1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
125 using namespace llvm
;
126 using namespace PatternMatch
;
127 using namespace SwitchCG
;
129 #define DEBUG_TYPE "isel"
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision
;
135 static cl::opt
<unsigned, true>
136 LimitFPPrecision("limit-float-precision",
137 cl::desc("Generate low-precision inline sequences "
138 "for some float libcalls"),
139 cl::location(LimitFloatPrecision
), cl::Hidden
,
142 static cl::opt
<unsigned> SwitchPeelThreshold(
143 "switch-peel-threshold", cl::Hidden
, cl::init(66),
144 cl::desc("Set the case probability threshold for peeling the case from a "
145 "switch statement. A value greater than 100 will void this "
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains
= 64;
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
167 static Optional
<CallingConv::ID
> getABIRegCopyCC(const Value
*V
) {
168 if (auto *R
= dyn_cast
<ReturnInst
>(V
))
169 return R
->getParent()->getParent()->getCallingConv();
171 if (auto *CI
= dyn_cast
<CallInst
>(V
)) {
172 const bool IsInlineAsm
= CI
->isInlineAsm();
173 const bool IsIndirectFunctionCall
=
174 !IsInlineAsm
&& !CI
->getCalledFunction();
176 // It is possible that the call instruction is an inline asm statement or an
177 // indirect function call in which case the return value of
178 // getCalledFunction() would be nullptr.
179 const bool IsInstrinsicCall
=
180 !IsInlineAsm
&& !IsIndirectFunctionCall
&&
181 CI
->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic
;
183 if (!IsInlineAsm
&& !IsInstrinsicCall
)
184 return CI
->getCallingConv();
190 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
191 const SDValue
*Parts
, unsigned NumParts
,
192 MVT PartVT
, EVT ValueVT
, const Value
*V
,
193 Optional
<CallingConv::ID
> CC
);
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent. If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
201 const SDValue
*Parts
, unsigned NumParts
,
202 MVT PartVT
, EVT ValueVT
, const Value
*V
,
203 Optional
<CallingConv::ID
> CC
= None
,
204 Optional
<ISD::NodeType
> AssertOp
= None
) {
205 if (ValueVT
.isVector())
206 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
, V
,
209 assert(NumParts
> 0 && "No parts to assemble!");
210 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
211 SDValue Val
= Parts
[0];
214 // Assemble the value from multiple parts.
215 if (ValueVT
.isInteger()) {
216 unsigned PartBits
= PartVT
.getSizeInBits();
217 unsigned ValueBits
= ValueVT
.getSizeInBits();
219 // Assemble the power of 2 part.
220 unsigned RoundParts
=
221 (NumParts
& (NumParts
- 1)) ? 1 << Log2_32(NumParts
) : NumParts
;
222 unsigned RoundBits
= PartBits
* RoundParts
;
223 EVT RoundVT
= RoundBits
== ValueBits
?
224 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
227 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
229 if (RoundParts
> 2) {
230 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
232 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
233 RoundParts
/ 2, PartVT
, HalfVT
, V
);
235 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
236 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
239 if (DAG
.getDataLayout().isBigEndian())
242 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
244 if (RoundParts
< NumParts
) {
245 // Assemble the trailing non-power-of-2 part.
246 unsigned OddParts
= NumParts
- RoundParts
;
247 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
248 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
, OddParts
, PartVT
,
251 // Combine the round and odd parts.
253 if (DAG
.getDataLayout().isBigEndian())
255 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
256 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
258 DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
259 DAG
.getConstant(Lo
.getValueSizeInBits(), DL
,
260 TLI
.getPointerTy(DAG
.getDataLayout())));
261 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
262 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
264 } else if (PartVT
.isFloatingPoint()) {
265 // FP split into multiple FP parts (for ppcf128)
266 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== MVT::f64
&&
269 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
270 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
271 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
273 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
275 // FP split into integer parts (soft fp)
276 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
277 !PartVT
.isVector() && "Unexpected split");
278 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
279 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
, V
, CC
);
283 // There is now one part, held in Val. Correct it to match ValueVT.
284 // PartEVT is the type of the register class that holds the value.
285 // ValueVT is the type of the inline asm operation.
286 EVT PartEVT
= Val
.getValueType();
288 if (PartEVT
== ValueVT
)
291 if (PartEVT
.isInteger() && ValueVT
.isFloatingPoint() &&
292 ValueVT
.bitsLT(PartEVT
)) {
293 // For an FP value in an integer part, we need to truncate to the right
295 PartEVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
296 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, PartEVT
, Val
);
299 // Handle types that have the same size.
300 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits())
301 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
303 // Handle types with different sizes.
304 if (PartEVT
.isInteger() && ValueVT
.isInteger()) {
305 if (ValueVT
.bitsLT(PartEVT
)) {
306 // For a truncate, see if we have any information to
307 // indicate whether the truncated bits will always be
308 // zero or sign-extension.
309 if (AssertOp
.hasValue())
310 Val
= DAG
.getNode(*AssertOp
, DL
, PartEVT
, Val
,
311 DAG
.getValueType(ValueVT
));
312 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
314 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
317 if (PartEVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
318 // FP_ROUND's are always exact here.
319 if (ValueVT
.bitsLT(Val
.getValueType()))
321 ISD::FP_ROUND
, DL
, ValueVT
, Val
,
322 DAG
.getTargetConstant(1, DL
, TLI
.getPointerTy(DAG
.getDataLayout())));
324 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
329 if (PartEVT
== MVT::x86mmx
&& ValueVT
.isInteger() &&
330 ValueVT
.bitsLT(PartEVT
)) {
331 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Val
);
332 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
335 report_fatal_error("Unknown mismatch in getCopyFromParts!");
338 static void diagnosePossiblyInvalidConstraint(LLVMContext
&Ctx
, const Value
*V
,
339 const Twine
&ErrMsg
) {
340 const Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
342 return Ctx
.emitError(ErrMsg
);
344 const char *AsmError
= ", possible invalid constraint for vector type";
345 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
346 if (isa
<InlineAsm
>(CI
->getCalledValue()))
347 return Ctx
.emitError(I
, ErrMsg
+ AsmError
);
349 return Ctx
.emitError(I
, ErrMsg
);
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent. If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
358 const SDValue
*Parts
, unsigned NumParts
,
359 MVT PartVT
, EVT ValueVT
, const Value
*V
,
360 Optional
<CallingConv::ID
> CallConv
) {
361 assert(ValueVT
.isVector() && "Not a vector value");
362 assert(NumParts
> 0 && "No parts to assemble!");
363 const bool IsABIRegCopy
= CallConv
.hasValue();
365 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
366 SDValue Val
= Parts
[0];
368 // Handle a multi-element vector.
372 unsigned NumIntermediates
;
376 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
377 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
378 NumIntermediates
, RegisterVT
);
381 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
382 NumIntermediates
, RegisterVT
);
385 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
386 NumParts
= NumRegs
; // Silence a compiler warning.
387 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
388 assert(RegisterVT
.getSizeInBits() ==
389 Parts
[0].getSimpleValueType().getSizeInBits() &&
390 "Part type sizes don't match!");
392 // Assemble the parts into intermediate operands.
393 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
394 if (NumIntermediates
== NumParts
) {
395 // If the register was not expanded, truncate or copy the value,
397 for (unsigned i
= 0; i
!= NumParts
; ++i
)
398 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
399 PartVT
, IntermediateVT
, V
);
400 } else if (NumParts
> 0) {
401 // If the intermediate type was expanded, build the intermediate
402 // operands from the parts.
403 assert(NumParts
% NumIntermediates
== 0 &&
404 "Must expand into a divisible number of parts!");
405 unsigned Factor
= NumParts
/ NumIntermediates
;
406 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
407 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
408 PartVT
, IntermediateVT
, V
);
411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412 // intermediate operands.
414 EVT::getVectorVT(*DAG
.getContext(), IntermediateVT
.getScalarType(),
415 (IntermediateVT
.isVector()
416 ? IntermediateVT
.getVectorNumElements() * NumParts
417 : NumIntermediates
));
418 Val
= DAG
.getNode(IntermediateVT
.isVector() ? ISD::CONCAT_VECTORS
420 DL
, BuiltVectorTy
, Ops
);
423 // There is now one part, held in Val. Correct it to match ValueVT.
424 EVT PartEVT
= Val
.getValueType();
426 if (PartEVT
== ValueVT
)
429 if (PartEVT
.isVector()) {
430 // If the element type of the source/dest vectors are the same, but the
431 // parts vector has more elements than the value vector, then we have a
432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
434 if (PartEVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
435 assert(PartEVT
.getVectorNumElements() > ValueVT
.getVectorNumElements() &&
436 "Cannot narrow, it would be a lossy transformation");
438 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
439 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
442 // Vector/Vector bitcast.
443 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits())
444 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
446 assert(PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements() &&
447 "Cannot handle this kind of promotion");
448 // Promoted vector extract
449 return DAG
.getAnyExtOrTrunc(Val
, DL
, ValueVT
);
453 // Trivial bitcast if the types are the same size and the destination
454 // vector type is legal.
455 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
456 TLI
.isTypeLegal(ValueVT
))
457 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
459 if (ValueVT
.getVectorNumElements() != 1) {
460 // Certain ABIs require that vectors are passed as integers. For vectors
461 // are the same size, this is an obvious bitcast.
462 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits()) {
463 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
464 } else if (ValueVT
.getSizeInBits() < PartEVT
.getSizeInBits()) {
465 // Bitcast Val back the original type and extract the corresponding
467 unsigned Elts
= PartEVT
.getSizeInBits() / ValueVT
.getScalarSizeInBits();
468 EVT WiderVecType
= EVT::getVectorVT(*DAG
.getContext(),
469 ValueVT
.getVectorElementType(), Elts
);
470 Val
= DAG
.getBitcast(WiderVecType
, Val
);
472 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
473 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
476 diagnosePossiblyInvalidConstraint(
477 *DAG
.getContext(), V
, "non-trivial scalar-to-vector conversion");
478 return DAG
.getUNDEF(ValueVT
);
481 // Handle cases such as i8 -> <1 x i1>
482 EVT ValueSVT
= ValueVT
.getVectorElementType();
483 if (ValueVT
.getVectorNumElements() == 1 && ValueSVT
!= PartEVT
)
484 Val
= ValueVT
.isFloatingPoint() ? DAG
.getFPExtendOrRound(Val
, DL
, ValueSVT
)
485 : DAG
.getAnyExtOrTrunc(Val
, DL
, ValueSVT
);
487 return DAG
.getBuildVector(ValueVT
, DL
, Val
);
490 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&dl
,
491 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
492 MVT PartVT
, const Value
*V
,
493 Optional
<CallingConv::ID
> CallConv
);
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts. If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
,
499 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
501 Optional
<CallingConv::ID
> CallConv
= None
,
502 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
503 EVT ValueVT
= Val
.getValueType();
505 // Handle the vector case separately.
506 if (ValueVT
.isVector())
507 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
, V
,
510 unsigned PartBits
= PartVT
.getSizeInBits();
511 unsigned OrigNumParts
= NumParts
;
512 assert(DAG
.getTargetLoweringInfo().isTypeLegal(PartVT
) &&
513 "Copying to an illegal type!");
518 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
519 EVT PartEVT
= PartVT
;
520 if (PartEVT
== ValueVT
) {
521 assert(NumParts
== 1 && "No-op copy with multiple parts!");
526 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
527 // If the parts cover more bits than the value has, promote the value.
528 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
529 assert(NumParts
== 1 && "Do not know what to promote to!");
530 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
532 if (ValueVT
.isFloatingPoint()) {
533 // FP values need to be bitcast, then extended if they are being put
534 // into a larger container.
535 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
536 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
538 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
539 ValueVT
.isInteger() &&
540 "Unknown mismatch!");
541 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
542 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
543 if (PartVT
== MVT::x86mmx
)
544 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
546 } else if (PartBits
== ValueVT
.getSizeInBits()) {
547 // Different types of the same size.
548 assert(NumParts
== 1 && PartEVT
!= ValueVT
);
549 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
550 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
551 // If the parts cover less bits than value has, truncate the value.
552 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
553 ValueVT
.isInteger() &&
554 "Unknown mismatch!");
555 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
556 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
557 if (PartVT
== MVT::x86mmx
)
558 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
561 // The value may have changed - recompute ValueVT.
562 ValueVT
= Val
.getValueType();
563 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
564 "Failed to tile the value with PartVT!");
567 if (PartEVT
!= ValueVT
) {
568 diagnosePossiblyInvalidConstraint(*DAG
.getContext(), V
,
569 "scalar-to-vector conversion failed");
570 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
577 // Expand the value into multiple parts.
578 if (NumParts
& (NumParts
- 1)) {
579 // The number of parts is not a power of 2. Split off and copy the tail.
580 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
581 "Do not know what to expand to!");
582 unsigned RoundParts
= 1 << Log2_32(NumParts
);
583 unsigned RoundBits
= RoundParts
* PartBits
;
584 unsigned OddParts
= NumParts
- RoundParts
;
585 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
586 DAG
.getShiftAmountConstant(RoundBits
, ValueVT
, DL
, /*LegalTypes*/false));
588 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
, V
,
591 if (DAG
.getDataLayout().isBigEndian())
592 // The odd parts were reversed by getCopyToParts - unreverse them.
593 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
595 NumParts
= RoundParts
;
596 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
597 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
600 // The number of parts is a power of 2. Repeatedly bisect the value using
602 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
603 EVT::getIntegerVT(*DAG
.getContext(),
604 ValueVT
.getSizeInBits()),
607 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
608 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
609 unsigned ThisBits
= StepSize
* PartBits
/ 2;
610 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
611 SDValue
&Part0
= Parts
[i
];
612 SDValue
&Part1
= Parts
[i
+StepSize
/2];
614 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
615 ThisVT
, Part0
, DAG
.getIntPtrConstant(1, DL
));
616 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
617 ThisVT
, Part0
, DAG
.getIntPtrConstant(0, DL
));
619 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
620 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
621 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
626 if (DAG
.getDataLayout().isBigEndian())
627 std::reverse(Parts
, Parts
+ OrigNumParts
);
630 static SDValue
widenVectorToPartType(SelectionDAG
&DAG
,
631 SDValue Val
, const SDLoc
&DL
, EVT PartVT
) {
632 if (!PartVT
.isVector())
635 EVT ValueVT
= Val
.getValueType();
636 unsigned PartNumElts
= PartVT
.getVectorNumElements();
637 unsigned ValueNumElts
= ValueVT
.getVectorNumElements();
638 if (PartNumElts
> ValueNumElts
&&
639 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
640 EVT ElementVT
= PartVT
.getVectorElementType();
641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
643 SmallVector
<SDValue
, 16> Ops
;
644 DAG
.ExtractVectorElements(Val
, Ops
);
645 SDValue EltUndef
= DAG
.getUNDEF(ElementVT
);
646 for (unsigned i
= ValueNumElts
, e
= PartNumElts
; i
!= e
; ++i
)
647 Ops
.push_back(EltUndef
);
649 // FIXME: Use CONCAT for 2x -> 4x.
650 return DAG
.getBuildVector(PartVT
, DL
, Ops
);
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
659 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
660 MVT PartVT
, const Value
*V
,
661 Optional
<CallingConv::ID
> CallConv
) {
662 EVT ValueVT
= Val
.getValueType();
663 assert(ValueVT
.isVector() && "Not a vector");
664 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
665 const bool IsABIRegCopy
= CallConv
.hasValue();
668 EVT PartEVT
= PartVT
;
669 if (PartEVT
== ValueVT
) {
671 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
672 // Bitconvert vector->vector case.
673 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
674 } else if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, PartVT
)) {
676 } else if (PartVT
.isVector() &&
677 PartEVT
.getVectorElementType().bitsGE(
678 ValueVT
.getVectorElementType()) &&
679 PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements()) {
681 // Promoted vector extract
682 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
684 if (ValueVT
.getVectorNumElements() == 1) {
686 ISD::EXTRACT_VECTOR_ELT
, DL
, PartVT
, Val
,
687 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
689 assert(PartVT
.getSizeInBits() > ValueVT
.getSizeInBits() &&
690 "lossy conversion of vector to scalar type");
691 EVT IntermediateType
=
692 EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
693 Val
= DAG
.getBitcast(IntermediateType
, Val
);
694 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
698 assert(Val
.getValueType() == PartVT
&& "Unexpected vector part value type");
703 // Handle a multi-element vector.
706 unsigned NumIntermediates
;
709 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
710 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
711 NumIntermediates
, RegisterVT
);
714 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
715 NumIntermediates
, RegisterVT
);
718 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
719 NumParts
= NumRegs
; // Silence a compiler warning.
720 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
722 unsigned IntermediateNumElts
= IntermediateVT
.isVector() ?
723 IntermediateVT
.getVectorNumElements() : 1;
725 // Convert the vector to the appropiate type if necessary.
726 unsigned DestVectorNoElts
= NumIntermediates
* IntermediateNumElts
;
728 EVT BuiltVectorTy
= EVT::getVectorVT(
729 *DAG
.getContext(), IntermediateVT
.getScalarType(), DestVectorNoElts
);
730 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
731 if (ValueVT
!= BuiltVectorTy
) {
732 if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, BuiltVectorTy
))
735 Val
= DAG
.getNode(ISD::BITCAST
, DL
, BuiltVectorTy
, Val
);
738 // Split the vector into intermediate operands.
739 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
740 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
741 if (IntermediateVT
.isVector()) {
742 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, IntermediateVT
, Val
,
743 DAG
.getConstant(i
* IntermediateNumElts
, DL
, IdxVT
));
745 Ops
[i
] = DAG
.getNode(
746 ISD::EXTRACT_VECTOR_ELT
, DL
, IntermediateVT
, Val
,
747 DAG
.getConstant(i
, DL
, IdxVT
));
751 // Split the intermediate operands into legal parts.
752 if (NumParts
== NumIntermediates
) {
753 // If the register was not expanded, promote or copy the value,
755 for (unsigned i
= 0; i
!= NumParts
; ++i
)
756 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
, V
, CallConv
);
757 } else if (NumParts
> 0) {
758 // If the intermediate type was expanded, split each the value into
760 assert(NumIntermediates
!= 0 && "division by zero");
761 assert(NumParts
% NumIntermediates
== 0 &&
762 "Must expand into a divisible number of parts!");
763 unsigned Factor
= NumParts
/ NumIntermediates
;
764 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
765 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
, V
,
770 RegsForValue::RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
,
771 EVT valuevt
, Optional
<CallingConv::ID
> CC
)
772 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
),
773 RegCount(1, regs
.size()), CallConv(CC
) {}
775 RegsForValue::RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
776 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
777 Optional
<CallingConv::ID
> CC
) {
778 ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
);
782 for (EVT ValueVT
: ValueVTs
) {
785 ? TLI
.getNumRegistersForCallingConv(Context
, CC
.getValue(), ValueVT
)
786 : TLI
.getNumRegisters(Context
, ValueVT
);
789 ? TLI
.getRegisterTypeForCallingConv(Context
, CC
.getValue(), ValueVT
)
790 : TLI
.getRegisterType(Context
, ValueVT
);
791 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
792 Regs
.push_back(Reg
+ i
);
793 RegVTs
.push_back(RegisterVT
);
794 RegCount
.push_back(NumRegs
);
799 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
800 FunctionLoweringInfo
&FuncInfo
,
801 const SDLoc
&dl
, SDValue
&Chain
,
802 SDValue
*Flag
, const Value
*V
) const {
803 // A Value with type {} or [0 x %t] needs no registers.
804 if (ValueVTs
.empty())
807 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
809 // Assemble the legal parts into the final values.
810 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
811 SmallVector
<SDValue
, 8> Parts
;
812 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
813 // Copy the legal parts from the registers.
814 EVT ValueVT
= ValueVTs
[Value
];
815 unsigned NumRegs
= RegCount
[Value
];
816 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
818 CallConv
.getValue(), RegVTs
[Value
])
821 Parts
.resize(NumRegs
);
822 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
825 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
827 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
828 *Flag
= P
.getValue(2);
831 Chain
= P
.getValue(1);
834 // If the source register was virtual and if we know something about it,
835 // add an assert node.
836 if (!Register::isVirtualRegister(Regs
[Part
+ i
]) ||
837 !RegisterVT
.isInteger())
840 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
841 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
845 unsigned RegSize
= RegisterVT
.getScalarSizeInBits();
846 unsigned NumSignBits
= LOI
->NumSignBits
;
847 unsigned NumZeroBits
= LOI
->Known
.countMinLeadingZeros();
849 if (NumZeroBits
== RegSize
) {
850 // The current value is a zero.
851 // Explicitly express that as it would be easier for
852 // optimizations to kick in.
853 Parts
[i
] = DAG
.getConstant(0, dl
, RegisterVT
);
857 // FIXME: We capture more information than the dag can represent. For
858 // now, just use the tightest assertzext/assertsext possible.
860 EVT
FromVT(MVT::Other
);
862 FromVT
= EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumZeroBits
);
864 } else if (NumSignBits
> 1) {
866 EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumSignBits
+ 1);
871 // Add an assertion node.
872 assert(FromVT
!= MVT::Other
);
873 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
874 RegisterVT
, P
, DAG
.getValueType(FromVT
));
877 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(), NumRegs
,
878 RegisterVT
, ValueVT
, V
, CallConv
);
883 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(ValueVTs
), Values
);
886 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
,
887 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
889 ISD::NodeType PreferredExtendType
) const {
890 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
891 ISD::NodeType ExtendKind
= PreferredExtendType
;
893 // Get the list of the values's legal parts.
894 unsigned NumRegs
= Regs
.size();
895 SmallVector
<SDValue
, 8> Parts(NumRegs
);
896 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
897 unsigned NumParts
= RegCount
[Value
];
899 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
901 CallConv
.getValue(), RegVTs
[Value
])
904 if (ExtendKind
== ISD::ANY_EXTEND
&& TLI
.isZExtFree(Val
, RegisterVT
))
905 ExtendKind
= ISD::ZERO_EXTEND
;
907 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
), &Parts
[Part
],
908 NumParts
, RegisterVT
, V
, CallConv
, ExtendKind
);
912 // Copy the parts into the registers.
913 SmallVector
<SDValue
, 8> Chains(NumRegs
);
914 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
917 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
919 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
920 *Flag
= Part
.getValue(1);
923 Chains
[i
] = Part
.getValue(0);
926 if (NumRegs
== 1 || Flag
)
927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928 // flagged to it. That is the CopyToReg nodes and the user are considered
929 // a single scheduling unit. If we create a TokenFactor and return it as
930 // chain, then the TokenFactor is both a predecessor (operand) of the
931 // user as well as a successor (the TF operands are flagged to the user).
932 // c1, f1 = CopyToReg
933 // c2, f2 = CopyToReg
934 // c3 = TokenFactor c1, c2
937 Chain
= Chains
[NumRegs
-1];
939 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
942 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
943 unsigned MatchingIdx
, const SDLoc
&dl
,
945 std::vector
<SDValue
> &Ops
) const {
946 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
948 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
950 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
951 else if (!Regs
.empty() && Register::isVirtualRegister(Regs
.front())) {
952 // Put the register class of the virtual registers in the flag word. That
953 // way, later passes can recompute register class constraints for inline
954 // assembly as well as normal instructions.
955 // Don't do this for tied operands that can use the regclass information
957 const MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
958 const TargetRegisterClass
*RC
= MRI
.getRegClass(Regs
.front());
959 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, RC
->getID());
962 SDValue Res
= DAG
.getTargetConstant(Flag
, dl
, MVT::i32
);
965 if (Code
== InlineAsm::Kind_Clobber
) {
966 // Clobbers should always have a 1:1 mapping with registers, and may
967 // reference registers that have illegal (e.g. vector) types. Hence, we
968 // shouldn't try to apply any sort of splitting logic to them.
969 assert(Regs
.size() == RegVTs
.size() && Regs
.size() == ValueVTs
.size() &&
970 "No 1:1 mapping from clobbers to regs?");
971 unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore();
973 for (unsigned I
= 0, E
= ValueVTs
.size(); I
!= E
; ++I
) {
974 Ops
.push_back(DAG
.getRegister(Regs
[I
], RegVTs
[I
]));
977 DAG
.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978 "If we clobbered the stack pointer, MFI should know about it.");
983 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
984 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
985 MVT RegisterVT
= RegVTs
[Value
];
986 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
987 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
988 unsigned TheReg
= Regs
[Reg
++];
989 Ops
.push_back(DAG
.getRegister(TheReg
, RegisterVT
));
994 SmallVector
<std::pair
<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996 SmallVector
<std::pair
<unsigned, unsigned>, 4> OutVec
;
998 for (auto CountAndVT
: zip_first(RegCount
, RegVTs
)) {
999 unsigned RegCount
= std::get
<0>(CountAndVT
);
1000 MVT RegisterVT
= std::get
<1>(CountAndVT
);
1001 unsigned RegisterSize
= RegisterVT
.getSizeInBits();
1002 for (unsigned E
= I
+ RegCount
; I
!= E
; ++I
)
1003 OutVec
.push_back(std::make_pair(Regs
[I
], RegisterSize
));
1008 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
*aa
,
1009 const TargetLibraryInfo
*li
) {
1013 DL
= &DAG
.getDataLayout();
1014 Context
= DAG
.getContext();
1015 LPadToCallSiteMap
.clear();
1016 SL
->init(DAG
.getTargetLoweringInfo(), TM
, DAG
.getDataLayout());
1019 void SelectionDAGBuilder::clear() {
1021 UnusedArgNodeMap
.clear();
1022 PendingLoads
.clear();
1023 PendingExports
.clear();
1025 HasTailCall
= false;
1026 SDNodeOrder
= LowestSDNodeOrder
;
1027 StatepointLowering
.clear();
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031 DanglingDebugInfoMap
.clear();
1034 SDValue
SelectionDAGBuilder::getRoot() {
1035 if (PendingLoads
.empty())
1036 return DAG
.getRoot();
1038 if (PendingLoads
.size() == 1) {
1039 SDValue Root
= PendingLoads
[0];
1041 PendingLoads
.clear();
1045 // Otherwise, we have to make a token factor node.
1046 SDValue Root
= DAG
.getTokenFactor(getCurSDLoc(), PendingLoads
);
1047 PendingLoads
.clear();
1052 SDValue
SelectionDAGBuilder::getControlRoot() {
1053 SDValue Root
= DAG
.getRoot();
1055 if (PendingExports
.empty())
1058 // Turn all of the CopyToReg chains into one factored node.
1059 if (Root
.getOpcode() != ISD::EntryToken
) {
1060 unsigned i
= 0, e
= PendingExports
.size();
1061 for (; i
!= e
; ++i
) {
1062 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
1063 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
1064 break; // Don't add the root if we already indirectly depend on it.
1068 PendingExports
.push_back(Root
);
1071 Root
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
,
1073 PendingExports
.clear();
1078 void SelectionDAGBuilder::visit(const Instruction
&I
) {
1079 // Set up outgoing PHI node register values before emitting the terminator.
1080 if (I
.isTerminator()) {
1081 HandlePHINodesInSuccessorBlocks(I
.getParent());
1084 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085 if (!isa
<DbgInfoIntrinsic
>(I
))
1090 visit(I
.getOpcode(), I
);
1092 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
)) {
1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094 // maps to this instruction.
1095 // TODO: We could handle all flags (nsw, etc) here.
1096 // TODO: If an IR instruction maps to >1 node, only the final node will have
1098 if (SDNode
*Node
= getNodeForIRValue(&I
)) {
1099 SDNodeFlags IncomingFlags
;
1100 IncomingFlags
.copyFMF(*FPMO
);
1101 if (!Node
->getFlags().isDefined())
1102 Node
->setFlags(IncomingFlags
);
1104 Node
->intersectFlagsWith(IncomingFlags
);
1108 if (!I
.isTerminator() && !HasTailCall
&&
1109 !isStatepoint(&I
)) // statepoints handle their exports internally
1110 CopyToExportRegsIfNeeded(&I
);
1115 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1119 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
1120 // Note: this doesn't use InstVisitor, because it has to work with
1121 // ConstantExpr's in addition to instructions.
1123 default: llvm_unreachable("Unknown instruction type encountered!");
1124 // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable
*Variable
,
1132 const DIExpression
*Expr
) {
1133 auto isMatchingDbgValue
= [&](DanglingDebugInfo
&DDI
) {
1134 const DbgValueInst
*DI
= DDI
.getDI();
1135 DIVariable
*DanglingVariable
= DI
->getVariable();
1136 DIExpression
*DanglingExpr
= DI
->getExpression();
1137 if (DanglingVariable
== Variable
&& Expr
->fragmentsOverlap(DanglingExpr
)) {
1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI
<< "\n");
1144 for (auto &DDIMI
: DanglingDebugInfoMap
) {
1145 DanglingDebugInfoVector
&DDIV
= DDIMI
.second
;
1147 // If debug info is to be dropped, run it through final checks to see
1148 // whether it can be salvaged.
1149 for (auto &DDI
: DDIV
)
1150 if (isMatchingDbgValue(DDI
))
1151 salvageUnresolvedDbgValue(DDI
);
1153 DDIV
.erase(remove_if(DDIV
, isMatchingDbgValue
), DDIV
.end());
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
1161 auto DanglingDbgInfoIt
= DanglingDebugInfoMap
.find(V
);
1162 if (DanglingDbgInfoIt
== DanglingDebugInfoMap
.end())
1165 DanglingDebugInfoVector
&DDIV
= DanglingDbgInfoIt
->second
;
1166 for (auto &DDI
: DDIV
) {
1167 const DbgValueInst
*DI
= DDI
.getDI();
1168 assert(DI
&& "Ill-formed DanglingDebugInfo");
1169 DebugLoc dl
= DDI
.getdl();
1170 unsigned ValSDNodeOrder
= Val
.getNode()->getIROrder();
1171 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
1172 DILocalVariable
*Variable
= DI
->getVariable();
1173 DIExpression
*Expr
= DI
->getExpression();
1174 assert(Variable
->isValidLocationForIntrinsic(dl
) &&
1175 "Expected inlined-at fields to agree");
1177 if (Val
.getNode()) {
1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180 // we couldn't resolve it directly when examining the DbgValue intrinsic
1181 // in the first place we should not be more successful here). Unless we
1182 // have some test case that prove this to be correct we should avoid
1183 // calling EmitFuncArgumentDbgValue here.
1184 if (!EmitFuncArgumentDbgValue(V
, Variable
, Expr
, dl
, false, Val
)) {
1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186 << DbgSDNodeOrder
<< "] for:\n " << *DI
<< "\n");
1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val
.dump());
1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189 // inserted after the definition of Val when emitting the instructions
1190 // after ISel. An alternative could be to teach
1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192 LLVM_DEBUG(if (ValSDNodeOrder
> DbgSDNodeOrder
) dbgs()
1193 << "changing SDNodeOrder from " << DbgSDNodeOrder
<< " to "
1194 << ValSDNodeOrder
<< "\n");
1195 SDV
= getDbgValue(Val
, Variable
, Expr
, dl
,
1196 std::max(DbgSDNodeOrder
, ValSDNodeOrder
));
1197 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200 << "in EmitFuncArgumentDbgValue\n");
1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< "\n");
1204 UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1206 DAG
.getConstantDbgValue(Variable
, Expr
, Undef
, dl
, DbgSDNodeOrder
);
1207 DAG
.AddDbgValue(SDV
, nullptr, false);
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
) {
1214 Value
*V
= DDI
.getDI()->getValue();
1215 DILocalVariable
*Var
= DDI
.getDI()->getVariable();
1216 DIExpression
*Expr
= DDI
.getDI()->getExpression();
1217 DebugLoc DL
= DDI
.getdl();
1218 DebugLoc InstDL
= DDI
.getDI()->getDebugLoc();
1219 unsigned SDOrder
= DDI
.getSDNodeOrder();
1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222 // that DW_OP_stack_value is desired.
1223 assert(isa
<DbgValueInst
>(DDI
.getDI()));
1224 bool StackValue
= true;
1226 // Can this Value can be encoded without any further work?
1227 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
))
1230 // Attempt to salvage back through as many instructions as possible. Bail if
1231 // a non-instruction is seen, such as a constant expression or global
1232 // variable. FIXME: Further work could recover those too.
1233 while (isa
<Instruction
>(V
)) {
1234 Instruction
&VAsInst
= *cast
<Instruction
>(V
);
1235 DIExpression
*NewExpr
= salvageDebugInfoImpl(VAsInst
, Expr
, StackValue
);
1237 // If we cannot salvage any further, and haven't yet found a suitable debug
1238 // expression, bail out.
1242 // New value and expr now represent this debuginfo.
1243 V
= VAsInst
.getOperand(0);
1246 // Some kind of simplification occurred: check whether the operand of the
1247 // salvaged debug expression can be encoded in this DAG.
1248 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
)) {
1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1250 << DDI
.getDI() << "\nBy stripping back to:\n " << V
);
1255 // This was the final opportunity to salvage this debug information, and it
1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257 // any earlier variable location.
1258 auto Undef
= UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1259 auto SDV
= DAG
.getConstantDbgValue(Var
, Expr
, Undef
, DL
, SDNodeOrder
);
1260 DAG
.AddDbgValue(SDV
, nullptr, false);
1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI
.getDI()
1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI
.getDI()->getOperand(0)
1268 bool SelectionDAGBuilder::handleDebugValue(const Value
*V
, DILocalVariable
*Var
,
1269 DIExpression
*Expr
, DebugLoc dl
,
1270 DebugLoc InstDL
, unsigned Order
) {
1271 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1273 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) || isa
<UndefValue
>(V
) ||
1274 isa
<ConstantPointerNull
>(V
)) {
1275 SDV
= DAG
.getConstantDbgValue(Var
, Expr
, V
, dl
, SDNodeOrder
);
1276 DAG
.AddDbgValue(SDV
, nullptr, false);
1280 // If the Value is a frame index, we can create a FrameIndex debug value
1281 // without relying on the DAG at all.
1282 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1283 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1284 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
1286 DAG
.getFrameIndexDbgValue(Var
, Expr
, SI
->second
,
1287 /*IsIndirect*/ false, dl
, SDNodeOrder
);
1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289 // is still available even if the SDNode gets optimized out.
1290 DAG
.AddDbgValue(SDV
, nullptr, false);
1295 // Do not use getValue() in here; we don't want to generate code at
1296 // this point if it hasn't been done yet.
1297 SDValue N
= NodeMap
[V
];
1298 if (!N
.getNode() && isa
<Argument
>(V
)) // Check unused arguments map.
1299 N
= UnusedArgNodeMap
[V
];
1301 if (EmitFuncArgumentDbgValue(V
, Var
, Expr
, dl
, false, N
))
1303 SDV
= getDbgValue(N
, Var
, Expr
, dl
, SDNodeOrder
);
1304 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
1308 // Special rules apply for the first dbg.values of parameter variables in a
1309 // function. Identify them by the fact they reference Argument Values, that
1310 // they're parameters, and they are parameters of the current function. We
1311 // need to let them dangle until they get an SDNode.
1312 bool IsParamOfFunc
= isa
<Argument
>(V
) && Var
->isParameter() &&
1313 !InstDL
.getInlinedAt();
1314 if (!IsParamOfFunc
) {
1315 // The value is not used in this block yet (or it would have an SDNode).
1316 // We still want the value to appear for the user if possible -- if it has
1317 // an associated VReg, we can refer to that instead.
1318 auto VMI
= FuncInfo
.ValueMap
.find(V
);
1319 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1320 unsigned Reg
= VMI
->second
;
1321 // If this is a PHI node, it may be split up into several MI PHI nodes
1322 // (in FunctionLoweringInfo::set).
1323 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
,
1324 V
->getType(), None
);
1325 if (RFV
.occupiesMultipleRegs()) {
1326 unsigned Offset
= 0;
1327 unsigned BitsToDescribe
= 0;
1328 if (auto VarSize
= Var
->getSizeInBits())
1329 BitsToDescribe
= *VarSize
;
1330 if (auto Fragment
= Expr
->getFragmentInfo())
1331 BitsToDescribe
= Fragment
->SizeInBits
;
1332 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
1333 unsigned RegisterSize
= RegAndSize
.second
;
1334 // Bail out if all bits are described already.
1335 if (Offset
>= BitsToDescribe
)
1337 unsigned FragmentSize
= (Offset
+ RegisterSize
> BitsToDescribe
)
1338 ? BitsToDescribe
- Offset
1340 auto FragmentExpr
= DIExpression::createFragmentExpression(
1341 Expr
, Offset
, FragmentSize
);
1344 SDV
= DAG
.getVRegDbgValue(Var
, *FragmentExpr
, RegAndSize
.first
,
1345 false, dl
, SDNodeOrder
);
1346 DAG
.AddDbgValue(SDV
, nullptr, false);
1347 Offset
+= RegisterSize
;
1350 SDV
= DAG
.getVRegDbgValue(Var
, Expr
, Reg
, false, dl
, SDNodeOrder
);
1351 DAG
.AddDbgValue(SDV
, nullptr, false);
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362 for (auto &Pair
: DanglingDebugInfoMap
)
1363 for (auto &DDI
: Pair
.second
)
1364 salvageUnresolvedDbgValue(DDI
);
1365 clearDanglingDebugInfo();
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue
SelectionDAGBuilder::getCopyFromRegs(const Value
*V
, Type
*Ty
) {
1371 DenseMap
<const Value
*, unsigned>::iterator It
= FuncInfo
.ValueMap
.find(V
);
1374 if (It
!= FuncInfo
.ValueMap
.end()) {
1375 unsigned InReg
= It
->second
;
1377 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1378 DAG
.getDataLayout(), InReg
, Ty
,
1379 None
); // This is not an ABI copy.
1380 SDValue Chain
= DAG
.getEntryNode();
1381 Result
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr,
1383 resolveDanglingDebugInfo(V
, Result
);
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
1391 // If we already have an SDValue for this value, use it. It's important
1392 // to do this first, so that we don't create a CopyFromReg if we already
1393 // have a regular SDValue.
1394 SDValue
&N
= NodeMap
[V
];
1395 if (N
.getNode()) return N
;
1397 // If there's a virtual register allocated and initialized for this
1399 if (SDValue copyFromReg
= getCopyFromRegs(V
, V
->getType()))
1402 // Otherwise create a new SDValue and remember it.
1403 SDValue Val
= getValueImpl(V
);
1405 resolveDanglingDebugInfo(V
, Val
);
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value
*V
) const {
1411 return (NodeMap
.find(V
) != NodeMap
.end()) ||
1412 (FuncInfo
.ValueMap
.find(V
) != FuncInfo
.ValueMap
.end());
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
1418 // If we already have an SDValue for this value, use it.
1419 SDValue
&N
= NodeMap
[V
];
1421 if (isa
<ConstantSDNode
>(N
) || isa
<ConstantFPSDNode
>(N
)) {
1422 // Remove the debug location from the node as the node is about to be used
1423 // in a location which may differ from the original debug location. This
1424 // is relevant to Constant and ConstantFP nodes because they can appear
1425 // as constant expressions inside PHI nodes.
1426 N
->setDebugLoc(DebugLoc());
1431 // Otherwise create a new SDValue and remember it.
1432 SDValue Val
= getValueImpl(V
);
1434 resolveDanglingDebugInfo(V
, Val
);
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1441 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1443 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1444 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), V
->getType(), true);
1446 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1447 return DAG
.getConstant(*CI
, getCurSDLoc(), VT
);
1449 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1450 return DAG
.getGlobalAddress(GV
, getCurSDLoc(), VT
);
1452 if (isa
<ConstantPointerNull
>(C
)) {
1453 unsigned AS
= V
->getType()->getPointerAddressSpace();
1454 return DAG
.getConstant(0, getCurSDLoc(),
1455 TLI
.getPointerTy(DAG
.getDataLayout(), AS
));
1458 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1459 return DAG
.getConstantFP(*CFP
, getCurSDLoc(), VT
);
1461 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1462 return DAG
.getUNDEF(VT
);
1464 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1465 visit(CE
->getOpcode(), *CE
);
1466 SDValue N1
= NodeMap
[V
];
1467 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1471 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1472 SmallVector
<SDValue
, 4> Constants
;
1473 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
1475 SDNode
*Val
= getValue(*OI
).getNode();
1476 // If the operand is an empty aggregate, there are no values.
1478 // Add each leaf value from the operand to the Constants list
1479 // to form a flattened list of all the values.
1480 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1481 Constants
.push_back(SDValue(Val
, i
));
1484 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1487 if (const ConstantDataSequential
*CDS
=
1488 dyn_cast
<ConstantDataSequential
>(C
)) {
1489 SmallVector
<SDValue
, 4> Ops
;
1490 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
1491 SDNode
*Val
= getValue(CDS
->getElementAsConstant(i
)).getNode();
1492 // Add each leaf value from the operand to the Constants list
1493 // to form a flattened list of all the values.
1494 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1495 Ops
.push_back(SDValue(Val
, i
));
1498 if (isa
<ArrayType
>(CDS
->getType()))
1499 return DAG
.getMergeValues(Ops
, getCurSDLoc());
1500 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1503 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1504 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1505 "Unknown struct or array constant!");
1507 SmallVector
<EVT
, 4> ValueVTs
;
1508 ComputeValueVTs(TLI
, DAG
.getDataLayout(), C
->getType(), ValueVTs
);
1509 unsigned NumElts
= ValueVTs
.size();
1511 return SDValue(); // empty struct
1512 SmallVector
<SDValue
, 4> Constants(NumElts
);
1513 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1514 EVT EltVT
= ValueVTs
[i
];
1515 if (isa
<UndefValue
>(C
))
1516 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1517 else if (EltVT
.isFloatingPoint())
1518 Constants
[i
] = DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1520 Constants
[i
] = DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1523 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1526 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1527 return DAG
.getBlockAddress(BA
, VT
);
1529 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1530 unsigned NumElements
= VecTy
->getNumElements();
1532 // Now that we know the number and type of the elements, get that number of
1533 // elements into the Ops array based on what kind of constant it is.
1534 SmallVector
<SDValue
, 16> Ops
;
1535 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
1536 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1537 Ops
.push_back(getValue(CV
->getOperand(i
)));
1539 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
1541 TLI
.getValueType(DAG
.getDataLayout(), VecTy
->getElementType());
1544 if (EltVT
.isFloatingPoint())
1545 Op
= DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1547 Op
= DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1548 Ops
.assign(NumElements
, Op
);
1551 // Create a BUILD_VECTOR node.
1552 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1555 // If this is a static alloca, generate it as the frameindex instead of
1557 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1558 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1559 FuncInfo
.StaticAllocaMap
.find(AI
);
1560 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1561 return DAG
.getFrameIndex(SI
->second
,
1562 TLI
.getFrameIndexTy(DAG
.getDataLayout()));
1565 // If this is an instruction which fast-isel has deferred, select it now.
1566 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1567 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1569 RegsForValue
RFV(*DAG
.getContext(), TLI
, DAG
.getDataLayout(), InReg
,
1570 Inst
->getType(), getABIRegCopyCC(V
));
1571 SDValue Chain
= DAG
.getEntryNode();
1572 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr, V
);
1575 llvm_unreachable("Can't get register for value!");
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst
&I
) {
1579 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1580 bool IsMSVCCXX
= Pers
== EHPersonality::MSVC_CXX
;
1581 bool IsCoreCLR
= Pers
== EHPersonality::CoreCLR
;
1582 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1583 bool IsWasmCXX
= Pers
== EHPersonality::Wasm_CXX
;
1584 MachineBasicBlock
*CatchPadMBB
= FuncInfo
.MBB
;
1586 CatchPadMBB
->setIsEHScopeEntry();
1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588 if (IsMSVCCXX
|| IsCoreCLR
)
1589 CatchPadMBB
->setIsEHFuncletEntry();
1590 // Wasm does not need catchpads anymore
1592 DAG
.setRoot(DAG
.getNode(ISD::CATCHPAD
, getCurSDLoc(), MVT::Other
,
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst
&I
) {
1597 // Update machine-CFG edge.
1598 MachineBasicBlock
*TargetMBB
= FuncInfo
.MBBMap
[I
.getSuccessor()];
1599 FuncInfo
.MBB
->addSuccessor(TargetMBB
);
1601 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1602 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1604 // If this is not a fall-through branch or optimizations are switched off,
1606 if (TargetMBB
!= NextBlock(FuncInfo
.MBB
) ||
1607 TM
.getOptLevel() == CodeGenOpt::None
)
1608 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
1609 getControlRoot(), DAG
.getBasicBlock(TargetMBB
)));
1613 // Figure out the funclet membership for the catchret's successor.
1614 // This will be used by the FuncletLayout pass to determine how to order the
1616 // A 'catchret' returns to the outer scope's color.
1617 Value
*ParentPad
= I
.getCatchSwitchParentPad();
1618 const BasicBlock
*SuccessorColor
;
1619 if (isa
<ConstantTokenNone
>(ParentPad
))
1620 SuccessorColor
= &FuncInfo
.Fn
->getEntryBlock();
1622 SuccessorColor
= cast
<Instruction
>(ParentPad
)->getParent();
1623 assert(SuccessorColor
&& "No parent funclet for catchret!");
1624 MachineBasicBlock
*SuccessorColorMBB
= FuncInfo
.MBBMap
[SuccessorColor
];
1625 assert(SuccessorColorMBB
&& "No MBB for SuccessorColor!");
1627 // Create the terminator node.
1628 SDValue Ret
= DAG
.getNode(ISD::CATCHRET
, getCurSDLoc(), MVT::Other
,
1629 getControlRoot(), DAG
.getBasicBlock(TargetMBB
),
1630 DAG
.getBasicBlock(SuccessorColorMBB
));
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst
&CPI
) {
1635 // Don't emit any special code for the cleanuppad instruction. It just marks
1636 // the start of an EH scope/funclet.
1637 FuncInfo
.MBB
->setIsEHScopeEntry();
1638 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1639 if (Pers
!= EHPersonality::Wasm_CXX
) {
1640 FuncInfo
.MBB
->setIsEHFuncletEntry();
1641 FuncInfo
.MBB
->setIsCleanupFuncletEntry();
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1651 BranchProbability Prob
,
1652 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1655 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1656 if (isa
<CleanupPadInst
>(Pad
)) {
1657 // Stop on cleanup pads.
1658 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1659 UnwindDests
.back().first
->setIsEHScopeEntry();
1661 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1662 // Add the catchpad handlers to the possible destinations. We don't
1663 // continue to the unwind destination of the catchswitch for wasm.
1664 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1665 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1666 UnwindDests
.back().first
->setIsEHScopeEntry();
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1685 BranchProbability Prob
,
1686 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1688 EHPersonality Personality
=
1689 classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1690 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
1691 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
1692 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
1693 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
1696 findWasmUnwindDestinations(FuncInfo
, EHPadBB
, Prob
, UnwindDests
);
1697 assert(UnwindDests
.size() <= 1 &&
1698 "There should be at most one unwind destination for wasm");
1703 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1704 BasicBlock
*NewEHPadBB
= nullptr;
1705 if (isa
<LandingPadInst
>(Pad
)) {
1706 // Stop on landingpads. They are not funclets.
1707 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1709 } else if (isa
<CleanupPadInst
>(Pad
)) {
1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1712 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1713 UnwindDests
.back().first
->setIsEHScopeEntry();
1714 UnwindDests
.back().first
->setIsEHFuncletEntry();
1716 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1717 // Add the catchpad handlers to the possible destinations.
1718 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1719 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721 if (IsMSVCCXX
|| IsCoreCLR
)
1722 UnwindDests
.back().first
->setIsEHFuncletEntry();
1724 UnwindDests
.back().first
->setIsEHScopeEntry();
1726 NewEHPadBB
= CatchSwitch
->getUnwindDest();
1731 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1732 if (BPI
&& NewEHPadBB
)
1733 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
1734 EHPadBB
= NewEHPadBB
;
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst
&I
) {
1739 // Update successor info.
1740 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
1741 auto UnwindDest
= I
.getUnwindDest();
1742 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1743 BranchProbability UnwindDestProb
=
1745 ? BPI
->getEdgeProbability(FuncInfo
.MBB
->getBasicBlock(), UnwindDest
)
1746 : BranchProbability::getZero();
1747 findUnwindDestinations(FuncInfo
, UnwindDest
, UnwindDestProb
, UnwindDests
);
1748 for (auto &UnwindDest
: UnwindDests
) {
1749 UnwindDest
.first
->setIsEHPad();
1750 addSuccessorWithProb(FuncInfo
.MBB
, UnwindDest
.first
, UnwindDest
.second
);
1752 FuncInfo
.MBB
->normalizeSuccProbs();
1754 // Create the terminator node.
1756 DAG
.getNode(ISD::CLEANUPRET
, getCurSDLoc(), MVT::Other
, getControlRoot());
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst
&CSI
) {
1761 report_fatal_error("visitCatchSwitch not yet implemented!");
1764 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1765 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1766 auto &DL
= DAG
.getDataLayout();
1767 SDValue Chain
= getControlRoot();
1768 SmallVector
<ISD::OutputArg
, 8> Outs
;
1769 SmallVector
<SDValue
, 8> OutVals
;
1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1774 // %val = call <ty> @llvm.experimental.deoptimize()
1778 if (I
.getParent()->getTerminatingDeoptimizeCall()) {
1779 LowerDeoptimizingReturn();
1783 if (!FuncInfo
.CanLowerReturn
) {
1784 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1785 const Function
*F
= I
.getParent()->getParent();
1787 // Emit a store of the return value through the virtual register.
1788 // Leave Outs empty so that LowerReturn won't try to load return
1789 // registers the usual way.
1790 SmallVector
<EVT
, 1> PtrValueVTs
;
1791 ComputeValueVTs(TLI
, DL
,
1792 F
->getReturnType()->getPointerTo(
1793 DAG
.getDataLayout().getAllocaAddrSpace()),
1796 SDValue RetPtr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(),
1797 DemoteReg
, PtrValueVTs
[0]);
1798 SDValue RetOp
= getValue(I
.getOperand(0));
1800 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
1801 SmallVector
<uint64_t, 4> Offsets
;
1802 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
, &MemVTs
,
1804 unsigned NumValues
= ValueVTs
.size();
1806 SmallVector
<SDValue
, 4> Chains(NumValues
);
1807 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1808 // An aggregate return value cannot wrap around the address space, so
1809 // offsets to its parts don't wrap either.
1810 SDValue Ptr
= DAG
.getObjectPtrOffset(getCurSDLoc(), RetPtr
, Offsets
[i
]);
1812 SDValue Val
= RetOp
.getValue(RetOp
.getResNo() + i
);
1813 if (MemVTs
[i
] != ValueVTs
[i
])
1814 Val
= DAG
.getPtrExtOrTrunc(Val
, getCurSDLoc(), MemVTs
[i
]);
1815 Chains
[i
] = DAG
.getStore(Chain
, getCurSDLoc(), Val
,
1816 // FIXME: better loc info would be nice.
1817 Ptr
, MachinePointerInfo::getUnknownStack(DAG
.getMachineFunction()));
1820 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(),
1821 MVT::Other
, Chains
);
1822 } else if (I
.getNumOperands() != 0) {
1823 SmallVector
<EVT
, 4> ValueVTs
;
1824 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
);
1825 unsigned NumValues
= ValueVTs
.size();
1827 SDValue RetOp
= getValue(I
.getOperand(0));
1829 const Function
*F
= I
.getParent()->getParent();
1831 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
1832 I
.getOperand(0)->getType(), F
->getCallingConv(),
1833 /*IsVarArg*/ false);
1835 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1836 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1838 ExtendKind
= ISD::SIGN_EXTEND
;
1839 else if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1841 ExtendKind
= ISD::ZERO_EXTEND
;
1843 LLVMContext
&Context
= F
->getContext();
1844 bool RetInReg
= F
->getAttributes().hasAttribute(
1845 AttributeList::ReturnIndex
, Attribute::InReg
);
1847 for (unsigned j
= 0; j
!= NumValues
; ++j
) {
1848 EVT VT
= ValueVTs
[j
];
1850 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1851 VT
= TLI
.getTypeForExtReturn(Context
, VT
, ExtendKind
);
1853 CallingConv::ID CC
= F
->getCallingConv();
1855 unsigned NumParts
= TLI
.getNumRegistersForCallingConv(Context
, CC
, VT
);
1856 MVT PartVT
= TLI
.getRegisterTypeForCallingConv(Context
, CC
, VT
);
1857 SmallVector
<SDValue
, 4> Parts(NumParts
);
1858 getCopyToParts(DAG
, getCurSDLoc(),
1859 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1860 &Parts
[0], NumParts
, PartVT
, &I
, CC
, ExtendKind
);
1862 // 'inreg' on function refers to return value
1863 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1867 if (I
.getOperand(0)->getType()->isPointerTy()) {
1869 Flags
.setPointerAddrSpace(
1870 cast
<PointerType
>(I
.getOperand(0)->getType())->getAddressSpace());
1873 if (NeedsRegBlock
) {
1874 Flags
.setInConsecutiveRegs();
1875 if (j
== NumValues
- 1)
1876 Flags
.setInConsecutiveRegsLast();
1879 // Propagate extension type if any
1880 if (ExtendKind
== ISD::SIGN_EXTEND
)
1882 else if (ExtendKind
== ISD::ZERO_EXTEND
)
1885 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1886 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1887 VT
, /*isfixed=*/true, 0, 0));
1888 OutVals
.push_back(Parts
[i
]);
1894 // Push in swifterror virtual register as the last element of Outs. This makes
1895 // sure swifterror virtual register will be returned in the swifterror
1896 // physical register.
1897 const Function
*F
= I
.getParent()->getParent();
1898 if (TLI
.supportSwiftError() &&
1899 F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
)) {
1900 assert(SwiftError
.getFunctionArg() && "Need a swift error argument");
1901 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1902 Flags
.setSwiftError();
1903 Outs
.push_back(ISD::OutputArg(Flags
, EVT(TLI
.getPointerTy(DL
)) /*vt*/,
1904 EVT(TLI
.getPointerTy(DL
)) /*argvt*/,
1905 true /*isfixed*/, 1 /*origidx*/,
1907 // Create SDNode for the swifterror virtual register.
1909 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(
1910 &I
, FuncInfo
.MBB
, SwiftError
.getFunctionArg()),
1911 EVT(TLI
.getPointerTy(DL
))));
1914 bool isVarArg
= DAG
.getMachineFunction().getFunction().isVarArg();
1915 CallingConv::ID CallConv
=
1916 DAG
.getMachineFunction().getFunction().getCallingConv();
1917 Chain
= DAG
.getTargetLoweringInfo().LowerReturn(
1918 Chain
, CallConv
, isVarArg
, Outs
, OutVals
, getCurSDLoc(), DAG
);
1920 // Verify that the target's LowerReturn behaved as expected.
1921 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1922 "LowerReturn didn't return a valid chain!");
1924 // Update the DAG with the new chain value resulting from return lowering.
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1933 if (V
->getType()->isEmptyTy())
1936 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1937 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1938 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1939 CopyValueToVirtualRegister(V
, VMI
->second
);
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1947 // No need to export constants.
1948 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1950 // Already exported?
1951 if (FuncInfo
.isExportedInst(V
)) return;
1953 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1954 CopyValueToVirtualRegister(V
, Reg
);
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1958 const BasicBlock
*FromBB
) {
1959 // The operands of the setcc have to be in this block. We don't know
1960 // how to export them from some other block.
1961 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1962 // Can export from current BB.
1963 if (VI
->getParent() == FromBB
)
1966 // Is already exported, noop.
1967 return FuncInfo
.isExportedInst(V
);
1970 // If this is an argument, we can export it if the BB is the entry block or
1971 // if it is already exported.
1972 if (isa
<Argument
>(V
)) {
1973 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1976 // Otherwise, can only export this if it is already exported.
1977 return FuncInfo
.isExportedInst(V
);
1980 // Otherwise, constants can always be exported.
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock
*Src
,
1987 const MachineBasicBlock
*Dst
) const {
1988 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1989 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
1990 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
1992 // If BPI is not available, set the default probability as 1 / N, where N is
1993 // the number of successors.
1994 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
1995 return BranchProbability(1, SuccSize
);
1997 return BPI
->getEdgeProbability(SrcBB
, DstBB
);
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock
*Src
,
2001 MachineBasicBlock
*Dst
,
2002 BranchProbability Prob
) {
2004 Src
->addSuccessorWithoutProb(Dst
);
2006 if (Prob
.isUnknown())
2007 Prob
= getEdgeProbability(Src
, Dst
);
2008 Src
->addSuccessor(Dst
, Prob
);
2012 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
2013 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
2014 return I
->getParent() == BB
;
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
2023 MachineBasicBlock
*TBB
,
2024 MachineBasicBlock
*FBB
,
2025 MachineBasicBlock
*CurBB
,
2026 MachineBasicBlock
*SwitchBB
,
2027 BranchProbability TProb
,
2028 BranchProbability FProb
,
2030 const BasicBlock
*BB
= CurBB
->getBasicBlock();
2032 // If the leaf of the tree is a comparison, merge the condition into
2034 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
2035 // The operands of the cmp have to be in this block. We don't know
2036 // how to export them from some other block. If this is the first block
2037 // of the sequence, no exporting is needed.
2038 if (CurBB
== SwitchBB
||
2039 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
2040 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
2041 ISD::CondCode Condition
;
2042 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
2043 ICmpInst::Predicate Pred
=
2044 InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
2045 Condition
= getICmpCondCode(Pred
);
2047 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
2048 FCmpInst::Predicate Pred
=
2049 InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
2050 Condition
= getFCmpCondCode(Pred
);
2051 if (TM
.Options
.NoNaNsFPMath
)
2052 Condition
= getFCmpCodeWithoutNaN(Condition
);
2055 CaseBlock
CB(Condition
, BOp
->getOperand(0), BOp
->getOperand(1), nullptr,
2056 TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2057 SL
->SwitchCases
.push_back(CB
);
2062 // Create a CaseBlock record representing this branch.
2063 ISD::CondCode Opc
= InvertCond
? ISD::SETNE
: ISD::SETEQ
;
2064 CaseBlock
CB(Opc
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
2065 nullptr, TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2066 SL
->SwitchCases
.push_back(CB
);
2069 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
2070 MachineBasicBlock
*TBB
,
2071 MachineBasicBlock
*FBB
,
2072 MachineBasicBlock
*CurBB
,
2073 MachineBasicBlock
*SwitchBB
,
2074 Instruction::BinaryOps Opc
,
2075 BranchProbability TProb
,
2076 BranchProbability FProb
,
2078 // Skip over not part of the tree and remember to invert op and operands at
2081 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
2082 InBlock(NotCond
, CurBB
->getBasicBlock())) {
2083 FindMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
2088 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
2089 // Compute the effective opcode for Cond, taking into account whether it needs
2090 // to be inverted, e.g.
2091 // and (not (or A, B)), C
2093 // and (and (not A, not B), C)
2096 BOpc
= BOp
->getOpcode();
2098 if (BOpc
== Instruction::And
)
2099 BOpc
= Instruction::Or
;
2100 else if (BOpc
== Instruction::Or
)
2101 BOpc
= Instruction::And
;
2105 // If this node is not part of the or/and tree, emit it as a branch.
2106 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
2107 BOpc
!= unsigned(Opc
) || !BOp
->hasOneUse() ||
2108 BOp
->getParent() != CurBB
->getBasicBlock() ||
2109 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
2110 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
2111 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
,
2112 TProb
, FProb
, InvertCond
);
2116 // Create TmpBB after CurBB.
2117 MachineFunction::iterator
BBI(CurBB
);
2118 MachineFunction
&MF
= DAG
.getMachineFunction();
2119 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
2120 CurBB
->getParent()->insert(++BBI
, TmpBB
);
2122 if (Opc
== Instruction::Or
) {
2123 // Codegen X | Y as:
2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133 // The requirement is that
2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135 // = TrueProb for original BB.
2136 // Assuming the original probabilities are A and B, one choice is to set
2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138 // A/(1+B) and 2B/(1+B). This choice assumes that
2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141 // TmpBB, but the math is more complicated.
2143 auto NewTrueProb
= TProb
/ 2;
2144 auto NewFalseProb
= TProb
/ 2 + FProb
;
2145 // Emit the LHS condition.
2146 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
,
2147 NewTrueProb
, NewFalseProb
, InvertCond
);
2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
2151 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2152 // Emit the RHS condition into TmpBB.
2153 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2154 Probs
[0], Probs
[1], InvertCond
);
2156 assert(Opc
== Instruction::And
&& "Unknown merge op!");
2157 // Codegen X & Y as:
2165 // This requires creation of TmpBB after CurBB.
2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168 // The requirement is that
2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170 // = FalseProb for original BB.
2171 // Assuming the original probabilities are A and B, one choice is to set
2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174 // TrueProb for BB1 * FalseProb for TmpBB.
2176 auto NewTrueProb
= TProb
+ FProb
/ 2;
2177 auto NewFalseProb
= FProb
/ 2;
2178 // Emit the LHS condition.
2179 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
,
2180 NewTrueProb
, NewFalseProb
, InvertCond
);
2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
2184 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2185 // Emit the RHS condition into TmpBB.
2186 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2187 Probs
[0], Probs
[1], InvertCond
);
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
) {
2196 if (Cases
.size() != 2) return true;
2198 // If this is two comparisons of the same values or'd or and'd together, they
2199 // will get folded into a single comparison, so don't emit two blocks.
2200 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
2201 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
2202 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
2203 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
2210 Cases
[0].CC
== Cases
[1].CC
&&
2211 isa
<Constant
>(Cases
[0].CmpRHS
) &&
2212 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
2213 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
2215 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
2222 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
2223 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
2225 // Update machine-CFG edges.
2226 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2228 if (I
.isUnconditional()) {
2229 // Update machine-CFG edges.
2230 BrMBB
->addSuccessor(Succ0MBB
);
2232 // If this is not a fall-through branch or optimizations are switched off,
2234 if (Succ0MBB
!= NextBlock(BrMBB
) || TM
.getOptLevel() == CodeGenOpt::None
)
2235 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2236 MVT::Other
, getControlRoot(),
2237 DAG
.getBasicBlock(Succ0MBB
)));
2242 // If this condition is one of the special cases we handle, do special stuff
2244 const Value
*CondVal
= I
.getCondition();
2245 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
2247 // If this is a series of conditions that are or'd or and'd together, emit
2248 // this as a sequence of branches instead of setcc's with and/or operations.
2249 // As long as jumps are not expensive, this should improve performance.
2250 // For example, instead of something like:
2262 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
2263 Instruction::BinaryOps Opcode
= BOp
->getOpcode();
2264 if (!DAG
.getTargetLoweringInfo().isJumpExpensive() && BOp
->hasOneUse() &&
2265 !I
.hasMetadata(LLVMContext::MD_unpredictable
) &&
2266 (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
)) {
2267 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
2269 getEdgeProbability(BrMBB
, Succ0MBB
),
2270 getEdgeProbability(BrMBB
, Succ1MBB
),
2271 /*InvertCond=*/false);
2272 // If the compares in later blocks need to use values not currently
2273 // exported from this block, export them now. This block should always
2274 // be the first entry.
2275 assert(SL
->SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
2277 // Allow some cases to be rejected.
2278 if (ShouldEmitAsBranches(SL
->SwitchCases
)) {
2279 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
) {
2280 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpLHS
);
2281 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpRHS
);
2284 // Emit the branch for this block.
2285 visitSwitchCase(SL
->SwitchCases
[0], BrMBB
);
2286 SL
->SwitchCases
.erase(SL
->SwitchCases
.begin());
2290 // Okay, we decided not to do this, remove any inserted MBB's and clear
2292 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
)
2293 FuncInfo
.MF
->erase(SL
->SwitchCases
[i
].ThisBB
);
2295 SL
->SwitchCases
.clear();
2299 // Create a CaseBlock record representing this branch.
2300 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
2301 nullptr, Succ0MBB
, Succ1MBB
, BrMBB
, getCurSDLoc());
2303 // Use visitSwitchCase to actually insert the fast branch sequence for this
2305 visitSwitchCase(CB
, BrMBB
);
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
2311 MachineBasicBlock
*SwitchBB
) {
2313 SDValue CondLHS
= getValue(CB
.CmpLHS
);
2316 if (CB
.CC
== ISD::SETTRUE
) {
2317 // Branch or fall through to TrueBB.
2318 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2319 SwitchBB
->normalizeSuccProbs();
2320 if (CB
.TrueBB
!= NextBlock(SwitchBB
)) {
2321 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, getControlRoot(),
2322 DAG
.getBasicBlock(CB
.TrueBB
)));
2327 auto &TLI
= DAG
.getTargetLoweringInfo();
2328 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), CB
.CmpLHS
->getType());
2330 // Build the setcc now.
2332 // Fold "(X == true)" to X and "(X == false)" to !X to
2333 // handle common cases produced by branch lowering.
2334 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
2335 CB
.CC
== ISD::SETEQ
)
2337 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
2338 CB
.CC
== ISD::SETEQ
) {
2339 SDValue True
= DAG
.getConstant(1, dl
, CondLHS
.getValueType());
2340 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
2342 SDValue CondRHS
= getValue(CB
.CmpRHS
);
2344 // If a pointer's DAG type is larger than its memory type then the DAG
2345 // values are zero-extended. This breaks signed comparisons so truncate
2346 // back to the underlying type before doing the compare.
2347 if (CondLHS
.getValueType() != MemVT
) {
2348 CondLHS
= DAG
.getPtrExtOrTrunc(CondLHS
, getCurSDLoc(), MemVT
);
2349 CondRHS
= DAG
.getPtrExtOrTrunc(CondRHS
, getCurSDLoc(), MemVT
);
2351 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, CondRHS
, CB
.CC
);
2354 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
2356 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
2357 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
2359 SDValue CmpOp
= getValue(CB
.CmpMHS
);
2360 EVT VT
= CmpOp
.getValueType();
2362 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
2363 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, dl
, VT
),
2366 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
2367 VT
, CmpOp
, DAG
.getConstant(Low
, dl
, VT
));
2368 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
2369 DAG
.getConstant(High
-Low
, dl
, VT
), ISD::SETULE
);
2373 // Update successor info
2374 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2375 // TrueBB and FalseBB are always different unless the incoming IR is
2376 // degenerate. This only happens when running llc on weird IR.
2377 if (CB
.TrueBB
!= CB
.FalseBB
)
2378 addSuccessorWithProb(SwitchBB
, CB
.FalseBB
, CB
.FalseProb
);
2379 SwitchBB
->normalizeSuccProbs();
2381 // If the lhs block is the next block, invert the condition so that we can
2382 // fall through to the lhs instead of the rhs block.
2383 if (CB
.TrueBB
== NextBlock(SwitchBB
)) {
2384 std::swap(CB
.TrueBB
, CB
.FalseBB
);
2385 SDValue True
= DAG
.getConstant(1, dl
, Cond
.getValueType());
2386 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
2389 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2390 MVT::Other
, getControlRoot(), Cond
,
2391 DAG
.getBasicBlock(CB
.TrueBB
));
2393 // Insert the false branch. Do this even if it's a fall through branch,
2394 // this makes it easier to do DAG optimizations which require inverting
2395 // the branch condition.
2396 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2397 DAG
.getBasicBlock(CB
.FalseBB
));
2399 DAG
.setRoot(BrCond
);
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable
&JT
) {
2404 // Emit the code for the jump table
2405 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
2406 EVT PTy
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2407 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2409 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
2410 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurSDLoc(),
2411 MVT::Other
, Index
.getValue(1),
2413 DAG
.setRoot(BrJumpTable
);
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable
&JT
,
2419 JumpTableHeader
&JTH
,
2420 MachineBasicBlock
*SwitchBB
) {
2421 SDLoc dl
= getCurSDLoc();
2423 // Subtract the lowest switch case value from the value being switched on.
2424 SDValue SwitchOp
= getValue(JTH
.SValue
);
2425 EVT VT
= SwitchOp
.getValueType();
2426 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2427 DAG
.getConstant(JTH
.First
, dl
, VT
));
2429 // The SDNode we just created, which holds the value being switched on minus
2430 // the smallest case value, needs to be copied to a virtual register so it
2431 // can be used as an index into the jump table in a subsequent basic block.
2432 // This value may be smaller or larger than the target's pointer type, and
2433 // therefore require extension or truncating.
2434 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2435 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2437 unsigned JumpTableReg
=
2438 FuncInfo
.CreateReg(TLI
.getPointerTy(DAG
.getDataLayout()));
2439 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
,
2440 JumpTableReg
, SwitchOp
);
2441 JT
.Reg
= JumpTableReg
;
2443 if (!JTH
.OmitRangeCheck
) {
2444 // Emit the range check for the jump table, and branch to the default block
2445 // for the switch statement if the value being switched on exceeds the
2446 // largest case in the switch.
2447 SDValue CMP
= DAG
.getSetCC(
2448 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2449 Sub
.getValueType()),
2450 Sub
, DAG
.getConstant(JTH
.Last
- JTH
.First
, dl
, VT
), ISD::SETUGT
);
2452 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2453 MVT::Other
, CopyTo
, CMP
,
2454 DAG
.getBasicBlock(JT
.Default
));
2456 // Avoid emitting unnecessary branches to the next block.
2457 if (JT
.MBB
!= NextBlock(SwitchBB
))
2458 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2459 DAG
.getBasicBlock(JT
.MBB
));
2461 DAG
.setRoot(BrCond
);
2463 // Avoid emitting unnecessary branches to the next block.
2464 if (JT
.MBB
!= NextBlock(SwitchBB
))
2465 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, CopyTo
,
2466 DAG
.getBasicBlock(JT
.MBB
)));
2468 DAG
.setRoot(CopyTo
);
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue
getLoadStackGuard(SelectionDAG
&DAG
, const SDLoc
&DL
,
2476 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2477 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2478 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2479 MachineFunction
&MF
= DAG
.getMachineFunction();
2480 Value
*Global
= TLI
.getSDagStackGuard(*MF
.getFunction().getParent());
2481 MachineSDNode
*Node
=
2482 DAG
.getMachineNode(TargetOpcode::LOAD_STACK_GUARD
, DL
, PtrTy
, Chain
);
2484 MachinePointerInfo
MPInfo(Global
);
2485 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
2486 MachineMemOperand::MODereferenceable
;
2487 MachineMemOperand
*MemRef
= MF
.getMachineMemOperand(
2488 MPInfo
, Flags
, PtrTy
.getSizeInBits() / 8, DAG
.getEVTAlignment(PtrTy
));
2489 DAG
.setNodeMemRefs(Node
, {MemRef
});
2491 if (PtrTy
!= PtrMemTy
)
2492 return DAG
.getPtrExtOrTrunc(SDValue(Node
, 0), DL
, PtrMemTy
);
2493 return SDValue(Node
, 0);
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
2503 MachineBasicBlock
*ParentBB
) {
2505 // First create the loads to the guard/stack slot for the comparison.
2506 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2507 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2508 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2510 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
2511 int FI
= MFI
.getStackProtectorIndex();
2514 SDLoc dl
= getCurSDLoc();
2515 SDValue StackSlotPtr
= DAG
.getFrameIndex(FI
, PtrTy
);
2516 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
2517 unsigned Align
= DL
->getPrefTypeAlignment(Type::getInt8PtrTy(M
.getContext()));
2519 // Generate code to load the content of the guard slot.
2520 SDValue GuardVal
= DAG
.getLoad(
2521 PtrMemTy
, dl
, DAG
.getEntryNode(), StackSlotPtr
,
2522 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), Align
,
2523 MachineMemOperand::MOVolatile
);
2525 if (TLI
.useStackGuardXorFP())
2526 GuardVal
= TLI
.emitStackGuardXorFP(DAG
, GuardVal
, dl
);
2528 // Retrieve guard check function, nullptr if instrumentation is inlined.
2529 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
2530 // The target provides a guard check function to validate the guard value.
2531 // Generate a call to that function with the content of the guard slot as
2533 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
2534 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
2536 TargetLowering::ArgListTy Args
;
2537 TargetLowering::ArgListEntry Entry
;
2538 Entry
.Node
= GuardVal
;
2539 Entry
.Ty
= FnTy
->getParamType(0);
2540 if (GuardCheckFn
->hasAttribute(1, Attribute::AttrKind::InReg
))
2541 Entry
.IsInReg
= true;
2542 Args
.push_back(Entry
);
2544 TargetLowering::CallLoweringInfo
CLI(DAG
);
2545 CLI
.setDebugLoc(getCurSDLoc())
2546 .setChain(DAG
.getEntryNode())
2547 .setCallee(GuardCheckFn
->getCallingConv(), FnTy
->getReturnType(),
2548 getValue(GuardCheckFn
), std::move(Args
));
2550 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
2551 DAG
.setRoot(Result
.second
);
2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556 // Otherwise, emit a volatile load to retrieve the stack guard value.
2557 SDValue Chain
= DAG
.getEntryNode();
2558 if (TLI
.useLoadStackGuardNode()) {
2559 Guard
= getLoadStackGuard(DAG
, dl
, Chain
);
2561 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
2562 SDValue GuardPtr
= getValue(IRGuard
);
2564 Guard
= DAG
.getLoad(PtrMemTy
, dl
, Chain
, GuardPtr
,
2565 MachinePointerInfo(IRGuard
, 0), Align
,
2566 MachineMemOperand::MOVolatile
);
2569 // Perform the comparison via a subtract/getsetcc.
2570 EVT VT
= Guard
.getValueType();
2571 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Guard
, GuardVal
);
2573 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(),
2575 Sub
.getValueType()),
2576 Sub
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579 // branch to failure MBB.
2580 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2581 MVT::Other
, GuardVal
.getOperand(0),
2582 Cmp
, DAG
.getBasicBlock(SPD
.getFailureMBB()));
2583 // Otherwise branch to success MBB.
2584 SDValue Br
= DAG
.getNode(ISD::BR
, dl
,
2586 DAG
.getBasicBlock(SPD
.getSuccessMBB()));
2591 /// Codegen the failure basic block for a stack protector check.
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
) {
2601 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2602 TargetLowering::MakeLibCallOptions CallOptions
;
2603 CallOptions
.setDiscardResult(true);
2605 TLI
.makeLibCall(DAG
, RTLIB::STACKPROTECTOR_CHECK_FAIL
, MVT::isVoid
,
2606 None
, CallOptions
, getCurSDLoc()).second
;
2607 // On PS4, the "return address" must still be within the calling function,
2608 // even if it's at the very end, so emit an explicit TRAP here.
2609 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610 if (TM
.getTargetTriple().isPS4CPU())
2611 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
2619 MachineBasicBlock
*SwitchBB
) {
2620 SDLoc dl
= getCurSDLoc();
2622 // Subtract the minimum value
2623 SDValue SwitchOp
= getValue(B
.SValue
);
2624 EVT VT
= SwitchOp
.getValueType();
2625 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2626 DAG
.getConstant(B
.First
, dl
, VT
));
2629 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2630 SDValue RangeCmp
= DAG
.getSetCC(
2631 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2632 Sub
.getValueType()),
2633 Sub
, DAG
.getConstant(B
.Range
, dl
, VT
), ISD::SETUGT
);
2635 // Determine the type of the test operands.
2636 bool UsePtrType
= false;
2637 if (!TLI
.isTypeLegal(VT
))
2640 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
2641 if (!isUIntN(VT
.getSizeInBits(), B
.Cases
[i
].Mask
)) {
2642 // Switch table case range are encoded into series of masks.
2643 // Just use pointer type, it's guaranteed to fit.
2649 VT
= TLI
.getPointerTy(DAG
.getDataLayout());
2650 Sub
= DAG
.getZExtOrTrunc(Sub
, dl
, VT
);
2653 B
.RegVT
= VT
.getSimpleVT();
2654 B
.Reg
= FuncInfo
.CreateReg(B
.RegVT
);
2655 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
, B
.Reg
, Sub
);
2657 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
2659 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
2660 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
2661 SwitchBB
->normalizeSuccProbs();
2663 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, dl
,
2664 MVT::Other
, CopyTo
, RangeCmp
,
2665 DAG
.getBasicBlock(B
.Default
));
2667 // Avoid emitting unnecessary branches to the next block.
2668 if (MBB
!= NextBlock(SwitchBB
))
2669 BrRange
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrRange
,
2670 DAG
.getBasicBlock(MBB
));
2672 DAG
.setRoot(BrRange
);
2675 /// visitBitTestCase - this function produces one "bit test"
2676 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
2677 MachineBasicBlock
* NextMBB
,
2678 BranchProbability BranchProbToNext
,
2681 MachineBasicBlock
*SwitchBB
) {
2682 SDLoc dl
= getCurSDLoc();
2684 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), dl
, Reg
, VT
);
2686 unsigned PopCount
= countPopulation(B
.Mask
);
2687 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2688 if (PopCount
== 1) {
2689 // Testing for a single bit; just compare the shift count with what it
2690 // would need to be to shift a 1 bit in that position.
2692 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2693 ShiftOp
, DAG
.getConstant(countTrailingZeros(B
.Mask
), dl
, VT
),
2695 } else if (PopCount
== BB
.Range
) {
2696 // There is only one zero bit in the range, test for it directly.
2698 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2699 ShiftOp
, DAG
.getConstant(countTrailingOnes(B
.Mask
), dl
, VT
),
2702 // Make desired shift
2703 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, dl
, VT
,
2704 DAG
.getConstant(1, dl
, VT
), ShiftOp
);
2706 // Emit bit tests and jumps
2707 SDValue AndOp
= DAG
.getNode(ISD::AND
, dl
,
2708 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, dl
, VT
));
2710 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2711 AndOp
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2714 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2715 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
2716 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2717 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
2718 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2719 // one as they are relative probabilities (and thus work more like weights),
2720 // and hence we need to normalize them to let the sum of them become one.
2721 SwitchBB
->normalizeSuccProbs();
2723 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, dl
,
2724 MVT::Other
, getControlRoot(),
2725 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
2727 // Avoid emitting unnecessary branches to the next block.
2728 if (NextMBB
!= NextBlock(SwitchBB
))
2729 BrAnd
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrAnd
,
2730 DAG
.getBasicBlock(NextMBB
));
2735 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
2736 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
2738 // Retrieve successors. Look through artificial IR level blocks like
2739 // catchswitch for successors.
2740 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2741 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2743 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2744 // have to do anything here to lower funclet bundles.
2745 assert(!I
.hasOperandBundlesOtherThan(
2746 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2747 "Cannot lower invokes with arbitrary operand bundles yet!");
2749 const Value
*Callee(I
.getCalledValue());
2750 const Function
*Fn
= dyn_cast
<Function
>(Callee
);
2751 if (isa
<InlineAsm
>(Callee
))
2753 else if (Fn
&& Fn
->isIntrinsic()) {
2754 switch (Fn
->getIntrinsicID()) {
2756 llvm_unreachable("Cannot invoke this intrinsic");
2757 case Intrinsic::donothing
:
2758 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2760 case Intrinsic::experimental_patchpoint_void
:
2761 case Intrinsic::experimental_patchpoint_i64
:
2762 visitPatchpoint(&I
, EHPadBB
);
2764 case Intrinsic::experimental_gc_statepoint
:
2765 LowerStatepoint(ImmutableStatepoint(&I
), EHPadBB
);
2767 case Intrinsic::wasm_rethrow_in_catch
: {
2768 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2769 // special because it can be invoked, so we manually lower it to a DAG
2771 SmallVector
<SDValue
, 8> Ops
;
2772 Ops
.push_back(getRoot()); // inchain
2773 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2775 DAG
.getTargetConstant(Intrinsic::wasm_rethrow_in_catch
, getCurSDLoc(),
2776 TLI
.getPointerTy(DAG
.getDataLayout())));
2777 SDVTList VTs
= DAG
.getVTList(ArrayRef
<EVT
>({MVT::Other
})); // outchain
2778 DAG
.setRoot(DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
));
2782 } else if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
)) {
2783 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2784 // Eventually we will support lowering the @llvm.experimental.deoptimize
2785 // intrinsic, and right now there are no plans to support other intrinsics
2786 // with deopt state.
2787 LowerCallSiteWithDeoptBundle(&I
, getValue(Callee
), EHPadBB
);
2789 LowerCallTo(&I
, getValue(Callee
), false, EHPadBB
);
2792 // If the value of the invoke is used outside of its defining block, make it
2793 // available as a virtual register.
2794 // We already took care of the exported value for the statepoint instruction
2795 // during call to the LowerStatepoint.
2796 if (!isStatepoint(I
)) {
2797 CopyToExportRegsIfNeeded(&I
);
2800 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2801 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2802 BranchProbability EHPadBBProb
=
2803 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2804 : BranchProbability::getZero();
2805 findUnwindDestinations(FuncInfo
, EHPadBB
, EHPadBBProb
, UnwindDests
);
2807 // Update successor info.
2808 addSuccessorWithProb(InvokeMBB
, Return
);
2809 for (auto &UnwindDest
: UnwindDests
) {
2810 UnwindDest
.first
->setIsEHPad();
2811 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2813 InvokeMBB
->normalizeSuccProbs();
2815 // Drop into normal successor.
2816 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
, getControlRoot(),
2817 DAG
.getBasicBlock(Return
)));
2820 void SelectionDAGBuilder::visitCallBr(const CallBrInst
&I
) {
2821 MachineBasicBlock
*CallBrMBB
= FuncInfo
.MBB
;
2823 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2824 // have to do anything here to lower funclet bundles.
2825 assert(!I
.hasOperandBundlesOtherThan(
2826 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2827 "Cannot lower callbrs with arbitrary operand bundles yet!");
2829 assert(isa
<InlineAsm
>(I
.getCalledValue()) &&
2830 "Only know how to handle inlineasm callbr");
2833 // Retrieve successors.
2834 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getDefaultDest()];
2836 // Update successor info.
2837 addSuccessorWithProb(CallBrMBB
, Return
);
2838 for (unsigned i
= 0, e
= I
.getNumIndirectDests(); i
< e
; ++i
) {
2839 MachineBasicBlock
*Target
= FuncInfo
.MBBMap
[I
.getIndirectDest(i
)];
2840 addSuccessorWithProb(CallBrMBB
, Target
);
2842 CallBrMBB
->normalizeSuccProbs();
2844 // Drop into default successor.
2845 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2846 MVT::Other
, getControlRoot(),
2847 DAG
.getBasicBlock(Return
)));
2850 void SelectionDAGBuilder::visitResume(const ResumeInst
&RI
) {
2851 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst
&LP
) {
2855 assert(FuncInfo
.MBB
->isEHPad() &&
2856 "Call to landingpad not in landing pad!");
2858 // If there aren't registers to copy the values into (e.g., during SjLj
2859 // exceptions), then don't bother to create these DAG nodes.
2860 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2861 const Constant
*PersonalityFn
= FuncInfo
.Fn
->getPersonalityFn();
2862 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
2863 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
2866 // If landingpad's return type is token type, we don't create DAG nodes
2867 // for its exception pointer and selector value. The extraction of exception
2868 // pointer or selector value from token type landingpads is not currently
2870 if (LP
.getType()->isTokenTy())
2873 SmallVector
<EVT
, 2> ValueVTs
;
2874 SDLoc dl
= getCurSDLoc();
2875 ComputeValueVTs(TLI
, DAG
.getDataLayout(), LP
.getType(), ValueVTs
);
2876 assert(ValueVTs
.size() == 2 && "Only two-valued landingpads are supported");
2878 // Get the two live-in registers as SDValues. The physregs have already been
2879 // copied into virtual registers.
2881 if (FuncInfo
.ExceptionPointerVirtReg
) {
2882 Ops
[0] = DAG
.getZExtOrTrunc(
2883 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2884 FuncInfo
.ExceptionPointerVirtReg
,
2885 TLI
.getPointerTy(DAG
.getDataLayout())),
2888 Ops
[0] = DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2890 Ops
[1] = DAG
.getZExtOrTrunc(
2891 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2892 FuncInfo
.ExceptionSelectorVirtReg
,
2893 TLI
.getPointerTy(DAG
.getDataLayout())),
2897 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
2898 DAG
.getVTList(ValueVTs
), Ops
);
2902 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2903 MachineBasicBlock
*Last
) {
2905 for (unsigned i
= 0, e
= SL
->JTCases
.size(); i
!= e
; ++i
)
2906 if (SL
->JTCases
[i
].first
.HeaderBB
== First
)
2907 SL
->JTCases
[i
].first
.HeaderBB
= Last
;
2909 // Update BitTestCases.
2910 for (unsigned i
= 0, e
= SL
->BitTestCases
.size(); i
!= e
; ++i
)
2911 if (SL
->BitTestCases
[i
].Parent
== First
)
2912 SL
->BitTestCases
[i
].Parent
= Last
;
2915 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2916 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2918 // Update machine-CFG edges with unique successors.
2919 SmallSet
<BasicBlock
*, 32> Done
;
2920 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
) {
2921 BasicBlock
*BB
= I
.getSuccessor(i
);
2922 bool Inserted
= Done
.insert(BB
).second
;
2926 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[BB
];
2927 addSuccessorWithProb(IndirectBrMBB
, Succ
);
2929 IndirectBrMBB
->normalizeSuccProbs();
2931 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurSDLoc(),
2932 MVT::Other
, getControlRoot(),
2933 getValue(I
.getAddress())));
2936 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst
&I
) {
2937 if (!DAG
.getTarget().Options
.TrapUnreachable
)
2940 // We may be able to ignore unreachable behind a noreturn call.
2941 if (DAG
.getTarget().Options
.NoTrapAfterNoreturn
) {
2942 const BasicBlock
&BB
= *I
.getParent();
2943 if (&I
!= &BB
.front()) {
2944 BasicBlock::const_iterator PredI
=
2945 std::prev(BasicBlock::const_iterator(&I
));
2946 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
2947 if (Call
->doesNotReturn())
2953 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));
2956 void SelectionDAGBuilder::visitFSub(const User
&I
) {
2957 // -0.0 - X --> fneg
2958 Type
*Ty
= I
.getType();
2959 if (isa
<Constant
>(I
.getOperand(0)) &&
2960 I
.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty
)) {
2961 SDValue Op2
= getValue(I
.getOperand(1));
2962 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurSDLoc(),
2963 Op2
.getValueType(), Op2
));
2967 visitBinary(I
, ISD::FSUB
);
2970 /// Checks if the given instruction performs a vector reduction, in which case
2971 /// we have the freedom to alter the elements in the result as long as the
2972 /// reduction of them stays unchanged.
2973 static bool isVectorReductionOp(const User
*I
) {
2974 const Instruction
*Inst
= dyn_cast
<Instruction
>(I
);
2975 if (!Inst
|| !Inst
->getType()->isVectorTy())
2978 auto OpCode
= Inst
->getOpcode();
2980 case Instruction::Add
:
2981 case Instruction::Mul
:
2982 case Instruction::And
:
2983 case Instruction::Or
:
2984 case Instruction::Xor
:
2986 case Instruction::FAdd
:
2987 case Instruction::FMul
:
2988 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
2989 if (FPOp
->getFastMathFlags().isFast())
2996 unsigned ElemNum
= Inst
->getType()->getVectorNumElements();
2997 // Ensure the reduction size is a power of 2.
2998 if (!isPowerOf2_32(ElemNum
))
3001 unsigned ElemNumToReduce
= ElemNum
;
3003 // Do DFS search on the def-use chain from the given instruction. We only
3004 // allow four kinds of operations during the search until we reach the
3005 // instruction that extracts the first element from the vector:
3007 // 1. The reduction operation of the same opcode as the given instruction.
3011 // 3. ShuffleVector instruction together with a reduction operation that
3012 // does a partial reduction.
3014 // 4. ExtractElement that extracts the first element from the vector, and we
3015 // stop searching the def-use chain here.
3017 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3018 // from 1-3 to the stack to continue the DFS. The given instruction is not
3019 // a reduction operation if we meet any other instructions other than those
3022 SmallVector
<const User
*, 16> UsersToVisit
{Inst
};
3023 SmallPtrSet
<const User
*, 16> Visited
;
3024 bool ReduxExtracted
= false;
3026 while (!UsersToVisit
.empty()) {
3027 auto User
= UsersToVisit
.back();
3028 UsersToVisit
.pop_back();
3029 if (!Visited
.insert(User
).second
)
3032 for (const auto &U
: User
->users()) {
3033 auto Inst
= dyn_cast
<Instruction
>(U
);
3037 if (Inst
->getOpcode() == OpCode
|| isa
<PHINode
>(U
)) {
3038 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
3039 if (!isa
<PHINode
>(FPOp
) && !FPOp
->getFastMathFlags().isFast())
3041 UsersToVisit
.push_back(U
);
3042 } else if (const ShuffleVectorInst
*ShufInst
=
3043 dyn_cast
<ShuffleVectorInst
>(U
)) {
3044 // Detect the following pattern: A ShuffleVector instruction together
3045 // with a reduction that do partial reduction on the first and second
3046 // ElemNumToReduce / 2 elements, and store the result in
3047 // ElemNumToReduce / 2 elements in another vector.
3049 unsigned ResultElements
= ShufInst
->getType()->getVectorNumElements();
3050 if (ResultElements
< ElemNum
)
3053 if (ElemNumToReduce
== 1)
3055 if (!isa
<UndefValue
>(U
->getOperand(1)))
3057 for (unsigned i
= 0; i
< ElemNumToReduce
/ 2; ++i
)
3058 if (ShufInst
->getMaskValue(i
) != int(i
+ ElemNumToReduce
/ 2))
3060 for (unsigned i
= ElemNumToReduce
/ 2; i
< ElemNum
; ++i
)
3061 if (ShufInst
->getMaskValue(i
) != -1)
3064 // There is only one user of this ShuffleVector instruction, which
3065 // must be a reduction operation.
3066 if (!U
->hasOneUse())
3069 auto U2
= dyn_cast
<Instruction
>(*U
->user_begin());
3070 if (!U2
|| U2
->getOpcode() != OpCode
)
3073 // Check operands of the reduction operation.
3074 if ((U2
->getOperand(0) == U
->getOperand(0) && U2
->getOperand(1) == U
) ||
3075 (U2
->getOperand(1) == U
->getOperand(0) && U2
->getOperand(0) == U
)) {
3076 UsersToVisit
.push_back(U2
);
3077 ElemNumToReduce
/= 2;
3080 } else if (isa
<ExtractElementInst
>(U
)) {
3081 // At this moment we should have reduced all elements in the vector.
3082 if (ElemNumToReduce
!= 1)
3085 const ConstantInt
*Val
= dyn_cast
<ConstantInt
>(U
->getOperand(1));
3086 if (!Val
|| !Val
->isZero())
3089 ReduxExtracted
= true;
3094 return ReduxExtracted
;
3097 void SelectionDAGBuilder::visitUnary(const User
&I
, unsigned Opcode
) {
3100 SDValue Op
= getValue(I
.getOperand(0));
3101 SDValue UnNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op
.getValueType(),
3103 setValue(&I
, UnNodeValue
);
3106 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned Opcode
) {
3108 if (auto *OFBinOp
= dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
3109 Flags
.setNoSignedWrap(OFBinOp
->hasNoSignedWrap());
3110 Flags
.setNoUnsignedWrap(OFBinOp
->hasNoUnsignedWrap());
3112 if (auto *ExactOp
= dyn_cast
<PossiblyExactOperator
>(&I
)) {
3113 Flags
.setExact(ExactOp
->isExact());
3115 if (isVectorReductionOp(&I
)) {
3116 Flags
.setVectorReduction(true);
3117 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I
<< "\n");
3120 SDValue Op1
= getValue(I
.getOperand(0));
3121 SDValue Op2
= getValue(I
.getOperand(1));
3122 SDValue BinNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(),
3124 setValue(&I
, BinNodeValue
);
3127 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
3128 SDValue Op1
= getValue(I
.getOperand(0));
3129 SDValue Op2
= getValue(I
.getOperand(1));
3131 EVT ShiftTy
= DAG
.getTargetLoweringInfo().getShiftAmountTy(
3132 Op1
.getValueType(), DAG
.getDataLayout());
3134 // Coerce the shift amount to the right type if we can.
3135 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
3136 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
3137 unsigned Op2Size
= Op2
.getValueSizeInBits();
3138 SDLoc DL
= getCurSDLoc();
3140 // If the operand is smaller than the shift count type, promote it.
3141 if (ShiftSize
> Op2Size
)
3142 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
3144 // If the operand is larger than the shift count type but the shift
3145 // count type has enough bits to represent any shift value, truncate
3146 // it now. This is a common case and it exposes the truncate to
3147 // optimization early.
3148 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueSizeInBits()))
3149 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
3150 // Otherwise we'll need to temporarily settle for some other convenient
3151 // type. Type legalization will make adjustments once the shiftee is split.
3153 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
3160 if (Opcode
== ISD::SRL
|| Opcode
== ISD::SRA
|| Opcode
== ISD::SHL
) {
3162 if (const OverflowingBinaryOperator
*OFBinOp
=
3163 dyn_cast
<const OverflowingBinaryOperator
>(&I
)) {
3164 nuw
= OFBinOp
->hasNoUnsignedWrap();
3165 nsw
= OFBinOp
->hasNoSignedWrap();
3167 if (const PossiblyExactOperator
*ExactOp
=
3168 dyn_cast
<const PossiblyExactOperator
>(&I
))
3169 exact
= ExactOp
->isExact();
3172 Flags
.setExact(exact
);
3173 Flags
.setNoSignedWrap(nsw
);
3174 Flags
.setNoUnsignedWrap(nuw
);
3175 SDValue Res
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(), Op1
, Op2
,
3180 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
3181 SDValue Op1
= getValue(I
.getOperand(0));
3182 SDValue Op2
= getValue(I
.getOperand(1));
3185 Flags
.setExact(isa
<PossiblyExactOperator
>(&I
) &&
3186 cast
<PossiblyExactOperator
>(&I
)->isExact());
3187 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurSDLoc(), Op1
.getValueType(), Op1
,
3191 void SelectionDAGBuilder::visitICmp(const User
&I
) {
3192 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
3193 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
3194 predicate
= IC
->getPredicate();
3195 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
3196 predicate
= ICmpInst::Predicate(IC
->getPredicate());
3197 SDValue Op1
= getValue(I
.getOperand(0));
3198 SDValue Op2
= getValue(I
.getOperand(1));
3199 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
3201 auto &TLI
= DAG
.getTargetLoweringInfo();
3203 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3205 // If a pointer's DAG type is larger than its memory type then the DAG values
3206 // are zero-extended. This breaks signed comparisons so truncate back to the
3207 // underlying type before doing the compare.
3208 if (Op1
.getValueType() != MemVT
) {
3209 Op1
= DAG
.getPtrExtOrTrunc(Op1
, getCurSDLoc(), MemVT
);
3210 Op2
= DAG
.getPtrExtOrTrunc(Op2
, getCurSDLoc(), MemVT
);
3213 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3215 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Opcode
));
3218 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
3219 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
3220 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
3221 predicate
= FC
->getPredicate();
3222 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
3223 predicate
= FCmpInst::Predicate(FC
->getPredicate());
3224 SDValue Op1
= getValue(I
.getOperand(0));
3225 SDValue Op2
= getValue(I
.getOperand(1));
3227 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
3228 auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
);
3229 if ((FPMO
&& FPMO
->hasNoNaNs()) || TM
.Options
.NoNaNsFPMath
)
3230 Condition
= getFCmpCodeWithoutNaN(Condition
);
3232 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3234 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Condition
));
3237 // Check if the condition of the select has one use or two users that are both
3238 // selects with the same condition.
3239 static bool hasOnlySelectUsers(const Value
*Cond
) {
3240 return llvm::all_of(Cond
->users(), [](const Value
*V
) {
3241 return isa
<SelectInst
>(V
);
3245 void SelectionDAGBuilder::visitSelect(const User
&I
) {
3246 SmallVector
<EVT
, 4> ValueVTs
;
3247 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
3249 unsigned NumValues
= ValueVTs
.size();
3250 if (NumValues
== 0) return;
3252 SmallVector
<SDValue
, 4> Values(NumValues
);
3253 SDValue Cond
= getValue(I
.getOperand(0));
3254 SDValue LHSVal
= getValue(I
.getOperand(1));
3255 SDValue RHSVal
= getValue(I
.getOperand(2));
3256 auto BaseOps
= {Cond
};
3257 ISD::NodeType OpCode
= Cond
.getValueType().isVector() ?
3258 ISD::VSELECT
: ISD::SELECT
;
3260 bool IsUnaryAbs
= false;
3262 // Min/max matching is only viable if all output VTs are the same.
3263 if (is_splat(ValueVTs
)) {
3264 EVT VT
= ValueVTs
[0];
3265 LLVMContext
&Ctx
= *DAG
.getContext();
3266 auto &TLI
= DAG
.getTargetLoweringInfo();
3268 // We care about the legality of the operation after it has been type
3270 while (TLI
.getTypeAction(Ctx
, VT
) != TargetLoweringBase::TypeLegal
)
3271 VT
= TLI
.getTypeToTransformTo(Ctx
, VT
);
3273 // If the vselect is legal, assume we want to leave this as a vector setcc +
3274 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3275 // min/max is legal on the scalar type.
3276 bool UseScalarMinMax
= VT
.isVector() &&
3277 !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
);
3280 auto SPR
= matchSelectPattern(const_cast<User
*>(&I
), LHS
, RHS
);
3281 ISD::NodeType Opc
= ISD::DELETED_NODE
;
3282 switch (SPR
.Flavor
) {
3283 case SPF_UMAX
: Opc
= ISD::UMAX
; break;
3284 case SPF_UMIN
: Opc
= ISD::UMIN
; break;
3285 case SPF_SMAX
: Opc
= ISD::SMAX
; break;
3286 case SPF_SMIN
: Opc
= ISD::SMIN
; break;
3288 switch (SPR
.NaNBehavior
) {
3289 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3290 case SPNB_RETURNS_NAN
: Opc
= ISD::FMINIMUM
; break;
3291 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMINNUM
; break;
3292 case SPNB_RETURNS_ANY
: {
3293 if (TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
))
3295 else if (TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
))
3296 Opc
= ISD::FMINIMUM
;
3297 else if (UseScalarMinMax
)
3298 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
.getScalarType()) ?
3299 ISD::FMINNUM
: ISD::FMINIMUM
;
3305 switch (SPR
.NaNBehavior
) {
3306 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3307 case SPNB_RETURNS_NAN
: Opc
= ISD::FMAXIMUM
; break;
3308 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMAXNUM
; break;
3309 case SPNB_RETURNS_ANY
:
3311 if (TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
))
3313 else if (TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
))
3314 Opc
= ISD::FMAXIMUM
;
3315 else if (UseScalarMinMax
)
3316 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
.getScalarType()) ?
3317 ISD::FMAXNUM
: ISD::FMAXIMUM
;
3326 // TODO: we need to produce sub(0, abs(X)).
3330 if (!IsUnaryAbs
&& Opc
!= ISD::DELETED_NODE
&&
3331 (TLI
.isOperationLegalOrCustom(Opc
, VT
) ||
3333 TLI
.isOperationLegalOrCustom(Opc
, VT
.getScalarType()))) &&
3334 // If the underlying comparison instruction is used by any other
3335 // instruction, the consumed instructions won't be destroyed, so it is
3336 // not profitable to convert to a min/max.
3337 hasOnlySelectUsers(cast
<SelectInst
>(I
).getCondition())) {
3339 LHSVal
= getValue(LHS
);
3340 RHSVal
= getValue(RHS
);
3346 LHSVal
= getValue(LHS
);
3352 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3354 DAG
.getNode(OpCode
, getCurSDLoc(),
3355 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
),
3356 SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3359 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3360 SmallVector
<SDValue
, 3> Ops(BaseOps
.begin(), BaseOps
.end());
3361 Ops
.push_back(SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3362 Ops
.push_back(SDValue(RHSVal
.getNode(), RHSVal
.getResNo() + i
));
3363 Values
[i
] = DAG
.getNode(
3364 OpCode
, getCurSDLoc(),
3365 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
), Ops
);
3369 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3370 DAG
.getVTList(ValueVTs
), Values
));
3373 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
3374 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3375 SDValue N
= getValue(I
.getOperand(0));
3376 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3378 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), DestVT
, N
));
3381 void SelectionDAGBuilder::visitZExt(const User
&I
) {
3382 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3383 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3384 SDValue N
= getValue(I
.getOperand(0));
3385 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3387 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurSDLoc(), DestVT
, N
));
3390 void SelectionDAGBuilder::visitSExt(const User
&I
) {
3391 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3392 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3393 SDValue N
= getValue(I
.getOperand(0));
3394 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3396 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurSDLoc(), DestVT
, N
));
3399 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
3400 // FPTrunc is never a no-op cast, no need to check
3401 SDValue N
= getValue(I
.getOperand(0));
3402 SDLoc dl
= getCurSDLoc();
3403 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3404 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3405 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, N
,
3406 DAG
.getTargetConstant(
3407 0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()))));
3410 void SelectionDAGBuilder::visitFPExt(const User
&I
) {
3411 // FPExt is never a no-op cast, no need to check
3412 SDValue N
= getValue(I
.getOperand(0));
3413 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3415 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurSDLoc(), DestVT
, N
));
3418 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
3419 // FPToUI is never a no-op cast, no need to check
3420 SDValue N
= getValue(I
.getOperand(0));
3421 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3423 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurSDLoc(), DestVT
, N
));
3426 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
3427 // FPToSI is never a no-op cast, no need to check
3428 SDValue N
= getValue(I
.getOperand(0));
3429 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3431 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurSDLoc(), DestVT
, N
));
3434 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
3435 // UIToFP is never a no-op cast, no need to check
3436 SDValue N
= getValue(I
.getOperand(0));
3437 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3439 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3442 void SelectionDAGBuilder::visitSIToFP(const User
&I
) {
3443 // SIToFP is never a no-op cast, no need to check
3444 SDValue N
= getValue(I
.getOperand(0));
3445 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3447 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3450 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
3451 // What to do depends on the size of the integer and the size of the pointer.
3452 // We can either truncate, zero extend, or no-op, accordingly.
3453 SDValue N
= getValue(I
.getOperand(0));
3454 auto &TLI
= DAG
.getTargetLoweringInfo();
3455 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3458 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3459 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3460 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3464 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
3465 // What to do depends on the size of the integer and the size of the pointer.
3466 // We can either truncate, zero extend, or no-op, accordingly.
3467 SDValue N
= getValue(I
.getOperand(0));
3468 auto &TLI
= DAG
.getTargetLoweringInfo();
3469 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3470 EVT PtrMemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
3471 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3472 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3476 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
3477 SDValue N
= getValue(I
.getOperand(0));
3478 SDLoc dl
= getCurSDLoc();
3479 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3482 // BitCast assures us that source and destination are the same size so this is
3483 // either a BITCAST or a no-op.
3484 if (DestVT
!= N
.getValueType())
3485 setValue(&I
, DAG
.getNode(ISD::BITCAST
, dl
,
3486 DestVT
, N
)); // convert types.
3487 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3488 // might fold any kind of constant expression to an integer constant and that
3489 // is not what we are looking for. Only recognize a bitcast of a genuine
3490 // constant integer as an opaque constant.
3491 else if(ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
.getOperand(0)))
3492 setValue(&I
, DAG
.getConstant(C
->getValue(), dl
, DestVT
, /*isTarget=*/false,
3495 setValue(&I
, N
); // noop cast.
3498 void SelectionDAGBuilder::visitAddrSpaceCast(const User
&I
) {
3499 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3500 const Value
*SV
= I
.getOperand(0);
3501 SDValue N
= getValue(SV
);
3502 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3504 unsigned SrcAS
= SV
->getType()->getPointerAddressSpace();
3505 unsigned DestAS
= I
.getType()->getPointerAddressSpace();
3507 if (!TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3508 N
= DAG
.getAddrSpaceCast(getCurSDLoc(), DestVT
, N
, SrcAS
, DestAS
);
3513 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
3514 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3515 SDValue InVec
= getValue(I
.getOperand(0));
3516 SDValue InVal
= getValue(I
.getOperand(1));
3517 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(2)), getCurSDLoc(),
3518 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3519 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurSDLoc(),
3520 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3521 InVec
, InVal
, InIdx
));
3524 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
3525 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3526 SDValue InVec
= getValue(I
.getOperand(0));
3527 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(1)), getCurSDLoc(),
3528 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3529 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurSDLoc(),
3530 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3534 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
3535 SDValue Src1
= getValue(I
.getOperand(0));
3536 SDValue Src2
= getValue(I
.getOperand(1));
3537 SDLoc DL
= getCurSDLoc();
3539 SmallVector
<int, 8> Mask
;
3540 ShuffleVectorInst::getShuffleMask(cast
<Constant
>(I
.getOperand(2)), Mask
);
3541 unsigned MaskNumElts
= Mask
.size();
3543 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3544 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3545 EVT SrcVT
= Src1
.getValueType();
3546 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
3548 if (SrcNumElts
== MaskNumElts
) {
3549 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, Mask
));
3553 // Normalize the shuffle vector since mask and vector length don't match.
3554 if (SrcNumElts
< MaskNumElts
) {
3555 // Mask is longer than the source vectors. We can use concatenate vector to
3556 // make the mask and vectors lengths match.
3558 if (MaskNumElts
% SrcNumElts
== 0) {
3559 // Mask length is a multiple of the source vector length.
3560 // Check if the shuffle is some kind of concatenation of the input
3562 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
3563 bool IsConcat
= true;
3564 SmallVector
<int, 8> ConcatSrcs(NumConcat
, -1);
3565 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3569 // Ensure the indices in each SrcVT sized piece are sequential and that
3570 // the same source is used for the whole piece.
3571 if ((Idx
% SrcNumElts
!= (i
% SrcNumElts
)) ||
3572 (ConcatSrcs
[i
/ SrcNumElts
] >= 0 &&
3573 ConcatSrcs
[i
/ SrcNumElts
] != (int)(Idx
/ SrcNumElts
))) {
3577 // Remember which source this index came from.
3578 ConcatSrcs
[i
/ SrcNumElts
] = Idx
/ SrcNumElts
;
3581 // The shuffle is concatenating multiple vectors together. Just emit
3582 // a CONCAT_VECTORS operation.
3584 SmallVector
<SDValue
, 8> ConcatOps
;
3585 for (auto Src
: ConcatSrcs
) {
3587 ConcatOps
.push_back(DAG
.getUNDEF(SrcVT
));
3589 ConcatOps
.push_back(Src1
);
3591 ConcatOps
.push_back(Src2
);
3593 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
));
3598 unsigned PaddedMaskNumElts
= alignTo(MaskNumElts
, SrcNumElts
);
3599 unsigned NumConcat
= PaddedMaskNumElts
/ SrcNumElts
;
3600 EVT PaddedVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
3603 // Pad both vectors with undefs to make them the same length as the mask.
3604 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
3606 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
3607 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
3611 Src1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps1
);
3612 Src2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps2
);
3614 // Readjust mask for new input vector length.
3615 SmallVector
<int, 8> MappedOps(PaddedMaskNumElts
, -1);
3616 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3618 if (Idx
>= (int)SrcNumElts
)
3619 Idx
-= SrcNumElts
- PaddedMaskNumElts
;
3623 SDValue Result
= DAG
.getVectorShuffle(PaddedVT
, DL
, Src1
, Src2
, MappedOps
);
3625 // If the concatenated vector was padded, extract a subvector with the
3626 // correct number of elements.
3627 if (MaskNumElts
!= PaddedMaskNumElts
)
3628 Result
= DAG
.getNode(
3629 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Result
,
3630 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3632 setValue(&I
, Result
);
3636 if (SrcNumElts
> MaskNumElts
) {
3637 // Analyze the access pattern of the vector to see if we can extract
3638 // two subvectors and do the shuffle.
3639 int StartIdx
[2] = { -1, -1 }; // StartIdx to extract from
3640 bool CanExtract
= true;
3641 for (int Idx
: Mask
) {
3646 if (Idx
>= (int)SrcNumElts
) {
3651 // If all the indices come from the same MaskNumElts sized portion of
3652 // the sources we can use extract. Also make sure the extract wouldn't
3653 // extract past the end of the source.
3654 int NewStartIdx
= alignDown(Idx
, MaskNumElts
);
3655 if (NewStartIdx
+ MaskNumElts
> SrcNumElts
||
3656 (StartIdx
[Input
] >= 0 && StartIdx
[Input
] != NewStartIdx
))
3658 // Make sure we always update StartIdx as we use it to track if all
3659 // elements are undef.
3660 StartIdx
[Input
] = NewStartIdx
;
3663 if (StartIdx
[0] < 0 && StartIdx
[1] < 0) {
3664 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
3668 // Extract appropriate subvector and generate a vector shuffle
3669 for (unsigned Input
= 0; Input
< 2; ++Input
) {
3670 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
3671 if (StartIdx
[Input
] < 0)
3672 Src
= DAG
.getUNDEF(VT
);
3675 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Src
,
3676 DAG
.getConstant(StartIdx
[Input
], DL
,
3677 TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3681 // Calculate new mask.
3682 SmallVector
<int, 8> MappedOps(Mask
.begin(), Mask
.end());
3683 for (int &Idx
: MappedOps
) {
3684 if (Idx
>= (int)SrcNumElts
)
3685 Idx
-= SrcNumElts
+ StartIdx
[1] - MaskNumElts
;
3690 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, MappedOps
));
3695 // We can't use either concat vectors or extract subvectors so fall back to
3696 // replacing the shuffle with extract and build vector.
3697 // to insert and build vector.
3698 EVT EltVT
= VT
.getVectorElementType();
3699 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
3700 SmallVector
<SDValue
,8> Ops
;
3701 for (int Idx
: Mask
) {
3705 Res
= DAG
.getUNDEF(EltVT
);
3707 SDValue
&Src
= Idx
< (int)SrcNumElts
? Src1
: Src2
;
3708 if (Idx
>= (int)SrcNumElts
) Idx
-= SrcNumElts
;
3710 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
3711 EltVT
, Src
, DAG
.getConstant(Idx
, DL
, IdxVT
));
3717 setValue(&I
, DAG
.getBuildVector(VT
, DL
, Ops
));
3720 void SelectionDAGBuilder::visitInsertValue(const User
&I
) {
3721 ArrayRef
<unsigned> Indices
;
3722 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(&I
))
3723 Indices
= IV
->getIndices();
3725 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3727 const Value
*Op0
= I
.getOperand(0);
3728 const Value
*Op1
= I
.getOperand(1);
3729 Type
*AggTy
= I
.getType();
3730 Type
*ValTy
= Op1
->getType();
3731 bool IntoUndef
= isa
<UndefValue
>(Op0
);
3732 bool FromUndef
= isa
<UndefValue
>(Op1
);
3734 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3736 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3737 SmallVector
<EVT
, 4> AggValueVTs
;
3738 ComputeValueVTs(TLI
, DAG
.getDataLayout(), AggTy
, AggValueVTs
);
3739 SmallVector
<EVT
, 4> ValValueVTs
;
3740 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3742 unsigned NumAggValues
= AggValueVTs
.size();
3743 unsigned NumValValues
= ValValueVTs
.size();
3744 SmallVector
<SDValue
, 4> Values(NumAggValues
);
3746 // Ignore an insertvalue that produces an empty object
3747 if (!NumAggValues
) {
3748 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3752 SDValue Agg
= getValue(Op0
);
3754 // Copy the beginning value(s) from the original aggregate.
3755 for (; i
!= LinearIndex
; ++i
)
3756 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3757 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3758 // Copy values from the inserted value(s).
3760 SDValue Val
= getValue(Op1
);
3761 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
3762 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3763 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
3765 // Copy remaining value(s) from the original aggregate.
3766 for (; i
!= NumAggValues
; ++i
)
3767 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3768 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3770 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3771 DAG
.getVTList(AggValueVTs
), Values
));
3774 void SelectionDAGBuilder::visitExtractValue(const User
&I
) {
3775 ArrayRef
<unsigned> Indices
;
3776 if (const ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(&I
))
3777 Indices
= EV
->getIndices();
3779 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3781 const Value
*Op0
= I
.getOperand(0);
3782 Type
*AggTy
= Op0
->getType();
3783 Type
*ValTy
= I
.getType();
3784 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
3786 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3788 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3789 SmallVector
<EVT
, 4> ValValueVTs
;
3790 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3792 unsigned NumValValues
= ValValueVTs
.size();
3794 // Ignore a extractvalue that produces an empty object
3795 if (!NumValValues
) {
3796 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3800 SmallVector
<SDValue
, 4> Values(NumValValues
);
3802 SDValue Agg
= getValue(Op0
);
3803 // Copy out the selected value(s).
3804 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
3805 Values
[i
- LinearIndex
] =
3807 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
3808 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3810 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3811 DAG
.getVTList(ValValueVTs
), Values
));
3814 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
3815 Value
*Op0
= I
.getOperand(0);
3816 // Note that the pointer operand may be a vector of pointers. Take the scalar
3817 // element which holds a pointer.
3818 unsigned AS
= Op0
->getType()->getScalarType()->getPointerAddressSpace();
3819 SDValue N
= getValue(Op0
);
3820 SDLoc dl
= getCurSDLoc();
3821 auto &TLI
= DAG
.getTargetLoweringInfo();
3822 MVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout(), AS
);
3823 MVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout(), AS
);
3825 // Normalize Vector GEP - all scalar operands should be converted to the
3827 unsigned VectorWidth
= I
.getType()->isVectorTy() ?
3828 I
.getType()->getVectorNumElements() : 0;
3830 if (VectorWidth
&& !N
.getValueType().isVector()) {
3831 LLVMContext
&Context
= *DAG
.getContext();
3832 EVT VT
= EVT::getVectorVT(Context
, N
.getValueType(), VectorWidth
);
3833 N
= DAG
.getSplatBuildVector(VT
, dl
, N
);
3836 for (gep_type_iterator GTI
= gep_type_begin(&I
), E
= gep_type_end(&I
);
3838 const Value
*Idx
= GTI
.getOperand();
3839 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
3840 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
3843 uint64_t Offset
= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
3845 // In an inbounds GEP with an offset that is nonnegative even when
3846 // interpreted as signed, assume there is no unsigned overflow.
3848 if (int64_t(Offset
) >= 0 && cast
<GEPOperator
>(I
).isInBounds())
3849 Flags
.setNoUnsignedWrap(true);
3851 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
,
3852 DAG
.getConstant(Offset
, dl
, N
.getValueType()), Flags
);
3855 unsigned IdxSize
= DAG
.getDataLayout().getIndexSizeInBits(AS
);
3856 MVT IdxTy
= MVT::getIntegerVT(IdxSize
);
3857 APInt
ElementSize(IdxSize
, DL
->getTypeAllocSize(GTI
.getIndexedType()));
3859 // If this is a scalar constant or a splat vector of constants,
3860 // handle it quickly.
3861 const auto *C
= dyn_cast
<Constant
>(Idx
);
3862 if (C
&& isa
<VectorType
>(C
->getType()))
3863 C
= C
->getSplatValue();
3865 if (const auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
)) {
3868 APInt Offs
= ElementSize
* CI
->getValue().sextOrTrunc(IdxSize
);
3869 LLVMContext
&Context
= *DAG
.getContext();
3870 SDValue OffsVal
= VectorWidth
?
3871 DAG
.getConstant(Offs
, dl
, EVT::getVectorVT(Context
, IdxTy
, VectorWidth
)) :
3872 DAG
.getConstant(Offs
, dl
, IdxTy
);
3874 // In an inbounds GEP with an offset that is nonnegative even when
3875 // interpreted as signed, assume there is no unsigned overflow.
3877 if (Offs
.isNonNegative() && cast
<GEPOperator
>(I
).isInBounds())
3878 Flags
.setNoUnsignedWrap(true);
3880 OffsVal
= DAG
.getSExtOrTrunc(OffsVal
, dl
, N
.getValueType());
3882 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
, OffsVal
, Flags
);
3886 // N = N + Idx * ElementSize;
3887 SDValue IdxN
= getValue(Idx
);
3889 if (!IdxN
.getValueType().isVector() && VectorWidth
) {
3890 EVT VT
= EVT::getVectorVT(*Context
, IdxN
.getValueType(), VectorWidth
);
3891 IdxN
= DAG
.getSplatBuildVector(VT
, dl
, IdxN
);
3894 // If the index is smaller or larger than intptr_t, truncate or extend
3896 IdxN
= DAG
.getSExtOrTrunc(IdxN
, dl
, N
.getValueType());
3898 // If this is a multiply by a power of two, turn it into a shl
3899 // immediately. This is a very common case.
3900 if (ElementSize
!= 1) {
3901 if (ElementSize
.isPowerOf2()) {
3902 unsigned Amt
= ElementSize
.logBase2();
3903 IdxN
= DAG
.getNode(ISD::SHL
, dl
,
3904 N
.getValueType(), IdxN
,
3905 DAG
.getConstant(Amt
, dl
, IdxN
.getValueType()));
3907 SDValue Scale
= DAG
.getConstant(ElementSize
.getZExtValue(), dl
,
3908 IdxN
.getValueType());
3909 IdxN
= DAG
.getNode(ISD::MUL
, dl
,
3910 N
.getValueType(), IdxN
, Scale
);
3914 N
= DAG
.getNode(ISD::ADD
, dl
,
3915 N
.getValueType(), N
, IdxN
);
3919 if (PtrMemTy
!= PtrTy
&& !cast
<GEPOperator
>(I
).isInBounds())
3920 N
= DAG
.getPtrExtendInReg(N
, dl
, PtrMemTy
);
3925 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3926 // If this is a fixed sized alloca in the entry block of the function,
3927 // allocate it statically on the stack.
3928 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3929 return; // getValue will auto-populate this.
3931 SDLoc dl
= getCurSDLoc();
3932 Type
*Ty
= I
.getAllocatedType();
3933 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3934 auto &DL
= DAG
.getDataLayout();
3935 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
3937 std::max((unsigned)DL
.getPrefTypeAlignment(Ty
), I
.getAlignment());
3939 SDValue AllocSize
= getValue(I
.getArraySize());
3941 EVT IntPtr
= TLI
.getPointerTy(DAG
.getDataLayout(), DL
.getAllocaAddrSpace());
3942 if (AllocSize
.getValueType() != IntPtr
)
3943 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, dl
, IntPtr
);
3945 AllocSize
= DAG
.getNode(ISD::MUL
, dl
, IntPtr
,
3947 DAG
.getConstant(TySize
, dl
, IntPtr
));
3949 // Handle alignment. If the requested alignment is less than or equal to
3950 // the stack alignment, ignore it. If the size is greater than or equal to
3951 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3952 unsigned StackAlign
=
3953 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
3954 if (Align
<= StackAlign
)
3957 // Round the size of the allocation up to the stack alignment size
3958 // by add SA-1 to the size. This doesn't overflow because we're computing
3959 // an address inside an alloca.
3961 Flags
.setNoUnsignedWrap(true);
3962 AllocSize
= DAG
.getNode(ISD::ADD
, dl
, AllocSize
.getValueType(), AllocSize
,
3963 DAG
.getConstant(StackAlign
- 1, dl
, IntPtr
), Flags
);
3965 // Mask out the low bits for alignment purposes.
3967 DAG
.getNode(ISD::AND
, dl
, AllocSize
.getValueType(), AllocSize
,
3968 DAG
.getConstant(~(uint64_t)(StackAlign
- 1), dl
, IntPtr
));
3970 SDValue Ops
[] = {getRoot(), AllocSize
, DAG
.getConstant(Align
, dl
, IntPtr
)};
3971 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
3972 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, dl
, VTs
, Ops
);
3974 DAG
.setRoot(DSA
.getValue(1));
3976 assert(FuncInfo
.MF
->getFrameInfo().hasVarSizedObjects());
3979 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
3981 return visitAtomicLoad(I
);
3983 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3984 const Value
*SV
= I
.getOperand(0);
3985 if (TLI
.supportSwiftError()) {
3986 // Swifterror values can come from either a function parameter with
3987 // swifterror attribute or an alloca with swifterror attribute.
3988 if (const Argument
*Arg
= dyn_cast
<Argument
>(SV
)) {
3989 if (Arg
->hasSwiftErrorAttr())
3990 return visitLoadFromSwiftError(I
);
3993 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(SV
)) {
3994 if (Alloca
->isSwiftError())
3995 return visitLoadFromSwiftError(I
);
3999 SDValue Ptr
= getValue(SV
);
4001 Type
*Ty
= I
.getType();
4003 bool isVolatile
= I
.isVolatile();
4004 bool isNonTemporal
= I
.hasMetadata(LLVMContext::MD_nontemporal
);
4005 bool isInvariant
= I
.hasMetadata(LLVMContext::MD_invariant_load
);
4006 bool isDereferenceable
=
4007 isDereferenceablePointer(SV
, I
.getType(), DAG
.getDataLayout());
4008 unsigned Alignment
= I
.getAlignment();
4011 I
.getAAMetadata(AAInfo
);
4012 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4014 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4015 SmallVector
<uint64_t, 4> Offsets
;
4016 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Ty
, ValueVTs
, &MemVTs
, &Offsets
);
4017 unsigned NumValues
= ValueVTs
.size();
4022 bool ConstantMemory
= false;
4023 if (isVolatile
|| NumValues
> MaxParallelChains
)
4024 // Serialize volatile loads with other side effects.
4027 AA
->pointsToConstantMemory(MemoryLocation(
4029 LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4031 // Do not serialize (non-volatile) loads of constant memory with anything.
4032 Root
= DAG
.getEntryNode();
4033 ConstantMemory
= true;
4035 // Do not serialize non-volatile loads against each other.
4036 Root
= DAG
.getRoot();
4039 SDLoc dl
= getCurSDLoc();
4042 Root
= TLI
.prepareVolatileOrAtomicLoad(Root
, dl
, DAG
);
4044 // An aggregate load cannot wrap around the address space, so offsets to its
4045 // parts don't wrap either.
4047 Flags
.setNoUnsignedWrap(true);
4049 SmallVector
<SDValue
, 4> Values(NumValues
);
4050 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4051 EVT PtrVT
= Ptr
.getValueType();
4052 unsigned ChainI
= 0;
4053 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4054 // Serializing loads here may result in excessive register pressure, and
4055 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4056 // could recover a bit by hoisting nodes upward in the chain by recognizing
4057 // they are side-effect free or do not alias. The optimizer should really
4058 // avoid this case by converting large object/array copies to llvm.memcpy
4059 // (MaxParallelChains should always remain as failsafe).
4060 if (ChainI
== MaxParallelChains
) {
4061 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
4062 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4063 makeArrayRef(Chains
.data(), ChainI
));
4067 SDValue A
= DAG
.getNode(ISD::ADD
, dl
,
4069 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
),
4071 auto MMOFlags
= MachineMemOperand::MONone
;
4073 MMOFlags
|= MachineMemOperand::MOVolatile
;
4075 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4077 MMOFlags
|= MachineMemOperand::MOInvariant
;
4078 if (isDereferenceable
)
4079 MMOFlags
|= MachineMemOperand::MODereferenceable
;
4080 MMOFlags
|= TLI
.getMMOFlags(I
);
4082 SDValue L
= DAG
.getLoad(MemVTs
[i
], dl
, Root
, A
,
4083 MachinePointerInfo(SV
, Offsets
[i
]), Alignment
,
4084 MMOFlags
, AAInfo
, Ranges
);
4085 Chains
[ChainI
] = L
.getValue(1);
4087 if (MemVTs
[i
] != ValueVTs
[i
])
4088 L
= DAG
.getZExtOrTrunc(L
, dl
, ValueVTs
[i
]);
4093 if (!ConstantMemory
) {
4094 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4095 makeArrayRef(Chains
.data(), ChainI
));
4099 PendingLoads
.push_back(Chain
);
4102 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4103 DAG
.getVTList(ValueVTs
), Values
));
4106 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst
&I
) {
4107 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4108 "call visitStoreToSwiftError when backend supports swifterror");
4110 SmallVector
<EVT
, 4> ValueVTs
;
4111 SmallVector
<uint64_t, 4> Offsets
;
4112 const Value
*SrcV
= I
.getOperand(0);
4113 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4114 SrcV
->getType(), ValueVTs
, &Offsets
);
4115 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4116 "expect a single EVT for swifterror");
4118 SDValue Src
= getValue(SrcV
);
4119 // Create a virtual register, then update the virtual register.
4121 SwiftError
.getOrCreateVRegDefAt(&I
, FuncInfo
.MBB
, I
.getPointerOperand());
4122 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4123 // Chain can be getRoot or getControlRoot.
4124 SDValue CopyNode
= DAG
.getCopyToReg(getRoot(), getCurSDLoc(), VReg
,
4125 SDValue(Src
.getNode(), Src
.getResNo()));
4126 DAG
.setRoot(CopyNode
);
4129 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst
&I
) {
4130 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4131 "call visitLoadFromSwiftError when backend supports swifterror");
4133 assert(!I
.isVolatile() &&
4134 !I
.hasMetadata(LLVMContext::MD_nontemporal
) &&
4135 !I
.hasMetadata(LLVMContext::MD_invariant_load
) &&
4136 "Support volatile, non temporal, invariant for load_from_swift_error");
4138 const Value
*SV
= I
.getOperand(0);
4139 Type
*Ty
= I
.getType();
4141 I
.getAAMetadata(AAInfo
);
4144 !AA
->pointsToConstantMemory(MemoryLocation(
4145 SV
, LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4147 "load_from_swift_error should not be constant memory");
4149 SmallVector
<EVT
, 4> ValueVTs
;
4150 SmallVector
<uint64_t, 4> Offsets
;
4151 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), Ty
,
4152 ValueVTs
, &Offsets
);
4153 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4154 "expect a single EVT for swifterror");
4156 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4157 SDValue L
= DAG
.getCopyFromReg(
4158 getRoot(), getCurSDLoc(),
4159 SwiftError
.getOrCreateVRegUseAt(&I
, FuncInfo
.MBB
, SV
), ValueVTs
[0]);
4164 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
4166 return visitAtomicStore(I
);
4168 const Value
*SrcV
= I
.getOperand(0);
4169 const Value
*PtrV
= I
.getOperand(1);
4171 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4172 if (TLI
.supportSwiftError()) {
4173 // Swifterror values can come from either a function parameter with
4174 // swifterror attribute or an alloca with swifterror attribute.
4175 if (const Argument
*Arg
= dyn_cast
<Argument
>(PtrV
)) {
4176 if (Arg
->hasSwiftErrorAttr())
4177 return visitStoreToSwiftError(I
);
4180 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(PtrV
)) {
4181 if (Alloca
->isSwiftError())
4182 return visitStoreToSwiftError(I
);
4186 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4187 SmallVector
<uint64_t, 4> Offsets
;
4188 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4189 SrcV
->getType(), ValueVTs
, &MemVTs
, &Offsets
);
4190 unsigned NumValues
= ValueVTs
.size();
4194 // Get the lowered operands. Note that we do this after
4195 // checking if NumResults is zero, because with zero results
4196 // the operands won't have values in the map.
4197 SDValue Src
= getValue(SrcV
);
4198 SDValue Ptr
= getValue(PtrV
);
4200 SDValue Root
= getRoot();
4201 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4202 SDLoc dl
= getCurSDLoc();
4203 EVT PtrVT
= Ptr
.getValueType();
4204 unsigned Alignment
= I
.getAlignment();
4206 I
.getAAMetadata(AAInfo
);
4208 auto MMOFlags
= MachineMemOperand::MONone
;
4210 MMOFlags
|= MachineMemOperand::MOVolatile
;
4211 if (I
.hasMetadata(LLVMContext::MD_nontemporal
))
4212 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4213 MMOFlags
|= TLI
.getMMOFlags(I
);
4215 // An aggregate load cannot wrap around the address space, so offsets to its
4216 // parts don't wrap either.
4218 Flags
.setNoUnsignedWrap(true);
4220 unsigned ChainI
= 0;
4221 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4222 // See visitLoad comments.
4223 if (ChainI
== MaxParallelChains
) {
4224 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4225 makeArrayRef(Chains
.data(), ChainI
));
4229 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Ptr
,
4230 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
), Flags
);
4231 SDValue Val
= SDValue(Src
.getNode(), Src
.getResNo() + i
);
4232 if (MemVTs
[i
] != ValueVTs
[i
])
4233 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVTs
[i
]);
4235 DAG
.getStore(Root
, dl
, Val
, Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
4236 Alignment
, MMOFlags
, AAInfo
);
4237 Chains
[ChainI
] = St
;
4240 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4241 makeArrayRef(Chains
.data(), ChainI
));
4242 DAG
.setRoot(StoreNode
);
4245 void SelectionDAGBuilder::visitMaskedStore(const CallInst
&I
,
4246 bool IsCompressing
) {
4247 SDLoc sdl
= getCurSDLoc();
4249 auto getMaskedStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4250 unsigned& Alignment
) {
4251 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4252 Src0
= I
.getArgOperand(0);
4253 Ptr
= I
.getArgOperand(1);
4254 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
4255 Mask
= I
.getArgOperand(3);
4257 auto getCompressingStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4258 unsigned& Alignment
) {
4259 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4260 Src0
= I
.getArgOperand(0);
4261 Ptr
= I
.getArgOperand(1);
4262 Mask
= I
.getArgOperand(2);
4266 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4269 getCompressingStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4271 getMaskedStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4273 SDValue Ptr
= getValue(PtrOperand
);
4274 SDValue Src0
= getValue(Src0Operand
);
4275 SDValue Mask
= getValue(MaskOperand
);
4277 EVT VT
= Src0
.getValueType();
4279 Alignment
= DAG
.getEVTAlignment(VT
);
4282 I
.getAAMetadata(AAInfo
);
4284 MachineMemOperand
*MMO
=
4285 DAG
.getMachineFunction().
4286 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4287 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4289 SDValue StoreNode
= DAG
.getMaskedStore(getRoot(), sdl
, Src0
, Ptr
, Mask
, VT
,
4290 MMO
, false /* Truncating */,
4292 DAG
.setRoot(StoreNode
);
4293 setValue(&I
, StoreNode
);
4296 // Get a uniform base for the Gather/Scatter intrinsic.
4297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4298 // We try to represent it as a base pointer + vector of indices.
4299 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4300 // The first operand of the GEP may be a single pointer or a vector of pointers
4302 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4304 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4307 // When the first GEP operand is a single pointer - it is the uniform base we
4308 // are looking for. If first operand of the GEP is a splat vector - we
4309 // extract the splat value and use it as a uniform base.
4310 // In all other cases the function returns 'false'.
4311 static bool getUniformBase(const Value
*&Ptr
, SDValue
&Base
, SDValue
&Index
,
4312 ISD::MemIndexType
&IndexType
, SDValue
&Scale
,
4313 SelectionDAGBuilder
*SDB
) {
4314 SelectionDAG
& DAG
= SDB
->DAG
;
4315 LLVMContext
&Context
= *DAG
.getContext();
4317 assert(Ptr
->getType()->isVectorTy() && "Uexpected pointer type");
4318 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
4322 const Value
*GEPPtr
= GEP
->getPointerOperand();
4323 if (!GEPPtr
->getType()->isVectorTy())
4325 else if (!(Ptr
= getSplatValue(GEPPtr
)))
4328 unsigned FinalIndex
= GEP
->getNumOperands() - 1;
4329 Value
*IndexVal
= GEP
->getOperand(FinalIndex
);
4331 // Ensure all the other indices are 0.
4332 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
4333 auto *C
= dyn_cast
<Constant
>(GEP
->getOperand(i
));
4336 if (isa
<VectorType
>(C
->getType()))
4337 C
= C
->getSplatValue();
4338 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
4339 if (!CI
|| !CI
->isZero())
4343 // The operands of the GEP may be defined in another basic block.
4344 // In this case we'll not find nodes for the operands.
4345 if (!SDB
->findValue(Ptr
) || !SDB
->findValue(IndexVal
))
4348 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4349 const DataLayout
&DL
= DAG
.getDataLayout();
4350 Scale
= DAG
.getTargetConstant(DL
.getTypeAllocSize(GEP
->getResultElementType()),
4351 SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4352 Base
= SDB
->getValue(Ptr
);
4353 Index
= SDB
->getValue(IndexVal
);
4354 IndexType
= ISD::SIGNED_SCALED
;
4356 if (!Index
.getValueType().isVector()) {
4357 unsigned GEPWidth
= GEP
->getType()->getVectorNumElements();
4358 EVT VT
= EVT::getVectorVT(Context
, Index
.getValueType(), GEPWidth
);
4359 Index
= DAG
.getSplatBuildVector(VT
, SDLoc(Index
), Index
);
4364 void SelectionDAGBuilder::visitMaskedScatter(const CallInst
&I
) {
4365 SDLoc sdl
= getCurSDLoc();
4367 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4368 const Value
*Ptr
= I
.getArgOperand(1);
4369 SDValue Src0
= getValue(I
.getArgOperand(0));
4370 SDValue Mask
= getValue(I
.getArgOperand(3));
4371 EVT VT
= Src0
.getValueType();
4372 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(2)))->getZExtValue();
4374 Alignment
= DAG
.getEVTAlignment(VT
);
4375 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4378 I
.getAAMetadata(AAInfo
);
4382 ISD::MemIndexType IndexType
;
4384 const Value
*BasePtr
= Ptr
;
4385 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, IndexType
, Scale
,
4388 const Value
*MemOpBasePtr
= UniformBase
? BasePtr
: nullptr;
4389 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
4390 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr
),
4391 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4394 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4395 Index
= getValue(Ptr
);
4396 IndexType
= ISD::SIGNED_SCALED
;
4397 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4399 SDValue Ops
[] = { getRoot(), Src0
, Mask
, Base
, Index
, Scale
};
4400 SDValue Scatter
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), VT
, sdl
,
4401 Ops
, MMO
, IndexType
);
4402 DAG
.setRoot(Scatter
);
4403 setValue(&I
, Scatter
);
4406 void SelectionDAGBuilder::visitMaskedLoad(const CallInst
&I
, bool IsExpanding
) {
4407 SDLoc sdl
= getCurSDLoc();
4409 auto getMaskedLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4410 unsigned& Alignment
) {
4411 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4412 Ptr
= I
.getArgOperand(0);
4413 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
4414 Mask
= I
.getArgOperand(2);
4415 Src0
= I
.getArgOperand(3);
4417 auto getExpandingLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4418 unsigned& Alignment
) {
4419 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4420 Ptr
= I
.getArgOperand(0);
4422 Mask
= I
.getArgOperand(1);
4423 Src0
= I
.getArgOperand(2);
4426 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4429 getExpandingLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4431 getMaskedLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4433 SDValue Ptr
= getValue(PtrOperand
);
4434 SDValue Src0
= getValue(Src0Operand
);
4435 SDValue Mask
= getValue(MaskOperand
);
4437 EVT VT
= Src0
.getValueType();
4439 Alignment
= DAG
.getEVTAlignment(VT
);
4442 I
.getAAMetadata(AAInfo
);
4443 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4445 // Do not serialize masked loads of constant memory with anything.
4447 !AA
|| !AA
->pointsToConstantMemory(MemoryLocation(
4449 LocationSize::precise(
4450 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4452 SDValue InChain
= AddToChain
? DAG
.getRoot() : DAG
.getEntryNode();
4454 MachineMemOperand
*MMO
=
4455 DAG
.getMachineFunction().
4456 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4457 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4458 Alignment
, AAInfo
, Ranges
);
4460 SDValue Load
= DAG
.getMaskedLoad(VT
, sdl
, InChain
, Ptr
, Mask
, Src0
, VT
, MMO
,
4461 ISD::NON_EXTLOAD
, IsExpanding
);
4463 PendingLoads
.push_back(Load
.getValue(1));
4467 void SelectionDAGBuilder::visitMaskedGather(const CallInst
&I
) {
4468 SDLoc sdl
= getCurSDLoc();
4470 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4471 const Value
*Ptr
= I
.getArgOperand(0);
4472 SDValue Src0
= getValue(I
.getArgOperand(3));
4473 SDValue Mask
= getValue(I
.getArgOperand(2));
4475 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4476 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4477 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(1)))->getZExtValue();
4479 Alignment
= DAG
.getEVTAlignment(VT
);
4482 I
.getAAMetadata(AAInfo
);
4483 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4485 SDValue Root
= DAG
.getRoot();
4488 ISD::MemIndexType IndexType
;
4490 const Value
*BasePtr
= Ptr
;
4491 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, IndexType
, Scale
,
4493 bool ConstantMemory
= false;
4494 if (UniformBase
&& AA
&&
4495 AA
->pointsToConstantMemory(
4496 MemoryLocation(BasePtr
,
4497 LocationSize::precise(
4498 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4500 // Do not serialize (non-volatile) loads of constant memory with anything.
4501 Root
= DAG
.getEntryNode();
4502 ConstantMemory
= true;
4505 MachineMemOperand
*MMO
=
4506 DAG
.getMachineFunction().
4507 getMachineMemOperand(MachinePointerInfo(UniformBase
? BasePtr
: nullptr),
4508 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4509 Alignment
, AAInfo
, Ranges
);
4512 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4513 Index
= getValue(Ptr
);
4514 IndexType
= ISD::SIGNED_SCALED
;
4515 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4517 SDValue Ops
[] = { Root
, Src0
, Mask
, Base
, Index
, Scale
};
4518 SDValue Gather
= DAG
.getMaskedGather(DAG
.getVTList(VT
, MVT::Other
), VT
, sdl
,
4519 Ops
, MMO
, IndexType
);
4521 SDValue OutChain
= Gather
.getValue(1);
4522 if (!ConstantMemory
)
4523 PendingLoads
.push_back(OutChain
);
4524 setValue(&I
, Gather
);
4527 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
) {
4528 SDLoc dl
= getCurSDLoc();
4529 AtomicOrdering SuccessOrdering
= I
.getSuccessOrdering();
4530 AtomicOrdering FailureOrdering
= I
.getFailureOrdering();
4531 SyncScope::ID SSID
= I
.getSyncScopeID();
4533 SDValue InChain
= getRoot();
4535 MVT MemVT
= getValue(I
.getCompareOperand()).getSimpleValueType();
4536 SDVTList VTs
= DAG
.getVTList(MemVT
, MVT::i1
, MVT::Other
);
4538 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4540 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4542 Flags
|= MachineMemOperand::MOVolatile
;
4543 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4545 MachineFunction
&MF
= DAG
.getMachineFunction();
4546 MachineMemOperand
*MMO
=
4547 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4548 Flags
, MemVT
.getStoreSize(), Alignment
,
4549 AAMDNodes(), nullptr, SSID
, SuccessOrdering
,
4552 SDValue L
= DAG
.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
,
4553 dl
, MemVT
, VTs
, InChain
,
4554 getValue(I
.getPointerOperand()),
4555 getValue(I
.getCompareOperand()),
4556 getValue(I
.getNewValOperand()), MMO
);
4558 SDValue OutChain
= L
.getValue(2);
4561 DAG
.setRoot(OutChain
);
4564 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst
&I
) {
4565 SDLoc dl
= getCurSDLoc();
4567 switch (I
.getOperation()) {
4568 default: llvm_unreachable("Unknown atomicrmw operation");
4569 case AtomicRMWInst::Xchg
: NT
= ISD::ATOMIC_SWAP
; break;
4570 case AtomicRMWInst::Add
: NT
= ISD::ATOMIC_LOAD_ADD
; break;
4571 case AtomicRMWInst::Sub
: NT
= ISD::ATOMIC_LOAD_SUB
; break;
4572 case AtomicRMWInst::And
: NT
= ISD::ATOMIC_LOAD_AND
; break;
4573 case AtomicRMWInst::Nand
: NT
= ISD::ATOMIC_LOAD_NAND
; break;
4574 case AtomicRMWInst::Or
: NT
= ISD::ATOMIC_LOAD_OR
; break;
4575 case AtomicRMWInst::Xor
: NT
= ISD::ATOMIC_LOAD_XOR
; break;
4576 case AtomicRMWInst::Max
: NT
= ISD::ATOMIC_LOAD_MAX
; break;
4577 case AtomicRMWInst::Min
: NT
= ISD::ATOMIC_LOAD_MIN
; break;
4578 case AtomicRMWInst::UMax
: NT
= ISD::ATOMIC_LOAD_UMAX
; break;
4579 case AtomicRMWInst::UMin
: NT
= ISD::ATOMIC_LOAD_UMIN
; break;
4580 case AtomicRMWInst::FAdd
: NT
= ISD::ATOMIC_LOAD_FADD
; break;
4581 case AtomicRMWInst::FSub
: NT
= ISD::ATOMIC_LOAD_FSUB
; break;
4583 AtomicOrdering Ordering
= I
.getOrdering();
4584 SyncScope::ID SSID
= I
.getSyncScopeID();
4586 SDValue InChain
= getRoot();
4588 auto MemVT
= getValue(I
.getValOperand()).getSimpleValueType();
4589 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4591 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4593 Flags
|= MachineMemOperand::MOVolatile
;
4594 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4596 MachineFunction
&MF
= DAG
.getMachineFunction();
4597 MachineMemOperand
*MMO
=
4598 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4599 MemVT
.getStoreSize(), Alignment
, AAMDNodes(),
4600 nullptr, SSID
, Ordering
);
4603 DAG
.getAtomic(NT
, dl
, MemVT
, InChain
,
4604 getValue(I
.getPointerOperand()), getValue(I
.getValOperand()),
4607 SDValue OutChain
= L
.getValue(1);
4610 DAG
.setRoot(OutChain
);
4613 void SelectionDAGBuilder::visitFence(const FenceInst
&I
) {
4614 SDLoc dl
= getCurSDLoc();
4615 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4618 Ops
[1] = DAG
.getConstant((unsigned)I
.getOrdering(), dl
,
4619 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4620 Ops
[2] = DAG
.getConstant(I
.getSyncScopeID(), dl
,
4621 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4622 DAG
.setRoot(DAG
.getNode(ISD::ATOMIC_FENCE
, dl
, MVT::Other
, Ops
));
4625 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst
&I
) {
4626 SDLoc dl
= getCurSDLoc();
4627 AtomicOrdering Order
= I
.getOrdering();
4628 SyncScope::ID SSID
= I
.getSyncScopeID();
4630 SDValue InChain
= getRoot();
4632 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4633 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4634 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
4636 if (!TLI
.supportsUnalignedAtomics() &&
4637 I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4638 report_fatal_error("Cannot generate unaligned atomic load");
4640 auto Flags
= MachineMemOperand::MOLoad
;
4642 Flags
|= MachineMemOperand::MOVolatile
;
4643 if (I
.hasMetadata(LLVMContext::MD_invariant_load
))
4644 Flags
|= MachineMemOperand::MOInvariant
;
4645 if (isDereferenceablePointer(I
.getPointerOperand(), I
.getType(),
4646 DAG
.getDataLayout()))
4647 Flags
|= MachineMemOperand::MODereferenceable
;
4649 Flags
|= TLI
.getMMOFlags(I
);
4651 MachineMemOperand
*MMO
=
4652 DAG
.getMachineFunction().
4653 getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4654 Flags
, MemVT
.getStoreSize(),
4655 I
.getAlignment() ? I
.getAlignment() :
4656 DAG
.getEVTAlignment(MemVT
),
4657 AAMDNodes(), nullptr, SSID
, Order
);
4659 InChain
= TLI
.prepareVolatileOrAtomicLoad(InChain
, dl
, DAG
);
4661 SDValue Ptr
= getValue(I
.getPointerOperand());
4663 if (TLI
.lowerAtomicLoadAsLoadSDNode(I
)) {
4664 // TODO: Once this is better exercised by tests, it should be merged with
4665 // the normal path for loads to prevent future divergence.
4666 SDValue L
= DAG
.getLoad(MemVT
, dl
, InChain
, Ptr
, MMO
);
4668 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4671 if (!I
.isUnordered()) {
4672 SDValue OutChain
= L
.getValue(1);
4673 DAG
.setRoot(OutChain
);
4678 SDValue L
= DAG
.getAtomic(ISD::ATOMIC_LOAD
, dl
, MemVT
, MemVT
, InChain
,
4681 SDValue OutChain
= L
.getValue(1);
4683 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4686 DAG
.setRoot(OutChain
);
4689 void SelectionDAGBuilder::visitAtomicStore(const StoreInst
&I
) {
4690 SDLoc dl
= getCurSDLoc();
4692 AtomicOrdering Ordering
= I
.getOrdering();
4693 SyncScope::ID SSID
= I
.getSyncScopeID();
4695 SDValue InChain
= getRoot();
4697 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4699 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getValueOperand()->getType());
4701 if (I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4702 report_fatal_error("Cannot generate unaligned atomic store");
4704 auto Flags
= MachineMemOperand::MOStore
;
4706 Flags
|= MachineMemOperand::MOVolatile
;
4707 Flags
|= TLI
.getMMOFlags(I
);
4709 MachineFunction
&MF
= DAG
.getMachineFunction();
4710 MachineMemOperand
*MMO
=
4711 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4712 MemVT
.getStoreSize(), I
.getAlignment(), AAMDNodes(),
4713 nullptr, SSID
, Ordering
);
4715 SDValue Val
= getValue(I
.getValueOperand());
4716 if (Val
.getValueType() != MemVT
)
4717 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVT
);
4718 SDValue Ptr
= getValue(I
.getPointerOperand());
4720 if (TLI
.lowerAtomicStoreAsStoreSDNode(I
)) {
4721 // TODO: Once this is better exercised by tests, it should be merged with
4722 // the normal path for stores to prevent future divergence.
4723 SDValue S
= DAG
.getStore(InChain
, dl
, Val
, Ptr
, MMO
);
4727 SDValue OutChain
= DAG
.getAtomic(ISD::ATOMIC_STORE
, dl
, MemVT
, InChain
,
4731 DAG
.setRoot(OutChain
);
4734 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4736 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
4737 unsigned Intrinsic
) {
4738 // Ignore the callsite's attributes. A specific call site may be marked with
4739 // readnone, but the lowering code will expect the chain based on the
4741 const Function
*F
= I
.getCalledFunction();
4742 bool HasChain
= !F
->doesNotAccessMemory();
4743 bool OnlyLoad
= HasChain
&& F
->onlyReadsMemory();
4745 // Build the operand list.
4746 SmallVector
<SDValue
, 8> Ops
;
4747 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
4749 // We don't need to serialize loads against other loads.
4750 Ops
.push_back(DAG
.getRoot());
4752 Ops
.push_back(getRoot());
4756 // Info is set by getTgtMemInstrinsic
4757 TargetLowering::IntrinsicInfo Info
;
4758 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4759 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
,
4760 DAG
.getMachineFunction(),
4763 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4764 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
4765 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
4766 Ops
.push_back(DAG
.getTargetConstant(Intrinsic
, getCurSDLoc(),
4767 TLI
.getPointerTy(DAG
.getDataLayout())));
4769 // Add all operands of the call to the operand list.
4770 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
4771 SDValue Op
= getValue(I
.getArgOperand(i
));
4775 SmallVector
<EVT
, 4> ValueVTs
;
4776 ComputeValueVTs(TLI
, DAG
.getDataLayout(), I
.getType(), ValueVTs
);
4779 ValueVTs
.push_back(MVT::Other
);
4781 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
4785 if (IsTgtIntrinsic
) {
4786 // This is target intrinsic that touches memory
4788 I
.getAAMetadata(AAInfo
);
4789 Result
= DAG
.getMemIntrinsicNode(
4790 Info
.opc
, getCurSDLoc(), VTs
, Ops
, Info
.memVT
,
4791 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
4792 Info
.align
? Info
.align
->value() : 0, Info
.flags
, Info
.size
, AAInfo
);
4793 } else if (!HasChain
) {
4794 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4795 } else if (!I
.getType()->isVoidTy()) {
4796 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4798 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
);
4802 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
4804 PendingLoads
.push_back(Chain
);
4809 if (!I
.getType()->isVoidTy()) {
4810 if (VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
4811 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), PTy
);
4812 Result
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), VT
, Result
);
4814 Result
= lowerRangeToAssertZExt(DAG
, I
, Result
);
4816 setValue(&I
, Result
);
4820 /// GetSignificand - Get the significand and build it into a floating-point
4821 /// number with exponent of 1:
4823 /// Op = (Op & 0x007fffff) | 0x3f800000;
4825 /// where Op is the hexadecimal representation of floating point value.
4826 static SDValue
GetSignificand(SelectionDAG
&DAG
, SDValue Op
, const SDLoc
&dl
) {
4827 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4828 DAG
.getConstant(0x007fffff, dl
, MVT::i32
));
4829 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
4830 DAG
.getConstant(0x3f800000, dl
, MVT::i32
));
4831 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
4834 /// GetExponent - Get the exponent:
4836 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4838 /// where Op is the hexadecimal representation of floating point value.
4839 static SDValue
GetExponent(SelectionDAG
&DAG
, SDValue Op
,
4840 const TargetLowering
&TLI
, const SDLoc
&dl
) {
4841 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4842 DAG
.getConstant(0x7f800000, dl
, MVT::i32
));
4843 SDValue t1
= DAG
.getNode(
4844 ISD::SRL
, dl
, MVT::i32
, t0
,
4845 DAG
.getConstant(23, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
4846 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
4847 DAG
.getConstant(127, dl
, MVT::i32
));
4848 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
4851 /// getF32Constant - Get 32-bit floating point constant.
4852 static SDValue
getF32Constant(SelectionDAG
&DAG
, unsigned Flt
,
4854 return DAG
.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt
)), dl
,
4858 static SDValue
getLimitedPrecisionExp2(SDValue t0
, const SDLoc
&dl
,
4859 SelectionDAG
&DAG
) {
4860 // TODO: What fast-math-flags should be set on the floating-point nodes?
4862 // IntegerPartOfX = ((int32_t)(t0);
4863 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
4865 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4866 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
4867 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
4869 // IntegerPartOfX <<= 23;
4870 IntegerPartOfX
= DAG
.getNode(
4871 ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
4872 DAG
.getConstant(23, dl
, DAG
.getTargetLoweringInfo().getPointerTy(
4873 DAG
.getDataLayout())));
4875 SDValue TwoToFractionalPartOfX
;
4876 if (LimitFloatPrecision
<= 6) {
4877 // For floating-point precision of 6:
4879 // TwoToFractionalPartOfX =
4881 // (0.735607626f + 0.252464424f * x) * x;
4883 // error 0.0144103317, which is 6 bits
4884 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4885 getF32Constant(DAG
, 0x3e814304, dl
));
4886 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4887 getF32Constant(DAG
, 0x3f3c50c8, dl
));
4888 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4889 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4890 getF32Constant(DAG
, 0x3f7f5e7e, dl
));
4891 } else if (LimitFloatPrecision
<= 12) {
4892 // For floating-point precision of 12:
4894 // TwoToFractionalPartOfX =
4897 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4899 // error 0.000107046256, which is 13 to 14 bits
4900 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4901 getF32Constant(DAG
, 0x3da235e3, dl
));
4902 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4903 getF32Constant(DAG
, 0x3e65b8f3, dl
));
4904 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4905 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4906 getF32Constant(DAG
, 0x3f324b07, dl
));
4907 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4908 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4909 getF32Constant(DAG
, 0x3f7ff8fd, dl
));
4910 } else { // LimitFloatPrecision <= 18
4911 // For floating-point precision of 18:
4913 // TwoToFractionalPartOfX =
4917 // (0.554906021e-1f +
4918 // (0.961591928e-2f +
4919 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4920 // error 2.47208000*10^(-7), which is better than 18 bits
4921 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4922 getF32Constant(DAG
, 0x3924b03e, dl
));
4923 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4924 getF32Constant(DAG
, 0x3ab24b87, dl
));
4925 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4926 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4927 getF32Constant(DAG
, 0x3c1d8c17, dl
));
4928 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4929 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4930 getF32Constant(DAG
, 0x3d634a1d, dl
));
4931 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4932 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4933 getF32Constant(DAG
, 0x3e75fe14, dl
));
4934 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4935 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4936 getF32Constant(DAG
, 0x3f317234, dl
));
4937 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4938 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4939 getF32Constant(DAG
, 0x3f800000, dl
));
4942 // Add the exponent into the result in integer domain.
4943 SDValue t13
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, TwoToFractionalPartOfX
);
4944 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
4945 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t13
, IntegerPartOfX
));
4948 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4949 /// limited-precision mode.
4950 static SDValue
expandExp(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4951 const TargetLowering
&TLI
) {
4952 if (Op
.getValueType() == MVT::f32
&&
4953 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4955 // Put the exponent in the right bit position for later addition to the
4958 // #define LOG2OFe 1.4426950f
4959 // t0 = Op * LOG2OFe
4961 // TODO: What fast-math-flags should be set here?
4962 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
4963 getF32Constant(DAG
, 0x3fb8aa3b, dl
));
4964 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
4967 // No special expansion.
4968 return DAG
.getNode(ISD::FEXP
, dl
, Op
.getValueType(), Op
);
4971 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4972 /// limited-precision mode.
4973 static SDValue
expandLog(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4974 const TargetLowering
&TLI
) {
4975 // TODO: What fast-math-flags should be set on the floating-point nodes?
4977 if (Op
.getValueType() == MVT::f32
&&
4978 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4979 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
4981 // Scale the exponent by log(2) [0.69314718f].
4982 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
4983 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
4984 getF32Constant(DAG
, 0x3f317218, dl
));
4986 // Get the significand and build it into a floating-point number with
4988 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
4990 SDValue LogOfMantissa
;
4991 if (LimitFloatPrecision
<= 6) {
4992 // For floating-point precision of 6:
4996 // (1.4034025f - 0.23903021f * x) * x;
4998 // error 0.0034276066, which is better than 8 bits
4999 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5000 getF32Constant(DAG
, 0xbe74c456, dl
));
5001 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5002 getF32Constant(DAG
, 0x3fb3a2b1, dl
));
5003 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5004 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5005 getF32Constant(DAG
, 0x3f949a29, dl
));
5006 } else if (LimitFloatPrecision
<= 12) {
5007 // For floating-point precision of 12:
5013 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5015 // error 0.000061011436, which is 14 bits
5016 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5017 getF32Constant(DAG
, 0xbd67b6d6, dl
));
5018 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5019 getF32Constant(DAG
, 0x3ee4f4b8, dl
));
5020 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5021 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5022 getF32Constant(DAG
, 0x3fbc278b, dl
));
5023 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5024 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5025 getF32Constant(DAG
, 0x40348e95, dl
));
5026 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5027 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5028 getF32Constant(DAG
, 0x3fdef31a, dl
));
5029 } else { // LimitFloatPrecision <= 18
5030 // For floating-point precision of 18:
5038 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5040 // error 0.0000023660568, which is better than 18 bits
5041 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5042 getF32Constant(DAG
, 0xbc91e5ac, dl
));
5043 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5044 getF32Constant(DAG
, 0x3e4350aa, dl
));
5045 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5046 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5047 getF32Constant(DAG
, 0x3f60d3e3, dl
));
5048 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5049 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5050 getF32Constant(DAG
, 0x4011cdf0, dl
));
5051 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5052 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5053 getF32Constant(DAG
, 0x406cfd1c, dl
));
5054 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5055 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5056 getF32Constant(DAG
, 0x408797cb, dl
));
5057 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5058 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5059 getF32Constant(DAG
, 0x4006dcab, dl
));
5062 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, LogOfMantissa
);
5065 // No special expansion.
5066 return DAG
.getNode(ISD::FLOG
, dl
, Op
.getValueType(), Op
);
5069 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5070 /// limited-precision mode.
5071 static SDValue
expandLog2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5072 const TargetLowering
&TLI
) {
5073 // TODO: What fast-math-flags should be set on the floating-point nodes?
5075 if (Op
.getValueType() == MVT::f32
&&
5076 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5077 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5079 // Get the exponent.
5080 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
5082 // Get the significand and build it into a floating-point number with
5084 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5086 // Different possible minimax approximations of significand in
5087 // floating-point for various degrees of accuracy over [1,2].
5088 SDValue Log2ofMantissa
;
5089 if (LimitFloatPrecision
<= 6) {
5090 // For floating-point precision of 6:
5092 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5094 // error 0.0049451742, which is more than 7 bits
5095 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5096 getF32Constant(DAG
, 0xbeb08fe0, dl
));
5097 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5098 getF32Constant(DAG
, 0x40019463, dl
));
5099 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5100 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5101 getF32Constant(DAG
, 0x3fd6633d, dl
));
5102 } else if (LimitFloatPrecision
<= 12) {
5103 // For floating-point precision of 12:
5109 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5111 // error 0.0000876136000, which is better than 13 bits
5112 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5113 getF32Constant(DAG
, 0xbda7262e, dl
));
5114 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5115 getF32Constant(DAG
, 0x3f25280b, dl
));
5116 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5117 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5118 getF32Constant(DAG
, 0x4007b923, dl
));
5119 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5120 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5121 getF32Constant(DAG
, 0x40823e2f, dl
));
5122 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5123 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5124 getF32Constant(DAG
, 0x4020d29c, dl
));
5125 } else { // LimitFloatPrecision <= 18
5126 // For floating-point precision of 18:
5135 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5137 // error 0.0000018516, which is better than 18 bits
5138 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5139 getF32Constant(DAG
, 0xbcd2769e, dl
));
5140 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5141 getF32Constant(DAG
, 0x3e8ce0b9, dl
));
5142 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5143 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5144 getF32Constant(DAG
, 0x3fa22ae7, dl
));
5145 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5146 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5147 getF32Constant(DAG
, 0x40525723, dl
));
5148 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5149 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5150 getF32Constant(DAG
, 0x40aaf200, dl
));
5151 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5152 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5153 getF32Constant(DAG
, 0x40c39dad, dl
));
5154 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5155 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5156 getF32Constant(DAG
, 0x4042902c, dl
));
5159 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log2ofMantissa
);
5162 // No special expansion.
5163 return DAG
.getNode(ISD::FLOG2
, dl
, Op
.getValueType(), Op
);
5166 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5167 /// limited-precision mode.
5168 static SDValue
expandLog10(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5169 const TargetLowering
&TLI
) {
5170 // TODO: What fast-math-flags should be set on the floating-point nodes?
5172 if (Op
.getValueType() == MVT::f32
&&
5173 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5174 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5176 // Scale the exponent by log10(2) [0.30102999f].
5177 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5178 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5179 getF32Constant(DAG
, 0x3e9a209a, dl
));
5181 // Get the significand and build it into a floating-point number with
5183 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5185 SDValue Log10ofMantissa
;
5186 if (LimitFloatPrecision
<= 6) {
5187 // For floating-point precision of 6:
5189 // Log10ofMantissa =
5191 // (0.60948995f - 0.10380950f * x) * x;
5193 // error 0.0014886165, which is 6 bits
5194 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5195 getF32Constant(DAG
, 0xbdd49a13, dl
));
5196 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5197 getF32Constant(DAG
, 0x3f1c0789, dl
));
5198 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5199 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5200 getF32Constant(DAG
, 0x3f011300, dl
));
5201 } else if (LimitFloatPrecision
<= 12) {
5202 // For floating-point precision of 12:
5204 // Log10ofMantissa =
5207 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5209 // error 0.00019228036, which is better than 12 bits
5210 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5211 getF32Constant(DAG
, 0x3d431f31, dl
));
5212 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5213 getF32Constant(DAG
, 0x3ea21fb2, dl
));
5214 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5215 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5216 getF32Constant(DAG
, 0x3f6ae232, dl
));
5217 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5218 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5219 getF32Constant(DAG
, 0x3f25f7c3, dl
));
5220 } else { // LimitFloatPrecision <= 18
5221 // For floating-point precision of 18:
5223 // Log10ofMantissa =
5228 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5230 // error 0.0000037995730, which is better than 18 bits
5231 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5232 getF32Constant(DAG
, 0x3c5d51ce, dl
));
5233 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5234 getF32Constant(DAG
, 0x3e00685a, dl
));
5235 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5236 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5237 getF32Constant(DAG
, 0x3efb6798, dl
));
5238 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5239 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5240 getF32Constant(DAG
, 0x3f88d192, dl
));
5241 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5242 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
5243 getF32Constant(DAG
, 0x3fc4316c, dl
));
5244 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5245 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
5246 getF32Constant(DAG
, 0x3f57ce70, dl
));
5249 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log10ofMantissa
);
5252 // No special expansion.
5253 return DAG
.getNode(ISD::FLOG10
, dl
, Op
.getValueType(), Op
);
5256 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5257 /// limited-precision mode.
5258 static SDValue
expandExp2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5259 const TargetLowering
&TLI
) {
5260 if (Op
.getValueType() == MVT::f32
&&
5261 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18)
5262 return getLimitedPrecisionExp2(Op
, dl
, DAG
);
5264 // No special expansion.
5265 return DAG
.getNode(ISD::FEXP2
, dl
, Op
.getValueType(), Op
);
5268 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5269 /// limited-precision mode with x == 10.0f.
5270 static SDValue
expandPow(const SDLoc
&dl
, SDValue LHS
, SDValue RHS
,
5271 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
5272 bool IsExp10
= false;
5273 if (LHS
.getValueType() == MVT::f32
&& RHS
.getValueType() == MVT::f32
&&
5274 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5275 if (ConstantFPSDNode
*LHSC
= dyn_cast
<ConstantFPSDNode
>(LHS
)) {
5277 IsExp10
= LHSC
->isExactlyValue(Ten
);
5281 // TODO: What fast-math-flags should be set on the FMUL node?
5283 // Put the exponent in the right bit position for later addition to the
5286 // #define LOG2OF10 3.3219281f
5287 // t0 = Op * LOG2OF10;
5288 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, RHS
,
5289 getF32Constant(DAG
, 0x40549a78, dl
));
5290 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5293 // No special expansion.
5294 return DAG
.getNode(ISD::FPOW
, dl
, LHS
.getValueType(), LHS
, RHS
);
5297 /// ExpandPowI - Expand a llvm.powi intrinsic.
5298 static SDValue
ExpandPowI(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
,
5299 SelectionDAG
&DAG
) {
5300 // If RHS is a constant, we can expand this out to a multiplication tree,
5301 // otherwise we end up lowering to a call to __powidf2 (for example). When
5302 // optimizing for size, we only want to do this if the expansion would produce
5303 // a small number of multiplies, otherwise we do the full expansion.
5304 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5305 // Get the exponent as a positive value.
5306 unsigned Val
= RHSC
->getSExtValue();
5307 if ((int)Val
< 0) Val
= -Val
;
5309 // powi(x, 0) -> 1.0
5311 return DAG
.getConstantFP(1.0, DL
, LHS
.getValueType());
5313 const Function
&F
= DAG
.getMachineFunction().getFunction();
5314 if (!F
.hasOptSize() ||
5315 // If optimizing for size, don't insert too many multiplies.
5316 // This inserts up to 5 multiplies.
5317 countPopulation(Val
) + Log2_32(Val
) < 7) {
5318 // We use the simple binary decomposition method to generate the multiply
5319 // sequence. There are more optimal ways to do this (for example,
5320 // powi(x,15) generates one more multiply than it should), but this has
5321 // the benefit of being both really simple and much better than a libcall.
5322 SDValue Res
; // Logically starts equal to 1.0
5323 SDValue CurSquare
= LHS
;
5324 // TODO: Intrinsics should have fast-math-flags that propagate to these
5329 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
5331 Res
= CurSquare
; // 1.0*CurSquare.
5334 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
5335 CurSquare
, CurSquare
);
5339 // If the original was negative, invert the result, producing 1/(x*x*x).
5340 if (RHSC
->getSExtValue() < 0)
5341 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
5342 DAG
.getConstantFP(1.0, DL
, LHS
.getValueType()), Res
);
5347 // Otherwise, expand to a libcall.
5348 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
5351 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5352 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5354 getUnderlyingArgRegs(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
5356 switch (N
.getOpcode()) {
5357 case ISD::CopyFromReg
: {
5358 SDValue Op
= N
.getOperand(1);
5359 Regs
.emplace_back(cast
<RegisterSDNode
>(Op
)->getReg(),
5360 Op
.getValueType().getSizeInBits());
5364 case ISD::AssertZext
:
5365 case ISD::AssertSext
:
5367 getUnderlyingArgRegs(Regs
, N
.getOperand(0));
5369 case ISD::BUILD_PAIR
:
5370 case ISD::BUILD_VECTOR
:
5371 case ISD::CONCAT_VECTORS
:
5372 for (SDValue Op
: N
->op_values())
5373 getUnderlyingArgRegs(Regs
, Op
);
5380 /// If the DbgValueInst is a dbg_value of a function argument, create the
5381 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5382 /// instruction selection, they will be inserted to the entry BB.
5383 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5384 const Value
*V
, DILocalVariable
*Variable
, DIExpression
*Expr
,
5385 DILocation
*DL
, bool IsDbgDeclare
, const SDValue
&N
) {
5386 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
5390 if (!IsDbgDeclare
) {
5391 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5392 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5394 bool IsInEntryBlock
= FuncInfo
.MBB
== &FuncInfo
.MF
->front();
5395 if (!IsInEntryBlock
)
5398 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5399 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5400 // variable that also is a param.
5402 // Although, if we are at the top of the entry block already, we can still
5403 // emit using ArgDbgValue. This might catch some situations when the
5404 // dbg.value refers to an argument that isn't used in the entry block, so
5405 // any CopyToReg node would be optimized out and the only way to express
5406 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5407 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5408 // we should only emit as ArgDbgValue if the Variable is an argument to the
5409 // current function, and the dbg.value intrinsic is found in the entry
5411 bool VariableIsFunctionInputArg
= Variable
->isParameter() &&
5412 !DL
->getInlinedAt();
5413 bool IsInPrologue
= SDNodeOrder
== LowestSDNodeOrder
;
5414 if (!IsInPrologue
&& !VariableIsFunctionInputArg
)
5417 // Here we assume that a function argument on IR level only can be used to
5418 // describe one input parameter on source level. If we for example have
5419 // source code like this
5421 // struct A { long x, y; };
5422 // void foo(struct A a, long b) {
5430 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5432 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5433 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5434 // call void @llvm.dbg.value(metadata i32 %b, "b",
5436 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5439 // then the last dbg.value is describing a parameter "b" using a value that
5440 // is an argument. But since we already has used %a1 to describe a parameter
5441 // we should not handle that last dbg.value here (that would result in an
5442 // incorrect hoisting of the DBG_VALUE to the function entry).
5443 // Notice that we allow one dbg.value per IR level argument, to accomodate
5444 // for the situation with fragments above.
5445 if (VariableIsFunctionInputArg
) {
5446 unsigned ArgNo
= Arg
->getArgNo();
5447 if (ArgNo
>= FuncInfo
.DescribedArgs
.size())
5448 FuncInfo
.DescribedArgs
.resize(ArgNo
+ 1, false);
5449 else if (!IsInPrologue
&& FuncInfo
.DescribedArgs
.test(ArgNo
))
5451 FuncInfo
.DescribedArgs
.set(ArgNo
);
5455 MachineFunction
&MF
= DAG
.getMachineFunction();
5456 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
5458 bool IsIndirect
= false;
5459 Optional
<MachineOperand
> Op
;
5460 // Some arguments' frame index is recorded during argument lowering.
5461 int FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5462 if (FI
!= std::numeric_limits
<int>::max())
5463 Op
= MachineOperand::CreateFI(FI
);
5465 SmallVector
<std::pair
<unsigned, unsigned>, 8> ArgRegsAndSizes
;
5466 if (!Op
&& N
.getNode()) {
5467 getUnderlyingArgRegs(ArgRegsAndSizes
, N
);
5469 if (ArgRegsAndSizes
.size() == 1)
5470 Reg
= ArgRegsAndSizes
.front().first
;
5472 if (Reg
&& Reg
.isVirtual()) {
5473 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5474 Register PR
= RegInfo
.getLiveInPhysReg(Reg
);
5479 Op
= MachineOperand::CreateReg(Reg
, false);
5480 IsIndirect
= IsDbgDeclare
;
5484 if (!Op
&& N
.getNode()) {
5485 // Check if frame index is available.
5486 SDValue LCandidate
= peekThroughBitcasts(N
);
5487 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(LCandidate
.getNode()))
5488 if (FrameIndexSDNode
*FINode
=
5489 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
5490 Op
= MachineOperand::CreateFI(FINode
->getIndex());
5494 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5495 auto splitMultiRegDbgValue
5496 = [&](ArrayRef
<std::pair
<unsigned, unsigned>> SplitRegs
) {
5497 unsigned Offset
= 0;
5498 for (auto RegAndSize
: SplitRegs
) {
5499 auto FragmentExpr
= DIExpression::createFragmentExpression(
5500 Expr
, Offset
, RegAndSize
.second
);
5503 FuncInfo
.ArgDbgValues
.push_back(
5504 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsDbgDeclare
,
5505 RegAndSize
.first
, Variable
, *FragmentExpr
));
5506 Offset
+= RegAndSize
.second
;
5510 // Check if ValueMap has reg number.
5511 DenseMap
<const Value
*, unsigned>::const_iterator
5512 VMI
= FuncInfo
.ValueMap
.find(V
);
5513 if (VMI
!= FuncInfo
.ValueMap
.end()) {
5514 const auto &TLI
= DAG
.getTargetLoweringInfo();
5515 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), VMI
->second
,
5516 V
->getType(), getABIRegCopyCC(V
));
5517 if (RFV
.occupiesMultipleRegs()) {
5518 splitMultiRegDbgValue(RFV
.getRegsAndSizes());
5522 Op
= MachineOperand::CreateReg(VMI
->second
, false);
5523 IsIndirect
= IsDbgDeclare
;
5524 } else if (ArgRegsAndSizes
.size() > 1) {
5525 // This was split due to the calling convention, and no virtual register
5526 // mapping exists for the value.
5527 splitMultiRegDbgValue(ArgRegsAndSizes
);
5535 assert(Variable
->isValidLocationForIntrinsic(DL
) &&
5536 "Expected inlined-at fields to agree");
5537 IsIndirect
= (Op
->isReg()) ? IsIndirect
: true;
5538 FuncInfo
.ArgDbgValues
.push_back(
5539 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
5540 *Op
, Variable
, Expr
));
5545 /// Return the appropriate SDDbgValue based on N.
5546 SDDbgValue
*SelectionDAGBuilder::getDbgValue(SDValue N
,
5547 DILocalVariable
*Variable
,
5550 unsigned DbgSDNodeOrder
) {
5551 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
5552 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5553 // stack slot locations.
5555 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5556 // debug values here after optimization:
5558 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5559 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5561 // Both describe the direct values of their associated variables.
5562 return DAG
.getFrameIndexDbgValue(Variable
, Expr
, FISDN
->getIndex(),
5563 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5565 return DAG
.getDbgValue(Variable
, Expr
, N
.getNode(), N
.getResNo(),
5566 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5569 // VisualStudio defines setjmp as _setjmp
5570 #if defined(_MSC_VER) && defined(setjmp) && \
5571 !defined(setjmp_undefined_for_msvc)
5572 # pragma push_macro("setjmp")
5574 # define setjmp_undefined_for_msvc
5577 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic
) {
5578 switch (Intrinsic
) {
5579 case Intrinsic::smul_fix
:
5580 return ISD::SMULFIX
;
5581 case Intrinsic::umul_fix
:
5582 return ISD::UMULFIX
;
5584 llvm_unreachable("Unhandled fixed point intrinsic");
5588 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst
&I
,
5589 const char *FunctionName
) {
5590 assert(FunctionName
&& "FunctionName must not be nullptr");
5591 SDValue Callee
= DAG
.getExternalSymbol(
5593 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
5594 LowerCallTo(&I
, Callee
, I
.isTailCall());
5597 /// Lower the call to the specified intrinsic function.
5598 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
,
5599 unsigned Intrinsic
) {
5600 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5601 SDLoc sdl
= getCurSDLoc();
5602 DebugLoc dl
= getCurDebugLoc();
5605 switch (Intrinsic
) {
5607 // By default, turn this into a target intrinsic node.
5608 visitTargetIntrinsic(I
, Intrinsic
);
5610 case Intrinsic::vastart
: visitVAStart(I
); return;
5611 case Intrinsic::vaend
: visitVAEnd(I
); return;
5612 case Intrinsic::vacopy
: visitVACopy(I
); return;
5613 case Intrinsic::returnaddress
:
5614 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, sdl
,
5615 TLI
.getPointerTy(DAG
.getDataLayout()),
5616 getValue(I
.getArgOperand(0))));
5618 case Intrinsic::addressofreturnaddress
:
5619 setValue(&I
, DAG
.getNode(ISD::ADDROFRETURNADDR
, sdl
,
5620 TLI
.getPointerTy(DAG
.getDataLayout())));
5622 case Intrinsic::sponentry
:
5623 setValue(&I
, DAG
.getNode(ISD::SPONENTRY
, sdl
,
5624 TLI
.getFrameIndexTy(DAG
.getDataLayout())));
5626 case Intrinsic::frameaddress
:
5627 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, sdl
,
5628 TLI
.getFrameIndexTy(DAG
.getDataLayout()),
5629 getValue(I
.getArgOperand(0))));
5631 case Intrinsic::read_register
: {
5632 Value
*Reg
= I
.getArgOperand(0);
5633 SDValue Chain
= getRoot();
5635 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5636 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5637 Res
= DAG
.getNode(ISD::READ_REGISTER
, sdl
,
5638 DAG
.getVTList(VT
, MVT::Other
), Chain
, RegName
);
5640 DAG
.setRoot(Res
.getValue(1));
5643 case Intrinsic::write_register
: {
5644 Value
*Reg
= I
.getArgOperand(0);
5645 Value
*RegValue
= I
.getArgOperand(1);
5646 SDValue Chain
= getRoot();
5648 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5649 DAG
.setRoot(DAG
.getNode(ISD::WRITE_REGISTER
, sdl
, MVT::Other
, Chain
,
5650 RegName
, getValue(RegValue
)));
5653 case Intrinsic::setjmp
:
5654 lowerCallToExternalSymbol(I
, &"_setjmp"[!TLI
.usesUnderscoreSetJmp()]);
5656 case Intrinsic::longjmp
:
5657 lowerCallToExternalSymbol(I
, &"_longjmp"[!TLI
.usesUnderscoreLongJmp()]);
5659 case Intrinsic::memcpy
: {
5660 const auto &MCI
= cast
<MemCpyInst
>(I
);
5661 SDValue Op1
= getValue(I
.getArgOperand(0));
5662 SDValue Op2
= getValue(I
.getArgOperand(1));
5663 SDValue Op3
= getValue(I
.getArgOperand(2));
5664 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5665 unsigned DstAlign
= std::max
<unsigned>(MCI
.getDestAlignment(), 1);
5666 unsigned SrcAlign
= std::max
<unsigned>(MCI
.getSourceAlignment(), 1);
5667 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5668 bool isVol
= MCI
.isVolatile();
5669 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5670 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5672 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5674 MachinePointerInfo(I
.getArgOperand(0)),
5675 MachinePointerInfo(I
.getArgOperand(1)));
5676 updateDAGForMaybeTailCall(MC
);
5679 case Intrinsic::memset
: {
5680 const auto &MSI
= cast
<MemSetInst
>(I
);
5681 SDValue Op1
= getValue(I
.getArgOperand(0));
5682 SDValue Op2
= getValue(I
.getArgOperand(1));
5683 SDValue Op3
= getValue(I
.getArgOperand(2));
5684 // @llvm.memset defines 0 and 1 to both mean no alignment.
5685 unsigned Align
= std::max
<unsigned>(MSI
.getDestAlignment(), 1);
5686 bool isVol
= MSI
.isVolatile();
5687 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5688 SDValue MS
= DAG
.getMemset(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5689 isTC
, MachinePointerInfo(I
.getArgOperand(0)));
5690 updateDAGForMaybeTailCall(MS
);
5693 case Intrinsic::memmove
: {
5694 const auto &MMI
= cast
<MemMoveInst
>(I
);
5695 SDValue Op1
= getValue(I
.getArgOperand(0));
5696 SDValue Op2
= getValue(I
.getArgOperand(1));
5697 SDValue Op3
= getValue(I
.getArgOperand(2));
5698 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5699 unsigned DstAlign
= std::max
<unsigned>(MMI
.getDestAlignment(), 1);
5700 unsigned SrcAlign
= std::max
<unsigned>(MMI
.getSourceAlignment(), 1);
5701 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5702 bool isVol
= MMI
.isVolatile();
5703 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5704 // FIXME: Support passing different dest/src alignments to the memmove DAG
5706 SDValue MM
= DAG
.getMemmove(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5707 isTC
, MachinePointerInfo(I
.getArgOperand(0)),
5708 MachinePointerInfo(I
.getArgOperand(1)));
5709 updateDAGForMaybeTailCall(MM
);
5712 case Intrinsic::memcpy_element_unordered_atomic
: {
5713 const AtomicMemCpyInst
&MI
= cast
<AtomicMemCpyInst
>(I
);
5714 SDValue Dst
= getValue(MI
.getRawDest());
5715 SDValue Src
= getValue(MI
.getRawSource());
5716 SDValue Length
= getValue(MI
.getLength());
5718 unsigned DstAlign
= MI
.getDestAlignment();
5719 unsigned SrcAlign
= MI
.getSourceAlignment();
5720 Type
*LengthTy
= MI
.getLength()->getType();
5721 unsigned ElemSz
= MI
.getElementSizeInBytes();
5722 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5723 SDValue MC
= DAG
.getAtomicMemcpy(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5724 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5725 MachinePointerInfo(MI
.getRawDest()),
5726 MachinePointerInfo(MI
.getRawSource()));
5727 updateDAGForMaybeTailCall(MC
);
5730 case Intrinsic::memmove_element_unordered_atomic
: {
5731 auto &MI
= cast
<AtomicMemMoveInst
>(I
);
5732 SDValue Dst
= getValue(MI
.getRawDest());
5733 SDValue Src
= getValue(MI
.getRawSource());
5734 SDValue Length
= getValue(MI
.getLength());
5736 unsigned DstAlign
= MI
.getDestAlignment();
5737 unsigned SrcAlign
= MI
.getSourceAlignment();
5738 Type
*LengthTy
= MI
.getLength()->getType();
5739 unsigned ElemSz
= MI
.getElementSizeInBytes();
5740 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5741 SDValue MC
= DAG
.getAtomicMemmove(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5742 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5743 MachinePointerInfo(MI
.getRawDest()),
5744 MachinePointerInfo(MI
.getRawSource()));
5745 updateDAGForMaybeTailCall(MC
);
5748 case Intrinsic::memset_element_unordered_atomic
: {
5749 auto &MI
= cast
<AtomicMemSetInst
>(I
);
5750 SDValue Dst
= getValue(MI
.getRawDest());
5751 SDValue Val
= getValue(MI
.getValue());
5752 SDValue Length
= getValue(MI
.getLength());
5754 unsigned DstAlign
= MI
.getDestAlignment();
5755 Type
*LengthTy
= MI
.getLength()->getType();
5756 unsigned ElemSz
= MI
.getElementSizeInBytes();
5757 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5758 SDValue MC
= DAG
.getAtomicMemset(getRoot(), sdl
, Dst
, DstAlign
, Val
, Length
,
5759 LengthTy
, ElemSz
, isTC
,
5760 MachinePointerInfo(MI
.getRawDest()));
5761 updateDAGForMaybeTailCall(MC
);
5764 case Intrinsic::dbg_addr
:
5765 case Intrinsic::dbg_declare
: {
5766 const auto &DI
= cast
<DbgVariableIntrinsic
>(I
);
5767 DILocalVariable
*Variable
= DI
.getVariable();
5768 DIExpression
*Expression
= DI
.getExpression();
5769 dropDanglingDebugInfo(Variable
, Expression
);
5770 assert(Variable
&& "Missing variable");
5772 // Check if address has undef value.
5773 const Value
*Address
= DI
.getVariableLocation();
5774 if (!Address
|| isa
<UndefValue
>(Address
) ||
5775 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
5776 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5780 bool isParameter
= Variable
->isParameter() || isa
<Argument
>(Address
);
5782 // Check if this variable can be described by a frame index, typically
5783 // either as a static alloca or a byval parameter.
5784 int FI
= std::numeric_limits
<int>::max();
5785 if (const auto *AI
=
5786 dyn_cast
<AllocaInst
>(Address
->stripInBoundsConstantOffsets())) {
5787 if (AI
->isStaticAlloca()) {
5788 auto I
= FuncInfo
.StaticAllocaMap
.find(AI
);
5789 if (I
!= FuncInfo
.StaticAllocaMap
.end())
5792 } else if (const auto *Arg
= dyn_cast
<Argument
>(
5793 Address
->stripInBoundsConstantOffsets())) {
5794 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5797 // llvm.dbg.addr is control dependent and always generates indirect
5798 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5799 // the MachineFunction variable table.
5800 if (FI
!= std::numeric_limits
<int>::max()) {
5801 if (Intrinsic
== Intrinsic::dbg_addr
) {
5802 SDDbgValue
*SDV
= DAG
.getFrameIndexDbgValue(
5803 Variable
, Expression
, FI
, /*IsIndirect*/ true, dl
, SDNodeOrder
);
5804 DAG
.AddDbgValue(SDV
, getRoot().getNode(), isParameter
);
5809 SDValue
&N
= NodeMap
[Address
];
5810 if (!N
.getNode() && isa
<Argument
>(Address
))
5811 // Check unused arguments map.
5812 N
= UnusedArgNodeMap
[Address
];
5815 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
5816 Address
= BCI
->getOperand(0);
5817 // Parameters are handled specially.
5818 auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
5819 if (isParameter
&& FINode
) {
5820 // Byval parameter. We have a frame index at this point.
5822 DAG
.getFrameIndexDbgValue(Variable
, Expression
, FINode
->getIndex(),
5823 /*IsIndirect*/ true, dl
, SDNodeOrder
);
5824 } else if (isa
<Argument
>(Address
)) {
5825 // Address is an argument, so try to emit its dbg value using
5826 // virtual register info from the FuncInfo.ValueMap.
5827 EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true, N
);
5830 SDV
= DAG
.getDbgValue(Variable
, Expression
, N
.getNode(), N
.getResNo(),
5831 true, dl
, SDNodeOrder
);
5833 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
5835 // If Address is an argument then try to emit its dbg value using
5836 // virtual register info from the FuncInfo.ValueMap.
5837 if (!EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true,
5839 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5844 case Intrinsic::dbg_label
: {
5845 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(I
);
5846 DILabel
*Label
= DI
.getLabel();
5847 assert(Label
&& "Missing label");
5850 SDV
= DAG
.getDbgLabel(Label
, dl
, SDNodeOrder
);
5851 DAG
.AddDbgLabel(SDV
);
5854 case Intrinsic::dbg_value
: {
5855 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
5856 assert(DI
.getVariable() && "Missing variable");
5858 DILocalVariable
*Variable
= DI
.getVariable();
5859 DIExpression
*Expression
= DI
.getExpression();
5860 dropDanglingDebugInfo(Variable
, Expression
);
5861 const Value
*V
= DI
.getValue();
5865 if (handleDebugValue(V
, Variable
, Expression
, dl
, DI
.getDebugLoc(),
5869 // TODO: Dangling debug info will eventually either be resolved or produce
5870 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5871 // between the original dbg.value location and its resolved DBG_VALUE, which
5872 // we should ideally fill with an extra Undef DBG_VALUE.
5874 DanglingDebugInfoMap
[V
].emplace_back(&DI
, dl
, SDNodeOrder
);
5878 case Intrinsic::eh_typeid_for
: {
5879 // Find the type id for the given typeinfo.
5880 GlobalValue
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
5881 unsigned TypeID
= DAG
.getMachineFunction().getTypeIDFor(GV
);
5882 Res
= DAG
.getConstant(TypeID
, sdl
, MVT::i32
);
5887 case Intrinsic::eh_return_i32
:
5888 case Intrinsic::eh_return_i64
:
5889 DAG
.getMachineFunction().setCallsEHReturn(true);
5890 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, sdl
,
5893 getValue(I
.getArgOperand(0)),
5894 getValue(I
.getArgOperand(1))));
5896 case Intrinsic::eh_unwind_init
:
5897 DAG
.getMachineFunction().setCallsUnwindInit(true);
5899 case Intrinsic::eh_dwarf_cfa
:
5900 setValue(&I
, DAG
.getNode(ISD::EH_DWARF_CFA
, sdl
,
5901 TLI
.getPointerTy(DAG
.getDataLayout()),
5902 getValue(I
.getArgOperand(0))));
5904 case Intrinsic::eh_sjlj_callsite
: {
5905 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5906 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
5907 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
5908 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
5910 MMI
.setCurrentCallSite(CI
->getZExtValue());
5913 case Intrinsic::eh_sjlj_functioncontext
: {
5914 // Get and store the index of the function context.
5915 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5917 cast
<AllocaInst
>(I
.getArgOperand(0)->stripPointerCasts());
5918 int FI
= FuncInfo
.StaticAllocaMap
[FnCtx
];
5919 MFI
.setFunctionContextIndex(FI
);
5922 case Intrinsic::eh_sjlj_setjmp
: {
5925 Ops
[1] = getValue(I
.getArgOperand(0));
5926 SDValue Op
= DAG
.getNode(ISD::EH_SJLJ_SETJMP
, sdl
,
5927 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
5928 setValue(&I
, Op
.getValue(0));
5929 DAG
.setRoot(Op
.getValue(1));
5932 case Intrinsic::eh_sjlj_longjmp
:
5933 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, sdl
, MVT::Other
,
5934 getRoot(), getValue(I
.getArgOperand(0))));
5936 case Intrinsic::eh_sjlj_setup_dispatch
:
5937 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_SETUP_DISPATCH
, sdl
, MVT::Other
,
5940 case Intrinsic::masked_gather
:
5941 visitMaskedGather(I
);
5943 case Intrinsic::masked_load
:
5946 case Intrinsic::masked_scatter
:
5947 visitMaskedScatter(I
);
5949 case Intrinsic::masked_store
:
5950 visitMaskedStore(I
);
5952 case Intrinsic::masked_expandload
:
5953 visitMaskedLoad(I
, true /* IsExpanding */);
5955 case Intrinsic::masked_compressstore
:
5956 visitMaskedStore(I
, true /* IsCompressing */);
5958 case Intrinsic::x86_mmx_pslli_w
:
5959 case Intrinsic::x86_mmx_pslli_d
:
5960 case Intrinsic::x86_mmx_pslli_q
:
5961 case Intrinsic::x86_mmx_psrli_w
:
5962 case Intrinsic::x86_mmx_psrli_d
:
5963 case Intrinsic::x86_mmx_psrli_q
:
5964 case Intrinsic::x86_mmx_psrai_w
:
5965 case Intrinsic::x86_mmx_psrai_d
: {
5966 SDValue ShAmt
= getValue(I
.getArgOperand(1));
5967 if (isa
<ConstantSDNode
>(ShAmt
)) {
5968 visitTargetIntrinsic(I
, Intrinsic
);
5971 unsigned NewIntrinsic
= 0;
5972 EVT ShAmtVT
= MVT::v2i32
;
5973 switch (Intrinsic
) {
5974 case Intrinsic::x86_mmx_pslli_w
:
5975 NewIntrinsic
= Intrinsic::x86_mmx_psll_w
;
5977 case Intrinsic::x86_mmx_pslli_d
:
5978 NewIntrinsic
= Intrinsic::x86_mmx_psll_d
;
5980 case Intrinsic::x86_mmx_pslli_q
:
5981 NewIntrinsic
= Intrinsic::x86_mmx_psll_q
;
5983 case Intrinsic::x86_mmx_psrli_w
:
5984 NewIntrinsic
= Intrinsic::x86_mmx_psrl_w
;
5986 case Intrinsic::x86_mmx_psrli_d
:
5987 NewIntrinsic
= Intrinsic::x86_mmx_psrl_d
;
5989 case Intrinsic::x86_mmx_psrli_q
:
5990 NewIntrinsic
= Intrinsic::x86_mmx_psrl_q
;
5992 case Intrinsic::x86_mmx_psrai_w
:
5993 NewIntrinsic
= Intrinsic::x86_mmx_psra_w
;
5995 case Intrinsic::x86_mmx_psrai_d
:
5996 NewIntrinsic
= Intrinsic::x86_mmx_psra_d
;
5998 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6001 // The vector shift intrinsics with scalars uses 32b shift amounts but
6002 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6004 // We must do this early because v2i32 is not a legal type.
6007 ShOps
[1] = DAG
.getConstant(0, sdl
, MVT::i32
);
6008 ShAmt
= DAG
.getBuildVector(ShAmtVT
, sdl
, ShOps
);
6009 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6010 ShAmt
= DAG
.getNode(ISD::BITCAST
, sdl
, DestVT
, ShAmt
);
6011 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, sdl
, DestVT
,
6012 DAG
.getConstant(NewIntrinsic
, sdl
, MVT::i32
),
6013 getValue(I
.getArgOperand(0)), ShAmt
);
6017 case Intrinsic::powi
:
6018 setValue(&I
, ExpandPowI(sdl
, getValue(I
.getArgOperand(0)),
6019 getValue(I
.getArgOperand(1)), DAG
));
6021 case Intrinsic::log
:
6022 setValue(&I
, expandLog(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6024 case Intrinsic::log2
:
6025 setValue(&I
, expandLog2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6027 case Intrinsic::log10
:
6028 setValue(&I
, expandLog10(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6030 case Intrinsic::exp
:
6031 setValue(&I
, expandExp(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6033 case Intrinsic::exp2
:
6034 setValue(&I
, expandExp2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6036 case Intrinsic::pow
:
6037 setValue(&I
, expandPow(sdl
, getValue(I
.getArgOperand(0)),
6038 getValue(I
.getArgOperand(1)), DAG
, TLI
));
6040 case Intrinsic::sqrt
:
6041 case Intrinsic::fabs
:
6042 case Intrinsic::sin
:
6043 case Intrinsic::cos
:
6044 case Intrinsic::floor
:
6045 case Intrinsic::ceil
:
6046 case Intrinsic::trunc
:
6047 case Intrinsic::rint
:
6048 case Intrinsic::nearbyint
:
6049 case Intrinsic::round
:
6050 case Intrinsic::canonicalize
: {
6052 switch (Intrinsic
) {
6053 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6054 case Intrinsic::sqrt
: Opcode
= ISD::FSQRT
; break;
6055 case Intrinsic::fabs
: Opcode
= ISD::FABS
; break;
6056 case Intrinsic::sin
: Opcode
= ISD::FSIN
; break;
6057 case Intrinsic::cos
: Opcode
= ISD::FCOS
; break;
6058 case Intrinsic::floor
: Opcode
= ISD::FFLOOR
; break;
6059 case Intrinsic::ceil
: Opcode
= ISD::FCEIL
; break;
6060 case Intrinsic::trunc
: Opcode
= ISD::FTRUNC
; break;
6061 case Intrinsic::rint
: Opcode
= ISD::FRINT
; break;
6062 case Intrinsic::nearbyint
: Opcode
= ISD::FNEARBYINT
; break;
6063 case Intrinsic::round
: Opcode
= ISD::FROUND
; break;
6064 case Intrinsic::canonicalize
: Opcode
= ISD::FCANONICALIZE
; break;
6067 setValue(&I
, DAG
.getNode(Opcode
, sdl
,
6068 getValue(I
.getArgOperand(0)).getValueType(),
6069 getValue(I
.getArgOperand(0))));
6072 case Intrinsic::lround
:
6073 case Intrinsic::llround
:
6074 case Intrinsic::lrint
:
6075 case Intrinsic::llrint
: {
6077 switch (Intrinsic
) {
6078 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6079 case Intrinsic::lround
: Opcode
= ISD::LROUND
; break;
6080 case Intrinsic::llround
: Opcode
= ISD::LLROUND
; break;
6081 case Intrinsic::lrint
: Opcode
= ISD::LRINT
; break;
6082 case Intrinsic::llrint
: Opcode
= ISD::LLRINT
; break;
6085 EVT RetVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6086 setValue(&I
, DAG
.getNode(Opcode
, sdl
, RetVT
,
6087 getValue(I
.getArgOperand(0))));
6090 case Intrinsic::minnum
:
6091 setValue(&I
, DAG
.getNode(ISD::FMINNUM
, sdl
,
6092 getValue(I
.getArgOperand(0)).getValueType(),
6093 getValue(I
.getArgOperand(0)),
6094 getValue(I
.getArgOperand(1))));
6096 case Intrinsic::maxnum
:
6097 setValue(&I
, DAG
.getNode(ISD::FMAXNUM
, sdl
,
6098 getValue(I
.getArgOperand(0)).getValueType(),
6099 getValue(I
.getArgOperand(0)),
6100 getValue(I
.getArgOperand(1))));
6102 case Intrinsic::minimum
:
6103 setValue(&I
, DAG
.getNode(ISD::FMINIMUM
, sdl
,
6104 getValue(I
.getArgOperand(0)).getValueType(),
6105 getValue(I
.getArgOperand(0)),
6106 getValue(I
.getArgOperand(1))));
6108 case Intrinsic::maximum
:
6109 setValue(&I
, DAG
.getNode(ISD::FMAXIMUM
, sdl
,
6110 getValue(I
.getArgOperand(0)).getValueType(),
6111 getValue(I
.getArgOperand(0)),
6112 getValue(I
.getArgOperand(1))));
6114 case Intrinsic::copysign
:
6115 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, sdl
,
6116 getValue(I
.getArgOperand(0)).getValueType(),
6117 getValue(I
.getArgOperand(0)),
6118 getValue(I
.getArgOperand(1))));
6120 case Intrinsic::fma
:
6121 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6122 getValue(I
.getArgOperand(0)).getValueType(),
6123 getValue(I
.getArgOperand(0)),
6124 getValue(I
.getArgOperand(1)),
6125 getValue(I
.getArgOperand(2))));
6127 case Intrinsic::experimental_constrained_fadd
:
6128 case Intrinsic::experimental_constrained_fsub
:
6129 case Intrinsic::experimental_constrained_fmul
:
6130 case Intrinsic::experimental_constrained_fdiv
:
6131 case Intrinsic::experimental_constrained_frem
:
6132 case Intrinsic::experimental_constrained_fma
:
6133 case Intrinsic::experimental_constrained_fptosi
:
6134 case Intrinsic::experimental_constrained_fptoui
:
6135 case Intrinsic::experimental_constrained_fptrunc
:
6136 case Intrinsic::experimental_constrained_fpext
:
6137 case Intrinsic::experimental_constrained_sqrt
:
6138 case Intrinsic::experimental_constrained_pow
:
6139 case Intrinsic::experimental_constrained_powi
:
6140 case Intrinsic::experimental_constrained_sin
:
6141 case Intrinsic::experimental_constrained_cos
:
6142 case Intrinsic::experimental_constrained_exp
:
6143 case Intrinsic::experimental_constrained_exp2
:
6144 case Intrinsic::experimental_constrained_log
:
6145 case Intrinsic::experimental_constrained_log10
:
6146 case Intrinsic::experimental_constrained_log2
:
6147 case Intrinsic::experimental_constrained_rint
:
6148 case Intrinsic::experimental_constrained_nearbyint
:
6149 case Intrinsic::experimental_constrained_maxnum
:
6150 case Intrinsic::experimental_constrained_minnum
:
6151 case Intrinsic::experimental_constrained_ceil
:
6152 case Intrinsic::experimental_constrained_floor
:
6153 case Intrinsic::experimental_constrained_round
:
6154 case Intrinsic::experimental_constrained_trunc
:
6155 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(I
));
6157 case Intrinsic::fmuladd
: {
6158 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6159 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
6160 TLI
.isFMAFasterThanFMulAndFAdd(VT
)) {
6161 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6162 getValue(I
.getArgOperand(0)).getValueType(),
6163 getValue(I
.getArgOperand(0)),
6164 getValue(I
.getArgOperand(1)),
6165 getValue(I
.getArgOperand(2))));
6167 // TODO: Intrinsic calls should have fast-math-flags.
6168 SDValue Mul
= DAG
.getNode(ISD::FMUL
, sdl
,
6169 getValue(I
.getArgOperand(0)).getValueType(),
6170 getValue(I
.getArgOperand(0)),
6171 getValue(I
.getArgOperand(1)));
6172 SDValue Add
= DAG
.getNode(ISD::FADD
, sdl
,
6173 getValue(I
.getArgOperand(0)).getValueType(),
6175 getValue(I
.getArgOperand(2)));
6180 case Intrinsic::convert_to_fp16
:
6181 setValue(&I
, DAG
.getNode(ISD::BITCAST
, sdl
, MVT::i16
,
6182 DAG
.getNode(ISD::FP_ROUND
, sdl
, MVT::f16
,
6183 getValue(I
.getArgOperand(0)),
6184 DAG
.getTargetConstant(0, sdl
,
6187 case Intrinsic::convert_from_fp16
:
6188 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, sdl
,
6189 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
6190 DAG
.getNode(ISD::BITCAST
, sdl
, MVT::f16
,
6191 getValue(I
.getArgOperand(0)))));
6193 case Intrinsic::pcmarker
: {
6194 SDValue Tmp
= getValue(I
.getArgOperand(0));
6195 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, sdl
, MVT::Other
, getRoot(), Tmp
));
6198 case Intrinsic::readcyclecounter
: {
6199 SDValue Op
= getRoot();
6200 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, sdl
,
6201 DAG
.getVTList(MVT::i64
, MVT::Other
), Op
);
6203 DAG
.setRoot(Res
.getValue(1));
6206 case Intrinsic::bitreverse
:
6207 setValue(&I
, DAG
.getNode(ISD::BITREVERSE
, sdl
,
6208 getValue(I
.getArgOperand(0)).getValueType(),
6209 getValue(I
.getArgOperand(0))));
6211 case Intrinsic::bswap
:
6212 setValue(&I
, DAG
.getNode(ISD::BSWAP
, sdl
,
6213 getValue(I
.getArgOperand(0)).getValueType(),
6214 getValue(I
.getArgOperand(0))));
6216 case Intrinsic::cttz
: {
6217 SDValue Arg
= getValue(I
.getArgOperand(0));
6218 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6219 EVT Ty
= Arg
.getValueType();
6220 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTTZ
: ISD::CTTZ_ZERO_UNDEF
,
6224 case Intrinsic::ctlz
: {
6225 SDValue Arg
= getValue(I
.getArgOperand(0));
6226 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6227 EVT Ty
= Arg
.getValueType();
6228 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTLZ
: ISD::CTLZ_ZERO_UNDEF
,
6232 case Intrinsic::ctpop
: {
6233 SDValue Arg
= getValue(I
.getArgOperand(0));
6234 EVT Ty
= Arg
.getValueType();
6235 setValue(&I
, DAG
.getNode(ISD::CTPOP
, sdl
, Ty
, Arg
));
6238 case Intrinsic::fshl
:
6239 case Intrinsic::fshr
: {
6240 bool IsFSHL
= Intrinsic
== Intrinsic::fshl
;
6241 SDValue X
= getValue(I
.getArgOperand(0));
6242 SDValue Y
= getValue(I
.getArgOperand(1));
6243 SDValue Z
= getValue(I
.getArgOperand(2));
6244 EVT VT
= X
.getValueType();
6245 SDValue BitWidthC
= DAG
.getConstant(VT
.getScalarSizeInBits(), sdl
, VT
);
6246 SDValue Zero
= DAG
.getConstant(0, sdl
, VT
);
6247 SDValue ShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, Z
, BitWidthC
);
6249 auto FunnelOpcode
= IsFSHL
? ISD::FSHL
: ISD::FSHR
;
6250 if (TLI
.isOperationLegalOrCustom(FunnelOpcode
, VT
)) {
6251 setValue(&I
, DAG
.getNode(FunnelOpcode
, sdl
, VT
, X
, Y
, Z
));
6255 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6256 // avoid the select that is necessary in the general case to filter out
6257 // the 0-shift possibility that leads to UB.
6258 if (X
== Y
&& isPowerOf2_32(VT
.getScalarSizeInBits())) {
6259 auto RotateOpcode
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
6260 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6261 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, Z
));
6265 // Some targets only rotate one way. Try the opposite direction.
6266 RotateOpcode
= IsFSHL
? ISD::ROTR
: ISD::ROTL
;
6267 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6268 // Negate the shift amount because it is safe to ignore the high bits.
6269 SDValue NegShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6270 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, NegShAmt
));
6274 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6275 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6276 SDValue NegZ
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6277 SDValue NShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, NegZ
, BitWidthC
);
6278 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: NShAmt
);
6279 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, X
, IsFSHL
? NShAmt
: ShAmt
);
6280 setValue(&I
, DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
));
6284 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6285 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6286 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, BitWidthC
, ShAmt
);
6287 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
6288 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
6289 SDValue Or
= DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
);
6291 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6292 // and that is undefined. We must compare and select to avoid UB.
6295 CCVT
= EVT::getVectorVT(*Context
, CCVT
, VT
.getVectorNumElements());
6297 // For fshl, 0-shift returns the 1st arg (X).
6298 // For fshr, 0-shift returns the 2nd arg (Y).
6299 SDValue IsZeroShift
= DAG
.getSetCC(sdl
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
6300 setValue(&I
, DAG
.getSelect(sdl
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
));
6303 case Intrinsic::sadd_sat
: {
6304 SDValue Op1
= getValue(I
.getArgOperand(0));
6305 SDValue Op2
= getValue(I
.getArgOperand(1));
6306 setValue(&I
, DAG
.getNode(ISD::SADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6309 case Intrinsic::uadd_sat
: {
6310 SDValue Op1
= getValue(I
.getArgOperand(0));
6311 SDValue Op2
= getValue(I
.getArgOperand(1));
6312 setValue(&I
, DAG
.getNode(ISD::UADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6315 case Intrinsic::ssub_sat
: {
6316 SDValue Op1
= getValue(I
.getArgOperand(0));
6317 SDValue Op2
= getValue(I
.getArgOperand(1));
6318 setValue(&I
, DAG
.getNode(ISD::SSUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6321 case Intrinsic::usub_sat
: {
6322 SDValue Op1
= getValue(I
.getArgOperand(0));
6323 SDValue Op2
= getValue(I
.getArgOperand(1));
6324 setValue(&I
, DAG
.getNode(ISD::USUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6327 case Intrinsic::smul_fix
:
6328 case Intrinsic::umul_fix
: {
6329 SDValue Op1
= getValue(I
.getArgOperand(0));
6330 SDValue Op2
= getValue(I
.getArgOperand(1));
6331 SDValue Op3
= getValue(I
.getArgOperand(2));
6332 setValue(&I
, DAG
.getNode(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6333 Op1
.getValueType(), Op1
, Op2
, Op3
));
6336 case Intrinsic::smul_fix_sat
: {
6337 SDValue Op1
= getValue(I
.getArgOperand(0));
6338 SDValue Op2
= getValue(I
.getArgOperand(1));
6339 SDValue Op3
= getValue(I
.getArgOperand(2));
6340 setValue(&I
, DAG
.getNode(ISD::SMULFIXSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
,
6344 case Intrinsic::umul_fix_sat
: {
6345 SDValue Op1
= getValue(I
.getArgOperand(0));
6346 SDValue Op2
= getValue(I
.getArgOperand(1));
6347 SDValue Op3
= getValue(I
.getArgOperand(2));
6348 setValue(&I
, DAG
.getNode(ISD::UMULFIXSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
,
6352 case Intrinsic::stacksave
: {
6353 SDValue Op
= getRoot();
6355 ISD::STACKSAVE
, sdl
,
6356 DAG
.getVTList(TLI
.getPointerTy(DAG
.getDataLayout()), MVT::Other
), Op
);
6358 DAG
.setRoot(Res
.getValue(1));
6361 case Intrinsic::stackrestore
:
6362 Res
= getValue(I
.getArgOperand(0));
6363 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, sdl
, MVT::Other
, getRoot(), Res
));
6365 case Intrinsic::get_dynamic_area_offset
: {
6366 SDValue Op
= getRoot();
6367 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6368 EVT ResTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6369 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6371 if (PtrTy
.getSizeInBits() < ResTy
.getSizeInBits())
6372 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6374 Res
= DAG
.getNode(ISD::GET_DYNAMIC_AREA_OFFSET
, sdl
, DAG
.getVTList(ResTy
),
6380 case Intrinsic::stackguard
: {
6381 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6382 MachineFunction
&MF
= DAG
.getMachineFunction();
6383 const Module
&M
= *MF
.getFunction().getParent();
6384 SDValue Chain
= getRoot();
6385 if (TLI
.useLoadStackGuardNode()) {
6386 Res
= getLoadStackGuard(DAG
, sdl
, Chain
);
6388 const Value
*Global
= TLI
.getSDagStackGuard(M
);
6389 unsigned Align
= DL
->getPrefTypeAlignment(Global
->getType());
6390 Res
= DAG
.getLoad(PtrTy
, sdl
, Chain
, getValue(Global
),
6391 MachinePointerInfo(Global
, 0), Align
,
6392 MachineMemOperand::MOVolatile
);
6394 if (TLI
.useStackGuardXorFP())
6395 Res
= TLI
.emitStackGuardXorFP(DAG
, Res
, sdl
);
6400 case Intrinsic::stackprotector
: {
6401 // Emit code into the DAG to store the stack guard onto the stack.
6402 MachineFunction
&MF
= DAG
.getMachineFunction();
6403 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6404 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6405 SDValue Src
, Chain
= getRoot();
6407 if (TLI
.useLoadStackGuardNode())
6408 Src
= getLoadStackGuard(DAG
, sdl
, Chain
);
6410 Src
= getValue(I
.getArgOperand(0)); // The guard's value.
6412 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
6414 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6415 MFI
.setStackProtectorIndex(FI
);
6417 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
6419 // Store the stack protector onto the stack.
6420 Res
= DAG
.getStore(Chain
, sdl
, Src
, FIN
, MachinePointerInfo::getFixedStack(
6421 DAG
.getMachineFunction(), FI
),
6422 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
6427 case Intrinsic::objectsize
: {
6428 // If we don't know by now, we're never going to know.
6429 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(1));
6431 assert(CI
&& "Non-constant type in __builtin_object_size?");
6433 SDValue Arg
= getValue(I
.getCalledValue());
6434 EVT Ty
= Arg
.getValueType();
6437 Res
= DAG
.getConstant(-1ULL, sdl
, Ty
);
6439 Res
= DAG
.getConstant(0, sdl
, Ty
);
6445 case Intrinsic::is_constant
:
6446 // If this wasn't constant-folded away by now, then it's not a
6448 setValue(&I
, DAG
.getConstant(0, sdl
, MVT::i1
));
6451 case Intrinsic::annotation
:
6452 case Intrinsic::ptr_annotation
:
6453 case Intrinsic::launder_invariant_group
:
6454 case Intrinsic::strip_invariant_group
:
6455 // Drop the intrinsic, but forward the value
6456 setValue(&I
, getValue(I
.getOperand(0)));
6458 case Intrinsic::assume
:
6459 case Intrinsic::var_annotation
:
6460 case Intrinsic::sideeffect
:
6461 // Discard annotate attributes, assumptions, and artificial side-effects.
6464 case Intrinsic::codeview_annotation
: {
6465 // Emit a label associated with this metadata.
6466 MachineFunction
&MF
= DAG
.getMachineFunction();
6468 MF
.getMMI().getContext().createTempSymbol("annotation", true);
6469 Metadata
*MD
= cast
<MetadataAsValue
>(I
.getArgOperand(0))->getMetadata();
6470 MF
.addCodeViewAnnotation(Label
, cast
<MDNode
>(MD
));
6471 Res
= DAG
.getLabelNode(ISD::ANNOTATION_LABEL
, sdl
, getRoot(), Label
);
6476 case Intrinsic::init_trampoline
: {
6477 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
6481 Ops
[1] = getValue(I
.getArgOperand(0));
6482 Ops
[2] = getValue(I
.getArgOperand(1));
6483 Ops
[3] = getValue(I
.getArgOperand(2));
6484 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
6485 Ops
[5] = DAG
.getSrcValue(F
);
6487 Res
= DAG
.getNode(ISD::INIT_TRAMPOLINE
, sdl
, MVT::Other
, Ops
);
6492 case Intrinsic::adjust_trampoline
:
6493 setValue(&I
, DAG
.getNode(ISD::ADJUST_TRAMPOLINE
, sdl
,
6494 TLI
.getPointerTy(DAG
.getDataLayout()),
6495 getValue(I
.getArgOperand(0))));
6497 case Intrinsic::gcroot
: {
6498 assert(DAG
.getMachineFunction().getFunction().hasGC() &&
6499 "only valid in functions with gc specified, enforced by Verifier");
6500 assert(GFI
&& "implied by previous");
6501 const Value
*Alloca
= I
.getArgOperand(0)->stripPointerCasts();
6502 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
6504 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
6505 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
6508 case Intrinsic::gcread
:
6509 case Intrinsic::gcwrite
:
6510 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6511 case Intrinsic::flt_rounds
:
6512 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, sdl
, MVT::i32
));
6515 case Intrinsic::expect
:
6516 // Just replace __builtin_expect(exp, c) with EXP.
6517 setValue(&I
, getValue(I
.getArgOperand(0)));
6520 case Intrinsic::debugtrap
:
6521 case Intrinsic::trap
: {
6522 StringRef TrapFuncName
=
6524 .getAttribute(AttributeList::FunctionIndex
, "trap-func-name")
6525 .getValueAsString();
6526 if (TrapFuncName
.empty()) {
6527 ISD::NodeType Op
= (Intrinsic
== Intrinsic::trap
) ?
6528 ISD::TRAP
: ISD::DEBUGTRAP
;
6529 DAG
.setRoot(DAG
.getNode(Op
, sdl
,MVT::Other
, getRoot()));
6532 TargetLowering::ArgListTy Args
;
6534 TargetLowering::CallLoweringInfo
CLI(DAG
);
6535 CLI
.setDebugLoc(sdl
).setChain(getRoot()).setLibCallee(
6536 CallingConv::C
, I
.getType(),
6537 DAG
.getExternalSymbol(TrapFuncName
.data(),
6538 TLI
.getPointerTy(DAG
.getDataLayout())),
6541 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6542 DAG
.setRoot(Result
.second
);
6546 case Intrinsic::uadd_with_overflow
:
6547 case Intrinsic::sadd_with_overflow
:
6548 case Intrinsic::usub_with_overflow
:
6549 case Intrinsic::ssub_with_overflow
:
6550 case Intrinsic::umul_with_overflow
:
6551 case Intrinsic::smul_with_overflow
: {
6553 switch (Intrinsic
) {
6554 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6555 case Intrinsic::uadd_with_overflow
: Op
= ISD::UADDO
; break;
6556 case Intrinsic::sadd_with_overflow
: Op
= ISD::SADDO
; break;
6557 case Intrinsic::usub_with_overflow
: Op
= ISD::USUBO
; break;
6558 case Intrinsic::ssub_with_overflow
: Op
= ISD::SSUBO
; break;
6559 case Intrinsic::umul_with_overflow
: Op
= ISD::UMULO
; break;
6560 case Intrinsic::smul_with_overflow
: Op
= ISD::SMULO
; break;
6562 SDValue Op1
= getValue(I
.getArgOperand(0));
6563 SDValue Op2
= getValue(I
.getArgOperand(1));
6565 EVT ResultVT
= Op1
.getValueType();
6566 EVT OverflowVT
= MVT::i1
;
6567 if (ResultVT
.isVector())
6568 OverflowVT
= EVT::getVectorVT(
6569 *Context
, OverflowVT
, ResultVT
.getVectorNumElements());
6571 SDVTList VTs
= DAG
.getVTList(ResultVT
, OverflowVT
);
6572 setValue(&I
, DAG
.getNode(Op
, sdl
, VTs
, Op1
, Op2
));
6575 case Intrinsic::prefetch
: {
6577 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6578 auto Flags
= rw
== 0 ? MachineMemOperand::MOLoad
:MachineMemOperand::MOStore
;
6579 Ops
[0] = DAG
.getRoot();
6580 Ops
[1] = getValue(I
.getArgOperand(0));
6581 Ops
[2] = getValue(I
.getArgOperand(1));
6582 Ops
[3] = getValue(I
.getArgOperand(2));
6583 Ops
[4] = getValue(I
.getArgOperand(3));
6584 SDValue Result
= DAG
.getMemIntrinsicNode(ISD::PREFETCH
, sdl
,
6585 DAG
.getVTList(MVT::Other
), Ops
,
6586 EVT::getIntegerVT(*Context
, 8),
6587 MachinePointerInfo(I
.getArgOperand(0)),
6591 // Chain the prefetch in parallell with any pending loads, to stay out of
6592 // the way of later optimizations.
6593 PendingLoads
.push_back(Result
);
6595 DAG
.setRoot(Result
);
6598 case Intrinsic::lifetime_start
:
6599 case Intrinsic::lifetime_end
: {
6600 bool IsStart
= (Intrinsic
== Intrinsic::lifetime_start
);
6601 // Stack coloring is not enabled in O0, discard region information.
6602 if (TM
.getOptLevel() == CodeGenOpt::None
)
6605 const int64_t ObjectSize
=
6606 cast
<ConstantInt
>(I
.getArgOperand(0))->getSExtValue();
6607 Value
*const ObjectPtr
= I
.getArgOperand(1);
6608 SmallVector
<const Value
*, 4> Allocas
;
6609 GetUnderlyingObjects(ObjectPtr
, Allocas
, *DL
);
6611 for (SmallVectorImpl
<const Value
*>::iterator Object
= Allocas
.begin(),
6612 E
= Allocas
.end(); Object
!= E
; ++Object
) {
6613 const AllocaInst
*LifetimeObject
= dyn_cast_or_null
<AllocaInst
>(*Object
);
6615 // Could not find an Alloca.
6616 if (!LifetimeObject
)
6619 // First check that the Alloca is static, otherwise it won't have a
6620 // valid frame index.
6621 auto SI
= FuncInfo
.StaticAllocaMap
.find(LifetimeObject
);
6622 if (SI
== FuncInfo
.StaticAllocaMap
.end())
6625 const int FrameIndex
= SI
->second
;
6627 if (GetPointerBaseWithConstantOffset(
6628 ObjectPtr
, Offset
, DAG
.getDataLayout()) != LifetimeObject
)
6629 Offset
= -1; // Cannot determine offset from alloca to lifetime object.
6630 Res
= DAG
.getLifetimeNode(IsStart
, sdl
, getRoot(), FrameIndex
, ObjectSize
,
6636 case Intrinsic::invariant_start
:
6637 // Discard region information.
6638 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy(DAG
.getDataLayout())));
6640 case Intrinsic::invariant_end
:
6641 // Discard region information.
6643 case Intrinsic::clear_cache
:
6644 /// FunctionName may be null.
6645 if (const char *FunctionName
= TLI
.getClearCacheBuiltinName())
6646 lowerCallToExternalSymbol(I
, FunctionName
);
6648 case Intrinsic::donothing
:
6651 case Intrinsic::experimental_stackmap
:
6654 case Intrinsic::experimental_patchpoint_void
:
6655 case Intrinsic::experimental_patchpoint_i64
:
6656 visitPatchpoint(&I
);
6658 case Intrinsic::experimental_gc_statepoint
:
6659 LowerStatepoint(ImmutableStatepoint(&I
));
6661 case Intrinsic::experimental_gc_result
:
6662 visitGCResult(cast
<GCResultInst
>(I
));
6664 case Intrinsic::experimental_gc_relocate
:
6665 visitGCRelocate(cast
<GCRelocateInst
>(I
));
6667 case Intrinsic::instrprof_increment
:
6668 llvm_unreachable("instrprof failed to lower an increment");
6669 case Intrinsic::instrprof_value_profile
:
6670 llvm_unreachable("instrprof failed to lower a value profiling call");
6671 case Intrinsic::localescape
: {
6672 MachineFunction
&MF
= DAG
.getMachineFunction();
6673 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
6675 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6676 // is the same on all targets.
6677 for (unsigned Idx
= 0, E
= I
.getNumArgOperands(); Idx
< E
; ++Idx
) {
6678 Value
*Arg
= I
.getArgOperand(Idx
)->stripPointerCasts();
6679 if (isa
<ConstantPointerNull
>(Arg
))
6680 continue; // Skip null pointers. They represent a hole in index space.
6681 AllocaInst
*Slot
= cast
<AllocaInst
>(Arg
);
6682 assert(FuncInfo
.StaticAllocaMap
.count(Slot
) &&
6683 "can only escape static allocas");
6684 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6685 MCSymbol
*FrameAllocSym
=
6686 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6687 GlobalValue::dropLLVMManglingEscape(MF
.getName()), Idx
);
6688 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, dl
,
6689 TII
->get(TargetOpcode::LOCAL_ESCAPE
))
6690 .addSym(FrameAllocSym
)
6697 case Intrinsic::localrecover
: {
6698 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6699 MachineFunction
&MF
= DAG
.getMachineFunction();
6700 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout(), 0);
6702 // Get the symbol that defines the frame offset.
6703 auto *Fn
= cast
<Function
>(I
.getArgOperand(0)->stripPointerCasts());
6704 auto *Idx
= cast
<ConstantInt
>(I
.getArgOperand(2));
6706 unsigned(Idx
->getLimitedValue(std::numeric_limits
<int>::max()));
6707 MCSymbol
*FrameAllocSym
=
6708 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6709 GlobalValue::dropLLVMManglingEscape(Fn
->getName()), IdxVal
);
6711 // Create a MCSymbol for the label to avoid any target lowering
6712 // that would make this PC relative.
6713 SDValue OffsetSym
= DAG
.getMCSymbol(FrameAllocSym
, PtrVT
);
6715 DAG
.getNode(ISD::LOCAL_RECOVER
, sdl
, PtrVT
, OffsetSym
);
6717 // Add the offset to the FP.
6718 Value
*FP
= I
.getArgOperand(1);
6719 SDValue FPVal
= getValue(FP
);
6720 SDValue Add
= DAG
.getNode(ISD::ADD
, sdl
, PtrVT
, FPVal
, OffsetVal
);
6726 case Intrinsic::eh_exceptionpointer
:
6727 case Intrinsic::eh_exceptioncode
: {
6728 // Get the exception pointer vreg, copy from it, and resize it to fit.
6729 const auto *CPI
= cast
<CatchPadInst
>(I
.getArgOperand(0));
6730 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout());
6731 const TargetRegisterClass
*PtrRC
= TLI
.getRegClassFor(PtrVT
);
6732 unsigned VReg
= FuncInfo
.getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
6734 DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(), VReg
, PtrVT
);
6735 if (Intrinsic
== Intrinsic::eh_exceptioncode
)
6736 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), MVT::i32
);
6740 case Intrinsic::xray_customevent
: {
6741 // Here we want to make sure that the intrinsic behaves as if it has a
6742 // specific calling convention, and only for x86_64.
6743 // FIXME: Support other platforms later.
6744 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6745 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6748 SDLoc DL
= getCurSDLoc();
6749 SmallVector
<SDValue
, 8> Ops
;
6751 // We want to say that we always want the arguments in registers.
6752 SDValue LogEntryVal
= getValue(I
.getArgOperand(0));
6753 SDValue StrSizeVal
= getValue(I
.getArgOperand(1));
6754 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6755 SDValue Chain
= getRoot();
6756 Ops
.push_back(LogEntryVal
);
6757 Ops
.push_back(StrSizeVal
);
6758 Ops
.push_back(Chain
);
6760 // We need to enforce the calling convention for the callsite, so that
6761 // argument ordering is enforced correctly, and that register allocation can
6762 // see that some registers may be assumed clobbered and have to preserve
6763 // them across calls to the intrinsic.
6764 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL
,
6766 SDValue patchableNode
= SDValue(MN
, 0);
6767 DAG
.setRoot(patchableNode
);
6768 setValue(&I
, patchableNode
);
6771 case Intrinsic::xray_typedevent
: {
6772 // Here we want to make sure that the intrinsic behaves as if it has a
6773 // specific calling convention, and only for x86_64.
6774 // FIXME: Support other platforms later.
6775 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6776 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6779 SDLoc DL
= getCurSDLoc();
6780 SmallVector
<SDValue
, 8> Ops
;
6782 // We want to say that we always want the arguments in registers.
6783 // It's unclear to me how manipulating the selection DAG here forces callers
6784 // to provide arguments in registers instead of on the stack.
6785 SDValue LogTypeId
= getValue(I
.getArgOperand(0));
6786 SDValue LogEntryVal
= getValue(I
.getArgOperand(1));
6787 SDValue StrSizeVal
= getValue(I
.getArgOperand(2));
6788 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6789 SDValue Chain
= getRoot();
6790 Ops
.push_back(LogTypeId
);
6791 Ops
.push_back(LogEntryVal
);
6792 Ops
.push_back(StrSizeVal
);
6793 Ops
.push_back(Chain
);
6795 // We need to enforce the calling convention for the callsite, so that
6796 // argument ordering is enforced correctly, and that register allocation can
6797 // see that some registers may be assumed clobbered and have to preserve
6798 // them across calls to the intrinsic.
6799 MachineSDNode
*MN
= DAG
.getMachineNode(
6800 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
, DL
, NodeTys
, Ops
);
6801 SDValue patchableNode
= SDValue(MN
, 0);
6802 DAG
.setRoot(patchableNode
);
6803 setValue(&I
, patchableNode
);
6806 case Intrinsic::experimental_deoptimize
:
6807 LowerDeoptimizeCall(&I
);
6810 case Intrinsic::experimental_vector_reduce_v2_fadd
:
6811 case Intrinsic::experimental_vector_reduce_v2_fmul
:
6812 case Intrinsic::experimental_vector_reduce_add
:
6813 case Intrinsic::experimental_vector_reduce_mul
:
6814 case Intrinsic::experimental_vector_reduce_and
:
6815 case Intrinsic::experimental_vector_reduce_or
:
6816 case Intrinsic::experimental_vector_reduce_xor
:
6817 case Intrinsic::experimental_vector_reduce_smax
:
6818 case Intrinsic::experimental_vector_reduce_smin
:
6819 case Intrinsic::experimental_vector_reduce_umax
:
6820 case Intrinsic::experimental_vector_reduce_umin
:
6821 case Intrinsic::experimental_vector_reduce_fmax
:
6822 case Intrinsic::experimental_vector_reduce_fmin
:
6823 visitVectorReduce(I
, Intrinsic
);
6826 case Intrinsic::icall_branch_funnel
: {
6827 SmallVector
<SDValue
, 16> Ops
;
6828 Ops
.push_back(getValue(I
.getArgOperand(0)));
6831 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6832 I
.getArgOperand(1), Offset
, DAG
.getDataLayout()));
6835 "llvm.icall.branch.funnel operand must be a GlobalValue");
6836 Ops
.push_back(DAG
.getTargetGlobalAddress(Base
, getCurSDLoc(), MVT::i64
, 0));
6838 struct BranchFunnelTarget
{
6842 SmallVector
<BranchFunnelTarget
, 8> Targets
;
6844 for (unsigned Op
= 1, N
= I
.getNumArgOperands(); Op
!= N
; Op
+= 2) {
6845 auto *ElemBase
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6846 I
.getArgOperand(Op
), Offset
, DAG
.getDataLayout()));
6847 if (ElemBase
!= Base
)
6848 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6849 "to the same GlobalValue");
6851 SDValue Val
= getValue(I
.getArgOperand(Op
+ 1));
6852 auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Val
);
6855 "llvm.icall.branch.funnel operand must be a GlobalValue");
6856 Targets
.push_back({Offset
, DAG
.getTargetGlobalAddress(
6857 GA
->getGlobal(), getCurSDLoc(),
6858 Val
.getValueType(), GA
->getOffset())});
6861 [](const BranchFunnelTarget
&T1
, const BranchFunnelTarget
&T2
) {
6862 return T1
.Offset
< T2
.Offset
;
6865 for (auto &T
: Targets
) {
6866 Ops
.push_back(DAG
.getTargetConstant(T
.Offset
, getCurSDLoc(), MVT::i32
));
6867 Ops
.push_back(T
.Target
);
6870 Ops
.push_back(DAG
.getRoot()); // Chain
6871 SDValue
N(DAG
.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL
,
6872 getCurSDLoc(), MVT::Other
, Ops
),
6880 case Intrinsic::wasm_landingpad_index
:
6881 // Information this intrinsic contained has been transferred to
6882 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6886 case Intrinsic::aarch64_settag
:
6887 case Intrinsic::aarch64_settag_zero
: {
6888 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
6889 bool ZeroMemory
= Intrinsic
== Intrinsic::aarch64_settag_zero
;
6890 SDValue Val
= TSI
.EmitTargetCodeForSetTag(
6891 DAG
, getCurSDLoc(), getRoot(), getValue(I
.getArgOperand(0)),
6892 getValue(I
.getArgOperand(1)), MachinePointerInfo(I
.getArgOperand(0)),
6898 case Intrinsic::ptrmask
: {
6899 SDValue Ptr
= getValue(I
.getOperand(0));
6900 SDValue Const
= getValue(I
.getOperand(1));
6903 EVT(DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
6905 setValue(&I
, DAG
.getNode(ISD::AND
, getCurSDLoc(), DestVT
, Ptr
,
6906 DAG
.getZExtOrTrunc(Const
, getCurSDLoc(), DestVT
)));
6912 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6913 const ConstrainedFPIntrinsic
&FPI
) {
6914 SDLoc sdl
= getCurSDLoc();
6916 switch (FPI
.getIntrinsicID()) {
6917 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6918 case Intrinsic::experimental_constrained_fadd
:
6919 Opcode
= ISD::STRICT_FADD
;
6921 case Intrinsic::experimental_constrained_fsub
:
6922 Opcode
= ISD::STRICT_FSUB
;
6924 case Intrinsic::experimental_constrained_fmul
:
6925 Opcode
= ISD::STRICT_FMUL
;
6927 case Intrinsic::experimental_constrained_fdiv
:
6928 Opcode
= ISD::STRICT_FDIV
;
6930 case Intrinsic::experimental_constrained_frem
:
6931 Opcode
= ISD::STRICT_FREM
;
6933 case Intrinsic::experimental_constrained_fma
:
6934 Opcode
= ISD::STRICT_FMA
;
6936 case Intrinsic::experimental_constrained_fptosi
:
6937 Opcode
= ISD::STRICT_FP_TO_SINT
;
6939 case Intrinsic::experimental_constrained_fptoui
:
6940 Opcode
= ISD::STRICT_FP_TO_UINT
;
6942 case Intrinsic::experimental_constrained_fptrunc
:
6943 Opcode
= ISD::STRICT_FP_ROUND
;
6945 case Intrinsic::experimental_constrained_fpext
:
6946 Opcode
= ISD::STRICT_FP_EXTEND
;
6948 case Intrinsic::experimental_constrained_sqrt
:
6949 Opcode
= ISD::STRICT_FSQRT
;
6951 case Intrinsic::experimental_constrained_pow
:
6952 Opcode
= ISD::STRICT_FPOW
;
6954 case Intrinsic::experimental_constrained_powi
:
6955 Opcode
= ISD::STRICT_FPOWI
;
6957 case Intrinsic::experimental_constrained_sin
:
6958 Opcode
= ISD::STRICT_FSIN
;
6960 case Intrinsic::experimental_constrained_cos
:
6961 Opcode
= ISD::STRICT_FCOS
;
6963 case Intrinsic::experimental_constrained_exp
:
6964 Opcode
= ISD::STRICT_FEXP
;
6966 case Intrinsic::experimental_constrained_exp2
:
6967 Opcode
= ISD::STRICT_FEXP2
;
6969 case Intrinsic::experimental_constrained_log
:
6970 Opcode
= ISD::STRICT_FLOG
;
6972 case Intrinsic::experimental_constrained_log10
:
6973 Opcode
= ISD::STRICT_FLOG10
;
6975 case Intrinsic::experimental_constrained_log2
:
6976 Opcode
= ISD::STRICT_FLOG2
;
6978 case Intrinsic::experimental_constrained_rint
:
6979 Opcode
= ISD::STRICT_FRINT
;
6981 case Intrinsic::experimental_constrained_nearbyint
:
6982 Opcode
= ISD::STRICT_FNEARBYINT
;
6984 case Intrinsic::experimental_constrained_maxnum
:
6985 Opcode
= ISD::STRICT_FMAXNUM
;
6987 case Intrinsic::experimental_constrained_minnum
:
6988 Opcode
= ISD::STRICT_FMINNUM
;
6990 case Intrinsic::experimental_constrained_ceil
:
6991 Opcode
= ISD::STRICT_FCEIL
;
6993 case Intrinsic::experimental_constrained_floor
:
6994 Opcode
= ISD::STRICT_FFLOOR
;
6996 case Intrinsic::experimental_constrained_round
:
6997 Opcode
= ISD::STRICT_FROUND
;
6999 case Intrinsic::experimental_constrained_trunc
:
7000 Opcode
= ISD::STRICT_FTRUNC
;
7003 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7004 SDValue Chain
= getRoot();
7005 SmallVector
<EVT
, 4> ValueVTs
;
7006 ComputeValueVTs(TLI
, DAG
.getDataLayout(), FPI
.getType(), ValueVTs
);
7007 ValueVTs
.push_back(MVT::Other
); // Out chain
7009 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
7011 if (Opcode
== ISD::STRICT_FP_ROUND
)
7012 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
7013 { Chain
, getValue(FPI
.getArgOperand(0)),
7014 DAG
.getTargetConstant(0, sdl
,
7015 TLI
.getPointerTy(DAG
.getDataLayout())) });
7016 else if (FPI
.isUnaryOp())
7017 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
7018 { Chain
, getValue(FPI
.getArgOperand(0)) });
7019 else if (FPI
.isTernaryOp())
7020 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
7021 { Chain
, getValue(FPI
.getArgOperand(0)),
7022 getValue(FPI
.getArgOperand(1)),
7023 getValue(FPI
.getArgOperand(2)) });
7025 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
7026 { Chain
, getValue(FPI
.getArgOperand(0)),
7027 getValue(FPI
.getArgOperand(1)) });
7029 if (FPI
.getExceptionBehavior() !=
7030 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore
) {
7032 Flags
.setFPExcept(true);
7033 Result
->setFlags(Flags
);
7036 assert(Result
.getNode()->getNumValues() == 2);
7037 SDValue OutChain
= Result
.getValue(1);
7038 DAG
.setRoot(OutChain
);
7039 SDValue FPResult
= Result
.getValue(0);
7040 setValue(&FPI
, FPResult
);
7043 std::pair
<SDValue
, SDValue
>
7044 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
7045 const BasicBlock
*EHPadBB
) {
7046 MachineFunction
&MF
= DAG
.getMachineFunction();
7047 MachineModuleInfo
&MMI
= MF
.getMMI();
7048 MCSymbol
*BeginLabel
= nullptr;
7051 // Insert a label before the invoke call to mark the try range. This can be
7052 // used to detect deletion of the invoke via the MachineModuleInfo.
7053 BeginLabel
= MMI
.getContext().createTempSymbol();
7055 // For SjLj, keep track of which landing pads go with which invokes
7056 // so as to maintain the ordering of pads in the LSDA.
7057 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
7058 if (CallSiteIndex
) {
7059 MF
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
7060 LPadToCallSiteMap
[FuncInfo
.MBBMap
[EHPadBB
]].push_back(CallSiteIndex
);
7062 // Now that the call site is handled, stop tracking it.
7063 MMI
.setCurrentCallSite(0);
7066 // Both PendingLoads and PendingExports must be flushed here;
7067 // this call might not return.
7069 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel
));
7071 CLI
.setChain(getRoot());
7073 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7074 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
7076 assert((CLI
.IsTailCall
|| Result
.second
.getNode()) &&
7077 "Non-null chain expected with non-tail call!");
7078 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
7079 "Null value expected with tail call!");
7081 if (!Result
.second
.getNode()) {
7082 // As a special case, a null chain means that a tail call has been emitted
7083 // and the DAG root is already updated.
7086 // Since there's no actual continuation from this block, nothing can be
7087 // relying on us setting vregs for them.
7088 PendingExports
.clear();
7090 DAG
.setRoot(Result
.second
);
7094 // Insert a label at the end of the invoke call to mark the try range. This
7095 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7096 MCSymbol
*EndLabel
= MMI
.getContext().createTempSymbol();
7097 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getRoot(), EndLabel
));
7099 // Inform MachineModuleInfo of range.
7100 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
7101 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7102 // actually use outlined funclets and their LSDA info style.
7103 if (MF
.hasEHFunclets() && isFuncletEHPersonality(Pers
)) {
7105 WinEHFuncInfo
*EHInfo
= DAG
.getMachineFunction().getWinEHFuncInfo();
7106 EHInfo
->addIPToStateRange(cast
<InvokeInst
>(CLI
.CS
.getInstruction()),
7107 BeginLabel
, EndLabel
);
7108 } else if (!isScopedEHPersonality(Pers
)) {
7109 MF
.addInvoke(FuncInfo
.MBBMap
[EHPadBB
], BeginLabel
, EndLabel
);
7116 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS
, SDValue Callee
,
7118 const BasicBlock
*EHPadBB
) {
7119 auto &DL
= DAG
.getDataLayout();
7120 FunctionType
*FTy
= CS
.getFunctionType();
7121 Type
*RetTy
= CS
.getType();
7123 TargetLowering::ArgListTy Args
;
7124 Args
.reserve(CS
.arg_size());
7126 const Value
*SwiftErrorVal
= nullptr;
7127 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7129 // We can't tail call inside a function with a swifterror argument. Lowering
7130 // does not support this yet. It would have to move into the swifterror
7131 // register before the call.
7132 auto *Caller
= CS
.getInstruction()->getParent()->getParent();
7133 if (TLI
.supportSwiftError() &&
7134 Caller
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
7137 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
7139 TargetLowering::ArgListEntry Entry
;
7140 const Value
*V
= *i
;
7143 if (V
->getType()->isEmptyTy())
7146 SDValue ArgNode
= getValue(V
);
7147 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
7149 Entry
.setAttributes(&CS
, i
- CS
.arg_begin());
7151 // Use swifterror virtual register as input to the call.
7152 if (Entry
.IsSwiftError
&& TLI
.supportSwiftError()) {
7154 // We find the virtual register for the actual swifterror argument.
7155 // Instead of using the Value, we use the virtual register instead.
7156 Entry
.Node
= DAG
.getRegister(
7157 SwiftError
.getOrCreateVRegUseAt(CS
.getInstruction(), FuncInfo
.MBB
, V
),
7158 EVT(TLI
.getPointerTy(DL
)));
7161 Args
.push_back(Entry
);
7163 // If we have an explicit sret argument that is an Instruction, (i.e., it
7164 // might point to function-local memory), we can't meaningfully tail-call.
7165 if (Entry
.IsSRet
&& isa
<Instruction
>(V
))
7169 // Check if target-independent constraints permit a tail call here.
7170 // Target-dependent constraints are checked within TLI->LowerCallTo.
7171 if (isTailCall
&& !isInTailCallPosition(CS
, DAG
.getTarget()))
7174 // Disable tail calls if there is an swifterror argument. Targets have not
7175 // been updated to support tail calls.
7176 if (TLI
.supportSwiftError() && SwiftErrorVal
)
7179 TargetLowering::CallLoweringInfo
CLI(DAG
);
7180 CLI
.setDebugLoc(getCurSDLoc())
7181 .setChain(getRoot())
7182 .setCallee(RetTy
, FTy
, Callee
, std::move(Args
), CS
)
7183 .setTailCall(isTailCall
)
7184 .setConvergent(CS
.isConvergent());
7185 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
7187 if (Result
.first
.getNode()) {
7188 const Instruction
*Inst
= CS
.getInstruction();
7189 Result
.first
= lowerRangeToAssertZExt(DAG
, *Inst
, Result
.first
);
7190 setValue(Inst
, Result
.first
);
7193 // The last element of CLI.InVals has the SDValue for swifterror return.
7194 // Here we copy it to a virtual register and update SwiftErrorMap for
7196 if (SwiftErrorVal
&& TLI
.supportSwiftError()) {
7197 // Get the last element of InVals.
7198 SDValue Src
= CLI
.InVals
.back();
7199 Register VReg
= SwiftError
.getOrCreateVRegDefAt(
7200 CS
.getInstruction(), FuncInfo
.MBB
, SwiftErrorVal
);
7201 SDValue CopyNode
= CLI
.DAG
.getCopyToReg(Result
.second
, CLI
.DL
, VReg
, Src
);
7202 DAG
.setRoot(CopyNode
);
7206 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
7207 SelectionDAGBuilder
&Builder
) {
7208 // Check to see if this load can be trivially constant folded, e.g. if the
7209 // input is from a string literal.
7210 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
7211 // Cast pointer to the type we really want to load.
7213 Type::getIntNTy(PtrVal
->getContext(), LoadVT
.getScalarSizeInBits());
7214 if (LoadVT
.isVector())
7215 LoadTy
= VectorType::get(LoadTy
, LoadVT
.getVectorNumElements());
7217 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
7218 PointerType::getUnqual(LoadTy
));
7220 if (const Constant
*LoadCst
= ConstantFoldLoadFromConstPtr(
7221 const_cast<Constant
*>(LoadInput
), LoadTy
, *Builder
.DL
))
7222 return Builder
.getValue(LoadCst
);
7225 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7226 // still constant memory, the input chain can be the entry node.
7228 bool ConstantMemory
= false;
7230 // Do not serialize (non-volatile) loads of constant memory with anything.
7231 if (Builder
.AA
&& Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
7232 Root
= Builder
.DAG
.getEntryNode();
7233 ConstantMemory
= true;
7235 // Do not serialize non-volatile loads against each other.
7236 Root
= Builder
.DAG
.getRoot();
7239 SDValue Ptr
= Builder
.getValue(PtrVal
);
7240 SDValue LoadVal
= Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurSDLoc(), Root
,
7241 Ptr
, MachinePointerInfo(PtrVal
),
7242 /* Alignment = */ 1);
7244 if (!ConstantMemory
)
7245 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
7249 /// Record the value for an instruction that produces an integer result,
7250 /// converting the type where necessary.
7251 void SelectionDAGBuilder::processIntegerCallValue(const Instruction
&I
,
7254 EVT VT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7257 Value
= DAG
.getSExtOrTrunc(Value
, getCurSDLoc(), VT
);
7259 Value
= DAG
.getZExtOrTrunc(Value
, getCurSDLoc(), VT
);
7260 setValue(&I
, Value
);
7263 /// See if we can lower a memcmp call into an optimized form. If so, return
7264 /// true and lower it. Otherwise return false, and it will be lowered like a
7266 /// The caller already checked that \p I calls the appropriate LibFunc with a
7267 /// correct prototype.
7268 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst
&I
) {
7269 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
7270 const Value
*Size
= I
.getArgOperand(2);
7271 const ConstantInt
*CSize
= dyn_cast
<ConstantInt
>(Size
);
7272 if (CSize
&& CSize
->getZExtValue() == 0) {
7273 EVT CallVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7275 setValue(&I
, DAG
.getConstant(0, getCurSDLoc(), CallVT
));
7279 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7280 std::pair
<SDValue
, SDValue
> Res
= TSI
.EmitTargetCodeForMemcmp(
7281 DAG
, getCurSDLoc(), DAG
.getRoot(), getValue(LHS
), getValue(RHS
),
7282 getValue(Size
), MachinePointerInfo(LHS
), MachinePointerInfo(RHS
));
7283 if (Res
.first
.getNode()) {
7284 processIntegerCallValue(I
, Res
.first
, true);
7285 PendingLoads
.push_back(Res
.second
);
7289 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7290 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7291 if (!CSize
|| !isOnlyUsedInZeroEqualityComparison(&I
))
7294 // If the target has a fast compare for the given size, it will return a
7295 // preferred load type for that size. Require that the load VT is legal and
7296 // that the target supports unaligned loads of that type. Otherwise, return
7298 auto hasFastLoadsAndCompare
= [&](unsigned NumBits
) {
7299 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7300 MVT LVT
= TLI
.hasFastEqualityCompare(NumBits
);
7301 if (LVT
!= MVT::INVALID_SIMPLE_VALUE_TYPE
) {
7302 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7303 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7304 // TODO: Check alignment of src and dest ptrs.
7305 unsigned DstAS
= LHS
->getType()->getPointerAddressSpace();
7306 unsigned SrcAS
= RHS
->getType()->getPointerAddressSpace();
7307 if (!TLI
.isTypeLegal(LVT
) ||
7308 !TLI
.allowsMisalignedMemoryAccesses(LVT
, SrcAS
) ||
7309 !TLI
.allowsMisalignedMemoryAccesses(LVT
, DstAS
))
7310 LVT
= MVT::INVALID_SIMPLE_VALUE_TYPE
;
7316 // This turns into unaligned loads. We only do this if the target natively
7317 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7318 // we'll only produce a small number of byte loads.
7320 unsigned NumBitsToCompare
= CSize
->getZExtValue() * 8;
7321 switch (NumBitsToCompare
) {
7333 LoadVT
= hasFastLoadsAndCompare(NumBitsToCompare
);
7337 if (LoadVT
== MVT::INVALID_SIMPLE_VALUE_TYPE
)
7340 SDValue LoadL
= getMemCmpLoad(LHS
, LoadVT
, *this);
7341 SDValue LoadR
= getMemCmpLoad(RHS
, LoadVT
, *this);
7343 // Bitcast to a wide integer type if the loads are vectors.
7344 if (LoadVT
.isVector()) {
7345 EVT CmpVT
= EVT::getIntegerVT(LHS
->getContext(), LoadVT
.getSizeInBits());
7346 LoadL
= DAG
.getBitcast(CmpVT
, LoadL
);
7347 LoadR
= DAG
.getBitcast(CmpVT
, LoadR
);
7350 SDValue Cmp
= DAG
.getSetCC(getCurSDLoc(), MVT::i1
, LoadL
, LoadR
, ISD::SETNE
);
7351 processIntegerCallValue(I
, Cmp
, false);
7355 /// See if we can lower a memchr call into an optimized form. If so, return
7356 /// true and lower it. Otherwise return false, and it will be lowered like a
7358 /// The caller already checked that \p I calls the appropriate LibFunc with a
7359 /// correct prototype.
7360 bool SelectionDAGBuilder::visitMemChrCall(const CallInst
&I
) {
7361 const Value
*Src
= I
.getArgOperand(0);
7362 const Value
*Char
= I
.getArgOperand(1);
7363 const Value
*Length
= I
.getArgOperand(2);
7365 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7366 std::pair
<SDValue
, SDValue
> Res
=
7367 TSI
.EmitTargetCodeForMemchr(DAG
, getCurSDLoc(), DAG
.getRoot(),
7368 getValue(Src
), getValue(Char
), getValue(Length
),
7369 MachinePointerInfo(Src
));
7370 if (Res
.first
.getNode()) {
7371 setValue(&I
, Res
.first
);
7372 PendingLoads
.push_back(Res
.second
);
7379 /// See if we can lower a mempcpy call into an optimized form. If so, return
7380 /// true and lower it. Otherwise return false, and it will be lowered like a
7382 /// The caller already checked that \p I calls the appropriate LibFunc with a
7383 /// correct prototype.
7384 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst
&I
) {
7385 SDValue Dst
= getValue(I
.getArgOperand(0));
7386 SDValue Src
= getValue(I
.getArgOperand(1));
7387 SDValue Size
= getValue(I
.getArgOperand(2));
7389 unsigned DstAlign
= DAG
.InferPtrAlignment(Dst
);
7390 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
7391 unsigned Align
= std::min(DstAlign
, SrcAlign
);
7392 if (Align
== 0) // Alignment of one or both could not be inferred.
7393 Align
= 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7396 SDLoc sdl
= getCurSDLoc();
7398 // In the mempcpy context we need to pass in a false value for isTailCall
7399 // because the return pointer needs to be adjusted by the size of
7400 // the copied memory.
7401 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Dst
, Src
, Size
, Align
, isVol
,
7402 false, /*isTailCall=*/false,
7403 MachinePointerInfo(I
.getArgOperand(0)),
7404 MachinePointerInfo(I
.getArgOperand(1)));
7405 assert(MC
.getNode() != nullptr &&
7406 "** memcpy should not be lowered as TailCall in mempcpy context **");
7409 // Check if Size needs to be truncated or extended.
7410 Size
= DAG
.getSExtOrTrunc(Size
, sdl
, Dst
.getValueType());
7412 // Adjust return pointer to point just past the last dst byte.
7413 SDValue DstPlusSize
= DAG
.getNode(ISD::ADD
, sdl
, Dst
.getValueType(),
7415 setValue(&I
, DstPlusSize
);
7419 /// See if we can lower a strcpy call into an optimized form. If so, return
7420 /// true and lower it, otherwise return false and it will be lowered like a
7422 /// The caller already checked that \p I calls the appropriate LibFunc with a
7423 /// correct prototype.
7424 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst
&I
, bool isStpcpy
) {
7425 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7427 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7428 std::pair
<SDValue
, SDValue
> Res
=
7429 TSI
.EmitTargetCodeForStrcpy(DAG
, getCurSDLoc(), getRoot(),
7430 getValue(Arg0
), getValue(Arg1
),
7431 MachinePointerInfo(Arg0
),
7432 MachinePointerInfo(Arg1
), isStpcpy
);
7433 if (Res
.first
.getNode()) {
7434 setValue(&I
, Res
.first
);
7435 DAG
.setRoot(Res
.second
);
7442 /// See if we can lower a strcmp call into an optimized form. If so, return
7443 /// true and lower it, otherwise return false and it will be lowered like a
7445 /// The caller already checked that \p I calls the appropriate LibFunc with a
7446 /// correct prototype.
7447 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst
&I
) {
7448 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7450 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7451 std::pair
<SDValue
, SDValue
> Res
=
7452 TSI
.EmitTargetCodeForStrcmp(DAG
, getCurSDLoc(), DAG
.getRoot(),
7453 getValue(Arg0
), getValue(Arg1
),
7454 MachinePointerInfo(Arg0
),
7455 MachinePointerInfo(Arg1
));
7456 if (Res
.first
.getNode()) {
7457 processIntegerCallValue(I
, Res
.first
, true);
7458 PendingLoads
.push_back(Res
.second
);
7465 /// See if we can lower a strlen call into an optimized form. If so, return
7466 /// true and lower it, otherwise return false and it will be lowered like a
7468 /// The caller already checked that \p I calls the appropriate LibFunc with a
7469 /// correct prototype.
7470 bool SelectionDAGBuilder::visitStrLenCall(const CallInst
&I
) {
7471 const Value
*Arg0
= I
.getArgOperand(0);
7473 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7474 std::pair
<SDValue
, SDValue
> Res
=
7475 TSI
.EmitTargetCodeForStrlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7476 getValue(Arg0
), MachinePointerInfo(Arg0
));
7477 if (Res
.first
.getNode()) {
7478 processIntegerCallValue(I
, Res
.first
, false);
7479 PendingLoads
.push_back(Res
.second
);
7486 /// See if we can lower a strnlen call into an optimized form. If so, return
7487 /// true and lower it, otherwise return false and it will be lowered like a
7489 /// The caller already checked that \p I calls the appropriate LibFunc with a
7490 /// correct prototype.
7491 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst
&I
) {
7492 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7494 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7495 std::pair
<SDValue
, SDValue
> Res
=
7496 TSI
.EmitTargetCodeForStrnlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7497 getValue(Arg0
), getValue(Arg1
),
7498 MachinePointerInfo(Arg0
));
7499 if (Res
.first
.getNode()) {
7500 processIntegerCallValue(I
, Res
.first
, false);
7501 PendingLoads
.push_back(Res
.second
);
7508 /// See if we can lower a unary floating-point operation into an SDNode with
7509 /// the specified Opcode. If so, return true and lower it, otherwise return
7510 /// false and it will be lowered like a normal call.
7511 /// The caller already checked that \p I calls the appropriate LibFunc with a
7512 /// correct prototype.
7513 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst
&I
,
7515 // We already checked this call's prototype; verify it doesn't modify errno.
7516 if (!I
.onlyReadsMemory())
7519 SDValue Tmp
= getValue(I
.getArgOperand(0));
7520 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), Tmp
.getValueType(), Tmp
));
7524 /// See if we can lower a binary floating-point operation into an SDNode with
7525 /// the specified Opcode. If so, return true and lower it. Otherwise return
7526 /// false, and it will be lowered like a normal call.
7527 /// The caller already checked that \p I calls the appropriate LibFunc with a
7528 /// correct prototype.
7529 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst
&I
,
7531 // We already checked this call's prototype; verify it doesn't modify errno.
7532 if (!I
.onlyReadsMemory())
7535 SDValue Tmp0
= getValue(I
.getArgOperand(0));
7536 SDValue Tmp1
= getValue(I
.getArgOperand(1));
7537 EVT VT
= Tmp0
.getValueType();
7538 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), VT
, Tmp0
, Tmp1
));
7542 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
7543 // Handle inline assembly differently.
7544 if (isa
<InlineAsm
>(I
.getCalledValue())) {
7549 if (Function
*F
= I
.getCalledFunction()) {
7550 if (F
->isDeclaration()) {
7551 // Is this an LLVM intrinsic or a target-specific intrinsic?
7552 unsigned IID
= F
->getIntrinsicID();
7554 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo())
7555 IID
= II
->getIntrinsicID(F
);
7558 visitIntrinsicCall(I
, IID
);
7563 // Check for well-known libc/libm calls. If the function is internal, it
7564 // can't be a library call. Don't do the check if marked as nobuiltin for
7565 // some reason or the call site requires strict floating point semantics.
7567 if (!I
.isNoBuiltin() && !I
.isStrictFP() && !F
->hasLocalLinkage() &&
7568 F
->hasName() && LibInfo
->getLibFunc(*F
, Func
) &&
7569 LibInfo
->hasOptimizedCodeGen(Func
)) {
7572 case LibFunc_copysign
:
7573 case LibFunc_copysignf
:
7574 case LibFunc_copysignl
:
7575 // We already checked this call's prototype; verify it doesn't modify
7577 if (I
.onlyReadsMemory()) {
7578 SDValue LHS
= getValue(I
.getArgOperand(0));
7579 SDValue RHS
= getValue(I
.getArgOperand(1));
7580 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurSDLoc(),
7581 LHS
.getValueType(), LHS
, RHS
));
7588 if (visitUnaryFloatCall(I
, ISD::FABS
))
7594 if (visitBinaryFloatCall(I
, ISD::FMINNUM
))
7600 if (visitBinaryFloatCall(I
, ISD::FMAXNUM
))
7606 if (visitUnaryFloatCall(I
, ISD::FSIN
))
7612 if (visitUnaryFloatCall(I
, ISD::FCOS
))
7618 case LibFunc_sqrt_finite
:
7619 case LibFunc_sqrtf_finite
:
7620 case LibFunc_sqrtl_finite
:
7621 if (visitUnaryFloatCall(I
, ISD::FSQRT
))
7625 case LibFunc_floorf
:
7626 case LibFunc_floorl
:
7627 if (visitUnaryFloatCall(I
, ISD::FFLOOR
))
7630 case LibFunc_nearbyint
:
7631 case LibFunc_nearbyintf
:
7632 case LibFunc_nearbyintl
:
7633 if (visitUnaryFloatCall(I
, ISD::FNEARBYINT
))
7639 if (visitUnaryFloatCall(I
, ISD::FCEIL
))
7645 if (visitUnaryFloatCall(I
, ISD::FRINT
))
7649 case LibFunc_roundf
:
7650 case LibFunc_roundl
:
7651 if (visitUnaryFloatCall(I
, ISD::FROUND
))
7655 case LibFunc_truncf
:
7656 case LibFunc_truncl
:
7657 if (visitUnaryFloatCall(I
, ISD::FTRUNC
))
7663 if (visitUnaryFloatCall(I
, ISD::FLOG2
))
7669 if (visitUnaryFloatCall(I
, ISD::FEXP2
))
7672 case LibFunc_memcmp
:
7673 if (visitMemCmpCall(I
))
7676 case LibFunc_mempcpy
:
7677 if (visitMemPCpyCall(I
))
7680 case LibFunc_memchr
:
7681 if (visitMemChrCall(I
))
7684 case LibFunc_strcpy
:
7685 if (visitStrCpyCall(I
, false))
7688 case LibFunc_stpcpy
:
7689 if (visitStrCpyCall(I
, true))
7692 case LibFunc_strcmp
:
7693 if (visitStrCmpCall(I
))
7696 case LibFunc_strlen
:
7697 if (visitStrLenCall(I
))
7700 case LibFunc_strnlen
:
7701 if (visitStrNLenCall(I
))
7708 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7709 // have to do anything here to lower funclet bundles.
7710 assert(!I
.hasOperandBundlesOtherThan(
7711 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
7712 "Cannot lower calls with arbitrary operand bundles!");
7714 SDValue Callee
= getValue(I
.getCalledValue());
7716 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
7717 LowerCallSiteWithDeoptBundle(&I
, Callee
, nullptr);
7719 // Check if we can potentially perform a tail call. More detailed checking
7720 // is be done within LowerCallTo, after more information about the call is
7722 LowerCallTo(&I
, Callee
, I
.isTailCall());
7727 /// AsmOperandInfo - This contains information for each constraint that we are
7729 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
7731 /// CallOperand - If this is the result output operand or a clobber
7732 /// this is null, otherwise it is the incoming operand to the CallInst.
7733 /// This gets modified as the asm is processed.
7734 SDValue CallOperand
;
7736 /// AssignedRegs - If this is a register or register class operand, this
7737 /// contains the set of register corresponding to the operand.
7738 RegsForValue AssignedRegs
;
7740 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
7741 : TargetLowering::AsmOperandInfo(info
), CallOperand(nullptr, 0) {
7744 /// Whether or not this operand accesses memory
7745 bool hasMemory(const TargetLowering
&TLI
) const {
7746 // Indirect operand accesses access memory.
7750 for (const auto &Code
: Codes
)
7751 if (TLI
.getConstraintType(Code
) == TargetLowering::C_Memory
)
7757 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7758 /// corresponds to. If there is no Value* for this operand, it returns
7760 EVT
getCallOperandValEVT(LLVMContext
&Context
, const TargetLowering
&TLI
,
7761 const DataLayout
&DL
) const {
7762 if (!CallOperandVal
) return MVT::Other
;
7764 if (isa
<BasicBlock
>(CallOperandVal
))
7765 return TLI
.getPointerTy(DL
);
7767 llvm::Type
*OpTy
= CallOperandVal
->getType();
7769 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7770 // If this is an indirect operand, the operand is a pointer to the
7773 PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
7775 report_fatal_error("Indirect operand for inline asm not a pointer!");
7776 OpTy
= PtrTy
->getElementType();
7779 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7780 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
7781 if (STy
->getNumElements() == 1)
7782 OpTy
= STy
->getElementType(0);
7784 // If OpTy is not a single value, it may be a struct/union that we
7785 // can tile with integers.
7786 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
7787 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
7796 OpTy
= IntegerType::get(Context
, BitSize
);
7801 return TLI
.getValueType(DL
, OpTy
, true);
7805 using SDISelAsmOperandInfoVector
= SmallVector
<SDISelAsmOperandInfo
, 16>;
7807 } // end anonymous namespace
7809 /// Make sure that the output operand \p OpInfo and its corresponding input
7810 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7812 static void patchMatchingInput(const SDISelAsmOperandInfo
&OpInfo
,
7813 SDISelAsmOperandInfo
&MatchingOpInfo
,
7814 SelectionDAG
&DAG
) {
7815 if (OpInfo
.ConstraintVT
== MatchingOpInfo
.ConstraintVT
)
7818 const TargetRegisterInfo
*TRI
= DAG
.getSubtarget().getRegisterInfo();
7819 const auto &TLI
= DAG
.getTargetLoweringInfo();
7821 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
7822 TLI
.getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
7823 OpInfo
.ConstraintVT
);
7824 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
7825 TLI
.getRegForInlineAsmConstraint(TRI
, MatchingOpInfo
.ConstraintCode
,
7826 MatchingOpInfo
.ConstraintVT
);
7827 if ((OpInfo
.ConstraintVT
.isInteger() !=
7828 MatchingOpInfo
.ConstraintVT
.isInteger()) ||
7829 (MatchRC
.second
!= InputRC
.second
)) {
7830 // FIXME: error out in a more elegant fashion
7831 report_fatal_error("Unsupported asm: input constraint"
7832 " with a matching output constraint of"
7833 " incompatible type!");
7835 MatchingOpInfo
.ConstraintVT
= OpInfo
.ConstraintVT
;
7838 /// Get a direct memory input to behave well as an indirect operand.
7839 /// This may introduce stores, hence the need for a \p Chain.
7840 /// \return The (possibly updated) chain.
7841 static SDValue
getAddressForMemoryInput(SDValue Chain
, const SDLoc
&Location
,
7842 SDISelAsmOperandInfo
&OpInfo
,
7843 SelectionDAG
&DAG
) {
7844 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7846 // If we don't have an indirect input, put it in the constpool if we can,
7847 // otherwise spill it to a stack slot.
7848 // TODO: This isn't quite right. We need to handle these according to
7849 // the addressing mode that the constraint wants. Also, this may take
7850 // an additional register for the computation and we don't want that
7853 // If the operand is a float, integer, or vector constant, spill to a
7854 // constant pool entry to get its address.
7855 const Value
*OpVal
= OpInfo
.CallOperandVal
;
7856 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
7857 isa
<ConstantVector
>(OpVal
) || isa
<ConstantDataVector
>(OpVal
)) {
7858 OpInfo
.CallOperand
= DAG
.getConstantPool(
7859 cast
<Constant
>(OpVal
), TLI
.getPointerTy(DAG
.getDataLayout()));
7863 // Otherwise, create a stack slot and emit a store to it before the asm.
7864 Type
*Ty
= OpVal
->getType();
7865 auto &DL
= DAG
.getDataLayout();
7866 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
7867 unsigned Align
= DL
.getPrefTypeAlignment(Ty
);
7868 MachineFunction
&MF
= DAG
.getMachineFunction();
7869 int SSFI
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
7870 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getFrameIndexTy(DL
));
7871 Chain
= DAG
.getTruncStore(Chain
, Location
, OpInfo
.CallOperand
, StackSlot
,
7872 MachinePointerInfo::getFixedStack(MF
, SSFI
),
7873 TLI
.getMemValueType(DL
, Ty
));
7874 OpInfo
.CallOperand
= StackSlot
;
7879 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7880 /// specified operand. We prefer to assign virtual registers, to allow the
7881 /// register allocator to handle the assignment process. However, if the asm
7882 /// uses features that we can't model on machineinstrs, we have SDISel do the
7883 /// allocation. This produces generally horrible, but correct, code.
7885 /// OpInfo describes the operand
7886 /// RefOpInfo describes the matching operand if any, the operand otherwise
7887 static void GetRegistersForValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
7888 SDISelAsmOperandInfo
&OpInfo
,
7889 SDISelAsmOperandInfo
&RefOpInfo
) {
7890 LLVMContext
&Context
= *DAG
.getContext();
7891 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7893 MachineFunction
&MF
= DAG
.getMachineFunction();
7894 SmallVector
<unsigned, 4> Regs
;
7895 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7897 // No work to do for memory operations.
7898 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
)
7901 // If this is a constraint for a single physreg, or a constraint for a
7902 // register class, find it.
7903 unsigned AssignedReg
;
7904 const TargetRegisterClass
*RC
;
7905 std::tie(AssignedReg
, RC
) = TLI
.getRegForInlineAsmConstraint(
7906 &TRI
, RefOpInfo
.ConstraintCode
, RefOpInfo
.ConstraintVT
);
7907 // RC is unset only on failure. Return immediately.
7911 // Get the actual register value type. This is important, because the user
7912 // may have asked for (e.g.) the AX register in i32 type. We need to
7913 // remember that AX is actually i16 to get the right extension.
7914 const MVT RegVT
= *TRI
.legalclasstypes_begin(*RC
);
7916 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
7917 // If this is an FP operand in an integer register (or visa versa), or more
7918 // generally if the operand value disagrees with the register class we plan
7919 // to stick it in, fix the operand type.
7921 // If this is an input value, the bitcast to the new type is done now.
7922 // Bitcast for output value is done at the end of visitInlineAsm().
7923 if ((OpInfo
.Type
== InlineAsm::isOutput
||
7924 OpInfo
.Type
== InlineAsm::isInput
) &&
7925 !TRI
.isTypeLegalForClass(*RC
, OpInfo
.ConstraintVT
)) {
7926 // Try to convert to the first EVT that the reg class contains. If the
7927 // types are identical size, use a bitcast to convert (e.g. two differing
7928 // vector types). Note: output bitcast is done at the end of
7929 // visitInlineAsm().
7930 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
7931 // Exclude indirect inputs while they are unsupported because the code
7932 // to perform the load is missing and thus OpInfo.CallOperand still
7933 // refers to the input address rather than the pointed-to value.
7934 if (OpInfo
.Type
== InlineAsm::isInput
&& !OpInfo
.isIndirect
)
7935 OpInfo
.CallOperand
=
7936 DAG
.getNode(ISD::BITCAST
, DL
, RegVT
, OpInfo
.CallOperand
);
7937 OpInfo
.ConstraintVT
= RegVT
;
7938 // If the operand is an FP value and we want it in integer registers,
7939 // use the corresponding integer type. This turns an f64 value into
7940 // i64, which can be passed with two i32 values on a 32-bit machine.
7941 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
7942 MVT VT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
7943 if (OpInfo
.Type
== InlineAsm::isInput
)
7944 OpInfo
.CallOperand
=
7945 DAG
.getNode(ISD::BITCAST
, DL
, VT
, OpInfo
.CallOperand
);
7946 OpInfo
.ConstraintVT
= VT
;
7951 // No need to allocate a matching input constraint since the constraint it's
7952 // matching to has already been allocated.
7953 if (OpInfo
.isMatchingInputConstraint())
7956 EVT ValueVT
= OpInfo
.ConstraintVT
;
7957 if (OpInfo
.ConstraintVT
== MVT::Other
)
7960 // Initialize NumRegs.
7961 unsigned NumRegs
= 1;
7962 if (OpInfo
.ConstraintVT
!= MVT::Other
)
7963 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
7965 // If this is a constraint for a specific physical register, like {r17},
7968 // If this associated to a specific register, initialize iterator to correct
7969 // place. If virtual, make sure we have enough registers
7971 // Initialize iterator if necessary
7972 TargetRegisterClass::iterator I
= RC
->begin();
7973 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7975 // Do not check for single registers.
7977 for (; *I
!= AssignedReg
; ++I
)
7978 assert(I
!= RC
->end() && "AssignedReg should be member of RC");
7981 for (; NumRegs
; --NumRegs
, ++I
) {
7982 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
7983 Register R
= AssignedReg
? Register(*I
) : RegInfo
.createVirtualRegister(RC
);
7987 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
7991 findMatchingInlineAsmOperand(unsigned OperandNo
,
7992 const std::vector
<SDValue
> &AsmNodeOperands
) {
7993 // Scan until we find the definition we already emitted of this operand.
7994 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
7995 for (; OperandNo
; --OperandNo
) {
7996 // Advance to the next operand.
7998 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
7999 assert((InlineAsm::isRegDefKind(OpFlag
) ||
8000 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
8001 InlineAsm::isMemKind(OpFlag
)) &&
8002 "Skipped past definitions?");
8003 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
) + 1;
8014 explicit ExtraFlags(ImmutableCallSite CS
) {
8015 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
8016 if (IA
->hasSideEffects())
8017 Flags
|= InlineAsm::Extra_HasSideEffects
;
8018 if (IA
->isAlignStack())
8019 Flags
|= InlineAsm::Extra_IsAlignStack
;
8020 if (CS
.isConvergent())
8021 Flags
|= InlineAsm::Extra_IsConvergent
;
8022 Flags
|= IA
->getDialect() * InlineAsm::Extra_AsmDialect
;
8025 void update(const TargetLowering::AsmOperandInfo
&OpInfo
) {
8026 // Ideally, we would only check against memory constraints. However, the
8027 // meaning of an Other constraint can be target-specific and we can't easily
8028 // reason about it. Therefore, be conservative and set MayLoad/MayStore
8029 // for Other constraints as well.
8030 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8031 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8032 if (OpInfo
.Type
== InlineAsm::isInput
)
8033 Flags
|= InlineAsm::Extra_MayLoad
;
8034 else if (OpInfo
.Type
== InlineAsm::isOutput
)
8035 Flags
|= InlineAsm::Extra_MayStore
;
8036 else if (OpInfo
.Type
== InlineAsm::isClobber
)
8037 Flags
|= (InlineAsm::Extra_MayLoad
| InlineAsm::Extra_MayStore
);
8041 unsigned get() const { return Flags
; }
8044 } // end anonymous namespace
8046 /// visitInlineAsm - Handle a call to an InlineAsm object.
8047 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS
) {
8048 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
8050 /// ConstraintOperands - Information about all of the constraints.
8051 SDISelAsmOperandInfoVector ConstraintOperands
;
8053 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8054 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(
8055 DAG
.getDataLayout(), DAG
.getSubtarget().getRegisterInfo(), CS
);
8057 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8058 // AsmDialect, MayLoad, MayStore).
8059 bool HasSideEffect
= IA
->hasSideEffects();
8060 ExtraFlags
ExtraInfo(CS
);
8062 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
8063 unsigned ResNo
= 0; // ResNo - The result number of the next output.
8064 for (auto &T
: TargetConstraints
) {
8065 ConstraintOperands
.push_back(SDISelAsmOperandInfo(T
));
8066 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
8068 // Compute the value type for each operand.
8069 if (OpInfo
.Type
== InlineAsm::isInput
||
8070 (OpInfo
.Type
== InlineAsm::isOutput
&& OpInfo
.isIndirect
)) {
8071 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
8073 // Process the call argument. BasicBlocks are labels, currently appearing
8075 const Instruction
*I
= CS
.getInstruction();
8076 if (isa
<CallBrInst
>(I
) &&
8077 (ArgNo
- 1) >= (cast
<CallBrInst
>(I
)->getNumArgOperands() -
8078 cast
<CallBrInst
>(I
)->getNumIndirectDests())) {
8079 const auto *BA
= cast
<BlockAddress
>(OpInfo
.CallOperandVal
);
8080 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), BA
->getType(), true);
8081 OpInfo
.CallOperand
= DAG
.getTargetBlockAddress(BA
, VT
);
8082 } else if (const auto *BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
8083 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
8085 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
8088 OpInfo
.ConstraintVT
=
8090 .getCallOperandValEVT(*DAG
.getContext(), TLI
, DAG
.getDataLayout())
8092 } else if (OpInfo
.Type
== InlineAsm::isOutput
&& !OpInfo
.isIndirect
) {
8093 // The return value of the call is this value. As such, there is no
8094 // corresponding argument.
8095 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8096 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
8097 OpInfo
.ConstraintVT
= TLI
.getSimpleValueType(
8098 DAG
.getDataLayout(), STy
->getElementType(ResNo
));
8100 assert(ResNo
== 0 && "Asm only has one result!");
8101 OpInfo
.ConstraintVT
=
8102 TLI
.getSimpleValueType(DAG
.getDataLayout(), CS
.getType());
8106 OpInfo
.ConstraintVT
= MVT::Other
;
8110 HasSideEffect
= OpInfo
.hasMemory(TLI
);
8112 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8113 // FIXME: Could we compute this on OpInfo rather than T?
8115 // Compute the constraint code and ConstraintType to use.
8116 TLI
.ComputeConstraintToUse(T
, SDValue());
8118 if (T
.ConstraintType
== TargetLowering::C_Immediate
&&
8119 OpInfo
.CallOperand
&& !isa
<ConstantSDNode
>(OpInfo
.CallOperand
))
8120 // We've delayed emitting a diagnostic like the "n" constraint because
8121 // inlining could cause an integer showing up.
8122 return emitInlineAsmError(
8123 CS
, "constraint '" + Twine(T
.ConstraintCode
) + "' expects an "
8124 "integer constant expression");
8126 ExtraInfo
.update(T
);
8130 // We won't need to flush pending loads if this asm doesn't touch
8131 // memory and is nonvolatile.
8132 SDValue Flag
, Chain
= (HasSideEffect
) ? getRoot() : DAG
.getRoot();
8134 bool IsCallBr
= isa
<CallBrInst
>(CS
.getInstruction());
8136 // If this is a callbr we need to flush pending exports since inlineasm_br
8137 // is a terminator. We need to do this before nodes are glued to
8138 // the inlineasm_br node.
8139 Chain
= getControlRoot();
8142 // Second pass over the constraints: compute which constraint option to use.
8143 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8144 // If this is an output operand with a matching input operand, look up the
8145 // matching input. If their types mismatch, e.g. one is an integer, the
8146 // other is floating point, or their sizes are different, flag it as an
8148 if (OpInfo
.hasMatchingInput()) {
8149 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
8150 patchMatchingInput(OpInfo
, Input
, DAG
);
8153 // Compute the constraint code and ConstraintType to use.
8154 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
8156 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8157 OpInfo
.Type
== InlineAsm::isClobber
)
8160 // If this is a memory input, and if the operand is not indirect, do what we
8161 // need to provide an address for the memory input.
8162 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8163 !OpInfo
.isIndirect
) {
8164 assert((OpInfo
.isMultipleAlternative
||
8165 (OpInfo
.Type
== InlineAsm::isInput
)) &&
8166 "Can only indirectify direct input operands!");
8168 // Memory operands really want the address of the value.
8169 Chain
= getAddressForMemoryInput(Chain
, getCurSDLoc(), OpInfo
, DAG
);
8171 // There is no longer a Value* corresponding to this operand.
8172 OpInfo
.CallOperandVal
= nullptr;
8174 // It is now an indirect operand.
8175 OpInfo
.isIndirect
= true;
8180 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8181 std::vector
<SDValue
> AsmNodeOperands
;
8182 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
8183 AsmNodeOperands
.push_back(DAG
.getTargetExternalSymbol(
8184 IA
->getAsmString().c_str(), TLI
.getPointerTy(DAG
.getDataLayout())));
8186 // If we have a !srcloc metadata node associated with it, we want to attach
8187 // this to the ultimately generated inline asm machineinstr. To do this, we
8188 // pass in the third operand as this (potentially null) inline asm MDNode.
8189 const MDNode
*SrcLoc
= CS
.getInstruction()->getMetadata("srcloc");
8190 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
8192 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8193 // bits as operand 3.
8194 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8195 ExtraInfo
.get(), getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8197 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8198 // this, assign virtual and physical registers for inputs and otput.
8199 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8200 // Assign Registers.
8201 SDISelAsmOperandInfo
&RefOpInfo
=
8202 OpInfo
.isMatchingInputConstraint()
8203 ? ConstraintOperands
[OpInfo
.getMatchedOperand()]
8205 GetRegistersForValue(DAG
, getCurSDLoc(), OpInfo
, RefOpInfo
);
8207 switch (OpInfo
.Type
) {
8208 case InlineAsm::isOutput
:
8209 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8210 ((OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8211 OpInfo
.ConstraintType
== TargetLowering::C_Other
) &&
8212 OpInfo
.isIndirect
)) {
8213 unsigned ConstraintID
=
8214 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8215 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8216 "Failed to convert memory constraint code to constraint id.");
8218 // Add information to the INLINEASM node to know about this output.
8219 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8220 OpFlags
= InlineAsm::getFlagWordForMem(OpFlags
, ConstraintID
);
8221 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
, getCurSDLoc(),
8223 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
8225 } else if (((OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8226 OpInfo
.ConstraintType
== TargetLowering::C_Other
) &&
8227 !OpInfo
.isIndirect
) ||
8228 OpInfo
.ConstraintType
== TargetLowering::C_Register
||
8229 OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
) {
8230 // Otherwise, this outputs to a register (directly for C_Register /
8231 // C_RegisterClass, and a target-defined fashion for
8232 // C_Immediate/C_Other). Find a register that we can use.
8233 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8235 CS
, "couldn't allocate output register for constraint '" +
8236 Twine(OpInfo
.ConstraintCode
) + "'");
8240 // Add information to the INLINEASM node to know that this register is
8242 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
8243 OpInfo
.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
8244 : InlineAsm::Kind_RegDef
,
8245 false, 0, getCurSDLoc(), DAG
, AsmNodeOperands
);
8249 case InlineAsm::isInput
: {
8250 SDValue InOperandVal
= OpInfo
.CallOperand
;
8252 if (OpInfo
.isMatchingInputConstraint()) {
8253 // If this is required to match an output register we have already set,
8254 // just use its register.
8255 auto CurOp
= findMatchingInlineAsmOperand(OpInfo
.getMatchedOperand(),
8258 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8259 if (InlineAsm::isRegDefKind(OpFlag
) ||
8260 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
8261 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8262 if (OpInfo
.isIndirect
) {
8263 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8264 emitInlineAsmError(CS
, "inline asm not supported yet:"
8265 " don't know how to handle tied "
8266 "indirect register inputs");
8270 MVT RegVT
= AsmNodeOperands
[CurOp
+1].getSimpleValueType();
8271 SmallVector
<unsigned, 4> Regs
;
8273 if (const TargetRegisterClass
*RC
= TLI
.getRegClassFor(RegVT
)) {
8274 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(OpFlag
);
8275 MachineRegisterInfo
&RegInfo
=
8276 DAG
.getMachineFunction().getRegInfo();
8277 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
8278 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
8280 emitInlineAsmError(CS
, "inline asm error: This value type register "
8281 "class is not natively supported!");
8285 RegsForValue
MatchedRegs(Regs
, RegVT
, InOperandVal
.getValueType());
8287 SDLoc dl
= getCurSDLoc();
8288 // Use the produced MatchedRegs object to
8289 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
,
8290 CS
.getInstruction());
8291 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
8292 true, OpInfo
.getMatchedOperand(), dl
,
8293 DAG
, AsmNodeOperands
);
8297 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
8298 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
8299 "Unexpected number of operands");
8300 // Add information to the INLINEASM node to know about this input.
8301 // See InlineAsm.h isUseOperandTiedToDef.
8302 OpFlag
= InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag
);
8303 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
8304 OpInfo
.getMatchedOperand());
8305 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8306 OpFlag
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8307 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
8311 // Treat indirect 'X' constraint as memory.
8312 if ((OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8313 OpInfo
.ConstraintType
== TargetLowering::C_Other
) &&
8315 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
8317 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8318 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8319 std::vector
<SDValue
> Ops
;
8320 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
8323 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
)
8324 if (isa
<ConstantSDNode
>(InOperandVal
)) {
8325 emitInlineAsmError(CS
, "value out of range for constraint '" +
8326 Twine(OpInfo
.ConstraintCode
) + "'");
8330 emitInlineAsmError(CS
, "invalid operand for inline asm constraint '" +
8331 Twine(OpInfo
.ConstraintCode
) + "'");
8335 // Add information to the INLINEASM node to know about this input.
8336 unsigned ResOpType
=
8337 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
8338 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8339 ResOpType
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8340 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
8344 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8345 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
8346 assert(InOperandVal
.getValueType() ==
8347 TLI
.getPointerTy(DAG
.getDataLayout()) &&
8348 "Memory operands expect pointer values");
8350 unsigned ConstraintID
=
8351 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8352 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8353 "Failed to convert memory constraint code to constraint id.");
8355 // Add information to the INLINEASM node to know about this input.
8356 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8357 ResOpType
= InlineAsm::getFlagWordForMem(ResOpType
, ConstraintID
);
8358 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
8361 AsmNodeOperands
.push_back(InOperandVal
);
8365 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
8366 OpInfo
.ConstraintType
== TargetLowering::C_Register
||
8367 OpInfo
.ConstraintType
== TargetLowering::C_Immediate
) &&
8368 "Unknown constraint type!");
8370 // TODO: Support this.
8371 if (OpInfo
.isIndirect
) {
8373 CS
, "Don't know how to handle indirect register inputs yet "
8374 "for constraint '" +
8375 Twine(OpInfo
.ConstraintCode
) + "'");
8379 // Copy the input into the appropriate registers.
8380 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8381 emitInlineAsmError(CS
, "couldn't allocate input reg for constraint '" +
8382 Twine(OpInfo
.ConstraintCode
) + "'");
8386 SDLoc dl
= getCurSDLoc();
8388 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
,
8389 Chain
, &Flag
, CS
.getInstruction());
8391 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
8392 dl
, DAG
, AsmNodeOperands
);
8395 case InlineAsm::isClobber
:
8396 // Add the clobbered value to the operand list, so that the register
8397 // allocator is aware that the physreg got clobbered.
8398 if (!OpInfo
.AssignedRegs
.Regs
.empty())
8399 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
8400 false, 0, getCurSDLoc(), DAG
,
8406 // Finish up input operands. Set the input chain and add the flag last.
8407 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
8408 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
8410 unsigned ISDOpc
= IsCallBr
? ISD::INLINEASM_BR
: ISD::INLINEASM
;
8411 Chain
= DAG
.getNode(ISDOpc
, getCurSDLoc(),
8412 DAG
.getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
8413 Flag
= Chain
.getValue(1);
8415 // Do additional work to generate outputs.
8417 SmallVector
<EVT
, 1> ResultVTs
;
8418 SmallVector
<SDValue
, 1> ResultValues
;
8419 SmallVector
<SDValue
, 8> OutChains
;
8421 llvm::Type
*CSResultType
= CS
.getType();
8422 ArrayRef
<Type
*> ResultTypes
;
8423 if (StructType
*StructResult
= dyn_cast
<StructType
>(CSResultType
))
8424 ResultTypes
= StructResult
->elements();
8425 else if (!CSResultType
->isVoidTy())
8426 ResultTypes
= makeArrayRef(CSResultType
);
8428 auto CurResultType
= ResultTypes
.begin();
8429 auto handleRegAssign
= [&](SDValue V
) {
8430 assert(CurResultType
!= ResultTypes
.end() && "Unexpected value");
8431 assert((*CurResultType
)->isSized() && "Unexpected unsized type");
8432 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), *CurResultType
);
8434 // If the type of the inline asm call site return value is different but has
8435 // same size as the type of the asm output bitcast it. One example of this
8436 // is for vectors with different width / number of elements. This can
8437 // happen for register classes that can contain multiple different value
8438 // types. The preg or vreg allocated may not have the same VT as was
8441 // This can also happen for a return value that disagrees with the register
8442 // class it is put in, eg. a double in a general-purpose register on a
8444 if (ResultVT
!= V
.getValueType() &&
8445 ResultVT
.getSizeInBits() == V
.getValueSizeInBits())
8446 V
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), ResultVT
, V
);
8447 else if (ResultVT
!= V
.getValueType() && ResultVT
.isInteger() &&
8448 V
.getValueType().isInteger()) {
8449 // If a result value was tied to an input value, the computed result
8450 // may have a wider width than the expected result. Extract the
8451 // relevant portion.
8452 V
= DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), ResultVT
, V
);
8454 assert(ResultVT
== V
.getValueType() && "Asm result value mismatch!");
8455 ResultVTs
.push_back(ResultVT
);
8456 ResultValues
.push_back(V
);
8459 // Deal with output operands.
8460 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8461 if (OpInfo
.Type
== InlineAsm::isOutput
) {
8463 // Skip trivial output operands.
8464 if (OpInfo
.AssignedRegs
.Regs
.empty())
8467 switch (OpInfo
.ConstraintType
) {
8468 case TargetLowering::C_Register
:
8469 case TargetLowering::C_RegisterClass
:
8470 Val
= OpInfo
.AssignedRegs
.getCopyFromRegs(
8471 DAG
, FuncInfo
, getCurSDLoc(), Chain
, &Flag
, CS
.getInstruction());
8473 case TargetLowering::C_Immediate
:
8474 case TargetLowering::C_Other
:
8475 Val
= TLI
.LowerAsmOutputForConstraint(Chain
, Flag
, getCurSDLoc(),
8478 case TargetLowering::C_Memory
:
8479 break; // Already handled.
8480 case TargetLowering::C_Unknown
:
8481 assert(false && "Unexpected unknown constraint");
8484 // Indirect output manifest as stores. Record output chains.
8485 if (OpInfo
.isIndirect
) {
8486 const Value
*Ptr
= OpInfo
.CallOperandVal
;
8487 assert(Ptr
&& "Expected value CallOperandVal for indirect asm operand");
8488 SDValue Store
= DAG
.getStore(Chain
, getCurSDLoc(), Val
, getValue(Ptr
),
8489 MachinePointerInfo(Ptr
));
8490 OutChains
.push_back(Store
);
8492 // generate CopyFromRegs to associated registers.
8493 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8494 if (Val
.getOpcode() == ISD::MERGE_VALUES
) {
8495 for (const SDValue
&V
: Val
->op_values())
8498 handleRegAssign(Val
);
8504 if (!ResultValues
.empty()) {
8505 assert(CurResultType
== ResultTypes
.end() &&
8506 "Mismatch in number of ResultTypes");
8507 assert(ResultValues
.size() == ResultTypes
.size() &&
8508 "Mismatch in number of output operands in asm result");
8510 SDValue V
= DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
8511 DAG
.getVTList(ResultVTs
), ResultValues
);
8512 setValue(CS
.getInstruction(), V
);
8515 // Collect store chains.
8516 if (!OutChains
.empty())
8517 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
, OutChains
);
8519 // Only Update Root if inline assembly has a memory effect.
8520 if (ResultValues
.empty() || HasSideEffect
|| !OutChains
.empty() || IsCallBr
)
8524 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS
,
8525 const Twine
&Message
) {
8526 LLVMContext
&Ctx
= *DAG
.getContext();
8527 Ctx
.emitError(CS
.getInstruction(), Message
);
8529 // Make sure we leave the DAG in a valid state
8530 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8531 SmallVector
<EVT
, 1> ValueVTs
;
8532 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8534 if (ValueVTs
.empty())
8537 SmallVector
<SDValue
, 1> Ops
;
8538 for (unsigned i
= 0, e
= ValueVTs
.size(); i
!= e
; ++i
)
8539 Ops
.push_back(DAG
.getUNDEF(ValueVTs
[i
]));
8541 setValue(CS
.getInstruction(), DAG
.getMergeValues(Ops
, getCurSDLoc()));
8544 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
8545 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurSDLoc(),
8546 MVT::Other
, getRoot(),
8547 getValue(I
.getArgOperand(0)),
8548 DAG
.getSrcValue(I
.getArgOperand(0))));
8551 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
8552 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8553 const DataLayout
&DL
= DAG
.getDataLayout();
8554 SDValue V
= DAG
.getVAArg(
8555 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType()), getCurSDLoc(),
8556 getRoot(), getValue(I
.getOperand(0)), DAG
.getSrcValue(I
.getOperand(0)),
8557 DL
.getABITypeAlignment(I
.getType()));
8558 DAG
.setRoot(V
.getValue(1));
8560 if (I
.getType()->isPointerTy())
8561 V
= DAG
.getPtrExtOrTrunc(
8562 V
, getCurSDLoc(), TLI
.getValueType(DAG
.getDataLayout(), I
.getType()));
8566 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
8567 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurSDLoc(),
8568 MVT::Other
, getRoot(),
8569 getValue(I
.getArgOperand(0)),
8570 DAG
.getSrcValue(I
.getArgOperand(0))));
8573 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
8574 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurSDLoc(),
8575 MVT::Other
, getRoot(),
8576 getValue(I
.getArgOperand(0)),
8577 getValue(I
.getArgOperand(1)),
8578 DAG
.getSrcValue(I
.getArgOperand(0)),
8579 DAG
.getSrcValue(I
.getArgOperand(1))));
8582 SDValue
SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG
&DAG
,
8583 const Instruction
&I
,
8585 const MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
);
8589 ConstantRange CR
= getConstantRangeFromMetadata(*Range
);
8590 if (CR
.isFullSet() || CR
.isEmptySet() || CR
.isUpperWrapped())
8593 APInt Lo
= CR
.getUnsignedMin();
8594 if (!Lo
.isMinValue())
8597 APInt Hi
= CR
.getUnsignedMax();
8598 unsigned Bits
= std::max(Hi
.getActiveBits(),
8599 static_cast<unsigned>(IntegerType::MIN_INT_BITS
));
8601 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), Bits
);
8603 SDLoc SL
= getCurSDLoc();
8605 SDValue ZExt
= DAG
.getNode(ISD::AssertZext
, SL
, Op
.getValueType(), Op
,
8606 DAG
.getValueType(SmallVT
));
8607 unsigned NumVals
= Op
.getNode()->getNumValues();
8611 SmallVector
<SDValue
, 4> Ops
;
8613 Ops
.push_back(ZExt
);
8614 for (unsigned I
= 1; I
!= NumVals
; ++I
)
8615 Ops
.push_back(Op
.getValue(I
));
8617 return DAG
.getMergeValues(Ops
, SL
);
8620 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8621 /// the call being lowered.
8623 /// This is a helper for lowering intrinsics that follow a target calling
8624 /// convention or require stack pointer adjustment. Only a subset of the
8625 /// intrinsic's operands need to participate in the calling convention.
8626 void SelectionDAGBuilder::populateCallLoweringInfo(
8627 TargetLowering::CallLoweringInfo
&CLI
, const CallBase
*Call
,
8628 unsigned ArgIdx
, unsigned NumArgs
, SDValue Callee
, Type
*ReturnTy
,
8629 bool IsPatchPoint
) {
8630 TargetLowering::ArgListTy Args
;
8631 Args
.reserve(NumArgs
);
8633 // Populate the argument list.
8634 // Attributes for args start at offset 1, after the return attribute.
8635 for (unsigned ArgI
= ArgIdx
, ArgE
= ArgIdx
+ NumArgs
;
8636 ArgI
!= ArgE
; ++ArgI
) {
8637 const Value
*V
= Call
->getOperand(ArgI
);
8639 assert(!V
->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8641 TargetLowering::ArgListEntry Entry
;
8642 Entry
.Node
= getValue(V
);
8643 Entry
.Ty
= V
->getType();
8644 Entry
.setAttributes(Call
, ArgI
);
8645 Args
.push_back(Entry
);
8648 CLI
.setDebugLoc(getCurSDLoc())
8649 .setChain(getRoot())
8650 .setCallee(Call
->getCallingConv(), ReturnTy
, Callee
, std::move(Args
))
8651 .setDiscardResult(Call
->use_empty())
8652 .setIsPatchPoint(IsPatchPoint
);
8655 /// Add a stack map intrinsic call's live variable operands to a stackmap
8656 /// or patchpoint target node's operand list.
8658 /// Constants are converted to TargetConstants purely as an optimization to
8659 /// avoid constant materialization and register allocation.
8661 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8662 /// generate addess computation nodes, and so FinalizeISel can convert the
8663 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8664 /// address materialization and register allocation, but may also be required
8665 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8666 /// alloca in the entry block, then the runtime may assume that the alloca's
8667 /// StackMap location can be read immediately after compilation and that the
8668 /// location is valid at any point during execution (this is similar to the
8669 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8670 /// only available in a register, then the runtime would need to trap when
8671 /// execution reaches the StackMap in order to read the alloca's location.
8672 static void addStackMapLiveVars(ImmutableCallSite CS
, unsigned StartIdx
,
8673 const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Ops
,
8674 SelectionDAGBuilder
&Builder
) {
8675 for (unsigned i
= StartIdx
, e
= CS
.arg_size(); i
!= e
; ++i
) {
8676 SDValue OpVal
= Builder
.getValue(CS
.getArgument(i
));
8677 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
8679 Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
8681 Builder
.DAG
.getTargetConstant(C
->getSExtValue(), DL
, MVT::i64
));
8682 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(OpVal
)) {
8683 const TargetLowering
&TLI
= Builder
.DAG
.getTargetLoweringInfo();
8684 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(
8685 FI
->getIndex(), TLI
.getFrameIndexTy(Builder
.DAG
.getDataLayout())));
8687 Ops
.push_back(OpVal
);
8691 /// Lower llvm.experimental.stackmap directly to its target opcode.
8692 void SelectionDAGBuilder::visitStackmap(const CallInst
&CI
) {
8693 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8694 // [live variables...])
8696 assert(CI
.getType()->isVoidTy() && "Stackmap cannot return a value.");
8698 SDValue Chain
, InFlag
, Callee
, NullPtr
;
8699 SmallVector
<SDValue
, 32> Ops
;
8701 SDLoc DL
= getCurSDLoc();
8702 Callee
= getValue(CI
.getCalledValue());
8703 NullPtr
= DAG
.getIntPtrConstant(0, DL
, true);
8705 // The stackmap intrinsic only records the live variables (the arguemnts
8706 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8707 // intrinsic, this won't be lowered to a function call. This means we don't
8708 // have to worry about calling conventions and target specific lowering code.
8709 // Instead we perform the call lowering right here.
8711 // chain, flag = CALLSEQ_START(chain, 0, 0)
8712 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8713 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8715 Chain
= DAG
.getCALLSEQ_START(getRoot(), 0, 0, DL
);
8716 InFlag
= Chain
.getValue(1);
8718 // Add the <id> and <numBytes> constants.
8719 SDValue IDVal
= getValue(CI
.getOperand(PatchPointOpers::IDPos
));
8720 Ops
.push_back(DAG
.getTargetConstant(
8721 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), DL
, MVT::i64
));
8722 SDValue NBytesVal
= getValue(CI
.getOperand(PatchPointOpers::NBytesPos
));
8723 Ops
.push_back(DAG
.getTargetConstant(
8724 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), DL
,
8727 // Push live variables for the stack map.
8728 addStackMapLiveVars(&CI
, 2, DL
, Ops
, *this);
8730 // We are not pushing any register mask info here on the operands list,
8731 // because the stackmap doesn't clobber anything.
8733 // Push the chain and the glue flag.
8734 Ops
.push_back(Chain
);
8735 Ops
.push_back(InFlag
);
8737 // Create the STACKMAP node.
8738 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8739 SDNode
*SM
= DAG
.getMachineNode(TargetOpcode::STACKMAP
, DL
, NodeTys
, Ops
);
8740 Chain
= SDValue(SM
, 0);
8741 InFlag
= Chain
.getValue(1);
8743 Chain
= DAG
.getCALLSEQ_END(Chain
, NullPtr
, NullPtr
, InFlag
, DL
);
8745 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8747 // Set the root to the target-lowered call chain.
8750 // Inform the Frame Information that we have a stackmap in this function.
8751 FuncInfo
.MF
->getFrameInfo().setHasStackMap();
8754 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8755 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS
,
8756 const BasicBlock
*EHPadBB
) {
8757 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8762 // [live variables...])
8764 CallingConv::ID CC
= CS
.getCallingConv();
8765 bool IsAnyRegCC
= CC
== CallingConv::AnyReg
;
8766 bool HasDef
= !CS
->getType()->isVoidTy();
8767 SDLoc dl
= getCurSDLoc();
8768 SDValue Callee
= getValue(CS
->getOperand(PatchPointOpers::TargetPos
));
8770 // Handle immediate and symbolic callees.
8771 if (auto* ConstCallee
= dyn_cast
<ConstantSDNode
>(Callee
))
8772 Callee
= DAG
.getIntPtrConstant(ConstCallee
->getZExtValue(), dl
,
8774 else if (auto* SymbolicCallee
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
8775 Callee
= DAG
.getTargetGlobalAddress(SymbolicCallee
->getGlobal(),
8776 SDLoc(SymbolicCallee
),
8777 SymbolicCallee
->getValueType(0));
8779 // Get the real number of arguments participating in the call <numArgs>
8780 SDValue NArgVal
= getValue(CS
.getArgument(PatchPointOpers::NArgPos
));
8781 unsigned NumArgs
= cast
<ConstantSDNode
>(NArgVal
)->getZExtValue();
8783 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8784 // Intrinsics include all meta-operands up to but not including CC.
8785 unsigned NumMetaOpers
= PatchPointOpers::CCPos
;
8786 assert(CS
.arg_size() >= NumMetaOpers
+ NumArgs
&&
8787 "Not enough arguments provided to the patchpoint intrinsic");
8789 // For AnyRegCC the arguments are lowered later on manually.
8790 unsigned NumCallArgs
= IsAnyRegCC
? 0 : NumArgs
;
8792 IsAnyRegCC
? Type::getVoidTy(*DAG
.getContext()) : CS
->getType();
8794 TargetLowering::CallLoweringInfo
CLI(DAG
);
8795 populateCallLoweringInfo(CLI
, cast
<CallBase
>(CS
.getInstruction()),
8796 NumMetaOpers
, NumCallArgs
, Callee
, ReturnTy
, true);
8797 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
8799 SDNode
*CallEnd
= Result
.second
.getNode();
8800 if (HasDef
&& (CallEnd
->getOpcode() == ISD::CopyFromReg
))
8801 CallEnd
= CallEnd
->getOperand(0).getNode();
8803 /// Get a call instruction from the call sequence chain.
8804 /// Tail calls are not allowed.
8805 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&&
8806 "Expected a callseq node.");
8807 SDNode
*Call
= CallEnd
->getOperand(0).getNode();
8808 bool HasGlue
= Call
->getGluedNode();
8810 // Replace the target specific call node with the patchable intrinsic.
8811 SmallVector
<SDValue
, 8> Ops
;
8813 // Add the <id> and <numBytes> constants.
8814 SDValue IDVal
= getValue(CS
->getOperand(PatchPointOpers::IDPos
));
8815 Ops
.push_back(DAG
.getTargetConstant(
8816 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), dl
, MVT::i64
));
8817 SDValue NBytesVal
= getValue(CS
->getOperand(PatchPointOpers::NBytesPos
));
8818 Ops
.push_back(DAG
.getTargetConstant(
8819 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), dl
,
8823 Ops
.push_back(Callee
);
8825 // Adjust <numArgs> to account for any arguments that have been passed on the
8827 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8828 unsigned NumCallRegArgs
= Call
->getNumOperands() - (HasGlue
? 4 : 3);
8829 NumCallRegArgs
= IsAnyRegCC
? NumArgs
: NumCallRegArgs
;
8830 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, dl
, MVT::i32
));
8832 // Add the calling convention
8833 Ops
.push_back(DAG
.getTargetConstant((unsigned)CC
, dl
, MVT::i32
));
8835 // Add the arguments we omitted previously. The register allocator should
8836 // place these in any free register.
8838 for (unsigned i
= NumMetaOpers
, e
= NumMetaOpers
+ NumArgs
; i
!= e
; ++i
)
8839 Ops
.push_back(getValue(CS
.getArgument(i
)));
8841 // Push the arguments from the call instruction up to the register mask.
8842 SDNode::op_iterator e
= HasGlue
? Call
->op_end()-2 : Call
->op_end()-1;
8843 Ops
.append(Call
->op_begin() + 2, e
);
8845 // Push live variables for the stack map.
8846 addStackMapLiveVars(CS
, NumMetaOpers
+ NumArgs
, dl
, Ops
, *this);
8848 // Push the register mask info.
8850 Ops
.push_back(*(Call
->op_end()-2));
8852 Ops
.push_back(*(Call
->op_end()-1));
8854 // Push the chain (this is originally the first operand of the call, but
8855 // becomes now the last or second to last operand).
8856 Ops
.push_back(*(Call
->op_begin()));
8858 // Push the glue flag (last operand).
8860 Ops
.push_back(*(Call
->op_end()-1));
8863 if (IsAnyRegCC
&& HasDef
) {
8864 // Create the return types based on the intrinsic definition
8865 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8866 SmallVector
<EVT
, 3> ValueVTs
;
8867 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8868 assert(ValueVTs
.size() == 1 && "Expected only one return value type.");
8870 // There is always a chain and a glue type at the end
8871 ValueVTs
.push_back(MVT::Other
);
8872 ValueVTs
.push_back(MVT::Glue
);
8873 NodeTys
= DAG
.getVTList(ValueVTs
);
8875 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8877 // Replace the target specific call node with a PATCHPOINT node.
8878 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHPOINT
,
8881 // Update the NodeMap.
8884 setValue(CS
.getInstruction(), SDValue(MN
, 0));
8886 setValue(CS
.getInstruction(), Result
.first
);
8889 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8890 // call sequence. Furthermore the location of the chain and glue can change
8891 // when the AnyReg calling convention is used and the intrinsic returns a
8893 if (IsAnyRegCC
&& HasDef
) {
8894 SDValue From
[] = {SDValue(Call
, 0), SDValue(Call
, 1)};
8895 SDValue To
[] = {SDValue(MN
, 1), SDValue(MN
, 2)};
8896 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
8898 DAG
.ReplaceAllUsesWith(Call
, MN
);
8899 DAG
.DeleteNode(Call
);
8901 // Inform the Frame Information that we have a patchpoint in this function.
8902 FuncInfo
.MF
->getFrameInfo().setHasPatchPoint();
8905 void SelectionDAGBuilder::visitVectorReduce(const CallInst
&I
,
8906 unsigned Intrinsic
) {
8907 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8908 SDValue Op1
= getValue(I
.getArgOperand(0));
8910 if (I
.getNumArgOperands() > 1)
8911 Op2
= getValue(I
.getArgOperand(1));
8912 SDLoc dl
= getCurSDLoc();
8913 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
8916 if (isa
<FPMathOperator
>(I
))
8917 FMF
= I
.getFastMathFlags();
8919 switch (Intrinsic
) {
8920 case Intrinsic::experimental_vector_reduce_v2_fadd
:
8921 if (FMF
.allowReassoc())
8922 Res
= DAG
.getNode(ISD::FADD
, dl
, VT
, Op1
,
8923 DAG
.getNode(ISD::VECREDUCE_FADD
, dl
, VT
, Op2
));
8925 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FADD
, dl
, VT
, Op1
, Op2
);
8927 case Intrinsic::experimental_vector_reduce_v2_fmul
:
8928 if (FMF
.allowReassoc())
8929 Res
= DAG
.getNode(ISD::FMUL
, dl
, VT
, Op1
,
8930 DAG
.getNode(ISD::VECREDUCE_FMUL
, dl
, VT
, Op2
));
8932 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FMUL
, dl
, VT
, Op1
, Op2
);
8934 case Intrinsic::experimental_vector_reduce_add
:
8935 Res
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, VT
, Op1
);
8937 case Intrinsic::experimental_vector_reduce_mul
:
8938 Res
= DAG
.getNode(ISD::VECREDUCE_MUL
, dl
, VT
, Op1
);
8940 case Intrinsic::experimental_vector_reduce_and
:
8941 Res
= DAG
.getNode(ISD::VECREDUCE_AND
, dl
, VT
, Op1
);
8943 case Intrinsic::experimental_vector_reduce_or
:
8944 Res
= DAG
.getNode(ISD::VECREDUCE_OR
, dl
, VT
, Op1
);
8946 case Intrinsic::experimental_vector_reduce_xor
:
8947 Res
= DAG
.getNode(ISD::VECREDUCE_XOR
, dl
, VT
, Op1
);
8949 case Intrinsic::experimental_vector_reduce_smax
:
8950 Res
= DAG
.getNode(ISD::VECREDUCE_SMAX
, dl
, VT
, Op1
);
8952 case Intrinsic::experimental_vector_reduce_smin
:
8953 Res
= DAG
.getNode(ISD::VECREDUCE_SMIN
, dl
, VT
, Op1
);
8955 case Intrinsic::experimental_vector_reduce_umax
:
8956 Res
= DAG
.getNode(ISD::VECREDUCE_UMAX
, dl
, VT
, Op1
);
8958 case Intrinsic::experimental_vector_reduce_umin
:
8959 Res
= DAG
.getNode(ISD::VECREDUCE_UMIN
, dl
, VT
, Op1
);
8961 case Intrinsic::experimental_vector_reduce_fmax
:
8962 Res
= DAG
.getNode(ISD::VECREDUCE_FMAX
, dl
, VT
, Op1
);
8964 case Intrinsic::experimental_vector_reduce_fmin
:
8965 Res
= DAG
.getNode(ISD::VECREDUCE_FMIN
, dl
, VT
, Op1
);
8968 llvm_unreachable("Unhandled vector reduce intrinsic");
8973 /// Returns an AttributeList representing the attributes applied to the return
8974 /// value of the given call.
8975 static AttributeList
getReturnAttrs(TargetLowering::CallLoweringInfo
&CLI
) {
8976 SmallVector
<Attribute::AttrKind
, 2> Attrs
;
8978 Attrs
.push_back(Attribute::SExt
);
8980 Attrs
.push_back(Attribute::ZExt
);
8982 Attrs
.push_back(Attribute::InReg
);
8984 return AttributeList::get(CLI
.RetTy
->getContext(), AttributeList::ReturnIndex
,
8988 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8989 /// implementation, which just calls LowerCall.
8990 /// FIXME: When all targets are
8991 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8992 std::pair
<SDValue
, SDValue
>
8993 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo
&CLI
) const {
8994 // Handle the incoming return values from the call.
8996 Type
*OrigRetTy
= CLI
.RetTy
;
8997 SmallVector
<EVT
, 4> RetTys
;
8998 SmallVector
<uint64_t, 4> Offsets
;
8999 auto &DL
= CLI
.DAG
.getDataLayout();
9000 ComputeValueVTs(*this, DL
, CLI
.RetTy
, RetTys
, &Offsets
);
9002 if (CLI
.IsPostTypeLegalization
) {
9003 // If we are lowering a libcall after legalization, split the return type.
9004 SmallVector
<EVT
, 4> OldRetTys
;
9005 SmallVector
<uint64_t, 4> OldOffsets
;
9006 RetTys
.swap(OldRetTys
);
9007 Offsets
.swap(OldOffsets
);
9009 for (size_t i
= 0, e
= OldRetTys
.size(); i
!= e
; ++i
) {
9010 EVT RetVT
= OldRetTys
[i
];
9011 uint64_t Offset
= OldOffsets
[i
];
9012 MVT RegisterVT
= getRegisterType(CLI
.RetTy
->getContext(), RetVT
);
9013 unsigned NumRegs
= getNumRegisters(CLI
.RetTy
->getContext(), RetVT
);
9014 unsigned RegisterVTByteSZ
= RegisterVT
.getSizeInBits() / 8;
9015 RetTys
.append(NumRegs
, RegisterVT
);
9016 for (unsigned j
= 0; j
!= NumRegs
; ++j
)
9017 Offsets
.push_back(Offset
+ j
* RegisterVTByteSZ
);
9021 SmallVector
<ISD::OutputArg
, 4> Outs
;
9022 GetReturnInfo(CLI
.CallConv
, CLI
.RetTy
, getReturnAttrs(CLI
), Outs
, *this, DL
);
9024 bool CanLowerReturn
=
9025 this->CanLowerReturn(CLI
.CallConv
, CLI
.DAG
.getMachineFunction(),
9026 CLI
.IsVarArg
, Outs
, CLI
.RetTy
->getContext());
9028 SDValue DemoteStackSlot
;
9029 int DemoteStackIdx
= -100;
9030 if (!CanLowerReturn
) {
9031 // FIXME: equivalent assert?
9032 // assert(!CS.hasInAllocaArgument() &&
9033 // "sret demotion is incompatible with inalloca");
9034 uint64_t TySize
= DL
.getTypeAllocSize(CLI
.RetTy
);
9035 unsigned Align
= DL
.getPrefTypeAlignment(CLI
.RetTy
);
9036 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
9037 DemoteStackIdx
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
9038 Type
*StackSlotPtrType
= PointerType::get(CLI
.RetTy
,
9039 DL
.getAllocaAddrSpace());
9041 DemoteStackSlot
= CLI
.DAG
.getFrameIndex(DemoteStackIdx
, getFrameIndexTy(DL
));
9043 Entry
.Node
= DemoteStackSlot
;
9044 Entry
.Ty
= StackSlotPtrType
;
9045 Entry
.IsSExt
= false;
9046 Entry
.IsZExt
= false;
9047 Entry
.IsInReg
= false;
9048 Entry
.IsSRet
= true;
9049 Entry
.IsNest
= false;
9050 Entry
.IsByVal
= false;
9051 Entry
.IsReturned
= false;
9052 Entry
.IsSwiftSelf
= false;
9053 Entry
.IsSwiftError
= false;
9054 Entry
.Alignment
= Align
;
9055 CLI
.getArgs().insert(CLI
.getArgs().begin(), Entry
);
9056 CLI
.NumFixedArgs
+= 1;
9057 CLI
.RetTy
= Type::getVoidTy(CLI
.RetTy
->getContext());
9059 // sret demotion isn't compatible with tail-calls, since the sret argument
9060 // points into the callers stack frame.
9061 CLI
.IsTailCall
= false;
9063 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9064 CLI
.RetTy
, CLI
.CallConv
, CLI
.IsVarArg
);
9065 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9066 ISD::ArgFlagsTy Flags
;
9067 if (NeedsRegBlock
) {
9068 Flags
.setInConsecutiveRegs();
9069 if (I
== RetTys
.size() - 1)
9070 Flags
.setInConsecutiveRegsLast();
9073 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9075 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9077 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9078 ISD::InputArg MyFlags
;
9079 MyFlags
.Flags
= Flags
;
9080 MyFlags
.VT
= RegisterVT
;
9082 MyFlags
.Used
= CLI
.IsReturnValueUsed
;
9083 if (CLI
.RetTy
->isPointerTy()) {
9084 MyFlags
.Flags
.setPointer();
9085 MyFlags
.Flags
.setPointerAddrSpace(
9086 cast
<PointerType
>(CLI
.RetTy
)->getAddressSpace());
9089 MyFlags
.Flags
.setSExt();
9091 MyFlags
.Flags
.setZExt();
9093 MyFlags
.Flags
.setInReg();
9094 CLI
.Ins
.push_back(MyFlags
);
9099 // We push in swifterror return as the last element of CLI.Ins.
9100 ArgListTy
&Args
= CLI
.getArgs();
9101 if (supportSwiftError()) {
9102 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9103 if (Args
[i
].IsSwiftError
) {
9104 ISD::InputArg MyFlags
;
9105 MyFlags
.VT
= getPointerTy(DL
);
9106 MyFlags
.ArgVT
= EVT(getPointerTy(DL
));
9107 MyFlags
.Flags
.setSwiftError();
9108 CLI
.Ins
.push_back(MyFlags
);
9113 // Handle all of the outgoing arguments.
9115 CLI
.OutVals
.clear();
9116 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9117 SmallVector
<EVT
, 4> ValueVTs
;
9118 ComputeValueVTs(*this, DL
, Args
[i
].Ty
, ValueVTs
);
9119 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9120 Type
*FinalType
= Args
[i
].Ty
;
9121 if (Args
[i
].IsByVal
)
9122 FinalType
= cast
<PointerType
>(Args
[i
].Ty
)->getElementType();
9123 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9124 FinalType
, CLI
.CallConv
, CLI
.IsVarArg
);
9125 for (unsigned Value
= 0, NumValues
= ValueVTs
.size(); Value
!= NumValues
;
9127 EVT VT
= ValueVTs
[Value
];
9128 Type
*ArgTy
= VT
.getTypeForEVT(CLI
.RetTy
->getContext());
9129 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
9130 Args
[i
].Node
.getResNo() + Value
);
9131 ISD::ArgFlagsTy Flags
;
9133 // Certain targets (such as MIPS), may have a different ABI alignment
9134 // for a type depending on the context. Give the target a chance to
9135 // specify the alignment it wants.
9136 unsigned OriginalAlignment
= getABIAlignmentForCallingConv(ArgTy
, DL
);
9138 if (Args
[i
].Ty
->isPointerTy()) {
9140 Flags
.setPointerAddrSpace(
9141 cast
<PointerType
>(Args
[i
].Ty
)->getAddressSpace());
9147 if (Args
[i
].IsInReg
) {
9148 // If we are using vectorcall calling convention, a structure that is
9149 // passed InReg - is surely an HVA
9150 if (CLI
.CallConv
== CallingConv::X86_VectorCall
&&
9151 isa
<StructType
>(FinalType
)) {
9152 // The first value of a structure is marked
9154 Flags
.setHvaStart();
9162 if (Args
[i
].IsSwiftSelf
)
9163 Flags
.setSwiftSelf();
9164 if (Args
[i
].IsSwiftError
)
9165 Flags
.setSwiftError();
9166 if (Args
[i
].IsByVal
)
9168 if (Args
[i
].IsInAlloca
) {
9169 Flags
.setInAlloca();
9170 // Set the byval flag for CCAssignFn callbacks that don't know about
9171 // inalloca. This way we can know how many bytes we should've allocated
9172 // and how many bytes a callee cleanup function will pop. If we port
9173 // inalloca to more targets, we'll have to add custom inalloca handling
9174 // in the various CC lowering callbacks.
9177 if (Args
[i
].IsByVal
|| Args
[i
].IsInAlloca
) {
9178 PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
9179 Type
*ElementTy
= Ty
->getElementType();
9181 unsigned FrameSize
= DL
.getTypeAllocSize(
9182 Args
[i
].ByValType
? Args
[i
].ByValType
: ElementTy
);
9183 Flags
.setByValSize(FrameSize
);
9185 // info is not there but there are cases it cannot get right.
9186 unsigned FrameAlign
;
9187 if (Args
[i
].Alignment
)
9188 FrameAlign
= Args
[i
].Alignment
;
9190 FrameAlign
= getByValTypeAlignment(ElementTy
, DL
);
9191 Flags
.setByValAlign(FrameAlign
);
9196 Flags
.setInConsecutiveRegs();
9197 Flags
.setOrigAlign(OriginalAlignment
);
9199 MVT PartVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9201 unsigned NumParts
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9203 SmallVector
<SDValue
, 4> Parts(NumParts
);
9204 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
9207 ExtendKind
= ISD::SIGN_EXTEND
;
9208 else if (Args
[i
].IsZExt
)
9209 ExtendKind
= ISD::ZERO_EXTEND
;
9211 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9213 if (Args
[i
].IsReturned
&& !Op
.getValueType().isVector() &&
9215 assert((CLI
.RetTy
== Args
[i
].Ty
||
9216 (CLI
.RetTy
->isPointerTy() && Args
[i
].Ty
->isPointerTy() &&
9217 CLI
.RetTy
->getPointerAddressSpace() ==
9218 Args
[i
].Ty
->getPointerAddressSpace())) &&
9219 RetTys
.size() == NumValues
&& "unexpected use of 'returned'");
9220 // Before passing 'returned' to the target lowering code, ensure that
9221 // either the register MVT and the actual EVT are the same size or that
9222 // the return value and argument are extended in the same way; in these
9223 // cases it's safe to pass the argument register value unchanged as the
9224 // return register value (although it's at the target's option whether
9226 // TODO: allow code generation to take advantage of partially preserved
9227 // registers rather than clobbering the entire register when the
9228 // parameter extension method is not compatible with the return
9230 if ((NumParts
* PartVT
.getSizeInBits() == VT
.getSizeInBits()) ||
9231 (ExtendKind
!= ISD::ANY_EXTEND
&& CLI
.RetSExt
== Args
[i
].IsSExt
&&
9232 CLI
.RetZExt
== Args
[i
].IsZExt
))
9233 Flags
.setReturned();
9236 getCopyToParts(CLI
.DAG
, CLI
.DL
, Op
, &Parts
[0], NumParts
, PartVT
,
9237 CLI
.CS
.getInstruction(), CLI
.CallConv
, ExtendKind
);
9239 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
9240 // if it isn't first piece, alignment must be 1
9241 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(), VT
,
9242 i
< CLI
.NumFixedArgs
,
9243 i
, j
*Parts
[j
].getValueType().getStoreSize());
9244 if (NumParts
> 1 && j
== 0)
9245 MyFlags
.Flags
.setSplit();
9247 MyFlags
.Flags
.setOrigAlign(1);
9248 if (j
== NumParts
- 1)
9249 MyFlags
.Flags
.setSplitEnd();
9252 CLI
.Outs
.push_back(MyFlags
);
9253 CLI
.OutVals
.push_back(Parts
[j
]);
9256 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9257 CLI
.Outs
[CLI
.Outs
.size() - 1].Flags
.setInConsecutiveRegsLast();
9261 SmallVector
<SDValue
, 4> InVals
;
9262 CLI
.Chain
= LowerCall(CLI
, InVals
);
9264 // Update CLI.InVals to use outside of this function.
9265 CLI
.InVals
= InVals
;
9267 // Verify that the target's LowerCall behaved as expected.
9268 assert(CLI
.Chain
.getNode() && CLI
.Chain
.getValueType() == MVT::Other
&&
9269 "LowerCall didn't return a valid chain!");
9270 assert((!CLI
.IsTailCall
|| InVals
.empty()) &&
9271 "LowerCall emitted a return value for a tail call!");
9272 assert((CLI
.IsTailCall
|| InVals
.size() == CLI
.Ins
.size()) &&
9273 "LowerCall didn't emit the correct number of values!");
9275 // For a tail call, the return value is merely live-out and there aren't
9276 // any nodes in the DAG representing it. Return a special value to
9277 // indicate that a tail call has been emitted and no more Instructions
9278 // should be processed in the current block.
9279 if (CLI
.IsTailCall
) {
9280 CLI
.DAG
.setRoot(CLI
.Chain
);
9281 return std::make_pair(SDValue(), SDValue());
9285 for (unsigned i
= 0, e
= CLI
.Ins
.size(); i
!= e
; ++i
) {
9286 assert(InVals
[i
].getNode() && "LowerCall emitted a null value!");
9287 assert(EVT(CLI
.Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9288 "LowerCall emitted a value with the wrong type!");
9292 SmallVector
<SDValue
, 4> ReturnValues
;
9293 if (!CanLowerReturn
) {
9294 // The instruction result is the result of loading from the
9295 // hidden sret parameter.
9296 SmallVector
<EVT
, 1> PVTs
;
9297 Type
*PtrRetTy
= OrigRetTy
->getPointerTo(DL
.getAllocaAddrSpace());
9299 ComputeValueVTs(*this, DL
, PtrRetTy
, PVTs
);
9300 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
9301 EVT PtrVT
= PVTs
[0];
9303 unsigned NumValues
= RetTys
.size();
9304 ReturnValues
.resize(NumValues
);
9305 SmallVector
<SDValue
, 4> Chains(NumValues
);
9307 // An aggregate return value cannot wrap around the address space, so
9308 // offsets to its parts don't wrap either.
9310 Flags
.setNoUnsignedWrap(true);
9312 for (unsigned i
= 0; i
< NumValues
; ++i
) {
9313 SDValue Add
= CLI
.DAG
.getNode(ISD::ADD
, CLI
.DL
, PtrVT
, DemoteStackSlot
,
9314 CLI
.DAG
.getConstant(Offsets
[i
], CLI
.DL
,
9316 SDValue L
= CLI
.DAG
.getLoad(
9317 RetTys
[i
], CLI
.DL
, CLI
.Chain
, Add
,
9318 MachinePointerInfo::getFixedStack(CLI
.DAG
.getMachineFunction(),
9319 DemoteStackIdx
, Offsets
[i
]),
9320 /* Alignment = */ 1);
9321 ReturnValues
[i
] = L
;
9322 Chains
[i
] = L
.getValue(1);
9325 CLI
.Chain
= CLI
.DAG
.getNode(ISD::TokenFactor
, CLI
.DL
, MVT::Other
, Chains
);
9327 // Collect the legal value parts into potentially illegal values
9328 // that correspond to the original function's return values.
9329 Optional
<ISD::NodeType
> AssertOp
;
9331 AssertOp
= ISD::AssertSext
;
9332 else if (CLI
.RetZExt
)
9333 AssertOp
= ISD::AssertZext
;
9334 unsigned CurReg
= 0;
9335 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9337 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9339 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9342 ReturnValues
.push_back(getCopyFromParts(CLI
.DAG
, CLI
.DL
, &InVals
[CurReg
],
9343 NumRegs
, RegisterVT
, VT
, nullptr,
9344 CLI
.CallConv
, AssertOp
));
9348 // For a function returning void, there is no return value. We can't create
9349 // such a node, so we just return a null return value in that case. In
9350 // that case, nothing will actually look at the value.
9351 if (ReturnValues
.empty())
9352 return std::make_pair(SDValue(), CLI
.Chain
);
9355 SDValue Res
= CLI
.DAG
.getNode(ISD::MERGE_VALUES
, CLI
.DL
,
9356 CLI
.DAG
.getVTList(RetTys
), ReturnValues
);
9357 return std::make_pair(Res
, CLI
.Chain
);
9360 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
9361 SmallVectorImpl
<SDValue
> &Results
,
9362 SelectionDAG
&DAG
) const {
9363 if (SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
))
9364 Results
.push_back(Res
);
9367 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9368 llvm_unreachable("LowerOperation not implemented for this target!");
9372 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
9373 SDValue Op
= getNonRegisterValue(V
);
9374 assert((Op
.getOpcode() != ISD::CopyFromReg
||
9375 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
9376 "Copy from a reg to the same reg!");
9377 assert(!Register::isPhysicalRegister(Reg
) && "Is a physreg");
9379 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9380 // If this is an InlineAsm we have to match the registers required, not the
9381 // notional registers required by the type.
9383 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
, V
->getType(),
9384 None
); // This is not an ABI copy.
9385 SDValue Chain
= DAG
.getEntryNode();
9387 ISD::NodeType ExtendType
= (FuncInfo
.PreferredExtendType
.find(V
) ==
9388 FuncInfo
.PreferredExtendType
.end())
9390 : FuncInfo
.PreferredExtendType
[V
];
9391 RFV
.getCopyToRegs(Op
, DAG
, getCurSDLoc(), Chain
, nullptr, V
, ExtendType
);
9392 PendingExports
.push_back(Chain
);
9395 #include "llvm/CodeGen/SelectionDAGISel.h"
9397 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9398 /// entry block, return true. This includes arguments used by switches, since
9399 /// the switch may expand into multiple basic blocks.
9400 static bool isOnlyUsedInEntryBlock(const Argument
*A
, bool FastISel
) {
9401 // With FastISel active, we may be splitting blocks, so force creation
9402 // of virtual registers for all non-dead arguments.
9404 return A
->use_empty();
9406 const BasicBlock
&Entry
= A
->getParent()->front();
9407 for (const User
*U
: A
->users())
9408 if (cast
<Instruction
>(U
)->getParent() != &Entry
|| isa
<SwitchInst
>(U
))
9409 return false; // Use not in entry block.
9414 using ArgCopyElisionMapTy
=
9415 DenseMap
<const Argument
*,
9416 std::pair
<const AllocaInst
*, const StoreInst
*>>;
9418 /// Scan the entry block of the function in FuncInfo for arguments that look
9419 /// like copies into a local alloca. Record any copied arguments in
9420 /// ArgCopyElisionCandidates.
9422 findArgumentCopyElisionCandidates(const DataLayout
&DL
,
9423 FunctionLoweringInfo
*FuncInfo
,
9424 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
) {
9425 // Record the state of every static alloca used in the entry block. Argument
9426 // allocas are all used in the entry block, so we need approximately as many
9427 // entries as we have arguments.
9428 enum StaticAllocaInfo
{ Unknown
, Clobbered
, Elidable
};
9429 SmallDenseMap
<const AllocaInst
*, StaticAllocaInfo
, 8> StaticAllocas
;
9430 unsigned NumArgs
= FuncInfo
->Fn
->arg_size();
9431 StaticAllocas
.reserve(NumArgs
* 2);
9433 auto GetInfoIfStaticAlloca
= [&](const Value
*V
) -> StaticAllocaInfo
* {
9436 V
= V
->stripPointerCasts();
9437 const auto *AI
= dyn_cast
<AllocaInst
>(V
);
9438 if (!AI
|| !AI
->isStaticAlloca() || !FuncInfo
->StaticAllocaMap
.count(AI
))
9440 auto Iter
= StaticAllocas
.insert({AI
, Unknown
});
9441 return &Iter
.first
->second
;
9444 // Look for stores of arguments to static allocas. Look through bitcasts and
9445 // GEPs to handle type coercions, as long as the alloca is fully initialized
9446 // by the store. Any non-store use of an alloca escapes it and any subsequent
9447 // unanalyzed store might write it.
9448 // FIXME: Handle structs initialized with multiple stores.
9449 for (const Instruction
&I
: FuncInfo
->Fn
->getEntryBlock()) {
9450 // Look for stores, and handle non-store uses conservatively.
9451 const auto *SI
= dyn_cast
<StoreInst
>(&I
);
9453 // We will look through cast uses, so ignore them completely.
9456 // Ignore debug info intrinsics, they don't escape or store to allocas.
9457 if (isa
<DbgInfoIntrinsic
>(I
))
9459 // This is an unknown instruction. Assume it escapes or writes to all
9460 // static alloca operands.
9461 for (const Use
&U
: I
.operands()) {
9462 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(U
))
9463 *Info
= StaticAllocaInfo::Clobbered
;
9468 // If the stored value is a static alloca, mark it as escaped.
9469 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(SI
->getValueOperand()))
9470 *Info
= StaticAllocaInfo::Clobbered
;
9472 // Check if the destination is a static alloca.
9473 const Value
*Dst
= SI
->getPointerOperand()->stripPointerCasts();
9474 StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(Dst
);
9477 const AllocaInst
*AI
= cast
<AllocaInst
>(Dst
);
9479 // Skip allocas that have been initialized or clobbered.
9480 if (*Info
!= StaticAllocaInfo::Unknown
)
9483 // Check if the stored value is an argument, and that this store fully
9484 // initializes the alloca. Don't elide copies from the same argument twice.
9485 const Value
*Val
= SI
->getValueOperand()->stripPointerCasts();
9486 const auto *Arg
= dyn_cast
<Argument
>(Val
);
9487 if (!Arg
|| Arg
->hasInAllocaAttr() || Arg
->hasByValAttr() ||
9488 Arg
->getType()->isEmptyTy() ||
9489 DL
.getTypeStoreSize(Arg
->getType()) !=
9490 DL
.getTypeAllocSize(AI
->getAllocatedType()) ||
9491 ArgCopyElisionCandidates
.count(Arg
)) {
9492 *Info
= StaticAllocaInfo::Clobbered
;
9496 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9499 // Mark this alloca and store for argument copy elision.
9500 *Info
= StaticAllocaInfo::Elidable
;
9501 ArgCopyElisionCandidates
.insert({Arg
, {AI
, SI
}});
9503 // Stop scanning if we've seen all arguments. This will happen early in -O0
9504 // builds, which is useful, because -O0 builds have large entry blocks and
9506 if (ArgCopyElisionCandidates
.size() == NumArgs
)
9511 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9512 /// ArgVal is a load from a suitable fixed stack object.
9513 static void tryToElideArgumentCopy(
9514 FunctionLoweringInfo
*FuncInfo
, SmallVectorImpl
<SDValue
> &Chains
,
9515 DenseMap
<int, int> &ArgCopyElisionFrameIndexMap
,
9516 SmallPtrSetImpl
<const Instruction
*> &ElidedArgCopyInstrs
,
9517 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
, const Argument
&Arg
,
9518 SDValue ArgVal
, bool &ArgHasUses
) {
9519 // Check if this is a load from a fixed stack object.
9520 auto *LNode
= dyn_cast
<LoadSDNode
>(ArgVal
);
9523 auto *FINode
= dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode());
9527 // Check that the fixed stack object is the right size and alignment.
9528 // Look at the alignment that the user wrote on the alloca instead of looking
9529 // at the stack object.
9530 auto ArgCopyIter
= ArgCopyElisionCandidates
.find(&Arg
);
9531 assert(ArgCopyIter
!= ArgCopyElisionCandidates
.end());
9532 const AllocaInst
*AI
= ArgCopyIter
->second
.first
;
9533 int FixedIndex
= FINode
->getIndex();
9534 int &AllocaIndex
= FuncInfo
->StaticAllocaMap
[AI
];
9535 int OldIndex
= AllocaIndex
;
9536 MachineFrameInfo
&MFI
= FuncInfo
->MF
->getFrameInfo();
9537 if (MFI
.getObjectSize(FixedIndex
) != MFI
.getObjectSize(OldIndex
)) {
9539 dbgs() << " argument copy elision failed due to bad fixed stack "
9543 unsigned RequiredAlignment
= AI
->getAlignment();
9544 if (!RequiredAlignment
) {
9545 RequiredAlignment
= FuncInfo
->MF
->getDataLayout().getABITypeAlignment(
9546 AI
->getAllocatedType());
9548 if (MFI
.getObjectAlignment(FixedIndex
) < RequiredAlignment
) {
9549 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9550 "greater than stack argument alignment ("
9551 << RequiredAlignment
<< " vs "
9552 << MFI
.getObjectAlignment(FixedIndex
) << ")\n");
9556 // Perform the elision. Delete the old stack object and replace its only use
9557 // in the variable info map. Mark the stack object as mutable.
9559 dbgs() << "Eliding argument copy from " << Arg
<< " to " << *AI
<< '\n'
9560 << " Replacing frame index " << OldIndex
<< " with " << FixedIndex
9563 MFI
.RemoveStackObject(OldIndex
);
9564 MFI
.setIsImmutableObjectIndex(FixedIndex
, false);
9565 AllocaIndex
= FixedIndex
;
9566 ArgCopyElisionFrameIndexMap
.insert({OldIndex
, FixedIndex
});
9567 Chains
.push_back(ArgVal
.getValue(1));
9569 // Avoid emitting code for the store implementing the copy.
9570 const StoreInst
*SI
= ArgCopyIter
->second
.second
;
9571 ElidedArgCopyInstrs
.insert(SI
);
9573 // Check for uses of the argument again so that we can avoid exporting ArgVal
9574 // if it is't used by anything other than the store.
9575 for (const Value
*U
: Arg
.users()) {
9583 void SelectionDAGISel::LowerArguments(const Function
&F
) {
9584 SelectionDAG
&DAG
= SDB
->DAG
;
9585 SDLoc dl
= SDB
->getCurSDLoc();
9586 const DataLayout
&DL
= DAG
.getDataLayout();
9587 SmallVector
<ISD::InputArg
, 16> Ins
;
9589 if (!FuncInfo
->CanLowerReturn
) {
9590 // Put in an sret pointer parameter before all the other parameters.
9591 SmallVector
<EVT
, 1> ValueVTs
;
9592 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9593 F
.getReturnType()->getPointerTo(
9594 DAG
.getDataLayout().getAllocaAddrSpace()),
9597 // NOTE: Assuming that a pointer will never break down to more than one VT
9599 ISD::ArgFlagsTy Flags
;
9601 MVT RegisterVT
= TLI
->getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
9602 ISD::InputArg
RetArg(Flags
, RegisterVT
, ValueVTs
[0], true,
9603 ISD::InputArg::NoArgIndex
, 0);
9604 Ins
.push_back(RetArg
);
9607 // Look for stores of arguments to static allocas. Mark such arguments with a
9608 // flag to ask the target to give us the memory location of that argument if
9610 ArgCopyElisionMapTy ArgCopyElisionCandidates
;
9611 findArgumentCopyElisionCandidates(DL
, FuncInfo
, ArgCopyElisionCandidates
);
9613 // Set up the incoming argument description vector.
9614 for (const Argument
&Arg
: F
.args()) {
9615 unsigned ArgNo
= Arg
.getArgNo();
9616 SmallVector
<EVT
, 4> ValueVTs
;
9617 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9618 bool isArgValueUsed
= !Arg
.use_empty();
9619 unsigned PartBase
= 0;
9620 Type
*FinalType
= Arg
.getType();
9621 if (Arg
.hasAttribute(Attribute::ByVal
))
9622 FinalType
= Arg
.getParamByValType();
9623 bool NeedsRegBlock
= TLI
->functionArgumentNeedsConsecutiveRegisters(
9624 FinalType
, F
.getCallingConv(), F
.isVarArg());
9625 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
9626 Value
!= NumValues
; ++Value
) {
9627 EVT VT
= ValueVTs
[Value
];
9628 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
9629 ISD::ArgFlagsTy Flags
;
9631 // Certain targets (such as MIPS), may have a different ABI alignment
9632 // for a type depending on the context. Give the target a chance to
9633 // specify the alignment it wants.
9634 unsigned OriginalAlignment
=
9635 TLI
->getABIAlignmentForCallingConv(ArgTy
, DL
);
9637 if (Arg
.getType()->isPointerTy()) {
9639 Flags
.setPointerAddrSpace(
9640 cast
<PointerType
>(Arg
.getType())->getAddressSpace());
9642 if (Arg
.hasAttribute(Attribute::ZExt
))
9644 if (Arg
.hasAttribute(Attribute::SExt
))
9646 if (Arg
.hasAttribute(Attribute::InReg
)) {
9647 // If we are using vectorcall calling convention, a structure that is
9648 // passed InReg - is surely an HVA
9649 if (F
.getCallingConv() == CallingConv::X86_VectorCall
&&
9650 isa
<StructType
>(Arg
.getType())) {
9651 // The first value of a structure is marked
9653 Flags
.setHvaStart();
9659 if (Arg
.hasAttribute(Attribute::StructRet
))
9661 if (Arg
.hasAttribute(Attribute::SwiftSelf
))
9662 Flags
.setSwiftSelf();
9663 if (Arg
.hasAttribute(Attribute::SwiftError
))
9664 Flags
.setSwiftError();
9665 if (Arg
.hasAttribute(Attribute::ByVal
))
9667 if (Arg
.hasAttribute(Attribute::InAlloca
)) {
9668 Flags
.setInAlloca();
9669 // Set the byval flag for CCAssignFn callbacks that don't know about
9670 // inalloca. This way we can know how many bytes we should've allocated
9671 // and how many bytes a callee cleanup function will pop. If we port
9672 // inalloca to more targets, we'll have to add custom inalloca handling
9673 // in the various CC lowering callbacks.
9676 if (F
.getCallingConv() == CallingConv::X86_INTR
) {
9677 // IA Interrupt passes frame (1st parameter) by value in the stack.
9681 if (Flags
.isByVal() || Flags
.isInAlloca()) {
9682 Type
*ElementTy
= Arg
.getParamByValType();
9684 // For ByVal, size and alignment should be passed from FE. BE will
9685 // guess if this info is not there but there are cases it cannot get
9687 unsigned FrameSize
= DL
.getTypeAllocSize(Arg
.getParamByValType());
9688 Flags
.setByValSize(FrameSize
);
9690 unsigned FrameAlign
;
9691 if (Arg
.getParamAlignment())
9692 FrameAlign
= Arg
.getParamAlignment();
9694 FrameAlign
= TLI
->getByValTypeAlignment(ElementTy
, DL
);
9695 Flags
.setByValAlign(FrameAlign
);
9697 if (Arg
.hasAttribute(Attribute::Nest
))
9700 Flags
.setInConsecutiveRegs();
9701 Flags
.setOrigAlign(OriginalAlignment
);
9702 if (ArgCopyElisionCandidates
.count(&Arg
))
9703 Flags
.setCopyElisionCandidate();
9704 if (Arg
.hasAttribute(Attribute::Returned
))
9705 Flags
.setReturned();
9707 MVT RegisterVT
= TLI
->getRegisterTypeForCallingConv(
9708 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9709 unsigned NumRegs
= TLI
->getNumRegistersForCallingConv(
9710 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9711 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9712 ISD::InputArg
MyFlags(Flags
, RegisterVT
, VT
, isArgValueUsed
,
9713 ArgNo
, PartBase
+i
*RegisterVT
.getStoreSize());
9714 if (NumRegs
> 1 && i
== 0)
9715 MyFlags
.Flags
.setSplit();
9716 // if it isn't first piece, alignment must be 1
9718 MyFlags
.Flags
.setOrigAlign(1);
9719 if (i
== NumRegs
- 1)
9720 MyFlags
.Flags
.setSplitEnd();
9722 Ins
.push_back(MyFlags
);
9724 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9725 Ins
[Ins
.size() - 1].Flags
.setInConsecutiveRegsLast();
9726 PartBase
+= VT
.getStoreSize();
9730 // Call the target to set up the argument values.
9731 SmallVector
<SDValue
, 8> InVals
;
9732 SDValue NewRoot
= TLI
->LowerFormalArguments(
9733 DAG
.getRoot(), F
.getCallingConv(), F
.isVarArg(), Ins
, dl
, DAG
, InVals
);
9735 // Verify that the target's LowerFormalArguments behaved as expected.
9736 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
9737 "LowerFormalArguments didn't return a valid chain!");
9738 assert(InVals
.size() == Ins
.size() &&
9739 "LowerFormalArguments didn't emit the correct number of values!");
9741 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
9742 assert(InVals
[i
].getNode() &&
9743 "LowerFormalArguments emitted a null value!");
9744 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9745 "LowerFormalArguments emitted a value with the wrong type!");
9749 // Update the DAG with the new chain value resulting from argument lowering.
9750 DAG
.setRoot(NewRoot
);
9752 // Set up the argument values.
9754 if (!FuncInfo
->CanLowerReturn
) {
9755 // Create a virtual register for the sret pointer, and put in a copy
9756 // from the sret argument into it.
9757 SmallVector
<EVT
, 1> ValueVTs
;
9758 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9759 F
.getReturnType()->getPointerTo(
9760 DAG
.getDataLayout().getAllocaAddrSpace()),
9762 MVT VT
= ValueVTs
[0].getSimpleVT();
9763 MVT RegVT
= TLI
->getRegisterType(*CurDAG
->getContext(), VT
);
9764 Optional
<ISD::NodeType
> AssertOp
= None
;
9765 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1, RegVT
, VT
,
9766 nullptr, F
.getCallingConv(), AssertOp
);
9768 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
9769 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
9771 RegInfo
.createVirtualRegister(TLI
->getRegClassFor(RegVT
));
9772 FuncInfo
->DemoteRegister
= SRetReg
;
9774 SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurSDLoc(), SRetReg
, ArgValue
);
9775 DAG
.setRoot(NewRoot
);
9777 // i indexes lowered arguments. Bump it past the hidden sret argument.
9781 SmallVector
<SDValue
, 4> Chains
;
9782 DenseMap
<int, int> ArgCopyElisionFrameIndexMap
;
9783 for (const Argument
&Arg
: F
.args()) {
9784 SmallVector
<SDValue
, 4> ArgValues
;
9785 SmallVector
<EVT
, 4> ValueVTs
;
9786 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9787 unsigned NumValues
= ValueVTs
.size();
9791 bool ArgHasUses
= !Arg
.use_empty();
9793 // Elide the copying store if the target loaded this argument from a
9794 // suitable fixed stack object.
9795 if (Ins
[i
].Flags
.isCopyElisionCandidate()) {
9796 tryToElideArgumentCopy(FuncInfo
, Chains
, ArgCopyElisionFrameIndexMap
,
9797 ElidedArgCopyInstrs
, ArgCopyElisionCandidates
, Arg
,
9798 InVals
[i
], ArgHasUses
);
9801 // If this argument is unused then remember its value. It is used to generate
9802 // debugging information.
9803 bool isSwiftErrorArg
=
9804 TLI
->supportSwiftError() &&
9805 Arg
.hasAttribute(Attribute::SwiftError
);
9806 if (!ArgHasUses
&& !isSwiftErrorArg
) {
9807 SDB
->setUnusedArgValue(&Arg
, InVals
[i
]);
9809 // Also remember any frame index for use in FastISel.
9810 if (FrameIndexSDNode
*FI
=
9811 dyn_cast
<FrameIndexSDNode
>(InVals
[i
].getNode()))
9812 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9815 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
9816 EVT VT
= ValueVTs
[Val
];
9817 MVT PartVT
= TLI
->getRegisterTypeForCallingConv(*CurDAG
->getContext(),
9818 F
.getCallingConv(), VT
);
9819 unsigned NumParts
= TLI
->getNumRegistersForCallingConv(
9820 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9822 // Even an apparant 'unused' swifterror argument needs to be returned. So
9823 // we do generate a copy for it that can be used on return from the
9825 if (ArgHasUses
|| isSwiftErrorArg
) {
9826 Optional
<ISD::NodeType
> AssertOp
;
9827 if (Arg
.hasAttribute(Attribute::SExt
))
9828 AssertOp
= ISD::AssertSext
;
9829 else if (Arg
.hasAttribute(Attribute::ZExt
))
9830 AssertOp
= ISD::AssertZext
;
9832 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
9833 PartVT
, VT
, nullptr,
9834 F
.getCallingConv(), AssertOp
));
9840 // We don't need to do anything else for unused arguments.
9841 if (ArgValues
.empty())
9844 // Note down frame index.
9845 if (FrameIndexSDNode
*FI
=
9846 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
9847 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9849 SDValue Res
= DAG
.getMergeValues(makeArrayRef(ArgValues
.data(), NumValues
),
9850 SDB
->getCurSDLoc());
9852 SDB
->setValue(&Arg
, Res
);
9853 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::BUILD_PAIR
) {
9854 // We want to associate the argument with the frame index, among
9855 // involved operands, that correspond to the lowest address. The
9856 // getCopyFromParts function, called earlier, is swapping the order of
9857 // the operands to BUILD_PAIR depending on endianness. The result of
9858 // that swapping is that the least significant bits of the argument will
9859 // be in the first operand of the BUILD_PAIR node, and the most
9860 // significant bits will be in the second operand.
9861 unsigned LowAddressOp
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9862 if (LoadSDNode
*LNode
=
9863 dyn_cast
<LoadSDNode
>(Res
.getOperand(LowAddressOp
).getNode()))
9864 if (FrameIndexSDNode
*FI
=
9865 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
9866 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9869 // Analyses past this point are naive and don't expect an assertion.
9870 if (Res
.getOpcode() == ISD::AssertZext
)
9871 Res
= Res
.getOperand(0);
9873 // Update the SwiftErrorVRegDefMap.
9874 if (Res
.getOpcode() == ISD::CopyFromReg
&& isSwiftErrorArg
) {
9875 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9876 if (Register::isVirtualRegister(Reg
))
9877 SwiftError
->setCurrentVReg(FuncInfo
->MBB
, SwiftError
->getFunctionArg(),
9881 // If this argument is live outside of the entry block, insert a copy from
9882 // wherever we got it to the vreg that other BB's will reference it as.
9883 if (Res
.getOpcode() == ISD::CopyFromReg
) {
9884 // If we can, though, try to skip creating an unnecessary vreg.
9885 // FIXME: This isn't very clean... it would be nice to make this more
9887 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9888 if (Register::isVirtualRegister(Reg
)) {
9889 FuncInfo
->ValueMap
[&Arg
] = Reg
;
9893 if (!isOnlyUsedInEntryBlock(&Arg
, TM
.Options
.EnableFastISel
)) {
9894 FuncInfo
->InitializeRegForValue(&Arg
);
9895 SDB
->CopyToExportRegsIfNeeded(&Arg
);
9899 if (!Chains
.empty()) {
9900 Chains
.push_back(NewRoot
);
9901 NewRoot
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
9904 DAG
.setRoot(NewRoot
);
9906 assert(i
== InVals
.size() && "Argument register count mismatch!");
9908 // If any argument copy elisions occurred and we have debug info, update the
9909 // stale frame indices used in the dbg.declare variable info table.
9910 MachineFunction::VariableDbgInfoMapTy
&DbgDeclareInfo
= MF
->getVariableDbgInfo();
9911 if (!DbgDeclareInfo
.empty() && !ArgCopyElisionFrameIndexMap
.empty()) {
9912 for (MachineFunction::VariableDbgInfo
&VI
: DbgDeclareInfo
) {
9913 auto I
= ArgCopyElisionFrameIndexMap
.find(VI
.Slot
);
9914 if (I
!= ArgCopyElisionFrameIndexMap
.end())
9915 VI
.Slot
= I
->second
;
9919 // Finally, if the target has anything special to do, allow it to do so.
9920 EmitFunctionEntryCode();
9923 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9924 /// ensure constants are generated when needed. Remember the virtual registers
9925 /// that need to be added to the Machine PHI nodes as input. We cannot just
9926 /// directly add them, because expansion might result in multiple MBB's for one
9927 /// BB. As such, the start of the BB might correspond to a different MBB than
9930 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
9931 const Instruction
*TI
= LLVMBB
->getTerminator();
9933 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
9935 // Check PHI nodes in successors that expect a value to be available from this
9937 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
9938 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
9939 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
9940 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
9942 // If this terminator has multiple identical successors (common for
9943 // switches), only handle each succ once.
9944 if (!SuccsHandled
.insert(SuccMBB
).second
)
9947 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
9949 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9950 // nodes and Machine PHI nodes, but the incoming operands have not been
9952 for (const PHINode
&PN
: SuccBB
->phis()) {
9953 // Ignore dead phi's.
9958 if (PN
.getType()->isEmptyTy())
9962 const Value
*PHIOp
= PN
.getIncomingValueForBlock(LLVMBB
);
9964 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
9965 unsigned &RegOut
= ConstantsOut
[C
];
9967 RegOut
= FuncInfo
.CreateRegs(C
);
9968 CopyValueToVirtualRegister(C
, RegOut
);
9972 DenseMap
<const Value
*, unsigned>::iterator I
=
9973 FuncInfo
.ValueMap
.find(PHIOp
);
9974 if (I
!= FuncInfo
.ValueMap
.end())
9977 assert(isa
<AllocaInst
>(PHIOp
) &&
9978 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
9979 "Didn't codegen value into a register!??");
9980 Reg
= FuncInfo
.CreateRegs(PHIOp
);
9981 CopyValueToVirtualRegister(PHIOp
, Reg
);
9985 // Remember that this register needs to added to the machine PHI node as
9986 // the input for this MBB.
9987 SmallVector
<EVT
, 4> ValueVTs
;
9988 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9989 ComputeValueVTs(TLI
, DAG
.getDataLayout(), PN
.getType(), ValueVTs
);
9990 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
9991 EVT VT
= ValueVTs
[vti
];
9992 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
9993 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
9994 FuncInfo
.PHINodesToUpdate
.push_back(
9995 std::make_pair(&*MBBI
++, Reg
+ i
));
9996 Reg
+= NumRegisters
;
10001 ConstantsOut
.clear();
10004 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10006 MachineBasicBlock
*
10007 SelectionDAGBuilder::StackProtectorDescriptor::
10008 AddSuccessorMBB(const BasicBlock
*BB
,
10009 MachineBasicBlock
*ParentMBB
,
10011 MachineBasicBlock
*SuccMBB
) {
10012 // If SuccBB has not been created yet, create it.
10014 MachineFunction
*MF
= ParentMBB
->getParent();
10015 MachineFunction::iterator
BBI(ParentMBB
);
10016 SuccMBB
= MF
->CreateMachineBasicBlock(BB
);
10017 MF
->insert(++BBI
, SuccMBB
);
10019 // Add it as a successor of ParentMBB.
10020 ParentMBB
->addSuccessor(
10021 SuccMBB
, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely
));
10025 MachineBasicBlock
*SelectionDAGBuilder::NextBlock(MachineBasicBlock
*MBB
) {
10026 MachineFunction::iterator
I(MBB
);
10027 if (++I
== FuncInfo
.MF
->end())
10032 /// During lowering new call nodes can be created (such as memset, etc.).
10033 /// Those will become new roots of the current DAG, but complications arise
10034 /// when they are tail calls. In such cases, the call lowering will update
10035 /// the root, but the builder still needs to know that a tail call has been
10036 /// lowered in order to avoid generating an additional return.
10037 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC
) {
10038 // If the node is null, we do have a tail call.
10039 if (MaybeTC
.getNode() != nullptr)
10040 DAG
.setRoot(MaybeTC
);
10042 HasTailCall
= true;
10045 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
10046 MachineBasicBlock
*SwitchMBB
,
10047 MachineBasicBlock
*DefaultMBB
) {
10048 MachineFunction
*CurMF
= FuncInfo
.MF
;
10049 MachineBasicBlock
*NextMBB
= nullptr;
10050 MachineFunction::iterator
BBI(W
.MBB
);
10051 if (++BBI
!= FuncInfo
.MF
->end())
10054 unsigned Size
= W
.LastCluster
- W
.FirstCluster
+ 1;
10056 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10058 if (Size
== 2 && W
.MBB
== SwitchMBB
) {
10059 // If any two of the cases has the same destination, and if one value
10060 // is the same as the other, but has one bit unset that the other has set,
10061 // use bit manipulation to do two compares at once. For example:
10062 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10063 // TODO: This could be extended to merge any 2 cases in switches with 3
10065 // TODO: Handle cases where W.CaseBB != SwitchBB.
10066 CaseCluster
&Small
= *W
.FirstCluster
;
10067 CaseCluster
&Big
= *W
.LastCluster
;
10069 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&&
10070 Small
.MBB
== Big
.MBB
) {
10071 const APInt
&SmallValue
= Small
.Low
->getValue();
10072 const APInt
&BigValue
= Big
.Low
->getValue();
10074 // Check that there is only one bit different.
10075 APInt CommonBit
= BigValue
^ SmallValue
;
10076 if (CommonBit
.isPowerOf2()) {
10077 SDValue CondLHS
= getValue(Cond
);
10078 EVT VT
= CondLHS
.getValueType();
10079 SDLoc DL
= getCurSDLoc();
10081 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
10082 DAG
.getConstant(CommonBit
, DL
, VT
));
10083 SDValue Cond
= DAG
.getSetCC(
10084 DL
, MVT::i1
, Or
, DAG
.getConstant(BigValue
| SmallValue
, DL
, VT
),
10087 // Update successor info.
10088 // Both Small and Big will jump to Small.BB, so we sum up the
10090 addSuccessorWithProb(SwitchMBB
, Small
.MBB
, Small
.Prob
+ Big
.Prob
);
10092 addSuccessorWithProb(
10093 SwitchMBB
, DefaultMBB
,
10094 // The default destination is the first successor in IR.
10095 BPI
->getEdgeProbability(SwitchMBB
->getBasicBlock(), (unsigned)0));
10097 addSuccessorWithProb(SwitchMBB
, DefaultMBB
);
10099 // Insert the true branch.
10101 DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
, getControlRoot(), Cond
,
10102 DAG
.getBasicBlock(Small
.MBB
));
10103 // Insert the false branch.
10104 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
10105 DAG
.getBasicBlock(DefaultMBB
));
10107 DAG
.setRoot(BrCond
);
10113 if (TM
.getOptLevel() != CodeGenOpt::None
) {
10114 // Here, we order cases by probability so the most likely case will be
10115 // checked first. However, two clusters can have the same probability in
10116 // which case their relative ordering is non-deterministic. So we use Low
10117 // as a tie-breaker as clusters are guaranteed to never overlap.
10118 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
10119 [](const CaseCluster
&a
, const CaseCluster
&b
) {
10120 return a
.Prob
!= b
.Prob
?
10122 a
.Low
->getValue().slt(b
.Low
->getValue());
10125 // Rearrange the case blocks so that the last one falls through if possible
10126 // without changing the order of probabilities.
10127 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
; ) {
10129 if (I
->Prob
> W
.LastCluster
->Prob
)
10131 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
10132 std::swap(*I
, *W
.LastCluster
);
10138 // Compute total probability.
10139 BranchProbability DefaultProb
= W
.DefaultProb
;
10140 BranchProbability UnhandledProbs
= DefaultProb
;
10141 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
10142 UnhandledProbs
+= I
->Prob
;
10144 MachineBasicBlock
*CurMBB
= W
.MBB
;
10145 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
10146 bool FallthroughUnreachable
= false;
10147 MachineBasicBlock
*Fallthrough
;
10148 if (I
== W
.LastCluster
) {
10149 // For the last cluster, fall through to the default destination.
10150 Fallthrough
= DefaultMBB
;
10151 FallthroughUnreachable
= isa
<UnreachableInst
>(
10152 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
10154 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
10155 CurMF
->insert(BBI
, Fallthrough
);
10156 // Put Cond in a virtual register to make it available from the new blocks.
10157 ExportFromCurrentBlock(Cond
);
10159 UnhandledProbs
-= I
->Prob
;
10162 case CC_JumpTable
: {
10163 // FIXME: Optimize away range check based on pivot comparisons.
10164 JumpTableHeader
*JTH
= &SL
->JTCases
[I
->JTCasesIndex
].first
;
10165 SwitchCG::JumpTable
*JT
= &SL
->JTCases
[I
->JTCasesIndex
].second
;
10167 // The jump block hasn't been inserted yet; insert it here.
10168 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
10169 CurMF
->insert(BBI
, JumpMBB
);
10171 auto JumpProb
= I
->Prob
;
10172 auto FallthroughProb
= UnhandledProbs
;
10174 // If the default statement is a target of the jump table, we evenly
10175 // distribute the default probability to successors of CurMBB. Also
10176 // update the probability on the edge from JumpMBB to Fallthrough.
10177 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
10178 SE
= JumpMBB
->succ_end();
10180 if (*SI
== DefaultMBB
) {
10181 JumpProb
+= DefaultProb
/ 2;
10182 FallthroughProb
-= DefaultProb
/ 2;
10183 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
10184 JumpMBB
->normalizeSuccProbs();
10189 if (FallthroughUnreachable
) {
10190 // Skip the range check if the fallthrough block is unreachable.
10191 JTH
->OmitRangeCheck
= true;
10194 if (!JTH
->OmitRangeCheck
)
10195 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
10196 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
10197 CurMBB
->normalizeSuccProbs();
10199 // The jump table header will be inserted in our current block, do the
10200 // range check, and fall through to our fallthrough block.
10201 JTH
->HeaderBB
= CurMBB
;
10202 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
10204 // If we're in the right place, emit the jump table header right now.
10205 if (CurMBB
== SwitchMBB
) {
10206 visitJumpTableHeader(*JT
, *JTH
, SwitchMBB
);
10207 JTH
->Emitted
= true;
10211 case CC_BitTests
: {
10212 // FIXME: If Fallthrough is unreachable, skip the range check.
10214 // FIXME: Optimize away range check based on pivot comparisons.
10215 BitTestBlock
*BTB
= &SL
->BitTestCases
[I
->BTCasesIndex
];
10217 // The bit test blocks haven't been inserted yet; insert them here.
10218 for (BitTestCase
&BTC
: BTB
->Cases
)
10219 CurMF
->insert(BBI
, BTC
.ThisBB
);
10221 // Fill in fields of the BitTestBlock.
10222 BTB
->Parent
= CurMBB
;
10223 BTB
->Default
= Fallthrough
;
10225 BTB
->DefaultProb
= UnhandledProbs
;
10226 // If the cases in bit test don't form a contiguous range, we evenly
10227 // distribute the probability on the edge to Fallthrough to two
10228 // successors of CurMBB.
10229 if (!BTB
->ContiguousRange
) {
10230 BTB
->Prob
+= DefaultProb
/ 2;
10231 BTB
->DefaultProb
-= DefaultProb
/ 2;
10234 // If we're in the right place, emit the bit test header right now.
10235 if (CurMBB
== SwitchMBB
) {
10236 visitBitTestHeader(*BTB
, SwitchMBB
);
10237 BTB
->Emitted
= true;
10242 const Value
*RHS
, *LHS
, *MHS
;
10244 if (I
->Low
== I
->High
) {
10245 // Check Cond == I->Low.
10251 // Check I->Low <= Cond <= I->High.
10258 // If Fallthrough is unreachable, fold away the comparison.
10259 if (FallthroughUnreachable
)
10262 // The false probability is the sum of all unhandled cases.
10263 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
, CurMBB
,
10264 getCurSDLoc(), I
->Prob
, UnhandledProbs
);
10266 if (CurMBB
== SwitchMBB
)
10267 visitSwitchCase(CB
, SwitchMBB
);
10269 SL
->SwitchCases
.push_back(CB
);
10274 CurMBB
= Fallthrough
;
10278 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster
&CC
,
10279 CaseClusterIt First
,
10280 CaseClusterIt Last
) {
10281 return std::count_if(First
, Last
+ 1, [&](const CaseCluster
&X
) {
10282 if (X
.Prob
!= CC
.Prob
)
10283 return X
.Prob
> CC
.Prob
;
10285 // Ties are broken by comparing the case value.
10286 return X
.Low
->getValue().slt(CC
.Low
->getValue());
10290 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList
&WorkList
,
10291 const SwitchWorkListItem
&W
,
10293 MachineBasicBlock
*SwitchMBB
) {
10294 assert(W
.FirstCluster
->Low
->getValue().slt(W
.LastCluster
->Low
->getValue()) &&
10295 "Clusters not sorted?");
10297 assert(W
.LastCluster
- W
.FirstCluster
+ 1 >= 2 && "Too small to split!");
10299 // Balance the tree based on branch probabilities to create a near-optimal (in
10300 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10301 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10302 CaseClusterIt LastLeft
= W
.FirstCluster
;
10303 CaseClusterIt FirstRight
= W
.LastCluster
;
10304 auto LeftProb
= LastLeft
->Prob
+ W
.DefaultProb
/ 2;
10305 auto RightProb
= FirstRight
->Prob
+ W
.DefaultProb
/ 2;
10307 // Move LastLeft and FirstRight towards each other from opposite directions to
10308 // find a partitioning of the clusters which balances the probability on both
10309 // sides. If LeftProb and RightProb are equal, alternate which side is
10310 // taken to ensure 0-probability nodes are distributed evenly.
10312 while (LastLeft
+ 1 < FirstRight
) {
10313 if (LeftProb
< RightProb
|| (LeftProb
== RightProb
&& (I
& 1)))
10314 LeftProb
+= (++LastLeft
)->Prob
;
10316 RightProb
+= (--FirstRight
)->Prob
;
10321 // Our binary search tree differs from a typical BST in that ours can have up
10322 // to three values in each leaf. The pivot selection above doesn't take that
10323 // into account, which means the tree might require more nodes and be less
10324 // efficient. We compensate for this here.
10326 unsigned NumLeft
= LastLeft
- W
.FirstCluster
+ 1;
10327 unsigned NumRight
= W
.LastCluster
- FirstRight
+ 1;
10329 if (std::min(NumLeft
, NumRight
) < 3 && std::max(NumLeft
, NumRight
) > 3) {
10330 // If one side has less than 3 clusters, and the other has more than 3,
10331 // consider taking a cluster from the other side.
10333 if (NumLeft
< NumRight
) {
10334 // Consider moving the first cluster on the right to the left side.
10335 CaseCluster
&CC
= *FirstRight
;
10336 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10337 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10338 if (LeftSideRank
<= RightSideRank
) {
10339 // Moving the cluster to the left does not demote it.
10345 assert(NumRight
< NumLeft
);
10346 // Consider moving the last element on the left to the right side.
10347 CaseCluster
&CC
= *LastLeft
;
10348 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10349 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10350 if (RightSideRank
<= LeftSideRank
) {
10351 // Moving the cluster to the right does not demot it.
10361 assert(LastLeft
+ 1 == FirstRight
);
10362 assert(LastLeft
>= W
.FirstCluster
);
10363 assert(FirstRight
<= W
.LastCluster
);
10365 // Use the first element on the right as pivot since we will make less-than
10366 // comparisons against it.
10367 CaseClusterIt PivotCluster
= FirstRight
;
10368 assert(PivotCluster
> W
.FirstCluster
);
10369 assert(PivotCluster
<= W
.LastCluster
);
10371 CaseClusterIt FirstLeft
= W
.FirstCluster
;
10372 CaseClusterIt LastRight
= W
.LastCluster
;
10374 const ConstantInt
*Pivot
= PivotCluster
->Low
;
10376 // New blocks will be inserted immediately after the current one.
10377 MachineFunction::iterator
BBI(W
.MBB
);
10380 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10381 // we can branch to its destination directly if it's squeezed exactly in
10382 // between the known lower bound and Pivot - 1.
10383 MachineBasicBlock
*LeftMBB
;
10384 if (FirstLeft
== LastLeft
&& FirstLeft
->Kind
== CC_Range
&&
10385 FirstLeft
->Low
== W
.GE
&&
10386 (FirstLeft
->High
->getValue() + 1LL) == Pivot
->getValue()) {
10387 LeftMBB
= FirstLeft
->MBB
;
10389 LeftMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10390 FuncInfo
.MF
->insert(BBI
, LeftMBB
);
10391 WorkList
.push_back(
10392 {LeftMBB
, FirstLeft
, LastLeft
, W
.GE
, Pivot
, W
.DefaultProb
/ 2});
10393 // Put Cond in a virtual register to make it available from the new blocks.
10394 ExportFromCurrentBlock(Cond
);
10397 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10398 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10399 // directly if RHS.High equals the current upper bound.
10400 MachineBasicBlock
*RightMBB
;
10401 if (FirstRight
== LastRight
&& FirstRight
->Kind
== CC_Range
&&
10402 W
.LT
&& (FirstRight
->High
->getValue() + 1ULL) == W
.LT
->getValue()) {
10403 RightMBB
= FirstRight
->MBB
;
10405 RightMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10406 FuncInfo
.MF
->insert(BBI
, RightMBB
);
10407 WorkList
.push_back(
10408 {RightMBB
, FirstRight
, LastRight
, Pivot
, W
.LT
, W
.DefaultProb
/ 2});
10409 // Put Cond in a virtual register to make it available from the new blocks.
10410 ExportFromCurrentBlock(Cond
);
10413 // Create the CaseBlock record that will be used to lower the branch.
10414 CaseBlock
CB(ISD::SETLT
, Cond
, Pivot
, nullptr, LeftMBB
, RightMBB
, W
.MBB
,
10415 getCurSDLoc(), LeftProb
, RightProb
);
10417 if (W
.MBB
== SwitchMBB
)
10418 visitSwitchCase(CB
, SwitchMBB
);
10420 SL
->SwitchCases
.push_back(CB
);
10423 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10424 // from the swith statement.
10425 static BranchProbability
scaleCaseProbality(BranchProbability CaseProb
,
10426 BranchProbability PeeledCaseProb
) {
10427 if (PeeledCaseProb
== BranchProbability::getOne())
10428 return BranchProbability::getZero();
10429 BranchProbability SwitchProb
= PeeledCaseProb
.getCompl();
10431 uint32_t Numerator
= CaseProb
.getNumerator();
10432 uint32_t Denominator
= SwitchProb
.scale(CaseProb
.getDenominator());
10433 return BranchProbability(Numerator
, std::max(Numerator
, Denominator
));
10436 // Try to peel the top probability case if it exceeds the threshold.
10437 // Return current MachineBasicBlock for the switch statement if the peeling
10439 // If the peeling is performed, return the newly created MachineBasicBlock
10440 // for the peeled switch statement. Also update Clusters to remove the peeled
10441 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10442 MachineBasicBlock
*SelectionDAGBuilder::peelDominantCaseCluster(
10443 const SwitchInst
&SI
, CaseClusterVector
&Clusters
,
10444 BranchProbability
&PeeledCaseProb
) {
10445 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10446 // Don't perform if there is only one cluster or optimizing for size.
10447 if (SwitchPeelThreshold
> 100 || !FuncInfo
.BPI
|| Clusters
.size() < 2 ||
10448 TM
.getOptLevel() == CodeGenOpt::None
||
10449 SwitchMBB
->getParent()->getFunction().hasMinSize())
10452 BranchProbability TopCaseProb
= BranchProbability(SwitchPeelThreshold
, 100);
10453 unsigned PeeledCaseIndex
= 0;
10454 bool SwitchPeeled
= false;
10455 for (unsigned Index
= 0; Index
< Clusters
.size(); ++Index
) {
10456 CaseCluster
&CC
= Clusters
[Index
];
10457 if (CC
.Prob
< TopCaseProb
)
10459 TopCaseProb
= CC
.Prob
;
10460 PeeledCaseIndex
= Index
;
10461 SwitchPeeled
= true;
10466 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10467 << TopCaseProb
<< "\n");
10469 // Record the MBB for the peeled switch statement.
10470 MachineFunction::iterator
BBI(SwitchMBB
);
10472 MachineBasicBlock
*PeeledSwitchMBB
=
10473 FuncInfo
.MF
->CreateMachineBasicBlock(SwitchMBB
->getBasicBlock());
10474 FuncInfo
.MF
->insert(BBI
, PeeledSwitchMBB
);
10476 ExportFromCurrentBlock(SI
.getCondition());
10477 auto PeeledCaseIt
= Clusters
.begin() + PeeledCaseIndex
;
10478 SwitchWorkListItem W
= {SwitchMBB
, PeeledCaseIt
, PeeledCaseIt
,
10479 nullptr, nullptr, TopCaseProb
.getCompl()};
10480 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, PeeledSwitchMBB
);
10482 Clusters
.erase(PeeledCaseIt
);
10483 for (CaseCluster
&CC
: Clusters
) {
10485 dbgs() << "Scale the probablity for one cluster, before scaling: "
10486 << CC
.Prob
<< "\n");
10487 CC
.Prob
= scaleCaseProbality(CC
.Prob
, TopCaseProb
);
10488 LLVM_DEBUG(dbgs() << "After scaling: " << CC
.Prob
<< "\n");
10490 PeeledCaseProb
= TopCaseProb
;
10491 return PeeledSwitchMBB
;
10494 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
10495 // Extract cases from the switch.
10496 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10497 CaseClusterVector Clusters
;
10498 Clusters
.reserve(SI
.getNumCases());
10499 for (auto I
: SI
.cases()) {
10500 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[I
.getCaseSuccessor()];
10501 const ConstantInt
*CaseVal
= I
.getCaseValue();
10502 BranchProbability Prob
=
10503 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
10504 : BranchProbability(1, SI
.getNumCases() + 1);
10505 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
10508 MachineBasicBlock
*DefaultMBB
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
10510 // Cluster adjacent cases with the same destination. We do this at all
10511 // optimization levels because it's cheap to do and will make codegen faster
10512 // if there are many clusters.
10513 sortAndRangeify(Clusters
);
10515 // The branch probablity of the peeled case.
10516 BranchProbability PeeledCaseProb
= BranchProbability::getZero();
10517 MachineBasicBlock
*PeeledSwitchMBB
=
10518 peelDominantCaseCluster(SI
, Clusters
, PeeledCaseProb
);
10520 // If there is only the default destination, jump there directly.
10521 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10522 if (Clusters
.empty()) {
10523 assert(PeeledSwitchMBB
== SwitchMBB
);
10524 SwitchMBB
->addSuccessor(DefaultMBB
);
10525 if (DefaultMBB
!= NextBlock(SwitchMBB
)) {
10526 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
10527 getControlRoot(), DAG
.getBasicBlock(DefaultMBB
)));
10532 SL
->findJumpTables(Clusters
, &SI
, DefaultMBB
);
10533 SL
->findBitTestClusters(Clusters
, &SI
);
10536 dbgs() << "Case clusters: ";
10537 for (const CaseCluster
&C
: Clusters
) {
10538 if (C
.Kind
== CC_JumpTable
)
10540 if (C
.Kind
== CC_BitTests
)
10543 C
.Low
->getValue().print(dbgs(), true);
10544 if (C
.Low
!= C
.High
) {
10546 C
.High
->getValue().print(dbgs(), true);
10553 assert(!Clusters
.empty());
10554 SwitchWorkList WorkList
;
10555 CaseClusterIt First
= Clusters
.begin();
10556 CaseClusterIt Last
= Clusters
.end() - 1;
10557 auto DefaultProb
= getEdgeProbability(PeeledSwitchMBB
, DefaultMBB
);
10558 // Scale the branchprobability for DefaultMBB if the peel occurs and
10559 // DefaultMBB is not replaced.
10560 if (PeeledCaseProb
!= BranchProbability::getZero() &&
10561 DefaultMBB
== FuncInfo
.MBBMap
[SI
.getDefaultDest()])
10562 DefaultProb
= scaleCaseProbality(DefaultProb
, PeeledCaseProb
);
10563 WorkList
.push_back(
10564 {PeeledSwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
10566 while (!WorkList
.empty()) {
10567 SwitchWorkListItem W
= WorkList
.back();
10568 WorkList
.pop_back();
10569 unsigned NumClusters
= W
.LastCluster
- W
.FirstCluster
+ 1;
10571 if (NumClusters
> 3 && TM
.getOptLevel() != CodeGenOpt::None
&&
10572 !DefaultMBB
->getParent()->getFunction().hasMinSize()) {
10573 // For optimized builds, lower large range as a balanced binary tree.
10574 splitWorkItem(WorkList
, W
, SI
.getCondition(), SwitchMBB
);
10578 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
);