[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / RegAllocBasic.cpp
blob46f6946f70031143b293118b7179e35044614835
1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RABasic function pass, which provides a minimal
10 // implementation of the basic register allocator.
12 //===----------------------------------------------------------------------===//
14 #include "AllocationOrder.h"
15 #include "LiveDebugVariables.h"
16 #include "RegAllocBase.h"
17 #include "Spiller.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveRangeEdit.h"
22 #include "llvm/CodeGen/LiveRegMatrix.h"
23 #include "llvm/CodeGen/LiveStacks.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/PassAnalysisSupport.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cstdlib>
37 #include <queue>
39 using namespace llvm;
41 #define DEBUG_TYPE "regalloc"
43 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
44 createBasicRegisterAllocator);
46 namespace {
47 struct CompSpillWeight {
48 bool operator()(LiveInterval *A, LiveInterval *B) const {
49 return A->weight < B->weight;
54 namespace {
55 /// RABasic provides a minimal implementation of the basic register allocation
56 /// algorithm. It prioritizes live virtual registers by spill weight and spills
57 /// whenever a register is unavailable. This is not practical in production but
58 /// provides a useful baseline both for measuring other allocators and comparing
59 /// the speed of the basic algorithm against other styles of allocators.
60 class RABasic : public MachineFunctionPass,
61 public RegAllocBase,
62 private LiveRangeEdit::Delegate {
63 // context
64 MachineFunction *MF;
66 // state
67 std::unique_ptr<Spiller> SpillerInstance;
68 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
69 CompSpillWeight> Queue;
71 // Scratch space. Allocated here to avoid repeated malloc calls in
72 // selectOrSplit().
73 BitVector UsableRegs;
75 bool LRE_CanEraseVirtReg(unsigned) override;
76 void LRE_WillShrinkVirtReg(unsigned) override;
78 public:
79 RABasic();
81 /// Return the pass name.
82 StringRef getPassName() const override { return "Basic Register Allocator"; }
84 /// RABasic analysis usage.
85 void getAnalysisUsage(AnalysisUsage &AU) const override;
87 void releaseMemory() override;
89 Spiller &spiller() override { return *SpillerInstance; }
91 void enqueue(LiveInterval *LI) override {
92 Queue.push(LI);
95 LiveInterval *dequeue() override {
96 if (Queue.empty())
97 return nullptr;
98 LiveInterval *LI = Queue.top();
99 Queue.pop();
100 return LI;
103 unsigned selectOrSplit(LiveInterval &VirtReg,
104 SmallVectorImpl<unsigned> &SplitVRegs) override;
106 /// Perform register allocation.
107 bool runOnMachineFunction(MachineFunction &mf) override;
109 MachineFunctionProperties getRequiredProperties() const override {
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoPHIs);
114 // Helper for spilling all live virtual registers currently unified under preg
115 // that interfere with the most recently queried lvr. Return true if spilling
116 // was successful, and append any new spilled/split intervals to splitLVRs.
117 bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
118 SmallVectorImpl<unsigned> &SplitVRegs);
120 static char ID;
123 char RABasic::ID = 0;
125 } // end anonymous namespace
127 char &llvm::RABasicID = RABasic::ID;
129 INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator",
130 false, false)
131 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
132 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
133 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
134 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
135 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
136 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
137 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
138 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
139 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
140 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
141 INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false,
142 false)
144 bool RABasic::LRE_CanEraseVirtReg(unsigned VirtReg) {
145 LiveInterval &LI = LIS->getInterval(VirtReg);
146 if (VRM->hasPhys(VirtReg)) {
147 Matrix->unassign(LI);
148 aboutToRemoveInterval(LI);
149 return true;
151 // Unassigned virtreg is probably in the priority queue.
152 // RegAllocBase will erase it after dequeueing.
153 // Nonetheless, clear the live-range so that the debug
154 // dump will show the right state for that VirtReg.
155 LI.clear();
156 return false;
159 void RABasic::LRE_WillShrinkVirtReg(unsigned VirtReg) {
160 if (!VRM->hasPhys(VirtReg))
161 return;
163 // Register is assigned, put it back on the queue for reassignment.
164 LiveInterval &LI = LIS->getInterval(VirtReg);
165 Matrix->unassign(LI);
166 enqueue(&LI);
169 RABasic::RABasic(): MachineFunctionPass(ID) {
172 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
173 AU.setPreservesCFG();
174 AU.addRequired<AAResultsWrapperPass>();
175 AU.addPreserved<AAResultsWrapperPass>();
176 AU.addRequired<LiveIntervals>();
177 AU.addPreserved<LiveIntervals>();
178 AU.addPreserved<SlotIndexes>();
179 AU.addRequired<LiveDebugVariables>();
180 AU.addPreserved<LiveDebugVariables>();
181 AU.addRequired<LiveStacks>();
182 AU.addPreserved<LiveStacks>();
183 AU.addRequired<MachineBlockFrequencyInfo>();
184 AU.addPreserved<MachineBlockFrequencyInfo>();
185 AU.addRequiredID(MachineDominatorsID);
186 AU.addPreservedID(MachineDominatorsID);
187 AU.addRequired<MachineLoopInfo>();
188 AU.addPreserved<MachineLoopInfo>();
189 AU.addRequired<VirtRegMap>();
190 AU.addPreserved<VirtRegMap>();
191 AU.addRequired<LiveRegMatrix>();
192 AU.addPreserved<LiveRegMatrix>();
193 MachineFunctionPass::getAnalysisUsage(AU);
196 void RABasic::releaseMemory() {
197 SpillerInstance.reset();
201 // Spill or split all live virtual registers currently unified under PhysReg
202 // that interfere with VirtReg. The newly spilled or split live intervals are
203 // returned by appending them to SplitVRegs.
204 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
205 SmallVectorImpl<unsigned> &SplitVRegs) {
206 // Record each interference and determine if all are spillable before mutating
207 // either the union or live intervals.
208 SmallVector<LiveInterval*, 8> Intfs;
210 // Collect interferences assigned to any alias of the physical register.
211 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
212 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
213 Q.collectInterferingVRegs();
214 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
215 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
216 if (!Intf->isSpillable() || Intf->weight > VirtReg.weight)
217 return false;
218 Intfs.push_back(Intf);
221 LLVM_DEBUG(dbgs() << "spilling " << printReg(PhysReg, TRI)
222 << " interferences with " << VirtReg << "\n");
223 assert(!Intfs.empty() && "expected interference");
225 // Spill each interfering vreg allocated to PhysReg or an alias.
226 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
227 LiveInterval &Spill = *Intfs[i];
229 // Skip duplicates.
230 if (!VRM->hasPhys(Spill.reg))
231 continue;
233 // Deallocate the interfering vreg by removing it from the union.
234 // A LiveInterval instance may not be in a union during modification!
235 Matrix->unassign(Spill);
237 // Spill the extracted interval.
238 LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
239 spiller().spill(LRE);
241 return true;
244 // Driver for the register assignment and splitting heuristics.
245 // Manages iteration over the LiveIntervalUnions.
247 // This is a minimal implementation of register assignment and splitting that
248 // spills whenever we run out of registers.
250 // selectOrSplit can only be called once per live virtual register. We then do a
251 // single interference test for each register the correct class until we find an
252 // available register. So, the number of interference tests in the worst case is
253 // |vregs| * |machineregs|. And since the number of interference tests is
254 // minimal, there is no value in caching them outside the scope of
255 // selectOrSplit().
256 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
257 SmallVectorImpl<unsigned> &SplitVRegs) {
258 // Populate a list of physical register spill candidates.
259 SmallVector<unsigned, 8> PhysRegSpillCands;
261 // Check for an available register in this class.
262 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
263 while (unsigned PhysReg = Order.next()) {
264 // Check for interference in PhysReg
265 switch (Matrix->checkInterference(VirtReg, PhysReg)) {
266 case LiveRegMatrix::IK_Free:
267 // PhysReg is available, allocate it.
268 return PhysReg;
270 case LiveRegMatrix::IK_VirtReg:
271 // Only virtual registers in the way, we may be able to spill them.
272 PhysRegSpillCands.push_back(PhysReg);
273 continue;
275 default:
276 // RegMask or RegUnit interference.
277 continue;
281 // Try to spill another interfering reg with less spill weight.
282 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
283 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
284 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs))
285 continue;
287 assert(!Matrix->checkInterference(VirtReg, *PhysRegI) &&
288 "Interference after spill.");
289 // Tell the caller to allocate to this newly freed physical register.
290 return *PhysRegI;
293 // No other spill candidates were found, so spill the current VirtReg.
294 LLVM_DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
295 if (!VirtReg.isSpillable())
296 return ~0u;
297 LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
298 spiller().spill(LRE);
300 // The live virtual register requesting allocation was spilled, so tell
301 // the caller not to allocate anything during this round.
302 return 0;
305 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
306 LLVM_DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
307 << "********** Function: " << mf.getName() << '\n');
309 MF = &mf;
310 RegAllocBase::init(getAnalysis<VirtRegMap>(),
311 getAnalysis<LiveIntervals>(),
312 getAnalysis<LiveRegMatrix>());
314 calculateSpillWeightsAndHints(*LIS, *MF, VRM,
315 getAnalysis<MachineLoopInfo>(),
316 getAnalysis<MachineBlockFrequencyInfo>());
318 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
320 allocatePhysRegs();
321 postOptimization();
323 // Diagnostic output before rewriting
324 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
326 releaseMemory();
327 return true;
330 FunctionPass* llvm::createBasicRegisterAllocator()
332 return new RABasic();