[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / MachineSink.cpp
blob8f0d436dfa50505037affb8d53d8c18a4b938595
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <map>
51 #include <utility>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "machine-sink"
58 static cl::opt<bool>
59 SplitEdges("machine-sink-split",
60 cl::desc("Split critical edges during machine sinking"),
61 cl::init(true), cl::Hidden);
63 static cl::opt<bool>
64 UseBlockFreqInfo("machine-sink-bfi",
65 cl::desc("Use block frequency info to find successors to sink"),
66 cl::init(true), cl::Hidden);
68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69 "machine-sink-split-probability-threshold",
70 cl::desc(
71 "Percentage threshold for splitting single-instruction critical edge. "
72 "If the branch threshold is higher than this threshold, we allow "
73 "speculative execution of up to 1 instruction to avoid branching to "
74 "splitted critical edge"),
75 cl::init(40), cl::Hidden);
77 STATISTIC(NumSunk, "Number of machine instructions sunk");
78 STATISTIC(NumSplit, "Number of critical edges split");
79 STATISTIC(NumCoalesces, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
82 namespace {
84 class MachineSinking : public MachineFunctionPass {
85 const TargetInstrInfo *TII;
86 const TargetRegisterInfo *TRI;
87 MachineRegisterInfo *MRI; // Machine register information
88 MachineDominatorTree *DT; // Machine dominator tree
89 MachinePostDominatorTree *PDT; // Machine post dominator tree
90 MachineLoopInfo *LI;
91 const MachineBlockFrequencyInfo *MBFI;
92 const MachineBranchProbabilityInfo *MBPI;
93 AliasAnalysis *AA;
95 // Remember which edges have been considered for breaking.
96 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97 CEBCandidates;
98 // Remember which edges we are about to split.
99 // This is different from CEBCandidates since those edges
100 // will be split.
101 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
103 SparseBitVector<> RegsToClearKillFlags;
105 using AllSuccsCache =
106 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
108 public:
109 static char ID; // Pass identification
111 MachineSinking() : MachineFunctionPass(ID) {
112 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
115 bool runOnMachineFunction(MachineFunction &MF) override;
117 void getAnalysisUsage(AnalysisUsage &AU) const override {
118 AU.setPreservesCFG();
119 MachineFunctionPass::getAnalysisUsage(AU);
120 AU.addRequired<AAResultsWrapperPass>();
121 AU.addRequired<MachineDominatorTree>();
122 AU.addRequired<MachinePostDominatorTree>();
123 AU.addRequired<MachineLoopInfo>();
124 AU.addRequired<MachineBranchProbabilityInfo>();
125 AU.addPreserved<MachineDominatorTree>();
126 AU.addPreserved<MachinePostDominatorTree>();
127 AU.addPreserved<MachineLoopInfo>();
128 if (UseBlockFreqInfo)
129 AU.addRequired<MachineBlockFrequencyInfo>();
132 void releaseMemory() override {
133 CEBCandidates.clear();
136 private:
137 bool ProcessBlock(MachineBasicBlock &MBB);
138 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
139 MachineBasicBlock *From,
140 MachineBasicBlock *To);
142 /// Postpone the splitting of the given critical
143 /// edge (\p From, \p To).
145 /// We do not split the edges on the fly. Indeed, this invalidates
146 /// the dominance information and thus triggers a lot of updates
147 /// of that information underneath.
148 /// Instead, we postpone all the splits after each iteration of
149 /// the main loop. That way, the information is at least valid
150 /// for the lifetime of an iteration.
152 /// \return True if the edge is marked as toSplit, false otherwise.
153 /// False can be returned if, for instance, this is not profitable.
154 bool PostponeSplitCriticalEdge(MachineInstr &MI,
155 MachineBasicBlock *From,
156 MachineBasicBlock *To,
157 bool BreakPHIEdge);
158 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
160 AllSuccsCache &AllSuccessors);
161 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
162 MachineBasicBlock *DefMBB,
163 bool &BreakPHIEdge, bool &LocalUse) const;
164 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
165 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
166 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
167 MachineBasicBlock *MBB,
168 MachineBasicBlock *SuccToSinkTo,
169 AllSuccsCache &AllSuccessors);
171 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
172 MachineBasicBlock *MBB);
174 SmallVector<MachineBasicBlock *, 4> &
175 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
176 AllSuccsCache &AllSuccessors) const;
179 } // end anonymous namespace
181 char MachineSinking::ID = 0;
183 char &llvm::MachineSinkingID = MachineSinking::ID;
185 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
186 "Machine code sinking", false, false)
187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
191 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
192 "Machine code sinking", false, false)
194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
195 MachineBasicBlock *MBB) {
196 if (!MI.isCopy())
197 return false;
199 Register SrcReg = MI.getOperand(1).getReg();
200 Register DstReg = MI.getOperand(0).getReg();
201 if (!Register::isVirtualRegister(SrcReg) ||
202 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
203 return false;
205 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
206 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
207 if (SRC != DRC)
208 return false;
210 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
211 if (DefMI->isCopyLike())
212 return false;
213 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
214 LLVM_DEBUG(dbgs() << "*** to: " << MI);
215 MRI->replaceRegWith(DstReg, SrcReg);
216 MI.eraseFromParent();
218 // Conservatively, clear any kill flags, since it's possible that they are no
219 // longer correct.
220 MRI->clearKillFlags(SrcReg);
222 ++NumCoalesces;
223 return true;
226 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
227 /// occur in blocks dominated by the specified block. If any use is in the
228 /// definition block, then return false since it is never legal to move def
229 /// after uses.
230 bool
231 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
232 MachineBasicBlock *MBB,
233 MachineBasicBlock *DefMBB,
234 bool &BreakPHIEdge,
235 bool &LocalUse) const {
236 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
238 // Ignore debug uses because debug info doesn't affect the code.
239 if (MRI->use_nodbg_empty(Reg))
240 return true;
242 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
243 // into and they are all PHI nodes. In this case, machine-sink must break
244 // the critical edge first. e.g.
246 // %bb.1: derived from LLVM BB %bb4.preheader
247 // Predecessors according to CFG: %bb.0
248 // ...
249 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
250 // ...
251 // JE_4 <%bb.37>, implicit %eflags
252 // Successors according to CFG: %bb.37 %bb.2
254 // %bb.2: derived from LLVM BB %bb.nph
255 // Predecessors according to CFG: %bb.0 %bb.1
256 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
257 BreakPHIEdge = true;
258 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
259 MachineInstr *UseInst = MO.getParent();
260 unsigned OpNo = &MO - &UseInst->getOperand(0);
261 MachineBasicBlock *UseBlock = UseInst->getParent();
262 if (!(UseBlock == MBB && UseInst->isPHI() &&
263 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
264 BreakPHIEdge = false;
265 break;
268 if (BreakPHIEdge)
269 return true;
271 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
272 // Determine the block of the use.
273 MachineInstr *UseInst = MO.getParent();
274 unsigned OpNo = &MO - &UseInst->getOperand(0);
275 MachineBasicBlock *UseBlock = UseInst->getParent();
276 if (UseInst->isPHI()) {
277 // PHI nodes use the operand in the predecessor block, not the block with
278 // the PHI.
279 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
280 } else if (UseBlock == DefMBB) {
281 LocalUse = true;
282 return false;
285 // Check that it dominates.
286 if (!DT->dominates(MBB, UseBlock))
287 return false;
290 return true;
293 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
294 if (skipFunction(MF.getFunction()))
295 return false;
297 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
299 TII = MF.getSubtarget().getInstrInfo();
300 TRI = MF.getSubtarget().getRegisterInfo();
301 MRI = &MF.getRegInfo();
302 DT = &getAnalysis<MachineDominatorTree>();
303 PDT = &getAnalysis<MachinePostDominatorTree>();
304 LI = &getAnalysis<MachineLoopInfo>();
305 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
306 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
307 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
309 bool EverMadeChange = false;
311 while (true) {
312 bool MadeChange = false;
314 // Process all basic blocks.
315 CEBCandidates.clear();
316 ToSplit.clear();
317 for (auto &MBB: MF)
318 MadeChange |= ProcessBlock(MBB);
320 // If we have anything we marked as toSplit, split it now.
321 for (auto &Pair : ToSplit) {
322 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
323 if (NewSucc != nullptr) {
324 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
325 << printMBBReference(*Pair.first) << " -- "
326 << printMBBReference(*NewSucc) << " -- "
327 << printMBBReference(*Pair.second) << '\n');
328 MadeChange = true;
329 ++NumSplit;
330 } else
331 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
333 // If this iteration over the code changed anything, keep iterating.
334 if (!MadeChange) break;
335 EverMadeChange = true;
338 // Now clear any kill flags for recorded registers.
339 for (auto I : RegsToClearKillFlags)
340 MRI->clearKillFlags(I);
341 RegsToClearKillFlags.clear();
343 return EverMadeChange;
346 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
347 // Can't sink anything out of a block that has less than two successors.
348 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
350 // Don't bother sinking code out of unreachable blocks. In addition to being
351 // unprofitable, it can also lead to infinite looping, because in an
352 // unreachable loop there may be nowhere to stop.
353 if (!DT->isReachableFromEntry(&MBB)) return false;
355 bool MadeChange = false;
357 // Cache all successors, sorted by frequency info and loop depth.
358 AllSuccsCache AllSuccessors;
360 // Walk the basic block bottom-up. Remember if we saw a store.
361 MachineBasicBlock::iterator I = MBB.end();
362 --I;
363 bool ProcessedBegin, SawStore = false;
364 do {
365 MachineInstr &MI = *I; // The instruction to sink.
367 // Predecrement I (if it's not begin) so that it isn't invalidated by
368 // sinking.
369 ProcessedBegin = I == MBB.begin();
370 if (!ProcessedBegin)
371 --I;
373 if (MI.isDebugInstr())
374 continue;
376 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
377 if (Joined) {
378 MadeChange = true;
379 continue;
382 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
383 ++NumSunk;
384 MadeChange = true;
387 // If we just processed the first instruction in the block, we're done.
388 } while (!ProcessedBegin);
390 return MadeChange;
393 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
394 MachineBasicBlock *From,
395 MachineBasicBlock *To) {
396 // FIXME: Need much better heuristics.
398 // If the pass has already considered breaking this edge (during this pass
399 // through the function), then let's go ahead and break it. This means
400 // sinking multiple "cheap" instructions into the same block.
401 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
402 return true;
404 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
405 return true;
407 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
408 BranchProbability(SplitEdgeProbabilityThreshold, 100))
409 return true;
411 // MI is cheap, we probably don't want to break the critical edge for it.
412 // However, if this would allow some definitions of its source operands
413 // to be sunk then it's probably worth it.
414 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
415 const MachineOperand &MO = MI.getOperand(i);
416 if (!MO.isReg() || !MO.isUse())
417 continue;
418 Register Reg = MO.getReg();
419 if (Reg == 0)
420 continue;
422 // We don't move live definitions of physical registers,
423 // so sinking their uses won't enable any opportunities.
424 if (Register::isPhysicalRegister(Reg))
425 continue;
427 // If this instruction is the only user of a virtual register,
428 // check if breaking the edge will enable sinking
429 // both this instruction and the defining instruction.
430 if (MRI->hasOneNonDBGUse(Reg)) {
431 // If the definition resides in same MBB,
432 // claim it's likely we can sink these together.
433 // If definition resides elsewhere, we aren't
434 // blocking it from being sunk so don't break the edge.
435 MachineInstr *DefMI = MRI->getVRegDef(Reg);
436 if (DefMI->getParent() == MI.getParent())
437 return true;
441 return false;
444 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
445 MachineBasicBlock *FromBB,
446 MachineBasicBlock *ToBB,
447 bool BreakPHIEdge) {
448 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
449 return false;
451 // Avoid breaking back edge. From == To means backedge for single BB loop.
452 if (!SplitEdges || FromBB == ToBB)
453 return false;
455 // Check for backedges of more "complex" loops.
456 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
457 LI->isLoopHeader(ToBB))
458 return false;
460 // It's not always legal to break critical edges and sink the computation
461 // to the edge.
463 // %bb.1:
464 // v1024
465 // Beq %bb.3
466 // <fallthrough>
467 // %bb.2:
468 // ... no uses of v1024
469 // <fallthrough>
470 // %bb.3:
471 // ...
472 // = v1024
474 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
476 // %bb.1:
477 // ...
478 // Bne %bb.2
479 // %bb.4:
480 // v1024 =
481 // B %bb.3
482 // %bb.2:
483 // ... no uses of v1024
484 // <fallthrough>
485 // %bb.3:
486 // ...
487 // = v1024
489 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
490 // flow. We need to ensure the new basic block where the computation is
491 // sunk to dominates all the uses.
492 // It's only legal to break critical edge and sink the computation to the
493 // new block if all the predecessors of "To", except for "From", are
494 // not dominated by "From". Given SSA property, this means these
495 // predecessors are dominated by "To".
497 // There is no need to do this check if all the uses are PHI nodes. PHI
498 // sources are only defined on the specific predecessor edges.
499 if (!BreakPHIEdge) {
500 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
501 E = ToBB->pred_end(); PI != E; ++PI) {
502 if (*PI == FromBB)
503 continue;
504 if (!DT->dominates(ToBB, *PI))
505 return false;
509 ToSplit.insert(std::make_pair(FromBB, ToBB));
511 return true;
514 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
515 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
516 MachineBasicBlock *MBB,
517 MachineBasicBlock *SuccToSinkTo,
518 AllSuccsCache &AllSuccessors) {
519 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
521 if (MBB == SuccToSinkTo)
522 return false;
524 // It is profitable if SuccToSinkTo does not post dominate current block.
525 if (!PDT->dominates(SuccToSinkTo, MBB))
526 return true;
528 // It is profitable to sink an instruction from a deeper loop to a shallower
529 // loop, even if the latter post-dominates the former (PR21115).
530 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
531 return true;
533 // Check if only use in post dominated block is PHI instruction.
534 bool NonPHIUse = false;
535 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
536 MachineBasicBlock *UseBlock = UseInst.getParent();
537 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
538 NonPHIUse = true;
540 if (!NonPHIUse)
541 return true;
543 // If SuccToSinkTo post dominates then also it may be profitable if MI
544 // can further profitably sinked into another block in next round.
545 bool BreakPHIEdge = false;
546 // FIXME - If finding successor is compile time expensive then cache results.
547 if (MachineBasicBlock *MBB2 =
548 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
549 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
551 // If SuccToSinkTo is final destination and it is a post dominator of current
552 // block then it is not profitable to sink MI into SuccToSinkTo block.
553 return false;
556 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
557 /// computing it if it was not already cached.
558 SmallVector<MachineBasicBlock *, 4> &
559 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
560 AllSuccsCache &AllSuccessors) const {
561 // Do we have the sorted successors in cache ?
562 auto Succs = AllSuccessors.find(MBB);
563 if (Succs != AllSuccessors.end())
564 return Succs->second;
566 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
567 MBB->succ_end());
569 // Handle cases where sinking can happen but where the sink point isn't a
570 // successor. For example:
572 // x = computation
573 // if () {} else {}
574 // use x
576 const std::vector<MachineDomTreeNode *> &Children =
577 DT->getNode(MBB)->getChildren();
578 for (const auto &DTChild : Children)
579 // DomTree children of MBB that have MBB as immediate dominator are added.
580 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
581 // Skip MBBs already added to the AllSuccs vector above.
582 !MBB->isSuccessor(DTChild->getBlock()))
583 AllSuccs.push_back(DTChild->getBlock());
585 // Sort Successors according to their loop depth or block frequency info.
586 llvm::stable_sort(
587 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
588 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
589 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
590 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
591 return HasBlockFreq ? LHSFreq < RHSFreq
592 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
595 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
597 return it.first->second;
600 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
601 MachineBasicBlock *
602 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
603 bool &BreakPHIEdge,
604 AllSuccsCache &AllSuccessors) {
605 assert (MBB && "Invalid MachineBasicBlock!");
607 // Loop over all the operands of the specified instruction. If there is
608 // anything we can't handle, bail out.
610 // SuccToSinkTo - This is the successor to sink this instruction to, once we
611 // decide.
612 MachineBasicBlock *SuccToSinkTo = nullptr;
613 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
614 const MachineOperand &MO = MI.getOperand(i);
615 if (!MO.isReg()) continue; // Ignore non-register operands.
617 Register Reg = MO.getReg();
618 if (Reg == 0) continue;
620 if (Register::isPhysicalRegister(Reg)) {
621 if (MO.isUse()) {
622 // If the physreg has no defs anywhere, it's just an ambient register
623 // and we can freely move its uses. Alternatively, if it's allocatable,
624 // it could get allocated to something with a def during allocation.
625 if (!MRI->isConstantPhysReg(Reg))
626 return nullptr;
627 } else if (!MO.isDead()) {
628 // A def that isn't dead. We can't move it.
629 return nullptr;
631 } else {
632 // Virtual register uses are always safe to sink.
633 if (MO.isUse()) continue;
635 // If it's not safe to move defs of the register class, then abort.
636 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
637 return nullptr;
639 // Virtual register defs can only be sunk if all their uses are in blocks
640 // dominated by one of the successors.
641 if (SuccToSinkTo) {
642 // If a previous operand picked a block to sink to, then this operand
643 // must be sinkable to the same block.
644 bool LocalUse = false;
645 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
646 BreakPHIEdge, LocalUse))
647 return nullptr;
649 continue;
652 // Otherwise, we should look at all the successors and decide which one
653 // we should sink to. If we have reliable block frequency information
654 // (frequency != 0) available, give successors with smaller frequencies
655 // higher priority, otherwise prioritize smaller loop depths.
656 for (MachineBasicBlock *SuccBlock :
657 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
658 bool LocalUse = false;
659 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
660 BreakPHIEdge, LocalUse)) {
661 SuccToSinkTo = SuccBlock;
662 break;
664 if (LocalUse)
665 // Def is used locally, it's never safe to move this def.
666 return nullptr;
669 // If we couldn't find a block to sink to, ignore this instruction.
670 if (!SuccToSinkTo)
671 return nullptr;
672 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
673 return nullptr;
677 // It is not possible to sink an instruction into its own block. This can
678 // happen with loops.
679 if (MBB == SuccToSinkTo)
680 return nullptr;
682 // It's not safe to sink instructions to EH landing pad. Control flow into
683 // landing pad is implicitly defined.
684 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
685 return nullptr;
687 return SuccToSinkTo;
690 /// Return true if MI is likely to be usable as a memory operation by the
691 /// implicit null check optimization.
693 /// This is a "best effort" heuristic, and should not be relied upon for
694 /// correctness. This returning true does not guarantee that the implicit null
695 /// check optimization is legal over MI, and this returning false does not
696 /// guarantee MI cannot possibly be used to do a null check.
697 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
698 const TargetInstrInfo *TII,
699 const TargetRegisterInfo *TRI) {
700 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
702 auto *MBB = MI.getParent();
703 if (MBB->pred_size() != 1)
704 return false;
706 auto *PredMBB = *MBB->pred_begin();
707 auto *PredBB = PredMBB->getBasicBlock();
709 // Frontends that don't use implicit null checks have no reason to emit
710 // branches with make.implicit metadata, and this function should always
711 // return false for them.
712 if (!PredBB ||
713 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
714 return false;
716 const MachineOperand *BaseOp;
717 int64_t Offset;
718 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
719 return false;
721 if (!BaseOp->isReg())
722 return false;
724 if (!(MI.mayLoad() && !MI.isPredicable()))
725 return false;
727 MachineBranchPredicate MBP;
728 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
729 return false;
731 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
732 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
733 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
734 MBP.LHS.getReg() == BaseOp->getReg();
737 /// Sink an instruction and its associated debug instructions. If the debug
738 /// instructions to be sunk are already known, they can be provided in DbgVals.
739 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
740 MachineBasicBlock::iterator InsertPos,
741 SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
742 // If debug values are provided use those, otherwise call collectDebugValues.
743 SmallVector<MachineInstr *, 2> DbgValuesToSink;
744 if (DbgVals)
745 DbgValuesToSink.insert(DbgValuesToSink.begin(),
746 DbgVals->begin(), DbgVals->end());
747 else
748 MI.collectDebugValues(DbgValuesToSink);
750 // If we cannot find a location to use (merge with), then we erase the debug
751 // location to prevent debug-info driven tools from potentially reporting
752 // wrong location information.
753 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
754 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
755 InsertPos->getDebugLoc()));
756 else
757 MI.setDebugLoc(DebugLoc());
759 // Move the instruction.
760 MachineBasicBlock *ParentBlock = MI.getParent();
761 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
762 ++MachineBasicBlock::iterator(MI));
764 // Move previously adjacent debug value instructions to the insert position.
765 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
766 DBE = DbgValuesToSink.end();
767 DBI != DBE; ++DBI) {
768 MachineInstr *DbgMI = *DBI;
769 SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
770 ++MachineBasicBlock::iterator(DbgMI));
774 /// SinkInstruction - Determine whether it is safe to sink the specified machine
775 /// instruction out of its current block into a successor.
776 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
777 AllSuccsCache &AllSuccessors) {
778 // Don't sink instructions that the target prefers not to sink.
779 if (!TII->shouldSink(MI))
780 return false;
782 // Check if it's safe to move the instruction.
783 if (!MI.isSafeToMove(AA, SawStore))
784 return false;
786 // Convergent operations may not be made control-dependent on additional
787 // values.
788 if (MI.isConvergent())
789 return false;
791 // Don't break implicit null checks. This is a performance heuristic, and not
792 // required for correctness.
793 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
794 return false;
796 // FIXME: This should include support for sinking instructions within the
797 // block they are currently in to shorten the live ranges. We often get
798 // instructions sunk into the top of a large block, but it would be better to
799 // also sink them down before their first use in the block. This xform has to
800 // be careful not to *increase* register pressure though, e.g. sinking
801 // "x = y + z" down if it kills y and z would increase the live ranges of y
802 // and z and only shrink the live range of x.
804 bool BreakPHIEdge = false;
805 MachineBasicBlock *ParentBlock = MI.getParent();
806 MachineBasicBlock *SuccToSinkTo =
807 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
809 // If there are no outputs, it must have side-effects.
810 if (!SuccToSinkTo)
811 return false;
813 // If the instruction to move defines a dead physical register which is live
814 // when leaving the basic block, don't move it because it could turn into a
815 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
816 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
817 const MachineOperand &MO = MI.getOperand(I);
818 if (!MO.isReg()) continue;
819 Register Reg = MO.getReg();
820 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
821 continue;
822 if (SuccToSinkTo->isLiveIn(Reg))
823 return false;
826 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
828 // If the block has multiple predecessors, this is a critical edge.
829 // Decide if we can sink along it or need to break the edge.
830 if (SuccToSinkTo->pred_size() > 1) {
831 // We cannot sink a load across a critical edge - there may be stores in
832 // other code paths.
833 bool TryBreak = false;
834 bool store = true;
835 if (!MI.isSafeToMove(AA, store)) {
836 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
837 TryBreak = true;
840 // We don't want to sink across a critical edge if we don't dominate the
841 // successor. We could be introducing calculations to new code paths.
842 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
843 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
844 TryBreak = true;
847 // Don't sink instructions into a loop.
848 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
849 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
850 TryBreak = true;
853 // Otherwise we are OK with sinking along a critical edge.
854 if (!TryBreak)
855 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
856 else {
857 // Mark this edge as to be split.
858 // If the edge can actually be split, the next iteration of the main loop
859 // will sink MI in the newly created block.
860 bool Status =
861 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
862 if (!Status)
863 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
864 "break critical edge\n");
865 // The instruction will not be sunk this time.
866 return false;
870 if (BreakPHIEdge) {
871 // BreakPHIEdge is true if all the uses are in the successor MBB being
872 // sunken into and they are all PHI nodes. In this case, machine-sink must
873 // break the critical edge first.
874 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
875 SuccToSinkTo, BreakPHIEdge);
876 if (!Status)
877 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
878 "break critical edge\n");
879 // The instruction will not be sunk this time.
880 return false;
883 // Determine where to insert into. Skip phi nodes.
884 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
885 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
886 ++InsertPos;
888 performSink(MI, *SuccToSinkTo, InsertPos);
890 // Conservatively, clear any kill flags, since it's possible that they are no
891 // longer correct.
892 // Note that we have to clear the kill flags for any register this instruction
893 // uses as we may sink over another instruction which currently kills the
894 // used registers.
895 for (MachineOperand &MO : MI.operands()) {
896 if (MO.isReg() && MO.isUse())
897 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
900 return true;
903 //===----------------------------------------------------------------------===//
904 // This pass is not intended to be a replacement or a complete alternative
905 // for the pre-ra machine sink pass. It is only designed to sink COPY
906 // instructions which should be handled after RA.
908 // This pass sinks COPY instructions into a successor block, if the COPY is not
909 // used in the current block and the COPY is live-in to a single successor
910 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
911 // copy on paths where their results aren't needed. This also exposes
912 // additional opportunites for dead copy elimination and shrink wrapping.
914 // These copies were either not handled by or are inserted after the MachineSink
915 // pass. As an example of the former case, the MachineSink pass cannot sink
916 // COPY instructions with allocatable source registers; for AArch64 these type
917 // of copy instructions are frequently used to move function parameters (PhyReg)
918 // into virtual registers in the entry block.
920 // For the machine IR below, this pass will sink %w19 in the entry into its
921 // successor (%bb.1) because %w19 is only live-in in %bb.1.
922 // %bb.0:
923 // %wzr = SUBSWri %w1, 1
924 // %w19 = COPY %w0
925 // Bcc 11, %bb.2
926 // %bb.1:
927 // Live Ins: %w19
928 // BL @fun
929 // %w0 = ADDWrr %w0, %w19
930 // RET %w0
931 // %bb.2:
932 // %w0 = COPY %wzr
933 // RET %w0
934 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
935 // able to see %bb.0 as a candidate.
936 //===----------------------------------------------------------------------===//
937 namespace {
939 class PostRAMachineSinking : public MachineFunctionPass {
940 public:
941 bool runOnMachineFunction(MachineFunction &MF) override;
943 static char ID;
944 PostRAMachineSinking() : MachineFunctionPass(ID) {}
945 StringRef getPassName() const override { return "PostRA Machine Sink"; }
947 void getAnalysisUsage(AnalysisUsage &AU) const override {
948 AU.setPreservesCFG();
949 MachineFunctionPass::getAnalysisUsage(AU);
952 MachineFunctionProperties getRequiredProperties() const override {
953 return MachineFunctionProperties().set(
954 MachineFunctionProperties::Property::NoVRegs);
957 private:
958 /// Track which register units have been modified and used.
959 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
961 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
962 /// entry in this map for each unit it touches.
963 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
965 /// Sink Copy instructions unused in the same block close to their uses in
966 /// successors.
967 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
968 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
970 } // namespace
972 char PostRAMachineSinking::ID = 0;
973 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
975 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
976 "PostRA Machine Sink", false, false)
978 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
979 const TargetRegisterInfo *TRI) {
980 LiveRegUnits LiveInRegUnits(*TRI);
981 LiveInRegUnits.addLiveIns(MBB);
982 return !LiveInRegUnits.available(Reg);
985 static MachineBasicBlock *
986 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
987 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
988 unsigned Reg, const TargetRegisterInfo *TRI) {
989 // Try to find a single sinkable successor in which Reg is live-in.
990 MachineBasicBlock *BB = nullptr;
991 for (auto *SI : SinkableBBs) {
992 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
993 // If BB is set here, Reg is live-in to at least two sinkable successors,
994 // so quit.
995 if (BB)
996 return nullptr;
997 BB = SI;
1000 // Reg is not live-in to any sinkable successors.
1001 if (!BB)
1002 return nullptr;
1004 // Check if any register aliased with Reg is live-in in other successors.
1005 for (auto *SI : CurBB.successors()) {
1006 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1007 return nullptr;
1009 return BB;
1012 static MachineBasicBlock *
1013 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1014 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1015 ArrayRef<unsigned> DefedRegsInCopy,
1016 const TargetRegisterInfo *TRI) {
1017 MachineBasicBlock *SingleBB = nullptr;
1018 for (auto DefReg : DefedRegsInCopy) {
1019 MachineBasicBlock *BB =
1020 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1021 if (!BB || (SingleBB && SingleBB != BB))
1022 return nullptr;
1023 SingleBB = BB;
1025 return SingleBB;
1028 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1029 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1030 LiveRegUnits &UsedRegUnits,
1031 const TargetRegisterInfo *TRI) {
1032 for (auto U : UsedOpsInCopy) {
1033 MachineOperand &MO = MI->getOperand(U);
1034 Register SrcReg = MO.getReg();
1035 if (!UsedRegUnits.available(SrcReg)) {
1036 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1037 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1038 if (UI.killsRegister(SrcReg, TRI)) {
1039 UI.clearRegisterKills(SrcReg, TRI);
1040 MO.setIsKill(true);
1041 break;
1048 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1049 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1050 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1051 MachineFunction &MF = *SuccBB->getParent();
1052 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1053 for (unsigned DefReg : DefedRegsInCopy)
1054 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1055 SuccBB->removeLiveIn(*S);
1056 for (auto U : UsedOpsInCopy) {
1057 Register Reg = MI->getOperand(U).getReg();
1058 if (!SuccBB->isLiveIn(Reg))
1059 SuccBB->addLiveIn(Reg);
1063 static bool hasRegisterDependency(MachineInstr *MI,
1064 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1065 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1066 LiveRegUnits &ModifiedRegUnits,
1067 LiveRegUnits &UsedRegUnits) {
1068 bool HasRegDependency = false;
1069 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1070 MachineOperand &MO = MI->getOperand(i);
1071 if (!MO.isReg())
1072 continue;
1073 Register Reg = MO.getReg();
1074 if (!Reg)
1075 continue;
1076 if (MO.isDef()) {
1077 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1078 HasRegDependency = true;
1079 break;
1081 DefedRegsInCopy.push_back(Reg);
1083 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1084 // For example, we can ignore modifications in reg with undef. However,
1085 // it's not perfectly clear if skipping the internal read is safe in all
1086 // other targets.
1087 } else if (MO.isUse()) {
1088 if (!ModifiedRegUnits.available(Reg)) {
1089 HasRegDependency = true;
1090 break;
1092 UsedOpsInCopy.push_back(i);
1095 return HasRegDependency;
1098 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1099 const TargetRegisterInfo *TRI) {
1100 SmallSet<unsigned, 4> RegUnits;
1101 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1102 RegUnits.insert(*RI);
1103 return RegUnits;
1106 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1107 MachineFunction &MF,
1108 const TargetRegisterInfo *TRI,
1109 const TargetInstrInfo *TII) {
1110 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1111 // FIXME: For now, we sink only to a successor which has a single predecessor
1112 // so that we can directly sink COPY instructions to the successor without
1113 // adding any new block or branch instruction.
1114 for (MachineBasicBlock *SI : CurBB.successors())
1115 if (!SI->livein_empty() && SI->pred_size() == 1)
1116 SinkableBBs.insert(SI);
1118 if (SinkableBBs.empty())
1119 return false;
1121 bool Changed = false;
1123 // Track which registers have been modified and used between the end of the
1124 // block and the current instruction.
1125 ModifiedRegUnits.clear();
1126 UsedRegUnits.clear();
1127 SeenDbgInstrs.clear();
1129 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1130 MachineInstr *MI = &*I;
1131 ++I;
1133 // Track the operand index for use in Copy.
1134 SmallVector<unsigned, 2> UsedOpsInCopy;
1135 // Track the register number defed in Copy.
1136 SmallVector<unsigned, 2> DefedRegsInCopy;
1138 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1139 // for DBG_VALUEs later, record them when they're encountered.
1140 if (MI->isDebugValue()) {
1141 auto &MO = MI->getOperand(0);
1142 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1143 // Bail if we can already tell the sink would be rejected, rather
1144 // than needlessly accumulating lots of DBG_VALUEs.
1145 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1146 ModifiedRegUnits, UsedRegUnits))
1147 continue;
1149 // Record debug use of each reg unit.
1150 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1151 for (unsigned Reg : Units)
1152 SeenDbgInstrs[Reg].push_back(MI);
1154 continue;
1157 if (MI->isDebugInstr())
1158 continue;
1160 // Do not move any instruction across function call.
1161 if (MI->isCall())
1162 return false;
1164 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1165 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1166 TRI);
1167 continue;
1170 // Don't sink the COPY if it would violate a register dependency.
1171 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1172 ModifiedRegUnits, UsedRegUnits)) {
1173 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1174 TRI);
1175 continue;
1177 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1178 "Unexpect SrcReg or DefReg");
1179 MachineBasicBlock *SuccBB =
1180 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1181 // Don't sink if we cannot find a single sinkable successor in which Reg
1182 // is live-in.
1183 if (!SuccBB) {
1184 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1185 TRI);
1186 continue;
1188 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1189 "Unexpected predecessor");
1191 // Collect DBG_VALUEs that must sink with this copy. We've previously
1192 // recorded which reg units that DBG_VALUEs read, if this instruction
1193 // writes any of those units then the corresponding DBG_VALUEs must sink.
1194 SetVector<MachineInstr *> DbgValsToSinkSet;
1195 SmallVector<MachineInstr *, 4> DbgValsToSink;
1196 for (auto &MO : MI->operands()) {
1197 if (!MO.isReg() || !MO.isDef())
1198 continue;
1200 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1201 for (unsigned Reg : Units)
1202 for (auto *MI : SeenDbgInstrs.lookup(Reg))
1203 DbgValsToSinkSet.insert(MI);
1205 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1206 DbgValsToSinkSet.end());
1208 // Clear the kill flag if SrcReg is killed between MI and the end of the
1209 // block.
1210 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1211 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1212 performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1213 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1215 Changed = true;
1216 ++NumPostRACopySink;
1218 return Changed;
1221 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1222 if (skipFunction(MF.getFunction()))
1223 return false;
1225 bool Changed = false;
1226 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1227 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1229 ModifiedRegUnits.init(*TRI);
1230 UsedRegUnits.init(*TRI);
1231 for (auto &BB : MF)
1232 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1234 return Changed;