[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / ImplicitNullChecks.cpp
blobb7dcaec9010672ec558c6135ce871ad8260c8155
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
11 // test %r10, %r10
12 // je throw_npe
13 // movl (%r10), %esi
14 // ...
16 // to
18 // faulting_load_op("movl (%r10), %esi", throw_npe)
19 // ...
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/MC/MCInstrDesc.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CommandLine.h"
57 #include <cassert>
58 #include <cstdint>
59 #include <iterator>
61 using namespace llvm;
63 static cl::opt<int> PageSize("imp-null-check-page-size",
64 cl::desc("The page size of the target in bytes"),
65 cl::init(4096), cl::Hidden);
67 static cl::opt<unsigned> MaxInstsToConsider(
68 "imp-null-max-insts-to-consider",
69 cl::desc("The max number of instructions to consider hoisting loads over "
70 "(the algorithm is quadratic over this number)"),
71 cl::Hidden, cl::init(8));
73 #define DEBUG_TYPE "implicit-null-checks"
75 STATISTIC(NumImplicitNullChecks,
76 "Number of explicit null checks made implicit");
78 namespace {
80 class ImplicitNullChecks : public MachineFunctionPass {
81 /// Return true if \c computeDependence can process \p MI.
82 static bool canHandle(const MachineInstr *MI);
84 /// Helper function for \c computeDependence. Return true if \p A
85 /// and \p B do not have any dependences between them, and can be
86 /// re-ordered without changing program semantics.
87 bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 /// A data type for representing the result computed by \c
90 /// computeDependence. States whether it is okay to reorder the
91 /// instruction passed to \c computeDependence with at most one
92 /// dependency.
93 struct DependenceResult {
94 /// Can we actually re-order \p MI with \p Insts (see \c
95 /// computeDependence).
96 bool CanReorder;
98 /// If non-None, then an instruction in \p Insts that also must be
99 /// hoisted.
100 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 /*implicit*/ DependenceResult(
103 bool CanReorder,
104 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
105 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
106 assert((!PotentialDependence || CanReorder) &&
107 "!CanReorder && PotentialDependence.hasValue() not allowed!");
111 /// Compute a result for the following question: can \p MI be
112 /// re-ordered from after \p Insts to before it.
114 /// \c canHandle should return true for all instructions in \p
115 /// Insts.
116 DependenceResult computeDependence(const MachineInstr *MI,
117 ArrayRef<MachineInstr *> Block);
119 /// Represents one null check that can be made implicit.
120 class NullCheck {
121 // The memory operation the null check can be folded into.
122 MachineInstr *MemOperation;
124 // The instruction actually doing the null check (Ptr != 0).
125 MachineInstr *CheckOperation;
127 // The block the check resides in.
128 MachineBasicBlock *CheckBlock;
130 // The block branched to if the pointer is non-null.
131 MachineBasicBlock *NotNullSucc;
133 // The block branched to if the pointer is null.
134 MachineBasicBlock *NullSucc;
136 // If this is non-null, then MemOperation has a dependency on this
137 // instruction; and it needs to be hoisted to execute before MemOperation.
138 MachineInstr *OnlyDependency;
140 public:
141 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
142 MachineBasicBlock *checkBlock,
143 MachineBasicBlock *notNullSucc,
144 MachineBasicBlock *nullSucc,
145 MachineInstr *onlyDependency)
146 : MemOperation(memOperation), CheckOperation(checkOperation),
147 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
148 OnlyDependency(onlyDependency) {}
150 MachineInstr *getMemOperation() const { return MemOperation; }
152 MachineInstr *getCheckOperation() const { return CheckOperation; }
154 MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 MachineInstr *getOnlyDependency() const { return OnlyDependency; }
163 const TargetInstrInfo *TII = nullptr;
164 const TargetRegisterInfo *TRI = nullptr;
165 AliasAnalysis *AA = nullptr;
166 MachineFrameInfo *MFI = nullptr;
168 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
169 SmallVectorImpl<NullCheck> &NullCheckList);
170 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
171 MachineBasicBlock *HandlerMBB);
172 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 enum AliasResult {
175 AR_NoAlias,
176 AR_MayAlias,
177 AR_WillAliasEverything
180 /// Returns AR_NoAlias if \p MI memory operation does not alias with
181 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
182 /// they may alias and any further memory operation may alias with \p PrevMI.
183 AliasResult areMemoryOpsAliased(const MachineInstr &MI,
184 const MachineInstr *PrevMI) const;
186 enum SuitabilityResult {
187 SR_Suitable,
188 SR_Unsuitable,
189 SR_Impossible
192 /// Return SR_Suitable if \p MI a memory operation that can be used to
193 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194 /// \p MI cannot be used to null check and SR_Impossible if there is
195 /// no sense to continue lookup due to any other instruction will not be able
196 /// to be used. \p PrevInsts is the set of instruction seen since
197 /// the explicit null check on \p PointerReg.
198 SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
199 unsigned PointerReg,
200 ArrayRef<MachineInstr *> PrevInsts);
202 /// Return true if \p FaultingMI can be hoisted from after the
203 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
204 /// non-null value if we also need to (and legally can) hoist a depedency.
205 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
206 ArrayRef<MachineInstr *> InstsSeenSoFar,
207 MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
209 public:
210 static char ID;
212 ImplicitNullChecks() : MachineFunctionPass(ID) {
213 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
216 bool runOnMachineFunction(MachineFunction &MF) override;
218 void getAnalysisUsage(AnalysisUsage &AU) const override {
219 AU.addRequired<AAResultsWrapperPass>();
220 MachineFunctionPass::getAnalysisUsage(AU);
223 MachineFunctionProperties getRequiredProperties() const override {
224 return MachineFunctionProperties().set(
225 MachineFunctionProperties::Property::NoVRegs);
229 } // end anonymous namespace
231 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
232 if (MI->isCall() || MI->mayRaiseFPException() ||
233 MI->hasUnmodeledSideEffects())
234 return false;
235 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
236 (void)IsRegMask;
238 assert(!llvm::any_of(MI->operands(), IsRegMask) &&
239 "Calls were filtered out above!");
241 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
242 return llvm::all_of(MI->memoperands(), IsUnordered);
245 ImplicitNullChecks::DependenceResult
246 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
247 ArrayRef<MachineInstr *> Block) {
248 assert(llvm::all_of(Block, canHandle) && "Check this first!");
249 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
251 Optional<ArrayRef<MachineInstr *>::iterator> Dep;
253 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
254 if (canReorder(*I, MI))
255 continue;
257 if (Dep == None) {
258 // Found one possible dependency, keep track of it.
259 Dep = I;
260 } else {
261 // We found two dependencies, so bail out.
262 return {false, None};
266 return {true, Dep};
269 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
270 const MachineInstr *B) {
271 assert(canHandle(A) && canHandle(B) && "Precondition!");
273 // canHandle makes sure that we _can_ correctly analyze the dependencies
274 // between A and B here -- for instance, we should not be dealing with heap
275 // load-store dependencies here.
277 for (auto MOA : A->operands()) {
278 if (!(MOA.isReg() && MOA.getReg()))
279 continue;
281 Register RegA = MOA.getReg();
282 for (auto MOB : B->operands()) {
283 if (!(MOB.isReg() && MOB.getReg()))
284 continue;
286 Register RegB = MOB.getReg();
288 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
289 return false;
293 return true;
296 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
297 TII = MF.getSubtarget().getInstrInfo();
298 TRI = MF.getRegInfo().getTargetRegisterInfo();
299 MFI = &MF.getFrameInfo();
300 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
302 SmallVector<NullCheck, 16> NullCheckList;
304 for (auto &MBB : MF)
305 analyzeBlockForNullChecks(MBB, NullCheckList);
307 if (!NullCheckList.empty())
308 rewriteNullChecks(NullCheckList);
310 return !NullCheckList.empty();
313 // Return true if any register aliasing \p Reg is live-in into \p MBB.
314 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
315 MachineBasicBlock *MBB, unsigned Reg) {
316 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
317 ++AR)
318 if (MBB->isLiveIn(*AR))
319 return true;
320 return false;
323 ImplicitNullChecks::AliasResult
324 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
325 const MachineInstr *PrevMI) const {
326 // If it is not memory access, skip the check.
327 if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
328 return AR_NoAlias;
329 // Load-Load may alias
330 if (!(MI.mayStore() || PrevMI->mayStore()))
331 return AR_NoAlias;
332 // We lost info, conservatively alias. If it was store then no sense to
333 // continue because we won't be able to check against it further.
334 if (MI.memoperands_empty())
335 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
336 if (PrevMI->memoperands_empty())
337 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
339 for (MachineMemOperand *MMO1 : MI.memoperands()) {
340 // MMO1 should have a value due it comes from operation we'd like to use
341 // as implicit null check.
342 assert(MMO1->getValue() && "MMO1 should have a Value!");
343 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
344 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
345 if (PSV->mayAlias(MFI))
346 return AR_MayAlias;
347 continue;
349 llvm::AliasResult AAResult =
350 AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
351 MMO1->getAAInfo()),
352 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
353 MMO2->getAAInfo()));
354 if (AAResult != NoAlias)
355 return AR_MayAlias;
358 return AR_NoAlias;
361 ImplicitNullChecks::SuitabilityResult
362 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
363 unsigned PointerReg,
364 ArrayRef<MachineInstr *> PrevInsts) {
365 int64_t Offset;
366 const MachineOperand *BaseOp;
368 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
369 !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
370 return SR_Unsuitable;
372 // We want the mem access to be issued at a sane offset from PointerReg,
373 // so that if PointerReg is null then the access reliably page faults.
374 if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
375 -PageSize < Offset && Offset < PageSize))
376 return SR_Unsuitable;
378 // Finally, check whether the current memory access aliases with previous one.
379 for (auto *PrevMI : PrevInsts) {
380 AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
381 if (AR == AR_WillAliasEverything)
382 return SR_Impossible;
383 if (AR == AR_MayAlias)
384 return SR_Unsuitable;
386 return SR_Suitable;
389 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
390 unsigned PointerReg,
391 ArrayRef<MachineInstr *> InstsSeenSoFar,
392 MachineBasicBlock *NullSucc,
393 MachineInstr *&Dependence) {
394 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
395 if (!DepResult.CanReorder)
396 return false;
398 if (!DepResult.PotentialDependence) {
399 Dependence = nullptr;
400 return true;
403 auto DependenceItr = *DepResult.PotentialDependence;
404 auto *DependenceMI = *DependenceItr;
406 // We don't want to reason about speculating loads. Note -- at this point
407 // we should have already filtered out all of the other non-speculatable
408 // things, like calls and stores.
409 // We also do not want to hoist stores because it might change the memory
410 // while the FaultingMI may result in faulting.
411 assert(canHandle(DependenceMI) && "Should never have reached here!");
412 if (DependenceMI->mayLoadOrStore())
413 return false;
415 for (auto &DependenceMO : DependenceMI->operands()) {
416 if (!(DependenceMO.isReg() && DependenceMO.getReg()))
417 continue;
419 // Make sure that we won't clobber any live ins to the sibling block by
420 // hoisting Dependency. For instance, we can't hoist INST to before the
421 // null check (even if it safe, and does not violate any dependencies in
422 // the non_null_block) if %rdx is live in to _null_block.
424 // test %rcx, %rcx
425 // je _null_block
426 // _non_null_block:
427 // %rdx = INST
428 // ...
430 // This restriction does not apply to the faulting load inst because in
431 // case the pointer loaded from is in the null page, the load will not
432 // semantically execute, and affect machine state. That is, if the load
433 // was loading into %rax and it faults, the value of %rax should stay the
434 // same as it would have been had the load not have executed and we'd have
435 // branched to NullSucc directly.
436 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
437 return false;
439 // The Dependency can't be re-defining the base register -- then we won't
440 // get the memory operation on the address we want. This is already
441 // checked in \c IsSuitableMemoryOp.
442 assert(!(DependenceMO.isDef() &&
443 TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
444 "Should have been checked before!");
447 auto DepDepResult =
448 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
450 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
451 return false;
453 Dependence = DependenceMI;
454 return true;
457 /// Analyze MBB to check if its terminating branch can be turned into an
458 /// implicit null check. If yes, append a description of the said null check to
459 /// NullCheckList and return true, else return false.
460 bool ImplicitNullChecks::analyzeBlockForNullChecks(
461 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
462 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
464 MDNode *BranchMD = nullptr;
465 if (auto *BB = MBB.getBasicBlock())
466 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
468 if (!BranchMD)
469 return false;
471 MachineBranchPredicate MBP;
473 if (TII->analyzeBranchPredicate(MBB, MBP, true))
474 return false;
476 // Is the predicate comparing an integer to zero?
477 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
478 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
479 MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
480 return false;
482 // If we cannot erase the test instruction itself, then making the null check
483 // implicit does not buy us much.
484 if (!MBP.SingleUseCondition)
485 return false;
487 MachineBasicBlock *NotNullSucc, *NullSucc;
489 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
490 NotNullSucc = MBP.TrueDest;
491 NullSucc = MBP.FalseDest;
492 } else {
493 NotNullSucc = MBP.FalseDest;
494 NullSucc = MBP.TrueDest;
497 // We handle the simplest case for now. We can potentially do better by using
498 // the machine dominator tree.
499 if (NotNullSucc->pred_size() != 1)
500 return false;
502 // To prevent the invalid transformation of the following code:
504 // mov %rax, %rcx
505 // test %rax, %rax
506 // %rax = ...
507 // je throw_npe
508 // mov(%rcx), %r9
509 // mov(%rax), %r10
511 // into:
513 // mov %rax, %rcx
514 // %rax = ....
515 // faulting_load_op("movl (%rax), %r10", throw_npe)
516 // mov(%rcx), %r9
518 // we must ensure that there are no instructions between the 'test' and
519 // conditional jump that modify %rax.
520 const Register PointerReg = MBP.LHS.getReg();
522 assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block");
524 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
525 if (I->modifiesRegister(PointerReg, TRI))
526 return false;
528 // Starting with a code fragment like:
530 // test %rax, %rax
531 // jne LblNotNull
533 // LblNull:
534 // callq throw_NullPointerException
536 // LblNotNull:
537 // Inst0
538 // Inst1
539 // ...
540 // Def = Load (%rax + <offset>)
541 // ...
544 // we want to end up with
546 // Def = FaultingLoad (%rax + <offset>), LblNull
547 // jmp LblNotNull ;; explicit or fallthrough
549 // LblNotNull:
550 // Inst0
551 // Inst1
552 // ...
554 // LblNull:
555 // callq throw_NullPointerException
558 // To see why this is legal, consider the two possibilities:
560 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the
561 // load instruction dereferences the null page, causing a segmentation
562 // fault.
564 // 2. %rax is not null: in this case we know that the load cannot fault, as
565 // otherwise the load would've faulted in the original program too and the
566 // original program would've been undefined.
568 // This reasoning cannot be extended to justify hoisting through arbitrary
569 // control flow. For instance, in the example below (in pseudo-C)
571 // if (ptr == null) { throw_npe(); unreachable; }
572 // if (some_cond) { return 42; }
573 // v = ptr->field; // LD
574 // ...
576 // we cannot (without code duplication) use the load marked "LD" to null check
577 // ptr -- clause (2) above does not apply in this case. In the above program
578 // the safety of ptr->field can be dependent on some_cond; and, for instance,
579 // ptr could be some non-null invalid reference that never gets loaded from
580 // because some_cond is always true.
582 SmallVector<MachineInstr *, 8> InstsSeenSoFar;
584 for (auto &MI : *NotNullSucc) {
585 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
586 return false;
588 MachineInstr *Dependence;
589 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
590 if (SR == SR_Impossible)
591 return false;
592 if (SR == SR_Suitable &&
593 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
594 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
595 NullSucc, Dependence);
596 return true;
599 // If MI re-defines the PointerReg then we cannot move further.
600 if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
601 return MO.isReg() && MO.getReg() && MO.isDef() &&
602 TRI->regsOverlap(MO.getReg(), PointerReg);
604 return false;
605 InstsSeenSoFar.push_back(&MI);
608 return false;
611 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
612 /// The FAULTING instruction does the same load/store as MI
613 /// (defining the same register), and branches to HandlerMBB if the mem access
614 /// faults. The FAULTING instruction is inserted at the end of MBB.
615 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
616 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
617 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
618 // all targets.
620 DebugLoc DL;
621 unsigned NumDefs = MI->getDesc().getNumDefs();
622 assert(NumDefs <= 1 && "other cases unhandled!");
624 unsigned DefReg = NoRegister;
625 if (NumDefs != 0) {
626 DefReg = MI->getOperand(0).getReg();
627 assert(NumDefs == 1 && "expected exactly one def!");
630 FaultMaps::FaultKind FK;
631 if (MI->mayLoad())
632 FK =
633 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
634 else
635 FK = FaultMaps::FaultingStore;
637 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
638 .addImm(FK)
639 .addMBB(HandlerMBB)
640 .addImm(MI->getOpcode());
642 for (auto &MO : MI->uses()) {
643 if (MO.isReg()) {
644 MachineOperand NewMO = MO;
645 if (MO.isUse()) {
646 NewMO.setIsKill(false);
647 } else {
648 assert(MO.isDef() && "Expected def or use");
649 NewMO.setIsDead(false);
651 MIB.add(NewMO);
652 } else {
653 MIB.add(MO);
657 MIB.setMemRefs(MI->memoperands());
659 return MIB;
662 /// Rewrite the null checks in NullCheckList into implicit null checks.
663 void ImplicitNullChecks::rewriteNullChecks(
664 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
665 DebugLoc DL;
667 for (auto &NC : NullCheckList) {
668 // Remove the conditional branch dependent on the null check.
669 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
670 (void)BranchesRemoved;
671 assert(BranchesRemoved > 0 && "expected at least one branch!");
673 if (auto *DepMI = NC.getOnlyDependency()) {
674 DepMI->removeFromParent();
675 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
678 // Insert a faulting instruction where the conditional branch was
679 // originally. We check earlier ensures that this bit of code motion
680 // is legal. We do not touch the successors list for any basic block
681 // since we haven't changed control flow, we've just made it implicit.
682 MachineInstr *FaultingInstr = insertFaultingInstr(
683 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
684 // Now the values defined by MemOperation, if any, are live-in of
685 // the block of MemOperation.
686 // The original operation may define implicit-defs alongside
687 // the value.
688 MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
689 for (const MachineOperand &MO : FaultingInstr->operands()) {
690 if (!MO.isReg() || !MO.isDef())
691 continue;
692 Register Reg = MO.getReg();
693 if (!Reg || MBB->isLiveIn(Reg))
694 continue;
695 MBB->addLiveIn(Reg);
698 if (auto *DepMI = NC.getOnlyDependency()) {
699 for (auto &MO : DepMI->operands()) {
700 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
701 continue;
702 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
703 NC.getNotNullSucc()->addLiveIn(MO.getReg());
707 NC.getMemOperation()->eraseFromParent();
708 NC.getCheckOperation()->eraseFromParent();
710 // Insert an *unconditional* branch to not-null successor.
711 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
712 /*Cond=*/None, DL);
714 NumImplicitNullChecks++;
718 char ImplicitNullChecks::ID = 0;
720 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
722 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
723 "Implicit null checks", false, false)
724 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
725 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
726 "Implicit null checks", false, false)