[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / MachineScheduler.cpp
blob80526afa09389a0ced4f5a39e25d42e47e42dd78
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "machine-scheduler"
75 namespace llvm {
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78 cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80 cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83 cl::desc("Print critical path length to stdout"));
85 } // end namespace llvm
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89 cl::desc("Pop up a window to show MISched dags after they are processed"));
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100 cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102 cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104 cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113 cl::desc("Limit ready list to N instructions"), cl::init(256));
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116 cl::desc("Enable register pressure scheduling."), cl::init(true));
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122 cl::desc("Enable memop clustering."),
123 cl::init(true));
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126 cl::desc("Verify machine instrs before and after machine scheduling"));
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
134 void ScheduleDAGMutation::anchor() {}
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
140 MachineSchedContext::MachineSchedContext() {
141 RegClassInfo = new RegisterClassInfo();
144 MachineSchedContext::~MachineSchedContext() {
145 delete RegClassInfo;
148 namespace {
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152 public MachineFunctionPass {
153 public:
154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
156 void print(raw_ostream &O, const Module* = nullptr) const override;
158 protected:
159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165 MachineScheduler();
167 void getAnalysisUsage(AnalysisUsage &AU) const override;
169 bool runOnMachineFunction(MachineFunction&) override;
171 static char ID; // Class identification, replacement for typeinfo
173 protected:
174 ScheduleDAGInstrs *createMachineScheduler();
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180 PostMachineScheduler();
182 void getAnalysisUsage(AnalysisUsage &AU) const override;
184 bool runOnMachineFunction(MachineFunction&) override;
186 static char ID; // Class identification, replacement for typeinfo
188 protected:
189 ScheduleDAGInstrs *createPostMachineScheduler();
192 } // end anonymous namespace
194 char MachineScheduler::ID = 0;
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199 "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205 "Machine Instruction Scheduler", false, false)
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212 AU.setPreservesCFG();
213 AU.addRequiredID(MachineDominatorsID);
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<AAResultsWrapperPass>();
216 AU.addRequired<TargetPassConfig>();
217 AU.addRequired<SlotIndexes>();
218 AU.addPreserved<SlotIndexes>();
219 AU.addRequired<LiveIntervals>();
220 AU.addPreserved<LiveIntervals>();
221 MachineFunctionPass::getAnalysisUsage(AU);
224 char PostMachineScheduler::ID = 0;
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229 "PostRA Machine Instruction Scheduler", false, false)
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236 AU.setPreservesCFG();
237 AU.addRequiredID(MachineDominatorsID);
238 AU.addRequired<MachineLoopInfo>();
239 AU.addRequired<TargetPassConfig>();
240 MachineFunctionPass::getAnalysisUsage(AU);
243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
244 MachineSchedRegistry::Registry;
246 /// A dummy default scheduler factory indicates whether the scheduler
247 /// is overridden on the command line.
248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
249 return nullptr;
252 /// MachineSchedOpt allows command line selection of the scheduler.
253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
254 RegisterPassParser<MachineSchedRegistry>>
255 MachineSchedOpt("misched",
256 cl::init(&useDefaultMachineSched), cl::Hidden,
257 cl::desc("Machine instruction scheduler to use"));
259 static MachineSchedRegistry
260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
261 useDefaultMachineSched);
263 static cl::opt<bool> EnableMachineSched(
264 "enable-misched",
265 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
266 cl::Hidden);
268 static cl::opt<bool> EnablePostRAMachineSched(
269 "enable-post-misched",
270 cl::desc("Enable the post-ra machine instruction scheduling pass."),
271 cl::init(true), cl::Hidden);
273 /// Decrement this iterator until reaching the top or a non-debug instr.
274 static MachineBasicBlock::const_iterator
275 priorNonDebug(MachineBasicBlock::const_iterator I,
276 MachineBasicBlock::const_iterator Beg) {
277 assert(I != Beg && "reached the top of the region, cannot decrement");
278 while (--I != Beg) {
279 if (!I->isDebugInstr())
280 break;
282 return I;
285 /// Non-const version.
286 static MachineBasicBlock::iterator
287 priorNonDebug(MachineBasicBlock::iterator I,
288 MachineBasicBlock::const_iterator Beg) {
289 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
290 .getNonConstIterator();
293 /// If this iterator is a debug value, increment until reaching the End or a
294 /// non-debug instruction.
295 static MachineBasicBlock::const_iterator
296 nextIfDebug(MachineBasicBlock::const_iterator I,
297 MachineBasicBlock::const_iterator End) {
298 for(; I != End; ++I) {
299 if (!I->isDebugInstr())
300 break;
302 return I;
305 /// Non-const version.
306 static MachineBasicBlock::iterator
307 nextIfDebug(MachineBasicBlock::iterator I,
308 MachineBasicBlock::const_iterator End) {
309 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
310 .getNonConstIterator();
313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
315 // Select the scheduler, or set the default.
316 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
317 if (Ctor != useDefaultMachineSched)
318 return Ctor(this);
320 // Get the default scheduler set by the target for this function.
321 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
322 if (Scheduler)
323 return Scheduler;
325 // Default to GenericScheduler.
326 return createGenericSchedLive(this);
329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
330 /// the caller. We don't have a command line option to override the postRA
331 /// scheduler. The Target must configure it.
332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
333 // Get the postRA scheduler set by the target for this function.
334 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
335 if (Scheduler)
336 return Scheduler;
338 // Default to GenericScheduler.
339 return createGenericSchedPostRA(this);
342 /// Top-level MachineScheduler pass driver.
344 /// Visit blocks in function order. Divide each block into scheduling regions
345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
346 /// consistent with the DAG builder, which traverses the interior of the
347 /// scheduling regions bottom-up.
349 /// This design avoids exposing scheduling boundaries to the DAG builder,
350 /// simplifying the DAG builder's support for "special" target instructions.
351 /// At the same time the design allows target schedulers to operate across
352 /// scheduling boundaries, for example to bundle the boundary instructions
353 /// without reordering them. This creates complexity, because the target
354 /// scheduler must update the RegionBegin and RegionEnd positions cached by
355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
356 /// design would be to split blocks at scheduling boundaries, but LLVM has a
357 /// general bias against block splitting purely for implementation simplicity.
358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
359 if (skipFunction(mf.getFunction()))
360 return false;
362 if (EnableMachineSched.getNumOccurrences()) {
363 if (!EnableMachineSched)
364 return false;
365 } else if (!mf.getSubtarget().enableMachineScheduler())
366 return false;
368 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
370 // Initialize the context of the pass.
371 MF = &mf;
372 MLI = &getAnalysis<MachineLoopInfo>();
373 MDT = &getAnalysis<MachineDominatorTree>();
374 PassConfig = &getAnalysis<TargetPassConfig>();
375 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
377 LIS = &getAnalysis<LiveIntervals>();
379 if (VerifyScheduling) {
380 LLVM_DEBUG(LIS->dump());
381 MF->verify(this, "Before machine scheduling.");
383 RegClassInfo->runOnMachineFunction(*MF);
385 // Instantiate the selected scheduler for this target, function, and
386 // optimization level.
387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
388 scheduleRegions(*Scheduler, false);
390 LLVM_DEBUG(LIS->dump());
391 if (VerifyScheduling)
392 MF->verify(this, "After machine scheduling.");
393 return true;
396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
397 if (skipFunction(mf.getFunction()))
398 return false;
400 if (EnablePostRAMachineSched.getNumOccurrences()) {
401 if (!EnablePostRAMachineSched)
402 return false;
403 } else if (!mf.getSubtarget().enablePostRAScheduler()) {
404 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
405 return false;
407 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
409 // Initialize the context of the pass.
410 MF = &mf;
411 MLI = &getAnalysis<MachineLoopInfo>();
412 PassConfig = &getAnalysis<TargetPassConfig>();
414 if (VerifyScheduling)
415 MF->verify(this, "Before post machine scheduling.");
417 // Instantiate the selected scheduler for this target, function, and
418 // optimization level.
419 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
420 scheduleRegions(*Scheduler, true);
422 if (VerifyScheduling)
423 MF->verify(this, "After post machine scheduling.");
424 return true;
427 /// Return true of the given instruction should not be included in a scheduling
428 /// region.
430 /// MachineScheduler does not currently support scheduling across calls. To
431 /// handle calls, the DAG builder needs to be modified to create register
432 /// anti/output dependencies on the registers clobbered by the call's regmask
433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
435 /// the boundary, but there would be no benefit to postRA scheduling across
436 /// calls this late anyway.
437 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
438 MachineBasicBlock *MBB,
439 MachineFunction *MF,
440 const TargetInstrInfo *TII) {
441 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
444 /// A region of an MBB for scheduling.
445 namespace {
446 struct SchedRegion {
447 /// RegionBegin is the first instruction in the scheduling region, and
448 /// RegionEnd is either MBB->end() or the scheduling boundary after the
449 /// last instruction in the scheduling region. These iterators cannot refer
450 /// to instructions outside of the identified scheduling region because
451 /// those may be reordered before scheduling this region.
452 MachineBasicBlock::iterator RegionBegin;
453 MachineBasicBlock::iterator RegionEnd;
454 unsigned NumRegionInstrs;
456 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
457 unsigned N) :
458 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
460 } // end anonymous namespace
462 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
464 static void
465 getSchedRegions(MachineBasicBlock *MBB,
466 MBBRegionsVector &Regions,
467 bool RegionsTopDown) {
468 MachineFunction *MF = MBB->getParent();
469 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
471 MachineBasicBlock::iterator I = nullptr;
472 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
473 RegionEnd != MBB->begin(); RegionEnd = I) {
475 // Avoid decrementing RegionEnd for blocks with no terminator.
476 if (RegionEnd != MBB->end() ||
477 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
478 --RegionEnd;
481 // The next region starts above the previous region. Look backward in the
482 // instruction stream until we find the nearest boundary.
483 unsigned NumRegionInstrs = 0;
484 I = RegionEnd;
485 for (;I != MBB->begin(); --I) {
486 MachineInstr &MI = *std::prev(I);
487 if (isSchedBoundary(&MI, &*MBB, MF, TII))
488 break;
489 if (!MI.isDebugInstr()) {
490 // MBB::size() uses instr_iterator to count. Here we need a bundle to
491 // count as a single instruction.
492 ++NumRegionInstrs;
496 // It's possible we found a scheduling region that only has debug
497 // instructions. Don't bother scheduling these.
498 if (NumRegionInstrs != 0)
499 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
502 if (RegionsTopDown)
503 std::reverse(Regions.begin(), Regions.end());
506 /// Main driver for both MachineScheduler and PostMachineScheduler.
507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
508 bool FixKillFlags) {
509 // Visit all machine basic blocks.
511 // TODO: Visit blocks in global postorder or postorder within the bottom-up
512 // loop tree. Then we can optionally compute global RegPressure.
513 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
514 MBB != MBBEnd; ++MBB) {
516 Scheduler.startBlock(&*MBB);
518 #ifndef NDEBUG
519 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
520 continue;
521 if (SchedOnlyBlock.getNumOccurrences()
522 && (int)SchedOnlyBlock != MBB->getNumber())
523 continue;
524 #endif
526 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
527 // points to the scheduling boundary at the bottom of the region. The DAG
528 // does not include RegionEnd, but the region does (i.e. the next
529 // RegionEnd is above the previous RegionBegin). If the current block has
530 // no terminator then RegionEnd == MBB->end() for the bottom region.
532 // All the regions of MBB are first found and stored in MBBRegions, which
533 // will be processed (MBB) top-down if initialized with true.
535 // The Scheduler may insert instructions during either schedule() or
536 // exitRegion(), even for empty regions. So the local iterators 'I' and
537 // 'RegionEnd' are invalid across these calls. Instructions must not be
538 // added to other regions than the current one without updating MBBRegions.
540 MBBRegionsVector MBBRegions;
541 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
542 for (MBBRegionsVector::iterator R = MBBRegions.begin();
543 R != MBBRegions.end(); ++R) {
544 MachineBasicBlock::iterator I = R->RegionBegin;
545 MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
546 unsigned NumRegionInstrs = R->NumRegionInstrs;
548 // Notify the scheduler of the region, even if we may skip scheduling
549 // it. Perhaps it still needs to be bundled.
550 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
552 // Skip empty scheduling regions (0 or 1 schedulable instructions).
553 if (I == RegionEnd || I == std::prev(RegionEnd)) {
554 // Close the current region. Bundle the terminator if needed.
555 // This invalidates 'RegionEnd' and 'I'.
556 Scheduler.exitRegion();
557 continue;
559 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
560 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
561 << " " << MBB->getName() << "\n From: " << *I
562 << " To: ";
563 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
564 else dbgs() << "End";
565 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
566 if (DumpCriticalPathLength) {
567 errs() << MF->getName();
568 errs() << ":%bb. " << MBB->getNumber();
569 errs() << " " << MBB->getName() << " \n";
572 // Schedule a region: possibly reorder instructions.
573 // This invalidates the original region iterators.
574 Scheduler.schedule();
576 // Close the current region.
577 Scheduler.exitRegion();
579 Scheduler.finishBlock();
580 // FIXME: Ideally, no further passes should rely on kill flags. However,
581 // thumb2 size reduction is currently an exception, so the PostMIScheduler
582 // needs to do this.
583 if (FixKillFlags)
584 Scheduler.fixupKills(*MBB);
586 Scheduler.finalizeSchedule();
589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
590 // unimplemented
593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
594 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
595 dbgs() << "Queue " << Name << ": ";
596 for (const SUnit *SU : Queue)
597 dbgs() << SU->NodeNum << " ";
598 dbgs() << "\n";
600 #endif
602 //===----------------------------------------------------------------------===//
603 // ScheduleDAGMI - Basic machine instruction scheduling. This is
604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
605 // virtual registers.
606 // ===----------------------------------------------------------------------===/
608 // Provide a vtable anchor.
609 ScheduleDAGMI::~ScheduleDAGMI() = default;
611 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
612 /// NumPredsLeft reaches zero, release the successor node.
614 /// FIXME: Adjust SuccSU height based on MinLatency.
615 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
616 SUnit *SuccSU = SuccEdge->getSUnit();
618 if (SuccEdge->isWeak()) {
619 --SuccSU->WeakPredsLeft;
620 if (SuccEdge->isCluster())
621 NextClusterSucc = SuccSU;
622 return;
624 #ifndef NDEBUG
625 if (SuccSU->NumPredsLeft == 0) {
626 dbgs() << "*** Scheduling failed! ***\n";
627 dumpNode(*SuccSU);
628 dbgs() << " has been released too many times!\n";
629 llvm_unreachable(nullptr);
631 #endif
632 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
633 // CurrCycle may have advanced since then.
634 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
635 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
637 --SuccSU->NumPredsLeft;
638 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
639 SchedImpl->releaseTopNode(SuccSU);
642 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
643 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
644 for (SDep &Succ : SU->Succs)
645 releaseSucc(SU, &Succ);
648 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
649 /// NumSuccsLeft reaches zero, release the predecessor node.
651 /// FIXME: Adjust PredSU height based on MinLatency.
652 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
653 SUnit *PredSU = PredEdge->getSUnit();
655 if (PredEdge->isWeak()) {
656 --PredSU->WeakSuccsLeft;
657 if (PredEdge->isCluster())
658 NextClusterPred = PredSU;
659 return;
661 #ifndef NDEBUG
662 if (PredSU->NumSuccsLeft == 0) {
663 dbgs() << "*** Scheduling failed! ***\n";
664 dumpNode(*PredSU);
665 dbgs() << " has been released too many times!\n";
666 llvm_unreachable(nullptr);
668 #endif
669 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
670 // CurrCycle may have advanced since then.
671 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
672 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
674 --PredSU->NumSuccsLeft;
675 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
676 SchedImpl->releaseBottomNode(PredSU);
679 /// releasePredecessors - Call releasePred on each of SU's predecessors.
680 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
681 for (SDep &Pred : SU->Preds)
682 releasePred(SU, &Pred);
685 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
686 ScheduleDAGInstrs::startBlock(bb);
687 SchedImpl->enterMBB(bb);
690 void ScheduleDAGMI::finishBlock() {
691 SchedImpl->leaveMBB();
692 ScheduleDAGInstrs::finishBlock();
695 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
696 /// crossing a scheduling boundary. [begin, end) includes all instructions in
697 /// the region, including the boundary itself and single-instruction regions
698 /// that don't get scheduled.
699 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
700 MachineBasicBlock::iterator begin,
701 MachineBasicBlock::iterator end,
702 unsigned regioninstrs)
704 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
706 SchedImpl->initPolicy(begin, end, regioninstrs);
709 /// This is normally called from the main scheduler loop but may also be invoked
710 /// by the scheduling strategy to perform additional code motion.
711 void ScheduleDAGMI::moveInstruction(
712 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
713 // Advance RegionBegin if the first instruction moves down.
714 if (&*RegionBegin == MI)
715 ++RegionBegin;
717 // Update the instruction stream.
718 BB->splice(InsertPos, BB, MI);
720 // Update LiveIntervals
721 if (LIS)
722 LIS->handleMove(*MI, /*UpdateFlags=*/true);
724 // Recede RegionBegin if an instruction moves above the first.
725 if (RegionBegin == InsertPos)
726 RegionBegin = MI;
729 bool ScheduleDAGMI::checkSchedLimit() {
730 #ifndef NDEBUG
731 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
732 CurrentTop = CurrentBottom;
733 return false;
735 ++NumInstrsScheduled;
736 #endif
737 return true;
740 /// Per-region scheduling driver, called back from
741 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
742 /// does not consider liveness or register pressure. It is useful for PostRA
743 /// scheduling and potentially other custom schedulers.
744 void ScheduleDAGMI::schedule() {
745 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
746 LLVM_DEBUG(SchedImpl->dumpPolicy());
748 // Build the DAG.
749 buildSchedGraph(AA);
751 postprocessDAG();
753 SmallVector<SUnit*, 8> TopRoots, BotRoots;
754 findRootsAndBiasEdges(TopRoots, BotRoots);
756 LLVM_DEBUG(dump());
757 if (PrintDAGs) dump();
758 if (ViewMISchedDAGs) viewGraph();
760 // Initialize the strategy before modifying the DAG.
761 // This may initialize a DFSResult to be used for queue priority.
762 SchedImpl->initialize(this);
764 // Initialize ready queues now that the DAG and priority data are finalized.
765 initQueues(TopRoots, BotRoots);
767 bool IsTopNode = false;
768 while (true) {
769 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
770 SUnit *SU = SchedImpl->pickNode(IsTopNode);
771 if (!SU) break;
773 assert(!SU->isScheduled && "Node already scheduled");
774 if (!checkSchedLimit())
775 break;
777 MachineInstr *MI = SU->getInstr();
778 if (IsTopNode) {
779 assert(SU->isTopReady() && "node still has unscheduled dependencies");
780 if (&*CurrentTop == MI)
781 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
782 else
783 moveInstruction(MI, CurrentTop);
784 } else {
785 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
786 MachineBasicBlock::iterator priorII =
787 priorNonDebug(CurrentBottom, CurrentTop);
788 if (&*priorII == MI)
789 CurrentBottom = priorII;
790 else {
791 if (&*CurrentTop == MI)
792 CurrentTop = nextIfDebug(++CurrentTop, priorII);
793 moveInstruction(MI, CurrentBottom);
794 CurrentBottom = MI;
797 // Notify the scheduling strategy before updating the DAG.
798 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
799 // runs, it can then use the accurate ReadyCycle time to determine whether
800 // newly released nodes can move to the readyQ.
801 SchedImpl->schedNode(SU, IsTopNode);
803 updateQueues(SU, IsTopNode);
805 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
807 placeDebugValues();
809 LLVM_DEBUG({
810 dbgs() << "*** Final schedule for "
811 << printMBBReference(*begin()->getParent()) << " ***\n";
812 dumpSchedule();
813 dbgs() << '\n';
817 /// Apply each ScheduleDAGMutation step in order.
818 void ScheduleDAGMI::postprocessDAG() {
819 for (auto &m : Mutations)
820 m->apply(this);
823 void ScheduleDAGMI::
824 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
825 SmallVectorImpl<SUnit*> &BotRoots) {
826 for (SUnit &SU : SUnits) {
827 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
829 // Order predecessors so DFSResult follows the critical path.
830 SU.biasCriticalPath();
832 // A SUnit is ready to top schedule if it has no predecessors.
833 if (!SU.NumPredsLeft)
834 TopRoots.push_back(&SU);
835 // A SUnit is ready to bottom schedule if it has no successors.
836 if (!SU.NumSuccsLeft)
837 BotRoots.push_back(&SU);
839 ExitSU.biasCriticalPath();
842 /// Identify DAG roots and setup scheduler queues.
843 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
844 ArrayRef<SUnit*> BotRoots) {
845 NextClusterSucc = nullptr;
846 NextClusterPred = nullptr;
848 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
850 // Nodes with unreleased weak edges can still be roots.
851 // Release top roots in forward order.
852 for (SUnit *SU : TopRoots)
853 SchedImpl->releaseTopNode(SU);
855 // Release bottom roots in reverse order so the higher priority nodes appear
856 // first. This is more natural and slightly more efficient.
857 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
858 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
859 SchedImpl->releaseBottomNode(*I);
862 releaseSuccessors(&EntrySU);
863 releasePredecessors(&ExitSU);
865 SchedImpl->registerRoots();
867 // Advance past initial DebugValues.
868 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
869 CurrentBottom = RegionEnd;
872 /// Update scheduler queues after scheduling an instruction.
873 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
874 // Release dependent instructions for scheduling.
875 if (IsTopNode)
876 releaseSuccessors(SU);
877 else
878 releasePredecessors(SU);
880 SU->isScheduled = true;
883 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
884 void ScheduleDAGMI::placeDebugValues() {
885 // If first instruction was a DBG_VALUE then put it back.
886 if (FirstDbgValue) {
887 BB->splice(RegionBegin, BB, FirstDbgValue);
888 RegionBegin = FirstDbgValue;
891 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
892 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
893 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
894 MachineInstr *DbgValue = P.first;
895 MachineBasicBlock::iterator OrigPrevMI = P.second;
896 if (&*RegionBegin == DbgValue)
897 ++RegionBegin;
898 BB->splice(++OrigPrevMI, BB, DbgValue);
899 if (OrigPrevMI == std::prev(RegionEnd))
900 RegionEnd = DbgValue;
902 DbgValues.clear();
903 FirstDbgValue = nullptr;
906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
907 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
908 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
909 if (SUnit *SU = getSUnit(&(*MI)))
910 dumpNode(*SU);
911 else
912 dbgs() << "Missing SUnit\n";
915 #endif
917 //===----------------------------------------------------------------------===//
918 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
919 // preservation.
920 //===----------------------------------------------------------------------===//
922 ScheduleDAGMILive::~ScheduleDAGMILive() {
923 delete DFSResult;
926 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
927 const MachineInstr &MI = *SU.getInstr();
928 for (const MachineOperand &MO : MI.operands()) {
929 if (!MO.isReg())
930 continue;
931 if (!MO.readsReg())
932 continue;
933 if (TrackLaneMasks && !MO.isUse())
934 continue;
936 Register Reg = MO.getReg();
937 if (!Register::isVirtualRegister(Reg))
938 continue;
940 // Ignore re-defs.
941 if (TrackLaneMasks) {
942 bool FoundDef = false;
943 for (const MachineOperand &MO2 : MI.operands()) {
944 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
945 FoundDef = true;
946 break;
949 if (FoundDef)
950 continue;
953 // Record this local VReg use.
954 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
955 for (; UI != VRegUses.end(); ++UI) {
956 if (UI->SU == &SU)
957 break;
959 if (UI == VRegUses.end())
960 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
964 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
965 /// crossing a scheduling boundary. [begin, end) includes all instructions in
966 /// the region, including the boundary itself and single-instruction regions
967 /// that don't get scheduled.
968 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
969 MachineBasicBlock::iterator begin,
970 MachineBasicBlock::iterator end,
971 unsigned regioninstrs)
973 // ScheduleDAGMI initializes SchedImpl's per-region policy.
974 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
976 // For convenience remember the end of the liveness region.
977 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
979 SUPressureDiffs.clear();
981 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
982 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
984 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
985 "ShouldTrackLaneMasks requires ShouldTrackPressure");
988 // Setup the register pressure trackers for the top scheduled and bottom
989 // scheduled regions.
990 void ScheduleDAGMILive::initRegPressure() {
991 VRegUses.clear();
992 VRegUses.setUniverse(MRI.getNumVirtRegs());
993 for (SUnit &SU : SUnits)
994 collectVRegUses(SU);
996 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
997 ShouldTrackLaneMasks, false);
998 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
999 ShouldTrackLaneMasks, false);
1001 // Close the RPTracker to finalize live ins.
1002 RPTracker.closeRegion();
1004 LLVM_DEBUG(RPTracker.dump());
1006 // Initialize the live ins and live outs.
1007 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1008 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1010 // Close one end of the tracker so we can call
1011 // getMaxUpward/DownwardPressureDelta before advancing across any
1012 // instructions. This converts currently live regs into live ins/outs.
1013 TopRPTracker.closeTop();
1014 BotRPTracker.closeBottom();
1016 BotRPTracker.initLiveThru(RPTracker);
1017 if (!BotRPTracker.getLiveThru().empty()) {
1018 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1019 LLVM_DEBUG(dbgs() << "Live Thru: ";
1020 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1023 // For each live out vreg reduce the pressure change associated with other
1024 // uses of the same vreg below the live-out reaching def.
1025 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1027 // Account for liveness generated by the region boundary.
1028 if (LiveRegionEnd != RegionEnd) {
1029 SmallVector<RegisterMaskPair, 8> LiveUses;
1030 BotRPTracker.recede(&LiveUses);
1031 updatePressureDiffs(LiveUses);
1034 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1035 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1036 dbgs() << "Bottom Pressure:\n";
1037 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1039 assert((BotRPTracker.getPos() == RegionEnd ||
1040 (RegionEnd->isDebugInstr() &&
1041 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1042 "Can't find the region bottom");
1044 // Cache the list of excess pressure sets in this region. This will also track
1045 // the max pressure in the scheduled code for these sets.
1046 RegionCriticalPSets.clear();
1047 const std::vector<unsigned> &RegionPressure =
1048 RPTracker.getPressure().MaxSetPressure;
1049 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1050 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1051 if (RegionPressure[i] > Limit) {
1052 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1053 << " Actual " << RegionPressure[i] << "\n");
1054 RegionCriticalPSets.push_back(PressureChange(i));
1057 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1058 for (const PressureChange &RCPS
1059 : RegionCriticalPSets) dbgs()
1060 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1061 dbgs() << "\n");
1064 void ScheduleDAGMILive::
1065 updateScheduledPressure(const SUnit *SU,
1066 const std::vector<unsigned> &NewMaxPressure) {
1067 const PressureDiff &PDiff = getPressureDiff(SU);
1068 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1069 for (const PressureChange &PC : PDiff) {
1070 if (!PC.isValid())
1071 break;
1072 unsigned ID = PC.getPSet();
1073 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1074 ++CritIdx;
1075 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1076 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1077 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1078 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1080 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1081 if (NewMaxPressure[ID] >= Limit - 2) {
1082 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1083 << NewMaxPressure[ID]
1084 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1085 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1086 << " livethru)\n");
1091 /// Update the PressureDiff array for liveness after scheduling this
1092 /// instruction.
1093 void ScheduleDAGMILive::updatePressureDiffs(
1094 ArrayRef<RegisterMaskPair> LiveUses) {
1095 for (const RegisterMaskPair &P : LiveUses) {
1096 unsigned Reg = P.RegUnit;
1097 /// FIXME: Currently assuming single-use physregs.
1098 if (!Register::isVirtualRegister(Reg))
1099 continue;
1101 if (ShouldTrackLaneMasks) {
1102 // If the register has just become live then other uses won't change
1103 // this fact anymore => decrement pressure.
1104 // If the register has just become dead then other uses make it come
1105 // back to life => increment pressure.
1106 bool Decrement = P.LaneMask.any();
1108 for (const VReg2SUnit &V2SU
1109 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1110 SUnit &SU = *V2SU.SU;
1111 if (SU.isScheduled || &SU == &ExitSU)
1112 continue;
1114 PressureDiff &PDiff = getPressureDiff(&SU);
1115 PDiff.addPressureChange(Reg, Decrement, &MRI);
1116 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1117 << printReg(Reg, TRI) << ':'
1118 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1119 dbgs() << " to "; PDiff.dump(*TRI););
1121 } else {
1122 assert(P.LaneMask.any());
1123 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1124 // This may be called before CurrentBottom has been initialized. However,
1125 // BotRPTracker must have a valid position. We want the value live into the
1126 // instruction or live out of the block, so ask for the previous
1127 // instruction's live-out.
1128 const LiveInterval &LI = LIS->getInterval(Reg);
1129 VNInfo *VNI;
1130 MachineBasicBlock::const_iterator I =
1131 nextIfDebug(BotRPTracker.getPos(), BB->end());
1132 if (I == BB->end())
1133 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1134 else {
1135 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1136 VNI = LRQ.valueIn();
1138 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1139 assert(VNI && "No live value at use.");
1140 for (const VReg2SUnit &V2SU
1141 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1142 SUnit *SU = V2SU.SU;
1143 // If this use comes before the reaching def, it cannot be a last use,
1144 // so decrease its pressure change.
1145 if (!SU->isScheduled && SU != &ExitSU) {
1146 LiveQueryResult LRQ =
1147 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1148 if (LRQ.valueIn() == VNI) {
1149 PressureDiff &PDiff = getPressureDiff(SU);
1150 PDiff.addPressureChange(Reg, true, &MRI);
1151 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1152 << *SU->getInstr();
1153 dbgs() << " to "; PDiff.dump(*TRI););
1161 void ScheduleDAGMILive::dump() const {
1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1163 if (EntrySU.getInstr() != nullptr)
1164 dumpNodeAll(EntrySU);
1165 for (const SUnit &SU : SUnits) {
1166 dumpNodeAll(SU);
1167 if (ShouldTrackPressure) {
1168 dbgs() << " Pressure Diff : ";
1169 getPressureDiff(&SU).dump(*TRI);
1171 dbgs() << " Single Issue : ";
1172 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1173 SchedModel.mustEndGroup(SU.getInstr()))
1174 dbgs() << "true;";
1175 else
1176 dbgs() << "false;";
1177 dbgs() << '\n';
1179 if (ExitSU.getInstr() != nullptr)
1180 dumpNodeAll(ExitSU);
1181 #endif
1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1186 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1188 /// This is a skeletal driver, with all the functionality pushed into helpers,
1189 /// so that it can be easily extended by experimental schedulers. Generally,
1190 /// implementing MachineSchedStrategy should be sufficient to implement a new
1191 /// scheduling algorithm. However, if a scheduler further subclasses
1192 /// ScheduleDAGMILive then it will want to override this virtual method in order
1193 /// to update any specialized state.
1194 void ScheduleDAGMILive::schedule() {
1195 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1196 LLVM_DEBUG(SchedImpl->dumpPolicy());
1197 buildDAGWithRegPressure();
1199 postprocessDAG();
1201 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1202 findRootsAndBiasEdges(TopRoots, BotRoots);
1204 // Initialize the strategy before modifying the DAG.
1205 // This may initialize a DFSResult to be used for queue priority.
1206 SchedImpl->initialize(this);
1208 LLVM_DEBUG(dump());
1209 if (PrintDAGs) dump();
1210 if (ViewMISchedDAGs) viewGraph();
1212 // Initialize ready queues now that the DAG and priority data are finalized.
1213 initQueues(TopRoots, BotRoots);
1215 bool IsTopNode = false;
1216 while (true) {
1217 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1218 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1219 if (!SU) break;
1221 assert(!SU->isScheduled && "Node already scheduled");
1222 if (!checkSchedLimit())
1223 break;
1225 scheduleMI(SU, IsTopNode);
1227 if (DFSResult) {
1228 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1229 if (!ScheduledTrees.test(SubtreeID)) {
1230 ScheduledTrees.set(SubtreeID);
1231 DFSResult->scheduleTree(SubtreeID);
1232 SchedImpl->scheduleTree(SubtreeID);
1236 // Notify the scheduling strategy after updating the DAG.
1237 SchedImpl->schedNode(SU, IsTopNode);
1239 updateQueues(SU, IsTopNode);
1241 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1243 placeDebugValues();
1245 LLVM_DEBUG({
1246 dbgs() << "*** Final schedule for "
1247 << printMBBReference(*begin()->getParent()) << " ***\n";
1248 dumpSchedule();
1249 dbgs() << '\n';
1253 /// Build the DAG and setup three register pressure trackers.
1254 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1255 if (!ShouldTrackPressure) {
1256 RPTracker.reset();
1257 RegionCriticalPSets.clear();
1258 buildSchedGraph(AA);
1259 return;
1262 // Initialize the register pressure tracker used by buildSchedGraph.
1263 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1264 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1266 // Account for liveness generate by the region boundary.
1267 if (LiveRegionEnd != RegionEnd)
1268 RPTracker.recede();
1270 // Build the DAG, and compute current register pressure.
1271 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1273 // Initialize top/bottom trackers after computing region pressure.
1274 initRegPressure();
1277 void ScheduleDAGMILive::computeDFSResult() {
1278 if (!DFSResult)
1279 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1280 DFSResult->clear();
1281 ScheduledTrees.clear();
1282 DFSResult->resize(SUnits.size());
1283 DFSResult->compute(SUnits);
1284 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1287 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1288 /// only provides the critical path for single block loops. To handle loops that
1289 /// span blocks, we could use the vreg path latencies provided by
1290 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1291 /// available for use in the scheduler.
1293 /// The cyclic path estimation identifies a def-use pair that crosses the back
1294 /// edge and considers the depth and height of the nodes. For example, consider
1295 /// the following instruction sequence where each instruction has unit latency
1296 /// and defines an epomymous virtual register:
1298 /// a->b(a,c)->c(b)->d(c)->exit
1300 /// The cyclic critical path is a two cycles: b->c->b
1301 /// The acyclic critical path is four cycles: a->b->c->d->exit
1302 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1303 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1304 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1305 /// LiveInDepth = depth(b) = len(a->b) = 1
1307 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1308 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1309 /// CyclicCriticalPath = min(2, 2) = 2
1311 /// This could be relevant to PostRA scheduling, but is currently implemented
1312 /// assuming LiveIntervals.
1313 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1314 // This only applies to single block loop.
1315 if (!BB->isSuccessor(BB))
1316 return 0;
1318 unsigned MaxCyclicLatency = 0;
1319 // Visit each live out vreg def to find def/use pairs that cross iterations.
1320 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1321 unsigned Reg = P.RegUnit;
1322 if (!Register::isVirtualRegister(Reg))
1323 continue;
1324 const LiveInterval &LI = LIS->getInterval(Reg);
1325 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1326 if (!DefVNI)
1327 continue;
1329 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1330 const SUnit *DefSU = getSUnit(DefMI);
1331 if (!DefSU)
1332 continue;
1334 unsigned LiveOutHeight = DefSU->getHeight();
1335 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1336 // Visit all local users of the vreg def.
1337 for (const VReg2SUnit &V2SU
1338 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339 SUnit *SU = V2SU.SU;
1340 if (SU == &ExitSU)
1341 continue;
1343 // Only consider uses of the phi.
1344 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1345 if (!LRQ.valueIn()->isPHIDef())
1346 continue;
1348 // Assume that a path spanning two iterations is a cycle, which could
1349 // overestimate in strange cases. This allows cyclic latency to be
1350 // estimated as the minimum slack of the vreg's depth or height.
1351 unsigned CyclicLatency = 0;
1352 if (LiveOutDepth > SU->getDepth())
1353 CyclicLatency = LiveOutDepth - SU->getDepth();
1355 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1356 if (LiveInHeight > LiveOutHeight) {
1357 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1358 CyclicLatency = LiveInHeight - LiveOutHeight;
1359 } else
1360 CyclicLatency = 0;
1362 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1363 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1364 if (CyclicLatency > MaxCyclicLatency)
1365 MaxCyclicLatency = CyclicLatency;
1368 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1369 return MaxCyclicLatency;
1372 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1373 /// the Top RP tracker in case the region beginning has changed.
1374 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1375 ArrayRef<SUnit*> BotRoots) {
1376 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1377 if (ShouldTrackPressure) {
1378 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1379 TopRPTracker.setPos(CurrentTop);
1383 /// Move an instruction and update register pressure.
1384 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1385 // Move the instruction to its new location in the instruction stream.
1386 MachineInstr *MI = SU->getInstr();
1388 if (IsTopNode) {
1389 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1390 if (&*CurrentTop == MI)
1391 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1392 else {
1393 moveInstruction(MI, CurrentTop);
1394 TopRPTracker.setPos(MI);
1397 if (ShouldTrackPressure) {
1398 // Update top scheduled pressure.
1399 RegisterOperands RegOpers;
1400 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1401 if (ShouldTrackLaneMasks) {
1402 // Adjust liveness and add missing dead+read-undef flags.
1403 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1404 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1405 } else {
1406 // Adjust for missing dead-def flags.
1407 RegOpers.detectDeadDefs(*MI, *LIS);
1410 TopRPTracker.advance(RegOpers);
1411 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1412 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1413 TopRPTracker.getRegSetPressureAtPos(), TRI););
1415 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1417 } else {
1418 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1419 MachineBasicBlock::iterator priorII =
1420 priorNonDebug(CurrentBottom, CurrentTop);
1421 if (&*priorII == MI)
1422 CurrentBottom = priorII;
1423 else {
1424 if (&*CurrentTop == MI) {
1425 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1426 TopRPTracker.setPos(CurrentTop);
1428 moveInstruction(MI, CurrentBottom);
1429 CurrentBottom = MI;
1430 BotRPTracker.setPos(CurrentBottom);
1432 if (ShouldTrackPressure) {
1433 RegisterOperands RegOpers;
1434 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1435 if (ShouldTrackLaneMasks) {
1436 // Adjust liveness and add missing dead+read-undef flags.
1437 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1438 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1439 } else {
1440 // Adjust for missing dead-def flags.
1441 RegOpers.detectDeadDefs(*MI, *LIS);
1444 if (BotRPTracker.getPos() != CurrentBottom)
1445 BotRPTracker.recedeSkipDebugValues();
1446 SmallVector<RegisterMaskPair, 8> LiveUses;
1447 BotRPTracker.recede(RegOpers, &LiveUses);
1448 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1449 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1450 BotRPTracker.getRegSetPressureAtPos(), TRI););
1452 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1453 updatePressureDiffs(LiveUses);
1458 //===----------------------------------------------------------------------===//
1459 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1460 //===----------------------------------------------------------------------===//
1462 namespace {
1464 /// Post-process the DAG to create cluster edges between neighboring
1465 /// loads or between neighboring stores.
1466 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1467 struct MemOpInfo {
1468 SUnit *SU;
1469 const MachineOperand *BaseOp;
1470 int64_t Offset;
1472 MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
1473 : SU(su), BaseOp(Op), Offset(ofs) {}
1475 bool operator<(const MemOpInfo &RHS) const {
1476 if (BaseOp->getType() != RHS.BaseOp->getType())
1477 return BaseOp->getType() < RHS.BaseOp->getType();
1479 if (BaseOp->isReg())
1480 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1481 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1482 RHS.SU->NodeNum);
1483 if (BaseOp->isFI()) {
1484 const MachineFunction &MF =
1485 *BaseOp->getParent()->getParent()->getParent();
1486 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1487 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1488 TargetFrameLowering::StackGrowsDown;
1489 // Can't use tuple comparison here since we might need to use a
1490 // different order when the stack grows down.
1491 if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1492 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1493 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1495 if (Offset != RHS.Offset)
1496 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1498 return SU->NodeNum < RHS.SU->NodeNum;
1501 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1502 "index bases.");
1506 const TargetInstrInfo *TII;
1507 const TargetRegisterInfo *TRI;
1508 bool IsLoad;
1510 public:
1511 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1512 const TargetRegisterInfo *tri, bool IsLoad)
1513 : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1515 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1517 protected:
1518 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1521 class StoreClusterMutation : public BaseMemOpClusterMutation {
1522 public:
1523 StoreClusterMutation(const TargetInstrInfo *tii,
1524 const TargetRegisterInfo *tri)
1525 : BaseMemOpClusterMutation(tii, tri, false) {}
1528 class LoadClusterMutation : public BaseMemOpClusterMutation {
1529 public:
1530 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1531 : BaseMemOpClusterMutation(tii, tri, true) {}
1534 } // end anonymous namespace
1536 namespace llvm {
1538 std::unique_ptr<ScheduleDAGMutation>
1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1540 const TargetRegisterInfo *TRI) {
1541 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1542 : nullptr;
1545 std::unique_ptr<ScheduleDAGMutation>
1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1547 const TargetRegisterInfo *TRI) {
1548 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1549 : nullptr;
1552 } // end namespace llvm
1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1555 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1556 SmallVector<MemOpInfo, 32> MemOpRecords;
1557 for (SUnit *SU : MemOps) {
1558 const MachineOperand *BaseOp;
1559 int64_t Offset;
1560 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1561 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1563 if (MemOpRecords.size() < 2)
1564 return;
1566 llvm::sort(MemOpRecords);
1567 unsigned ClusterLength = 1;
1568 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1569 SUnit *SUa = MemOpRecords[Idx].SU;
1570 SUnit *SUb = MemOpRecords[Idx+1].SU;
1571 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1572 *MemOpRecords[Idx + 1].BaseOp,
1573 ClusterLength) &&
1574 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1575 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1576 << SUb->NodeNum << ")\n");
1577 // Copy successor edges from SUa to SUb. Interleaving computation
1578 // dependent on SUa can prevent load combining due to register reuse.
1579 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1580 // loads should have effectively the same inputs.
1581 for (const SDep &Succ : SUa->Succs) {
1582 if (Succ.getSUnit() == SUb)
1583 continue;
1584 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1585 << ")\n");
1586 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1588 ++ClusterLength;
1589 } else
1590 ClusterLength = 1;
1594 /// Callback from DAG postProcessing to create cluster edges for loads.
1595 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1596 // Map DAG NodeNum to store chain ID.
1597 DenseMap<unsigned, unsigned> StoreChainIDs;
1598 // Map each store chain to a set of dependent MemOps.
1599 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1600 for (SUnit &SU : DAG->SUnits) {
1601 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1602 (!IsLoad && !SU.getInstr()->mayStore()))
1603 continue;
1605 unsigned ChainPredID = DAG->SUnits.size();
1606 for (const SDep &Pred : SU.Preds) {
1607 if (Pred.isCtrl()) {
1608 ChainPredID = Pred.getSUnit()->NodeNum;
1609 break;
1612 // Check if this chain-like pred has been seen
1613 // before. ChainPredID==MaxNodeID at the top of the schedule.
1614 unsigned NumChains = StoreChainDependents.size();
1615 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1616 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1617 if (Result.second)
1618 StoreChainDependents.resize(NumChains + 1);
1619 StoreChainDependents[Result.first->second].push_back(&SU);
1622 // Iterate over the store chains.
1623 for (auto &SCD : StoreChainDependents)
1624 clusterNeighboringMemOps(SCD, DAG);
1627 //===----------------------------------------------------------------------===//
1628 // CopyConstrain - DAG post-processing to encourage copy elimination.
1629 //===----------------------------------------------------------------------===//
1631 namespace {
1633 /// Post-process the DAG to create weak edges from all uses of a copy to
1634 /// the one use that defines the copy's source vreg, most likely an induction
1635 /// variable increment.
1636 class CopyConstrain : public ScheduleDAGMutation {
1637 // Transient state.
1638 SlotIndex RegionBeginIdx;
1640 // RegionEndIdx is the slot index of the last non-debug instruction in the
1641 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1642 SlotIndex RegionEndIdx;
1644 public:
1645 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1647 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1649 protected:
1650 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1653 } // end anonymous namespace
1655 namespace llvm {
1657 std::unique_ptr<ScheduleDAGMutation>
1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1659 const TargetRegisterInfo *TRI) {
1660 return std::make_unique<CopyConstrain>(TII, TRI);
1663 } // end namespace llvm
1665 /// constrainLocalCopy handles two possibilities:
1666 /// 1) Local src:
1667 /// I0: = dst
1668 /// I1: src = ...
1669 /// I2: = dst
1670 /// I3: dst = src (copy)
1671 /// (create pred->succ edges I0->I1, I2->I1)
1673 /// 2) Local copy:
1674 /// I0: dst = src (copy)
1675 /// I1: = dst
1676 /// I2: src = ...
1677 /// I3: = dst
1678 /// (create pred->succ edges I1->I2, I3->I2)
1680 /// Although the MachineScheduler is currently constrained to single blocks,
1681 /// this algorithm should handle extended blocks. An EBB is a set of
1682 /// contiguously numbered blocks such that the previous block in the EBB is
1683 /// always the single predecessor.
1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1685 LiveIntervals *LIS = DAG->getLIS();
1686 MachineInstr *Copy = CopySU->getInstr();
1688 // Check for pure vreg copies.
1689 const MachineOperand &SrcOp = Copy->getOperand(1);
1690 Register SrcReg = SrcOp.getReg();
1691 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1692 return;
1694 const MachineOperand &DstOp = Copy->getOperand(0);
1695 Register DstReg = DstOp.getReg();
1696 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1697 return;
1699 // Check if either the dest or source is local. If it's live across a back
1700 // edge, it's not local. Note that if both vregs are live across the back
1701 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1702 // If both the copy's source and dest are local live intervals, then we
1703 // should treat the dest as the global for the purpose of adding
1704 // constraints. This adds edges from source's other uses to the copy.
1705 unsigned LocalReg = SrcReg;
1706 unsigned GlobalReg = DstReg;
1707 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1709 LocalReg = DstReg;
1710 GlobalReg = SrcReg;
1711 LocalLI = &LIS->getInterval(LocalReg);
1712 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1713 return;
1715 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1717 // Find the global segment after the start of the local LI.
1718 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1719 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1720 // local live range. We could create edges from other global uses to the local
1721 // start, but the coalescer should have already eliminated these cases, so
1722 // don't bother dealing with it.
1723 if (GlobalSegment == GlobalLI->end())
1724 return;
1726 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1727 // returned the next global segment. But if GlobalSegment overlaps with
1728 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1729 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1730 if (GlobalSegment->contains(LocalLI->beginIndex()))
1731 ++GlobalSegment;
1733 if (GlobalSegment == GlobalLI->end())
1734 return;
1736 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1737 if (GlobalSegment != GlobalLI->begin()) {
1738 // Two address defs have no hole.
1739 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1740 GlobalSegment->start)) {
1741 return;
1743 // If the prior global segment may be defined by the same two-address
1744 // instruction that also defines LocalLI, then can't make a hole here.
1745 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1746 LocalLI->beginIndex())) {
1747 return;
1749 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1750 // it would be a disconnected component in the live range.
1751 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1752 "Disconnected LRG within the scheduling region.");
1754 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1755 if (!GlobalDef)
1756 return;
1758 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1759 if (!GlobalSU)
1760 return;
1762 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1763 // constraining the uses of the last local def to precede GlobalDef.
1764 SmallVector<SUnit*,8> LocalUses;
1765 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1766 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1767 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1768 for (const SDep &Succ : LastLocalSU->Succs) {
1769 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1770 continue;
1771 if (Succ.getSUnit() == GlobalSU)
1772 continue;
1773 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1774 return;
1775 LocalUses.push_back(Succ.getSUnit());
1777 // Open the top of the GlobalLI hole by constraining any earlier global uses
1778 // to precede the start of LocalLI.
1779 SmallVector<SUnit*,8> GlobalUses;
1780 MachineInstr *FirstLocalDef =
1781 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1782 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1783 for (const SDep &Pred : GlobalSU->Preds) {
1784 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1785 continue;
1786 if (Pred.getSUnit() == FirstLocalSU)
1787 continue;
1788 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1789 return;
1790 GlobalUses.push_back(Pred.getSUnit());
1792 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1793 // Add the weak edges.
1794 for (SmallVectorImpl<SUnit*>::const_iterator
1795 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1796 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1797 << GlobalSU->NodeNum << ")\n");
1798 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1800 for (SmallVectorImpl<SUnit*>::const_iterator
1801 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1802 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1803 << FirstLocalSU->NodeNum << ")\n");
1804 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1808 /// Callback from DAG postProcessing to create weak edges to encourage
1809 /// copy elimination.
1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1811 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1812 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1814 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1815 if (FirstPos == DAG->end())
1816 return;
1817 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1818 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1819 *priorNonDebug(DAG->end(), DAG->begin()));
1821 for (SUnit &SU : DAG->SUnits) {
1822 if (!SU.getInstr()->isCopy())
1823 continue;
1825 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1829 //===----------------------------------------------------------------------===//
1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1831 // and possibly other custom schedulers.
1832 //===----------------------------------------------------------------------===//
1834 static const unsigned InvalidCycle = ~0U;
1836 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1838 /// Given a Count of resource usage and a Latency value, return true if a
1839 /// SchedBoundary becomes resource limited.
1840 /// If we are checking after scheduling a node, we should return true when
1841 /// we just reach the resource limit.
1842 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1843 unsigned Latency, bool AfterSchedNode) {
1844 int ResCntFactor = (int)(Count - (Latency * LFactor));
1845 if (AfterSchedNode)
1846 return ResCntFactor >= (int)LFactor;
1847 else
1848 return ResCntFactor > (int)LFactor;
1851 void SchedBoundary::reset() {
1852 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1853 // Destroying and reconstructing it is very expensive though. So keep
1854 // invalid, placeholder HazardRecs.
1855 if (HazardRec && HazardRec->isEnabled()) {
1856 delete HazardRec;
1857 HazardRec = nullptr;
1859 Available.clear();
1860 Pending.clear();
1861 CheckPending = false;
1862 CurrCycle = 0;
1863 CurrMOps = 0;
1864 MinReadyCycle = std::numeric_limits<unsigned>::max();
1865 ExpectedLatency = 0;
1866 DependentLatency = 0;
1867 RetiredMOps = 0;
1868 MaxExecutedResCount = 0;
1869 ZoneCritResIdx = 0;
1870 IsResourceLimited = false;
1871 ReservedCycles.clear();
1872 ReservedCyclesIndex.clear();
1873 #ifndef NDEBUG
1874 // Track the maximum number of stall cycles that could arise either from the
1875 // latency of a DAG edge or the number of cycles that a processor resource is
1876 // reserved (SchedBoundary::ReservedCycles).
1877 MaxObservedStall = 0;
1878 #endif
1879 // Reserve a zero-count for invalid CritResIdx.
1880 ExecutedResCounts.resize(1);
1881 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1884 void SchedRemainder::
1885 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1886 reset();
1887 if (!SchedModel->hasInstrSchedModel())
1888 return;
1889 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1890 for (SUnit &SU : DAG->SUnits) {
1891 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1892 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1893 * SchedModel->getMicroOpFactor();
1894 for (TargetSchedModel::ProcResIter
1895 PI = SchedModel->getWriteProcResBegin(SC),
1896 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1897 unsigned PIdx = PI->ProcResourceIdx;
1898 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1899 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1904 void SchedBoundary::
1905 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1906 reset();
1907 DAG = dag;
1908 SchedModel = smodel;
1909 Rem = rem;
1910 if (SchedModel->hasInstrSchedModel()) {
1911 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1912 ReservedCyclesIndex.resize(ResourceCount);
1913 ExecutedResCounts.resize(ResourceCount);
1914 unsigned NumUnits = 0;
1916 for (unsigned i = 0; i < ResourceCount; ++i) {
1917 ReservedCyclesIndex[i] = NumUnits;
1918 NumUnits += SchedModel->getProcResource(i)->NumUnits;
1921 ReservedCycles.resize(NumUnits, InvalidCycle);
1925 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1926 /// these "soft stalls" differently than the hard stall cycles based on CPU
1927 /// resources and computed by checkHazard(). A fully in-order model
1928 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1929 /// available for scheduling until they are ready. However, a weaker in-order
1930 /// model may use this for heuristics. For example, if a processor has in-order
1931 /// behavior when reading certain resources, this may come into play.
1932 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1933 if (!SU->isUnbuffered)
1934 return 0;
1936 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1937 if (ReadyCycle > CurrCycle)
1938 return ReadyCycle - CurrCycle;
1939 return 0;
1942 /// Compute the next cycle at which the given processor resource unit
1943 /// can be scheduled.
1944 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
1945 unsigned Cycles) {
1946 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
1947 // If this resource has never been used, always return cycle zero.
1948 if (NextUnreserved == InvalidCycle)
1949 return 0;
1950 // For bottom-up scheduling add the cycles needed for the current operation.
1951 if (!isTop())
1952 NextUnreserved += Cycles;
1953 return NextUnreserved;
1956 /// Compute the next cycle at which the given processor resource can be
1957 /// scheduled. Returns the next cycle and the index of the processor resource
1958 /// instance in the reserved cycles vector.
1959 std::pair<unsigned, unsigned>
1960 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1961 unsigned MinNextUnreserved = InvalidCycle;
1962 unsigned InstanceIdx = 0;
1963 unsigned StartIndex = ReservedCyclesIndex[PIdx];
1964 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
1965 assert(NumberOfInstances > 0 &&
1966 "Cannot have zero instances of a ProcResource");
1968 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
1969 ++I) {
1970 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
1971 if (MinNextUnreserved > NextUnreserved) {
1972 InstanceIdx = I;
1973 MinNextUnreserved = NextUnreserved;
1976 return std::make_pair(MinNextUnreserved, InstanceIdx);
1979 /// Does this SU have a hazard within the current instruction group.
1981 /// The scheduler supports two modes of hazard recognition. The first is the
1982 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1983 /// supports highly complicated in-order reservation tables
1984 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1986 /// The second is a streamlined mechanism that checks for hazards based on
1987 /// simple counters that the scheduler itself maintains. It explicitly checks
1988 /// for instruction dispatch limitations, including the number of micro-ops that
1989 /// can dispatch per cycle.
1991 /// TODO: Also check whether the SU must start a new group.
1992 bool SchedBoundary::checkHazard(SUnit *SU) {
1993 if (HazardRec->isEnabled()
1994 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1995 return true;
1998 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1999 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2000 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
2001 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2002 return true;
2005 if (CurrMOps > 0 &&
2006 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2007 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2008 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
2009 << (isTop() ? "begin" : "end") << " group\n");
2010 return true;
2013 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2014 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2015 for (const MCWriteProcResEntry &PE :
2016 make_range(SchedModel->getWriteProcResBegin(SC),
2017 SchedModel->getWriteProcResEnd(SC))) {
2018 unsigned ResIdx = PE.ProcResourceIdx;
2019 unsigned Cycles = PE.Cycles;
2020 unsigned NRCycle, InstanceIdx;
2021 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2022 if (NRCycle > CurrCycle) {
2023 #ifndef NDEBUG
2024 MaxObservedStall = std::max(Cycles, MaxObservedStall);
2025 #endif
2026 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
2027 << SchedModel->getResourceName(ResIdx)
2028 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
2029 << "=" << NRCycle << "c\n");
2030 return true;
2034 return false;
2037 // Find the unscheduled node in ReadySUs with the highest latency.
2038 unsigned SchedBoundary::
2039 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2040 SUnit *LateSU = nullptr;
2041 unsigned RemLatency = 0;
2042 for (SUnit *SU : ReadySUs) {
2043 unsigned L = getUnscheduledLatency(SU);
2044 if (L > RemLatency) {
2045 RemLatency = L;
2046 LateSU = SU;
2049 if (LateSU) {
2050 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2051 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2053 return RemLatency;
2056 // Count resources in this zone and the remaining unscheduled
2057 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2058 // resource index, or zero if the zone is issue limited.
2059 unsigned SchedBoundary::
2060 getOtherResourceCount(unsigned &OtherCritIdx) {
2061 OtherCritIdx = 0;
2062 if (!SchedModel->hasInstrSchedModel())
2063 return 0;
2065 unsigned OtherCritCount = Rem->RemIssueCount
2066 + (RetiredMOps * SchedModel->getMicroOpFactor());
2067 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2068 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2069 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2070 PIdx != PEnd; ++PIdx) {
2071 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2072 if (OtherCount > OtherCritCount) {
2073 OtherCritCount = OtherCount;
2074 OtherCritIdx = PIdx;
2077 if (OtherCritIdx) {
2078 LLVM_DEBUG(
2079 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2080 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2081 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2083 return OtherCritCount;
2086 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2087 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2089 #ifndef NDEBUG
2090 // ReadyCycle was been bumped up to the CurrCycle when this node was
2091 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2092 // scheduling, so may now be greater than ReadyCycle.
2093 if (ReadyCycle > CurrCycle)
2094 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2095 #endif
2097 if (ReadyCycle < MinReadyCycle)
2098 MinReadyCycle = ReadyCycle;
2100 // Check for interlocks first. For the purpose of other heuristics, an
2101 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2102 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2103 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2104 Available.size() >= ReadyListLimit)
2105 Pending.push(SU);
2106 else
2107 Available.push(SU);
2110 /// Move the boundary of scheduled code by one cycle.
2111 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2112 if (SchedModel->getMicroOpBufferSize() == 0) {
2113 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2114 "MinReadyCycle uninitialized");
2115 if (MinReadyCycle > NextCycle)
2116 NextCycle = MinReadyCycle;
2118 // Update the current micro-ops, which will issue in the next cycle.
2119 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2120 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2122 // Decrement DependentLatency based on the next cycle.
2123 if ((NextCycle - CurrCycle) > DependentLatency)
2124 DependentLatency = 0;
2125 else
2126 DependentLatency -= (NextCycle - CurrCycle);
2128 if (!HazardRec->isEnabled()) {
2129 // Bypass HazardRec virtual calls.
2130 CurrCycle = NextCycle;
2131 } else {
2132 // Bypass getHazardType calls in case of long latency.
2133 for (; CurrCycle != NextCycle; ++CurrCycle) {
2134 if (isTop())
2135 HazardRec->AdvanceCycle();
2136 else
2137 HazardRec->RecedeCycle();
2140 CheckPending = true;
2141 IsResourceLimited =
2142 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2143 getScheduledLatency(), true);
2145 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2146 << '\n');
2149 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2150 ExecutedResCounts[PIdx] += Count;
2151 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2152 MaxExecutedResCount = ExecutedResCounts[PIdx];
2155 /// Add the given processor resource to this scheduled zone.
2157 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2158 /// during which this resource is consumed.
2160 /// \return the next cycle at which the instruction may execute without
2161 /// oversubscribing resources.
2162 unsigned SchedBoundary::
2163 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2164 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2165 unsigned Count = Factor * Cycles;
2166 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2167 << Cycles << "x" << Factor << "u\n");
2169 // Update Executed resources counts.
2170 incExecutedResources(PIdx, Count);
2171 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2172 Rem->RemainingCounts[PIdx] -= Count;
2174 // Check if this resource exceeds the current critical resource. If so, it
2175 // becomes the critical resource.
2176 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2177 ZoneCritResIdx = PIdx;
2178 LLVM_DEBUG(dbgs() << " *** Critical resource "
2179 << SchedModel->getResourceName(PIdx) << ": "
2180 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2181 << "c\n");
2183 // For reserved resources, record the highest cycle using the resource.
2184 unsigned NextAvailable, InstanceIdx;
2185 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2186 if (NextAvailable > CurrCycle) {
2187 LLVM_DEBUG(dbgs() << " Resource conflict: "
2188 << SchedModel->getResourceName(PIdx)
2189 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
2190 << " reserved until @" << NextAvailable << "\n");
2192 return NextAvailable;
2195 /// Move the boundary of scheduled code by one SUnit.
2196 void SchedBoundary::bumpNode(SUnit *SU) {
2197 // Update the reservation table.
2198 if (HazardRec->isEnabled()) {
2199 if (!isTop() && SU->isCall) {
2200 // Calls are scheduled with their preceding instructions. For bottom-up
2201 // scheduling, clear the pipeline state before emitting.
2202 HazardRec->Reset();
2204 HazardRec->EmitInstruction(SU);
2205 // Scheduling an instruction may have made pending instructions available.
2206 CheckPending = true;
2208 // checkHazard should prevent scheduling multiple instructions per cycle that
2209 // exceed the issue width.
2210 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2211 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2212 assert(
2213 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2214 "Cannot schedule this instruction's MicroOps in the current cycle.");
2216 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2217 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2219 unsigned NextCycle = CurrCycle;
2220 switch (SchedModel->getMicroOpBufferSize()) {
2221 case 0:
2222 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2223 break;
2224 case 1:
2225 if (ReadyCycle > NextCycle) {
2226 NextCycle = ReadyCycle;
2227 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2229 break;
2230 default:
2231 // We don't currently model the OOO reorder buffer, so consider all
2232 // scheduled MOps to be "retired". We do loosely model in-order resource
2233 // latency. If this instruction uses an in-order resource, account for any
2234 // likely stall cycles.
2235 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2236 NextCycle = ReadyCycle;
2237 break;
2239 RetiredMOps += IncMOps;
2241 // Update resource counts and critical resource.
2242 if (SchedModel->hasInstrSchedModel()) {
2243 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2244 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2245 Rem->RemIssueCount -= DecRemIssue;
2246 if (ZoneCritResIdx) {
2247 // Scale scheduled micro-ops for comparing with the critical resource.
2248 unsigned ScaledMOps =
2249 RetiredMOps * SchedModel->getMicroOpFactor();
2251 // If scaled micro-ops are now more than the previous critical resource by
2252 // a full cycle, then micro-ops issue becomes critical.
2253 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2254 >= (int)SchedModel->getLatencyFactor()) {
2255 ZoneCritResIdx = 0;
2256 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2257 << ScaledMOps / SchedModel->getLatencyFactor()
2258 << "c\n");
2261 for (TargetSchedModel::ProcResIter
2262 PI = SchedModel->getWriteProcResBegin(SC),
2263 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2264 unsigned RCycle =
2265 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2266 if (RCycle > NextCycle)
2267 NextCycle = RCycle;
2269 if (SU->hasReservedResource) {
2270 // For reserved resources, record the highest cycle using the resource.
2271 // For top-down scheduling, this is the cycle in which we schedule this
2272 // instruction plus the number of cycles the operations reserves the
2273 // resource. For bottom-up is it simply the instruction's cycle.
2274 for (TargetSchedModel::ProcResIter
2275 PI = SchedModel->getWriteProcResBegin(SC),
2276 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2277 unsigned PIdx = PI->ProcResourceIdx;
2278 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2279 unsigned ReservedUntil, InstanceIdx;
2280 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2281 if (isTop()) {
2282 ReservedCycles[InstanceIdx] =
2283 std::max(ReservedUntil, NextCycle + PI->Cycles);
2284 } else
2285 ReservedCycles[InstanceIdx] = NextCycle;
2290 // Update ExpectedLatency and DependentLatency.
2291 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2292 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2293 if (SU->getDepth() > TopLatency) {
2294 TopLatency = SU->getDepth();
2295 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2296 << SU->NodeNum << ") " << TopLatency << "c\n");
2298 if (SU->getHeight() > BotLatency) {
2299 BotLatency = SU->getHeight();
2300 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2301 << SU->NodeNum << ") " << BotLatency << "c\n");
2303 // If we stall for any reason, bump the cycle.
2304 if (NextCycle > CurrCycle)
2305 bumpCycle(NextCycle);
2306 else
2307 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2308 // resource limited. If a stall occurred, bumpCycle does this.
2309 IsResourceLimited =
2310 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2311 getScheduledLatency(), true);
2313 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2314 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2315 // one cycle. Since we commonly reach the max MOps here, opportunistically
2316 // bump the cycle to avoid uselessly checking everything in the readyQ.
2317 CurrMOps += IncMOps;
2319 // Bump the cycle count for issue group constraints.
2320 // This must be done after NextCycle has been adjust for all other stalls.
2321 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2322 // currCycle to X.
2323 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2324 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2325 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2326 << " group\n");
2327 bumpCycle(++NextCycle);
2330 while (CurrMOps >= SchedModel->getIssueWidth()) {
2331 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2332 << CurrCycle << '\n');
2333 bumpCycle(++NextCycle);
2335 LLVM_DEBUG(dumpScheduledState());
2338 /// Release pending ready nodes in to the available queue. This makes them
2339 /// visible to heuristics.
2340 void SchedBoundary::releasePending() {
2341 // If the available queue is empty, it is safe to reset MinReadyCycle.
2342 if (Available.empty())
2343 MinReadyCycle = std::numeric_limits<unsigned>::max();
2345 // Check to see if any of the pending instructions are ready to issue. If
2346 // so, add them to the available queue.
2347 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2348 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2349 SUnit *SU = *(Pending.begin()+i);
2350 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2352 if (ReadyCycle < MinReadyCycle)
2353 MinReadyCycle = ReadyCycle;
2355 if (!IsBuffered && ReadyCycle > CurrCycle)
2356 continue;
2358 if (checkHazard(SU))
2359 continue;
2361 if (Available.size() >= ReadyListLimit)
2362 break;
2364 Available.push(SU);
2365 Pending.remove(Pending.begin()+i);
2366 --i; --e;
2368 CheckPending = false;
2371 /// Remove SU from the ready set for this boundary.
2372 void SchedBoundary::removeReady(SUnit *SU) {
2373 if (Available.isInQueue(SU))
2374 Available.remove(Available.find(SU));
2375 else {
2376 assert(Pending.isInQueue(SU) && "bad ready count");
2377 Pending.remove(Pending.find(SU));
2381 /// If this queue only has one ready candidate, return it. As a side effect,
2382 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2383 /// one node is ready. If multiple instructions are ready, return NULL.
2384 SUnit *SchedBoundary::pickOnlyChoice() {
2385 if (CheckPending)
2386 releasePending();
2388 if (CurrMOps > 0) {
2389 // Defer any ready instrs that now have a hazard.
2390 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2391 if (checkHazard(*I)) {
2392 Pending.push(*I);
2393 I = Available.remove(I);
2394 continue;
2396 ++I;
2399 for (unsigned i = 0; Available.empty(); ++i) {
2400 // FIXME: Re-enable assert once PR20057 is resolved.
2401 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2402 // "permanent hazard");
2403 (void)i;
2404 bumpCycle(CurrCycle + 1);
2405 releasePending();
2408 LLVM_DEBUG(Pending.dump());
2409 LLVM_DEBUG(Available.dump());
2411 if (Available.size() == 1)
2412 return *Available.begin();
2413 return nullptr;
2416 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2417 // This is useful information to dump after bumpNode.
2418 // Note that the Queue contents are more useful before pickNodeFromQueue.
2419 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2420 unsigned ResFactor;
2421 unsigned ResCount;
2422 if (ZoneCritResIdx) {
2423 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2424 ResCount = getResourceCount(ZoneCritResIdx);
2425 } else {
2426 ResFactor = SchedModel->getMicroOpFactor();
2427 ResCount = RetiredMOps * ResFactor;
2429 unsigned LFactor = SchedModel->getLatencyFactor();
2430 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2431 << " Retired: " << RetiredMOps;
2432 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2433 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2434 << ResCount / ResFactor << " "
2435 << SchedModel->getResourceName(ZoneCritResIdx)
2436 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2437 << (IsResourceLimited ? " - Resource" : " - Latency")
2438 << " limited.\n";
2440 #endif
2442 //===----------------------------------------------------------------------===//
2443 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2444 //===----------------------------------------------------------------------===//
2446 void GenericSchedulerBase::SchedCandidate::
2447 initResourceDelta(const ScheduleDAGMI *DAG,
2448 const TargetSchedModel *SchedModel) {
2449 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2450 return;
2452 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2453 for (TargetSchedModel::ProcResIter
2454 PI = SchedModel->getWriteProcResBegin(SC),
2455 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2456 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2457 ResDelta.CritResources += PI->Cycles;
2458 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2459 ResDelta.DemandedResources += PI->Cycles;
2463 /// Compute remaining latency. We need this both to determine whether the
2464 /// overall schedule has become latency-limited and whether the instructions
2465 /// outside this zone are resource or latency limited.
2467 /// The "dependent" latency is updated incrementally during scheduling as the
2468 /// max height/depth of scheduled nodes minus the cycles since it was
2469 /// scheduled:
2470 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2472 /// The "independent" latency is the max ready queue depth:
2473 /// ILat = max N.depth for N in Available|Pending
2475 /// RemainingLatency is the greater of independent and dependent latency.
2477 /// These computations are expensive, especially in DAGs with many edges, so
2478 /// only do them if necessary.
2479 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2480 unsigned RemLatency = CurrZone.getDependentLatency();
2481 RemLatency = std::max(RemLatency,
2482 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2483 RemLatency = std::max(RemLatency,
2484 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2485 return RemLatency;
2488 /// Returns true if the current cycle plus remaning latency is greater than
2489 /// the critical path in the scheduling region.
2490 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2491 SchedBoundary &CurrZone,
2492 bool ComputeRemLatency,
2493 unsigned &RemLatency) const {
2494 // The current cycle is already greater than the critical path, so we are
2495 // already latency limited and don't need to compute the remaining latency.
2496 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2497 return true;
2499 // If we haven't scheduled anything yet, then we aren't latency limited.
2500 if (CurrZone.getCurrCycle() == 0)
2501 return false;
2503 if (ComputeRemLatency)
2504 RemLatency = computeRemLatency(CurrZone);
2506 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2509 /// Set the CandPolicy given a scheduling zone given the current resources and
2510 /// latencies inside and outside the zone.
2511 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2512 SchedBoundary &CurrZone,
2513 SchedBoundary *OtherZone) {
2514 // Apply preemptive heuristics based on the total latency and resources
2515 // inside and outside this zone. Potential stalls should be considered before
2516 // following this policy.
2518 // Compute the critical resource outside the zone.
2519 unsigned OtherCritIdx = 0;
2520 unsigned OtherCount =
2521 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2523 bool OtherResLimited = false;
2524 unsigned RemLatency = 0;
2525 bool RemLatencyComputed = false;
2526 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2527 RemLatency = computeRemLatency(CurrZone);
2528 RemLatencyComputed = true;
2529 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2530 OtherCount, RemLatency, false);
2533 // Schedule aggressively for latency in PostRA mode. We don't check for
2534 // acyclic latency during PostRA, and highly out-of-order processors will
2535 // skip PostRA scheduling.
2536 if (!OtherResLimited &&
2537 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2538 RemLatency))) {
2539 Policy.ReduceLatency |= true;
2540 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
2541 << " RemainingLatency " << RemLatency << " + "
2542 << CurrZone.getCurrCycle() << "c > CritPath "
2543 << Rem.CriticalPath << "\n");
2545 // If the same resource is limiting inside and outside the zone, do nothing.
2546 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2547 return;
2549 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2550 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2551 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2552 } if (OtherResLimited) dbgs()
2553 << " RemainingLimit: "
2554 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2555 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2556 << " Latency limited both directions.\n");
2558 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2559 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2561 if (OtherResLimited)
2562 Policy.DemandResIdx = OtherCritIdx;
2565 #ifndef NDEBUG
2566 const char *GenericSchedulerBase::getReasonStr(
2567 GenericSchedulerBase::CandReason Reason) {
2568 switch (Reason) {
2569 case NoCand: return "NOCAND ";
2570 case Only1: return "ONLY1 ";
2571 case PhysReg: return "PHYS-REG ";
2572 case RegExcess: return "REG-EXCESS";
2573 case RegCritical: return "REG-CRIT ";
2574 case Stall: return "STALL ";
2575 case Cluster: return "CLUSTER ";
2576 case Weak: return "WEAK ";
2577 case RegMax: return "REG-MAX ";
2578 case ResourceReduce: return "RES-REDUCE";
2579 case ResourceDemand: return "RES-DEMAND";
2580 case TopDepthReduce: return "TOP-DEPTH ";
2581 case TopPathReduce: return "TOP-PATH ";
2582 case BotHeightReduce:return "BOT-HEIGHT";
2583 case BotPathReduce: return "BOT-PATH ";
2584 case NextDefUse: return "DEF-USE ";
2585 case NodeOrder: return "ORDER ";
2587 llvm_unreachable("Unknown reason!");
2590 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2591 PressureChange P;
2592 unsigned ResIdx = 0;
2593 unsigned Latency = 0;
2594 switch (Cand.Reason) {
2595 default:
2596 break;
2597 case RegExcess:
2598 P = Cand.RPDelta.Excess;
2599 break;
2600 case RegCritical:
2601 P = Cand.RPDelta.CriticalMax;
2602 break;
2603 case RegMax:
2604 P = Cand.RPDelta.CurrentMax;
2605 break;
2606 case ResourceReduce:
2607 ResIdx = Cand.Policy.ReduceResIdx;
2608 break;
2609 case ResourceDemand:
2610 ResIdx = Cand.Policy.DemandResIdx;
2611 break;
2612 case TopDepthReduce:
2613 Latency = Cand.SU->getDepth();
2614 break;
2615 case TopPathReduce:
2616 Latency = Cand.SU->getHeight();
2617 break;
2618 case BotHeightReduce:
2619 Latency = Cand.SU->getHeight();
2620 break;
2621 case BotPathReduce:
2622 Latency = Cand.SU->getDepth();
2623 break;
2625 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2626 if (P.isValid())
2627 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2628 << ":" << P.getUnitInc() << " ";
2629 else
2630 dbgs() << " ";
2631 if (ResIdx)
2632 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2633 else
2634 dbgs() << " ";
2635 if (Latency)
2636 dbgs() << " " << Latency << " cycles ";
2637 else
2638 dbgs() << " ";
2639 dbgs() << '\n';
2641 #endif
2643 namespace llvm {
2644 /// Return true if this heuristic determines order.
2645 bool tryLess(int TryVal, int CandVal,
2646 GenericSchedulerBase::SchedCandidate &TryCand,
2647 GenericSchedulerBase::SchedCandidate &Cand,
2648 GenericSchedulerBase::CandReason Reason) {
2649 if (TryVal < CandVal) {
2650 TryCand.Reason = Reason;
2651 return true;
2653 if (TryVal > CandVal) {
2654 if (Cand.Reason > Reason)
2655 Cand.Reason = Reason;
2656 return true;
2658 return false;
2661 bool tryGreater(int TryVal, int CandVal,
2662 GenericSchedulerBase::SchedCandidate &TryCand,
2663 GenericSchedulerBase::SchedCandidate &Cand,
2664 GenericSchedulerBase::CandReason Reason) {
2665 if (TryVal > CandVal) {
2666 TryCand.Reason = Reason;
2667 return true;
2669 if (TryVal < CandVal) {
2670 if (Cand.Reason > Reason)
2671 Cand.Reason = Reason;
2672 return true;
2674 return false;
2677 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2678 GenericSchedulerBase::SchedCandidate &Cand,
2679 SchedBoundary &Zone) {
2680 if (Zone.isTop()) {
2681 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2682 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2683 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2684 return true;
2686 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2687 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2688 return true;
2689 } else {
2690 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2691 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2692 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2693 return true;
2695 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2696 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2697 return true;
2699 return false;
2701 } // end namespace llvm
2703 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2704 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2705 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2708 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2709 tracePick(Cand.Reason, Cand.AtTop);
2712 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2713 assert(dag->hasVRegLiveness() &&
2714 "(PreRA)GenericScheduler needs vreg liveness");
2715 DAG = static_cast<ScheduleDAGMILive*>(dag);
2716 SchedModel = DAG->getSchedModel();
2717 TRI = DAG->TRI;
2719 Rem.init(DAG, SchedModel);
2720 Top.init(DAG, SchedModel, &Rem);
2721 Bot.init(DAG, SchedModel, &Rem);
2723 // Initialize resource counts.
2725 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2726 // are disabled, then these HazardRecs will be disabled.
2727 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2728 if (!Top.HazardRec) {
2729 Top.HazardRec =
2730 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2731 Itin, DAG);
2733 if (!Bot.HazardRec) {
2734 Bot.HazardRec =
2735 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2736 Itin, DAG);
2738 TopCand.SU = nullptr;
2739 BotCand.SU = nullptr;
2742 /// Initialize the per-region scheduling policy.
2743 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2744 MachineBasicBlock::iterator End,
2745 unsigned NumRegionInstrs) {
2746 const MachineFunction &MF = *Begin->getMF();
2747 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2749 // Avoid setting up the register pressure tracker for small regions to save
2750 // compile time. As a rough heuristic, only track pressure when the number of
2751 // schedulable instructions exceeds half the integer register file.
2752 RegionPolicy.ShouldTrackPressure = true;
2753 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2754 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2755 if (TLI->isTypeLegal(LegalIntVT)) {
2756 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2757 TLI->getRegClassFor(LegalIntVT));
2758 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2762 // For generic targets, we default to bottom-up, because it's simpler and more
2763 // compile-time optimizations have been implemented in that direction.
2764 RegionPolicy.OnlyBottomUp = true;
2766 // Allow the subtarget to override default policy.
2767 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2769 // After subtarget overrides, apply command line options.
2770 if (!EnableRegPressure) {
2771 RegionPolicy.ShouldTrackPressure = false;
2772 RegionPolicy.ShouldTrackLaneMasks = false;
2775 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2776 // e.g. -misched-bottomup=false allows scheduling in both directions.
2777 assert((!ForceTopDown || !ForceBottomUp) &&
2778 "-misched-topdown incompatible with -misched-bottomup");
2779 if (ForceBottomUp.getNumOccurrences() > 0) {
2780 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2781 if (RegionPolicy.OnlyBottomUp)
2782 RegionPolicy.OnlyTopDown = false;
2784 if (ForceTopDown.getNumOccurrences() > 0) {
2785 RegionPolicy.OnlyTopDown = ForceTopDown;
2786 if (RegionPolicy.OnlyTopDown)
2787 RegionPolicy.OnlyBottomUp = false;
2791 void GenericScheduler::dumpPolicy() const {
2792 // Cannot completely remove virtual function even in release mode.
2793 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2794 dbgs() << "GenericScheduler RegionPolicy: "
2795 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2796 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2797 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2798 << "\n";
2799 #endif
2802 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2803 /// critical path by more cycles than it takes to drain the instruction buffer.
2804 /// We estimate an upper bounds on in-flight instructions as:
2806 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2807 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2808 /// InFlightResources = InFlightIterations * LoopResources
2810 /// TODO: Check execution resources in addition to IssueCount.
2811 void GenericScheduler::checkAcyclicLatency() {
2812 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2813 return;
2815 // Scaled number of cycles per loop iteration.
2816 unsigned IterCount =
2817 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2818 Rem.RemIssueCount);
2819 // Scaled acyclic critical path.
2820 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2821 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2822 unsigned InFlightCount =
2823 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2824 unsigned BufferLimit =
2825 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2827 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2829 LLVM_DEBUG(
2830 dbgs() << "IssueCycles="
2831 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2832 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2833 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2834 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2835 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2836 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
2839 void GenericScheduler::registerRoots() {
2840 Rem.CriticalPath = DAG->ExitSU.getDepth();
2842 // Some roots may not feed into ExitSU. Check all of them in case.
2843 for (const SUnit *SU : Bot.Available) {
2844 if (SU->getDepth() > Rem.CriticalPath)
2845 Rem.CriticalPath = SU->getDepth();
2847 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2848 if (DumpCriticalPathLength) {
2849 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2852 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2853 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2854 checkAcyclicLatency();
2858 namespace llvm {
2859 bool tryPressure(const PressureChange &TryP,
2860 const PressureChange &CandP,
2861 GenericSchedulerBase::SchedCandidate &TryCand,
2862 GenericSchedulerBase::SchedCandidate &Cand,
2863 GenericSchedulerBase::CandReason Reason,
2864 const TargetRegisterInfo *TRI,
2865 const MachineFunction &MF) {
2866 // If one candidate decreases and the other increases, go with it.
2867 // Invalid candidates have UnitInc==0.
2868 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2869 Reason)) {
2870 return true;
2872 // Do not compare the magnitude of pressure changes between top and bottom
2873 // boundary.
2874 if (Cand.AtTop != TryCand.AtTop)
2875 return false;
2877 // If both candidates affect the same set in the same boundary, go with the
2878 // smallest increase.
2879 unsigned TryPSet = TryP.getPSetOrMax();
2880 unsigned CandPSet = CandP.getPSetOrMax();
2881 if (TryPSet == CandPSet) {
2882 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2883 Reason);
2886 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2887 std::numeric_limits<int>::max();
2889 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2890 std::numeric_limits<int>::max();
2892 // If the candidates are decreasing pressure, reverse priority.
2893 if (TryP.getUnitInc() < 0)
2894 std::swap(TryRank, CandRank);
2895 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2898 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2899 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2902 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2903 /// their physreg def/use.
2905 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2906 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2907 /// with the operation that produces or consumes the physreg. We'll do this when
2908 /// regalloc has support for parallel copies.
2909 int biasPhysReg(const SUnit *SU, bool isTop) {
2910 const MachineInstr *MI = SU->getInstr();
2912 if (MI->isCopy()) {
2913 unsigned ScheduledOper = isTop ? 1 : 0;
2914 unsigned UnscheduledOper = isTop ? 0 : 1;
2915 // If we have already scheduled the physreg produce/consumer, immediately
2916 // schedule the copy.
2917 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
2918 return 1;
2919 // If the physreg is at the boundary, defer it. Otherwise schedule it
2920 // immediately to free the dependent. We can hoist the copy later.
2921 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2922 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
2923 return AtBoundary ? -1 : 1;
2926 if (MI->isMoveImmediate()) {
2927 // If we have a move immediate and all successors have been assigned, bias
2928 // towards scheduling this later. Make sure all register defs are to
2929 // physical registers.
2930 bool DoBias = true;
2931 for (const MachineOperand &Op : MI->defs()) {
2932 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
2933 DoBias = false;
2934 break;
2938 if (DoBias)
2939 return isTop ? -1 : 1;
2942 return 0;
2944 } // end namespace llvm
2946 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2947 bool AtTop,
2948 const RegPressureTracker &RPTracker,
2949 RegPressureTracker &TempTracker) {
2950 Cand.SU = SU;
2951 Cand.AtTop = AtTop;
2952 if (DAG->isTrackingPressure()) {
2953 if (AtTop) {
2954 TempTracker.getMaxDownwardPressureDelta(
2955 Cand.SU->getInstr(),
2956 Cand.RPDelta,
2957 DAG->getRegionCriticalPSets(),
2958 DAG->getRegPressure().MaxSetPressure);
2959 } else {
2960 if (VerifyScheduling) {
2961 TempTracker.getMaxUpwardPressureDelta(
2962 Cand.SU->getInstr(),
2963 &DAG->getPressureDiff(Cand.SU),
2964 Cand.RPDelta,
2965 DAG->getRegionCriticalPSets(),
2966 DAG->getRegPressure().MaxSetPressure);
2967 } else {
2968 RPTracker.getUpwardPressureDelta(
2969 Cand.SU->getInstr(),
2970 DAG->getPressureDiff(Cand.SU),
2971 Cand.RPDelta,
2972 DAG->getRegionCriticalPSets(),
2973 DAG->getRegPressure().MaxSetPressure);
2977 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2978 << " Try SU(" << Cand.SU->NodeNum << ") "
2979 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2980 << Cand.RPDelta.Excess.getUnitInc() << "\n");
2983 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2984 /// hierarchical. This may be more efficient than a graduated cost model because
2985 /// we don't need to evaluate all aspects of the model for each node in the
2986 /// queue. But it's really done to make the heuristics easier to debug and
2987 /// statistically analyze.
2989 /// \param Cand provides the policy and current best candidate.
2990 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2991 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2992 // if Cand is from a different zone than TryCand.
2993 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2994 SchedCandidate &TryCand,
2995 SchedBoundary *Zone) const {
2996 // Initialize the candidate if needed.
2997 if (!Cand.isValid()) {
2998 TryCand.Reason = NodeOrder;
2999 return;
3002 // Bias PhysReg Defs and copies to their uses and defined respectively.
3003 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3004 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3005 return;
3007 // Avoid exceeding the target's limit.
3008 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3009 Cand.RPDelta.Excess,
3010 TryCand, Cand, RegExcess, TRI,
3011 DAG->MF))
3012 return;
3014 // Avoid increasing the max critical pressure in the scheduled region.
3015 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3016 Cand.RPDelta.CriticalMax,
3017 TryCand, Cand, RegCritical, TRI,
3018 DAG->MF))
3019 return;
3021 // We only compare a subset of features when comparing nodes between
3022 // Top and Bottom boundary. Some properties are simply incomparable, in many
3023 // other instances we should only override the other boundary if something
3024 // is a clear good pick on one boundary. Skip heuristics that are more
3025 // "tie-breaking" in nature.
3026 bool SameBoundary = Zone != nullptr;
3027 if (SameBoundary) {
3028 // For loops that are acyclic path limited, aggressively schedule for
3029 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3030 // heuristics to take precedence.
3031 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3032 tryLatency(TryCand, Cand, *Zone))
3033 return;
3035 // Prioritize instructions that read unbuffered resources by stall cycles.
3036 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3037 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3038 return;
3041 // Keep clustered nodes together to encourage downstream peephole
3042 // optimizations which may reduce resource requirements.
3044 // This is a best effort to set things up for a post-RA pass. Optimizations
3045 // like generating loads of multiple registers should ideally be done within
3046 // the scheduler pass by combining the loads during DAG postprocessing.
3047 const SUnit *CandNextClusterSU =
3048 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3049 const SUnit *TryCandNextClusterSU =
3050 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3051 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3052 Cand.SU == CandNextClusterSU,
3053 TryCand, Cand, Cluster))
3054 return;
3056 if (SameBoundary) {
3057 // Weak edges are for clustering and other constraints.
3058 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3059 getWeakLeft(Cand.SU, Cand.AtTop),
3060 TryCand, Cand, Weak))
3061 return;
3064 // Avoid increasing the max pressure of the entire region.
3065 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3066 Cand.RPDelta.CurrentMax,
3067 TryCand, Cand, RegMax, TRI,
3068 DAG->MF))
3069 return;
3071 if (SameBoundary) {
3072 // Avoid critical resource consumption and balance the schedule.
3073 TryCand.initResourceDelta(DAG, SchedModel);
3074 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3075 TryCand, Cand, ResourceReduce))
3076 return;
3077 if (tryGreater(TryCand.ResDelta.DemandedResources,
3078 Cand.ResDelta.DemandedResources,
3079 TryCand, Cand, ResourceDemand))
3080 return;
3082 // Avoid serializing long latency dependence chains.
3083 // For acyclic path limited loops, latency was already checked above.
3084 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3085 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3086 return;
3088 // Fall through to original instruction order.
3089 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3090 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3091 TryCand.Reason = NodeOrder;
3096 /// Pick the best candidate from the queue.
3098 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3099 /// DAG building. To adjust for the current scheduling location we need to
3100 /// maintain the number of vreg uses remaining to be top-scheduled.
3101 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3102 const CandPolicy &ZonePolicy,
3103 const RegPressureTracker &RPTracker,
3104 SchedCandidate &Cand) {
3105 // getMaxPressureDelta temporarily modifies the tracker.
3106 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3108 ReadyQueue &Q = Zone.Available;
3109 for (SUnit *SU : Q) {
3111 SchedCandidate TryCand(ZonePolicy);
3112 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3113 // Pass SchedBoundary only when comparing nodes from the same boundary.
3114 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3115 tryCandidate(Cand, TryCand, ZoneArg);
3116 if (TryCand.Reason != NoCand) {
3117 // Initialize resource delta if needed in case future heuristics query it.
3118 if (TryCand.ResDelta == SchedResourceDelta())
3119 TryCand.initResourceDelta(DAG, SchedModel);
3120 Cand.setBest(TryCand);
3121 LLVM_DEBUG(traceCandidate(Cand));
3126 /// Pick the best candidate node from either the top or bottom queue.
3127 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3128 // Schedule as far as possible in the direction of no choice. This is most
3129 // efficient, but also provides the best heuristics for CriticalPSets.
3130 if (SUnit *SU = Bot.pickOnlyChoice()) {
3131 IsTopNode = false;
3132 tracePick(Only1, false);
3133 return SU;
3135 if (SUnit *SU = Top.pickOnlyChoice()) {
3136 IsTopNode = true;
3137 tracePick(Only1, true);
3138 return SU;
3140 // Set the bottom-up policy based on the state of the current bottom zone and
3141 // the instructions outside the zone, including the top zone.
3142 CandPolicy BotPolicy;
3143 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3144 // Set the top-down policy based on the state of the current top zone and
3145 // the instructions outside the zone, including the bottom zone.
3146 CandPolicy TopPolicy;
3147 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3149 // See if BotCand is still valid (because we previously scheduled from Top).
3150 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3151 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3152 BotCand.Policy != BotPolicy) {
3153 BotCand.reset(CandPolicy());
3154 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3155 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3156 } else {
3157 LLVM_DEBUG(traceCandidate(BotCand));
3158 #ifndef NDEBUG
3159 if (VerifyScheduling) {
3160 SchedCandidate TCand;
3161 TCand.reset(CandPolicy());
3162 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3163 assert(TCand.SU == BotCand.SU &&
3164 "Last pick result should correspond to re-picking right now");
3166 #endif
3169 // Check if the top Q has a better candidate.
3170 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3171 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3172 TopCand.Policy != TopPolicy) {
3173 TopCand.reset(CandPolicy());
3174 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3175 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3176 } else {
3177 LLVM_DEBUG(traceCandidate(TopCand));
3178 #ifndef NDEBUG
3179 if (VerifyScheduling) {
3180 SchedCandidate TCand;
3181 TCand.reset(CandPolicy());
3182 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3183 assert(TCand.SU == TopCand.SU &&
3184 "Last pick result should correspond to re-picking right now");
3186 #endif
3189 // Pick best from BotCand and TopCand.
3190 assert(BotCand.isValid());
3191 assert(TopCand.isValid());
3192 SchedCandidate Cand = BotCand;
3193 TopCand.Reason = NoCand;
3194 tryCandidate(Cand, TopCand, nullptr);
3195 if (TopCand.Reason != NoCand) {
3196 Cand.setBest(TopCand);
3197 LLVM_DEBUG(traceCandidate(Cand));
3200 IsTopNode = Cand.AtTop;
3201 tracePick(Cand);
3202 return Cand.SU;
3205 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3206 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3207 if (DAG->top() == DAG->bottom()) {
3208 assert(Top.Available.empty() && Top.Pending.empty() &&
3209 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3210 return nullptr;
3212 SUnit *SU;
3213 do {
3214 if (RegionPolicy.OnlyTopDown) {
3215 SU = Top.pickOnlyChoice();
3216 if (!SU) {
3217 CandPolicy NoPolicy;
3218 TopCand.reset(NoPolicy);
3219 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3220 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3221 tracePick(TopCand);
3222 SU = TopCand.SU;
3224 IsTopNode = true;
3225 } else if (RegionPolicy.OnlyBottomUp) {
3226 SU = Bot.pickOnlyChoice();
3227 if (!SU) {
3228 CandPolicy NoPolicy;
3229 BotCand.reset(NoPolicy);
3230 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3231 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3232 tracePick(BotCand);
3233 SU = BotCand.SU;
3235 IsTopNode = false;
3236 } else {
3237 SU = pickNodeBidirectional(IsTopNode);
3239 } while (SU->isScheduled);
3241 if (SU->isTopReady())
3242 Top.removeReady(SU);
3243 if (SU->isBottomReady())
3244 Bot.removeReady(SU);
3246 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3247 << *SU->getInstr());
3248 return SU;
3251 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3252 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3253 if (!isTop)
3254 ++InsertPos;
3255 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3257 // Find already scheduled copies with a single physreg dependence and move
3258 // them just above the scheduled instruction.
3259 for (SDep &Dep : Deps) {
3260 if (Dep.getKind() != SDep::Data ||
3261 !Register::isPhysicalRegister(Dep.getReg()))
3262 continue;
3263 SUnit *DepSU = Dep.getSUnit();
3264 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3265 continue;
3266 MachineInstr *Copy = DepSU->getInstr();
3267 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3268 continue;
3269 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3270 DAG->dumpNode(*Dep.getSUnit()));
3271 DAG->moveInstruction(Copy, InsertPos);
3275 /// Update the scheduler's state after scheduling a node. This is the same node
3276 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3277 /// update it's state based on the current cycle before MachineSchedStrategy
3278 /// does.
3280 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3281 /// them here. See comments in biasPhysReg.
3282 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3283 if (IsTopNode) {
3284 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3285 Top.bumpNode(SU);
3286 if (SU->hasPhysRegUses)
3287 reschedulePhysReg(SU, true);
3288 } else {
3289 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3290 Bot.bumpNode(SU);
3291 if (SU->hasPhysRegDefs)
3292 reschedulePhysReg(SU, false);
3296 /// Create the standard converging machine scheduler. This will be used as the
3297 /// default scheduler if the target does not set a default.
3298 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3299 ScheduleDAGMILive *DAG =
3300 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3301 // Register DAG post-processors.
3303 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3304 // data and pass it to later mutations. Have a single mutation that gathers
3305 // the interesting nodes in one pass.
3306 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3307 return DAG;
3310 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3311 return createGenericSchedLive(C);
3314 static MachineSchedRegistry
3315 GenericSchedRegistry("converge", "Standard converging scheduler.",
3316 createConveringSched);
3318 //===----------------------------------------------------------------------===//
3319 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3320 //===----------------------------------------------------------------------===//
3322 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3323 DAG = Dag;
3324 SchedModel = DAG->getSchedModel();
3325 TRI = DAG->TRI;
3327 Rem.init(DAG, SchedModel);
3328 Top.init(DAG, SchedModel, &Rem);
3329 BotRoots.clear();
3331 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3332 // or are disabled, then these HazardRecs will be disabled.
3333 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3334 if (!Top.HazardRec) {
3335 Top.HazardRec =
3336 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3337 Itin, DAG);
3341 void PostGenericScheduler::registerRoots() {
3342 Rem.CriticalPath = DAG->ExitSU.getDepth();
3344 // Some roots may not feed into ExitSU. Check all of them in case.
3345 for (const SUnit *SU : BotRoots) {
3346 if (SU->getDepth() > Rem.CriticalPath)
3347 Rem.CriticalPath = SU->getDepth();
3349 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3350 if (DumpCriticalPathLength) {
3351 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3355 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3357 /// \param Cand provides the policy and current best candidate.
3358 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3359 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3360 SchedCandidate &TryCand) {
3361 // Initialize the candidate if needed.
3362 if (!Cand.isValid()) {
3363 TryCand.Reason = NodeOrder;
3364 return;
3367 // Prioritize instructions that read unbuffered resources by stall cycles.
3368 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3369 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3370 return;
3372 // Keep clustered nodes together.
3373 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3374 Cand.SU == DAG->getNextClusterSucc(),
3375 TryCand, Cand, Cluster))
3376 return;
3378 // Avoid critical resource consumption and balance the schedule.
3379 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3380 TryCand, Cand, ResourceReduce))
3381 return;
3382 if (tryGreater(TryCand.ResDelta.DemandedResources,
3383 Cand.ResDelta.DemandedResources,
3384 TryCand, Cand, ResourceDemand))
3385 return;
3387 // Avoid serializing long latency dependence chains.
3388 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3389 return;
3392 // Fall through to original instruction order.
3393 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3394 TryCand.Reason = NodeOrder;
3397 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3398 ReadyQueue &Q = Top.Available;
3399 for (SUnit *SU : Q) {
3400 SchedCandidate TryCand(Cand.Policy);
3401 TryCand.SU = SU;
3402 TryCand.AtTop = true;
3403 TryCand.initResourceDelta(DAG, SchedModel);
3404 tryCandidate(Cand, TryCand);
3405 if (TryCand.Reason != NoCand) {
3406 Cand.setBest(TryCand);
3407 LLVM_DEBUG(traceCandidate(Cand));
3412 /// Pick the next node to schedule.
3413 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3414 if (DAG->top() == DAG->bottom()) {
3415 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3416 return nullptr;
3418 SUnit *SU;
3419 do {
3420 SU = Top.pickOnlyChoice();
3421 if (SU) {
3422 tracePick(Only1, true);
3423 } else {
3424 CandPolicy NoPolicy;
3425 SchedCandidate TopCand(NoPolicy);
3426 // Set the top-down policy based on the state of the current top zone and
3427 // the instructions outside the zone, including the bottom zone.
3428 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3429 pickNodeFromQueue(TopCand);
3430 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3431 tracePick(TopCand);
3432 SU = TopCand.SU;
3434 } while (SU->isScheduled);
3436 IsTopNode = true;
3437 Top.removeReady(SU);
3439 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3440 << *SU->getInstr());
3441 return SU;
3444 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3445 /// scheduled/remaining flags in the DAG nodes.
3446 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3447 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3448 Top.bumpNode(SU);
3451 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3452 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3453 /*RemoveKillFlags=*/true);
3456 //===----------------------------------------------------------------------===//
3457 // ILP Scheduler. Currently for experimental analysis of heuristics.
3458 //===----------------------------------------------------------------------===//
3460 namespace {
3462 /// Order nodes by the ILP metric.
3463 struct ILPOrder {
3464 const SchedDFSResult *DFSResult = nullptr;
3465 const BitVector *ScheduledTrees = nullptr;
3466 bool MaximizeILP;
3468 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3470 /// Apply a less-than relation on node priority.
3472 /// (Return true if A comes after B in the Q.)
3473 bool operator()(const SUnit *A, const SUnit *B) const {
3474 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3475 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3476 if (SchedTreeA != SchedTreeB) {
3477 // Unscheduled trees have lower priority.
3478 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3479 return ScheduledTrees->test(SchedTreeB);
3481 // Trees with shallower connections have have lower priority.
3482 if (DFSResult->getSubtreeLevel(SchedTreeA)
3483 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3484 return DFSResult->getSubtreeLevel(SchedTreeA)
3485 < DFSResult->getSubtreeLevel(SchedTreeB);
3488 if (MaximizeILP)
3489 return DFSResult->getILP(A) < DFSResult->getILP(B);
3490 else
3491 return DFSResult->getILP(A) > DFSResult->getILP(B);
3495 /// Schedule based on the ILP metric.
3496 class ILPScheduler : public MachineSchedStrategy {
3497 ScheduleDAGMILive *DAG = nullptr;
3498 ILPOrder Cmp;
3500 std::vector<SUnit*> ReadyQ;
3502 public:
3503 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3505 void initialize(ScheduleDAGMI *dag) override {
3506 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3507 DAG = static_cast<ScheduleDAGMILive*>(dag);
3508 DAG->computeDFSResult();
3509 Cmp.DFSResult = DAG->getDFSResult();
3510 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3511 ReadyQ.clear();
3514 void registerRoots() override {
3515 // Restore the heap in ReadyQ with the updated DFS results.
3516 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3519 /// Implement MachineSchedStrategy interface.
3520 /// -----------------------------------------
3522 /// Callback to select the highest priority node from the ready Q.
3523 SUnit *pickNode(bool &IsTopNode) override {
3524 if (ReadyQ.empty()) return nullptr;
3525 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3526 SUnit *SU = ReadyQ.back();
3527 ReadyQ.pop_back();
3528 IsTopNode = false;
3529 LLVM_DEBUG(dbgs() << "Pick node "
3530 << "SU(" << SU->NodeNum << ") "
3531 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3532 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3533 << " @"
3534 << DAG->getDFSResult()->getSubtreeLevel(
3535 DAG->getDFSResult()->getSubtreeID(SU))
3536 << '\n'
3537 << "Scheduling " << *SU->getInstr());
3538 return SU;
3541 /// Scheduler callback to notify that a new subtree is scheduled.
3542 void scheduleTree(unsigned SubtreeID) override {
3543 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3546 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3547 /// DFSResults, and resort the priority Q.
3548 void schedNode(SUnit *SU, bool IsTopNode) override {
3549 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3552 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3554 void releaseBottomNode(SUnit *SU) override {
3555 ReadyQ.push_back(SU);
3556 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3560 } // end anonymous namespace
3562 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3563 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3565 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3566 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3569 static MachineSchedRegistry ILPMaxRegistry(
3570 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3571 static MachineSchedRegistry ILPMinRegistry(
3572 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3574 //===----------------------------------------------------------------------===//
3575 // Machine Instruction Shuffler for Correctness Testing
3576 //===----------------------------------------------------------------------===//
3578 #ifndef NDEBUG
3579 namespace {
3581 /// Apply a less-than relation on the node order, which corresponds to the
3582 /// instruction order prior to scheduling. IsReverse implements greater-than.
3583 template<bool IsReverse>
3584 struct SUnitOrder {
3585 bool operator()(SUnit *A, SUnit *B) const {
3586 if (IsReverse)
3587 return A->NodeNum > B->NodeNum;
3588 else
3589 return A->NodeNum < B->NodeNum;
3593 /// Reorder instructions as much as possible.
3594 class InstructionShuffler : public MachineSchedStrategy {
3595 bool IsAlternating;
3596 bool IsTopDown;
3598 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3599 // gives nodes with a higher number higher priority causing the latest
3600 // instructions to be scheduled first.
3601 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3602 TopQ;
3604 // When scheduling bottom-up, use greater-than as the queue priority.
3605 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3606 BottomQ;
3608 public:
3609 InstructionShuffler(bool alternate, bool topdown)
3610 : IsAlternating(alternate), IsTopDown(topdown) {}
3612 void initialize(ScheduleDAGMI*) override {
3613 TopQ.clear();
3614 BottomQ.clear();
3617 /// Implement MachineSchedStrategy interface.
3618 /// -----------------------------------------
3620 SUnit *pickNode(bool &IsTopNode) override {
3621 SUnit *SU;
3622 if (IsTopDown) {
3623 do {
3624 if (TopQ.empty()) return nullptr;
3625 SU = TopQ.top();
3626 TopQ.pop();
3627 } while (SU->isScheduled);
3628 IsTopNode = true;
3629 } else {
3630 do {
3631 if (BottomQ.empty()) return nullptr;
3632 SU = BottomQ.top();
3633 BottomQ.pop();
3634 } while (SU->isScheduled);
3635 IsTopNode = false;
3637 if (IsAlternating)
3638 IsTopDown = !IsTopDown;
3639 return SU;
3642 void schedNode(SUnit *SU, bool IsTopNode) override {}
3644 void releaseTopNode(SUnit *SU) override {
3645 TopQ.push(SU);
3647 void releaseBottomNode(SUnit *SU) override {
3648 BottomQ.push(SU);
3652 } // end anonymous namespace
3654 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3655 bool Alternate = !ForceTopDown && !ForceBottomUp;
3656 bool TopDown = !ForceBottomUp;
3657 assert((TopDown || !ForceTopDown) &&
3658 "-misched-topdown incompatible with -misched-bottomup");
3659 return new ScheduleDAGMILive(
3660 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3663 static MachineSchedRegistry ShufflerRegistry(
3664 "shuffle", "Shuffle machine instructions alternating directions",
3665 createInstructionShuffler);
3666 #endif // !NDEBUG
3668 //===----------------------------------------------------------------------===//
3669 // GraphWriter support for ScheduleDAGMILive.
3670 //===----------------------------------------------------------------------===//
3672 #ifndef NDEBUG
3673 namespace llvm {
3675 template<> struct GraphTraits<
3676 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3678 template<>
3679 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3680 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3682 static std::string getGraphName(const ScheduleDAG *G) {
3683 return G->MF.getName();
3686 static bool renderGraphFromBottomUp() {
3687 return true;
3690 static bool isNodeHidden(const SUnit *Node) {
3691 if (ViewMISchedCutoff == 0)
3692 return false;
3693 return (Node->Preds.size() > ViewMISchedCutoff
3694 || Node->Succs.size() > ViewMISchedCutoff);
3697 /// If you want to override the dot attributes printed for a particular
3698 /// edge, override this method.
3699 static std::string getEdgeAttributes(const SUnit *Node,
3700 SUnitIterator EI,
3701 const ScheduleDAG *Graph) {
3702 if (EI.isArtificialDep())
3703 return "color=cyan,style=dashed";
3704 if (EI.isCtrlDep())
3705 return "color=blue,style=dashed";
3706 return "";
3709 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3710 std::string Str;
3711 raw_string_ostream SS(Str);
3712 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3713 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3714 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3715 SS << "SU:" << SU->NodeNum;
3716 if (DFS)
3717 SS << " I:" << DFS->getNumInstrs(SU);
3718 return SS.str();
3721 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3722 return G->getGraphNodeLabel(SU);
3725 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3726 std::string Str("shape=Mrecord");
3727 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3728 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3729 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3730 if (DFS) {
3731 Str += ",style=filled,fillcolor=\"#";
3732 Str += DOT::getColorString(DFS->getSubtreeID(N));
3733 Str += '"';
3735 return Str;
3739 } // end namespace llvm
3740 #endif // NDEBUG
3742 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3743 /// rendered using 'dot'.
3744 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3745 #ifndef NDEBUG
3746 ViewGraph(this, Name, false, Title);
3747 #else
3748 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3749 << "systems with Graphviz or gv!\n";
3750 #endif // NDEBUG
3753 /// Out-of-line implementation with no arguments is handy for gdb.
3754 void ScheduleDAGMI::viewGraph() {
3755 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());