrMode.HasBaseReg)
4244 return false;
4245 AddrMode.HasBaseReg = true;
4246 AddrMode.BaseReg = AddrInst->getOperand(0);
4247 AddrMode.BaseOffs += ConstantOffset;
4248 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4249 VariableScale, Depth)) {
4250 // If even that didn't work, bail.
4251 AddrMode = BackupAddrMode;
4252 AddrModeInsts.resize(OldSize);
4253 return false;
4257 return true;
4259 case Instruction::SExt:
4260 case Instruction::ZExt: {
4261 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4262 if (!Ext)
4263 return false;
4265 // Try to move this ext out of the way of the addressing mode.
4266 // Ask for a method for doing so.
4267 TypePromotionHelper::Action TPH =
4268 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4269 if (!TPH)
4270 return false;
4272 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4273 TPT.getRestorationPoint();
4274 unsigned CreatedInstsCost = 0;
4275 unsigned ExtCost = !TLI.isExtFree(Ext);
4276 Value *PromotedOperand =
4277 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4278 // SExt has been moved away.
4279 // Thus either it will be rematched later in the recursive calls or it is
4280 // gone. Anyway, we must not fold it into the addressing mode at this point.
4281 // E.g.,
4282 // op = add opnd, 1
4283 // idx = ext op
4284 // addr = gep base, idx
4285 // is now:
4286 // promotedOpnd = ext opnd <- no match here
4287 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4288 // addr = gep base, op <- match
4289 if (MovedAway)
4290 *MovedAway = true;
4292 assert(PromotedOperand &&
4293 "TypePromotionHelper should have filtered out those cases");
4295 ExtAddrMode BackupAddrMode = AddrMode;
4296 unsigned OldSize = AddrModeInsts.size();
4298 if (!matchAddr(PromotedOperand, Depth) ||
4299 // The total of the new cost is equal to the cost of the created
4300 // instructions.
4301 // The total of the old cost is equal to the cost of the extension plus
4302 // what we have saved in the addressing mode.
4303 !isPromotionProfitable(CreatedInstsCost,
4304 ExtCost + (AddrModeInsts.size() - OldSize),
4305 PromotedOperand)) {
4306 AddrMode = BackupAddrMode;
4307 AddrModeInsts.resize(OldSize);
4308 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4309 TPT.rollback(LastKnownGood);
4310 return false;
4312 return true;
4315 return false;
4318 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4319 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4320 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4321 /// for the target.
4323 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4324 // Start a transaction at this point that we will rollback if the matching
4325 // fails.
4326 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4327 TPT.getRestorationPoint();
4328 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4329 // Fold in immediates if legal for the target.
4330 AddrMode.BaseOffs += CI->getSExtValue();
4331 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4332 return true;
4333 AddrMode.BaseOffs -= CI->getSExtValue();
4334 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4335 // If this is a global variable, try to fold it into the addressing mode.
4336 if (!AddrMode.BaseGV) {
4337 AddrMode.BaseGV = GV;
4338 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4339 return true;
4340 AddrMode.BaseGV = nullptr;
4342 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4343 ExtAddrMode BackupAddrMode = AddrMode;
4344 unsigned OldSize = AddrModeInsts.size();
4346 // Check to see if it is possible to fold this operation.
4347 bool MovedAway = false;
4348 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4349 // This instruction may have been moved away. If so, there is nothing
4350 // to check here.
4351 if (MovedAway)
4352 return true;
4353 // Okay, it's possible to fold this. Check to see if it is actually
4354 // *profitable* to do so. We use a simple cost model to avoid increasing
4355 // register pressure too much.
4356 if (I->hasOneUse() ||
4357 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4358 AddrModeInsts.push_back(I);
4359 return true;
4362 // It isn't profitable to do this, roll back.
4363 //cerr << "NOT FOLDING: " << *I;
4364 AddrMode = BackupAddrMode;
4365 AddrModeInsts.resize(OldSize);
4366 TPT.rollback(LastKnownGood);
4368 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4369 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4370 return true;
4371 TPT.rollback(LastKnownGood);
4372 } else if (isa<ConstantPointerNull>(Addr)) {
4373 // Null pointer gets folded without affecting the addressing mode.
4374 return true;
4377 // Worse case, the target should support [reg] addressing modes. :)
4378 if (!AddrMode.HasBaseReg) {
4379 AddrMode.HasBaseReg = true;
4380 AddrMode.BaseReg = Addr;
4381 // Still check for legality in case the target supports [imm] but not [i+r].
4382 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4383 return true;
4384 AddrMode.HasBaseReg = false;
4385 AddrMode.BaseReg = nullptr;
4388 // If the base register is already taken, see if we can do [r+r].
4389 if (AddrMode.Scale == 0) {
4390 AddrMode.Scale = 1;
4391 AddrMode.ScaledReg = Addr;
4392 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4393 return true;
4394 AddrMode.Scale = 0;
4395 AddrMode.ScaledReg = nullptr;
4397 // Couldn't match.
4398 TPT.rollback(LastKnownGood);
4399 return false;
4402 /// Check to see if all uses of OpVal by the specified inline asm call are due
4403 /// to memory operands. If so, return true, otherwise return false.
4404 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4405 const TargetLowering &TLI,
4406 const TargetRegisterInfo &TRI) {
4407 const Function *F = CI->getFunction();
4408 TargetLowering::AsmOperandInfoVector TargetConstraints =
4409 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4410 ImmutableCallSite(CI));
4412 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4413 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4415 // Compute the constraint code and ConstraintType to use.
4416 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4418 // If this asm operand is our Value*, and if it isn't an indirect memory
4419 // operand, we can't fold it!
4420 if (OpInfo.CallOperandVal == OpVal &&
4421 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4422 !OpInfo.isIndirect))
4423 return false;
4426 return true;
4429 // Max number of memory uses to look at before aborting the search to conserve
4430 // compile time.
4431 static constexpr int MaxMemoryUsesToScan = 20;
4433 /// Recursively walk all the uses of I until we find a memory use.
4434 /// If we find an obviously non-foldable instruction, return true.
4435 /// Add the ultimately found memory instructions to MemoryUses.
4436 static bool FindAllMemoryUses(
4437 Instruction *I,
4438 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4439 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4440 const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4441 // If we already considered this instruction, we're done.
4442 if (!ConsideredInsts.insert(I).second)
4443 return false;
4445 // If this is an obviously unfoldable instruction, bail out.
4446 if (!MightBeFoldableInst(I))
4447 return true;
4449 const bool OptSize = I->getFunction()->hasOptSize();
4451 // Loop over all the uses, recursively processing them.
4452 for (Use &U : I->uses()) {
4453 // Conservatively return true if we're seeing a large number or a deep chain
4454 // of users. This avoids excessive compilation times in pathological cases.
4455 if (SeenInsts++ >= MaxMemoryUsesToScan)
4456 return true;
4458 Instruction *UserI = cast<Instruction>(U.getUser());
4459 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4460 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4461 continue;
4464 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4465 unsigned opNo = U.getOperandNo();
4466 if (opNo != StoreInst::getPointerOperandIndex())
4467 return true; // Storing addr, not into addr.
4468 MemoryUses.push_back(std::make_pair(SI, opNo));
4469 continue;
4472 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4473 unsigned opNo = U.getOperandNo();
4474 if (opNo != AtomicRMWInst::getPointerOperandIndex())
4475 return true; // Storing addr, not into addr.
4476 MemoryUses.push_back(std::make_pair(RMW, opNo));
4477 continue;
4480 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4481 unsigned opNo = U.getOperandNo();
4482 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4483 return true; // Storing addr, not into addr.
4484 MemoryUses.push_back(std::make_pair(CmpX, opNo));
4485 continue;
4488 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4489 // If this is a cold call, we can sink the addressing calculation into
4490 // the cold path. See optimizeCallInst
4491 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4492 continue;
4494 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4495 if (!IA) return true;
4497 // If this is a memory operand, we're cool, otherwise bail out.
4498 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4499 return true;
4500 continue;
4503 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4504 SeenInsts))
4505 return true;
4508 return false;
4511 /// Return true if Val is already known to be live at the use site that we're
4512 /// folding it into. If so, there is no cost to include it in the addressing
4513 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4514 /// instruction already.
4515 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4516 Value *KnownLive2) {
4517 // If Val is either of the known-live values, we know it is live!
4518 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4519 return true;
4521 // All values other than instructions and arguments (e.g. constants) are live.
4522 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4524 // If Val is a constant sized alloca in the entry block, it is live, this is
4525 // true because it is just a reference to the stack/frame pointer, which is
4526 // live for the whole function.
4527 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4528 if (AI->isStaticAlloca())
4529 return true;
4531 // Check to see if this value is already used in the memory instruction's
4532 // block. If so, it's already live into the block at the very least, so we
4533 // can reasonably fold it.
4534 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4537 /// It is possible for the addressing mode of the machine to fold the specified
4538 /// instruction into a load or store that ultimately uses it.
4539 /// However, the specified instruction has multiple uses.
4540 /// Given this, it may actually increase register pressure to fold it
4541 /// into the load. For example, consider this code:
4543 /// X = ...
4544 /// Y = X+1
4545 /// use(Y) -> nonload/store
4546 /// Z = Y+1
4547 /// load Z
4549 /// In this case, Y has multiple uses, and can be folded into the load of Z
4550 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4551 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4552 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4553 /// number of computations either.
4555 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4556 /// X was live across 'load Z' for other reasons, we actually *would* want to
4557 /// fold the addressing mode in the Z case. This would make Y die earlier.
4558 bool AddressingModeMatcher::
4559 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4560 ExtAddrMode &AMAfter) {
4561 if (IgnoreProfitability) return true;
4563 // AMBefore is the addressing mode before this instruction was folded into it,
4564 // and AMAfter is the addressing mode after the instruction was folded. Get
4565 // the set of registers referenced by AMAfter and subtract out those
4566 // referenced by AMBefore: this is the set of values which folding in this
4567 // address extends the lifetime of.
4569 // Note that there are only two potential values being referenced here,
4570 // BaseReg and ScaleReg (global addresses are always available, as are any
4571 // folded immediates).
4572 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4574 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4575 // lifetime wasn't extended by adding this instruction.
4576 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4577 BaseReg = nullptr;
4578 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4579 ScaledReg = nullptr;
4581 // If folding this instruction (and it's subexprs) didn't extend any live
4582 // ranges, we're ok with it.
4583 if (!BaseReg && !ScaledReg)
4584 return true;
4586 // If all uses of this instruction can have the address mode sunk into them,
4587 // we can remove the addressing mode and effectively trade one live register
4588 // for another (at worst.) In this context, folding an addressing mode into
4589 // the use is just a particularly nice way of sinking it.
4590 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4591 SmallPtrSet<Instruction*, 16> ConsideredInsts;
4592 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4593 return false; // Has a non-memory, non-foldable use!
4595 // Now that we know that all uses of this instruction are part of a chain of
4596 // computation involving only operations that could theoretically be folded
4597 // into a memory use, loop over each of these memory operation uses and see
4598 // if they could *actually* fold the instruction. The assumption is that
4599 // addressing modes are cheap and that duplicating the computation involved
4600 // many times is worthwhile, even on a fastpath. For sinking candidates
4601 // (i.e. cold call sites), this serves as a way to prevent excessive code
4602 // growth since most architectures have some reasonable small and fast way to
4603 // compute an effective address. (i.e LEA on x86)
4604 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4605 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4606 Instruction *User = MemoryUses[i].first;
4607 unsigned OpNo = MemoryUses[i].second;
4609 // Get the access type of this use. If the use isn't a pointer, we don't
4610 // know what it accesses.
4611 Value *Address = User->getOperand(OpNo);
4612 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4613 if (!AddrTy)
4614 return false;
4615 Type *AddressAccessTy = AddrTy->getElementType();
4616 unsigned AS = AddrTy->getAddressSpace();
4618 // Do a match against the root of this address, ignoring profitability. This
4619 // will tell us if the addressing mode for the memory operation will
4620 // *actually* cover the shared instruction.
4621 ExtAddrMode Result;
4622 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4624 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4625 TPT.getRestorationPoint();
4626 AddressingModeMatcher Matcher(
4627 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4628 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4629 Matcher.IgnoreProfitability = true;
4630 bool Success = Matcher.matchAddr(Address, 0);
4631 (void)Success; assert(Success && "Couldn't select *anything*?");
4633 // The match was to check the profitability, the changes made are not
4634 // part of the original matcher. Therefore, they should be dropped
4635 // otherwise the original matcher will not present the right state.
4636 TPT.rollback(LastKnownGood);
4638 // If the match didn't cover I, then it won't be shared by it.
4639 if (!is_contained(MatchedAddrModeInsts, I))
4640 return false;
4642 MatchedAddrModeInsts.clear();
4645 return true;
4648 /// Return true if the specified values are defined in a
4649 /// different basic block than BB.
4650 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4651 if (Instruction *I = dyn_cast<Instruction>(V))
4652 return I->getParent() != BB;
4653 return false;
4656 /// Sink addressing mode computation immediate before MemoryInst if doing so
4657 /// can be done without increasing register pressure. The need for the
4658 /// register pressure constraint means this can end up being an all or nothing
4659 /// decision for all uses of the same addressing computation.
4661 /// Load and Store Instructions often have addressing modes that can do
4662 /// significant amounts of computation. As such, instruction selection will try
4663 /// to get the load or store to do as much computation as possible for the
4664 /// program. The problem is that isel can only see within a single block. As
4665 /// such, we sink as much legal addressing mode work into the block as possible.
4667 /// This method is used to optimize both load/store and inline asms with memory
4668 /// operands. It's also used to sink addressing computations feeding into cold
4669 /// call sites into their (cold) basic block.
4671 /// The motivation for handling sinking into cold blocks is that doing so can
4672 /// both enable other address mode sinking (by satisfying the register pressure
4673 /// constraint above), and reduce register pressure globally (by removing the
4674 /// addressing mode computation from the fast path entirely.).
4675 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4676 Type *AccessTy, unsigned AddrSpace) {
4677 Value *Repl = Addr;
4679 // Try to collapse single-value PHI nodes. This is necessary to undo
4680 // unprofitable PRE transformations.
4681 SmallVector<Value*, 8> worklist;
4682 SmallPtrSet<Value*, 16> Visited;
4683 worklist.push_back(Addr);
4685 // Use a worklist to iteratively look through PHI and select nodes, and
4686 // ensure that the addressing mode obtained from the non-PHI/select roots of
4687 // the graph are compatible.
4688 bool PhiOrSelectSeen = false;
4689 SmallVector<Instruction*, 16> AddrModeInsts;
4690 const SimplifyQuery SQ(*DL, TLInfo);
4691 AddressingModeCombiner AddrModes(SQ, Addr);
4692 TypePromotionTransaction TPT(RemovedInsts);
4693 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4694 TPT.getRestorationPoint();
4695 while (!worklist.empty()) {
4696 Value *V = worklist.back();
4697 worklist.pop_back();
4699 // We allow traversing cyclic Phi nodes.
4700 // In case of success after this loop we ensure that traversing through
4701 // Phi nodes ends up with all cases to compute address of the form
4702 // BaseGV + Base + Scale * Index + Offset
4703 // where Scale and Offset are constans and BaseGV, Base and Index
4704 // are exactly the same Values in all cases.
4705 // It means that BaseGV, Scale and Offset dominate our memory instruction
4706 // and have the same value as they had in address computation represented
4707 // as Phi. So we can safely sink address computation to memory instruction.
4708 if (!Visited.insert(V).second)
4709 continue;
4711 // For a PHI node, push all of its incoming values.
4712 if (PHINode *P = dyn_cast<PHINode>(V)) {
4713 for (Value *IncValue : P->incoming_values())
4714 worklist.push_back(IncValue);
4715 PhiOrSelectSeen = true;
4716 continue;
4718 // Similar for select.
4719 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4720 worklist.push_back(SI->getFalseValue());
4721 worklist.push_back(SI->getTrueValue());
4722 PhiOrSelectSeen = true;
4723 continue;
4726 // For non-PHIs, determine the addressing mode being computed. Note that
4727 // the result may differ depending on what other uses our candidate
4728 // addressing instructions might have.
4729 AddrModeInsts.clear();
4730 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4732 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4733 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4734 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4736 GetElementPtrInst *GEP = LargeOffsetGEP.first;
4737 if (GEP && !NewGEPBases.count(GEP)) {
4738 // If splitting the underlying data structure can reduce the offset of a
4739 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4740 // previously split data structures.
4741 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4742 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4743 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4746 NewAddrMode.OriginalValue = V;
4747 if (!AddrModes.addNewAddrMode(NewAddrMode))
4748 break;
4751 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4752 // or we have multiple but either couldn't combine them or combining them
4753 // wouldn't do anything useful, bail out now.
4754 if (!AddrModes.combineAddrModes()) {
4755 TPT.rollback(LastKnownGood);
4756 return false;
4758 TPT.commit();
4760 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4761 ExtAddrMode AddrMode = AddrModes.getAddrMode();
4763 // If all the instructions matched are already in this BB, don't do anything.
4764 // If we saw a Phi node then it is not local definitely, and if we saw a select
4765 // then we want to push the address calculation past it even if it's already
4766 // in this BB.
4767 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4768 return IsNonLocalValue(V, MemoryInst->getParent());
4769 })) {
4770 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4771 << "\n");
4772 return false;
4775 // Insert this computation right after this user. Since our caller is
4776 // scanning from the top of the BB to the bottom, reuse of the expr are
4777 // guaranteed to happen later.
4778 IRBuilder<> Builder(MemoryInst);
4780 // Now that we determined the addressing expression we want to use and know
4781 // that we have to sink it into this block. Check to see if we have already
4782 // done this for some other load/store instr in this block. If so, reuse
4783 // the computation. Before attempting reuse, check if the address is valid
4784 // as it may have been erased.
4786 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4788 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4789 if (SunkAddr) {
4790 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4791 << " for " << *MemoryInst << "\n");
4792 if (SunkAddr->getType() != Addr->getType())
4793 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4794 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4795 TM && SubtargetInfo->addrSinkUsingGEPs())) {
4796 // By default, we use the GEP-based method when AA is used later. This
4797 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4798 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4799 << " for " << *MemoryInst << "\n");
4800 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4801 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4803 // First, find the pointer.
4804 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4805 ResultPtr = AddrMode.BaseReg;
4806 AddrMode.BaseReg = nullptr;
4809 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4810 // We can't add more than one pointer together, nor can we scale a
4811 // pointer (both of which seem meaningless).
4812 if (ResultPtr || AddrMode.Scale != 1)
4813 return false;
4815 ResultPtr = AddrMode.ScaledReg;
4816 AddrMode.Scale = 0;
4819 // It is only safe to sign extend the BaseReg if we know that the math
4820 // required to create it did not overflow before we extend it. Since
4821 // the original IR value was tossed in favor of a constant back when
4822 // the AddrMode was created we need to bail out gracefully if widths
4823 // do not match instead of extending it.
4825 // (See below for code to add the scale.)
4826 if (AddrMode.Scale) {
4827 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4828 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4829 cast<IntegerType>(ScaledRegTy)->getBitWidth())
4830 return false;
4833 if (AddrMode.BaseGV) {
4834 if (ResultPtr)
4835 return false;
4837 ResultPtr = AddrMode.BaseGV;
4840 // If the real base value actually came from an inttoptr, then the matcher
4841 // will look through it and provide only the integer value. In that case,
4842 // use it here.
4843 if (!DL->isNonIntegralPointerType(Addr->getType())) {
4844 if (!ResultPtr && AddrMode.BaseReg) {
4845 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4846 "sunkaddr");
4847 AddrMode.BaseReg = nullptr;
4848 } else if (!ResultPtr && AddrMode.Scale == 1) {
4849 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4850 "sunkaddr");
4851 AddrMode.Scale = 0;
4855 if (!ResultPtr &&
4856 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4857 SunkAddr = Constant::getNullValue(Addr->getType());
4858 } else if (!ResultPtr) {
4859 return false;
4860 } else {
4861 Type *I8PtrTy =
4862 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4863 Type *I8Ty = Builder.getInt8Ty();
4865 // Start with the base register. Do this first so that subsequent address
4866 // matching finds it last, which will prevent it from trying to match it
4867 // as the scaled value in case it happens to be a mul. That would be
4868 // problematic if we've sunk a different mul for the scale, because then
4869 // we'd end up sinking both muls.
4870 if (AddrMode.BaseReg) {
4871 Value *V = AddrMode.BaseReg;
4872 if (V->getType() != IntPtrTy)
4873 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4875 ResultIndex = V;
4878 // Add the scale value.
4879 if (AddrMode.Scale) {
4880 Value *V = AddrMode.ScaledReg;
4881 if (V->getType() == IntPtrTy) {
4882 // done.
4883 } else {
4884 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4885 cast<IntegerType>(V->getType())->getBitWidth() &&
4886 "We can't transform if ScaledReg is too narrow");
4887 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4890 if (AddrMode.Scale != 1)
4891 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4892 "sunkaddr");
4893 if (ResultIndex)
4894 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4895 else
4896 ResultIndex = V;
4899 // Add in the Base Offset if present.
4900 if (AddrMode.BaseOffs) {
4901 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4902 if (ResultIndex) {
4903 // We need to add this separately from the scale above to help with
4904 // SDAG consecutive load/store merging.
4905 if (ResultPtr->getType() != I8PtrTy)
4906 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4907 ResultPtr =
4908 AddrMode.InBounds
4909 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4910 "sunkaddr")
4911 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4914 ResultIndex = V;
4917 if (!ResultIndex) {
4918 SunkAddr = ResultPtr;
4919 } else {
4920 if (ResultPtr->getType() != I8PtrTy)
4921 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4922 SunkAddr =
4923 AddrMode.InBounds
4924 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4925 "sunkaddr")
4926 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4929 if (SunkAddr->getType() != Addr->getType())
4930 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4932 } else {
4933 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4934 // non-integral pointers, so in that case bail out now.
4935 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4936 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4937 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4938 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4939 if (DL->isNonIntegralPointerType(Addr->getType()) ||
4940 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4941 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4942 (AddrMode.BaseGV &&
4943 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4944 return false;
4946 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4947 << " for " << *MemoryInst << "\n");
4948 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4949 Value *Result = nullptr;
4951 // Start with the base register. Do this first so that subsequent address
4952 // matching finds it last, which will prevent it from trying to match it
4953 // as the scaled value in case it happens to be a mul. That would be
4954 // problematic if we've sunk a different mul for the scale, because then
4955 // we'd end up sinking both muls.
4956 if (AddrMode.BaseReg) {
4957 Value *V = AddrMode.BaseReg;
4958 if (V->getType()->isPointerTy())
4959 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4960 if (V->getType() != IntPtrTy)
4961 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4962 Result = V;
4965 // Add the scale value.
4966 if (AddrMode.Scale) {
4967 Value *V = AddrMode.ScaledReg;
4968 if (V->getType() == IntPtrTy) {
4969 // done.
4970 } else if (V->getType()->isPointerTy()) {
4971 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4972 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4973 cast<IntegerType>(V->getType())->getBitWidth()) {
4974 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4975 } else {
4976 // It is only safe to sign extend the BaseReg if we know that the math
4977 // required to create it did not overflow before we extend it. Since
4978 // the original IR value was tossed in favor of a constant back when
4979 // the AddrMode was created we need to bail out gracefully if widths
4980 // do not match instead of extending it.
4981 Instruction *I = dyn_cast_or_null<Instruction>(Result);
4982 if (I && (Result != AddrMode.BaseReg))
4983 I->eraseFromParent();
4984 return false;
4986 if (AddrMode.Scale != 1)
4987 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4988 "sunkaddr");
4989 if (Result)
4990 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4991 else
4992 Result = V;
4995 // Add in the BaseGV if present.
4996 if (AddrMode.BaseGV) {
4997 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4998 if (Result)
4999 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5000 else
5001 Result = V;
5004 // Add in the Base Offset if present.
5005 if (AddrMode.BaseOffs) {
5006 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5007 if (Result)
5008 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5009 else
5010 Result = V;
5013 if (!Result)
5014 SunkAddr = Constant::getNullValue(Addr->getType());
5015 else
5016 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5019 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5020 // Store the newly computed address into the cache. In the case we reused a
5021 // value, this should be idempotent.
5022 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5024 // If we have no uses, recursively delete the value and all dead instructions
5025 // using it.
5026 if (Repl->use_empty()) {
5027 // This can cause recursive deletion, which can invalidate our iterator.
5028 // Use a WeakTrackingVH to hold onto it in case this happens.
5029 Value *CurValue = &*CurInstIterator;
5030 WeakTrackingVH IterHandle(CurValue);
5031 BasicBlock *BB = CurInstIterator->getParent();
5033 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5035 if (IterHandle != CurValue) {
5036 // If the iterator instruction was recursively deleted, start over at the
5037 // start of the block.
5038 CurInstIterator = BB->begin();
5039 SunkAddrs.clear();
5042 ++NumMemoryInsts;
5043 return true;
5046 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5047 /// address computing into the block when possible / profitable.
5048 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5049 bool MadeChange = false;
5051 const TargetRegisterInfo *TRI =
5052 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5053 TargetLowering::AsmOperandInfoVector TargetConstraints =
5054 TLI->ParseConstraints(*DL, TRI, CS);
5055 unsigned ArgNo = 0;
5056 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5057 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5059 // Compute the constraint code and ConstraintType to use.
5060 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5062 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5063 OpInfo.isIndirect) {
5064 Value *OpVal = CS->getArgOperand(ArgNo++);
5065 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5066 } else if (OpInfo.Type == InlineAsm::isInput)
5067 ArgNo++;
5070 return MadeChange;
5073 /// Check if all the uses of \p Val are equivalent (or free) zero or
5074 /// sign extensions.
5075 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5076 assert(!Val->use_empty() && "Input must have at least one use");
5077 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5078 bool IsSExt = isa<SExtInst>(FirstUser);
5079 Type *ExtTy = FirstUser->getType();
5080 for (const User *U : Val->users()) {
5081 const Instruction *UI = cast<Instruction>(U);
5082 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5083 return false;
5084 Type *CurTy = UI->getType();
5085 // Same input and output types: Same instruction after CSE.
5086 if (CurTy == ExtTy)
5087 continue;
5089 // If IsSExt is true, we are in this situation:
5090 // a = Val
5091 // b = sext ty1 a to ty2
5092 // c = sext ty1 a to ty3
5093 // Assuming ty2 is shorter than ty3, this could be turned into:
5094 // a = Val
5095 // b = sext ty1 a to ty2
5096 // c = sext ty2 b to ty3
5097 // However, the last sext is not free.
5098 if (IsSExt)
5099 return false;
5101 // This is a ZExt, maybe this is free to extend from one type to another.
5102 // In that case, we would not account for a different use.
5103 Type *NarrowTy;
5104 Type *LargeTy;
5105 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5106 CurTy->getScalarType()->getIntegerBitWidth()) {
5107 NarrowTy = CurTy;
5108 LargeTy = ExtTy;
5109 } else {
5110 NarrowTy = ExtTy;
5111 LargeTy = CurTy;
5114 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5115 return false;
5117 // All uses are the same or can be derived from one another for free.
5118 return true;
5121 /// Try to speculatively promote extensions in \p Exts and continue
5122 /// promoting through newly promoted operands recursively as far as doing so is
5123 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5124 /// When some promotion happened, \p TPT contains the proper state to revert
5125 /// them.
5127 /// \return true if some promotion happened, false otherwise.
5128 bool CodeGenPrepare::tryToPromoteExts(
5129 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5130 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5131 unsigned CreatedInstsCost) {
5132 bool Promoted = false;
5134 // Iterate over all the extensions to try to promote them.
5135 for (auto I : Exts) {
5136 // Early check if we directly have ext(load).
5137 if (isa<LoadInst>(I->getOperand(0))) {
5138 ProfitablyMovedExts.push_back(I);
5139 continue;
5142 // Check whether or not we want to do any promotion. The reason we have
5143 // this check inside the for loop is to catch the case where an extension
5144 // is directly fed by a load because in such case the extension can be moved
5145 // up without any promotion on its operands.
5146 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5147 return false;
5149 // Get the action to perform the promotion.
5150 TypePromotionHelper::Action TPH =
5151 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5152 // Check if we can promote.
5153 if (!TPH) {
5154 // Save the current extension as we cannot move up through its operand.
5155 ProfitablyMovedExts.push_back(I);
5156 continue;
5159 // Save the current state.
5160 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5161 TPT.getRestorationPoint();
5162 SmallVector<Instruction *, 4> NewExts;
5163 unsigned NewCreatedInstsCost = 0;
5164 unsigned ExtCost = !TLI->isExtFree(I);
5165 // Promote.
5166 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5167 &NewExts, nullptr, *TLI);
5168 assert(PromotedVal &&
5169 "TypePromotionHelper should have filtered out those cases");
5171 // We would be able to merge only one extension in a load.
5172 // Therefore, if we have more than 1 new extension we heuristically
5173 // cut this search path, because it means we degrade the code quality.
5174 // With exactly 2, the transformation is neutral, because we will merge
5175 // one extension but leave one. However, we optimistically keep going,
5176 // because the new extension may be removed too.
5177 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5178 // FIXME: It would be possible to propagate a negative value instead of
5179 // conservatively ceiling it to 0.
5180 TotalCreatedInstsCost =
5181 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5182 if (!StressExtLdPromotion &&
5183 (TotalCreatedInstsCost > 1 ||
5184 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5185 // This promotion is not profitable, rollback to the previous state, and
5186 // save the current extension in ProfitablyMovedExts as the latest
5187 // speculative promotion turned out to be unprofitable.
5188 TPT.rollback(LastKnownGood);
5189 ProfitablyMovedExts.push_back(I);
5190 continue;
5192 // Continue promoting NewExts as far as doing so is profitable.
5193 SmallVector<Instruction *, 2> NewlyMovedExts;
5194 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5195 bool NewPromoted = false;
5196 for (auto ExtInst : NewlyMovedExts) {
5197 Instruction *MovedExt = cast<Instruction>(ExtInst);
5198 Value *ExtOperand = MovedExt->getOperand(0);
5199 // If we have reached to a load, we need this extra profitability check
5200 // as it could potentially be merged into an ext(load).
5201 if (isa<LoadInst>(ExtOperand) &&
5202 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5203 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5204 continue;
5206 ProfitablyMovedExts.push_back(MovedExt);
5207 NewPromoted = true;
5210 // If none of speculative promotions for NewExts is profitable, rollback
5211 // and save the current extension (I) as the last profitable extension.
5212 if (!NewPromoted) {
5213 TPT.rollback(LastKnownGood);
5214 ProfitablyMovedExts.push_back(I);
5215 continue;
5217 // The promotion is profitable.
5218 Promoted = true;
5220 return Promoted;
5223 /// Merging redundant sexts when one is dominating the other.
5224 bool CodeGenPrepare::mergeSExts(Function &F) {
5225 bool Changed = false;
5226 for (auto &Entry : ValToSExtendedUses) {
5227 SExts &Insts = Entry.second;
5228 SExts CurPts;
5229 for (Instruction *Inst : Insts) {
5230 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5231 Inst->getOperand(0) != Entry.first)
5232 continue;
5233 bool inserted = false;
5234 for (auto &Pt : CurPts) {
5235 if (getDT(F).dominates(Inst, Pt)) {
5236 Pt->replaceAllUsesWith(Inst);
5237 RemovedInsts.insert(Pt);
5238 Pt->removeFromParent();
5239 Pt = Inst;
5240 inserted = true;
5241 Changed = true;
5242 break;
5244 if (!getDT(F).dominates(Pt, Inst))
5245 // Give up if we need to merge in a common dominator as the
5246 // experiments show it is not profitable.
5247 continue;
5248 Inst->replaceAllUsesWith(Pt);
5249 RemovedInsts.insert(Inst);
5250 Inst->removeFromParent();
5251 inserted = true;
5252 Changed = true;
5253 break;
5255 if (!inserted)
5256 CurPts.push_back(Inst);
5259 return Changed;
5262 // Spliting large data structures so that the GEPs accessing them can have
5263 // smaller offsets so that they can be sunk to the same blocks as their users.
5264 // For example, a large struct starting from %base is splitted into two parts
5265 // where the second part starts from %new_base.
5267 // Before:
5268 // BB0:
5269 // %base =
5271 // BB1:
5272 // %gep0 = gep %base, off0
5273 // %gep1 = gep %base, off1
5274 // %gep2 = gep %base, off2
5276 // BB2:
5277 // %load1 = load %gep0
5278 // %load2 = load %gep1
5279 // %load3 = load %gep2
5281 // After:
5282 // BB0:
5283 // %base =
5284 // %new_base = gep %base, off0
5286 // BB1:
5287 // %new_gep0 = %new_base
5288 // %new_gep1 = gep %new_base, off1 - off0
5289 // %new_gep2 = gep %new_base, off2 - off0
5291 // BB2:
5292 // %load1 = load i32, i32* %new_gep0
5293 // %load2 = load i32, i32* %new_gep1
5294 // %load3 = load i32, i32* %new_gep2
5296 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5297 // their offsets are smaller enough to fit into the addressing mode.
5298 bool CodeGenPrepare::splitLargeGEPOffsets() {
5299 bool Changed = false;
5300 for (auto &Entry : LargeOffsetGEPMap) {
5301 Value *OldBase = Entry.first;
5302 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5303 &LargeOffsetGEPs = Entry.second;
5304 auto compareGEPOffset =
5305 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5306 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5307 if (LHS.first == RHS.first)
5308 return false;
5309 if (LHS.second != RHS.second)
5310 return LHS.second < RHS.second;
5311 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5313 // Sorting all the GEPs of the same data structures based on the offsets.
5314 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5315 LargeOffsetGEPs.erase(
5316 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5317 LargeOffsetGEPs.end());
5318 // Skip if all the GEPs have the same offsets.
5319 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5320 continue;
5321 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5322 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5323 Value *NewBaseGEP = nullptr;
5325 auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5326 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5327 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5328 int64_t Offset = LargeOffsetGEP->second;
5329 if (Offset != BaseOffset) {
5330 TargetLowering::AddrMode AddrMode;
5331 AddrMode.BaseOffs = Offset - BaseOffset;
5332 // The result type of the GEP might not be the type of the memory
5333 // access.
5334 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5335 GEP->getResultElementType(),
5336 GEP->getAddressSpace())) {
5337 // We need to create a new base if the offset to the current base is
5338 // too large to fit into the addressing mode. So, a very large struct
5339 // may be splitted into several parts.
5340 BaseGEP = GEP;
5341 BaseOffset = Offset;
5342 NewBaseGEP = nullptr;
5346 // Generate a new GEP to replace the current one.
5347 LLVMContext &Ctx = GEP->getContext();
5348 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5349 Type *I8PtrTy =
5350 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5351 Type *I8Ty = Type::getInt8Ty(Ctx);
5353 if (!NewBaseGEP) {
5354 // Create a new base if we don't have one yet. Find the insertion
5355 // pointer for the new base first.
5356 BasicBlock::iterator NewBaseInsertPt;
5357 BasicBlock *NewBaseInsertBB;
5358 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5359 // If the base of the struct is an instruction, the new base will be
5360 // inserted close to it.
5361 NewBaseInsertBB = BaseI->getParent();
5362 if (isa<PHINode>(BaseI))
5363 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5364 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5365 NewBaseInsertBB =
5366 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5367 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5368 } else
5369 NewBaseInsertPt = std::next(BaseI->getIterator());
5370 } else {
5371 // If the current base is an argument or global value, the new base
5372 // will be inserted to the entry block.
5373 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5374 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5376 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5377 // Create a new base.
5378 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5379 NewBaseGEP = OldBase;
5380 if (NewBaseGEP->getType() != I8PtrTy)
5381 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5382 NewBaseGEP =
5383 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5384 NewGEPBases.insert(NewBaseGEP);
5387 IRBuilder<> Builder(GEP);
5388 Value *NewGEP = NewBaseGEP;
5389 if (Offset == BaseOffset) {
5390 if (GEP->getType() != I8PtrTy)
5391 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5392 } else {
5393 // Calculate the new offset for the new GEP.
5394 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5395 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5397 if (GEP->getType() != I8PtrTy)
5398 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5400 GEP->replaceAllUsesWith(NewGEP);
5401 LargeOffsetGEPID.erase(GEP);
5402 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5403 GEP->eraseFromParent();
5404 Changed = true;
5407 return Changed;
5410 /// Return true, if an ext(load) can be formed from an extension in
5411 /// \p MovedExts.
5412 bool CodeGenPrepare::canFormExtLd(
5413 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5414 Instruction *&Inst, bool HasPromoted) {
5415 for (auto *MovedExtInst : MovedExts) {
5416 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5417 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5418 Inst = MovedExtInst;
5419 break;
5422 if (!LI)
5423 return false;
5425 // If they're already in the same block, there's nothing to do.
5426 // Make the cheap checks first if we did not promote.
5427 // If we promoted, we need to check if it is indeed profitable.
5428 if (!HasPromoted && LI->getParent() == Inst->getParent())
5429 return false;
5431 return TLI->isExtLoad(LI, Inst, *DL);
5434 /// Move a zext or sext fed by a load into the same basic block as the load,
5435 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5436 /// extend into the load.
5438 /// E.g.,
5439 /// \code
5440 /// %ld = load i32* %addr
5441 /// %add = add nuw i32 %ld, 4
5442 /// %zext = zext i32 %add to i64
5443 // \endcode
5444 /// =>
5445 /// \code
5446 /// %ld = load i32* %addr
5447 /// %zext = zext i32 %ld to i64
5448 /// %add = add nuw i64 %zext, 4
5449 /// \encode
5450 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5451 /// allow us to match zext(load i32*) to i64.
5453 /// Also, try to promote the computations used to obtain a sign extended
5454 /// value used into memory accesses.
5455 /// E.g.,
5456 /// \code
5457 /// a = add nsw i32 b, 3
5458 /// d = sext i32 a to i64
5459 /// e = getelementptr ..., i64 d
5460 /// \endcode
5461 /// =>
5462 /// \code
5463 /// f = sext i32 b to i64
5464 /// a = add nsw i64 f, 3
5465 /// e = getelementptr ..., i64 a
5466 /// \endcode
5468 /// \p Inst[in/out] the extension may be modified during the process if some
5469 /// promotions apply.
5470 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5471 // ExtLoad formation and address type promotion infrastructure requires TLI to
5472 // be effective.
5473 if (!TLI)
5474 return false;
5476 bool AllowPromotionWithoutCommonHeader = false;
5477 /// See if it is an interesting sext operations for the address type
5478 /// promotion before trying to promote it, e.g., the ones with the right
5479 /// type and used in memory accesses.
5480 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5481 *Inst, AllowPromotionWithoutCommonHeader);
5482 TypePromotionTransaction TPT(RemovedInsts);
5483 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5484 TPT.getRestorationPoint();
5485 SmallVector<Instruction *, 1> Exts;
5486 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5487 Exts.push_back(Inst);
5489 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5491 // Look for a load being extended.
5492 LoadInst *LI = nullptr;
5493 Instruction *ExtFedByLoad;
5495 // Try to promote a chain of computation if it allows to form an extended
5496 // load.
5497 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5498 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5499 TPT.commit();
5500 // Move the extend into the same block as the load
5501 ExtFedByLoad->moveAfter(LI);
5502 // CGP does not check if the zext would be speculatively executed when moved
5503 // to the same basic block as the load. Preserving its original location
5504 // would pessimize the debugging experience, as well as negatively impact
5505 // the quality of sample pgo. We don't want to use "line 0" as that has a
5506 // size cost in the line-table section and logically the zext can be seen as
5507 // part of the load. Therefore we conservatively reuse the same debug
5508 // location for the load and the zext.
5509 ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5510 ++NumExtsMoved;
5511 Inst = ExtFedByLoad;
5512 return true;
5515 // Continue promoting SExts if known as considerable depending on targets.
5516 if (ATPConsiderable &&
5517 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5518 HasPromoted, TPT, SpeculativelyMovedExts))
5519 return true;
5521 TPT.rollback(LastKnownGood);
5522 return false;
5525 // Perform address type promotion if doing so is profitable.
5526 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5527 // instructions that sign extended the same initial value. However, if
5528 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5529 // extension is just profitable.
5530 bool CodeGenPrepare::performAddressTypePromotion(
5531 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5532 bool HasPromoted, TypePromotionTransaction &TPT,
5533 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5534 bool Promoted = false;
5535 SmallPtrSet<Instruction *, 1> UnhandledExts;
5536 bool AllSeenFirst = true;
5537 for (auto I : SpeculativelyMovedExts) {
5538 Value *HeadOfChain = I->getOperand(0);
5539 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5540 SeenChainsForSExt.find(HeadOfChain);
5541 // If there is an unhandled SExt which has the same header, try to promote
5542 // it as well.
5543 if (AlreadySeen != SeenChainsForSExt.end()) {
5544 if (AlreadySeen->second != nullptr)
5545 UnhandledExts.insert(AlreadySeen->second);
5546 AllSeenFirst = false;
5550 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5551 SpeculativelyMovedExts.size() == 1)) {
5552 TPT.commit();
5553 if (HasPromoted)
5554 Promoted = true;
5555 for (auto I : SpeculativelyMovedExts) {
5556 Value *HeadOfChain = I->getOperand(0);
5557 SeenChainsForSExt[HeadOfChain] = nullptr;
5558 ValToSExtendedUses[HeadOfChain].push_back(I);
5560 // Update Inst as promotion happen.
5561 Inst = SpeculativelyMovedExts.pop_back_val();
5562 } else {
5563 // This is the first chain visited from the header, keep the current chain
5564 // as unhandled. Defer to promote this until we encounter another SExt
5565 // chain derived from the same header.
5566 for (auto I : SpeculativelyMovedExts) {
5567 Value *HeadOfChain = I->getOperand(0);
5568 SeenChainsForSExt[HeadOfChain] = Inst;
5570 return false;
5573 if (!AllSeenFirst && !UnhandledExts.empty())
5574 for (auto VisitedSExt : UnhandledExts) {
5575 if (RemovedInsts.count(VisitedSExt))
5576 continue;
5577 TypePromotionTransaction TPT(RemovedInsts);
5578 SmallVector<Instruction *, 1> Exts;
5579 SmallVector<Instruction *, 2> Chains;
5580 Exts.push_back(VisitedSExt);
5581 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5582 TPT.commit();
5583 if (HasPromoted)
5584 Promoted = true;
5585 for (auto I : Chains) {
5586 Value *HeadOfChain = I->getOperand(0);
5587 // Mark this as handled.
5588 SeenChainsForSExt[HeadOfChain] = nullptr;
5589 ValToSExtendedUses[HeadOfChain].push_back(I);
5592 return Promoted;
5595 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5596 BasicBlock *DefBB = I->getParent();
5598 // If the result of a {s|z}ext and its source are both live out, rewrite all
5599 // other uses of the source with result of extension.
5600 Value *Src = I->getOperand(0);
5601 if (Src->hasOneUse())
5602 return false;
5604 // Only do this xform if truncating is free.
5605 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5606 return false;
5608 // Only safe to perform the optimization if the source is also defined in
5609 // this block.
5610 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5611 return false;
5613 bool DefIsLiveOut = false;
5614 for (User *U : I->users()) {
5615 Instruction *UI = cast<Instruction>(U);
5617 // Figure out which BB this ext is used in.
5618 BasicBlock *UserBB = UI->getParent();
5619 if (UserBB == DefBB) continue;
5620 DefIsLiveOut = true;
5621 break;
5623 if (!DefIsLiveOut)
5624 return false;
5626 // Make sure none of the uses are PHI nodes.
5627 for (User *U : Src->users()) {
5628 Instruction *UI = cast<Instruction>(U);
5629 BasicBlock *UserBB = UI->getParent();
5630 if (UserBB == DefBB) continue;
5631 // Be conservative. We don't want this xform to end up introducing
5632 // reloads just before load / store instructions.
5633 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5634 return false;
5637 // InsertedTruncs - Only insert one trunc in each block once.
5638 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5640 bool MadeChange = false;
5641 for (Use &U : Src->uses()) {
5642 Instruction *User = cast<Instruction>(U.getUser());
5644 // Figure out which BB this ext is used in.
5645 BasicBlock *UserBB = User->getParent();
5646 if (UserBB == DefBB) continue;
5648 // Both src and def are live in this block. Rewrite the use.
5649 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5651 if (!InsertedTrunc) {
5652 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5653 assert(InsertPt != UserBB->end());
5654 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5655 InsertedInsts.insert(InsertedTrunc);
5658 // Replace a use of the {s|z}ext source with a use of the result.
5659 U = InsertedTrunc;
5660 ++NumExtUses;
5661 MadeChange = true;
5664 return MadeChange;
5667 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5668 // just after the load if the target can fold this into one extload instruction,
5669 // with the hope of eliminating some of the other later "and" instructions using
5670 // the loaded value. "and"s that are made trivially redundant by the insertion
5671 // of the new "and" are removed by this function, while others (e.g. those whose
5672 // path from the load goes through a phi) are left for isel to potentially
5673 // remove.
5675 // For example:
5677 // b0:
5678 // x = load i32
5679 // ...
5680 // b1:
5681 // y = and x, 0xff
5682 // z = use y
5684 // becomes:
5686 // b0:
5687 // x = load i32
5688 // x' = and x, 0xff
5689 // ...
5690 // b1:
5691 // z = use x'
5693 // whereas:
5695 // b0:
5696 // x1 = load i32
5697 // ...
5698 // b1:
5699 // x2 = load i32
5700 // ...
5701 // b2:
5702 // x = phi x1, x2
5703 // y = and x, 0xff
5705 // becomes (after a call to optimizeLoadExt for each load):
5707 // b0:
5708 // x1 = load i32
5709 // x1' = and x1, 0xff
5710 // ...
5711 // b1:
5712 // x2 = load i32
5713 // x2' = and x2, 0xff
5714 // ...
5715 // b2:
5716 // x = phi x1', x2'
5717 // y = and x, 0xff
5718 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5719 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5720 return false;
5722 // Skip loads we've already transformed.
5723 if (Load->hasOneUse() &&
5724 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5725 return false;
5727 // Look at all uses of Load, looking through phis, to determine how many bits
5728 // of the loaded value are needed.
5729 SmallVector<Instruction *, 8> WorkList;
5730 SmallPtrSet<Instruction *, 16> Visited;
5731 SmallVector<Instruction *, 8> AndsToMaybeRemove;
5732 for (auto *U : Load->users())
5733 WorkList.push_back(cast<Instruction>(U));
5735 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5736 unsigned BitWidth = LoadResultVT.getSizeInBits();
5737 APInt DemandBits(BitWidth, 0);
5738 APInt WidestAndBits(BitWidth, 0);
5740 while (!WorkList.empty()) {
5741 Instruction *I = WorkList.back();
5742 WorkList.pop_back();
5744 // Break use-def graph loops.
5745 if (!Visited.insert(I).second)
5746 continue;
5748 // For a PHI node, push all of its users.
5749 if (auto *Phi = dyn_cast<PHINode>(I)) {
5750 for (auto *U : Phi->users())
5751 WorkList.push_back(cast<Instruction>(U));
5752 continue;
5755 switch (I->getOpcode()) {
5756 case Instruction::And: {
5757 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5758 if (!AndC)
5759 return false;
5760 APInt AndBits = AndC->getValue();
5761 DemandBits |= AndBits;
5762 // Keep track of the widest and mask we see.
5763 if (AndBits.ugt(WidestAndBits))
5764 WidestAndBits = AndBits;
5765 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5766 AndsToMaybeRemove.push_back(I);
5767 break;
5770 case Instruction::Shl: {
5771 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5772 if (!ShlC)
5773 return false;
5774 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5775 DemandBits.setLowBits(BitWidth - ShiftAmt);
5776 break;
5779 case Instruction::Trunc: {
5780 EVT TruncVT = TLI->getValueType(*DL, I->getType());
5781 unsigned TruncBitWidth = TruncVT.getSizeInBits();
5782 DemandBits.setLowBits(TruncBitWidth);
5783 break;
5786 default:
5787 return false;
5791 uint32_t ActiveBits = DemandBits.getActiveBits();
5792 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5793 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5794 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5795 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5796 // followed by an AND.
5797 // TODO: Look into removing this restriction by fixing backends to either
5798 // return false for isLoadExtLegal for i1 or have them select this pattern to
5799 // a single instruction.
5801 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5802 // mask, since these are the only ands that will be removed by isel.
5803 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5804 WidestAndBits != DemandBits)
5805 return false;
5807 LLVMContext &Ctx = Load->getType()->getContext();
5808 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5809 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5811 // Reject cases that won't be matched as extloads.
5812 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5813 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5814 return false;
5816 IRBuilder<> Builder(Load->getNextNode());
5817 auto *NewAnd = dyn_cast<Instruction>(
5818 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5819 // Mark this instruction as "inserted by CGP", so that other
5820 // optimizations don't touch it.
5821 InsertedInsts.insert(NewAnd);
5823 // Replace all uses of load with new and (except for the use of load in the
5824 // new and itself).
5825 Load->replaceAllUsesWith(NewAnd);
5826 NewAnd->setOperand(0, Load);
5828 // Remove any and instructions that are now redundant.
5829 for (auto *And : AndsToMaybeRemove)
5830 // Check that the and mask is the same as the one we decided to put on the
5831 // new and.
5832 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5833 And->replaceAllUsesWith(NewAnd);
5834 if (&*CurInstIterator == And)
5835 CurInstIterator = std::next(And->getIterator());
5836 And->eraseFromParent();
5837 ++NumAndUses;
5840 ++NumAndsAdded;
5841 return true;
5844 /// Check if V (an operand of a select instruction) is an expensive instruction
5845 /// that is only used once.
5846 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5847 auto *I = dyn_cast<Instruction>(V);
5848 // If it's safe to speculatively execute, then it should not have side
5849 // effects; therefore, it's safe to sink and possibly *not* execute.
5850 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5851 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5854 /// Returns true if a SelectInst should be turned into an explicit branch.
5855 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5856 const TargetLowering *TLI,
5857 SelectInst *SI) {
5858 // If even a predictable select is cheap, then a branch can't be cheaper.
5859 if (!TLI->isPredictableSelectExpensive())
5860 return false;
5862 // FIXME: This should use the same heuristics as IfConversion to determine
5863 // whether a select is better represented as a branch.
5865 // If metadata tells us that the select condition is obviously predictable,
5866 // then we want to replace the select with a branch.
5867 uint64_t TrueWeight, FalseWeight;
5868 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5869 uint64_t Max = std::max(TrueWeight, FalseWeight);
5870 uint64_t Sum = TrueWeight + FalseWeight;
5871 if (Sum != 0) {
5872 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5873 if (Probability > TLI->getPredictableBranchThreshold())
5874 return true;
5878 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5880 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5881 // comparison condition. If the compare has more than one use, there's
5882 // probably another cmov or setcc around, so it's not worth emitting a branch.
5883 if (!Cmp || !Cmp->hasOneUse())
5884 return false;
5886 // If either operand of the select is expensive and only needed on one side
5887 // of the select, we should form a branch.
5888 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5889 sinkSelectOperand(TTI, SI->getFalseValue()))
5890 return true;
5892 return false;
5895 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5896 /// false value of \p SI. If the true/false value of \p SI is defined by any
5897 /// select instructions in \p Selects, look through the defining select
5898 /// instruction until the true/false value is not defined in \p Selects.
5899 static Value *getTrueOrFalseValue(
5900 SelectInst *SI, bool isTrue,
5901 const SmallPtrSet<const Instruction *, 2> &Selects) {
5902 Value *V = nullptr;
5904 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5905 DefSI = dyn_cast<SelectInst>(V)) {
5906 assert(DefSI->getCondition() == SI->getCondition() &&
5907 "The condition of DefSI does not match with SI");
5908 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5911 assert(V && "Failed to get select true/false value");
5912 return V;
5915 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
5916 assert(Shift->isShift() && "Expected a shift");
5918 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
5919 // general vector shifts, and (3) the shift amount is a select-of-splatted
5920 // values, hoist the shifts before the select:
5921 // shift Op0, (select Cond, TVal, FVal) -->
5922 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
5924 // This is inverting a generic IR transform when we know that the cost of a
5925 // general vector shift is more than the cost of 2 shift-by-scalars.
5926 // We can't do this effectively in SDAG because we may not be able to
5927 // determine if the select operands are splats from within a basic block.
5928 Type *Ty = Shift->getType();
5929 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
5930 return false;
5931 Value *Cond, *TVal, *FVal;
5932 if (!match(Shift->getOperand(1),
5933 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
5934 return false;
5935 if (!isSplatValue(TVal) || !isSplatValue(FVal))
5936 return false;
5938 IRBuilder<> Builder(Shift);
5939 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
5940 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
5941 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
5942 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
5943 Shift->replaceAllUsesWith(NewSel);
5944 Shift->eraseFromParent();
5945 return true;
5948 /// If we have a SelectInst that will likely profit from branch prediction,
5949 /// turn it into a branch.
5950 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5951 // If branch conversion isn't desirable, exit early.
5952 if (DisableSelectToBranch || OptSize || !TLI)
5953 return false;
5955 // Find all consecutive select instructions that share the same condition.
5956 SmallVector<SelectInst *, 2> ASI;
5957 ASI.push_back(SI);
5958 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5959 It != SI->getParent()->end(); ++It) {
5960 SelectInst *I = dyn_cast<SelectInst>(&*It);
5961 if (I && SI->getCondition() == I->getCondition()) {
5962 ASI.push_back(I);
5963 } else {
5964 break;
5968 SelectInst *LastSI = ASI.back();
5969 // Increment the current iterator to skip all the rest of select instructions
5970 // because they will be either "not lowered" or "all lowered" to branch.
5971 CurInstIterator = std::next(LastSI->getIterator());
5973 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5975 // Can we convert the 'select' to CF ?
5976 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5977 return false;
5979 TargetLowering::SelectSupportKind SelectKind;
5980 if (VectorCond)
5981 SelectKind = TargetLowering::VectorMaskSelect;
5982 else if (SI->getType()->isVectorTy())
5983 SelectKind = TargetLowering::ScalarCondVectorVal;
5984 else
5985 SelectKind = TargetLowering::ScalarValSelect;
5987 if (TLI->isSelectSupported(SelectKind) &&
5988 !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5989 return false;
5991 // The DominatorTree needs to be rebuilt by any consumers after this
5992 // transformation. We simply reset here rather than setting the ModifiedDT
5993 // flag to avoid restarting the function walk in runOnFunction for each
5994 // select optimized.
5995 DT.reset();
5997 // Transform a sequence like this:
5998 // start:
5999 // %cmp = cmp uge i32 %a, %b
6000 // %sel = select i1 %cmp, i32 %c, i32 %d
6002 // Into:
6003 // start:
6004 // %cmp = cmp uge i32 %a, %b
6005 // br i1 %cmp, label %select.true, label %select.false
6006 // select.true:
6007 // br label %select.end
6008 // select.false:
6009 // br label %select.end
6010 // select.end:
6011 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6013 // In addition, we may sink instructions that produce %c or %d from
6014 // the entry block into the destination(s) of the new branch.
6015 // If the true or false blocks do not contain a sunken instruction, that
6016 // block and its branch may be optimized away. In that case, one side of the
6017 // first branch will point directly to select.end, and the corresponding PHI
6018 // predecessor block will be the start block.
6020 // First, we split the block containing the select into 2 blocks.
6021 BasicBlock *StartBlock = SI->getParent();
6022 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6023 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6025 // Delete the unconditional branch that was just created by the split.
6026 StartBlock->getTerminator()->eraseFromParent();
6028 // These are the new basic blocks for the conditional branch.
6029 // At least one will become an actual new basic block.
6030 BasicBlock *TrueBlock = nullptr;
6031 BasicBlock *FalseBlock = nullptr;
6032 BranchInst *TrueBranch = nullptr;
6033 BranchInst *FalseBranch = nullptr;
6035 // Sink expensive instructions into the conditional blocks to avoid executing
6036 // them speculatively.
6037 for (SelectInst *SI : ASI) {
6038 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6039 if (TrueBlock == nullptr) {
6040 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6041 EndBlock->getParent(), EndBlock);
6042 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6043 TrueBranch->setDebugLoc(SI->getDebugLoc());
6045 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6046 TrueInst->moveBefore(TrueBranch);
6048 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6049 if (FalseBlock == nullptr) {
6050 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6051 EndBlock->getParent(), EndBlock);
6052 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6053 FalseBranch->setDebugLoc(SI->getDebugLoc());
6055 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6056 FalseInst->moveBefore(FalseBranch);
6060 // If there was nothing to sink, then arbitrarily choose the 'false' side
6061 // for a new input value to the PHI.
6062 if (TrueBlock == FalseBlock) {
6063 assert(TrueBlock == nullptr &&
6064 "Unexpected basic block transform while optimizing select");
6066 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6067 EndBlock->getParent(), EndBlock);
6068 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6069 FalseBranch->setDebugLoc(SI->getDebugLoc());
6072 // Insert the real conditional branch based on the original condition.
6073 // If we did not create a new block for one of the 'true' or 'false' paths
6074 // of the condition, it means that side of the branch goes to the end block
6075 // directly and the path originates from the start block from the point of
6076 // view of the new PHI.
6077 BasicBlock *TT, *FT;
6078 if (TrueBlock == nullptr) {
6079 TT = EndBlock;
6080 FT = FalseBlock;
6081 TrueBlock = StartBlock;
6082 } else if (FalseBlock == nullptr) {
6083 TT = TrueBlock;
6084 FT = EndBlock;
6085 FalseBlock = StartBlock;
6086 } else {
6087 TT = TrueBlock;
6088 FT = FalseBlock;
6090 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6092 SmallPtrSet<const Instruction *, 2> INS;
6093 INS.insert(ASI.begin(), ASI.end());
6094 // Use reverse iterator because later select may use the value of the
6095 // earlier select, and we need to propagate value through earlier select
6096 // to get the PHI operand.
6097 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6098 SelectInst *SI = *It;
6099 // The select itself is replaced with a PHI Node.
6100 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6101 PN->takeName(SI);
6102 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6103 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6104 PN->setDebugLoc(SI->getDebugLoc());
6106 SI->replaceAllUsesWith(PN);
6107 SI->eraseFromParent();
6108 INS.erase(SI);
6109 ++NumSelectsExpanded;
6112 // Instruct OptimizeBlock to skip to the next block.
6113 CurInstIterator = StartBlock->end();
6114 return true;
6117 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6118 SmallVector<int, 16> Mask(SVI->getShuffleMask());
6119 int SplatElem = -1;
6120 for (unsigned i = 0; i < Mask.size(); ++i) {
6121 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6122 return false;
6123 SplatElem = Mask[i];
6126 return true;
6129 /// Some targets have expensive vector shifts if the lanes aren't all the same
6130 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6131 /// it's often worth sinking a shufflevector splat down to its use so that
6132 /// codegen can spot all lanes are identical.
6133 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6134 BasicBlock *DefBB = SVI->getParent();
6136 // Only do this xform if variable vector shifts are particularly expensive.
6137 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6138 return false;
6140 // We only expect better codegen by sinking a shuffle if we can recognise a
6141 // constant splat.
6142 if (!isBroadcastShuffle(SVI))
6143 return false;
6145 // InsertedShuffles - Only insert a shuffle in each block once.
6146 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6148 bool MadeChange = false;
6149 for (User *U : SVI->users()) {
6150 Instruction *UI = cast<Instruction>(U);
6152 // Figure out which BB this ext is used in.
6153 BasicBlock *UserBB = UI->getParent();
6154 if (UserBB == DefBB) continue;
6156 // For now only apply this when the splat is used by a shift instruction.
6157 if (!UI->isShift()) continue;
6159 // Everything checks out, sink the shuffle if the user's block doesn't
6160 // already have a copy.
6161 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6163 if (!InsertedShuffle) {
6164 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6165 assert(InsertPt != UserBB->end());
6166 InsertedShuffle =
6167 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6168 SVI->getOperand(2), "", &*InsertPt);
6169 InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6172 UI->replaceUsesOfWith(SVI, InsertedShuffle);
6173 MadeChange = true;
6176 // If we removed all uses, nuke the shuffle.
6177 if (SVI->use_empty()) {
6178 SVI->eraseFromParent();
6179 MadeChange = true;
6182 return MadeChange;
6185 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6186 // If the operands of I can be folded into a target instruction together with
6187 // I, duplicate and sink them.
6188 SmallVector<Use *, 4> OpsToSink;
6189 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6190 return false;
6192 // OpsToSink can contain multiple uses in a use chain (e.g.
6193 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6194 // uses must come first, so we process the ops in reverse order so as to not
6195 // create invalid IR.
6196 BasicBlock *TargetBB = I->getParent();
6197 bool Changed = false;
6198 SmallVector<Use *, 4> ToReplace;
6199 for (Use *U : reverse(OpsToSink)) {
6200 auto *UI = cast<Instruction>(U->get());
6201 if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6202 continue;
6203 ToReplace.push_back(U);
6206 SetVector<Instruction *> MaybeDead;
6207 DenseMap<Instruction *, Instruction *> NewInstructions;
6208 Instruction *InsertPoint = I;
6209 for (Use *U : ToReplace) {
6210 auto *UI = cast<Instruction>(U->get());
6211 Instruction *NI = UI->clone();
6212 NewInstructions[UI] = NI;
6213 MaybeDead.insert(UI);
6214 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6215 NI->insertBefore(InsertPoint);
6216 InsertPoint = NI;
6217 InsertedInsts.insert(NI);
6219 // Update the use for the new instruction, making sure that we update the
6220 // sunk instruction uses, if it is part of a chain that has already been
6221 // sunk.
6222 Instruction *OldI = cast<Instruction>(U->getUser());
6223 if (NewInstructions.count(OldI))
6224 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6225 else
6226 U->set(NI);
6227 Changed = true;
6230 // Remove instructions that are dead after sinking.
6231 for (auto *I : MaybeDead) {
6232 if (!I->hasNUsesOrMore(1)) {
6233 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6234 I->eraseFromParent();
6238 return Changed;
6241 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6242 if (!TLI || !DL)
6243 return false;
6245 Value *Cond = SI->getCondition();
6246 Type *OldType = Cond->getType();
6247 LLVMContext &Context = Cond->getContext();
6248 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6249 unsigned RegWidth = RegType.getSizeInBits();
6251 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6252 return false;
6254 // If the register width is greater than the type width, expand the condition
6255 // of the switch instruction and each case constant to the width of the
6256 // register. By widening the type of the switch condition, subsequent
6257 // comparisons (for case comparisons) will not need to be extended to the
6258 // preferred register width, so we will potentially eliminate N-1 extends,
6259 // where N is the number of cases in the switch.
6260 auto *NewType = Type::getIntNTy(Context, RegWidth);
6262 // Zero-extend the switch condition and case constants unless the switch
6263 // condition is a function argument that is already being sign-extended.
6264 // In that case, we can avoid an unnecessary mask/extension by sign-extending
6265 // everything instead.
6266 Instruction::CastOps ExtType = Instruction::ZExt;
6267 if (auto *Arg = dyn_cast<Argument>(Cond))
6268 if (Arg->hasSExtAttr())
6269 ExtType = Instruction::SExt;
6271 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6272 ExtInst->insertBefore(SI);
6273 ExtInst->setDebugLoc(SI->getDebugLoc());
6274 SI->setCondition(ExtInst);
6275 for (auto Case : SI->cases()) {
6276 APInt NarrowConst = Case.getCaseValue()->getValue();
6277 APInt WideConst = (ExtType == Instruction::ZExt) ?
6278 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6279 Case.setValue(ConstantInt::get(Context, WideConst));
6282 return true;
6286 namespace {
6288 /// Helper class to promote a scalar operation to a vector one.
6289 /// This class is used to move downward extractelement transition.
6290 /// E.g.,
6291 /// a = vector_op <2 x i32>
6292 /// b = extractelement <2 x i32> a, i32 0
6293 /// c = scalar_op b
6294 /// store c
6296 /// =>
6297 /// a = vector_op <2 x i32>
6298 /// c = vector_op a (equivalent to scalar_op on the related lane)
6299 /// * d = extractelement <2 x i32> c, i32 0
6300 /// * store d
6301 /// Assuming both extractelement and store can be combine, we get rid of the
6302 /// transition.
6303 class VectorPromoteHelper {
6304 /// DataLayout associated with the current module.
6305 const DataLayout &DL;
6307 /// Used to perform some checks on the legality of vector operations.
6308 const TargetLowering &TLI;
6310 /// Used to estimated the cost of the promoted chain.
6311 const TargetTransformInfo &TTI;
6313 /// The transition being moved downwards.
6314 Instruction *Transition;
6316 /// The sequence of instructions to be promoted.
6317 SmallVector<Instruction *, 4> InstsToBePromoted;
6319 /// Cost of combining a store and an extract.
6320 unsigned StoreExtractCombineCost;
6322 /// Instruction that will be combined with the transition.
6323 Instruction *CombineInst = nullptr;
6325 /// The instruction that represents the current end of the transition.
6326 /// Since we are faking the promotion until we reach the end of the chain
6327 /// of computation, we need a way to get the current end of the transition.
6328 Instruction *getEndOfTransition() const {
6329 if (InstsToBePromoted.empty())
6330 return Transition;
6331 return InstsToBePromoted.back();
6334 /// Return the index of the original value in the transition.
6335 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6336 /// c, is at index 0.
6337 unsigned getTransitionOriginalValueIdx() const {
6338 assert(isa<ExtractElementInst>(Transition) &&
6339 "Other kind of transitions are not supported yet");
6340 return 0;
6343 /// Return the index of the index in the transition.
6344 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6345 /// is at index 1.
6346 unsigned getTransitionIdx() const {
6347 assert(isa<ExtractElementInst>(Transition) &&
6348 "Other kind of transitions are not supported yet");
6349 return 1;
6352 /// Get the type of the transition.
6353 /// This is the type of the original value.
6354 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6355 /// transition is <2 x i32>.
6356 Type *getTransitionType() const {
6357 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6360 /// Promote \p ToBePromoted by moving \p Def downward through.
6361 /// I.e., we have the following sequence:
6362 /// Def = Transition <ty1> a to <ty2>
6363 /// b = ToBePromoted <ty2> Def, ...
6364 /// =>
6365 /// b = ToBePromoted <ty1> a, ...
6366 /// Def = Transition <ty1> ToBePromoted to <ty2>
6367 void promoteImpl(Instruction *ToBePromoted);
6369 /// Check whether or not it is profitable to promote all the
6370 /// instructions enqueued to be promoted.
6371 bool isProfitableToPromote() {
6372 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6373 unsigned Index = isa<ConstantInt>(ValIdx)
6374 ? cast<ConstantInt>(ValIdx)->getZExtValue()
6375 : -1;
6376 Type *PromotedType = getTransitionType();
6378 StoreInst *ST = cast<StoreInst>(CombineInst);
6379 unsigned AS = ST->getPointerAddressSpace();
6380 unsigned Align = ST->getAlignment();
6381 // Check if this store is supported.
6382 if (!TLI.allowsMisalignedMemoryAccesses(
6383 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6384 Align)) {
6385 // If this is not supported, there is no way we can combine
6386 // the extract with the store.
6387 return false;
6390 // The scalar chain of computation has to pay for the transition
6391 // scalar to vector.
6392 // The vector chain has to account for the combining cost.
6393 uint64_t ScalarCost =
6394 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6395 uint64_t VectorCost = StoreExtractCombineCost;
6396 for (const auto &Inst : InstsToBePromoted) {
6397 // Compute the cost.
6398 // By construction, all instructions being promoted are arithmetic ones.
6399 // Moreover, one argument is a constant that can be viewed as a splat
6400 // constant.
6401 Value *Arg0 = Inst->getOperand(0);
6402 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6403 isa<ConstantFP>(Arg0);
6404 TargetTransformInfo::OperandValueKind Arg0OVK =
6405 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6406 : TargetTransformInfo::OK_AnyValue;
6407 TargetTransformInfo::OperandValueKind Arg1OVK =
6408 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6409 : TargetTransformInfo::OK_AnyValue;
6410 ScalarCost += TTI.getArithmeticInstrCost(
6411 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6412 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6413 Arg0OVK, Arg1OVK);
6415 LLVM_DEBUG(
6416 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6417 << ScalarCost << "\nVector: " << VectorCost << '\n');
6418 return ScalarCost > VectorCost;
6421 /// Generate a constant vector with \p Val with the same
6422 /// number of elements as the transition.
6423 /// \p UseSplat defines whether or not \p Val should be replicated
6424 /// across the whole vector.
6425 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6426 /// otherwise we generate a vector with as many undef as possible:
6427 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6428 /// used at the index of the extract.
6429 Value *getConstantVector(Constant *Val, bool UseSplat) const {
6430 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6431 if (!UseSplat) {
6432 // If we cannot determine where the constant must be, we have to
6433 // use a splat constant.
6434 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6435 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6436 ExtractIdx = CstVal->getSExtValue();
6437 else
6438 UseSplat = true;
6441 unsigned End = getTransitionType()->getVectorNumElements();
6442 if (UseSplat)
6443 return ConstantVector::getSplat(End, Val);
6445 SmallVector<Constant *, 4> ConstVec;
6446 UndefValue *UndefVal = UndefValue::get(Val->getType());
6447 for (unsigned Idx = 0; Idx != End; ++Idx) {
6448 if (Idx == ExtractIdx)
6449 ConstVec.push_back(Val);
6450 else
6451 ConstVec.push_back(UndefVal);
6453 return ConstantVector::get(ConstVec);
6456 /// Check if promoting to a vector type an operand at \p OperandIdx
6457 /// in \p Use can trigger undefined behavior.
6458 static bool canCauseUndefinedBehavior(const Instruction *Use,
6459 unsigned OperandIdx) {
6460 // This is not safe to introduce undef when the operand is on
6461 // the right hand side of a division-like instruction.
6462 if (OperandIdx != 1)
6463 return false;
6464 switch (Use->getOpcode()) {
6465 default:
6466 return false;
6467 case Instruction::SDiv:
6468 case Instruction::UDiv:
6469 case Instruction::SRem:
6470 case Instruction::URem:
6471 return true;
6472 case Instruction::FDiv:
6473 case Instruction::FRem:
6474 return !Use->hasNoNaNs();
6476 llvm_unreachable(nullptr);
6479 public:
6480 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6481 const TargetTransformInfo &TTI, Instruction *Transition,
6482 unsigned CombineCost)
6483 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6484 StoreExtractCombineCost(CombineCost) {
6485 assert(Transition && "Do not know how to promote null");
6488 /// Check if we can promote \p ToBePromoted to \p Type.
6489 bool canPromote(const Instruction *ToBePromoted) const {
6490 // We could support CastInst too.
6491 return isa<BinaryOperator>(ToBePromoted);
6494 /// Check if it is profitable to promote \p ToBePromoted
6495 /// by moving downward the transition through.
6496 bool shouldPromote(const Instruction *ToBePromoted) const {
6497 // Promote only if all the operands can be statically expanded.
6498 // Indeed, we do not want to introduce any new kind of transitions.
6499 for (const Use &U : ToBePromoted->operands()) {
6500 const Value *Val = U.get();
6501 if (Val == getEndOfTransition()) {
6502 // If the use is a division and the transition is on the rhs,
6503 // we cannot promote the operation, otherwise we may create a
6504 // division by zero.
6505 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6506 return false;
6507 continue;
6509 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6510 !isa<ConstantFP>(Val))
6511 return false;
6513 // Check that the resulting operation is legal.
6514 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6515 if (!ISDOpcode)
6516 return false;
6517 return StressStoreExtract ||
6518 TLI.isOperationLegalOrCustom(
6519 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6522 /// Check whether or not \p Use can be combined
6523 /// with the transition.
6524 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6525 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6527 /// Record \p ToBePromoted as part of the chain to be promoted.
6528 void enqueueForPromotion(Instruction *ToBePromoted) {
6529 InstsToBePromoted.push_back(ToBePromoted);
6532 /// Set the instruction that will be combined with the transition.
6533 void recordCombineInstruction(Instruction *ToBeCombined) {
6534 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6535 CombineInst = ToBeCombined;
6538 /// Promote all the instructions enqueued for promotion if it is
6539 /// is profitable.
6540 /// \return True if the promotion happened, false otherwise.
6541 bool promote() {
6542 // Check if there is something to promote.
6543 // Right now, if we do not have anything to combine with,
6544 // we assume the promotion is not profitable.
6545 if (InstsToBePromoted.empty() || !CombineInst)
6546 return false;
6548 // Check cost.
6549 if (!StressStoreExtract && !isProfitableToPromote())
6550 return false;
6552 // Promote.
6553 for (auto &ToBePromoted : InstsToBePromoted)
6554 promoteImpl(ToBePromoted);
6555 InstsToBePromoted.clear();
6556 return true;
6560 } // end anonymous namespace
6562 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6563 // At this point, we know that all the operands of ToBePromoted but Def
6564 // can be statically promoted.
6565 // For Def, we need to use its parameter in ToBePromoted:
6566 // b = ToBePromoted ty1 a
6567 // Def = Transition ty1 b to ty2
6568 // Move the transition down.
6569 // 1. Replace all uses of the promoted operation by the transition.
6570 // = ... b => = ... Def.
6571 assert(ToBePromoted->getType() == Transition->getType() &&
6572 "The type of the result of the transition does not match "
6573 "the final type");
6574 ToBePromoted->replaceAllUsesWith(Transition);
6575 // 2. Update the type of the uses.
6576 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6577 Type *TransitionTy = getTransitionType();
6578 ToBePromoted->mutateType(TransitionTy);
6579 // 3. Update all the operands of the promoted operation with promoted
6580 // operands.
6581 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6582 for (Use &U : ToBePromoted->operands()) {
6583 Value *Val = U.get();
6584 Value *NewVal = nullptr;
6585 if (Val == Transition)
6586 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6587 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6588 isa<ConstantFP>(Val)) {
6589 // Use a splat constant if it is not safe to use undef.
6590 NewVal = getConstantVector(
6591 cast<Constant>(Val),
6592 isa<UndefValue>(Val) ||
6593 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6594 } else
6595 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6596 "this?");
6597 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6599 Transition->moveAfter(ToBePromoted);
6600 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6603 /// Some targets can do store(extractelement) with one instruction.
6604 /// Try to push the extractelement towards the stores when the target
6605 /// has this feature and this is profitable.
6606 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6607 unsigned CombineCost = std::numeric_limits<unsigned>::max();
6608 if (DisableStoreExtract || !TLI ||
6609 (!StressStoreExtract &&
6610 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6611 Inst->getOperand(1), CombineCost)))
6612 return false;
6614 // At this point we know that Inst is a vector to scalar transition.
6615 // Try to move it down the def-use chain, until:
6616 // - We can combine the transition with its single use
6617 // => we got rid of the transition.
6618 // - We escape the current basic block
6619 // => we would need to check that we are moving it at a cheaper place and
6620 // we do not do that for now.
6621 BasicBlock *Parent = Inst->getParent();
6622 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6623 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6624 // If the transition has more than one use, assume this is not going to be
6625 // beneficial.
6626 while (Inst->hasOneUse()) {
6627 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6628 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6630 if (ToBePromoted->getParent() != Parent) {
6631 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6632 << ToBePromoted->getParent()->getName()
6633 << ") than the transition (" << Parent->getName()
6634 << ").\n");
6635 return false;
6638 if (VPH.canCombine(ToBePromoted)) {
6639 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6640 << "will be combined with: " << *ToBePromoted << '\n');
6641 VPH.recordCombineInstruction(ToBePromoted);
6642 bool Changed = VPH.promote();
6643 NumStoreExtractExposed += Changed;
6644 return Changed;
6647 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6648 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6649 return false;
6651 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6653 VPH.enqueueForPromotion(ToBePromoted);
6654 Inst = ToBePromoted;
6656 return false;
6659 /// For the instruction sequence of store below, F and I values
6660 /// are bundled together as an i64 value before being stored into memory.
6661 /// Sometimes it is more efficient to generate separate stores for F and I,
6662 /// which can remove the bitwise instructions or sink them to colder places.
6664 /// (store (or (zext (bitcast F to i32) to i64),
6665 /// (shl (zext I to i64), 32)), addr) -->
6666 /// (store F, addr) and (store I, addr+4)
6668 /// Similarly, splitting for other merged store can also be beneficial, like:
6669 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6670 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6671 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6672 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6673 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6675 /// We allow each target to determine specifically which kind of splitting is
6676 /// supported.
6678 /// The store patterns are commonly seen from the simple code snippet below
6679 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6680 /// void goo(const std::pair<int, float> &);
6681 /// hoo() {
6682 /// ...
6683 /// goo(std::make_pair(tmp, ftmp));
6684 /// ...
6685 /// }
6687 /// Although we already have similar splitting in DAG Combine, we duplicate
6688 /// it in CodeGenPrepare to catch the case in which pattern is across
6689 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6690 /// during code expansion.
6691 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6692 const TargetLowering &TLI) {
6693 // Handle simple but common cases only.
6694 Type *StoreType = SI.getValueOperand()->getType();
6695 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6696 DL.getTypeSizeInBits(StoreType) == 0)
6697 return false;
6699 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6700 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6701 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6702 return false;
6704 // Don't split the store if it is volatile.
6705 if (SI.isVolatile())
6706 return false;
6708 // Match the following patterns:
6709 // (store (or (zext LValue to i64),
6710 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6711 // or
6712 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6713 // (zext LValue to i64),
6714 // Expect both operands of OR and the first operand of SHL have only
6715 // one use.
6716 Value *LValue, *HValue;
6717 if (!match(SI.getValueOperand(),
6718 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6719 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6720 m_SpecificInt(HalfValBitSize))))))
6721 return false;
6723 // Check LValue and HValue are int with size less or equal than 32.
6724 if (!LValue->getType()->isIntegerTy() ||
6725 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6726 !HValue->getType()->isIntegerTy() ||
6727 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6728 return false;
6730 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6731 // as the input of target query.
6732 auto *LBC = dyn_cast<BitCastInst>(LValue);
6733 auto *HBC = dyn_cast<BitCastInst>(HValue);
6734 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6735 : EVT::getEVT(LValue->getType());
6736 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6737 : EVT::getEVT(HValue->getType());
6738 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6739 return false;
6741 // Start to split store.
6742 IRBuilder<> Builder(SI.getContext());
6743 Builder.SetInsertPoint(&SI);
6745 // If LValue/HValue is a bitcast in another BB, create a new one in current
6746 // BB so it may be merged with the splitted stores by dag combiner.
6747 if (LBC && LBC->getParent() != SI.getParent())
6748 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6749 if (HBC && HBC->getParent() != SI.getParent())
6750 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6752 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6753 auto CreateSplitStore = [&](Value *V, bool Upper) {
6754 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6755 Value *Addr = Builder.CreateBitCast(
6756 SI.getOperand(1),
6757 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6758 if ((IsLE && Upper) || (!IsLE && !Upper))
6759 Addr = Builder.CreateGEP(
6760 SplitStoreType, Addr,
6761 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6762 Builder.CreateAlignedStore(
6763 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6766 CreateSplitStore(LValue, false);
6767 CreateSplitStore(HValue, true);
6769 // Delete the old store.
6770 SI.eraseFromParent();
6771 return true;
6774 // Return true if the GEP has two operands, the first operand is of a sequential
6775 // type, and the second operand is a constant.
6776 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6777 gep_type_iterator I = gep_type_begin(*GEP);
6778 return GEP->getNumOperands() == 2 &&
6779 I.isSequential() &&
6780 isa<ConstantInt>(GEP->getOperand(1));
6783 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6784 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6785 // reducing liveness interference across those edges benefits global register
6786 // allocation. Currently handles only certain cases.
6788 // For example, unmerge %GEPI and %UGEPI as below.
6790 // ---------- BEFORE ----------
6791 // SrcBlock:
6792 // ...
6793 // %GEPIOp = ...
6794 // ...
6795 // %GEPI = gep %GEPIOp, Idx
6796 // ...
6797 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6798 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6799 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6800 // %UGEPI)
6802 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6803 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6804 // ...
6806 // DstBi:
6807 // ...
6808 // %UGEPI = gep %GEPIOp, UIdx
6809 // ...
6810 // ---------------------------
6812 // ---------- AFTER ----------
6813 // SrcBlock:
6814 // ... (same as above)
6815 // (* %GEPI is still alive on the indirectbr edges)
6816 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6817 // unmerging)
6818 // ...
6820 // DstBi:
6821 // ...
6822 // %UGEPI = gep %GEPI, (UIdx-Idx)
6823 // ...
6824 // ---------------------------
6826 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6827 // no longer alive on them.
6829 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6830 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6831 // not to disable further simplications and optimizations as a result of GEP
6832 // merging.
6834 // Note this unmerging may increase the length of the data flow critical path
6835 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6836 // between the register pressure and the length of data-flow critical
6837 // path. Restricting this to the uncommon IndirectBr case would minimize the
6838 // impact of potentially longer critical path, if any, and the impact on compile
6839 // time.
6840 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6841 const TargetTransformInfo *TTI) {
6842 BasicBlock *SrcBlock = GEPI->getParent();
6843 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6844 // (non-IndirectBr) cases exit early here.
6845 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6846 return false;
6847 // Check that GEPI is a simple gep with a single constant index.
6848 if (!GEPSequentialConstIndexed(GEPI))
6849 return false;
6850 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6851 // Check that GEPI is a cheap one.
6852 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6853 > TargetTransformInfo::TCC_Basic)
6854 return false;
6855 Value *GEPIOp = GEPI->getOperand(0);
6856 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6857 if (!isa<Instruction>(GEPIOp))
6858 return false;
6859 auto *GEPIOpI = cast<Instruction>(GEPIOp);
6860 if (GEPIOpI->getParent() != SrcBlock)
6861 return false;
6862 // Check that GEP is used outside the block, meaning it's alive on the
6863 // IndirectBr edge(s).
6864 if (find_if(GEPI->users(), [&](User *Usr) {
6865 if (auto *I = dyn_cast<Instruction>(Usr)) {
6866 if (I->getParent() != SrcBlock) {
6867 return true;
6870 return false;
6871 }) == GEPI->users().end())
6872 return false;
6873 // The second elements of the GEP chains to be unmerged.
6874 std::vector<GetElementPtrInst *> UGEPIs;
6875 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6876 // on IndirectBr edges.
6877 for (User *Usr : GEPIOp->users()) {
6878 if (Usr == GEPI) continue;
6879 // Check if Usr is an Instruction. If not, give up.
6880 if (!isa<Instruction>(Usr))
6881 return false;
6882 auto *UI = cast<Instruction>(Usr);
6883 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6884 if (UI->getParent() == SrcBlock)
6885 continue;
6886 // Check if Usr is a GEP. If not, give up.
6887 if (!isa<GetElementPtrInst>(Usr))
6888 return false;
6889 auto *UGEPI = cast<GetElementPtrInst>(Usr);
6890 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6891 // the pointer operand to it. If so, record it in the vector. If not, give
6892 // up.
6893 if (!GEPSequentialConstIndexed(UGEPI))
6894 return false;
6895 if (UGEPI->getOperand(0) != GEPIOp)
6896 return false;
6897 if (GEPIIdx->getType() !=
6898 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6899 return false;
6900 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6901 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6902 > TargetTransformInfo::TCC_Basic)
6903 return false;
6904 UGEPIs.push_back(UGEPI);
6906 if (UGEPIs.size() == 0)
6907 return false;
6908 // Check the materializing cost of (Uidx-Idx).
6909 for (GetElementPtrInst *UGEPI : UGEPIs) {
6910 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6911 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6912 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6913 if (ImmCost > TargetTransformInfo::TCC_Basic)
6914 return false;
6916 // Now unmerge between GEPI and UGEPIs.
6917 for (GetElementPtrInst *UGEPI : UGEPIs) {
6918 UGEPI->setOperand(0, GEPI);
6919 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6920 Constant *NewUGEPIIdx =
6921 ConstantInt::get(GEPIIdx->getType(),
6922 UGEPIIdx->getValue() - GEPIIdx->getValue());
6923 UGEPI->setOperand(1, NewUGEPIIdx);
6924 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6925 // inbounds to avoid UB.
6926 if (!GEPI->isInBounds()) {
6927 UGEPI->setIsInBounds(false);
6930 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6931 // alive on IndirectBr edges).
6932 assert(find_if(GEPIOp->users(), [&](User *Usr) {
6933 return cast<Instruction>(Usr)->getParent() != SrcBlock;
6934 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6935 return true;
6938 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6939 // Bail out if we inserted the instruction to prevent optimizations from
6940 // stepping on each other's toes.
6941 if (InsertedInsts.count(I))
6942 return false;
6944 // TODO: Move into the switch on opcode below here.
6945 if (PHINode *P = dyn_cast<PHINode>(I)) {
6946 // It is possible for very late stage optimizations (such as SimplifyCFG)
6947 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6948 // trivial PHI, go ahead and zap it here.
6949 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6950 LargeOffsetGEPMap.erase(P);
6951 P->replaceAllUsesWith(V);
6952 P->eraseFromParent();
6953 ++NumPHIsElim;
6954 return true;
6956 return false;
6959 if (CastInst *CI = dyn_cast<CastInst>(I)) {
6960 // If the source of the cast is a constant, then this should have
6961 // already been constant folded. The only reason NOT to constant fold
6962 // it is if something (e.g. LSR) was careful to place the constant
6963 // evaluation in a block other than then one that uses it (e.g. to hoist
6964 // the address of globals out of a loop). If this is the case, we don't
6965 // want to forward-subst the cast.
6966 if (isa<Constant>(CI->getOperand(0)))
6967 return false;
6969 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6970 return true;
6972 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6973 /// Sink a zext or sext into its user blocks if the target type doesn't
6974 /// fit in one register
6975 if (TLI &&
6976 TLI->getTypeAction(CI->getContext(),
6977 TLI->getValueType(*DL, CI->getType())) ==
6978 TargetLowering::TypeExpandInteger) {
6979 return SinkCast(CI);
6980 } else {
6981 bool MadeChange = optimizeExt(I);
6982 return MadeChange | optimizeExtUses(I);
6985 return false;
6988 if (auto *Cmp = dyn_cast<CmpInst>(I))
6989 if (TLI && optimizeCmp(Cmp, ModifiedDT))
6990 return true;
6992 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6993 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6994 if (TLI) {
6995 bool Modified = optimizeLoadExt(LI);
6996 unsigned AS = LI->getPointerAddressSpace();
6997 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6998 return Modified;
7000 return false;
7003 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7004 if (TLI && splitMergedValStore(*SI, *DL, *TLI))
7005 return true;
7006 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7007 if (TLI) {
7008 unsigned AS = SI->getPointerAddressSpace();
7009 return optimizeMemoryInst(I, SI->getOperand(1),
7010 SI->getOperand(0)->getType(), AS);
7012 return false;
7015 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7016 unsigned AS = RMW->getPointerAddressSpace();
7017 return optimizeMemoryInst(I, RMW->getPointerOperand(),
7018 RMW->getType(), AS);
7021 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7022 unsigned AS = CmpX->getPointerAddressSpace();
7023 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7024 CmpX->getCompareOperand()->getType(), AS);
7027 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7029 if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7030 EnableAndCmpSinking && TLI)
7031 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7033 // TODO: Move this into the switch on opcode - it handles shifts already.
7034 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7035 BinOp->getOpcode() == Instruction::LShr)) {
7036 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7037 if (TLI && CI && TLI->hasExtractBitsInsn())
7038 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7039 return true;
7042 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7043 if (GEPI->hasAllZeroIndices()) {
7044 /// The GEP operand must be a pointer, so must its result -> BitCast
7045 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7046 GEPI->getName(), GEPI);
7047 NC->setDebugLoc(GEPI->getDebugLoc());
7048 GEPI->replaceAllUsesWith(NC);
7049 GEPI->eraseFromParent();
7050 ++NumGEPsElim;
7051 optimizeInst(NC, ModifiedDT);
7052 return true;
7054 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7055 return true;
7057 return false;
7060 if (tryToSinkFreeOperands(I))
7061 return true;
7063 switch (I->getOpcode()) {
7064 case Instruction::Shl:
7065 case Instruction::LShr:
7066 case Instruction::AShr:
7067 return optimizeShiftInst(cast<BinaryOperator>(I));
7068 case Instruction::Call:
7069 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7070 case Instruction::Select:
7071 return optimizeSelectInst(cast<SelectInst>(I));
7072 case Instruction::ShuffleVector:
7073 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7074 case Instruction::Switch:
7075 return optimizeSwitchInst(cast<SwitchInst>(I));
7076 case Instruction::ExtractElement:
7077 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7080 return false;
7083 /// Given an OR instruction, check to see if this is a bitreverse
7084 /// idiom. If so, insert the new intrinsic and return true.
7085 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7086 const TargetLowering &TLI) {
7087 if (!I.getType()->isIntegerTy() ||
7088 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7089 TLI.getValueType(DL, I.getType(), true)))
7090 return false;
7092 SmallVector<Instruction*, 4> Insts;
7093 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7094 return false;
7095 Instruction *LastInst = Insts.back();
7096 I.replaceAllUsesWith(LastInst);
7097 RecursivelyDeleteTriviallyDeadInstructions(&I);
7098 return true;
7101 // In this pass we look for GEP and cast instructions that are used
7102 // across basic blocks and rewrite them to improve basic-block-at-a-time
7103 // selection.
7104 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7105 SunkAddrs.clear();
7106 bool MadeChange = false;
7108 CurInstIterator = BB.begin();
7109 while (CurInstIterator != BB.end()) {
7110 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7111 if (ModifiedDT)
7112 return true;
7115 bool MadeBitReverse = true;
7116 while (TLI && MadeBitReverse) {
7117 MadeBitReverse = false;
7118 for (auto &I : reverse(BB)) {
7119 if (makeBitReverse(I, *DL, *TLI)) {
7120 MadeBitReverse = MadeChange = true;
7121 break;
7125 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7127 return MadeChange;
7130 // llvm.dbg.value is far away from the value then iSel may not be able
7131 // handle it properly. iSel will drop llvm.dbg.value if it can not
7132 // find a node corresponding to the value.
7133 bool CodeGenPrepare::placeDbgValues(Function &F) {
7134 bool MadeChange = false;
7135 for (BasicBlock &BB : F) {
7136 Instruction *PrevNonDbgInst = nullptr;
7137 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7138 Instruction *Insn = &*BI++;
7139 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7140 // Leave dbg.values that refer to an alloca alone. These
7141 // intrinsics describe the address of a variable (= the alloca)
7142 // being taken. They should not be moved next to the alloca
7143 // (and to the beginning of the scope), but rather stay close to
7144 // where said address is used.
7145 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7146 PrevNonDbgInst = Insn;
7147 continue;
7150 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7151 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7152 // If VI is a phi in a block with an EHPad terminator, we can't insert
7153 // after it.
7154 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7155 continue;
7156 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7157 << *DVI << ' ' << *VI);
7158 DVI->removeFromParent();
7159 if (isa<PHINode>(VI))
7160 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7161 else
7162 DVI->insertAfter(VI);
7163 MadeChange = true;
7164 ++NumDbgValueMoved;
7168 return MadeChange;
7171 /// Scale down both weights to fit into uint32_t.
7172 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7173 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7174 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7175 NewTrue = NewTrue / Scale;
7176 NewFalse = NewFalse / Scale;
7179 /// Some targets prefer to split a conditional branch like:
7180 /// \code
7181 /// %0 = icmp ne i32 %a, 0
7182 /// %1 = icmp ne i32 %b, 0
7183 /// %or.cond = or i1 %0, %1
7184 /// br i1 %or.cond, label %TrueBB, label %FalseBB
7185 /// \endcode
7186 /// into multiple branch instructions like:
7187 /// \code
7188 /// bb1:
7189 /// %0 = icmp ne i32 %a, 0
7190 /// br i1 %0, label %TrueBB, label %bb2
7191 /// bb2:
7192 /// %1 = icmp ne i32 %b, 0
7193 /// br i1 %1, label %TrueBB, label %FalseBB
7194 /// \endcode
7195 /// This usually allows instruction selection to do even further optimizations
7196 /// and combine the compare with the branch instruction. Currently this is
7197 /// applied for targets which have "cheap" jump instructions.
7199 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7201 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7202 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7203 return false;
7205 bool MadeChange = false;
7206 for (auto &BB : F) {
7207 // Does this BB end with the following?
7208 // %cond1 = icmp|fcmp|binary instruction ...
7209 // %cond2 = icmp|fcmp|binary instruction ...
7210 // %cond.or = or|and i1 %cond1, cond2
7211 // br i1 %cond.or label %dest1, label %dest2"
7212 BinaryOperator *LogicOp;
7213 BasicBlock *TBB, *FBB;
7214 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7215 continue;
7217 auto *Br1 = cast<BranchInst>(BB.getTerminator());
7218 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7219 continue;
7221 unsigned Opc;
7222 Value *Cond1, *Cond2;
7223 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7224 m_OneUse(m_Value(Cond2)))))
7225 Opc = Instruction::And;
7226 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7227 m_OneUse(m_Value(Cond2)))))
7228 Opc = Instruction::Or;
7229 else
7230 continue;
7232 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7233 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
7234 continue;
7236 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7238 // Create a new BB.
7239 auto TmpBB =
7240 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7241 BB.getParent(), BB.getNextNode());
7243 // Update original basic block by using the first condition directly by the
7244 // branch instruction and removing the no longer needed and/or instruction.
7245 Br1->setCondition(Cond1);
7246 LogicOp->eraseFromParent();
7248 // Depending on the condition we have to either replace the true or the
7249 // false successor of the original branch instruction.
7250 if (Opc == Instruction::And)
7251 Br1->setSuccessor(0, TmpBB);
7252 else
7253 Br1->setSuccessor(1, TmpBB);
7255 // Fill in the new basic block.
7256 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7257 if (auto *I = dyn_cast<Instruction>(Cond2)) {
7258 I->removeFromParent();
7259 I->insertBefore(Br2);
7262 // Update PHI nodes in both successors. The original BB needs to be
7263 // replaced in one successor's PHI nodes, because the branch comes now from
7264 // the newly generated BB (NewBB). In the other successor we need to add one
7265 // incoming edge to the PHI nodes, because both branch instructions target
7266 // now the same successor. Depending on the original branch condition
7267 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7268 // we perform the correct update for the PHI nodes.
7269 // This doesn't change the successor order of the just created branch
7270 // instruction (or any other instruction).
7271 if (Opc == Instruction::Or)
7272 std::swap(TBB, FBB);
7274 // Replace the old BB with the new BB.
7275 TBB->replacePhiUsesWith(&BB, TmpBB);
7277 // Add another incoming edge form the new BB.
7278 for (PHINode &PN : FBB->phis()) {
7279 auto *Val = PN.getIncomingValueForBlock(&BB);
7280 PN.addIncoming(Val, TmpBB);
7283 // Update the branch weights (from SelectionDAGBuilder::
7284 // FindMergedConditions).
7285 if (Opc == Instruction::Or) {
7286 // Codegen X | Y as:
7287 // BB1:
7288 // jmp_if_X TBB
7289 // jmp TmpBB
7290 // TmpBB:
7291 // jmp_if_Y TBB
7292 // jmp FBB
7295 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7296 // The requirement is that
7297 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7298 // = TrueProb for original BB.
7299 // Assuming the original weights are A and B, one choice is to set BB1's
7300 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7301 // assumes that
7302 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7303 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7304 // TmpBB, but the math is more complicated.
7305 uint64_t TrueWeight, FalseWeight;
7306 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7307 uint64_t NewTrueWeight = TrueWeight;
7308 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7309 scaleWeights(NewTrueWeight, NewFalseWeight);
7310 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7311 .createBranchWeights(TrueWeight, FalseWeight));
7313 NewTrueWeight = TrueWeight;
7314 NewFalseWeight = 2 * FalseWeight;
7315 scaleWeights(NewTrueWeight, NewFalseWeight);
7316 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7317 .createBranchWeights(TrueWeight, FalseWeight));
7319 } else {
7320 // Codegen X & Y as:
7321 // BB1:
7322 // jmp_if_X TmpBB
7323 // jmp FBB
7324 // TmpBB:
7325 // jmp_if_Y TBB
7326 // jmp FBB
7328 // This requires creation of TmpBB after CurBB.
7330 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7331 // The requirement is that
7332 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7333 // = FalseProb for original BB.
7334 // Assuming the original weights are A and B, one choice is to set BB1's
7335 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7336 // assumes that
7337 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7338 uint64_t TrueWeight, FalseWeight;
7339 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7340 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7341 uint64_t NewFalseWeight = FalseWeight;
7342 scaleWeights(NewTrueWeight, NewFalseWeight);
7343 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7344 .createBranchWeights(TrueWeight, FalseWeight));
7346 NewTrueWeight = 2 * TrueWeight;
7347 NewFalseWeight = FalseWeight;
7348 scaleWeights(NewTrueWeight, NewFalseWeight);
7349 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7350 .createBranchWeights(TrueWeight, FalseWeight));
7354 ModifiedDT = true;
7355 MadeChange = true;
7357 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7358 TmpBB->dump());
7360 return MadeChange;