[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / MachineInstr.cpp
blob779f6086b8c15aa280266bbcc605c4722a3c8325
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
77 using namespace llvm;
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80 if (const MachineBasicBlock *MBB = MI.getParent())
81 if (const MachineFunction *MF = MBB->getParent())
82 return MF;
83 return nullptr;
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89 const TargetRegisterInfo *&TRI,
90 const MachineRegisterInfo *&MRI,
91 const TargetIntrinsicInfo *&IntrinsicInfo,
92 const TargetInstrInfo *&TII) {
94 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95 TRI = MF->getSubtarget().getRegisterInfo();
96 MRI = &MF->getRegInfo();
97 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98 TII = MF->getSubtarget().getInstrInfo();
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103 if (MCID->ImplicitDefs)
104 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105 ++ImpDefs)
106 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107 if (MCID->ImplicitUses)
108 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109 ++ImpUses)
110 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117 DebugLoc dl, bool NoImp)
118 : MCID(&tid), debugLoc(std::move(dl)) {
119 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 // Reserve space for the expected number of operands.
122 if (unsigned NumOps = MCID->getNumOperands() +
123 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124 CapOperands = OperandCapacity::get(NumOps);
125 Operands = MF.allocateOperandArray(CapOperands);
128 if (!NoImp)
129 addImplicitDefUseOperands(MF);
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
138 CapOperands = OperandCapacity::get(MI.getNumOperands());
139 Operands = MF.allocateOperandArray(CapOperands);
141 // Copy operands.
142 for (const MachineOperand &MO : MI.operands())
143 addOperand(MF, MO);
145 // Copy all the sensible flags.
146 setFlags(MI.Flags);
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153 if (MachineBasicBlock *MBB = getParent())
154 return &MBB->getParent()->getRegInfo();
155 return nullptr;
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists. This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162 for (MachineOperand &MO : operands())
163 if (MO.isReg())
164 MRI.removeRegOperandFromUseList(&MO);
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists. This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171 for (MachineOperand &MO : operands())
172 if (MO.isReg())
173 MRI.addRegOperandToUseList(&MO);
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177 MachineBasicBlock *MBB = getParent();
178 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179 MachineFunction *MF = MBB->getParent();
180 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181 addOperand(*MF, Op);
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187 unsigned NumOps, MachineRegisterInfo *MRI) {
188 if (MRI)
189 return MRI->moveOperands(Dst, Src, NumOps);
191 // MachineOperand is a trivially copyable type so we can just use memmove.
192 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
195 /// addOperand - Add the specified operand to the instruction. If it is an
196 /// implicit operand, it is added to the end of the operand list. If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200 assert(MCID && "Cannot add operands before providing an instr descriptor");
202 // Check if we're adding one of our existing operands.
203 if (&Op >= Operands && &Op < Operands + NumOperands) {
204 // This is unusual: MI->addOperand(MI->getOperand(i)).
205 // If adding Op requires reallocating or moving existing operands around,
206 // the Op reference could go stale. Support it by copying Op.
207 MachineOperand CopyOp(Op);
208 return addOperand(MF, CopyOp);
211 // Find the insert location for the new operand. Implicit registers go at
212 // the end, everything else goes before the implicit regs.
214 // FIXME: Allow mixed explicit and implicit operands on inline asm.
215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216 // implicit-defs, but they must not be moved around. See the FIXME in
217 // InstrEmitter.cpp.
218 unsigned OpNo = getNumOperands();
219 bool isImpReg = Op.isReg() && Op.isImplicit();
220 if (!isImpReg && !isInlineAsm()) {
221 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222 --OpNo;
223 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
227 #ifndef NDEBUG
228 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229 Op.getType() == MachineOperand::MO_MCSymbol;
230 // OpNo now points as the desired insertion point. Unless this is a variadic
231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232 // RegMask operands go between the explicit and implicit operands.
233 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234 OpNo < MCID->getNumOperands() || isDebugOp) &&
235 "Trying to add an operand to a machine instr that is already done!");
236 #endif
238 MachineRegisterInfo *MRI = getRegInfo();
240 // Determine if the Operands array needs to be reallocated.
241 // Save the old capacity and operand array.
242 OperandCapacity OldCap = CapOperands;
243 MachineOperand *OldOperands = Operands;
244 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246 Operands = MF.allocateOperandArray(CapOperands);
247 // Move the operands before the insertion point.
248 if (OpNo)
249 moveOperands(Operands, OldOperands, OpNo, MRI);
252 // Move the operands following the insertion point.
253 if (OpNo != NumOperands)
254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255 MRI);
256 ++NumOperands;
258 // Deallocate the old operand array.
259 if (OldOperands != Operands && OldOperands)
260 MF.deallocateOperandArray(OldCap, OldOperands);
262 // Copy Op into place. It still needs to be inserted into the MRI use lists.
263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264 NewMO->ParentMI = this;
266 // When adding a register operand, tell MRI about it.
267 if (NewMO->isReg()) {
268 // Ensure isOnRegUseList() returns false, regardless of Op's status.
269 NewMO->Contents.Reg.Prev = nullptr;
270 // Ignore existing ties. This is not a property that can be copied.
271 NewMO->TiedTo = 0;
272 // Add the new operand to MRI, but only for instructions in an MBB.
273 if (MRI)
274 MRI->addRegOperandToUseList(NewMO);
275 // The MCID operand information isn't accurate until we start adding
276 // explicit operands. The implicit operands are added first, then the
277 // explicits are inserted before them.
278 if (!isImpReg) {
279 // Tie uses to defs as indicated in MCInstrDesc.
280 if (NewMO->isUse()) {
281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282 if (DefIdx != -1)
283 tieOperands(DefIdx, OpNo);
285 // If the register operand is flagged as early, mark the operand as such.
286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287 NewMO->setIsEarlyClobber(true);
292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
293 /// fewer operand than it started with.
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296 assert(OpNo < getNumOperands() && "Invalid operand number");
297 untieRegOperand(OpNo);
299 #ifndef NDEBUG
300 // Moving tied operands would break the ties.
301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302 if (Operands[i].isReg())
303 assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
306 MachineRegisterInfo *MRI = getRegInfo();
307 if (MRI && Operands[OpNo].isReg())
308 MRI->removeRegOperandFromUseList(Operands + OpNo);
310 // Don't call the MachineOperand destructor. A lot of this code depends on
311 // MachineOperand having a trivial destructor anyway, and adding a call here
312 // wouldn't make it 'destructor-correct'.
314 if (unsigned N = NumOperands - 1 - OpNo)
315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316 --NumOperands;
319 void MachineInstr::dropMemRefs(MachineFunction &MF) {
320 if (memoperands_empty())
321 return;
323 // See if we can just drop all of our extra info.
324 if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
325 Info.clear();
326 return;
328 if (!getPostInstrSymbol()) {
329 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
330 return;
332 if (!getPreInstrSymbol()) {
333 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
334 return;
337 // Otherwise allocate a fresh extra info with just these symbols.
338 Info.set<EIIK_OutOfLine>(
339 MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
342 void MachineInstr::setMemRefs(MachineFunction &MF,
343 ArrayRef<MachineMemOperand *> MMOs) {
344 if (MMOs.empty()) {
345 dropMemRefs(MF);
346 return;
349 // Try to store a single MMO inline.
350 if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
351 Info.set<EIIK_MMO>(MMOs[0]);
352 return;
355 // Otherwise create an extra info struct with all of our info.
356 Info.set<EIIK_OutOfLine>(
357 MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol()));
360 void MachineInstr::addMemOperand(MachineFunction &MF,
361 MachineMemOperand *MO) {
362 SmallVector<MachineMemOperand *, 2> MMOs;
363 MMOs.append(memoperands_begin(), memoperands_end());
364 MMOs.push_back(MO);
365 setMemRefs(MF, MMOs);
368 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
369 if (this == &MI)
370 // Nothing to do for a self-clone!
371 return;
373 assert(&MF == MI.getMF() &&
374 "Invalid machine functions when cloning memory refrences!");
375 // See if we can just steal the extra info already allocated for the
376 // instruction. We can do this whenever the pre- and post-instruction symbols
377 // are the same (including null).
378 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
379 getPostInstrSymbol() == MI.getPostInstrSymbol()) {
380 Info = MI.Info;
381 return;
384 // Otherwise, fall back on a copy-based clone.
385 setMemRefs(MF, MI.memoperands());
388 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
389 /// identical.
390 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
391 ArrayRef<MachineMemOperand *> RHS) {
392 if (LHS.size() != RHS.size())
393 return false;
395 auto LHSPointees = make_pointee_range(LHS);
396 auto RHSPointees = make_pointee_range(RHS);
397 return std::equal(LHSPointees.begin(), LHSPointees.end(),
398 RHSPointees.begin());
401 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
402 ArrayRef<const MachineInstr *> MIs) {
403 // Try handling easy numbers of MIs with simpler mechanisms.
404 if (MIs.empty()) {
405 dropMemRefs(MF);
406 return;
408 if (MIs.size() == 1) {
409 cloneMemRefs(MF, *MIs[0]);
410 return;
412 // Because an empty memoperands list provides *no* information and must be
413 // handled conservatively (assuming the instruction can do anything), the only
414 // way to merge with it is to drop all other memoperands.
415 if (MIs[0]->memoperands_empty()) {
416 dropMemRefs(MF);
417 return;
420 // Handle the general case.
421 SmallVector<MachineMemOperand *, 2> MergedMMOs;
422 // Start with the first instruction.
423 assert(&MF == MIs[0]->getMF() &&
424 "Invalid machine functions when cloning memory references!");
425 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
426 // Now walk all the other instructions and accumulate any different MMOs.
427 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
428 assert(&MF == MI.getMF() &&
429 "Invalid machine functions when cloning memory references!");
431 // Skip MIs with identical operands to the first. This is a somewhat
432 // arbitrary hack but will catch common cases without being quadratic.
433 // TODO: We could fully implement merge semantics here if needed.
434 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
435 continue;
437 // Because an empty memoperands list provides *no* information and must be
438 // handled conservatively (assuming the instruction can do anything), the
439 // only way to merge with it is to drop all other memoperands.
440 if (MI.memoperands_empty()) {
441 dropMemRefs(MF);
442 return;
445 // Otherwise accumulate these into our temporary buffer of the merged state.
446 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
449 setMemRefs(MF, MergedMMOs);
452 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
453 MCSymbol *OldSymbol = getPreInstrSymbol();
454 if (OldSymbol == Symbol)
455 return;
456 if (OldSymbol && !Symbol) {
457 // We're removing a symbol rather than adding one. Try to clean up any
458 // extra info carried around.
459 if (Info.is<EIIK_PreInstrSymbol>()) {
460 Info.clear();
461 return;
464 if (memoperands_empty()) {
465 assert(getPostInstrSymbol() &&
466 "Should never have only a single symbol allocated out-of-line!");
467 Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
468 return;
471 // Otherwise fallback on the generic update.
472 } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) {
473 // If we don't have any other extra info, we can store this inline.
474 Info.set<EIIK_PreInstrSymbol>(Symbol);
475 return;
478 // Otherwise, allocate a full new set of extra info.
479 // FIXME: Maybe we should make the symbols in the extra info mutable?
480 Info.set<EIIK_OutOfLine>(
481 MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol()));
484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
485 MCSymbol *OldSymbol = getPostInstrSymbol();
486 if (OldSymbol == Symbol)
487 return;
488 if (OldSymbol && !Symbol) {
489 // We're removing a symbol rather than adding one. Try to clean up any
490 // extra info carried around.
491 if (Info.is<EIIK_PostInstrSymbol>()) {
492 Info.clear();
493 return;
496 if (memoperands_empty()) {
497 assert(getPreInstrSymbol() &&
498 "Should never have only a single symbol allocated out-of-line!");
499 Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
500 return;
503 // Otherwise fallback on the generic update.
504 } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) {
505 // If we don't have any other extra info, we can store this inline.
506 Info.set<EIIK_PostInstrSymbol>(Symbol);
507 return;
510 // Otherwise, allocate a full new set of extra info.
511 // FIXME: Maybe we should make the symbols in the extra info mutable?
512 Info.set<EIIK_OutOfLine>(
513 MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol));
516 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
517 const MachineInstr &MI) {
518 if (this == &MI)
519 // Nothing to do for a self-clone!
520 return;
522 assert(&MF == MI.getMF() &&
523 "Invalid machine functions when cloning instruction symbols!");
525 setPreInstrSymbol(MF, MI.getPreInstrSymbol());
526 setPostInstrSymbol(MF, MI.getPostInstrSymbol());
529 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
530 // For now, the just return the union of the flags. If the flags get more
531 // complicated over time, we might need more logic here.
532 return getFlags() | Other.getFlags();
535 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
536 uint16_t MIFlags = 0;
537 // Copy the wrapping flags.
538 if (const OverflowingBinaryOperator *OB =
539 dyn_cast<OverflowingBinaryOperator>(&I)) {
540 if (OB->hasNoSignedWrap())
541 MIFlags |= MachineInstr::MIFlag::NoSWrap;
542 if (OB->hasNoUnsignedWrap())
543 MIFlags |= MachineInstr::MIFlag::NoUWrap;
546 // Copy the exact flag.
547 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
548 if (PE->isExact())
549 MIFlags |= MachineInstr::MIFlag::IsExact;
551 // Copy the fast-math flags.
552 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
553 const FastMathFlags Flags = FP->getFastMathFlags();
554 if (Flags.noNaNs())
555 MIFlags |= MachineInstr::MIFlag::FmNoNans;
556 if (Flags.noInfs())
557 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
558 if (Flags.noSignedZeros())
559 MIFlags |= MachineInstr::MIFlag::FmNsz;
560 if (Flags.allowReciprocal())
561 MIFlags |= MachineInstr::MIFlag::FmArcp;
562 if (Flags.allowContract())
563 MIFlags |= MachineInstr::MIFlag::FmContract;
564 if (Flags.approxFunc())
565 MIFlags |= MachineInstr::MIFlag::FmAfn;
566 if (Flags.allowReassoc())
567 MIFlags |= MachineInstr::MIFlag::FmReassoc;
570 return MIFlags;
573 void MachineInstr::copyIRFlags(const Instruction &I) {
574 Flags = copyFlagsFromInstruction(I);
577 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
578 assert(!isBundledWithPred() && "Must be called on bundle header");
579 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
580 if (MII->getDesc().getFlags() & Mask) {
581 if (Type == AnyInBundle)
582 return true;
583 } else {
584 if (Type == AllInBundle && !MII->isBundle())
585 return false;
587 // This was the last instruction in the bundle.
588 if (!MII->isBundledWithSucc())
589 return Type == AllInBundle;
593 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
594 MICheckType Check) const {
595 // If opcodes or number of operands are not the same then the two
596 // instructions are obviously not identical.
597 if (Other.getOpcode() != getOpcode() ||
598 Other.getNumOperands() != getNumOperands())
599 return false;
601 if (isBundle()) {
602 // We have passed the test above that both instructions have the same
603 // opcode, so we know that both instructions are bundles here. Let's compare
604 // MIs inside the bundle.
605 assert(Other.isBundle() && "Expected that both instructions are bundles.");
606 MachineBasicBlock::const_instr_iterator I1 = getIterator();
607 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
608 // Loop until we analysed the last intruction inside at least one of the
609 // bundles.
610 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
611 ++I1;
612 ++I2;
613 if (!I1->isIdenticalTo(*I2, Check))
614 return false;
616 // If we've reached the end of just one of the two bundles, but not both,
617 // the instructions are not identical.
618 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
619 return false;
622 // Check operands to make sure they match.
623 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
624 const MachineOperand &MO = getOperand(i);
625 const MachineOperand &OMO = Other.getOperand(i);
626 if (!MO.isReg()) {
627 if (!MO.isIdenticalTo(OMO))
628 return false;
629 continue;
632 // Clients may or may not want to ignore defs when testing for equality.
633 // For example, machine CSE pass only cares about finding common
634 // subexpressions, so it's safe to ignore virtual register defs.
635 if (MO.isDef()) {
636 if (Check == IgnoreDefs)
637 continue;
638 else if (Check == IgnoreVRegDefs) {
639 if (!Register::isVirtualRegister(MO.getReg()) ||
640 !Register::isVirtualRegister(OMO.getReg()))
641 if (!MO.isIdenticalTo(OMO))
642 return false;
643 } else {
644 if (!MO.isIdenticalTo(OMO))
645 return false;
646 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
647 return false;
649 } else {
650 if (!MO.isIdenticalTo(OMO))
651 return false;
652 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
653 return false;
656 // If DebugLoc does not match then two debug instructions are not identical.
657 if (isDebugInstr())
658 if (getDebugLoc() && Other.getDebugLoc() &&
659 getDebugLoc() != Other.getDebugLoc())
660 return false;
661 return true;
664 const MachineFunction *MachineInstr::getMF() const {
665 return getParent()->getParent();
668 MachineInstr *MachineInstr::removeFromParent() {
669 assert(getParent() && "Not embedded in a basic block!");
670 return getParent()->remove(this);
673 MachineInstr *MachineInstr::removeFromBundle() {
674 assert(getParent() && "Not embedded in a basic block!");
675 return getParent()->remove_instr(this);
678 void MachineInstr::eraseFromParent() {
679 assert(getParent() && "Not embedded in a basic block!");
680 getParent()->erase(this);
683 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
684 assert(getParent() && "Not embedded in a basic block!");
685 MachineBasicBlock *MBB = getParent();
686 MachineFunction *MF = MBB->getParent();
687 assert(MF && "Not embedded in a function!");
689 MachineInstr *MI = (MachineInstr *)this;
690 MachineRegisterInfo &MRI = MF->getRegInfo();
692 for (const MachineOperand &MO : MI->operands()) {
693 if (!MO.isReg() || !MO.isDef())
694 continue;
695 Register Reg = MO.getReg();
696 if (!Reg.isVirtual())
697 continue;
698 MRI.markUsesInDebugValueAsUndef(Reg);
700 MI->eraseFromParent();
703 void MachineInstr::eraseFromBundle() {
704 assert(getParent() && "Not embedded in a basic block!");
705 getParent()->erase_instr(this);
708 unsigned MachineInstr::getNumExplicitOperands() const {
709 unsigned NumOperands = MCID->getNumOperands();
710 if (!MCID->isVariadic())
711 return NumOperands;
713 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
714 const MachineOperand &MO = getOperand(I);
715 // The operands must always be in the following order:
716 // - explicit reg defs,
717 // - other explicit operands (reg uses, immediates, etc.),
718 // - implicit reg defs
719 // - implicit reg uses
720 if (MO.isReg() && MO.isImplicit())
721 break;
722 ++NumOperands;
724 return NumOperands;
727 unsigned MachineInstr::getNumExplicitDefs() const {
728 unsigned NumDefs = MCID->getNumDefs();
729 if (!MCID->isVariadic())
730 return NumDefs;
732 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
733 const MachineOperand &MO = getOperand(I);
734 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
735 break;
736 ++NumDefs;
738 return NumDefs;
741 void MachineInstr::bundleWithPred() {
742 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
743 setFlag(BundledPred);
744 MachineBasicBlock::instr_iterator Pred = getIterator();
745 --Pred;
746 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
747 Pred->setFlag(BundledSucc);
750 void MachineInstr::bundleWithSucc() {
751 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
752 setFlag(BundledSucc);
753 MachineBasicBlock::instr_iterator Succ = getIterator();
754 ++Succ;
755 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
756 Succ->setFlag(BundledPred);
759 void MachineInstr::unbundleFromPred() {
760 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
761 clearFlag(BundledPred);
762 MachineBasicBlock::instr_iterator Pred = getIterator();
763 --Pred;
764 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
765 Pred->clearFlag(BundledSucc);
768 void MachineInstr::unbundleFromSucc() {
769 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
770 clearFlag(BundledSucc);
771 MachineBasicBlock::instr_iterator Succ = getIterator();
772 ++Succ;
773 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
774 Succ->clearFlag(BundledPred);
777 bool MachineInstr::isStackAligningInlineAsm() const {
778 if (isInlineAsm()) {
779 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
780 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
781 return true;
783 return false;
786 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
787 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
788 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
789 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
792 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
793 unsigned *GroupNo) const {
794 assert(isInlineAsm() && "Expected an inline asm instruction");
795 assert(OpIdx < getNumOperands() && "OpIdx out of range");
797 // Ignore queries about the initial operands.
798 if (OpIdx < InlineAsm::MIOp_FirstOperand)
799 return -1;
801 unsigned Group = 0;
802 unsigned NumOps;
803 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
804 i += NumOps) {
805 const MachineOperand &FlagMO = getOperand(i);
806 // If we reach the implicit register operands, stop looking.
807 if (!FlagMO.isImm())
808 return -1;
809 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
810 if (i + NumOps > OpIdx) {
811 if (GroupNo)
812 *GroupNo = Group;
813 return i;
815 ++Group;
817 return -1;
820 const DILabel *MachineInstr::getDebugLabel() const {
821 assert(isDebugLabel() && "not a DBG_LABEL");
822 return cast<DILabel>(getOperand(0).getMetadata());
825 const DILocalVariable *MachineInstr::getDebugVariable() const {
826 assert(isDebugValue() && "not a DBG_VALUE");
827 return cast<DILocalVariable>(getOperand(2).getMetadata());
830 const DIExpression *MachineInstr::getDebugExpression() const {
831 assert(isDebugValue() && "not a DBG_VALUE");
832 return cast<DIExpression>(getOperand(3).getMetadata());
835 const TargetRegisterClass*
836 MachineInstr::getRegClassConstraint(unsigned OpIdx,
837 const TargetInstrInfo *TII,
838 const TargetRegisterInfo *TRI) const {
839 assert(getParent() && "Can't have an MBB reference here!");
840 assert(getMF() && "Can't have an MF reference here!");
841 const MachineFunction &MF = *getMF();
843 // Most opcodes have fixed constraints in their MCInstrDesc.
844 if (!isInlineAsm())
845 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
847 if (!getOperand(OpIdx).isReg())
848 return nullptr;
850 // For tied uses on inline asm, get the constraint from the def.
851 unsigned DefIdx;
852 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
853 OpIdx = DefIdx;
855 // Inline asm stores register class constraints in the flag word.
856 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
857 if (FlagIdx < 0)
858 return nullptr;
860 unsigned Flag = getOperand(FlagIdx).getImm();
861 unsigned RCID;
862 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
863 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
864 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
865 InlineAsm::hasRegClassConstraint(Flag, RCID))
866 return TRI->getRegClass(RCID);
868 // Assume that all registers in a memory operand are pointers.
869 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
870 return TRI->getPointerRegClass(MF);
872 return nullptr;
875 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
876 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
877 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
878 // Check every operands inside the bundle if we have
879 // been asked to.
880 if (ExploreBundle)
881 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
882 ++OpndIt)
883 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
884 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
885 else
886 // Otherwise, just check the current operands.
887 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
888 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
889 return CurRC;
892 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
893 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
894 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
895 assert(CurRC && "Invalid initial register class");
896 // Check if Reg is constrained by some of its use/def from MI.
897 const MachineOperand &MO = getOperand(OpIdx);
898 if (!MO.isReg() || MO.getReg() != Reg)
899 return CurRC;
900 // If yes, accumulate the constraints through the operand.
901 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
904 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
905 unsigned OpIdx, const TargetRegisterClass *CurRC,
906 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
907 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
908 const MachineOperand &MO = getOperand(OpIdx);
909 assert(MO.isReg() &&
910 "Cannot get register constraints for non-register operand");
911 assert(CurRC && "Invalid initial register class");
912 if (unsigned SubIdx = MO.getSubReg()) {
913 if (OpRC)
914 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
915 else
916 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
917 } else if (OpRC)
918 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
919 return CurRC;
922 /// Return the number of instructions inside the MI bundle, not counting the
923 /// header instruction.
924 unsigned MachineInstr::getBundleSize() const {
925 MachineBasicBlock::const_instr_iterator I = getIterator();
926 unsigned Size = 0;
927 while (I->isBundledWithSucc()) {
928 ++Size;
929 ++I;
931 return Size;
934 /// Returns true if the MachineInstr has an implicit-use operand of exactly
935 /// the given register (not considering sub/super-registers).
936 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
937 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
938 const MachineOperand &MO = getOperand(i);
939 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
940 return true;
942 return false;
945 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
946 /// the specific register or -1 if it is not found. It further tightens
947 /// the search criteria to a use that kills the register if isKill is true.
948 int MachineInstr::findRegisterUseOperandIdx(
949 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
950 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
951 const MachineOperand &MO = getOperand(i);
952 if (!MO.isReg() || !MO.isUse())
953 continue;
954 Register MOReg = MO.getReg();
955 if (!MOReg)
956 continue;
957 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
958 if (!isKill || MO.isKill())
959 return i;
961 return -1;
964 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
965 /// indicating if this instruction reads or writes Reg. This also considers
966 /// partial defines.
967 std::pair<bool,bool>
968 MachineInstr::readsWritesVirtualRegister(Register Reg,
969 SmallVectorImpl<unsigned> *Ops) const {
970 bool PartDef = false; // Partial redefine.
971 bool FullDef = false; // Full define.
972 bool Use = false;
974 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
975 const MachineOperand &MO = getOperand(i);
976 if (!MO.isReg() || MO.getReg() != Reg)
977 continue;
978 if (Ops)
979 Ops->push_back(i);
980 if (MO.isUse())
981 Use |= !MO.isUndef();
982 else if (MO.getSubReg() && !MO.isUndef())
983 // A partial def undef doesn't count as reading the register.
984 PartDef = true;
985 else
986 FullDef = true;
988 // A partial redefine uses Reg unless there is also a full define.
989 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
992 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
993 /// the specified register or -1 if it is not found. If isDead is true, defs
994 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
995 /// also checks if there is a def of a super-register.
997 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
998 const TargetRegisterInfo *TRI) const {
999 bool isPhys = Register::isPhysicalRegister(Reg);
1000 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1001 const MachineOperand &MO = getOperand(i);
1002 // Accept regmask operands when Overlap is set.
1003 // Ignore them when looking for a specific def operand (Overlap == false).
1004 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1005 return i;
1006 if (!MO.isReg() || !MO.isDef())
1007 continue;
1008 Register MOReg = MO.getReg();
1009 bool Found = (MOReg == Reg);
1010 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1011 if (Overlap)
1012 Found = TRI->regsOverlap(MOReg, Reg);
1013 else
1014 Found = TRI->isSubRegister(MOReg, Reg);
1016 if (Found && (!isDead || MO.isDead()))
1017 return i;
1019 return -1;
1022 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1023 /// operand list that is used to represent the predicate. It returns -1 if
1024 /// none is found.
1025 int MachineInstr::findFirstPredOperandIdx() const {
1026 // Don't call MCID.findFirstPredOperandIdx() because this variant
1027 // is sometimes called on an instruction that's not yet complete, and
1028 // so the number of operands is less than the MCID indicates. In
1029 // particular, the PTX target does this.
1030 const MCInstrDesc &MCID = getDesc();
1031 if (MCID.isPredicable()) {
1032 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1033 if (MCID.OpInfo[i].isPredicate())
1034 return i;
1037 return -1;
1040 // MachineOperand::TiedTo is 4 bits wide.
1041 const unsigned TiedMax = 15;
1043 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1045 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1046 /// field. TiedTo can have these values:
1048 /// 0: Operand is not tied to anything.
1049 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1050 /// TiedMax: Tied to an operand >= TiedMax-1.
1052 /// The tied def must be one of the first TiedMax operands on a normal
1053 /// instruction. INLINEASM instructions allow more tied defs.
1055 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1056 MachineOperand &DefMO = getOperand(DefIdx);
1057 MachineOperand &UseMO = getOperand(UseIdx);
1058 assert(DefMO.isDef() && "DefIdx must be a def operand");
1059 assert(UseMO.isUse() && "UseIdx must be a use operand");
1060 assert(!DefMO.isTied() && "Def is already tied to another use");
1061 assert(!UseMO.isTied() && "Use is already tied to another def");
1063 if (DefIdx < TiedMax)
1064 UseMO.TiedTo = DefIdx + 1;
1065 else {
1066 // Inline asm can use the group descriptors to find tied operands, but on
1067 // normal instruction, the tied def must be within the first TiedMax
1068 // operands.
1069 assert(isInlineAsm() && "DefIdx out of range");
1070 UseMO.TiedTo = TiedMax;
1073 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1074 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1077 /// Given the index of a tied register operand, find the operand it is tied to.
1078 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1079 /// which must exist.
1080 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1081 const MachineOperand &MO = getOperand(OpIdx);
1082 assert(MO.isTied() && "Operand isn't tied");
1084 // Normally TiedTo is in range.
1085 if (MO.TiedTo < TiedMax)
1086 return MO.TiedTo - 1;
1088 // Uses on normal instructions can be out of range.
1089 if (!isInlineAsm()) {
1090 // Normal tied defs must be in the 0..TiedMax-1 range.
1091 if (MO.isUse())
1092 return TiedMax - 1;
1093 // MO is a def. Search for the tied use.
1094 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1095 const MachineOperand &UseMO = getOperand(i);
1096 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1097 return i;
1099 llvm_unreachable("Can't find tied use");
1102 // Now deal with inline asm by parsing the operand group descriptor flags.
1103 // Find the beginning of each operand group.
1104 SmallVector<unsigned, 8> GroupIdx;
1105 unsigned OpIdxGroup = ~0u;
1106 unsigned NumOps;
1107 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1108 i += NumOps) {
1109 const MachineOperand &FlagMO = getOperand(i);
1110 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1111 unsigned CurGroup = GroupIdx.size();
1112 GroupIdx.push_back(i);
1113 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1114 // OpIdx belongs to this operand group.
1115 if (OpIdx > i && OpIdx < i + NumOps)
1116 OpIdxGroup = CurGroup;
1117 unsigned TiedGroup;
1118 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1119 continue;
1120 // Operands in this group are tied to operands in TiedGroup which must be
1121 // earlier. Find the number of operands between the two groups.
1122 unsigned Delta = i - GroupIdx[TiedGroup];
1124 // OpIdx is a use tied to TiedGroup.
1125 if (OpIdxGroup == CurGroup)
1126 return OpIdx - Delta;
1128 // OpIdx is a def tied to this use group.
1129 if (OpIdxGroup == TiedGroup)
1130 return OpIdx + Delta;
1132 llvm_unreachable("Invalid tied operand on inline asm");
1135 /// clearKillInfo - Clears kill flags on all operands.
1137 void MachineInstr::clearKillInfo() {
1138 for (MachineOperand &MO : operands()) {
1139 if (MO.isReg() && MO.isUse())
1140 MO.setIsKill(false);
1144 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1145 unsigned SubIdx,
1146 const TargetRegisterInfo &RegInfo) {
1147 if (Register::isPhysicalRegister(ToReg)) {
1148 if (SubIdx)
1149 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1150 for (MachineOperand &MO : operands()) {
1151 if (!MO.isReg() || MO.getReg() != FromReg)
1152 continue;
1153 MO.substPhysReg(ToReg, RegInfo);
1155 } else {
1156 for (MachineOperand &MO : operands()) {
1157 if (!MO.isReg() || MO.getReg() != FromReg)
1158 continue;
1159 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1164 /// isSafeToMove - Return true if it is safe to move this instruction. If
1165 /// SawStore is set to true, it means that there is a store (or call) between
1166 /// the instruction's location and its intended destination.
1167 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1168 // Ignore stuff that we obviously can't move.
1170 // Treat volatile loads as stores. This is not strictly necessary for
1171 // volatiles, but it is required for atomic loads. It is not allowed to move
1172 // a load across an atomic load with Ordering > Monotonic.
1173 if (mayStore() || isCall() || isPHI() ||
1174 (mayLoad() && hasOrderedMemoryRef())) {
1175 SawStore = true;
1176 return false;
1179 if (isPosition() || isDebugInstr() || isTerminator() ||
1180 mayRaiseFPException() || hasUnmodeledSideEffects())
1181 return false;
1183 // See if this instruction does a load. If so, we have to guarantee that the
1184 // loaded value doesn't change between the load and the its intended
1185 // destination. The check for isInvariantLoad gives the targe the chance to
1186 // classify the load as always returning a constant, e.g. a constant pool
1187 // load.
1188 if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1189 // Otherwise, this is a real load. If there is a store between the load and
1190 // end of block, we can't move it.
1191 return !SawStore;
1193 return true;
1196 bool MachineInstr::mayAlias(AliasAnalysis *AA, const MachineInstr &Other,
1197 bool UseTBAA) const {
1198 const MachineFunction *MF = getMF();
1199 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1200 const MachineFrameInfo &MFI = MF->getFrameInfo();
1202 // If neither instruction stores to memory, they can't alias in any
1203 // meaningful way, even if they read from the same address.
1204 if (!mayStore() && !Other.mayStore())
1205 return false;
1207 // Let the target decide if memory accesses cannot possibly overlap.
1208 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1209 return false;
1211 // FIXME: Need to handle multiple memory operands to support all targets.
1212 if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1213 return true;
1215 MachineMemOperand *MMOa = *memoperands_begin();
1216 MachineMemOperand *MMOb = *Other.memoperands_begin();
1218 // The following interface to AA is fashioned after DAGCombiner::isAlias
1219 // and operates with MachineMemOperand offset with some important
1220 // assumptions:
1221 // - LLVM fundamentally assumes flat address spaces.
1222 // - MachineOperand offset can *only* result from legalization and
1223 // cannot affect queries other than the trivial case of overlap
1224 // checking.
1225 // - These offsets never wrap and never step outside
1226 // of allocated objects.
1227 // - There should never be any negative offsets here.
1229 // FIXME: Modify API to hide this math from "user"
1230 // Even before we go to AA we can reason locally about some
1231 // memory objects. It can save compile time, and possibly catch some
1232 // corner cases not currently covered.
1234 int64_t OffsetA = MMOa->getOffset();
1235 int64_t OffsetB = MMOb->getOffset();
1236 int64_t MinOffset = std::min(OffsetA, OffsetB);
1238 uint64_t WidthA = MMOa->getSize();
1239 uint64_t WidthB = MMOb->getSize();
1240 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1241 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1243 const Value *ValA = MMOa->getValue();
1244 const Value *ValB = MMOb->getValue();
1245 bool SameVal = (ValA && ValB && (ValA == ValB));
1246 if (!SameVal) {
1247 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1248 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1249 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1250 return false;
1251 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1252 return false;
1253 if (PSVa && PSVb && (PSVa == PSVb))
1254 SameVal = true;
1257 if (SameVal) {
1258 if (!KnownWidthA || !KnownWidthB)
1259 return true;
1260 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1261 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1262 return (MinOffset + LowWidth > MaxOffset);
1265 if (!AA)
1266 return true;
1268 if (!ValA || !ValB)
1269 return true;
1271 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1272 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1274 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1275 : MemoryLocation::UnknownSize;
1276 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1277 : MemoryLocation::UnknownSize;
1279 AliasResult AAResult = AA->alias(
1280 MemoryLocation(ValA, OverlapA,
1281 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1282 MemoryLocation(ValB, OverlapB,
1283 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1285 return (AAResult != NoAlias);
1288 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1289 /// or volatile memory reference, or if the information describing the memory
1290 /// reference is not available. Return false if it is known to have no ordered
1291 /// memory references.
1292 bool MachineInstr::hasOrderedMemoryRef() const {
1293 // An instruction known never to access memory won't have a volatile access.
1294 if (!mayStore() &&
1295 !mayLoad() &&
1296 !isCall() &&
1297 !hasUnmodeledSideEffects())
1298 return false;
1300 // Otherwise, if the instruction has no memory reference information,
1301 // conservatively assume it wasn't preserved.
1302 if (memoperands_empty())
1303 return true;
1305 // Check if any of our memory operands are ordered.
1306 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1307 return !MMO->isUnordered();
1311 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1312 /// trap and is loading from a location whose value is invariant across a run of
1313 /// this function.
1314 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1315 // If the instruction doesn't load at all, it isn't an invariant load.
1316 if (!mayLoad())
1317 return false;
1319 // If the instruction has lost its memoperands, conservatively assume that
1320 // it may not be an invariant load.
1321 if (memoperands_empty())
1322 return false;
1324 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1326 for (MachineMemOperand *MMO : memoperands()) {
1327 if (!MMO->isUnordered())
1328 // If the memory operand has ordering side effects, we can't move the
1329 // instruction. Such an instruction is technically an invariant load,
1330 // but the caller code would need updated to expect that.
1331 return false;
1332 if (MMO->isStore()) return false;
1333 if (MMO->isInvariant() && MMO->isDereferenceable())
1334 continue;
1336 // A load from a constant PseudoSourceValue is invariant.
1337 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1338 if (PSV->isConstant(&MFI))
1339 continue;
1341 if (const Value *V = MMO->getValue()) {
1342 // If we have an AliasAnalysis, ask it whether the memory is constant.
1343 if (AA &&
1344 AA->pointsToConstantMemory(
1345 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1346 continue;
1349 // Otherwise assume conservatively.
1350 return false;
1353 // Everything checks out.
1354 return true;
1357 /// isConstantValuePHI - If the specified instruction is a PHI that always
1358 /// merges together the same virtual register, return the register, otherwise
1359 /// return 0.
1360 unsigned MachineInstr::isConstantValuePHI() const {
1361 if (!isPHI())
1362 return 0;
1363 assert(getNumOperands() >= 3 &&
1364 "It's illegal to have a PHI without source operands");
1366 Register Reg = getOperand(1).getReg();
1367 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1368 if (getOperand(i).getReg() != Reg)
1369 return 0;
1370 return Reg;
1373 bool MachineInstr::hasUnmodeledSideEffects() const {
1374 if (hasProperty(MCID::UnmodeledSideEffects))
1375 return true;
1376 if (isInlineAsm()) {
1377 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1378 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1379 return true;
1382 return false;
1385 bool MachineInstr::isLoadFoldBarrier() const {
1386 return mayStore() || isCall() || hasUnmodeledSideEffects();
1389 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1391 bool MachineInstr::allDefsAreDead() const {
1392 for (const MachineOperand &MO : operands()) {
1393 if (!MO.isReg() || MO.isUse())
1394 continue;
1395 if (!MO.isDead())
1396 return false;
1398 return true;
1401 /// copyImplicitOps - Copy implicit register operands from specified
1402 /// instruction to this instruction.
1403 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1404 const MachineInstr &MI) {
1405 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1406 i != e; ++i) {
1407 const MachineOperand &MO = MI.getOperand(i);
1408 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1409 addOperand(MF, MO);
1413 bool MachineInstr::hasComplexRegisterTies() const {
1414 const MCInstrDesc &MCID = getDesc();
1415 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1416 const auto &Operand = getOperand(I);
1417 if (!Operand.isReg() || Operand.isDef())
1418 // Ignore the defined registers as MCID marks only the uses as tied.
1419 continue;
1420 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1421 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1422 if (ExpectedTiedIdx != TiedIdx)
1423 return true;
1425 return false;
1428 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1429 const MachineRegisterInfo &MRI) const {
1430 const MachineOperand &Op = getOperand(OpIdx);
1431 if (!Op.isReg())
1432 return LLT{};
1434 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1435 return MRI.getType(Op.getReg());
1437 auto &OpInfo = getDesc().OpInfo[OpIdx];
1438 if (!OpInfo.isGenericType())
1439 return MRI.getType(Op.getReg());
1441 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1442 return LLT{};
1444 LLT TypeToPrint = MRI.getType(Op.getReg());
1445 // Don't mark the type index printed if it wasn't actually printed: maybe
1446 // another operand with the same type index has an actual type attached:
1447 if (TypeToPrint.isValid())
1448 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1449 return TypeToPrint;
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1454 dbgs() << " ";
1455 print(dbgs());
1457 #endif
1459 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1460 bool SkipDebugLoc, bool AddNewLine,
1461 const TargetInstrInfo *TII) const {
1462 const Module *M = nullptr;
1463 const Function *F = nullptr;
1464 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1465 F = &MF->getFunction();
1466 M = F->getParent();
1467 if (!TII)
1468 TII = MF->getSubtarget().getInstrInfo();
1471 ModuleSlotTracker MST(M);
1472 if (F)
1473 MST.incorporateFunction(*F);
1474 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1477 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1478 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1479 bool AddNewLine, const TargetInstrInfo *TII) const {
1480 // We can be a bit tidier if we know the MachineFunction.
1481 const MachineFunction *MF = nullptr;
1482 const TargetRegisterInfo *TRI = nullptr;
1483 const MachineRegisterInfo *MRI = nullptr;
1484 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1485 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1487 if (isCFIInstruction())
1488 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1490 SmallBitVector PrintedTypes(8);
1491 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1492 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1493 if (!ShouldPrintRegisterTies)
1494 return 0U;
1495 const MachineOperand &MO = getOperand(OpIdx);
1496 if (MO.isReg() && MO.isTied() && !MO.isDef())
1497 return findTiedOperandIdx(OpIdx);
1498 return 0U;
1500 unsigned StartOp = 0;
1501 unsigned e = getNumOperands();
1503 // Print explicitly defined operands on the left of an assignment syntax.
1504 while (StartOp < e) {
1505 const MachineOperand &MO = getOperand(StartOp);
1506 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1507 break;
1509 if (StartOp != 0)
1510 OS << ", ";
1512 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1513 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1514 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1515 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1516 ++StartOp;
1519 if (StartOp != 0)
1520 OS << " = ";
1522 if (getFlag(MachineInstr::FrameSetup))
1523 OS << "frame-setup ";
1524 if (getFlag(MachineInstr::FrameDestroy))
1525 OS << "frame-destroy ";
1526 if (getFlag(MachineInstr::FmNoNans))
1527 OS << "nnan ";
1528 if (getFlag(MachineInstr::FmNoInfs))
1529 OS << "ninf ";
1530 if (getFlag(MachineInstr::FmNsz))
1531 OS << "nsz ";
1532 if (getFlag(MachineInstr::FmArcp))
1533 OS << "arcp ";
1534 if (getFlag(MachineInstr::FmContract))
1535 OS << "contract ";
1536 if (getFlag(MachineInstr::FmAfn))
1537 OS << "afn ";
1538 if (getFlag(MachineInstr::FmReassoc))
1539 OS << "reassoc ";
1540 if (getFlag(MachineInstr::NoUWrap))
1541 OS << "nuw ";
1542 if (getFlag(MachineInstr::NoSWrap))
1543 OS << "nsw ";
1544 if (getFlag(MachineInstr::IsExact))
1545 OS << "exact ";
1546 if (getFlag(MachineInstr::FPExcept))
1547 OS << "fpexcept ";
1549 // Print the opcode name.
1550 if (TII)
1551 OS << TII->getName(getOpcode());
1552 else
1553 OS << "UNKNOWN";
1555 if (SkipOpers)
1556 return;
1558 // Print the rest of the operands.
1559 bool FirstOp = true;
1560 unsigned AsmDescOp = ~0u;
1561 unsigned AsmOpCount = 0;
1563 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1564 // Print asm string.
1565 OS << " ";
1566 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1567 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1568 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1569 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1570 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1571 IntrinsicInfo);
1573 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1574 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1575 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1576 OS << " [sideeffect]";
1577 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1578 OS << " [mayload]";
1579 if (ExtraInfo & InlineAsm::Extra_MayStore)
1580 OS << " [maystore]";
1581 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1582 OS << " [isconvergent]";
1583 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1584 OS << " [alignstack]";
1585 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1586 OS << " [attdialect]";
1587 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1588 OS << " [inteldialect]";
1590 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1591 FirstOp = false;
1594 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1595 const MachineOperand &MO = getOperand(i);
1597 if (FirstOp) FirstOp = false; else OS << ",";
1598 OS << " ";
1600 if (isDebugValue() && MO.isMetadata()) {
1601 // Pretty print DBG_VALUE instructions.
1602 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1603 if (DIV && !DIV->getName().empty())
1604 OS << "!\"" << DIV->getName() << '\"';
1605 else {
1606 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1607 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1608 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1609 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1611 } else if (isDebugLabel() && MO.isMetadata()) {
1612 // Pretty print DBG_LABEL instructions.
1613 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1614 if (DIL && !DIL->getName().empty())
1615 OS << "\"" << DIL->getName() << '\"';
1616 else {
1617 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1618 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1619 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1620 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1622 } else if (i == AsmDescOp && MO.isImm()) {
1623 // Pretty print the inline asm operand descriptor.
1624 OS << '$' << AsmOpCount++;
1625 unsigned Flag = MO.getImm();
1626 switch (InlineAsm::getKind(Flag)) {
1627 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1628 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1629 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1630 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1631 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1632 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1633 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1636 unsigned RCID = 0;
1637 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1638 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1639 if (TRI) {
1640 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1641 } else
1642 OS << ":RC" << RCID;
1645 if (InlineAsm::isMemKind(Flag)) {
1646 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1647 switch (MCID) {
1648 case InlineAsm::Constraint_es: OS << ":es"; break;
1649 case InlineAsm::Constraint_i: OS << ":i"; break;
1650 case InlineAsm::Constraint_m: OS << ":m"; break;
1651 case InlineAsm::Constraint_o: OS << ":o"; break;
1652 case InlineAsm::Constraint_v: OS << ":v"; break;
1653 case InlineAsm::Constraint_Q: OS << ":Q"; break;
1654 case InlineAsm::Constraint_R: OS << ":R"; break;
1655 case InlineAsm::Constraint_S: OS << ":S"; break;
1656 case InlineAsm::Constraint_T: OS << ":T"; break;
1657 case InlineAsm::Constraint_Um: OS << ":Um"; break;
1658 case InlineAsm::Constraint_Un: OS << ":Un"; break;
1659 case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1660 case InlineAsm::Constraint_Us: OS << ":Us"; break;
1661 case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1662 case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1663 case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1664 case InlineAsm::Constraint_X: OS << ":X"; break;
1665 case InlineAsm::Constraint_Z: OS << ":Z"; break;
1666 case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1667 case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1668 default: OS << ":?"; break;
1672 unsigned TiedTo = 0;
1673 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1674 OS << " tiedto:$" << TiedTo;
1676 OS << ']';
1678 // Compute the index of the next operand descriptor.
1679 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1680 } else {
1681 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1682 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1683 if (MO.isImm() && isOperandSubregIdx(i))
1684 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1685 else
1686 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1687 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1691 // Print any optional symbols attached to this instruction as-if they were
1692 // operands.
1693 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1694 if (!FirstOp) {
1695 FirstOp = false;
1696 OS << ',';
1698 OS << " pre-instr-symbol ";
1699 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1701 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1702 if (!FirstOp) {
1703 FirstOp = false;
1704 OS << ',';
1706 OS << " post-instr-symbol ";
1707 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1710 if (!SkipDebugLoc) {
1711 if (const DebugLoc &DL = getDebugLoc()) {
1712 if (!FirstOp)
1713 OS << ',';
1714 OS << " debug-location ";
1715 DL->printAsOperand(OS, MST);
1719 if (!memoperands_empty()) {
1720 SmallVector<StringRef, 0> SSNs;
1721 const LLVMContext *Context = nullptr;
1722 std::unique_ptr<LLVMContext> CtxPtr;
1723 const MachineFrameInfo *MFI = nullptr;
1724 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1725 MFI = &MF->getFrameInfo();
1726 Context = &MF->getFunction().getContext();
1727 } else {
1728 CtxPtr = std::make_unique<LLVMContext>();
1729 Context = CtxPtr.get();
1732 OS << " :: ";
1733 bool NeedComma = false;
1734 for (const MachineMemOperand *Op : memoperands()) {
1735 if (NeedComma)
1736 OS << ", ";
1737 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1738 NeedComma = true;
1742 if (SkipDebugLoc)
1743 return;
1745 bool HaveSemi = false;
1747 // Print debug location information.
1748 if (const DebugLoc &DL = getDebugLoc()) {
1749 if (!HaveSemi) {
1750 OS << ';';
1751 HaveSemi = true;
1753 OS << ' ';
1754 DL.print(OS);
1757 // Print extra comments for DEBUG_VALUE.
1758 if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1759 if (!HaveSemi) {
1760 OS << ";";
1761 HaveSemi = true;
1763 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1764 OS << " line no:" << DV->getLine();
1765 if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1766 DebugLoc InlinedAtDL(InlinedAt);
1767 if (InlinedAtDL && MF) {
1768 OS << " inlined @[ ";
1769 InlinedAtDL.print(OS);
1770 OS << " ]";
1773 if (isIndirectDebugValue())
1774 OS << " indirect";
1776 // TODO: DBG_LABEL
1778 if (AddNewLine)
1779 OS << '\n';
1782 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1783 const TargetRegisterInfo *RegInfo,
1784 bool AddIfNotFound) {
1785 bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1786 bool hasAliases = isPhysReg &&
1787 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1788 bool Found = false;
1789 SmallVector<unsigned,4> DeadOps;
1790 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1791 MachineOperand &MO = getOperand(i);
1792 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1793 continue;
1795 // DEBUG_VALUE nodes do not contribute to code generation and should
1796 // always be ignored. Failure to do so may result in trying to modify
1797 // KILL flags on DEBUG_VALUE nodes.
1798 if (MO.isDebug())
1799 continue;
1801 Register Reg = MO.getReg();
1802 if (!Reg)
1803 continue;
1805 if (Reg == IncomingReg) {
1806 if (!Found) {
1807 if (MO.isKill())
1808 // The register is already marked kill.
1809 return true;
1810 if (isPhysReg && isRegTiedToDefOperand(i))
1811 // Two-address uses of physregs must not be marked kill.
1812 return true;
1813 MO.setIsKill();
1814 Found = true;
1816 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1817 // A super-register kill already exists.
1818 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1819 return true;
1820 if (RegInfo->isSubRegister(IncomingReg, Reg))
1821 DeadOps.push_back(i);
1825 // Trim unneeded kill operands.
1826 while (!DeadOps.empty()) {
1827 unsigned OpIdx = DeadOps.back();
1828 if (getOperand(OpIdx).isImplicit() &&
1829 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1830 RemoveOperand(OpIdx);
1831 else
1832 getOperand(OpIdx).setIsKill(false);
1833 DeadOps.pop_back();
1836 // If not found, this means an alias of one of the operands is killed. Add a
1837 // new implicit operand if required.
1838 if (!Found && AddIfNotFound) {
1839 addOperand(MachineOperand::CreateReg(IncomingReg,
1840 false /*IsDef*/,
1841 true /*IsImp*/,
1842 true /*IsKill*/));
1843 return true;
1845 return Found;
1848 void MachineInstr::clearRegisterKills(Register Reg,
1849 const TargetRegisterInfo *RegInfo) {
1850 if (!Register::isPhysicalRegister(Reg))
1851 RegInfo = nullptr;
1852 for (MachineOperand &MO : operands()) {
1853 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1854 continue;
1855 Register OpReg = MO.getReg();
1856 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1857 MO.setIsKill(false);
1861 bool MachineInstr::addRegisterDead(Register Reg,
1862 const TargetRegisterInfo *RegInfo,
1863 bool AddIfNotFound) {
1864 bool isPhysReg = Register::isPhysicalRegister(Reg);
1865 bool hasAliases = isPhysReg &&
1866 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1867 bool Found = false;
1868 SmallVector<unsigned,4> DeadOps;
1869 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1870 MachineOperand &MO = getOperand(i);
1871 if (!MO.isReg() || !MO.isDef())
1872 continue;
1873 Register MOReg = MO.getReg();
1874 if (!MOReg)
1875 continue;
1877 if (MOReg == Reg) {
1878 MO.setIsDead();
1879 Found = true;
1880 } else if (hasAliases && MO.isDead() &&
1881 Register::isPhysicalRegister(MOReg)) {
1882 // There exists a super-register that's marked dead.
1883 if (RegInfo->isSuperRegister(Reg, MOReg))
1884 return true;
1885 if (RegInfo->isSubRegister(Reg, MOReg))
1886 DeadOps.push_back(i);
1890 // Trim unneeded dead operands.
1891 while (!DeadOps.empty()) {
1892 unsigned OpIdx = DeadOps.back();
1893 if (getOperand(OpIdx).isImplicit() &&
1894 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1895 RemoveOperand(OpIdx);
1896 else
1897 getOperand(OpIdx).setIsDead(false);
1898 DeadOps.pop_back();
1901 // If not found, this means an alias of one of the operands is dead. Add a
1902 // new implicit operand if required.
1903 if (Found || !AddIfNotFound)
1904 return Found;
1906 addOperand(MachineOperand::CreateReg(Reg,
1907 true /*IsDef*/,
1908 true /*IsImp*/,
1909 false /*IsKill*/,
1910 true /*IsDead*/));
1911 return true;
1914 void MachineInstr::clearRegisterDeads(Register Reg) {
1915 for (MachineOperand &MO : operands()) {
1916 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1917 continue;
1918 MO.setIsDead(false);
1922 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1923 for (MachineOperand &MO : operands()) {
1924 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1925 continue;
1926 MO.setIsUndef(IsUndef);
1930 void MachineInstr::addRegisterDefined(Register Reg,
1931 const TargetRegisterInfo *RegInfo) {
1932 if (Register::isPhysicalRegister(Reg)) {
1933 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1934 if (MO)
1935 return;
1936 } else {
1937 for (const MachineOperand &MO : operands()) {
1938 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1939 MO.getSubReg() == 0)
1940 return;
1943 addOperand(MachineOperand::CreateReg(Reg,
1944 true /*IsDef*/,
1945 true /*IsImp*/));
1948 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1949 const TargetRegisterInfo &TRI) {
1950 bool HasRegMask = false;
1951 for (MachineOperand &MO : operands()) {
1952 if (MO.isRegMask()) {
1953 HasRegMask = true;
1954 continue;
1956 if (!MO.isReg() || !MO.isDef()) continue;
1957 Register Reg = MO.getReg();
1958 if (!Reg.isPhysical())
1959 continue;
1960 // If there are no uses, including partial uses, the def is dead.
1961 if (llvm::none_of(UsedRegs,
1962 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
1963 MO.setIsDead();
1966 // This is a call with a register mask operand.
1967 // Mask clobbers are always dead, so add defs for the non-dead defines.
1968 if (HasRegMask)
1969 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1970 I != E; ++I)
1971 addRegisterDefined(*I, &TRI);
1974 unsigned
1975 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1976 // Build up a buffer of hash code components.
1977 SmallVector<size_t, 8> HashComponents;
1978 HashComponents.reserve(MI->getNumOperands() + 1);
1979 HashComponents.push_back(MI->getOpcode());
1980 for (const MachineOperand &MO : MI->operands()) {
1981 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
1982 continue; // Skip virtual register defs.
1984 HashComponents.push_back(hash_value(MO));
1986 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1989 void MachineInstr::emitError(StringRef Msg) const {
1990 // Find the source location cookie.
1991 unsigned LocCookie = 0;
1992 const MDNode *LocMD = nullptr;
1993 for (unsigned i = getNumOperands(); i != 0; --i) {
1994 if (getOperand(i-1).isMetadata() &&
1995 (LocMD = getOperand(i-1).getMetadata()) &&
1996 LocMD->getNumOperands() != 0) {
1997 if (const ConstantInt *CI =
1998 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1999 LocCookie = CI->getZExtValue();
2000 break;
2005 if (const MachineBasicBlock *MBB = getParent())
2006 if (const MachineFunction *MF = MBB->getParent())
2007 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2008 report_fatal_error(Msg);
2011 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2012 const MCInstrDesc &MCID, bool IsIndirect,
2013 Register Reg, const MDNode *Variable,
2014 const MDNode *Expr) {
2015 assert(isa<DILocalVariable>(Variable) && "not a variable");
2016 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2017 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2018 "Expected inlined-at fields to agree");
2019 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2020 if (IsIndirect)
2021 MIB.addImm(0U);
2022 else
2023 MIB.addReg(0U, RegState::Debug);
2024 return MIB.addMetadata(Variable).addMetadata(Expr);
2027 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2028 const MCInstrDesc &MCID, bool IsIndirect,
2029 MachineOperand &MO, const MDNode *Variable,
2030 const MDNode *Expr) {
2031 assert(isa<DILocalVariable>(Variable) && "not a variable");
2032 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2033 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2034 "Expected inlined-at fields to agree");
2035 if (MO.isReg())
2036 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2038 auto MIB = BuildMI(MF, DL, MCID).add(MO);
2039 if (IsIndirect)
2040 MIB.addImm(0U);
2041 else
2042 MIB.addReg(0U, RegState::Debug);
2043 return MIB.addMetadata(Variable).addMetadata(Expr);
2046 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2047 MachineBasicBlock::iterator I,
2048 const DebugLoc &DL, const MCInstrDesc &MCID,
2049 bool IsIndirect, Register Reg,
2050 const MDNode *Variable, const MDNode *Expr) {
2051 MachineFunction &MF = *BB.getParent();
2052 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2053 BB.insert(I, MI);
2054 return MachineInstrBuilder(MF, MI);
2057 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2058 MachineBasicBlock::iterator I,
2059 const DebugLoc &DL, const MCInstrDesc &MCID,
2060 bool IsIndirect, MachineOperand &MO,
2061 const MDNode *Variable, const MDNode *Expr) {
2062 MachineFunction &MF = *BB.getParent();
2063 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2064 BB.insert(I, MI);
2065 return MachineInstrBuilder(MF, *MI);
2068 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2069 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2070 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2071 assert(MI.getOperand(0).isReg() && "can't spill non-register");
2072 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2073 "Expected inlined-at fields to agree");
2075 const DIExpression *Expr = MI.getDebugExpression();
2076 if (MI.isIndirectDebugValue()) {
2077 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2078 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2080 return Expr;
2083 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2084 MachineBasicBlock::iterator I,
2085 const MachineInstr &Orig,
2086 int FrameIndex) {
2087 const DIExpression *Expr = computeExprForSpill(Orig);
2088 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2089 .addFrameIndex(FrameIndex)
2090 .addImm(0U)
2091 .addMetadata(Orig.getDebugVariable())
2092 .addMetadata(Expr);
2095 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2096 const DIExpression *Expr = computeExprForSpill(Orig);
2097 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2098 Orig.getOperand(1).ChangeToImmediate(0U);
2099 Orig.getOperand(3).setMetadata(Expr);
2102 void MachineInstr::collectDebugValues(
2103 SmallVectorImpl<MachineInstr *> &DbgValues) {
2104 MachineInstr &MI = *this;
2105 if (!MI.getOperand(0).isReg())
2106 return;
2108 MachineBasicBlock::iterator DI = MI; ++DI;
2109 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2110 DI != DE; ++DI) {
2111 if (!DI->isDebugValue())
2112 return;
2113 if (DI->getOperand(0).isReg() &&
2114 DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2115 DbgValues.push_back(&*DI);
2119 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2120 // Collect matching debug values.
2121 SmallVector<MachineInstr *, 2> DbgValues;
2123 if (!getOperand(0).isReg())
2124 return;
2126 unsigned DefReg = getOperand(0).getReg();
2127 auto *MRI = getRegInfo();
2128 for (auto &MO : MRI->use_operands(DefReg)) {
2129 auto *DI = MO.getParent();
2130 if (!DI->isDebugValue())
2131 continue;
2132 if (DI->getOperand(0).isReg() &&
2133 DI->getOperand(0).getReg() == DefReg){
2134 DbgValues.push_back(DI);
2138 // Propagate Reg to debug value instructions.
2139 for (auto *DBI : DbgValues)
2140 DBI->getOperand(0).setReg(Reg);
2143 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2145 static unsigned getSpillSlotSize(MMOList &Accesses,
2146 const MachineFrameInfo &MFI) {
2147 unsigned Size = 0;
2148 for (auto A : Accesses)
2149 if (MFI.isSpillSlotObjectIndex(
2150 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2151 ->getFrameIndex()))
2152 Size += A->getSize();
2153 return Size;
2156 Optional<unsigned>
2157 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2158 int FI;
2159 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2160 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2161 if (MFI.isSpillSlotObjectIndex(FI))
2162 return (*memoperands_begin())->getSize();
2164 return None;
2167 Optional<unsigned>
2168 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2169 MMOList Accesses;
2170 if (TII->hasStoreToStackSlot(*this, Accesses))
2171 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2172 return None;
2175 Optional<unsigned>
2176 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2177 int FI;
2178 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2179 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2180 if (MFI.isSpillSlotObjectIndex(FI))
2181 return (*memoperands_begin())->getSize();
2183 return None;
2186 Optional<unsigned>
2187 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2188 MMOList Accesses;
2189 if (TII->hasLoadFromStackSlot(*this, Accesses))
2190 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2191 return None;