1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine
&tm
)
39 : TargetLoweringBase(tm
) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG
&DAG
, SDNode
*Node
,
52 SDValue
&Chain
) const {
53 const Function
&F
= DAG
.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
58 AttributeList CallerAttrs
= F
.getAttributes();
59 if (AttrBuilder(CallerAttrs
, AttributeList::ReturnIndex
)
60 .removeAttribute(Attribute::NoAlias
)
61 .removeAttribute(Attribute::NonNull
)
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::ZExt
) ||
67 CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::SExt
))
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node
, Chain
);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo
&MRI
,
75 const uint32_t *CallerPreservedMask
,
76 const SmallVectorImpl
<CCValAssign
> &ArgLocs
,
77 const SmallVectorImpl
<SDValue
> &OutVals
) const {
78 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
79 const CCValAssign
&ArgLoc
= ArgLocs
[I
];
80 if (!ArgLoc
.isRegLoc())
82 Register Reg
= ArgLoc
.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask
, Reg
))
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value
= OutVals
[I
];
90 if (Value
->getOpcode() != ISD::CopyFromReg
)
92 unsigned ArgReg
= cast
<RegisterSDNode
>(Value
->getOperand(1))->getReg();
93 if (MRI
.getLiveInPhysReg(ArgReg
) != Reg
)
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase
*Call
,
103 IsSExt
= Call
->paramHasAttr(ArgIdx
, Attribute::SExt
);
104 IsZExt
= Call
->paramHasAttr(ArgIdx
, Attribute::ZExt
);
105 IsInReg
= Call
->paramHasAttr(ArgIdx
, Attribute::InReg
);
106 IsSRet
= Call
->paramHasAttr(ArgIdx
, Attribute::StructRet
);
107 IsNest
= Call
->paramHasAttr(ArgIdx
, Attribute::Nest
);
108 IsByVal
= Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
);
109 IsInAlloca
= Call
->paramHasAttr(ArgIdx
, Attribute::InAlloca
);
110 IsReturned
= Call
->paramHasAttr(ArgIdx
, Attribute::Returned
);
111 IsSwiftSelf
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftSelf
);
112 IsSwiftError
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftError
);
113 Alignment
= Call
->getParamAlignment(ArgIdx
);
115 if (Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
))
116 ByValType
= Call
->getParamByValType(ArgIdx
);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair
<SDValue
, SDValue
>
122 TargetLowering::makeLibCall(SelectionDAG
&DAG
, RTLIB::Libcall LC
, EVT RetVT
,
123 ArrayRef
<SDValue
> Ops
,
124 MakeLibCallOptions CallOptions
,
125 const SDLoc
&dl
) const {
126 TargetLowering::ArgListTy Args
;
127 Args
.reserve(Ops
.size());
129 TargetLowering::ArgListEntry Entry
;
130 for (unsigned i
= 0; i
< Ops
.size(); ++i
) {
131 SDValue NewOp
= Ops
[i
];
133 Entry
.Ty
= Entry
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
134 Entry
.IsSExt
= shouldSignExtendTypeInLibCall(NewOp
.getValueType(),
136 Entry
.IsZExt
= !Entry
.IsSExt
;
138 if (CallOptions
.IsSoften
&&
139 !shouldExtendTypeInLibCall(CallOptions
.OpsVTBeforeSoften
[i
])) {
140 Entry
.IsSExt
= Entry
.IsZExt
= false;
142 Args
.push_back(Entry
);
145 if (LC
== RTLIB::UNKNOWN_LIBCALL
)
146 report_fatal_error("Unsupported library call operation!");
147 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
148 getPointerTy(DAG
.getDataLayout()));
150 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
151 TargetLowering::CallLoweringInfo
CLI(DAG
);
152 bool signExtend
= shouldSignExtendTypeInLibCall(RetVT
, CallOptions
.IsSExt
);
153 bool zeroExtend
= !signExtend
;
155 if (CallOptions
.IsSoften
&&
156 !shouldExtendTypeInLibCall(CallOptions
.RetVTBeforeSoften
)) {
157 signExtend
= zeroExtend
= false;
161 .setChain(DAG
.getEntryNode())
162 .setLibCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
163 .setNoReturn(CallOptions
.DoesNotReturn
)
164 .setDiscardResult(!CallOptions
.IsReturnValueUsed
)
165 .setIsPostTypeLegalization(CallOptions
.IsPostTypeLegalization
)
166 .setSExtResult(signExtend
)
167 .setZExtResult(zeroExtend
);
168 return LowerCallTo(CLI
);
172 TargetLowering::findOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
173 unsigned Limit
, uint64_t Size
,
174 unsigned DstAlign
, unsigned SrcAlign
,
179 unsigned DstAS
, unsigned SrcAS
,
180 const AttributeList
&FuncAttributes
) const {
181 // If 'SrcAlign' is zero, that means the memory operation does not need to
182 // load the value, i.e. memset or memcpy from constant string. Otherwise,
183 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184 // is the specified alignment of the memory operation. If it is zero, that
185 // means it's possible to change the alignment of the destination.
186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187 // not need to be loaded.
188 if (!(SrcAlign
== 0 || SrcAlign
>= DstAlign
))
191 EVT VT
= getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
192 IsMemset
, ZeroMemset
, MemcpyStrSrc
,
195 if (VT
== MVT::Other
) {
196 // Use the largest integer type whose alignment constraints are satisfied.
197 // We only need to check DstAlign here as SrcAlign is always greater or
198 // equal to DstAlign (or zero).
200 while (DstAlign
&& DstAlign
< VT
.getSizeInBits() / 8 &&
201 !allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
))
202 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
203 assert(VT
.isInteger());
205 // Find the largest legal integer type.
207 while (!isTypeLegal(LVT
))
208 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
209 assert(LVT
.isInteger());
211 // If the type we've chosen is larger than the largest legal integer type
212 // then use that instead.
217 unsigned NumMemOps
= 0;
219 unsigned VTSize
= VT
.getSizeInBits() / 8;
220 while (VTSize
> Size
) {
221 // For now, only use non-vector load / store's for the left-over pieces.
226 if (VT
.isVector() || VT
.isFloatingPoint()) {
227 NewVT
= (VT
.getSizeInBits() > 64) ? MVT::i64
: MVT::i32
;
228 if (isOperationLegalOrCustom(ISD::STORE
, NewVT
) &&
229 isSafeMemOpType(NewVT
.getSimpleVT()))
231 else if (NewVT
== MVT::i64
&&
232 isOperationLegalOrCustom(ISD::STORE
, MVT::f64
) &&
233 isSafeMemOpType(MVT::f64
)) {
234 // i64 is usually not legal on 32-bit targets, but f64 may be.
242 NewVT
= (MVT::SimpleValueType
)(NewVT
.getSimpleVT().SimpleTy
- 1);
243 if (NewVT
== MVT::i8
)
245 } while (!isSafeMemOpType(NewVT
.getSimpleVT()));
247 NewVTSize
= NewVT
.getSizeInBits() / 8;
249 // If the new VT cannot cover all of the remaining bits, then consider
250 // issuing a (or a pair of) unaligned and overlapping load / store.
252 if (NumMemOps
&& AllowOverlap
&& NewVTSize
< Size
&&
253 allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
,
254 MachineMemOperand::MONone
, &Fast
) &&
263 if (++NumMemOps
> Limit
)
266 MemOps
.push_back(VT
);
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG
&DAG
, EVT VT
,
276 SDValue
&NewLHS
, SDValue
&NewRHS
,
277 ISD::CondCode
&CCCode
,
278 const SDLoc
&dl
, const SDValue OldLHS
,
279 const SDValue OldRHS
) const {
280 assert((VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
|| VT
== MVT::ppcf128
)
281 && "Unsupported setcc type!");
283 // Expand into one or more soft-fp libcall(s).
284 RTLIB::Libcall LC1
= RTLIB::UNKNOWN_LIBCALL
, LC2
= RTLIB::UNKNOWN_LIBCALL
;
285 bool ShouldInvertCC
= false;
289 LC1
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
290 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
291 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
295 LC1
= (VT
== MVT::f32
) ? RTLIB::UNE_F32
:
296 (VT
== MVT::f64
) ? RTLIB::UNE_F64
:
297 (VT
== MVT::f128
) ? RTLIB::UNE_F128
: RTLIB::UNE_PPCF128
;
301 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
302 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
303 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
307 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
308 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
309 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
313 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
314 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
315 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
319 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
320 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
321 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
324 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
325 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
326 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
329 LC1
= (VT
== MVT::f32
) ? RTLIB::O_F32
:
330 (VT
== MVT::f64
) ? RTLIB::O_F64
:
331 (VT
== MVT::f128
) ? RTLIB::O_F128
: RTLIB::O_PPCF128
;
334 // SETONE = SETOLT | SETOGT
335 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
336 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
337 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
338 LC2
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
339 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
340 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
343 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
344 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
345 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
346 LC2
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
347 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
348 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
351 // Invert CC for unordered comparisons
352 ShouldInvertCC
= true;
355 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
356 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
357 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
360 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
361 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
362 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
365 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
366 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
367 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
370 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
371 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
372 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
374 default: llvm_unreachable("Do not know how to soften this setcc!");
378 // Use the target specific return value for comparions lib calls.
379 EVT RetVT
= getCmpLibcallReturnType();
380 SDValue Ops
[2] = {NewLHS
, NewRHS
};
381 TargetLowering::MakeLibCallOptions CallOptions
;
382 EVT OpsVT
[2] = { OldLHS
.getValueType(),
383 OldRHS
.getValueType() };
384 CallOptions
.setTypeListBeforeSoften(OpsVT
, RetVT
, true);
385 NewLHS
= makeLibCall(DAG
, LC1
, RetVT
, Ops
, CallOptions
, dl
).first
;
386 NewRHS
= DAG
.getConstant(0, dl
, RetVT
);
388 CCCode
= getCmpLibcallCC(LC1
);
390 CCCode
= getSetCCInverse(CCCode
, /*isInteger=*/true);
392 if (LC2
!= RTLIB::UNKNOWN_LIBCALL
) {
393 SDValue Tmp
= DAG
.getNode(
395 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
396 NewLHS
, NewRHS
, DAG
.getCondCode(CCCode
));
397 NewLHS
= makeLibCall(DAG
, LC2
, RetVT
, Ops
, CallOptions
, dl
).first
;
398 NewLHS
= DAG
.getNode(
400 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
401 NewLHS
, NewRHS
, DAG
.getCondCode(getCmpLibcallCC(LC2
)));
402 NewLHS
= DAG
.getNode(ISD::OR
, dl
, Tmp
.getValueType(), Tmp
, NewLHS
);
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410 // In non-pic modes, just use the address of a block.
411 if (!isPositionIndependent())
412 return MachineJumpTableInfo::EK_BlockAddress
;
414 // In PIC mode, if the target supports a GPRel32 directive, use it.
415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
418 // Otherwise, use a label difference.
419 return MachineJumpTableInfo::EK_LabelDifference32
;
422 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
423 SelectionDAG
&DAG
) const {
424 // If our PIC model is GP relative, use the global offset table as the base.
425 unsigned JTEncoding
= getJumpTableEncoding();
427 if ((JTEncoding
== MachineJumpTableInfo::EK_GPRel64BlockAddress
) ||
428 (JTEncoding
== MachineJumpTableInfo::EK_GPRel32BlockAddress
))
429 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG
.getDataLayout()));
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
438 unsigned JTI
,MCContext
&Ctx
) const{
439 // The normal PIC reloc base is the label at the start of the jump table.
440 return MCSymbolRefExpr::create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
445 const TargetMachine
&TM
= getTargetMachine();
446 const GlobalValue
*GV
= GA
->getGlobal();
448 // If the address is not even local to this DSO we will have to load it from
449 // a got and then add the offset.
450 if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
453 // If the code is position independent we will have to add a base register.
454 if (isPositionIndependent())
457 // Otherwise we can do it.
461 //===----------------------------------------------------------------------===//
462 // Optimization Methods
463 //===----------------------------------------------------------------------===//
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
469 TargetLoweringOpt
&TLO
) const {
471 unsigned Opcode
= Op
.getOpcode();
473 // Do target-specific constant optimization.
474 if (targetShrinkDemandedConstant(Op
, Demanded
, TLO
))
475 return TLO
.New
.getNode();
477 // FIXME: ISD::SELECT, ISD::SELECT_CC
484 auto *Op1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
488 // If this is a 'not' op, don't touch it because that's a canonical form.
489 const APInt
&C
= Op1C
->getAPIntValue();
490 if (Opcode
== ISD::XOR
&& Demanded
.isSubsetOf(C
))
493 if (!C
.isSubsetOf(Demanded
)) {
494 EVT VT
= Op
.getValueType();
495 SDValue NewC
= TLO
.DAG
.getConstant(Demanded
& C
, DL
, VT
);
496 SDValue NewOp
= TLO
.DAG
.getNode(Opcode
, DL
, VT
, Op
.getOperand(0), NewC
);
497 return TLO
.CombineTo(Op
, NewOp
);
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op
, unsigned BitWidth
,
511 const APInt
&Demanded
,
512 TargetLoweringOpt
&TLO
) const {
513 assert(Op
.getNumOperands() == 2 &&
514 "ShrinkDemandedOp only supports binary operators!");
515 assert(Op
.getNode()->getNumValues() == 1 &&
516 "ShrinkDemandedOp only supports nodes with one result!");
518 SelectionDAG
&DAG
= TLO
.DAG
;
521 // Early return, as this function cannot handle vector types.
522 if (Op
.getValueType().isVector())
525 // Don't do this if the node has another user, which may require the
527 if (!Op
.getNode()->hasOneUse())
530 // Search for the smallest integer type with free casts to and from
531 // Op's type. For expedience, just check power-of-2 integer types.
532 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
533 unsigned DemandedSize
= Demanded
.getActiveBits();
534 unsigned SmallVTBits
= DemandedSize
;
535 if (!isPowerOf2_32(SmallVTBits
))
536 SmallVTBits
= NextPowerOf2(SmallVTBits
);
537 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
538 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
539 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
540 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
541 // We found a type with free casts.
542 SDValue X
= DAG
.getNode(
543 Op
.getOpcode(), dl
, SmallVT
,
544 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(0)),
545 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(1)));
546 assert(DemandedSize
<= SmallVTBits
&& "Narrowed below demanded bits?");
547 SDValue Z
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), X
);
548 return TLO
.CombineTo(Op
, Z
);
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
555 DAGCombinerInfo
&DCI
) const {
556 SelectionDAG
&DAG
= DCI
.DAG
;
557 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
558 !DCI
.isBeforeLegalizeOps());
561 bool Simplified
= SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
);
563 DCI
.AddToWorklist(Op
.getNode());
564 DCI
.CommitTargetLoweringOpt(TLO
);
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
571 TargetLoweringOpt
&TLO
,
573 bool AssumeSingleUse
) const {
574 EVT VT
= Op
.getValueType();
575 APInt DemandedElts
= VT
.isVector()
576 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
578 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, Depth
,
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue
TargetLowering::SimplifyMultipleUseDemandedBits(
585 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
586 SelectionDAG
&DAG
, unsigned Depth
) const {
587 // Limit search depth.
595 // Not demanding any bits/elts from Op.
596 if (DemandedBits
== 0 || DemandedElts
== 0)
597 return DAG
.getUNDEF(Op
.getValueType());
599 unsigned NumElts
= DemandedElts
.getBitWidth();
600 KnownBits LHSKnown
, RHSKnown
;
601 switch (Op
.getOpcode()) {
603 SDValue Src
= peekThroughBitcasts(Op
.getOperand(0));
604 EVT SrcVT
= Src
.getValueType();
605 EVT DstVT
= Op
.getValueType();
606 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
607 unsigned NumDstEltBits
= DstVT
.getScalarSizeInBits();
609 if (NumSrcEltBits
== NumDstEltBits
)
610 if (SDValue V
= SimplifyMultipleUseDemandedBits(
611 Src
, DemandedBits
, DemandedElts
, DAG
, Depth
+ 1))
612 return DAG
.getBitcast(DstVT
, V
);
614 // TODO - bigendian once we have test coverage.
615 if (SrcVT
.isVector() && (NumDstEltBits
% NumSrcEltBits
) == 0 &&
616 DAG
.getDataLayout().isLittleEndian()) {
617 unsigned Scale
= NumDstEltBits
/ NumSrcEltBits
;
618 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
619 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
620 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
621 for (unsigned i
= 0; i
!= Scale
; ++i
) {
622 unsigned Offset
= i
* NumSrcEltBits
;
623 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
624 if (!Sub
.isNullValue()) {
625 DemandedSrcBits
|= Sub
;
626 for (unsigned j
= 0; j
!= NumElts
; ++j
)
628 DemandedSrcElts
.setBit((j
* Scale
) + i
);
632 if (SDValue V
= SimplifyMultipleUseDemandedBits(
633 Src
, DemandedSrcBits
, DemandedSrcElts
, DAG
, Depth
+ 1))
634 return DAG
.getBitcast(DstVT
, V
);
637 // TODO - bigendian once we have test coverage.
638 if ((NumSrcEltBits
% NumDstEltBits
) == 0 &&
639 DAG
.getDataLayout().isLittleEndian()) {
640 unsigned Scale
= NumSrcEltBits
/ NumDstEltBits
;
641 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
642 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
643 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
644 for (unsigned i
= 0; i
!= NumElts
; ++i
)
645 if (DemandedElts
[i
]) {
646 unsigned Offset
= (i
% Scale
) * NumDstEltBits
;
647 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
648 DemandedSrcElts
.setBit(i
/ Scale
);
651 if (SDValue V
= SimplifyMultipleUseDemandedBits(
652 Src
, DemandedSrcBits
, DemandedSrcElts
, DAG
, Depth
+ 1))
653 return DAG
.getBitcast(DstVT
, V
);
659 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
660 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
662 // If all of the demanded bits are known 1 on one side, return the other.
663 // These bits cannot contribute to the result of the 'and' in this
665 if (DemandedBits
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
666 return Op
.getOperand(0);
667 if (DemandedBits
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
668 return Op
.getOperand(1);
672 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
673 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
675 // If all of the demanded bits are known zero on one side, return the
676 // other. These bits cannot contribute to the result of the 'or' in this
678 if (DemandedBits
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
679 return Op
.getOperand(0);
680 if (DemandedBits
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
681 return Op
.getOperand(1);
685 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
686 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
688 // If all of the demanded bits are known zero on one side, return the
690 if (DemandedBits
.isSubsetOf(RHSKnown
.Zero
))
691 return Op
.getOperand(0);
692 if (DemandedBits
.isSubsetOf(LHSKnown
.Zero
))
693 return Op
.getOperand(1);
696 case ISD::SIGN_EXTEND_INREG
: {
697 // If none of the extended bits are demanded, eliminate the sextinreg.
698 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
699 if (DemandedBits
.getActiveBits() <= ExVT
.getScalarSizeInBits())
700 return Op
.getOperand(0);
703 case ISD::INSERT_VECTOR_ELT
: {
704 // If we don't demand the inserted element, return the base vector.
705 SDValue Vec
= Op
.getOperand(0);
706 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
707 EVT VecVT
= Vec
.getValueType();
708 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements()) &&
709 !DemandedElts
[CIdx
->getZExtValue()])
713 case ISD::VECTOR_SHUFFLE
: {
714 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
716 // If all the demanded elts are from one operand and are inline,
717 // then we can use the operand directly.
718 bool AllUndef
= true, IdentityLHS
= true, IdentityRHS
= true;
719 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
720 int M
= ShuffleMask
[i
];
721 if (M
< 0 || !DemandedElts
[i
])
724 IdentityLHS
&= (M
== (int)i
);
725 IdentityRHS
&= ((M
- NumElts
) == i
);
729 return DAG
.getUNDEF(Op
.getValueType());
731 return Op
.getOperand(0);
733 return Op
.getOperand(1);
737 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
)
738 if (SDValue V
= SimplifyMultipleUseDemandedBitsForTargetNode(
739 Op
, DemandedBits
, DemandedElts
, DAG
, Depth
))
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller). The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754 SDValue Op
, const APInt
&OriginalDemandedBits
,
755 const APInt
&OriginalDemandedElts
, KnownBits
&Known
, TargetLoweringOpt
&TLO
,
756 unsigned Depth
, bool AssumeSingleUse
) const {
757 unsigned BitWidth
= OriginalDemandedBits
.getBitWidth();
758 assert(Op
.getScalarValueSizeInBits() == BitWidth
&&
759 "Mask size mismatches value type size!");
761 unsigned NumElts
= OriginalDemandedElts
.getBitWidth();
762 assert((!Op
.getValueType().isVector() ||
763 NumElts
== Op
.getValueType().getVectorNumElements()) &&
764 "Unexpected vector size");
766 APInt DemandedBits
= OriginalDemandedBits
;
767 APInt DemandedElts
= OriginalDemandedElts
;
769 auto &DL
= TLO
.DAG
.getDataLayout();
771 // Don't know anything.
772 Known
= KnownBits(BitWidth
);
778 if (Op
.getOpcode() == ISD::Constant
) {
779 // We know all of the bits for a constant!
780 Known
.One
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
781 Known
.Zero
= ~Known
.One
;
785 // Other users may use these bits.
786 EVT VT
= Op
.getValueType();
787 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
) {
789 // If not at the root, Just compute the Known bits to
790 // simplify things downstream.
791 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedBits/Elts to all bits.
796 DemandedBits
= APInt::getAllOnesValue(BitWidth
);
797 DemandedElts
= APInt::getAllOnesValue(NumElts
);
798 } else if (OriginalDemandedBits
== 0 || OriginalDemandedElts
== 0) {
799 // Not demanding any bits/elts from Op.
800 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
801 } else if (Depth
>= 6) { // Limit search depth.
805 KnownBits Known2
, KnownOut
;
806 switch (Op
.getOpcode()) {
807 case ISD::SCALAR_TO_VECTOR
: {
808 if (!DemandedElts
[0])
809 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
812 SDValue Src
= Op
.getOperand(0);
813 unsigned SrcBitWidth
= Src
.getScalarValueSizeInBits();
814 APInt SrcDemandedBits
= DemandedBits
.zextOrSelf(SrcBitWidth
);
815 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, SrcKnown
, TLO
, Depth
+ 1))
817 Known
= SrcKnown
.zextOrTrunc(BitWidth
, false);
820 case ISD::BUILD_VECTOR
:
821 // Collect the known bits that are shared by every demanded element.
822 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
823 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
824 return false; // Don't fall through, will infinitely loop.
826 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
827 if (getTargetConstantFromLoad(LD
)) {
828 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
829 return false; // Don't fall through, will infinitely loop.
833 case ISD::INSERT_VECTOR_ELT
: {
834 SDValue Vec
= Op
.getOperand(0);
835 SDValue Scl
= Op
.getOperand(1);
836 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
837 EVT VecVT
= Vec
.getValueType();
839 // If index isn't constant, assume we need all vector elements AND the
841 APInt
DemandedVecElts(DemandedElts
);
842 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements())) {
843 unsigned Idx
= CIdx
->getZExtValue();
844 DemandedVecElts
.clearBit(Idx
);
846 // Inserted element is not required.
847 if (!DemandedElts
[Idx
])
848 return TLO
.CombineTo(Op
, Vec
);
852 unsigned NumSclBits
= Scl
.getScalarValueSizeInBits();
853 APInt DemandedSclBits
= DemandedBits
.zextOrTrunc(NumSclBits
);
854 if (SimplifyDemandedBits(Scl
, DemandedSclBits
, KnownScl
, TLO
, Depth
+ 1))
857 Known
= KnownScl
.zextOrTrunc(BitWidth
, false);
860 if (SimplifyDemandedBits(Vec
, DemandedBits
, DemandedVecElts
, KnownVec
, TLO
,
864 if (!!DemandedVecElts
) {
865 Known
.One
&= KnownVec
.One
;
866 Known
.Zero
&= KnownVec
.Zero
;
871 case ISD::INSERT_SUBVECTOR
: {
872 SDValue Base
= Op
.getOperand(0);
873 SDValue Sub
= Op
.getOperand(1);
874 EVT SubVT
= Sub
.getValueType();
875 unsigned NumSubElts
= SubVT
.getVectorNumElements();
877 // If index isn't constant, assume we need the original demanded base
878 // elements and ALL the inserted subvector elements.
879 APInt BaseElts
= DemandedElts
;
880 APInt SubElts
= APInt::getAllOnesValue(NumSubElts
);
881 if (isa
<ConstantSDNode
>(Op
.getOperand(2))) {
882 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
883 if (Idx
.ule(NumElts
- NumSubElts
)) {
884 unsigned SubIdx
= Idx
.getZExtValue();
885 SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
886 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
890 KnownBits KnownSub
, KnownBase
;
891 if (SimplifyDemandedBits(Sub
, DemandedBits
, SubElts
, KnownSub
, TLO
,
894 if (SimplifyDemandedBits(Base
, DemandedBits
, BaseElts
, KnownBase
, TLO
,
898 Known
.Zero
.setAllBits();
899 Known
.One
.setAllBits();
901 Known
.One
&= KnownSub
.One
;
902 Known
.Zero
&= KnownSub
.Zero
;
905 Known
.One
&= KnownBase
.One
;
906 Known
.Zero
&= KnownBase
.Zero
;
910 case ISD::EXTRACT_SUBVECTOR
: {
911 // If index isn't constant, assume we need all the source vector elements.
912 SDValue Src
= Op
.getOperand(0);
913 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
914 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
915 APInt SrcElts
= APInt::getAllOnesValue(NumSrcElts
);
916 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
917 // Offset the demanded elts by the subvector index.
918 uint64_t Idx
= SubIdx
->getZExtValue();
919 SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
921 if (SimplifyDemandedBits(Src
, DemandedBits
, SrcElts
, Known
, TLO
, Depth
+ 1))
925 case ISD::CONCAT_VECTORS
: {
926 Known
.Zero
.setAllBits();
927 Known
.One
.setAllBits();
928 EVT SubVT
= Op
.getOperand(0).getValueType();
929 unsigned NumSubVecs
= Op
.getNumOperands();
930 unsigned NumSubElts
= SubVT
.getVectorNumElements();
931 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
932 APInt DemandedSubElts
=
933 DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
934 if (SimplifyDemandedBits(Op
.getOperand(i
), DemandedBits
, DemandedSubElts
,
935 Known2
, TLO
, Depth
+ 1))
937 // Known bits are shared by every demanded subvector element.
938 if (!!DemandedSubElts
) {
939 Known
.One
&= Known2
.One
;
940 Known
.Zero
&= Known2
.Zero
;
945 case ISD::VECTOR_SHUFFLE
: {
946 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
948 // Collect demanded elements from shuffle operands..
949 APInt
DemandedLHS(NumElts
, 0);
950 APInt
DemandedRHS(NumElts
, 0);
951 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
952 if (!DemandedElts
[i
])
954 int M
= ShuffleMask
[i
];
956 // For UNDEF elements, we don't know anything about the common state of
957 // the shuffle result.
958 DemandedLHS
.clearAllBits();
959 DemandedRHS
.clearAllBits();
962 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
963 if (M
< (int)NumElts
)
964 DemandedLHS
.setBit(M
);
966 DemandedRHS
.setBit(M
- NumElts
);
969 if (!!DemandedLHS
|| !!DemandedRHS
) {
970 SDValue Op0
= Op
.getOperand(0);
971 SDValue Op1
= Op
.getOperand(1);
973 Known
.Zero
.setAllBits();
974 Known
.One
.setAllBits();
976 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedLHS
, Known2
, TLO
,
979 Known
.One
&= Known2
.One
;
980 Known
.Zero
&= Known2
.Zero
;
983 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedRHS
, Known2
, TLO
,
986 Known
.One
&= Known2
.One
;
987 Known
.Zero
&= Known2
.Zero
;
990 // Attempt to avoid multi-use ops if we don't need anything from them.
991 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
992 Op0
, DemandedBits
, DemandedLHS
, TLO
.DAG
, Depth
+ 1);
993 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
994 Op1
, DemandedBits
, DemandedRHS
, TLO
.DAG
, Depth
+ 1);
995 if (DemandedOp0
|| DemandedOp1
) {
996 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
997 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
998 SDValue NewOp
= TLO
.DAG
.getVectorShuffle(VT
, dl
, Op0
, Op1
, ShuffleMask
);
999 return TLO
.CombineTo(Op
, NewOp
);
1005 SDValue Op0
= Op
.getOperand(0);
1006 SDValue Op1
= Op
.getOperand(1);
1008 // If the RHS is a constant, check to see if the LHS would be zero without
1009 // using the bits from the RHS. Below, we use knowledge about the RHS to
1010 // simplify the LHS, here we're using information from the LHS to simplify
1012 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(Op1
)) {
1013 // Do not increment Depth here; that can cause an infinite loop.
1014 KnownBits LHSKnown
= TLO
.DAG
.computeKnownBits(Op0
, DemandedElts
, Depth
);
1015 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1016 if ((LHSKnown
.Zero
& DemandedBits
) ==
1017 (~RHSC
->getAPIntValue() & DemandedBits
))
1018 return TLO
.CombineTo(Op
, Op0
);
1020 // If any of the set bits in the RHS are known zero on the LHS, shrink
1022 if (ShrinkDemandedConstant(Op
, ~LHSKnown
.Zero
& DemandedBits
, TLO
))
1025 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1026 // constant, but if this 'and' is only clearing bits that were just set by
1027 // the xor, then this 'and' can be eliminated by shrinking the mask of
1028 // the xor. For example, for a 32-bit X:
1029 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1030 if (isBitwiseNot(Op0
) && Op0
.hasOneUse() &&
1031 LHSKnown
.One
== ~RHSC
->getAPIntValue()) {
1032 SDValue Xor
= TLO
.DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
.getOperand(0), Op1
);
1033 return TLO
.CombineTo(Op
, Xor
);
1037 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1040 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1041 if (SimplifyDemandedBits(Op0
, ~Known
.Zero
& DemandedBits
, DemandedElts
,
1042 Known2
, TLO
, Depth
+ 1))
1044 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1046 // Attempt to avoid multi-use ops if we don't need anything from them.
1047 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1048 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1049 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1050 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1051 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1052 if (DemandedOp0
|| DemandedOp1
) {
1053 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1054 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1055 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1056 return TLO
.CombineTo(Op
, NewOp
);
1060 // If all of the demanded bits are known one on one side, return the other.
1061 // These bits cannot contribute to the result of the 'and'.
1062 if (DemandedBits
.isSubsetOf(Known2
.Zero
| Known
.One
))
1063 return TLO
.CombineTo(Op
, Op0
);
1064 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.One
))
1065 return TLO
.CombineTo(Op
, Op1
);
1066 // If all of the demanded bits in the inputs are known zeros, return zero.
1067 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
1068 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, dl
, VT
));
1069 // If the RHS is a constant, see if we can simplify it.
1070 if (ShrinkDemandedConstant(Op
, ~Known2
.Zero
& DemandedBits
, TLO
))
1072 // If the operation can be done in a smaller type, do so.
1073 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1076 // Output known-1 bits are only known if set in both the LHS & RHS.
1077 Known
.One
&= Known2
.One
;
1078 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079 Known
.Zero
|= Known2
.Zero
;
1083 SDValue Op0
= Op
.getOperand(0);
1084 SDValue Op1
= Op
.getOperand(1);
1086 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1089 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1090 if (SimplifyDemandedBits(Op0
, ~Known
.One
& DemandedBits
, DemandedElts
,
1091 Known2
, TLO
, Depth
+ 1))
1093 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1095 // Attempt to avoid multi-use ops if we don't need anything from them.
1096 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1097 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1098 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1099 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1100 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1101 if (DemandedOp0
|| DemandedOp1
) {
1102 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1103 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1104 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1105 return TLO
.CombineTo(Op
, NewOp
);
1109 // If all of the demanded bits are known zero on one side, return the other.
1110 // These bits cannot contribute to the result of the 'or'.
1111 if (DemandedBits
.isSubsetOf(Known2
.One
| Known
.Zero
))
1112 return TLO
.CombineTo(Op
, Op0
);
1113 if (DemandedBits
.isSubsetOf(Known
.One
| Known2
.Zero
))
1114 return TLO
.CombineTo(Op
, Op1
);
1115 // If the RHS is a constant, see if we can simplify it.
1116 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1118 // If the operation can be done in a smaller type, do so.
1119 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1122 // Output known-0 bits are only known if clear in both the LHS & RHS.
1123 Known
.Zero
&= Known2
.Zero
;
1124 // Output known-1 are known to be set if set in either the LHS | RHS.
1125 Known
.One
|= Known2
.One
;
1129 SDValue Op0
= Op
.getOperand(0);
1130 SDValue Op1
= Op
.getOperand(1);
1132 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1135 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1136 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedElts
, Known2
, TLO
,
1139 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1141 // Attempt to avoid multi-use ops if we don't need anything from them.
1142 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1143 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1144 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1145 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1146 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1147 if (DemandedOp0
|| DemandedOp1
) {
1148 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1149 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1150 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1151 return TLO
.CombineTo(Op
, NewOp
);
1155 // If all of the demanded bits are known zero on one side, return the other.
1156 // These bits cannot contribute to the result of the 'xor'.
1157 if (DemandedBits
.isSubsetOf(Known
.Zero
))
1158 return TLO
.CombineTo(Op
, Op0
);
1159 if (DemandedBits
.isSubsetOf(Known2
.Zero
))
1160 return TLO
.CombineTo(Op
, Op1
);
1161 // If the operation can be done in a smaller type, do so.
1162 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1165 // If all of the unknown bits are known to be zero on one side or the other
1166 // (but not both) turn this into an *inclusive* or.
1167 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1168 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
1169 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, VT
, Op0
, Op1
));
1171 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1172 KnownOut
.Zero
= (Known
.Zero
& Known2
.Zero
) | (Known
.One
& Known2
.One
);
1173 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1174 KnownOut
.One
= (Known
.Zero
& Known2
.One
) | (Known
.One
& Known2
.Zero
);
1176 if (ConstantSDNode
*C
= isConstOrConstSplat(Op1
)) {
1177 // If one side is a constant, and all of the known set bits on the other
1178 // side are also set in the constant, turn this into an AND, as we know
1179 // the bits will be cleared.
1180 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1181 // NB: it is okay if more bits are known than are requested
1182 if (C
->getAPIntValue() == Known2
.One
) {
1184 TLO
.DAG
.getConstant(~C
->getAPIntValue() & DemandedBits
, dl
, VT
);
1185 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
, Op0
, ANDC
));
1188 // If the RHS is a constant, see if we can change it. Don't alter a -1
1189 // constant because that's a 'not' op, and that is better for combining
1191 if (!C
->isAllOnesValue()) {
1192 if (DemandedBits
.isSubsetOf(C
->getAPIntValue())) {
1193 // We're flipping all demanded bits. Flip the undemanded bits too.
1194 SDValue New
= TLO
.DAG
.getNOT(dl
, Op0
, VT
);
1195 return TLO
.CombineTo(Op
, New
);
1197 // If we can't turn this into a 'not', try to shrink the constant.
1198 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1203 Known
= std::move(KnownOut
);
1207 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known
, TLO
,
1210 if (SimplifyDemandedBits(Op
.getOperand(1), DemandedBits
, Known2
, TLO
,
1213 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1214 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1216 // If the operands are constants, see if we can simplify them.
1217 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1220 // Only known if known in both the LHS and RHS.
1221 Known
.One
&= Known2
.One
;
1222 Known
.Zero
&= Known2
.Zero
;
1224 case ISD::SELECT_CC
:
1225 if (SimplifyDemandedBits(Op
.getOperand(3), DemandedBits
, Known
, TLO
,
1228 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known2
, TLO
,
1231 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1232 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1234 // If the operands are constants, see if we can simplify them.
1235 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1238 // Only known if known in both the LHS and RHS.
1239 Known
.One
&= Known2
.One
;
1240 Known
.Zero
&= Known2
.Zero
;
1243 SDValue Op0
= Op
.getOperand(0);
1244 SDValue Op1
= Op
.getOperand(1);
1245 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1246 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1247 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1248 // -1, we may be able to bypass the setcc.
1249 if (DemandedBits
.isSignMask() &&
1250 Op0
.getScalarValueSizeInBits() == BitWidth
&&
1251 getBooleanContents(VT
) ==
1252 BooleanContent::ZeroOrNegativeOneBooleanContent
) {
1253 // If we're testing X < 0, then this compare isn't needed - just use X!
1254 // FIXME: We're limiting to integer types here, but this should also work
1255 // if we don't care about FP signed-zero. The use of SETLT with FP means
1256 // that we don't care about NaNs.
1257 if (CC
== ISD::SETLT
&& Op1
.getValueType().isInteger() &&
1258 (isNullConstant(Op1
) || ISD::isBuildVectorAllZeros(Op1
.getNode())))
1259 return TLO
.CombineTo(Op
, Op0
);
1261 // TODO: Should we check for other forms of sign-bit comparisons?
1262 // Examples: X <= -1, X >= 0
1264 if (getBooleanContents(Op0
.getValueType()) ==
1265 TargetLowering::ZeroOrOneBooleanContent
&&
1267 Known
.Zero
.setBitsFrom(1);
1271 SDValue Op0
= Op
.getOperand(0);
1272 SDValue Op1
= Op
.getOperand(1);
1274 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1275 // If the shift count is an invalid immediate, don't do anything.
1276 if (SA
->getAPIntValue().uge(BitWidth
))
1279 unsigned ShAmt
= SA
->getZExtValue();
1281 return TLO
.CombineTo(Op
, Op0
);
1283 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1284 // single shift. We can do this if the bottom bits (which are shifted
1285 // out) are never demanded.
1286 // TODO - support non-uniform vector amounts.
1287 if (Op0
.getOpcode() == ISD::SRL
) {
1288 if ((DemandedBits
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1289 if (ConstantSDNode
*SA2
=
1290 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1291 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1292 unsigned C1
= SA2
->getZExtValue();
1293 unsigned Opc
= ISD::SHL
;
1294 int Diff
= ShAmt
- C1
;
1300 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, Op1
.getValueType());
1301 return TLO
.CombineTo(
1302 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1308 if (SimplifyDemandedBits(Op0
, DemandedBits
.lshr(ShAmt
), DemandedElts
,
1309 Known
, TLO
, Depth
+ 1))
1312 // Try shrinking the operation as long as the shift amount will still be
1314 if ((ShAmt
< DemandedBits
.getActiveBits()) &&
1315 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1318 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1319 // are not demanded. This will likely allow the anyext to be folded away.
1320 if (Op0
.getOpcode() == ISD::ANY_EXTEND
) {
1321 SDValue InnerOp
= Op0
.getOperand(0);
1322 EVT InnerVT
= InnerOp
.getValueType();
1323 unsigned InnerBits
= InnerVT
.getScalarSizeInBits();
1324 if (ShAmt
< InnerBits
&& DemandedBits
.getActiveBits() <= InnerBits
&&
1325 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1326 EVT ShTy
= getShiftAmountTy(InnerVT
, DL
);
1327 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1330 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1331 TLO
.DAG
.getConstant(ShAmt
, dl
, ShTy
));
1332 return TLO
.CombineTo(
1333 Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, NarrowShl
));
1335 // Repeat the SHL optimization above in cases where an extension
1336 // intervenes: (shl (anyext (shr x, c1)), c2) to
1337 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1338 // aren't demanded (as above) and that the shifted upper c1 bits of
1339 // x aren't demanded.
1340 if (Op0
.hasOneUse() && InnerOp
.getOpcode() == ISD::SRL
&&
1341 InnerOp
.hasOneUse()) {
1342 if (ConstantSDNode
*SA2
=
1343 isConstOrConstSplat(InnerOp
.getOperand(1))) {
1344 unsigned InnerShAmt
= SA2
->getLimitedValue(InnerBits
);
1345 if (InnerShAmt
< ShAmt
&& InnerShAmt
< InnerBits
&&
1346 DemandedBits
.getActiveBits() <=
1347 (InnerBits
- InnerShAmt
+ ShAmt
) &&
1348 DemandedBits
.countTrailingZeros() >= ShAmt
) {
1349 SDValue NewSA
= TLO
.DAG
.getConstant(ShAmt
- InnerShAmt
, dl
,
1350 Op1
.getValueType());
1351 SDValue NewExt
= TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
,
1352 InnerOp
.getOperand(0));
1353 return TLO
.CombineTo(
1354 Op
, TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, NewExt
, NewSA
));
1360 Known
.Zero
<<= ShAmt
;
1361 Known
.One
<<= ShAmt
;
1362 // low bits known zero.
1363 Known
.Zero
.setLowBits(ShAmt
);
1368 SDValue Op0
= Op
.getOperand(0);
1369 SDValue Op1
= Op
.getOperand(1);
1371 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1372 // If the shift count is an invalid immediate, don't do anything.
1373 if (SA
->getAPIntValue().uge(BitWidth
))
1376 unsigned ShAmt
= SA
->getZExtValue();
1378 return TLO
.CombineTo(Op
, Op0
);
1380 EVT ShiftVT
= Op1
.getValueType();
1381 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1383 // If the shift is exact, then it does demand the low bits (and knows that
1385 if (Op
->getFlags().hasExact())
1386 InDemandedMask
.setLowBits(ShAmt
);
1388 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1389 // single shift. We can do this if the top bits (which are shifted out)
1390 // are never demanded.
1391 // TODO - support non-uniform vector amounts.
1392 if (Op0
.getOpcode() == ISD::SHL
) {
1393 if (ConstantSDNode
*SA2
=
1394 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1395 if ((DemandedBits
& APInt::getHighBitsSet(BitWidth
, ShAmt
)) == 0) {
1396 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1397 unsigned C1
= SA2
->getZExtValue();
1398 unsigned Opc
= ISD::SRL
;
1399 int Diff
= ShAmt
- C1
;
1405 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, ShiftVT
);
1406 return TLO
.CombineTo(
1407 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1413 // Compute the new bits that are at the top now.
1414 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1417 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1418 Known
.Zero
.lshrInPlace(ShAmt
);
1419 Known
.One
.lshrInPlace(ShAmt
);
1421 Known
.Zero
.setHighBits(ShAmt
); // High bits known zero.
1426 SDValue Op0
= Op
.getOperand(0);
1427 SDValue Op1
= Op
.getOperand(1);
1429 // If this is an arithmetic shift right and only the low-bit is set, we can
1430 // always convert this into a logical shr, even if the shift amount is
1431 // variable. The low bit of the shift cannot be an input sign bit unless
1432 // the shift amount is >= the size of the datatype, which is undefined.
1433 if (DemandedBits
.isOneValue())
1434 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
));
1436 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1437 // If the shift count is an invalid immediate, don't do anything.
1438 if (SA
->getAPIntValue().uge(BitWidth
))
1441 unsigned ShAmt
= SA
->getZExtValue();
1443 return TLO
.CombineTo(Op
, Op0
);
1445 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1447 // If the shift is exact, then it does demand the low bits (and knows that
1449 if (Op
->getFlags().hasExact())
1450 InDemandedMask
.setLowBits(ShAmt
);
1452 // If any of the demanded bits are produced by the sign extension, we also
1453 // demand the input sign bit.
1454 if (DemandedBits
.countLeadingZeros() < ShAmt
)
1455 InDemandedMask
.setSignBit();
1457 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1460 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1461 Known
.Zero
.lshrInPlace(ShAmt
);
1462 Known
.One
.lshrInPlace(ShAmt
);
1464 // If the input sign bit is known to be zero, or if none of the top bits
1465 // are demanded, turn this into an unsigned shift right.
1466 if (Known
.Zero
[BitWidth
- ShAmt
- 1] ||
1467 DemandedBits
.countLeadingZeros() >= ShAmt
) {
1469 Flags
.setExact(Op
->getFlags().hasExact());
1470 return TLO
.CombineTo(
1471 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
, Flags
));
1474 int Log2
= DemandedBits
.exactLogBase2();
1476 // The bit must come from the sign.
1478 TLO
.DAG
.getConstant(BitWidth
- 1 - Log2
, dl
, Op1
.getValueType());
1479 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, NewSA
));
1482 if (Known
.One
[BitWidth
- ShAmt
- 1])
1483 // New bits are known one.
1484 Known
.One
.setHighBits(ShAmt
);
1490 SDValue Op0
= Op
.getOperand(0);
1491 SDValue Op1
= Op
.getOperand(1);
1492 SDValue Op2
= Op
.getOperand(2);
1493 bool IsFSHL
= (Op
.getOpcode() == ISD::FSHL
);
1495 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op2
, DemandedElts
)) {
1496 unsigned Amt
= SA
->getAPIntValue().urem(BitWidth
);
1498 // For fshl, 0-shift returns the 1st arg.
1499 // For fshr, 0-shift returns the 2nd arg.
1501 if (SimplifyDemandedBits(IsFSHL
? Op0
: Op1
, DemandedBits
, DemandedElts
,
1502 Known
, TLO
, Depth
+ 1))
1507 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1508 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1509 APInt Demanded0
= DemandedBits
.lshr(IsFSHL
? Amt
: (BitWidth
- Amt
));
1510 APInt Demanded1
= DemandedBits
<< (IsFSHL
? (BitWidth
- Amt
) : Amt
);
1511 if (SimplifyDemandedBits(Op0
, Demanded0
, DemandedElts
, Known2
, TLO
,
1514 if (SimplifyDemandedBits(Op1
, Demanded1
, DemandedElts
, Known
, TLO
,
1518 Known2
.One
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1519 Known2
.Zero
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1520 Known
.One
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1521 Known
.Zero
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1522 Known
.One
|= Known2
.One
;
1523 Known
.Zero
|= Known2
.Zero
;
1527 case ISD::BITREVERSE
: {
1528 SDValue Src
= Op
.getOperand(0);
1529 APInt DemandedSrcBits
= DemandedBits
.reverseBits();
1530 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedElts
, Known2
, TLO
,
1533 Known
.One
= Known2
.One
.reverseBits();
1534 Known
.Zero
= Known2
.Zero
.reverseBits();
1537 case ISD::SIGN_EXTEND_INREG
: {
1538 SDValue Op0
= Op
.getOperand(0);
1539 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1540 unsigned ExVTBits
= ExVT
.getScalarSizeInBits();
1542 // If we only care about the highest bit, don't bother shifting right.
1543 if (DemandedBits
.isSignMask()) {
1544 unsigned NumSignBits
= TLO
.DAG
.ComputeNumSignBits(Op0
);
1545 bool AlreadySignExtended
= NumSignBits
>= BitWidth
- ExVTBits
+ 1;
1546 // However if the input is already sign extended we expect the sign
1547 // extension to be dropped altogether later and do not simplify.
1548 if (!AlreadySignExtended
) {
1549 // Compute the correct shift amount type, which must be getShiftAmountTy
1550 // for scalar types after legalization.
1551 EVT ShiftAmtTy
= VT
;
1552 if (TLO
.LegalTypes() && !ShiftAmtTy
.isVector())
1553 ShiftAmtTy
= getShiftAmountTy(ShiftAmtTy
, DL
);
1556 TLO
.DAG
.getConstant(BitWidth
- ExVTBits
, dl
, ShiftAmtTy
);
1557 return TLO
.CombineTo(Op
,
1558 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Op0
, ShiftAmt
));
1562 // If none of the extended bits are demanded, eliminate the sextinreg.
1563 if (DemandedBits
.getActiveBits() <= ExVTBits
)
1564 return TLO
.CombineTo(Op
, Op0
);
1566 APInt InputDemandedBits
= DemandedBits
.getLoBits(ExVTBits
);
1568 // Since the sign extended bits are demanded, we know that the sign
1570 InputDemandedBits
.setBit(ExVTBits
- 1);
1572 if (SimplifyDemandedBits(Op0
, InputDemandedBits
, Known
, TLO
, Depth
+ 1))
1574 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1576 // If the sign bit of the input is known set or clear, then we know the
1577 // top bits of the result.
1579 // If the input sign bit is known zero, convert this into a zero extension.
1580 if (Known
.Zero
[ExVTBits
- 1])
1581 return TLO
.CombineTo(
1582 Op
, TLO
.DAG
.getZeroExtendInReg(Op0
, dl
, ExVT
.getScalarType()));
1584 APInt Mask
= APInt::getLowBitsSet(BitWidth
, ExVTBits
);
1585 if (Known
.One
[ExVTBits
- 1]) { // Input sign bit known set
1586 Known
.One
.setBitsFrom(ExVTBits
);
1588 } else { // Input sign bit unknown
1594 case ISD::BUILD_PAIR
: {
1595 EVT HalfVT
= Op
.getOperand(0).getValueType();
1596 unsigned HalfBitWidth
= HalfVT
.getScalarSizeInBits();
1598 APInt MaskLo
= DemandedBits
.getLoBits(HalfBitWidth
).trunc(HalfBitWidth
);
1599 APInt MaskHi
= DemandedBits
.getHiBits(HalfBitWidth
).trunc(HalfBitWidth
);
1601 KnownBits KnownLo
, KnownHi
;
1603 if (SimplifyDemandedBits(Op
.getOperand(0), MaskLo
, KnownLo
, TLO
, Depth
+ 1))
1606 if (SimplifyDemandedBits(Op
.getOperand(1), MaskHi
, KnownHi
, TLO
, Depth
+ 1))
1609 Known
.Zero
= KnownLo
.Zero
.zext(BitWidth
) |
1610 KnownHi
.Zero
.zext(BitWidth
).shl(HalfBitWidth
);
1612 Known
.One
= KnownLo
.One
.zext(BitWidth
) |
1613 KnownHi
.One
.zext(BitWidth
).shl(HalfBitWidth
);
1616 case ISD::ZERO_EXTEND
:
1617 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
1618 SDValue Src
= Op
.getOperand(0);
1619 EVT SrcVT
= Src
.getValueType();
1620 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1621 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1622 bool IsVecInReg
= Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
1624 // If none of the top bits are demanded, convert this into an any_extend.
1625 if (DemandedBits
.getActiveBits() <= InBits
) {
1626 // If we only need the non-extended bits of the bottom element
1627 // then we can just bitcast to the result.
1628 if (IsVecInReg
&& DemandedElts
== 1 &&
1629 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1630 TLO
.DAG
.getDataLayout().isLittleEndian())
1631 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1634 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1635 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1636 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1639 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1640 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1641 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1644 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1645 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1646 Known
= Known
.zext(BitWidth
, true /* ExtendedBitsAreKnownZero */);
1649 case ISD::SIGN_EXTEND
:
1650 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
1651 SDValue Src
= Op
.getOperand(0);
1652 EVT SrcVT
= Src
.getValueType();
1653 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1654 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1655 bool IsVecInReg
= Op
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
;
1657 // If none of the top bits are demanded, convert this into an any_extend.
1658 if (DemandedBits
.getActiveBits() <= InBits
) {
1659 // If we only need the non-extended bits of the bottom element
1660 // then we can just bitcast to the result.
1661 if (IsVecInReg
&& DemandedElts
== 1 &&
1662 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1663 TLO
.DAG
.getDataLayout().isLittleEndian())
1664 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1667 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1668 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1669 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1672 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1673 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1675 // Since some of the sign extended bits are demanded, we know that the sign
1677 InDemandedBits
.setBit(InBits
- 1);
1679 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1682 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1683 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1685 // If the sign bit is known one, the top bits match.
1686 Known
= Known
.sext(BitWidth
);
1688 // If the sign bit is known zero, convert this to a zero extend.
1689 if (Known
.isNonNegative()) {
1691 IsVecInReg
? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::ZERO_EXTEND
;
1692 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1693 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1697 case ISD::ANY_EXTEND
:
1698 case ISD::ANY_EXTEND_VECTOR_INREG
: {
1699 SDValue Src
= Op
.getOperand(0);
1700 EVT SrcVT
= Src
.getValueType();
1701 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1702 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1703 bool IsVecInReg
= Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
;
1705 // If we only need the bottom element then we can just bitcast.
1706 // TODO: Handle ANY_EXTEND?
1707 if (IsVecInReg
&& DemandedElts
== 1 &&
1708 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1709 TLO
.DAG
.getDataLayout().isLittleEndian())
1710 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1712 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1713 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1714 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1717 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1718 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1719 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1722 case ISD::TRUNCATE
: {
1723 SDValue Src
= Op
.getOperand(0);
1725 // Simplify the input, using demanded bit information, and compute the known
1726 // zero/one bits live out.
1727 unsigned OperandBitWidth
= Src
.getScalarValueSizeInBits();
1728 APInt TruncMask
= DemandedBits
.zext(OperandBitWidth
);
1729 if (SimplifyDemandedBits(Src
, TruncMask
, Known
, TLO
, Depth
+ 1))
1731 Known
= Known
.trunc(BitWidth
);
1733 // Attempt to avoid multi-use ops if we don't need anything from them.
1734 if (SDValue NewSrc
= SimplifyMultipleUseDemandedBits(
1735 Src
, TruncMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1))
1736 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, NewSrc
));
1738 // If the input is only used by this truncate, see if we can shrink it based
1739 // on the known demanded bits.
1740 if (Src
.getNode()->hasOneUse()) {
1741 switch (Src
.getOpcode()) {
1745 // Shrink SRL by a constant if none of the high bits shifted in are
1747 if (TLO
.LegalTypes() && !isTypeDesirableForOp(ISD::SRL
, VT
))
1748 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1752 auto *ShAmt
= dyn_cast
<ConstantSDNode
>(Src
.getOperand(1));
1753 if (!ShAmt
|| ShAmt
->getAPIntValue().uge(BitWidth
))
1756 SDValue Shift
= Src
.getOperand(1);
1757 uint64_t ShVal
= ShAmt
->getZExtValue();
1759 if (TLO
.LegalTypes())
1760 Shift
= TLO
.DAG
.getConstant(ShVal
, dl
, getShiftAmountTy(VT
, DL
));
1763 APInt::getHighBitsSet(OperandBitWidth
, OperandBitWidth
- BitWidth
);
1764 HighBits
.lshrInPlace(ShVal
);
1765 HighBits
= HighBits
.trunc(BitWidth
);
1767 if (!(HighBits
& DemandedBits
)) {
1768 // None of the shifted in bits are needed. Add a truncate of the
1769 // shift input, then shift it.
1771 TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Src
.getOperand(0));
1772 return TLO
.CombineTo(
1773 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, NewTrunc
, Shift
));
1779 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1782 case ISD::AssertZext
: {
1783 // AssertZext demands all of the high bits, plus any of the low bits
1784 // demanded by its users.
1785 EVT ZVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1786 APInt InMask
= APInt::getLowBitsSet(BitWidth
, ZVT
.getSizeInBits());
1787 if (SimplifyDemandedBits(Op
.getOperand(0), ~InMask
| DemandedBits
, Known
,
1790 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1792 Known
.Zero
|= ~InMask
;
1795 case ISD::EXTRACT_VECTOR_ELT
: {
1796 SDValue Src
= Op
.getOperand(0);
1797 SDValue Idx
= Op
.getOperand(1);
1798 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
1799 unsigned EltBitWidth
= Src
.getScalarValueSizeInBits();
1801 // Demand the bits from every vector element without a constant index.
1802 APInt DemandedSrcElts
= APInt::getAllOnesValue(NumSrcElts
);
1803 if (auto *CIdx
= dyn_cast
<ConstantSDNode
>(Idx
))
1804 if (CIdx
->getAPIntValue().ult(NumSrcElts
))
1805 DemandedSrcElts
= APInt::getOneBitSet(NumSrcElts
, CIdx
->getZExtValue());
1807 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1808 // anything about the extended bits.
1809 APInt DemandedSrcBits
= DemandedBits
;
1810 if (BitWidth
> EltBitWidth
)
1811 DemandedSrcBits
= DemandedSrcBits
.trunc(EltBitWidth
);
1813 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
, Known2
, TLO
,
1818 if (BitWidth
> EltBitWidth
)
1819 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1822 case ISD::BITCAST
: {
1823 SDValue Src
= Op
.getOperand(0);
1824 EVT SrcVT
= Src
.getValueType();
1825 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
1827 // If this is an FP->Int bitcast and if the sign bit is the only
1828 // thing demanded, turn this into a FGETSIGN.
1829 if (!TLO
.LegalOperations() && !VT
.isVector() && !SrcVT
.isVector() &&
1830 DemandedBits
== APInt::getSignMask(Op
.getValueSizeInBits()) &&
1831 SrcVT
.isFloatingPoint()) {
1832 bool OpVTLegal
= isOperationLegalOrCustom(ISD::FGETSIGN
, VT
);
1833 bool i32Legal
= isOperationLegalOrCustom(ISD::FGETSIGN
, MVT::i32
);
1834 if ((OpVTLegal
|| i32Legal
) && VT
.isSimple() && SrcVT
!= MVT::f16
&&
1835 SrcVT
!= MVT::f128
) {
1836 // Cannot eliminate/lower SHL for f128 yet.
1837 EVT Ty
= OpVTLegal
? VT
: MVT::i32
;
1838 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1839 // place. We expect the SHL to be eliminated by other optimizations.
1840 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, dl
, Ty
, Src
);
1841 unsigned OpVTSizeInBits
= Op
.getValueSizeInBits();
1842 if (!OpVTLegal
&& OpVTSizeInBits
> 32)
1843 Sign
= TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Sign
);
1844 unsigned ShVal
= Op
.getValueSizeInBits() - 1;
1845 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, dl
, VT
);
1846 return TLO
.CombineTo(Op
,
1847 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Sign
, ShAmt
));
1851 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1852 // Demand the elt/bit if any of the original elts/bits are demanded.
1853 // TODO - bigendian once we have test coverage.
1854 if (SrcVT
.isVector() && (BitWidth
% NumSrcEltBits
) == 0 &&
1855 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1856 unsigned Scale
= BitWidth
/ NumSrcEltBits
;
1857 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
1858 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1859 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1860 for (unsigned i
= 0; i
!= Scale
; ++i
) {
1861 unsigned Offset
= i
* NumSrcEltBits
;
1862 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
1863 if (!Sub
.isNullValue()) {
1864 DemandedSrcBits
|= Sub
;
1865 for (unsigned j
= 0; j
!= NumElts
; ++j
)
1866 if (DemandedElts
[j
])
1867 DemandedSrcElts
.setBit((j
* Scale
) + i
);
1871 APInt KnownSrcUndef
, KnownSrcZero
;
1872 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1873 KnownSrcZero
, TLO
, Depth
+ 1))
1876 KnownBits KnownSrcBits
;
1877 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1878 KnownSrcBits
, TLO
, Depth
+ 1))
1880 } else if ((NumSrcEltBits
% BitWidth
) == 0 &&
1881 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1882 unsigned Scale
= NumSrcEltBits
/ BitWidth
;
1883 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1884 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1885 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1886 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1887 if (DemandedElts
[i
]) {
1888 unsigned Offset
= (i
% Scale
) * BitWidth
;
1889 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
1890 DemandedSrcElts
.setBit(i
/ Scale
);
1893 if (SrcVT
.isVector()) {
1894 APInt KnownSrcUndef
, KnownSrcZero
;
1895 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1896 KnownSrcZero
, TLO
, Depth
+ 1))
1900 KnownBits KnownSrcBits
;
1901 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1902 KnownSrcBits
, TLO
, Depth
+ 1))
1906 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1907 // recursive call where Known may be useful to the caller.
1909 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1917 // Add, Sub, and Mul don't demand any bits in positions beyond that
1918 // of the highest bit demanded of them.
1919 SDValue Op0
= Op
.getOperand(0), Op1
= Op
.getOperand(1);
1920 SDNodeFlags Flags
= Op
.getNode()->getFlags();
1921 unsigned DemandedBitsLZ
= DemandedBits
.countLeadingZeros();
1922 APInt LoMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- DemandedBitsLZ
);
1923 if (SimplifyDemandedBits(Op0
, LoMask
, DemandedElts
, Known2
, TLO
,
1925 SimplifyDemandedBits(Op1
, LoMask
, DemandedElts
, Known2
, TLO
,
1927 // See if the operation should be performed at a smaller bit width.
1928 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
)) {
1929 if (Flags
.hasNoSignedWrap() || Flags
.hasNoUnsignedWrap()) {
1930 // Disable the nsw and nuw flags. We can no longer guarantee that we
1931 // won't wrap after simplification.
1932 Flags
.setNoSignedWrap(false);
1933 Flags
.setNoUnsignedWrap(false);
1935 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1936 return TLO
.CombineTo(Op
, NewOp
);
1941 // Attempt to avoid multi-use ops if we don't need anything from them.
1942 if (!LoMask
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1943 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1944 Op0
, LoMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1945 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1946 Op1
, LoMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1947 if (DemandedOp0
|| DemandedOp1
) {
1948 Flags
.setNoSignedWrap(false);
1949 Flags
.setNoUnsignedWrap(false);
1950 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1951 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1953 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1954 return TLO
.CombineTo(Op
, NewOp
);
1958 // If we have a constant operand, we may be able to turn it into -1 if we
1959 // do not demand the high bits. This can make the constant smaller to
1960 // encode, allow more general folding, or match specialized instruction
1961 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1962 // is probably not useful (and could be detrimental).
1963 ConstantSDNode
*C
= isConstOrConstSplat(Op1
);
1964 APInt HighMask
= APInt::getHighBitsSet(BitWidth
, DemandedBitsLZ
);
1965 if (C
&& !C
->isAllOnesValue() && !C
->isOne() &&
1966 (C
->getAPIntValue() | HighMask
).isAllOnesValue()) {
1967 SDValue Neg1
= TLO
.DAG
.getAllOnesConstant(dl
, VT
);
1968 // Disable the nsw and nuw flags. We can no longer guarantee that we
1969 // won't wrap after simplification.
1970 Flags
.setNoSignedWrap(false);
1971 Flags
.setNoUnsignedWrap(false);
1972 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Neg1
, Flags
);
1973 return TLO
.CombineTo(Op
, NewOp
);
1979 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1980 if (SimplifyDemandedBitsForTargetNode(Op
, DemandedBits
, DemandedElts
,
1986 // Just use computeKnownBits to compute output bits.
1987 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1991 // If we know the value of all of the demanded bits, return this as a
1993 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known
.One
)) {
1994 // Avoid folding to a constant if any OpaqueConstant is involved.
1995 const SDNode
*N
= Op
.getNode();
1996 for (SDNodeIterator I
= SDNodeIterator::begin(N
),
1997 E
= SDNodeIterator::end(N
);
2000 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
2004 // TODO: Handle float bits as well.
2006 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(Known
.One
, dl
, VT
));
2012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op
,
2013 const APInt
&DemandedElts
,
2016 DAGCombinerInfo
&DCI
) const {
2017 SelectionDAG
&DAG
= DCI
.DAG
;
2018 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
2019 !DCI
.isBeforeLegalizeOps());
2022 SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
, TLO
);
2024 DCI
.AddToWorklist(Op
.getNode());
2025 DCI
.CommitTargetLoweringOpt(TLO
);
2031 /// Given a vector binary operation and known undefined elements for each input
2032 /// operand, compute whether each element of the output is undefined.
2033 static APInt
getKnownUndefForVectorBinop(SDValue BO
, SelectionDAG
&DAG
,
2034 const APInt
&UndefOp0
,
2035 const APInt
&UndefOp1
) {
2036 EVT VT
= BO
.getValueType();
2037 assert(DAG
.getTargetLoweringInfo().isBinOp(BO
.getOpcode()) && VT
.isVector() &&
2038 "Vector binop only");
2040 EVT EltVT
= VT
.getVectorElementType();
2041 unsigned NumElts
= VT
.getVectorNumElements();
2042 assert(UndefOp0
.getBitWidth() == NumElts
&&
2043 UndefOp1
.getBitWidth() == NumElts
&& "Bad type for undef analysis");
2045 auto getUndefOrConstantElt
= [&](SDValue V
, unsigned Index
,
2046 const APInt
&UndefVals
) {
2047 if (UndefVals
[Index
])
2048 return DAG
.getUNDEF(EltVT
);
2050 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
2051 // Try hard to make sure that the getNode() call is not creating temporary
2052 // nodes. Ignore opaque integers because they do not constant fold.
2053 SDValue Elt
= BV
->getOperand(Index
);
2054 auto *C
= dyn_cast
<ConstantSDNode
>(Elt
);
2055 if (isa
<ConstantFPSDNode
>(Elt
) || Elt
.isUndef() || (C
&& !C
->isOpaque()))
2062 APInt KnownUndef
= APInt::getNullValue(NumElts
);
2063 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2064 // If both inputs for this element are either constant or undef and match
2065 // the element type, compute the constant/undef result for this element of
2067 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2068 // not handle FP constants. The code within getNode() should be refactored
2069 // to avoid the danger of creating a bogus temporary node here.
2070 SDValue C0
= getUndefOrConstantElt(BO
.getOperand(0), i
, UndefOp0
);
2071 SDValue C1
= getUndefOrConstantElt(BO
.getOperand(1), i
, UndefOp1
);
2072 if (C0
&& C1
&& C0
.getValueType() == EltVT
&& C1
.getValueType() == EltVT
)
2073 if (DAG
.getNode(BO
.getOpcode(), SDLoc(BO
), EltVT
, C0
, C1
).isUndef())
2074 KnownUndef
.setBit(i
);
2079 bool TargetLowering::SimplifyDemandedVectorElts(
2080 SDValue Op
, const APInt
&OriginalDemandedElts
, APInt
&KnownUndef
,
2081 APInt
&KnownZero
, TargetLoweringOpt
&TLO
, unsigned Depth
,
2082 bool AssumeSingleUse
) const {
2083 EVT VT
= Op
.getValueType();
2084 APInt DemandedElts
= OriginalDemandedElts
;
2085 unsigned NumElts
= DemandedElts
.getBitWidth();
2086 assert(VT
.isVector() && "Expected vector op");
2087 assert(VT
.getVectorNumElements() == NumElts
&&
2088 "Mask size mismatches value type element count!");
2090 KnownUndef
= KnownZero
= APInt::getNullValue(NumElts
);
2094 KnownUndef
.setAllBits();
2098 // If Op has other users, assume that all elements are needed.
2099 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
)
2100 DemandedElts
.setAllBits();
2102 // Not demanding any elements from Op.
2103 if (DemandedElts
== 0) {
2104 KnownUndef
.setAllBits();
2105 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2108 // Limit search depth.
2113 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
2115 switch (Op
.getOpcode()) {
2116 case ISD::SCALAR_TO_VECTOR
: {
2117 if (!DemandedElts
[0]) {
2118 KnownUndef
.setAllBits();
2119 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2121 KnownUndef
.setHighBits(NumElts
- 1);
2124 case ISD::BITCAST
: {
2125 SDValue Src
= Op
.getOperand(0);
2126 EVT SrcVT
= Src
.getValueType();
2128 // We only handle vectors here.
2129 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2130 if (!SrcVT
.isVector())
2133 // Fast handling of 'identity' bitcasts.
2134 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
2135 if (NumSrcElts
== NumElts
)
2136 return SimplifyDemandedVectorElts(Src
, DemandedElts
, KnownUndef
,
2137 KnownZero
, TLO
, Depth
+ 1);
2139 APInt SrcZero
, SrcUndef
;
2140 APInt SrcDemandedElts
= APInt::getNullValue(NumSrcElts
);
2142 // Bitcast from 'large element' src vector to 'small element' vector, we
2143 // must demand a source element if any DemandedElt maps to it.
2144 if ((NumElts
% NumSrcElts
) == 0) {
2145 unsigned Scale
= NumElts
/ NumSrcElts
;
2146 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2147 if (DemandedElts
[i
])
2148 SrcDemandedElts
.setBit(i
/ Scale
);
2150 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
2154 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2155 // of the large element.
2156 // TODO - bigendian once we have test coverage.
2157 if (TLO
.DAG
.getDataLayout().isLittleEndian()) {
2158 unsigned SrcEltSizeInBits
= SrcVT
.getScalarSizeInBits();
2159 APInt SrcDemandedBits
= APInt::getNullValue(SrcEltSizeInBits
);
2160 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2161 if (DemandedElts
[i
]) {
2162 unsigned Ofs
= (i
% Scale
) * EltSizeInBits
;
2163 SrcDemandedBits
.setBits(Ofs
, Ofs
+ EltSizeInBits
);
2167 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, Known
, TLO
, Depth
+ 1))
2171 // If the src element is zero/undef then all the output elements will be -
2172 // only demanded elements are guaranteed to be correct.
2173 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
2174 if (SrcDemandedElts
[i
]) {
2176 KnownZero
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2178 KnownUndef
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2183 // Bitcast from 'small element' src vector to 'large element' vector, we
2184 // demand all smaller source elements covered by the larger demanded element
2186 if ((NumSrcElts
% NumElts
) == 0) {
2187 unsigned Scale
= NumSrcElts
/ NumElts
;
2188 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2189 if (DemandedElts
[i
])
2190 SrcDemandedElts
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2192 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
2196 // If all the src elements covering an output element are zero/undef, then
2197 // the output element will be as well, assuming it was demanded.
2198 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2199 if (DemandedElts
[i
]) {
2200 if (SrcZero
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
2201 KnownZero
.setBit(i
);
2202 if (SrcUndef
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
2203 KnownUndef
.setBit(i
);
2209 case ISD::BUILD_VECTOR
: {
2210 // Check all elements and simplify any unused elements with UNDEF.
2211 if (!DemandedElts
.isAllOnesValue()) {
2212 // Don't simplify BROADCASTS.
2213 if (llvm::any_of(Op
->op_values(),
2214 [&](SDValue Elt
) { return Op
.getOperand(0) != Elt
; })) {
2215 SmallVector
<SDValue
, 32> Ops(Op
->op_begin(), Op
->op_end());
2216 bool Updated
= false;
2217 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2218 if (!DemandedElts
[i
] && !Ops
[i
].isUndef()) {
2219 Ops
[i
] = TLO
.DAG
.getUNDEF(Ops
[0].getValueType());
2220 KnownUndef
.setBit(i
);
2225 return TLO
.CombineTo(Op
, TLO
.DAG
.getBuildVector(VT
, DL
, Ops
));
2228 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2229 SDValue SrcOp
= Op
.getOperand(i
);
2230 if (SrcOp
.isUndef()) {
2231 KnownUndef
.setBit(i
);
2232 } else if (EltSizeInBits
== SrcOp
.getScalarValueSizeInBits() &&
2233 (isNullConstant(SrcOp
) || isNullFPConstant(SrcOp
))) {
2234 KnownZero
.setBit(i
);
2239 case ISD::CONCAT_VECTORS
: {
2240 EVT SubVT
= Op
.getOperand(0).getValueType();
2241 unsigned NumSubVecs
= Op
.getNumOperands();
2242 unsigned NumSubElts
= SubVT
.getVectorNumElements();
2243 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
2244 SDValue SubOp
= Op
.getOperand(i
);
2245 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
2246 APInt SubUndef
, SubZero
;
2247 if (SimplifyDemandedVectorElts(SubOp
, SubElts
, SubUndef
, SubZero
, TLO
,
2250 KnownUndef
.insertBits(SubUndef
, i
* NumSubElts
);
2251 KnownZero
.insertBits(SubZero
, i
* NumSubElts
);
2255 case ISD::INSERT_SUBVECTOR
: {
2256 if (!isa
<ConstantSDNode
>(Op
.getOperand(2)))
2258 SDValue Base
= Op
.getOperand(0);
2259 SDValue Sub
= Op
.getOperand(1);
2260 EVT SubVT
= Sub
.getValueType();
2261 unsigned NumSubElts
= SubVT
.getVectorNumElements();
2262 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
2263 if (Idx
.ugt(NumElts
- NumSubElts
))
2265 unsigned SubIdx
= Idx
.getZExtValue();
2266 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
2267 APInt SubUndef
, SubZero
;
2268 if (SimplifyDemandedVectorElts(Sub
, SubElts
, SubUndef
, SubZero
, TLO
,
2271 APInt BaseElts
= DemandedElts
;
2272 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
2274 // If none of the base operand elements are demanded, replace it with undef.
2275 if (!BaseElts
&& !Base
.isUndef())
2276 return TLO
.CombineTo(Op
,
2277 TLO
.DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
,
2278 TLO
.DAG
.getUNDEF(VT
),
2282 if (SimplifyDemandedVectorElts(Base
, BaseElts
, KnownUndef
, KnownZero
, TLO
,
2285 KnownUndef
.insertBits(SubUndef
, SubIdx
);
2286 KnownZero
.insertBits(SubZero
, SubIdx
);
2289 case ISD::EXTRACT_SUBVECTOR
: {
2290 SDValue Src
= Op
.getOperand(0);
2291 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2292 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2293 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2294 // Offset the demanded elts by the subvector index.
2295 uint64_t Idx
= SubIdx
->getZExtValue();
2296 APInt SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2297 APInt SrcUndef
, SrcZero
;
2298 if (SimplifyDemandedVectorElts(Src
, SrcElts
, SrcUndef
, SrcZero
, TLO
,
2301 KnownUndef
= SrcUndef
.extractBits(NumElts
, Idx
);
2302 KnownZero
= SrcZero
.extractBits(NumElts
, Idx
);
2306 case ISD::INSERT_VECTOR_ELT
: {
2307 SDValue Vec
= Op
.getOperand(0);
2308 SDValue Scl
= Op
.getOperand(1);
2309 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
2311 // For a legal, constant insertion index, if we don't need this insertion
2312 // then strip it, else remove it from the demanded elts.
2313 if (CIdx
&& CIdx
->getAPIntValue().ult(NumElts
)) {
2314 unsigned Idx
= CIdx
->getZExtValue();
2315 if (!DemandedElts
[Idx
])
2316 return TLO
.CombineTo(Op
, Vec
);
2318 APInt
DemandedVecElts(DemandedElts
);
2319 DemandedVecElts
.clearBit(Idx
);
2320 if (SimplifyDemandedVectorElts(Vec
, DemandedVecElts
, KnownUndef
,
2321 KnownZero
, TLO
, Depth
+ 1))
2324 KnownUndef
.clearBit(Idx
);
2326 KnownUndef
.setBit(Idx
);
2328 KnownZero
.clearBit(Idx
);
2329 if (isNullConstant(Scl
) || isNullFPConstant(Scl
))
2330 KnownZero
.setBit(Idx
);
2334 APInt VecUndef
, VecZero
;
2335 if (SimplifyDemandedVectorElts(Vec
, DemandedElts
, VecUndef
, VecZero
, TLO
,
2338 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2341 case ISD::VSELECT
: {
2342 // Try to transform the select condition based on the current demanded
2344 // TODO: If a condition element is undef, we can choose from one arm of the
2345 // select (and if one arm is undef, then we can propagate that to the
2347 // TODO - add support for constant vselect masks (see IR version of this).
2348 APInt UnusedUndef
, UnusedZero
;
2349 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UnusedUndef
,
2350 UnusedZero
, TLO
, Depth
+ 1))
2353 // See if we can simplify either vselect operand.
2354 APInt
DemandedLHS(DemandedElts
);
2355 APInt
DemandedRHS(DemandedElts
);
2356 APInt UndefLHS
, ZeroLHS
;
2357 APInt UndefRHS
, ZeroRHS
;
2358 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedLHS
, UndefLHS
,
2359 ZeroLHS
, TLO
, Depth
+ 1))
2361 if (SimplifyDemandedVectorElts(Op
.getOperand(2), DemandedRHS
, UndefRHS
,
2362 ZeroRHS
, TLO
, Depth
+ 1))
2365 KnownUndef
= UndefLHS
& UndefRHS
;
2366 KnownZero
= ZeroLHS
& ZeroRHS
;
2369 case ISD::VECTOR_SHUFFLE
: {
2370 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
2372 // Collect demanded elements from shuffle operands..
2373 APInt
DemandedLHS(NumElts
, 0);
2374 APInt
DemandedRHS(NumElts
, 0);
2375 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2376 int M
= ShuffleMask
[i
];
2377 if (M
< 0 || !DemandedElts
[i
])
2379 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
2380 if (M
< (int)NumElts
)
2381 DemandedLHS
.setBit(M
);
2383 DemandedRHS
.setBit(M
- NumElts
);
2386 // See if we can simplify either shuffle operand.
2387 APInt UndefLHS
, ZeroLHS
;
2388 APInt UndefRHS
, ZeroRHS
;
2389 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedLHS
, UndefLHS
,
2390 ZeroLHS
, TLO
, Depth
+ 1))
2392 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedRHS
, UndefRHS
,
2393 ZeroRHS
, TLO
, Depth
+ 1))
2396 // Simplify mask using undef elements from LHS/RHS.
2397 bool Updated
= false;
2398 bool IdentityLHS
= true, IdentityRHS
= true;
2399 SmallVector
<int, 32> NewMask(ShuffleMask
.begin(), ShuffleMask
.end());
2400 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2401 int &M
= NewMask
[i
];
2404 if (!DemandedElts
[i
] || (M
< (int)NumElts
&& UndefLHS
[M
]) ||
2405 (M
>= (int)NumElts
&& UndefRHS
[M
- NumElts
])) {
2409 IdentityLHS
&= (M
< 0) || (M
== (int)i
);
2410 IdentityRHS
&= (M
< 0) || ((M
- NumElts
) == i
);
2413 // Update legal shuffle masks based on demanded elements if it won't reduce
2414 // to Identity which can cause premature removal of the shuffle mask.
2415 if (Updated
&& !IdentityLHS
&& !IdentityRHS
&& !TLO
.LegalOps
) {
2416 SDValue LegalShuffle
=
2417 buildLegalVectorShuffle(VT
, DL
, Op
.getOperand(0), Op
.getOperand(1),
2420 return TLO
.CombineTo(Op
, LegalShuffle
);
2423 // Propagate undef/zero elements from LHS/RHS.
2424 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2425 int M
= ShuffleMask
[i
];
2427 KnownUndef
.setBit(i
);
2428 } else if (M
< (int)NumElts
) {
2430 KnownUndef
.setBit(i
);
2432 KnownZero
.setBit(i
);
2434 if (UndefRHS
[M
- NumElts
])
2435 KnownUndef
.setBit(i
);
2436 if (ZeroRHS
[M
- NumElts
])
2437 KnownZero
.setBit(i
);
2442 case ISD::ANY_EXTEND_VECTOR_INREG
:
2443 case ISD::SIGN_EXTEND_VECTOR_INREG
:
2444 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2445 APInt SrcUndef
, SrcZero
;
2446 SDValue Src
= Op
.getOperand(0);
2447 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2448 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
);
2449 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, SrcUndef
, SrcZero
, TLO
,
2452 KnownZero
= SrcZero
.zextOrTrunc(NumElts
);
2453 KnownUndef
= SrcUndef
.zextOrTrunc(NumElts
);
2455 if (Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
&&
2456 Op
.getValueSizeInBits() == Src
.getValueSizeInBits() &&
2457 DemandedSrcElts
== 1 && TLO
.DAG
.getDataLayout().isLittleEndian()) {
2458 // aext - if we just need the bottom element then we can bitcast.
2459 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
2462 if (Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
2463 // zext(undef) upper bits are guaranteed to be zero.
2464 if (DemandedElts
.isSubsetOf(KnownUndef
))
2465 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2466 KnownUndef
.clearAllBits();
2471 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2472 // MAX, saturated math, etc.
2482 APInt UndefRHS
, ZeroRHS
;
2483 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2484 ZeroRHS
, TLO
, Depth
+ 1))
2486 APInt UndefLHS
, ZeroLHS
;
2487 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2488 ZeroLHS
, TLO
, Depth
+ 1))
2491 KnownZero
= ZeroLHS
& ZeroRHS
;
2492 KnownUndef
= getKnownUndefForVectorBinop(Op
, TLO
.DAG
, UndefLHS
, UndefRHS
);
2500 APInt UndefRHS
, ZeroRHS
;
2501 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2502 ZeroRHS
, TLO
, Depth
+ 1))
2504 APInt UndefLHS
, ZeroLHS
;
2505 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2506 ZeroLHS
, TLO
, Depth
+ 1))
2509 KnownZero
= ZeroLHS
;
2510 KnownUndef
= UndefLHS
& UndefRHS
; // TODO: use getKnownUndefForVectorBinop?
2515 APInt SrcUndef
, SrcZero
;
2516 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, SrcUndef
,
2517 SrcZero
, TLO
, Depth
+ 1))
2519 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2520 KnownZero
, TLO
, Depth
+ 1))
2523 // If either side has a zero element, then the result element is zero, even
2524 // if the other is an UNDEF.
2525 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2526 // and then handle 'and' nodes with the rest of the binop opcodes.
2527 KnownZero
|= SrcZero
;
2528 KnownUndef
&= SrcUndef
;
2529 KnownUndef
&= ~KnownZero
;
2533 case ISD::SIGN_EXTEND
:
2534 case ISD::ZERO_EXTEND
:
2535 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2536 KnownZero
, TLO
, Depth
+ 1))
2539 if (Op
.getOpcode() == ISD::ZERO_EXTEND
) {
2540 // zext(undef) upper bits are guaranteed to be zero.
2541 if (DemandedElts
.isSubsetOf(KnownUndef
))
2542 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2543 KnownUndef
.clearAllBits();
2547 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
2548 if (SimplifyDemandedVectorEltsForTargetNode(Op
, DemandedElts
, KnownUndef
,
2549 KnownZero
, TLO
, Depth
))
2553 APInt DemandedBits
= APInt::getAllOnesValue(EltSizeInBits
);
2554 if (SimplifyDemandedBits(Op
, DemandedBits
, OriginalDemandedElts
, Known
,
2555 TLO
, Depth
, AssumeSingleUse
))
2561 assert((KnownUndef
& KnownZero
) == 0 && "Elements flagged as undef AND zero");
2563 // Constant fold all undef cases.
2564 // TODO: Handle zero cases as well.
2565 if (DemandedElts
.isSubsetOf(KnownUndef
))
2566 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2571 /// Determine which of the bits specified in Mask are known to be either zero or
2572 /// one and return them in the Known.
2573 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
2575 const APInt
&DemandedElts
,
2576 const SelectionDAG
&DAG
,
2577 unsigned Depth
) const {
2578 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2579 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2580 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2581 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2582 "Should use MaskedValueIsZero if you don't know whether Op"
2583 " is a target node!");
2587 void TargetLowering::computeKnownBitsForTargetInstr(
2588 Register R
, KnownBits
&Known
, const APInt
&DemandedElts
,
2589 const MachineRegisterInfo
&MRI
, unsigned Depth
) const {
2593 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op
,
2595 const APInt
&DemandedElts
,
2596 const SelectionDAG
&DAG
,
2597 unsigned Depth
) const {
2598 assert(isa
<FrameIndexSDNode
>(Op
) && "expected FrameIndex");
2600 if (unsigned Align
= DAG
.InferPtrAlignment(Op
)) {
2601 // The low bits are known zero if the pointer is aligned.
2602 Known
.Zero
.setLowBits(Log2_32(Align
));
2606 /// This method can be implemented by targets that want to expose additional
2607 /// information about sign bits to the DAG Combiner.
2608 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
2610 const SelectionDAG
&,
2611 unsigned Depth
) const {
2612 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2613 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2614 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2615 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2616 "Should use ComputeNumSignBits if you don't know whether Op"
2617 " is a target node!");
2621 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2622 SDValue Op
, const APInt
&DemandedElts
, APInt
&KnownUndef
, APInt
&KnownZero
,
2623 TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2624 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2625 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2626 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2627 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2628 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2629 " is a target node!");
2633 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2634 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2635 KnownBits
&Known
, TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2636 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2637 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2638 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2639 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2640 "Should use SimplifyDemandedBits if you don't know whether Op"
2641 " is a target node!");
2642 computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, TLO
.DAG
, Depth
);
2646 SDValue
TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2647 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2648 SelectionDAG
&DAG
, unsigned Depth
) const {
2650 (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2651 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2652 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2653 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2654 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2655 " is a target node!");
2660 TargetLowering::buildLegalVectorShuffle(EVT VT
, const SDLoc
&DL
, SDValue N0
,
2661 SDValue N1
, MutableArrayRef
<int> Mask
,
2662 SelectionDAG
&DAG
) const {
2663 bool LegalMask
= isShuffleMaskLegal(Mask
, VT
);
2666 ShuffleVectorSDNode::commuteMask(Mask
);
2667 LegalMask
= isShuffleMaskLegal(Mask
, VT
);
2673 return DAG
.getVectorShuffle(VT
, DL
, N0
, N1
, Mask
);
2676 const Constant
*TargetLowering::getTargetConstantFromLoad(LoadSDNode
*) const {
2680 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
2681 const SelectionDAG
&DAG
,
2683 unsigned Depth
) const {
2684 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2685 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2686 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2687 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2688 "Should use isKnownNeverNaN if you don't know whether Op"
2689 " is a target node!");
2693 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2694 // work with truncating build vectors and vectors with elements of less than
2696 bool TargetLowering::isConstTrueVal(const SDNode
*N
) const {
2701 if (auto *CN
= dyn_cast
<ConstantSDNode
>(N
)) {
2702 CVal
= CN
->getAPIntValue();
2703 } else if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
2704 auto *CN
= BV
->getConstantSplatNode();
2708 // If this is a truncating build vector, truncate the splat value.
2709 // Otherwise, we may fail to match the expected values below.
2710 unsigned BVEltWidth
= BV
->getValueType(0).getScalarSizeInBits();
2711 CVal
= CN
->getAPIntValue();
2712 if (BVEltWidth
< CVal
.getBitWidth())
2713 CVal
= CVal
.trunc(BVEltWidth
);
2718 switch (getBooleanContents(N
->getValueType(0))) {
2719 case UndefinedBooleanContent
:
2721 case ZeroOrOneBooleanContent
:
2722 return CVal
.isOneValue();
2723 case ZeroOrNegativeOneBooleanContent
:
2724 return CVal
.isAllOnesValue();
2727 llvm_unreachable("Invalid boolean contents");
2730 bool TargetLowering::isConstFalseVal(const SDNode
*N
) const {
2734 const ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
);
2736 const BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
);
2740 // Only interested in constant splats, we don't care about undef
2741 // elements in identifying boolean constants and getConstantSplatNode
2742 // returns NULL if all ops are undef;
2743 CN
= BV
->getConstantSplatNode();
2748 if (getBooleanContents(N
->getValueType(0)) == UndefinedBooleanContent
)
2749 return !CN
->getAPIntValue()[0];
2751 return CN
->isNullValue();
2754 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode
*N
, EVT VT
,
2759 TargetLowering::BooleanContent Cnt
= getBooleanContents(VT
);
2761 case TargetLowering::ZeroOrOneBooleanContent
:
2762 // An extended value of 1 is always true, unless its original type is i1,
2763 // in which case it will be sign extended to -1.
2764 return (N
->isOne() && !SExt
) || (SExt
&& (N
->getValueType(0) != MVT::i1
));
2765 case TargetLowering::UndefinedBooleanContent
:
2766 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2767 return N
->isAllOnesValue() && SExt
;
2769 llvm_unreachable("Unexpected enumeration.");
2772 /// This helper function of SimplifySetCC tries to optimize the comparison when
2773 /// either operand of the SetCC node is a bitwise-and instruction.
2774 SDValue
TargetLowering::foldSetCCWithAnd(EVT VT
, SDValue N0
, SDValue N1
,
2775 ISD::CondCode Cond
, const SDLoc
&DL
,
2776 DAGCombinerInfo
&DCI
) const {
2777 // Match these patterns in any of their permutations:
2780 if (N1
.getOpcode() == ISD::AND
&& N0
.getOpcode() != ISD::AND
)
2783 EVT OpVT
= N0
.getValueType();
2784 if (N0
.getOpcode() != ISD::AND
|| !OpVT
.isInteger() ||
2785 (Cond
!= ISD::SETEQ
&& Cond
!= ISD::SETNE
))
2789 if (N0
.getOperand(0) == N1
) {
2790 X
= N0
.getOperand(1);
2791 Y
= N0
.getOperand(0);
2792 } else if (N0
.getOperand(1) == N1
) {
2793 X
= N0
.getOperand(0);
2794 Y
= N0
.getOperand(1);
2799 SelectionDAG
&DAG
= DCI
.DAG
;
2800 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
2801 if (DAG
.isKnownToBeAPowerOfTwo(Y
)) {
2802 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2803 // Note that where Y is variable and is known to have at most one bit set
2804 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2805 // equivalent when Y == 0.
2806 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2807 if (DCI
.isBeforeLegalizeOps() ||
2808 isCondCodeLegal(Cond
, N0
.getSimpleValueType()))
2809 return DAG
.getSetCC(DL
, VT
, N0
, Zero
, Cond
);
2810 } else if (N0
.hasOneUse() && hasAndNotCompare(Y
)) {
2811 // If the target supports an 'and-not' or 'and-complement' logic operation,
2812 // try to use that to make a comparison operation more efficient.
2813 // But don't do this transform if the mask is a single bit because there are
2814 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2815 // 'rlwinm' on PPC).
2817 // Bail out if the compare operand that we want to turn into a zero is
2818 // already a zero (otherwise, infinite loop).
2819 auto *YConst
= dyn_cast
<ConstantSDNode
>(Y
);
2820 if (YConst
&& YConst
->isNullValue())
2823 // Transform this into: ~X & Y == 0.
2824 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, OpVT
);
2825 SDValue NewAnd
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, NotX
, Y
);
2826 return DAG
.getSetCC(DL
, VT
, NewAnd
, Zero
, Cond
);
2832 /// There are multiple IR patterns that could be checking whether certain
2833 /// truncation of a signed number would be lossy or not. The pattern which is
2834 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2835 /// We are looking for the following pattern: (KeptBits is a constant)
2836 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2837 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2838 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2839 /// We will unfold it into the natural trunc+sext pattern:
2840 /// ((%x << C) a>> C) dstcond %x
2841 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2842 SDValue
TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2843 EVT SCCVT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
, DAGCombinerInfo
&DCI
,
2844 const SDLoc
&DL
) const {
2845 // We must be comparing with a constant.
2847 if (!(C1
= dyn_cast
<ConstantSDNode
>(N1
)))
2850 // N0 should be: add %x, (1 << (KeptBits-1))
2851 if (N0
->getOpcode() != ISD::ADD
)
2854 // And we must be 'add'ing a constant.
2855 ConstantSDNode
*C01
;
2856 if (!(C01
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1))))
2859 SDValue X
= N0
->getOperand(0);
2860 EVT XVT
= X
.getValueType();
2862 // Validate constants ...
2864 APInt I1
= C1
->getAPIntValue();
2866 ISD::CondCode NewCond
;
2867 if (Cond
== ISD::CondCode::SETULT
) {
2868 NewCond
= ISD::CondCode::SETEQ
;
2869 } else if (Cond
== ISD::CondCode::SETULE
) {
2870 NewCond
= ISD::CondCode::SETEQ
;
2871 // But need to 'canonicalize' the constant.
2873 } else if (Cond
== ISD::CondCode::SETUGT
) {
2874 NewCond
= ISD::CondCode::SETNE
;
2875 // But need to 'canonicalize' the constant.
2877 } else if (Cond
== ISD::CondCode::SETUGE
) {
2878 NewCond
= ISD::CondCode::SETNE
;
2882 APInt I01
= C01
->getAPIntValue();
2884 auto checkConstants
= [&I1
, &I01
]() -> bool {
2885 // Both of them must be power-of-two, and the constant from setcc is bigger.
2886 return I1
.ugt(I01
) && I1
.isPowerOf2() && I01
.isPowerOf2();
2889 if (checkConstants()) {
2890 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2892 // What if we invert constants? (and the target predicate)
2895 NewCond
= getSetCCInverse(NewCond
, /*isInteger=*/true);
2896 if (!checkConstants())
2898 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2901 // They are power-of-two, so which bit is set?
2902 const unsigned KeptBits
= I1
.logBase2();
2903 const unsigned KeptBitsMinusOne
= I01
.logBase2();
2906 if (KeptBits
!= (KeptBitsMinusOne
+ 1))
2908 assert(KeptBits
> 0 && KeptBits
< XVT
.getSizeInBits() && "unreachable");
2910 // We don't want to do this in every single case.
2911 SelectionDAG
&DAG
= DCI
.DAG
;
2912 if (!DAG
.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2916 const unsigned MaskedBits
= XVT
.getSizeInBits() - KeptBits
;
2917 assert(MaskedBits
> 0 && MaskedBits
< XVT
.getSizeInBits() && "unreachable");
2919 // Unfold into: ((%x << C) a>> C) cond %x
2920 // Where 'cond' will be either 'eq' or 'ne'.
2921 SDValue ShiftAmt
= DAG
.getConstant(MaskedBits
, DL
, XVT
);
2922 SDValue T0
= DAG
.getNode(ISD::SHL
, DL
, XVT
, X
, ShiftAmt
);
2923 SDValue T1
= DAG
.getNode(ISD::SRA
, DL
, XVT
, T0
, ShiftAmt
);
2924 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, X
, NewCond
);
2929 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2930 SDValue
TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2931 EVT SCCVT
, SDValue N0
, SDValue N1C
, ISD::CondCode Cond
,
2932 DAGCombinerInfo
&DCI
, const SDLoc
&DL
) const {
2933 assert(isConstOrConstSplat(N1C
) &&
2934 isConstOrConstSplat(N1C
)->getAPIntValue().isNullValue() &&
2935 "Should be a comparison with 0.");
2936 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2937 "Valid only for [in]equality comparisons.");
2939 unsigned NewShiftOpcode
;
2942 SelectionDAG
&DAG
= DCI
.DAG
;
2943 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2945 // Look for '(C l>>/<< Y)'.
2946 auto Match
= [&NewShiftOpcode
, &X
, &C
, &Y
, &TLI
, &DAG
](SDValue V
) {
2947 // The shift should be one-use.
2950 unsigned OldShiftOpcode
= V
.getOpcode();
2951 switch (OldShiftOpcode
) {
2953 NewShiftOpcode
= ISD::SRL
;
2956 NewShiftOpcode
= ISD::SHL
;
2959 return false; // must be a logical shift.
2961 // We should be shifting a constant.
2962 // FIXME: best to use isConstantOrConstantVector().
2963 C
= V
.getOperand(0);
2964 ConstantSDNode
*CC
=
2965 isConstOrConstSplat(C
, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2968 Y
= V
.getOperand(1);
2970 ConstantSDNode
*XC
=
2971 isConstOrConstSplat(X
, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2972 return TLI
.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2973 X
, XC
, CC
, Y
, OldShiftOpcode
, NewShiftOpcode
, DAG
);
2976 // LHS of comparison should be an one-use 'and'.
2977 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
2980 X
= N0
.getOperand(0);
2981 SDValue Mask
= N0
.getOperand(1);
2983 // 'and' is commutative!
2990 EVT VT
= X
.getValueType();
2993 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2994 SDValue T0
= DAG
.getNode(NewShiftOpcode
, DL
, VT
, X
, Y
);
2995 SDValue T1
= DAG
.getNode(ISD::AND
, DL
, VT
, T0
, C
);
2996 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, N1C
, Cond
);
3000 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3001 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3002 /// handle the commuted versions of these patterns.
3003 SDValue
TargetLowering::foldSetCCWithBinOp(EVT VT
, SDValue N0
, SDValue N1
,
3004 ISD::CondCode Cond
, const SDLoc
&DL
,
3005 DAGCombinerInfo
&DCI
) const {
3006 unsigned BOpcode
= N0
.getOpcode();
3007 assert((BOpcode
== ISD::ADD
|| BOpcode
== ISD::SUB
|| BOpcode
== ISD::XOR
) &&
3008 "Unexpected binop");
3009 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) && "Unexpected condcode");
3011 // (X + Y) == X --> Y == 0
3012 // (X - Y) == X --> Y == 0
3013 // (X ^ Y) == X --> Y == 0
3014 SelectionDAG
&DAG
= DCI
.DAG
;
3015 EVT OpVT
= N0
.getValueType();
3016 SDValue X
= N0
.getOperand(0);
3017 SDValue Y
= N0
.getOperand(1);
3019 return DAG
.getSetCC(DL
, VT
, Y
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
3024 // (X + Y) == Y --> X == 0
3025 // (X ^ Y) == Y --> X == 0
3026 if (BOpcode
== ISD::ADD
|| BOpcode
== ISD::XOR
)
3027 return DAG
.getSetCC(DL
, VT
, X
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
3029 // The shift would not be valid if the operands are boolean (i1).
3030 if (!N0
.hasOneUse() || OpVT
.getScalarSizeInBits() == 1)
3033 // (X - Y) == Y --> X == Y << 1
3034 EVT ShiftVT
= getShiftAmountTy(OpVT
, DAG
.getDataLayout(),
3035 !DCI
.isBeforeLegalize());
3036 SDValue One
= DAG
.getConstant(1, DL
, ShiftVT
);
3037 SDValue YShl1
= DAG
.getNode(ISD::SHL
, DL
, N1
.getValueType(), Y
, One
);
3038 if (!DCI
.isCalledByLegalizer())
3039 DCI
.AddToWorklist(YShl1
.getNode());
3040 return DAG
.getSetCC(DL
, VT
, X
, YShl1
, Cond
);
3043 /// Try to simplify a setcc built with the specified operands and cc. If it is
3044 /// unable to simplify it, return a null SDValue.
3045 SDValue
TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
3046 ISD::CondCode Cond
, bool foldBooleans
,
3047 DAGCombinerInfo
&DCI
,
3048 const SDLoc
&dl
) const {
3049 SelectionDAG
&DAG
= DCI
.DAG
;
3050 EVT OpVT
= N0
.getValueType();
3052 // Constant fold or commute setcc.
3053 if (SDValue Fold
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
))
3056 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3057 // TODO: Handle non-splat vector constants. All undef causes trouble.
3058 ISD::CondCode SwappedCC
= ISD::getSetCCSwappedOperands(Cond
);
3059 if (isConstOrConstSplat(N0
) &&
3060 (DCI
.isBeforeLegalizeOps() ||
3061 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())))
3062 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
3064 // If we have a subtract with the same 2 non-constant operands as this setcc
3065 // -- but in reverse order -- then try to commute the operands of this setcc
3066 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3067 // instruction on some targets.
3068 if (!isConstOrConstSplat(N0
) && !isConstOrConstSplat(N1
) &&
3069 (DCI
.isBeforeLegalizeOps() ||
3070 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())) &&
3071 DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N1
, N0
} ) &&
3072 !DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N0
, N1
} ))
3073 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
3075 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3076 const APInt
&C1
= N1C
->getAPIntValue();
3078 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3079 // equality comparison, then we're just comparing whether X itself is
3081 if (N0
.getOpcode() == ISD::SRL
&& (C1
.isNullValue() || C1
.isOneValue()) &&
3082 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
3083 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
3084 const APInt
&ShAmt
= N0
.getConstantOperandAPInt(1);
3085 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3086 ShAmt
== Log2_32(N0
.getValueSizeInBits())) {
3087 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
3088 // (srl (ctlz x), 5) == 0 -> X != 0
3089 // (srl (ctlz x), 5) != 1 -> X != 0
3092 // (srl (ctlz x), 5) != 0 -> X == 0
3093 // (srl (ctlz x), 5) == 1 -> X == 0
3096 SDValue Zero
= DAG
.getConstant(0, dl
, N0
.getValueType());
3097 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
3103 // Look through truncs that don't change the value of a ctpop.
3104 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::TRUNCATE
)
3105 CTPOP
= N0
.getOperand(0);
3107 if (CTPOP
.hasOneUse() && CTPOP
.getOpcode() == ISD::CTPOP
&&
3109 N0
.getValueSizeInBits() > Log2_32_Ceil(CTPOP
.getValueSizeInBits()))) {
3110 EVT CTVT
= CTPOP
.getValueType();
3111 SDValue CTOp
= CTPOP
.getOperand(0);
3113 // (ctpop x) u< 2 -> (x & x-1) == 0
3114 // (ctpop x) u> 1 -> (x & x-1) != 0
3115 if ((Cond
== ISD::SETULT
&& C1
== 2) || (Cond
== ISD::SETUGT
&& C1
== 1)){
3116 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
3117 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
3118 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
3119 ISD::CondCode CC
= Cond
== ISD::SETULT
? ISD::SETEQ
: ISD::SETNE
;
3120 return DAG
.getSetCC(dl
, VT
, And
, DAG
.getConstant(0, dl
, CTVT
), CC
);
3123 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3124 if (C1
== 1 && !isOperationLegalOrCustom(ISD::CTPOP
, CTVT
) &&
3125 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3126 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3127 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3128 SDValue Zero
= DAG
.getConstant(0, dl
, CTVT
);
3129 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
3130 ISD::CondCode InvCond
= ISD::getSetCCInverse(Cond
, true);
3131 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
3132 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
3133 SDValue LHS
= DAG
.getSetCC(dl
, VT
, CTOp
, Zero
, InvCond
);
3134 SDValue RHS
= DAG
.getSetCC(dl
, VT
, And
, Zero
, Cond
);
3135 unsigned LogicOpcode
= Cond
== ISD::SETEQ
? ISD::AND
: ISD::OR
;
3136 return DAG
.getNode(LogicOpcode
, dl
, VT
, LHS
, RHS
);
3140 // (zext x) == C --> x == (trunc C)
3141 // (sext x) == C --> x == (trunc C)
3142 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3143 DCI
.isBeforeLegalize() && N0
->hasOneUse()) {
3144 unsigned MinBits
= N0
.getValueSizeInBits();
3146 bool Signed
= false;
3147 if (N0
->getOpcode() == ISD::ZERO_EXTEND
) {
3149 MinBits
= N0
->getOperand(0).getValueSizeInBits();
3150 PreExt
= N0
->getOperand(0);
3151 } else if (N0
->getOpcode() == ISD::AND
) {
3152 // DAGCombine turns costly ZExts into ANDs
3153 if (auto *C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1)))
3154 if ((C
->getAPIntValue()+1).isPowerOf2()) {
3155 MinBits
= C
->getAPIntValue().countTrailingOnes();
3156 PreExt
= N0
->getOperand(0);
3158 } else if (N0
->getOpcode() == ISD::SIGN_EXTEND
) {
3160 MinBits
= N0
->getOperand(0).getValueSizeInBits();
3161 PreExt
= N0
->getOperand(0);
3163 } else if (auto *LN0
= dyn_cast
<LoadSDNode
>(N0
)) {
3164 // ZEXTLOAD / SEXTLOAD
3165 if (LN0
->getExtensionType() == ISD::ZEXTLOAD
) {
3166 MinBits
= LN0
->getMemoryVT().getSizeInBits();
3168 } else if (LN0
->getExtensionType() == ISD::SEXTLOAD
) {
3170 MinBits
= LN0
->getMemoryVT().getSizeInBits();
3175 // Figure out how many bits we need to preserve this constant.
3176 unsigned ReqdBits
= Signed
?
3177 C1
.getBitWidth() - C1
.getNumSignBits() + 1 :
3180 // Make sure we're not losing bits from the constant.
3182 MinBits
< C1
.getBitWidth() &&
3183 MinBits
>= ReqdBits
) {
3184 EVT MinVT
= EVT::getIntegerVT(*DAG
.getContext(), MinBits
);
3185 if (isTypeDesirableForOp(ISD::SETCC
, MinVT
)) {
3186 // Will get folded away.
3187 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, MinVT
, PreExt
);
3188 if (MinBits
== 1 && C1
== 1)
3189 // Invert the condition.
3190 return DAG
.getSetCC(dl
, VT
, Trunc
, DAG
.getConstant(0, dl
, MVT::i1
),
3191 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3192 SDValue C
= DAG
.getConstant(C1
.trunc(MinBits
), dl
, MinVT
);
3193 return DAG
.getSetCC(dl
, VT
, Trunc
, C
, Cond
);
3196 // If truncating the setcc operands is not desirable, we can still
3197 // simplify the expression in some cases:
3198 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3199 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3200 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3201 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3202 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3203 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3204 SDValue TopSetCC
= N0
->getOperand(0);
3205 unsigned N0Opc
= N0
->getOpcode();
3206 bool SExt
= (N0Opc
== ISD::SIGN_EXTEND
);
3207 if (TopSetCC
.getValueType() == MVT::i1
&& VT
== MVT::i1
&&
3208 TopSetCC
.getOpcode() == ISD::SETCC
&&
3209 (N0Opc
== ISD::ZERO_EXTEND
|| N0Opc
== ISD::SIGN_EXTEND
) &&
3210 (isConstFalseVal(N1C
) ||
3211 isExtendedTrueVal(N1C
, N0
->getValueType(0), SExt
))) {
3213 bool Inverse
= (N1C
->isNullValue() && Cond
== ISD::SETEQ
) ||
3214 (!N1C
->isNullValue() && Cond
== ISD::SETNE
);
3219 ISD::CondCode InvCond
= ISD::getSetCCInverse(
3220 cast
<CondCodeSDNode
>(TopSetCC
.getOperand(2))->get(),
3221 TopSetCC
.getOperand(0).getValueType().isInteger());
3222 return DAG
.getSetCC(dl
, VT
, TopSetCC
.getOperand(0),
3223 TopSetCC
.getOperand(1),
3229 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3230 // equality or unsigned, and all 1 bits of the const are in the same
3231 // partial word, see if we can shorten the load.
3232 if (DCI
.isBeforeLegalize() &&
3233 !ISD::isSignedIntSetCC(Cond
) &&
3234 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
3235 N0
.getNode()->hasOneUse() &&
3236 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
3237 N0
.getOperand(0).getNode()->hasOneUse() &&
3238 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
3239 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
3241 unsigned bestWidth
= 0, bestOffset
= 0;
3242 if (Lod
->isSimple() && Lod
->isUnindexed()) {
3243 unsigned origWidth
= N0
.getValueSizeInBits();
3244 unsigned maskWidth
= origWidth
;
3245 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3246 // 8 bits, but have to be careful...
3247 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
3248 origWidth
= Lod
->getMemoryVT().getSizeInBits();
3249 const APInt
&Mask
= N0
.getConstantOperandAPInt(1);
3250 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
3251 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
3252 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
3253 if (Mask
.isSubsetOf(newMask
)) {
3254 if (DAG
.getDataLayout().isLittleEndian())
3255 bestOffset
= (uint64_t)offset
* (width
/8);
3257 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
3258 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
3267 EVT newVT
= EVT::getIntegerVT(*DAG
.getContext(), bestWidth
);
3268 if (newVT
.isRound() &&
3269 shouldReduceLoadWidth(Lod
, ISD::NON_EXTLOAD
, newVT
)) {
3270 EVT PtrType
= Lod
->getOperand(1).getValueType();
3271 SDValue Ptr
= Lod
->getBasePtr();
3272 if (bestOffset
!= 0)
3273 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
3274 DAG
.getConstant(bestOffset
, dl
, PtrType
));
3275 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
3276 SDValue NewLoad
= DAG
.getLoad(
3277 newVT
, dl
, Lod
->getChain(), Ptr
,
3278 Lod
->getPointerInfo().getWithOffset(bestOffset
), NewAlign
);
3279 return DAG
.getSetCC(dl
, VT
,
3280 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
3281 DAG
.getConstant(bestMask
.trunc(bestWidth
),
3283 DAG
.getConstant(0LL, dl
, newVT
), Cond
);
3288 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3289 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
3290 unsigned InSize
= N0
.getOperand(0).getValueSizeInBits();
3292 // If the comparison constant has bits in the upper part, the
3293 // zero-extended value could never match.
3294 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
3295 C1
.getBitWidth() - InSize
))) {
3300 return DAG
.getConstant(0, dl
, VT
);
3304 return DAG
.getConstant(1, dl
, VT
);
3307 // True if the sign bit of C1 is set.
3308 return DAG
.getConstant(C1
.isNegative(), dl
, VT
);
3311 // True if the sign bit of C1 isn't set.
3312 return DAG
.getConstant(C1
.isNonNegative(), dl
, VT
);
3318 // Otherwise, we can perform the comparison with the low bits.
3326 EVT newVT
= N0
.getOperand(0).getValueType();
3327 if (DCI
.isBeforeLegalizeOps() ||
3328 (isOperationLegal(ISD::SETCC
, newVT
) &&
3329 isCondCodeLegal(Cond
, newVT
.getSimpleVT()))) {
3331 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), newVT
);
3332 SDValue NewConst
= DAG
.getConstant(C1
.trunc(InSize
), dl
, newVT
);
3334 SDValue NewSetCC
= DAG
.getSetCC(dl
, NewSetCCVT
, N0
.getOperand(0),
3336 return DAG
.getBoolExtOrTrunc(NewSetCC
, dl
, VT
, N0
.getValueType());
3341 break; // todo, be more careful with signed comparisons
3343 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3344 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3345 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
3346 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
3347 EVT ExtDstTy
= N0
.getValueType();
3348 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
3350 // If the constant doesn't fit into the number of bits for the source of
3351 // the sign extension, it is impossible for both sides to be equal.
3352 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
3353 return DAG
.getConstant(Cond
== ISD::SETNE
, dl
, VT
);
3356 EVT Op0Ty
= N0
.getOperand(0).getValueType();
3357 if (Op0Ty
== ExtSrcTy
) {
3358 ZextOp
= N0
.getOperand(0);
3360 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
3361 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
3362 DAG
.getConstant(Imm
, dl
, Op0Ty
));
3364 if (!DCI
.isCalledByLegalizer())
3365 DCI
.AddToWorklist(ZextOp
.getNode());
3366 // Otherwise, make this a use of a zext.
3367 return DAG
.getSetCC(dl
, VT
, ZextOp
,
3368 DAG
.getConstant(C1
& APInt::getLowBitsSet(
3373 } else if ((N1C
->isNullValue() || N1C
->isOne()) &&
3374 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3375 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3376 if (N0
.getOpcode() == ISD::SETCC
&&
3377 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
3378 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (!N1C
->isOne());
3380 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
3381 // Invert the condition.
3382 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
3383 CC
= ISD::getSetCCInverse(CC
,
3384 N0
.getOperand(0).getValueType().isInteger());
3385 if (DCI
.isBeforeLegalizeOps() ||
3386 isCondCodeLegal(CC
, N0
.getOperand(0).getSimpleValueType()))
3387 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
3390 if ((N0
.getOpcode() == ISD::XOR
||
3391 (N0
.getOpcode() == ISD::AND
&&
3392 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
3393 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
3394 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
3395 cast
<ConstantSDNode
>(N0
.getOperand(1))->isOne()) {
3396 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3397 // can only do this if the top bits are known zero.
3398 unsigned BitWidth
= N0
.getValueSizeInBits();
3399 if (DAG
.MaskedValueIsZero(N0
,
3400 APInt::getHighBitsSet(BitWidth
,
3402 // Okay, get the un-inverted input value.
3404 if (N0
.getOpcode() == ISD::XOR
) {
3405 Val
= N0
.getOperand(0);
3407 assert(N0
.getOpcode() == ISD::AND
&&
3408 N0
.getOperand(0).getOpcode() == ISD::XOR
);
3409 // ((X^1)&1)^1 -> X & 1
3410 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
3411 N0
.getOperand(0).getOperand(0),
3415 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
3416 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3418 } else if (N1C
->isOne() &&
3420 getBooleanContents(N0
->getValueType(0)) ==
3421 ZeroOrOneBooleanContent
)) {
3423 if (Op0
.getOpcode() == ISD::TRUNCATE
)
3424 Op0
= Op0
.getOperand(0);
3426 if ((Op0
.getOpcode() == ISD::XOR
) &&
3427 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
3428 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
3429 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3430 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
3431 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
3434 if (Op0
.getOpcode() == ISD::AND
&&
3435 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
3436 cast
<ConstantSDNode
>(Op0
.getOperand(1))->isOne()) {
3437 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3438 if (Op0
.getValueType().bitsGT(VT
))
3439 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3440 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
3441 DAG
.getConstant(1, dl
, VT
));
3442 else if (Op0
.getValueType().bitsLT(VT
))
3443 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3444 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
3445 DAG
.getConstant(1, dl
, VT
));
3447 return DAG
.getSetCC(dl
, VT
, Op0
,
3448 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3449 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3451 if (Op0
.getOpcode() == ISD::AssertZext
&&
3452 cast
<VTSDNode
>(Op0
.getOperand(1))->getVT() == MVT::i1
)
3453 return DAG
.getSetCC(dl
, VT
, Op0
,
3454 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3455 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3460 // icmp eq/ne (urem %x, %y), 0
3461 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3463 if (N0
.getOpcode() == ISD::UREM
&& N1C
->isNullValue() &&
3464 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3465 KnownBits XKnown
= DAG
.computeKnownBits(N0
.getOperand(0));
3466 KnownBits YKnown
= DAG
.computeKnownBits(N0
.getOperand(1));
3467 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
3468 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
, Cond
);
3472 optimizeSetCCOfSignedTruncationCheck(VT
, N0
, N1
, Cond
, DCI
, dl
))
3476 // These simplifications apply to splat vectors as well.
3477 // TODO: Handle more splat vector cases.
3478 if (auto *N1C
= isConstOrConstSplat(N1
)) {
3479 const APInt
&C1
= N1C
->getAPIntValue();
3481 APInt MinVal
, MaxVal
;
3482 unsigned OperandBitSize
= N1C
->getValueType(0).getScalarSizeInBits();
3483 if (ISD::isSignedIntSetCC(Cond
)) {
3484 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
3485 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
3487 MinVal
= APInt::getMinValue(OperandBitSize
);
3488 MaxVal
= APInt::getMaxValue(OperandBitSize
);
3491 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3492 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
3493 // X >= MIN --> true
3495 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3497 if (!VT
.isVector()) { // TODO: Support this for vectors.
3498 // X >= C0 --> X > (C0 - 1)
3500 ISD::CondCode NewCC
= (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
;
3501 if ((DCI
.isBeforeLegalizeOps() ||
3502 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3503 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3504 isLegalICmpImmediate(C
.getSExtValue())))) {
3505 return DAG
.getSetCC(dl
, VT
, N0
,
3506 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3512 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
3513 // X <= MAX --> true
3515 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3517 // X <= C0 --> X < (C0 + 1)
3518 if (!VT
.isVector()) { // TODO: Support this for vectors.
3520 ISD::CondCode NewCC
= (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
;
3521 if ((DCI
.isBeforeLegalizeOps() ||
3522 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3523 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3524 isLegalICmpImmediate(C
.getSExtValue())))) {
3525 return DAG
.getSetCC(dl
, VT
, N0
,
3526 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3532 if (Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) {
3534 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X < MIN --> false
3536 // TODO: Support this for vectors after legalize ops.
3537 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3538 // Canonicalize setlt X, Max --> setne X, Max
3540 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3542 // If we have setult X, 1, turn it into seteq X, 0
3544 return DAG
.getSetCC(dl
, VT
, N0
,
3545 DAG
.getConstant(MinVal
, dl
, N0
.getValueType()),
3550 if (Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) {
3552 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X > MAX --> false
3554 // TODO: Support this for vectors after legalize ops.
3555 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3556 // Canonicalize setgt X, Min --> setne X, Min
3558 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3560 // If we have setugt X, Max-1, turn it into seteq X, Max
3562 return DAG
.getSetCC(dl
, VT
, N0
,
3563 DAG
.getConstant(MaxVal
, dl
, N0
.getValueType()),
3568 if (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) {
3569 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3570 if (C1
.isNullValue())
3571 if (SDValue CC
= optimizeSetCCByHoistingAndByConstFromLogicalShift(
3572 VT
, N0
, N1
, Cond
, DCI
, dl
))
3576 // If we have "setcc X, C0", check to see if we can shrink the immediate
3578 // TODO: Support this for vectors after legalize ops.
3579 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3580 // SETUGT X, SINTMAX -> SETLT X, 0
3581 if (Cond
== ISD::SETUGT
&&
3582 C1
== APInt::getSignedMaxValue(OperandBitSize
))
3583 return DAG
.getSetCC(dl
, VT
, N0
,
3584 DAG
.getConstant(0, dl
, N1
.getValueType()),
3587 // SETULT X, SINTMIN -> SETGT X, -1
3588 if (Cond
== ISD::SETULT
&&
3589 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
3590 SDValue ConstMinusOne
=
3591 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
), dl
,
3593 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
3598 // Back to non-vector simplifications.
3599 // TODO: Can we do these for vector splats?
3600 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3601 const APInt
&C1
= N1C
->getAPIntValue();
3603 // Fold bit comparisons when we can.
3604 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3605 (VT
== N0
.getValueType() ||
3606 (isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType()))) &&
3607 N0
.getOpcode() == ISD::AND
) {
3608 auto &DL
= DAG
.getDataLayout();
3609 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3610 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3611 !DCI
.isBeforeLegalize());
3612 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
3613 // Perform the xform if the AND RHS is a single bit.
3614 if (AndRHS
->getAPIntValue().isPowerOf2()) {
3615 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3616 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
3617 DAG
.getConstant(AndRHS
->getAPIntValue().logBase2(), dl
,
3620 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
3621 // (X & 8) == 8 --> (X & 8) >> 3
3622 // Perform the xform if C1 is a single bit.
3623 if (C1
.isPowerOf2()) {
3624 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3625 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
3626 DAG
.getConstant(C1
.logBase2(), dl
,
3633 if (C1
.getMinSignedBits() <= 64 &&
3634 !isLegalICmpImmediate(C1
.getSExtValue())) {
3635 // (X & -256) == 256 -> (X >> 8) == 1
3636 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3637 N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
3638 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3639 const APInt
&AndRHSC
= AndRHS
->getAPIntValue();
3640 if ((-AndRHSC
).isPowerOf2() && (AndRHSC
& C1
) == C1
) {
3641 unsigned ShiftBits
= AndRHSC
.countTrailingZeros();
3642 auto &DL
= DAG
.getDataLayout();
3643 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3644 !DCI
.isBeforeLegalize());
3645 EVT CmpTy
= N0
.getValueType();
3646 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
.getOperand(0),
3647 DAG
.getConstant(ShiftBits
, dl
,
3649 SDValue CmpRHS
= DAG
.getConstant(C1
.lshr(ShiftBits
), dl
, CmpTy
);
3650 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, Cond
);
3653 } else if (Cond
== ISD::SETULT
|| Cond
== ISD::SETUGE
||
3654 Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
) {
3655 bool AdjOne
= (Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
);
3656 // X < 0x100000000 -> (X >> 32) < 1
3657 // X >= 0x100000000 -> (X >> 32) >= 1
3658 // X <= 0x0ffffffff -> (X >> 32) < 1
3659 // X > 0x0ffffffff -> (X >> 32) >= 1
3662 ISD::CondCode NewCond
= Cond
;
3664 ShiftBits
= C1
.countTrailingOnes();
3666 NewCond
= (Cond
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
3668 ShiftBits
= C1
.countTrailingZeros();
3670 NewC
.lshrInPlace(ShiftBits
);
3671 if (ShiftBits
&& NewC
.getMinSignedBits() <= 64 &&
3672 isLegalICmpImmediate(NewC
.getSExtValue())) {
3673 auto &DL
= DAG
.getDataLayout();
3674 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3675 !DCI
.isBeforeLegalize());
3676 EVT CmpTy
= N0
.getValueType();
3677 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
,
3678 DAG
.getConstant(ShiftBits
, dl
, ShiftTy
));
3679 SDValue CmpRHS
= DAG
.getConstant(NewC
, dl
, CmpTy
);
3680 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, NewCond
);
3686 if (!isa
<ConstantFPSDNode
>(N0
) && isa
<ConstantFPSDNode
>(N1
)) {
3687 auto *CFP
= cast
<ConstantFPSDNode
>(N1
);
3688 assert(!CFP
->getValueAPF().isNaN() && "Unexpected NaN value");
3690 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3691 // constant if knowing that the operand is non-nan is enough. We prefer to
3692 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3694 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
3695 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
3697 // setcc (fneg x), C -> setcc swap(pred) x, -C
3698 if (N0
.getOpcode() == ISD::FNEG
) {
3699 ISD::CondCode SwapCond
= ISD::getSetCCSwappedOperands(Cond
);
3700 if (DCI
.isBeforeLegalizeOps() ||
3701 isCondCodeLegal(SwapCond
, N0
.getSimpleValueType())) {
3702 SDValue NegN1
= DAG
.getNode(ISD::FNEG
, dl
, N0
.getValueType(), N1
);
3703 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), NegN1
, SwapCond
);
3707 // If the condition is not legal, see if we can find an equivalent one
3709 if (!isCondCodeLegal(Cond
, N0
.getSimpleValueType())) {
3710 // If the comparison was an awkward floating-point == or != and one of
3711 // the comparison operands is infinity or negative infinity, convert the
3712 // condition to a less-awkward <= or >=.
3713 if (CFP
->getValueAPF().isInfinity()) {
3714 if (CFP
->getValueAPF().isNegative()) {
3715 if (Cond
== ISD::SETOEQ
&&
3716 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3717 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
3718 if (Cond
== ISD::SETUEQ
&&
3719 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3720 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
3721 if (Cond
== ISD::SETUNE
&&
3722 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3723 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
3724 if (Cond
== ISD::SETONE
&&
3725 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3726 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
3728 if (Cond
== ISD::SETOEQ
&&
3729 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3730 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
3731 if (Cond
== ISD::SETUEQ
&&
3732 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3733 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
3734 if (Cond
== ISD::SETUNE
&&
3735 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3736 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
3737 if (Cond
== ISD::SETONE
&&
3738 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3739 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
3746 // The sext(setcc()) => setcc() optimization relies on the appropriate
3747 // constant being emitted.
3748 assert(!N0
.getValueType().isInteger() &&
3749 "Integer types should be handled by FoldSetCC");
3751 bool EqTrue
= ISD::isTrueWhenEqual(Cond
);
3752 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
3753 if (UOF
== 2) // FP operators that are undefined on NaNs.
3754 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3755 if (UOF
== unsigned(EqTrue
))
3756 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3757 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3758 // if it is not already.
3759 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
3760 if (NewCond
!= Cond
&&
3761 (DCI
.isBeforeLegalizeOps() ||
3762 isCondCodeLegal(NewCond
, N0
.getSimpleValueType())))
3763 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
3766 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3767 N0
.getValueType().isInteger()) {
3768 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
3769 N0
.getOpcode() == ISD::XOR
) {
3770 // Simplify (X+Y) == (X+Z) --> Y == Z
3771 if (N0
.getOpcode() == N1
.getOpcode()) {
3772 if (N0
.getOperand(0) == N1
.getOperand(0))
3773 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
3774 if (N0
.getOperand(1) == N1
.getOperand(1))
3775 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
3776 if (isCommutativeBinOp(N0
.getOpcode())) {
3777 // If X op Y == Y op X, try other combinations.
3778 if (N0
.getOperand(0) == N1
.getOperand(1))
3779 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
3781 if (N0
.getOperand(1) == N1
.getOperand(0))
3782 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
3787 // If RHS is a legal immediate value for a compare instruction, we need
3788 // to be careful about increasing register pressure needlessly.
3789 bool LegalRHSImm
= false;
3791 if (auto *RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
3792 if (auto *LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3793 // Turn (X+C1) == C2 --> X == C2-C1
3794 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
3795 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3796 DAG
.getConstant(RHSC
->getAPIntValue()-
3797 LHSR
->getAPIntValue(),
3798 dl
, N0
.getValueType()), Cond
);
3801 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3802 if (N0
.getOpcode() == ISD::XOR
)
3803 // If we know that all of the inverted bits are zero, don't bother
3804 // performing the inversion.
3805 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
3807 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3808 DAG
.getConstant(LHSR
->getAPIntValue() ^
3809 RHSC
->getAPIntValue(),
3810 dl
, N0
.getValueType()),
3814 // Turn (C1-X) == C2 --> X == C1-C2
3815 if (auto *SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
3816 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
3818 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
3819 DAG
.getConstant(SUBC
->getAPIntValue() -
3820 RHSC
->getAPIntValue(),
3821 dl
, N0
.getValueType()),
3826 // Could RHSC fold directly into a compare?
3827 if (RHSC
->getValueType(0).getSizeInBits() <= 64)
3828 LegalRHSImm
= isLegalICmpImmediate(RHSC
->getSExtValue());
3831 // (X+Y) == X --> Y == 0 and similar folds.
3832 // Don't do this if X is an immediate that can fold into a cmp
3833 // instruction and X+Y has other uses. It could be an induction variable
3834 // chain, and the transform would increase register pressure.
3835 if (!LegalRHSImm
|| N0
.hasOneUse())
3836 if (SDValue V
= foldSetCCWithBinOp(VT
, N0
, N1
, Cond
, dl
, DCI
))
3840 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
3841 N1
.getOpcode() == ISD::XOR
)
3842 if (SDValue V
= foldSetCCWithBinOp(VT
, N1
, N0
, Cond
, dl
, DCI
))
3845 if (SDValue V
= foldSetCCWithAnd(VT
, N0
, N1
, Cond
, dl
, DCI
))
3849 // Fold remainder of division by a constant.
3850 if ((N0
.getOpcode() == ISD::UREM
|| N0
.getOpcode() == ISD::SREM
) &&
3851 N0
.hasOneUse() && (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3852 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3854 // When division is cheap or optimizing for minimum size,
3855 // fall through to DIVREM creation by skipping this fold.
3856 if (!isIntDivCheap(VT
, Attr
) && !Attr
.hasFnAttribute(Attribute::MinSize
)) {
3857 if (N0
.getOpcode() == ISD::UREM
) {
3858 if (SDValue Folded
= buildUREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3860 } else if (N0
.getOpcode() == ISD::SREM
) {
3861 if (SDValue Folded
= buildSREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3867 // Fold away ALL boolean setcc's.
3868 if (N0
.getValueType().getScalarType() == MVT::i1
&& foldBooleans
) {
3871 default: llvm_unreachable("Unknown integer setcc!");
3872 case ISD::SETEQ
: // X == Y -> ~(X^Y)
3873 Temp
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3874 N0
= DAG
.getNOT(dl
, Temp
, OpVT
);
3875 if (!DCI
.isCalledByLegalizer())
3876 DCI
.AddToWorklist(Temp
.getNode());
3878 case ISD::SETNE
: // X != Y --> (X^Y)
3879 N0
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3881 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3882 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3883 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3884 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N1
, Temp
);
3885 if (!DCI
.isCalledByLegalizer())
3886 DCI
.AddToWorklist(Temp
.getNode());
3888 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3889 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3890 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3891 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N0
, Temp
);
3892 if (!DCI
.isCalledByLegalizer())
3893 DCI
.AddToWorklist(Temp
.getNode());
3895 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3896 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3897 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3898 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N1
, Temp
);
3899 if (!DCI
.isCalledByLegalizer())
3900 DCI
.AddToWorklist(Temp
.getNode());
3902 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3903 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3904 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3905 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N0
, Temp
);
3908 if (VT
.getScalarType() != MVT::i1
) {
3909 if (!DCI
.isCalledByLegalizer())
3910 DCI
.AddToWorklist(N0
.getNode());
3911 // FIXME: If running after legalize, we probably can't do this.
3912 ISD::NodeType ExtendCode
= getExtendForContent(getBooleanContents(OpVT
));
3913 N0
= DAG
.getNode(ExtendCode
, dl
, VT
, N0
);
3918 // Could not fold it.
3922 /// Returns true (and the GlobalValue and the offset) if the node is a
3923 /// GlobalAddress + offset.
3924 bool TargetLowering::isGAPlusOffset(SDNode
*WN
, const GlobalValue
*&GA
,
3925 int64_t &Offset
) const {
3927 SDNode
*N
= unwrapAddress(SDValue(WN
, 0)).getNode();
3929 if (auto *GASD
= dyn_cast
<GlobalAddressSDNode
>(N
)) {
3930 GA
= GASD
->getGlobal();
3931 Offset
+= GASD
->getOffset();
3935 if (N
->getOpcode() == ISD::ADD
) {
3936 SDValue N1
= N
->getOperand(0);
3937 SDValue N2
= N
->getOperand(1);
3938 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
3939 if (auto *V
= dyn_cast
<ConstantSDNode
>(N2
)) {
3940 Offset
+= V
->getSExtValue();
3943 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
3944 if (auto *V
= dyn_cast
<ConstantSDNode
>(N1
)) {
3945 Offset
+= V
->getSExtValue();
3954 SDValue
TargetLowering::PerformDAGCombine(SDNode
*N
,
3955 DAGCombinerInfo
&DCI
) const {
3956 // Default implementation: no optimization.
3960 //===----------------------------------------------------------------------===//
3961 // Inline Assembler Implementation Methods
3962 //===----------------------------------------------------------------------===//
3964 TargetLowering::ConstraintType
3965 TargetLowering::getConstraintType(StringRef Constraint
) const {
3966 unsigned S
= Constraint
.size();
3969 switch (Constraint
[0]) {
3972 return C_RegisterClass
;
3974 case 'o': // offsetable
3975 case 'V': // not offsetable
3977 case 'n': // Simple Integer
3978 case 'E': // Floating Point Constant
3979 case 'F': // Floating Point Constant
3981 case 'i': // Simple Integer or Relocatable Constant
3982 case 's': // Relocatable Constant
3983 case 'p': // Address.
3984 case 'X': // Allow ANY value.
3985 case 'I': // Target registers.
3999 if (S
> 1 && Constraint
[0] == '{' && Constraint
[S
- 1] == '}') {
4000 if (S
== 8 && Constraint
.substr(1, 6) == "memory") // "{memory}"
4007 /// Try to replace an X constraint, which matches anything, with another that
4008 /// has more specific requirements based on the type of the corresponding
4010 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
4011 if (ConstraintVT
.isInteger())
4013 if (ConstraintVT
.isFloatingPoint())
4014 return "f"; // works for many targets
4018 SDValue
TargetLowering::LowerAsmOutputForConstraint(
4019 SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
, const AsmOperandInfo
&OpInfo
,
4020 SelectionDAG
&DAG
) const {
4024 /// Lower the specified operand into the Ops vector.
4025 /// If it is invalid, don't add anything to Ops.
4026 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4027 std::string
&Constraint
,
4028 std::vector
<SDValue
> &Ops
,
4029 SelectionDAG
&DAG
) const {
4031 if (Constraint
.length() > 1) return;
4033 char ConstraintLetter
= Constraint
[0];
4034 switch (ConstraintLetter
) {
4036 case 'X': // Allows any operand; labels (basic block) use this.
4037 if (Op
.getOpcode() == ISD::BasicBlock
||
4038 Op
.getOpcode() == ISD::TargetBlockAddress
) {
4043 case 'i': // Simple Integer or Relocatable Constant
4044 case 'n': // Simple Integer
4045 case 's': { // Relocatable Constant
4047 GlobalAddressSDNode
*GA
;
4049 BlockAddressSDNode
*BA
;
4050 uint64_t Offset
= 0;
4052 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4053 // etc., since getelementpointer is variadic. We can't use
4054 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4055 // while in this case the GA may be furthest from the root node which is
4056 // likely an ISD::ADD.
4058 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) && ConstraintLetter
!= 'n') {
4059 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
4060 GA
->getValueType(0),
4061 Offset
+ GA
->getOffset()));
4063 } else if ((C
= dyn_cast
<ConstantSDNode
>(Op
)) &&
4064 ConstraintLetter
!= 's') {
4065 // gcc prints these as sign extended. Sign extend value to 64 bits
4066 // now; without this it would get ZExt'd later in
4067 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4068 bool IsBool
= C
->getConstantIntValue()->getBitWidth() == 1;
4069 BooleanContent BCont
= getBooleanContents(MVT::i64
);
4070 ISD::NodeType ExtOpc
= IsBool
? getExtendForContent(BCont
)
4072 int64_t ExtVal
= ExtOpc
== ISD::ZERO_EXTEND
? C
->getZExtValue()
4073 : C
->getSExtValue();
4074 Ops
.push_back(DAG
.getTargetConstant(Offset
+ ExtVal
,
4075 SDLoc(C
), MVT::i64
));
4077 } else if ((BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) &&
4078 ConstraintLetter
!= 'n') {
4079 Ops
.push_back(DAG
.getTargetBlockAddress(
4080 BA
->getBlockAddress(), BA
->getValueType(0),
4081 Offset
+ BA
->getOffset(), BA
->getTargetFlags()));
4084 const unsigned OpCode
= Op
.getOpcode();
4085 if (OpCode
== ISD::ADD
|| OpCode
== ISD::SUB
) {
4086 if ((C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))))
4087 Op
= Op
.getOperand(1);
4088 // Subtraction is not commutative.
4089 else if (OpCode
== ISD::ADD
&&
4090 (C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))))
4091 Op
= Op
.getOperand(0);
4094 Offset
+= (OpCode
== ISD::ADD
? 1 : -1) * C
->getSExtValue();
4105 std::pair
<unsigned, const TargetRegisterClass
*>
4106 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*RI
,
4107 StringRef Constraint
,
4109 if (Constraint
.empty() || Constraint
[0] != '{')
4110 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(nullptr));
4111 assert(*(Constraint
.end() - 1) == '}' && "Not a brace enclosed constraint?");
4113 // Remove the braces from around the name.
4114 StringRef
RegName(Constraint
.data() + 1, Constraint
.size() - 2);
4116 std::pair
<unsigned, const TargetRegisterClass
*> R
=
4117 std::make_pair(0u, static_cast<const TargetRegisterClass
*>(nullptr));
4119 // Figure out which register class contains this reg.
4120 for (const TargetRegisterClass
*RC
: RI
->regclasses()) {
4121 // If none of the value types for this register class are valid, we
4122 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4123 if (!isLegalRC(*RI
, *RC
))
4126 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
4128 if (RegName
.equals_lower(RI
->getRegAsmName(*I
))) {
4129 std::pair
<unsigned, const TargetRegisterClass
*> S
=
4130 std::make_pair(*I
, RC
);
4132 // If this register class has the requested value type, return it,
4133 // otherwise keep searching and return the first class found
4134 // if no other is found which explicitly has the requested type.
4135 if (RI
->isTypeLegalForClass(*RC
, VT
))
4146 //===----------------------------------------------------------------------===//
4147 // Constraint Selection.
4149 /// Return true of this is an input operand that is a matching constraint like
4151 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4152 assert(!ConstraintCode
.empty() && "No known constraint!");
4153 return isdigit(static_cast<unsigned char>(ConstraintCode
[0]));
4156 /// If this is an input matching constraint, this method returns the output
4157 /// operand it matches.
4158 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4159 assert(!ConstraintCode
.empty() && "No known constraint!");
4160 return atoi(ConstraintCode
.c_str());
4163 /// Split up the constraint string from the inline assembly value into the
4164 /// specific constraints and their prefixes, and also tie in the associated
4166 /// If this returns an empty vector, and if the constraint string itself
4167 /// isn't empty, there was an error parsing.
4168 TargetLowering::AsmOperandInfoVector
4169 TargetLowering::ParseConstraints(const DataLayout
&DL
,
4170 const TargetRegisterInfo
*TRI
,
4171 ImmutableCallSite CS
) const {
4172 /// Information about all of the constraints.
4173 AsmOperandInfoVector ConstraintOperands
;
4174 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
4175 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
4177 // Do a prepass over the constraints, canonicalizing them, and building up the
4178 // ConstraintOperands list.
4179 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
4180 unsigned ResNo
= 0; // ResNo - The result number of the next output.
4182 for (InlineAsm::ConstraintInfo
&CI
: IA
->ParseConstraints()) {
4183 ConstraintOperands
.emplace_back(std::move(CI
));
4184 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
4186 // Update multiple alternative constraint count.
4187 if (OpInfo
.multipleAlternatives
.size() > maCount
)
4188 maCount
= OpInfo
.multipleAlternatives
.size();
4190 OpInfo
.ConstraintVT
= MVT::Other
;
4192 // Compute the value type for each operand.
4193 switch (OpInfo
.Type
) {
4194 case InlineAsm::isOutput
:
4195 // Indirect outputs just consume an argument.
4196 if (OpInfo
.isIndirect
) {
4197 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
4201 // The return value of the call is this value. As such, there is no
4202 // corresponding argument.
4203 assert(!CS
.getType()->isVoidTy() &&
4205 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
4206 OpInfo
.ConstraintVT
=
4207 getSimpleValueType(DL
, STy
->getElementType(ResNo
));
4209 assert(ResNo
== 0 && "Asm only has one result!");
4210 OpInfo
.ConstraintVT
= getSimpleValueType(DL
, CS
.getType());
4214 case InlineAsm::isInput
:
4215 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
4217 case InlineAsm::isClobber
:
4222 if (OpInfo
.CallOperandVal
) {
4223 llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
4224 if (OpInfo
.isIndirect
) {
4225 llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
4227 report_fatal_error("Indirect operand for inline asm not a pointer!");
4228 OpTy
= PtrTy
->getElementType();
4231 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4232 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
4233 if (STy
->getNumElements() == 1)
4234 OpTy
= STy
->getElementType(0);
4236 // If OpTy is not a single value, it may be a struct/union that we
4237 // can tile with integers.
4238 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
4239 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
4248 OpInfo
.ConstraintVT
=
4249 MVT::getVT(IntegerType::get(OpTy
->getContext(), BitSize
), true);
4252 } else if (PointerType
*PT
= dyn_cast
<PointerType
>(OpTy
)) {
4253 unsigned PtrSize
= DL
.getPointerSizeInBits(PT
->getAddressSpace());
4254 OpInfo
.ConstraintVT
= MVT::getIntegerVT(PtrSize
);
4256 OpInfo
.ConstraintVT
= MVT::getVT(OpTy
, true);
4261 // If we have multiple alternative constraints, select the best alternative.
4262 if (!ConstraintOperands
.empty()) {
4264 unsigned bestMAIndex
= 0;
4265 int bestWeight
= -1;
4266 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4269 // Compute the sums of the weights for each alternative, keeping track
4270 // of the best (highest weight) one so far.
4271 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
4273 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4274 cIndex
!= eIndex
; ++cIndex
) {
4275 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
4276 if (OpInfo
.Type
== InlineAsm::isClobber
)
4279 // If this is an output operand with a matching input operand,
4280 // look up the matching input. If their types mismatch, e.g. one
4281 // is an integer, the other is floating point, or their sizes are
4282 // different, flag it as an maCantMatch.
4283 if (OpInfo
.hasMatchingInput()) {
4284 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
4285 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
4286 if ((OpInfo
.ConstraintVT
.isInteger() !=
4287 Input
.ConstraintVT
.isInteger()) ||
4288 (OpInfo
.ConstraintVT
.getSizeInBits() !=
4289 Input
.ConstraintVT
.getSizeInBits())) {
4290 weightSum
= -1; // Can't match.
4295 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
4300 weightSum
+= weight
;
4303 if (weightSum
> bestWeight
) {
4304 bestWeight
= weightSum
;
4305 bestMAIndex
= maIndex
;
4309 // Now select chosen alternative in each constraint.
4310 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4311 cIndex
!= eIndex
; ++cIndex
) {
4312 AsmOperandInfo
&cInfo
= ConstraintOperands
[cIndex
];
4313 if (cInfo
.Type
== InlineAsm::isClobber
)
4315 cInfo
.selectAlternative(bestMAIndex
);
4320 // Check and hook up tied operands, choose constraint code to use.
4321 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4322 cIndex
!= eIndex
; ++cIndex
) {
4323 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
4325 // If this is an output operand with a matching input operand, look up the
4326 // matching input. If their types mismatch, e.g. one is an integer, the
4327 // other is floating point, or their sizes are different, flag it as an
4329 if (OpInfo
.hasMatchingInput()) {
4330 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
4332 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
4333 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
4334 getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
4335 OpInfo
.ConstraintVT
);
4336 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
4337 getRegForInlineAsmConstraint(TRI
, Input
.ConstraintCode
,
4338 Input
.ConstraintVT
);
4339 if ((OpInfo
.ConstraintVT
.isInteger() !=
4340 Input
.ConstraintVT
.isInteger()) ||
4341 (MatchRC
.second
!= InputRC
.second
)) {
4342 report_fatal_error("Unsupported asm: input constraint"
4343 " with a matching output constraint of"
4344 " incompatible type!");
4350 return ConstraintOperands
;
4353 /// Return an integer indicating how general CT is.
4354 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
4356 case TargetLowering::C_Immediate
:
4357 case TargetLowering::C_Other
:
4358 case TargetLowering::C_Unknown
:
4360 case TargetLowering::C_Register
:
4362 case TargetLowering::C_RegisterClass
:
4364 case TargetLowering::C_Memory
:
4367 llvm_unreachable("Invalid constraint type");
4370 /// Examine constraint type and operand type and determine a weight value.
4371 /// This object must already have been set up with the operand type
4372 /// and the current alternative constraint selected.
4373 TargetLowering::ConstraintWeight
4374 TargetLowering::getMultipleConstraintMatchWeight(
4375 AsmOperandInfo
&info
, int maIndex
) const {
4376 InlineAsm::ConstraintCodeVector
*rCodes
;
4377 if (maIndex
>= (int)info
.multipleAlternatives
.size())
4378 rCodes
= &info
.Codes
;
4380 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
4381 ConstraintWeight BestWeight
= CW_Invalid
;
4383 // Loop over the options, keeping track of the most general one.
4384 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
4385 ConstraintWeight weight
=
4386 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
4387 if (weight
> BestWeight
)
4388 BestWeight
= weight
;
4394 /// Examine constraint type and operand type and determine a weight value.
4395 /// This object must already have been set up with the operand type
4396 /// and the current alternative constraint selected.
4397 TargetLowering::ConstraintWeight
4398 TargetLowering::getSingleConstraintMatchWeight(
4399 AsmOperandInfo
&info
, const char *constraint
) const {
4400 ConstraintWeight weight
= CW_Invalid
;
4401 Value
*CallOperandVal
= info
.CallOperandVal
;
4402 // If we don't have a value, we can't do a match,
4403 // but allow it at the lowest weight.
4404 if (!CallOperandVal
)
4406 // Look at the constraint type.
4407 switch (*constraint
) {
4408 case 'i': // immediate integer.
4409 case 'n': // immediate integer with a known value.
4410 if (isa
<ConstantInt
>(CallOperandVal
))
4411 weight
= CW_Constant
;
4413 case 's': // non-explicit intregal immediate.
4414 if (isa
<GlobalValue
>(CallOperandVal
))
4415 weight
= CW_Constant
;
4417 case 'E': // immediate float if host format.
4418 case 'F': // immediate float.
4419 if (isa
<ConstantFP
>(CallOperandVal
))
4420 weight
= CW_Constant
;
4422 case '<': // memory operand with autodecrement.
4423 case '>': // memory operand with autoincrement.
4424 case 'm': // memory operand.
4425 case 'o': // offsettable memory operand
4426 case 'V': // non-offsettable memory operand
4429 case 'r': // general register.
4430 case 'g': // general register, memory operand or immediate integer.
4431 // note: Clang converts "g" to "imr".
4432 if (CallOperandVal
->getType()->isIntegerTy())
4433 weight
= CW_Register
;
4435 case 'X': // any operand.
4437 weight
= CW_Default
;
4443 /// If there are multiple different constraints that we could pick for this
4444 /// operand (e.g. "imr") try to pick the 'best' one.
4445 /// This is somewhat tricky: constraints fall into four classes:
4446 /// Other -> immediates and magic values
4447 /// Register -> one specific register
4448 /// RegisterClass -> a group of regs
4449 /// Memory -> memory
4450 /// Ideally, we would pick the most specific constraint possible: if we have
4451 /// something that fits into a register, we would pick it. The problem here
4452 /// is that if we have something that could either be in a register or in
4453 /// memory that use of the register could cause selection of *other*
4454 /// operands to fail: they might only succeed if we pick memory. Because of
4455 /// this the heuristic we use is:
4457 /// 1) If there is an 'other' constraint, and if the operand is valid for
4458 /// that constraint, use it. This makes us take advantage of 'i'
4459 /// constraints when available.
4460 /// 2) Otherwise, pick the most general constraint present. This prefers
4461 /// 'm' over 'r', for example.
4463 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
4464 const TargetLowering
&TLI
,
4465 SDValue Op
, SelectionDAG
*DAG
) {
4466 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
4467 unsigned BestIdx
= 0;
4468 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
4469 int BestGenerality
= -1;
4471 // Loop over the options, keeping track of the most general one.
4472 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
4473 TargetLowering::ConstraintType CType
=
4474 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
4476 // If this is an 'other' or 'immediate' constraint, see if the operand is
4477 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4478 // the operand is an integer in the range [0..31] we want to use I (saving a
4479 // load of a register), otherwise we must use 'r'.
4480 if ((CType
== TargetLowering::C_Other
||
4481 CType
== TargetLowering::C_Immediate
) && Op
.getNode()) {
4482 assert(OpInfo
.Codes
[i
].size() == 1 &&
4483 "Unhandled multi-letter 'other' constraint");
4484 std::vector
<SDValue
> ResultOps
;
4485 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
],
4487 if (!ResultOps
.empty()) {
4494 // Things with matching constraints can only be registers, per gcc
4495 // documentation. This mainly affects "g" constraints.
4496 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
4499 // This constraint letter is more general than the previous one, use it.
4500 int Generality
= getConstraintGenerality(CType
);
4501 if (Generality
> BestGenerality
) {
4504 BestGenerality
= Generality
;
4508 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
4509 OpInfo
.ConstraintType
= BestType
;
4512 /// Determines the constraint code and constraint type to use for the specific
4513 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4514 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
4516 SelectionDAG
*DAG
) const {
4517 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
4519 // Single-letter constraints ('r') are very common.
4520 if (OpInfo
.Codes
.size() == 1) {
4521 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
4522 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4524 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
4527 // 'X' matches anything.
4528 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
4529 // Labels and constants are handled elsewhere ('X' is the only thing
4530 // that matches labels). For Functions, the type here is the type of
4531 // the result, which is not what we want to look at; leave them alone.
4532 Value
*v
= OpInfo
.CallOperandVal
;
4533 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
4534 OpInfo
.CallOperandVal
= v
;
4538 if (Op
.getNode() && Op
.getOpcode() == ISD::TargetBlockAddress
)
4541 // Otherwise, try to resolve it to something we know about by looking at
4542 // the actual operand type.
4543 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
4544 OpInfo
.ConstraintCode
= Repl
;
4545 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4550 /// Given an exact SDIV by a constant, create a multiplication
4551 /// with the multiplicative inverse of the constant.
4552 static SDValue
BuildExactSDIV(const TargetLowering
&TLI
, SDNode
*N
,
4553 const SDLoc
&dl
, SelectionDAG
&DAG
,
4554 SmallVectorImpl
<SDNode
*> &Created
) {
4555 SDValue Op0
= N
->getOperand(0);
4556 SDValue Op1
= N
->getOperand(1);
4557 EVT VT
= N
->getValueType(0);
4558 EVT SVT
= VT
.getScalarType();
4559 EVT ShVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
4560 EVT ShSVT
= ShVT
.getScalarType();
4562 bool UseSRA
= false;
4563 SmallVector
<SDValue
, 16> Shifts
, Factors
;
4565 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4566 if (C
->isNullValue())
4568 APInt Divisor
= C
->getAPIntValue();
4569 unsigned Shift
= Divisor
.countTrailingZeros();
4571 Divisor
.ashrInPlace(Shift
);
4574 // Calculate the multiplicative inverse, using Newton's method.
4576 APInt Factor
= Divisor
;
4577 while ((t
= Divisor
* Factor
) != 1)
4578 Factor
*= APInt(Divisor
.getBitWidth(), 2) - t
;
4579 Shifts
.push_back(DAG
.getConstant(Shift
, dl
, ShSVT
));
4580 Factors
.push_back(DAG
.getConstant(Factor
, dl
, SVT
));
4584 // Collect all magic values from the build vector.
4585 if (!ISD::matchUnaryPredicate(Op1
, BuildSDIVPattern
))
4588 SDValue Shift
, Factor
;
4589 if (VT
.isVector()) {
4590 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4591 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4594 Factor
= Factors
[0];
4599 // Shift the value upfront if it is even, so the LSB is one.
4601 // TODO: For UDIV use SRL instead of SRA.
4603 Flags
.setExact(true);
4604 Res
= DAG
.getNode(ISD::SRA
, dl
, VT
, Res
, Shift
, Flags
);
4605 Created
.push_back(Res
.getNode());
4608 return DAG
.getNode(ISD::MUL
, dl
, VT
, Res
, Factor
);
4611 SDValue
TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
4613 SmallVectorImpl
<SDNode
*> &Created
) const {
4614 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4615 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4616 if (TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4617 return SDValue(N
, 0); // Lower SDIV as SDIV
4621 /// Given an ISD::SDIV node expressing a divide by constant,
4622 /// return a DAG expression to select that will generate the same value by
4623 /// multiplying by a magic number.
4624 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4625 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
4626 bool IsAfterLegalization
,
4627 SmallVectorImpl
<SDNode
*> &Created
) const {
4629 EVT VT
= N
->getValueType(0);
4630 EVT SVT
= VT
.getScalarType();
4631 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4632 EVT ShSVT
= ShVT
.getScalarType();
4633 unsigned EltBits
= VT
.getScalarSizeInBits();
4635 // Check to see if we can do this.
4636 // FIXME: We should be more aggressive here.
4637 if (!isTypeLegal(VT
))
4640 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4641 if (N
->getFlags().hasExact())
4642 return BuildExactSDIV(*this, N
, dl
, DAG
, Created
);
4644 SmallVector
<SDValue
, 16> MagicFactors
, Factors
, Shifts
, ShiftMasks
;
4646 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4647 if (C
->isNullValue())
4650 const APInt
&Divisor
= C
->getAPIntValue();
4651 APInt::ms magics
= Divisor
.magic();
4652 int NumeratorFactor
= 0;
4655 if (Divisor
.isOneValue() || Divisor
.isAllOnesValue()) {
4656 // If d is +1/-1, we just multiply the numerator by +1/-1.
4657 NumeratorFactor
= Divisor
.getSExtValue();
4661 } else if (Divisor
.isStrictlyPositive() && magics
.m
.isNegative()) {
4662 // If d > 0 and m < 0, add the numerator.
4663 NumeratorFactor
= 1;
4664 } else if (Divisor
.isNegative() && magics
.m
.isStrictlyPositive()) {
4665 // If d < 0 and m > 0, subtract the numerator.
4666 NumeratorFactor
= -1;
4669 MagicFactors
.push_back(DAG
.getConstant(magics
.m
, dl
, SVT
));
4670 Factors
.push_back(DAG
.getConstant(NumeratorFactor
, dl
, SVT
));
4671 Shifts
.push_back(DAG
.getConstant(magics
.s
, dl
, ShSVT
));
4672 ShiftMasks
.push_back(DAG
.getConstant(ShiftMask
, dl
, SVT
));
4676 SDValue N0
= N
->getOperand(0);
4677 SDValue N1
= N
->getOperand(1);
4679 // Collect the shifts / magic values from each element.
4680 if (!ISD::matchUnaryPredicate(N1
, BuildSDIVPattern
))
4683 SDValue MagicFactor
, Factor
, Shift
, ShiftMask
;
4684 if (VT
.isVector()) {
4685 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4686 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4687 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4688 ShiftMask
= DAG
.getBuildVector(VT
, dl
, ShiftMasks
);
4690 MagicFactor
= MagicFactors
[0];
4691 Factor
= Factors
[0];
4693 ShiftMask
= ShiftMasks
[0];
4696 // Multiply the numerator (operand 0) by the magic value.
4697 // FIXME: We should support doing a MUL in a wider type.
4699 if (IsAfterLegalization
? isOperationLegal(ISD::MULHS
, VT
)
4700 : isOperationLegalOrCustom(ISD::MULHS
, VT
))
4701 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N0
, MagicFactor
);
4702 else if (IsAfterLegalization
? isOperationLegal(ISD::SMUL_LOHI
, VT
)
4703 : isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
)) {
4705 DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), N0
, MagicFactor
);
4706 Q
= SDValue(LoHi
.getNode(), 1);
4708 return SDValue(); // No mulhs or equivalent.
4709 Created
.push_back(Q
.getNode());
4711 // (Optionally) Add/subtract the numerator using Factor.
4712 Factor
= DAG
.getNode(ISD::MUL
, dl
, VT
, N0
, Factor
);
4713 Created
.push_back(Factor
.getNode());
4714 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, Factor
);
4715 Created
.push_back(Q
.getNode());
4717 // Shift right algebraic by shift value.
4718 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
, Shift
);
4719 Created
.push_back(Q
.getNode());
4721 // Extract the sign bit, mask it and add it to the quotient.
4722 SDValue SignShift
= DAG
.getConstant(EltBits
- 1, dl
, ShVT
);
4723 SDValue T
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, SignShift
);
4724 Created
.push_back(T
.getNode());
4725 T
= DAG
.getNode(ISD::AND
, dl
, VT
, T
, ShiftMask
);
4726 Created
.push_back(T
.getNode());
4727 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
4730 /// Given an ISD::UDIV node expressing a divide by constant,
4731 /// return a DAG expression to select that will generate the same value by
4732 /// multiplying by a magic number.
4733 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4734 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
4735 bool IsAfterLegalization
,
4736 SmallVectorImpl
<SDNode
*> &Created
) const {
4738 EVT VT
= N
->getValueType(0);
4739 EVT SVT
= VT
.getScalarType();
4740 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4741 EVT ShSVT
= ShVT
.getScalarType();
4742 unsigned EltBits
= VT
.getScalarSizeInBits();
4744 // Check to see if we can do this.
4745 // FIXME: We should be more aggressive here.
4746 if (!isTypeLegal(VT
))
4749 bool UseNPQ
= false;
4750 SmallVector
<SDValue
, 16> PreShifts
, PostShifts
, MagicFactors
, NPQFactors
;
4752 auto BuildUDIVPattern
= [&](ConstantSDNode
*C
) {
4753 if (C
->isNullValue())
4755 // FIXME: We should use a narrower constant when the upper
4756 // bits are known to be zero.
4757 APInt Divisor
= C
->getAPIntValue();
4758 APInt::mu magics
= Divisor
.magicu();
4759 unsigned PreShift
= 0, PostShift
= 0;
4761 // If the divisor is even, we can avoid using the expensive fixup by
4762 // shifting the divided value upfront.
4763 if (magics
.a
!= 0 && !Divisor
[0]) {
4764 PreShift
= Divisor
.countTrailingZeros();
4765 // Get magic number for the shifted divisor.
4766 magics
= Divisor
.lshr(PreShift
).magicu(PreShift
);
4767 assert(magics
.a
== 0 && "Should use cheap fixup now");
4770 APInt Magic
= magics
.m
;
4773 if (magics
.a
== 0 || Divisor
.isOneValue()) {
4774 assert(magics
.s
< Divisor
.getBitWidth() &&
4775 "We shouldn't generate an undefined shift!");
4776 PostShift
= magics
.s
;
4779 PostShift
= magics
.s
- 1;
4783 PreShifts
.push_back(DAG
.getConstant(PreShift
, dl
, ShSVT
));
4784 MagicFactors
.push_back(DAG
.getConstant(Magic
, dl
, SVT
));
4785 NPQFactors
.push_back(
4786 DAG
.getConstant(SelNPQ
? APInt::getOneBitSet(EltBits
, EltBits
- 1)
4787 : APInt::getNullValue(EltBits
),
4789 PostShifts
.push_back(DAG
.getConstant(PostShift
, dl
, ShSVT
));
4794 SDValue N0
= N
->getOperand(0);
4795 SDValue N1
= N
->getOperand(1);
4797 // Collect the shifts/magic values from each element.
4798 if (!ISD::matchUnaryPredicate(N1
, BuildUDIVPattern
))
4801 SDValue PreShift
, PostShift
, MagicFactor
, NPQFactor
;
4802 if (VT
.isVector()) {
4803 PreShift
= DAG
.getBuildVector(ShVT
, dl
, PreShifts
);
4804 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4805 NPQFactor
= DAG
.getBuildVector(VT
, dl
, NPQFactors
);
4806 PostShift
= DAG
.getBuildVector(ShVT
, dl
, PostShifts
);
4808 PreShift
= PreShifts
[0];
4809 MagicFactor
= MagicFactors
[0];
4810 PostShift
= PostShifts
[0];
4814 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PreShift
);
4815 Created
.push_back(Q
.getNode());
4817 // FIXME: We should support doing a MUL in a wider type.
4818 auto GetMULHU
= [&](SDValue X
, SDValue Y
) {
4819 if (IsAfterLegalization
? isOperationLegal(ISD::MULHU
, VT
)
4820 : isOperationLegalOrCustom(ISD::MULHU
, VT
))
4821 return DAG
.getNode(ISD::MULHU
, dl
, VT
, X
, Y
);
4822 if (IsAfterLegalization
? isOperationLegal(ISD::UMUL_LOHI
, VT
)
4823 : isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
)) {
4825 DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), X
, Y
);
4826 return SDValue(LoHi
.getNode(), 1);
4828 return SDValue(); // No mulhu or equivalent
4831 // Multiply the numerator (operand 0) by the magic value.
4832 Q
= GetMULHU(Q
, MagicFactor
);
4836 Created
.push_back(Q
.getNode());
4839 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N0
, Q
);
4840 Created
.push_back(NPQ
.getNode());
4842 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4843 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4845 NPQ
= GetMULHU(NPQ
, NPQFactor
);
4847 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
, DAG
.getConstant(1, dl
, ShVT
));
4849 Created
.push_back(NPQ
.getNode());
4851 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
4852 Created
.push_back(Q
.getNode());
4855 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PostShift
);
4856 Created
.push_back(Q
.getNode());
4858 SDValue One
= DAG
.getConstant(1, dl
, VT
);
4859 SDValue IsOne
= DAG
.getSetCC(dl
, VT
, N1
, One
, ISD::SETEQ
);
4860 return DAG
.getSelect(dl
, VT
, IsOne
, N0
, Q
);
4863 /// If all values in Values that *don't* match the predicate are same 'splat'
4864 /// value, then replace all values with that splat value.
4865 /// Else, if AlternativeReplacement was provided, then replace all values that
4866 /// do match predicate with AlternativeReplacement value.
4868 turnVectorIntoSplatVector(MutableArrayRef
<SDValue
> Values
,
4869 std::function
<bool(SDValue
)> Predicate
,
4870 SDValue AlternativeReplacement
= SDValue()) {
4871 SDValue Replacement
;
4872 // Is there a value for which the Predicate does *NOT* match? What is it?
4873 auto SplatValue
= llvm::find_if_not(Values
, Predicate
);
4874 if (SplatValue
!= Values
.end()) {
4875 // Does Values consist only of SplatValue's and values matching Predicate?
4876 if (llvm::all_of(Values
, [Predicate
, SplatValue
](SDValue Value
) {
4877 return Value
== *SplatValue
|| Predicate(Value
);
4878 })) // Then we shall replace values matching predicate with SplatValue.
4879 Replacement
= *SplatValue
;
4882 // Oops, we did not find the "baseline" splat value.
4883 if (!AlternativeReplacement
)
4884 return; // Nothing to do.
4885 // Let's replace with provided value then.
4886 Replacement
= AlternativeReplacement
;
4888 std::replace_if(Values
.begin(), Values
.end(), Predicate
, Replacement
);
4891 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4892 /// where the divisor is constant and the comparison target is zero,
4893 /// return a DAG expression that will generate the same comparison result
4894 /// using only multiplications, additions and shifts/rotations.
4895 /// Ref: "Hacker's Delight" 10-17.
4896 SDValue
TargetLowering::buildUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4897 SDValue CompTargetNode
,
4899 DAGCombinerInfo
&DCI
,
4900 const SDLoc
&DL
) const {
4901 SmallVector
<SDNode
*, 2> Built
;
4902 if (SDValue Folded
= prepareUREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
4904 for (SDNode
*N
: Built
)
4905 DCI
.AddToWorklist(N
);
4913 TargetLowering::prepareUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4914 SDValue CompTargetNode
, ISD::CondCode Cond
,
4915 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
4916 SmallVectorImpl
<SDNode
*> &Created
) const {
4917 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4918 // - D must be constant, with D = D0 * 2^K where D0 is odd
4919 // - P is the multiplicative inverse of D0 modulo 2^W
4920 // - Q = floor(((2^W) - 1) / D)
4921 // where W is the width of the common type of N and D.
4922 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
4923 "Only applicable for (in)equality comparisons.");
4925 SelectionDAG
&DAG
= DCI
.DAG
;
4927 EVT VT
= REMNode
.getValueType();
4928 EVT SVT
= VT
.getScalarType();
4929 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4930 EVT ShSVT
= ShVT
.getScalarType();
4932 // If MUL is unavailable, we cannot proceed in any case.
4933 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
4936 // TODO: Could support comparing with non-zero too.
4937 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
4938 if (!CompTarget
|| !CompTarget
->isNullValue())
4941 bool HadOneDivisor
= false;
4942 bool AllDivisorsAreOnes
= true;
4943 bool HadEvenDivisor
= false;
4944 bool AllDivisorsArePowerOfTwo
= true;
4945 SmallVector
<SDValue
, 16> PAmts
, KAmts
, QAmts
;
4947 auto BuildUREMPattern
= [&](ConstantSDNode
*C
) {
4948 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4949 if (C
->isNullValue())
4952 const APInt
&D
= C
->getAPIntValue();
4953 // If all divisors are ones, we will prefer to avoid the fold.
4954 HadOneDivisor
|= D
.isOneValue();
4955 AllDivisorsAreOnes
&= D
.isOneValue();
4957 // Decompose D into D0 * 2^K
4958 unsigned K
= D
.countTrailingZeros();
4959 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
4960 APInt D0
= D
.lshr(K
);
4962 // D is even if it has trailing zeros.
4963 HadEvenDivisor
|= (K
!= 0);
4964 // D is a power-of-two if D0 is one.
4965 // If all divisors are power-of-two, we will prefer to avoid the fold.
4966 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
4969 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4970 unsigned W
= D
.getBitWidth();
4971 APInt P
= D0
.zext(W
+ 1)
4972 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
4974 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
4975 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
4977 // Q = floor((2^W - 1) / D)
4978 APInt Q
= APInt::getAllOnesValue(W
).udiv(D
);
4980 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
4981 "We are expecting that K is always less than all-ones for ShSVT");
4983 // If the divisor is 1 the result can be constant-folded.
4984 if (D
.isOneValue()) {
4985 // Set P and K amount to a bogus values so we can try to splat them.
4988 assert(Q
.isAllOnesValue() &&
4989 "Expecting all-ones comparison for one divisor");
4992 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
4994 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
4995 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
4999 SDValue N
= REMNode
.getOperand(0);
5000 SDValue D
= REMNode
.getOperand(1);
5002 // Collect the values from each element.
5003 if (!ISD::matchUnaryPredicate(D
, BuildUREMPattern
))
5006 // If this is a urem by a one, avoid the fold since it can be constant-folded.
5007 if (AllDivisorsAreOnes
)
5010 // If this is a urem by a powers-of-two, avoid the fold since it can be
5011 // best implemented as a bit test.
5012 if (AllDivisorsArePowerOfTwo
)
5015 SDValue PVal
, KVal
, QVal
;
5016 if (VT
.isVector()) {
5017 if (HadOneDivisor
) {
5018 // Try to turn PAmts into a splat, since we don't care about the values
5019 // that are currently '0'. If we can't, just keep '0'`s.
5020 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
5021 // Try to turn KAmts into a splat, since we don't care about the values
5022 // that are currently '-1'. If we can't, change them to '0'`s.
5023 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
5024 DAG
.getConstant(0, DL
, ShSVT
));
5027 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
5028 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
5029 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
5037 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
5038 Created
.push_back(Op0
.getNode());
5040 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5041 // divisors as a performance improvement, since rotating by 0 is a no-op.
5042 if (HadEvenDivisor
) {
5043 // We need ROTR to do this.
5044 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
5047 Flags
.setExact(true);
5048 // UREM: (rotr (mul N, P), K)
5049 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
5050 Created
.push_back(Op0
.getNode());
5053 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5054 return DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
5055 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
5058 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5059 /// where the divisor is constant and the comparison target is zero,
5060 /// return a DAG expression that will generate the same comparison result
5061 /// using only multiplications, additions and shifts/rotations.
5062 /// Ref: "Hacker's Delight" 10-17.
5063 SDValue
TargetLowering::buildSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
5064 SDValue CompTargetNode
,
5066 DAGCombinerInfo
&DCI
,
5067 const SDLoc
&DL
) const {
5068 SmallVector
<SDNode
*, 7> Built
;
5069 if (SDValue Folded
= prepareSREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
5071 assert(Built
.size() <= 7 && "Max size prediction failed.");
5072 for (SDNode
*N
: Built
)
5073 DCI
.AddToWorklist(N
);
5081 TargetLowering::prepareSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
5082 SDValue CompTargetNode
, ISD::CondCode Cond
,
5083 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
5084 SmallVectorImpl
<SDNode
*> &Created
) const {
5086 // (seteq/ne (srem N, D), 0)
5088 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5090 // - D must be constant, with D = D0 * 2^K where D0 is odd
5091 // - P is the multiplicative inverse of D0 modulo 2^W
5092 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5093 // - Q = floor((2 * A) / (2^K))
5094 // where W is the width of the common type of N and D.
5095 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
5096 "Only applicable for (in)equality comparisons.");
5098 SelectionDAG
&DAG
= DCI
.DAG
;
5100 EVT VT
= REMNode
.getValueType();
5101 EVT SVT
= VT
.getScalarType();
5102 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5103 EVT ShSVT
= ShVT
.getScalarType();
5105 // If MUL is unavailable, we cannot proceed in any case.
5106 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
5109 // TODO: Could support comparing with non-zero too.
5110 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
5111 if (!CompTarget
|| !CompTarget
->isNullValue())
5114 bool HadIntMinDivisor
= false;
5115 bool HadOneDivisor
= false;
5116 bool AllDivisorsAreOnes
= true;
5117 bool HadEvenDivisor
= false;
5118 bool NeedToApplyOffset
= false;
5119 bool AllDivisorsArePowerOfTwo
= true;
5120 SmallVector
<SDValue
, 16> PAmts
, AAmts
, KAmts
, QAmts
;
5122 auto BuildSREMPattern
= [&](ConstantSDNode
*C
) {
5123 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5124 if (C
->isNullValue())
5127 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5129 // WARNING: this fold is only valid for positive divisors!
5130 APInt D
= C
->getAPIntValue();
5132 D
.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5134 HadIntMinDivisor
|= D
.isMinSignedValue();
5136 // If all divisors are ones, we will prefer to avoid the fold.
5137 HadOneDivisor
|= D
.isOneValue();
5138 AllDivisorsAreOnes
&= D
.isOneValue();
5140 // Decompose D into D0 * 2^K
5141 unsigned K
= D
.countTrailingZeros();
5142 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
5143 APInt D0
= D
.lshr(K
);
5145 if (!D
.isMinSignedValue()) {
5146 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5147 // we don't care about this lane in this fold, we'll special-handle it.
5148 HadEvenDivisor
|= (K
!= 0);
5151 // D is a power-of-two if D0 is one. This includes INT_MIN.
5152 // If all divisors are power-of-two, we will prefer to avoid the fold.
5153 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
5156 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5157 unsigned W
= D
.getBitWidth();
5158 APInt P
= D0
.zext(W
+ 1)
5159 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
5161 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
5162 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
5164 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5165 APInt A
= APInt::getSignedMaxValue(W
).udiv(D0
);
5168 if (!D
.isMinSignedValue()) {
5169 // If divisor INT_MIN, then we don't care about this lane in this fold,
5170 // we'll special-handle it.
5171 NeedToApplyOffset
|= A
!= 0;
5174 // Q = floor((2 * A) / (2^K))
5175 APInt Q
= (2 * A
).udiv(APInt::getOneBitSet(W
, K
));
5177 assert(APInt::getAllOnesValue(SVT
.getSizeInBits()).ugt(A
) &&
5178 "We are expecting that A is always less than all-ones for SVT");
5179 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
5180 "We are expecting that K is always less than all-ones for ShSVT");
5182 // If the divisor is 1 the result can be constant-folded. Likewise, we
5183 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5184 if (D
.isOneValue()) {
5185 // Set P, A and K to a bogus values so we can try to splat them.
5190 // x ?% 1 == 0 <--> true <--> x u<= -1
5194 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
5195 AAmts
.push_back(DAG
.getConstant(A
, DL
, SVT
));
5197 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
5198 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
5202 SDValue N
= REMNode
.getOperand(0);
5203 SDValue D
= REMNode
.getOperand(1);
5205 // Collect the values from each element.
5206 if (!ISD::matchUnaryPredicate(D
, BuildSREMPattern
))
5209 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5210 if (AllDivisorsAreOnes
)
5213 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5214 // since it can be best implemented as a bit test.
5215 if (AllDivisorsArePowerOfTwo
)
5218 SDValue PVal
, AVal
, KVal
, QVal
;
5219 if (VT
.isVector()) {
5220 if (HadOneDivisor
) {
5221 // Try to turn PAmts into a splat, since we don't care about the values
5222 // that are currently '0'. If we can't, just keep '0'`s.
5223 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
5224 // Try to turn AAmts into a splat, since we don't care about the
5225 // values that are currently '-1'. If we can't, change them to '0'`s.
5226 turnVectorIntoSplatVector(AAmts
, isAllOnesConstant
,
5227 DAG
.getConstant(0, DL
, SVT
));
5228 // Try to turn KAmts into a splat, since we don't care about the values
5229 // that are currently '-1'. If we can't, change them to '0'`s.
5230 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
5231 DAG
.getConstant(0, DL
, ShSVT
));
5234 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
5235 AVal
= DAG
.getBuildVector(VT
, DL
, AAmts
);
5236 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
5237 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
5246 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
5247 Created
.push_back(Op0
.getNode());
5249 if (NeedToApplyOffset
) {
5250 // We need ADD to do this.
5251 if (!isOperationLegalOrCustom(ISD::ADD
, VT
))
5254 // (add (mul N, P), A)
5255 Op0
= DAG
.getNode(ISD::ADD
, DL
, VT
, Op0
, AVal
);
5256 Created
.push_back(Op0
.getNode());
5259 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5260 // divisors as a performance improvement, since rotating by 0 is a no-op.
5261 if (HadEvenDivisor
) {
5262 // We need ROTR to do this.
5263 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
5266 Flags
.setExact(true);
5267 // SREM: (rotr (add (mul N, P), A), K)
5268 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
5269 Created
.push_back(Op0
.getNode());
5272 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5274 DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
5275 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
5277 // If we didn't have lanes with INT_MIN divisor, then we're done.
5278 if (!HadIntMinDivisor
)
5281 // That fold is only valid for positive divisors. Which effectively means,
5282 // it is invalid for INT_MIN divisors. So if we have such a lane,
5283 // we must fix-up results for said lanes.
5284 assert(VT
.isVector() && "Can/should only get here for vectors.");
5286 if (!isOperationLegalOrCustom(ISD::SETEQ
, VT
) ||
5287 !isOperationLegalOrCustom(ISD::AND
, VT
) ||
5288 !isOperationLegalOrCustom(Cond
, VT
) ||
5289 !isOperationLegalOrCustom(ISD::VSELECT
, VT
))
5292 Created
.push_back(Fold
.getNode());
5294 SDValue IntMin
= DAG
.getConstant(
5295 APInt::getSignedMinValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5296 SDValue IntMax
= DAG
.getConstant(
5297 APInt::getSignedMaxValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5299 DAG
.getConstant(APInt::getNullValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5301 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5302 SDValue DivisorIsIntMin
= DAG
.getSetCC(DL
, SETCCVT
, D
, IntMin
, ISD::SETEQ
);
5303 Created
.push_back(DivisorIsIntMin
.getNode());
5305 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5306 SDValue Masked
= DAG
.getNode(ISD::AND
, DL
, VT
, N
, IntMax
);
5307 Created
.push_back(Masked
.getNode());
5308 SDValue MaskedIsZero
= DAG
.getSetCC(DL
, SETCCVT
, Masked
, Zero
, Cond
);
5309 Created
.push_back(MaskedIsZero
.getNode());
5311 // To produce final result we need to blend 2 vectors: 'SetCC' and
5312 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5313 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5314 // constant-folded, select can get lowered to a shuffle with constant mask.
5316 DAG
.getNode(ISD::VSELECT
, DL
, VT
, DivisorIsIntMin
, MaskedIsZero
, Fold
);
5321 bool TargetLowering::
5322 verifyReturnAddressArgumentIsConstant(SDValue Op
, SelectionDAG
&DAG
) const {
5323 if (!isa
<ConstantSDNode
>(Op
.getOperand(0))) {
5324 DAG
.getContext()->emitError("argument to '__builtin_return_address' must "
5325 "be a constant integer");
5332 //===----------------------------------------------------------------------===//
5333 // Legalization Utilities
5334 //===----------------------------------------------------------------------===//
5336 bool TargetLowering::expandMUL_LOHI(unsigned Opcode
, EVT VT
, SDLoc dl
,
5337 SDValue LHS
, SDValue RHS
,
5338 SmallVectorImpl
<SDValue
> &Result
,
5339 EVT HiLoVT
, SelectionDAG
&DAG
,
5340 MulExpansionKind Kind
, SDValue LL
,
5341 SDValue LH
, SDValue RL
, SDValue RH
) const {
5342 assert(Opcode
== ISD::MUL
|| Opcode
== ISD::UMUL_LOHI
||
5343 Opcode
== ISD::SMUL_LOHI
);
5345 bool HasMULHS
= (Kind
== MulExpansionKind::Always
) ||
5346 isOperationLegalOrCustom(ISD::MULHS
, HiLoVT
);
5347 bool HasMULHU
= (Kind
== MulExpansionKind::Always
) ||
5348 isOperationLegalOrCustom(ISD::MULHU
, HiLoVT
);
5349 bool HasSMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
5350 isOperationLegalOrCustom(ISD::SMUL_LOHI
, HiLoVT
);
5351 bool HasUMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
5352 isOperationLegalOrCustom(ISD::UMUL_LOHI
, HiLoVT
);
5354 if (!HasMULHU
&& !HasMULHS
&& !HasUMUL_LOHI
&& !HasSMUL_LOHI
)
5357 unsigned OuterBitSize
= VT
.getScalarSizeInBits();
5358 unsigned InnerBitSize
= HiLoVT
.getScalarSizeInBits();
5359 unsigned LHSSB
= DAG
.ComputeNumSignBits(LHS
);
5360 unsigned RHSSB
= DAG
.ComputeNumSignBits(RHS
);
5362 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5363 assert((LL
.getNode() && LH
.getNode() && RL
.getNode() && RH
.getNode()) ||
5364 (!LL
.getNode() && !LH
.getNode() && !RL
.getNode() && !RH
.getNode()));
5366 SDVTList VTs
= DAG
.getVTList(HiLoVT
, HiLoVT
);
5367 auto MakeMUL_LOHI
= [&](SDValue L
, SDValue R
, SDValue
&Lo
, SDValue
&Hi
,
5368 bool Signed
) -> bool {
5369 if ((Signed
&& HasSMUL_LOHI
) || (!Signed
&& HasUMUL_LOHI
)) {
5370 Lo
= DAG
.getNode(Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
, dl
, VTs
, L
, R
);
5371 Hi
= SDValue(Lo
.getNode(), 1);
5374 if ((Signed
&& HasMULHS
) || (!Signed
&& HasMULHU
)) {
5375 Lo
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, L
, R
);
5376 Hi
= DAG
.getNode(Signed
? ISD::MULHS
: ISD::MULHU
, dl
, HiLoVT
, L
, R
);
5384 if (!LL
.getNode() && !RL
.getNode() &&
5385 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
5386 LL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LHS
);
5387 RL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RHS
);
5393 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
5394 if (DAG
.MaskedValueIsZero(LHS
, HighMask
) &&
5395 DAG
.MaskedValueIsZero(RHS
, HighMask
)) {
5396 // The inputs are both zero-extended.
5397 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false)) {
5398 Result
.push_back(Lo
);
5399 Result
.push_back(Hi
);
5400 if (Opcode
!= ISD::MUL
) {
5401 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
5402 Result
.push_back(Zero
);
5403 Result
.push_back(Zero
);
5409 if (!VT
.isVector() && Opcode
== ISD::MUL
&& LHSSB
> InnerBitSize
&&
5410 RHSSB
> InnerBitSize
) {
5411 // The input values are both sign-extended.
5412 // TODO non-MUL case?
5413 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, true)) {
5414 Result
.push_back(Lo
);
5415 Result
.push_back(Hi
);
5420 unsigned ShiftAmount
= OuterBitSize
- InnerBitSize
;
5421 EVT ShiftAmountTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5422 if (APInt::getMaxValue(ShiftAmountTy
.getSizeInBits()).ult(ShiftAmount
)) {
5423 // FIXME getShiftAmountTy does not always return a sensible result when VT
5424 // is an illegal type, and so the type may be too small to fit the shift
5425 // amount. Override it with i32. The shift will have to be legalized.
5426 ShiftAmountTy
= MVT::i32
;
5428 SDValue Shift
= DAG
.getConstant(ShiftAmount
, dl
, ShiftAmountTy
);
5430 if (!LH
.getNode() && !RH
.getNode() &&
5431 isOperationLegalOrCustom(ISD::SRL
, VT
) &&
5432 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
5433 LH
= DAG
.getNode(ISD::SRL
, dl
, VT
, LHS
, Shift
);
5434 LH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LH
);
5435 RH
= DAG
.getNode(ISD::SRL
, dl
, VT
, RHS
, Shift
);
5436 RH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RH
);
5442 if (!MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false))
5445 Result
.push_back(Lo
);
5447 if (Opcode
== ISD::MUL
) {
5448 RH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LL
, RH
);
5449 LH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LH
, RL
);
5450 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, RH
);
5451 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, LH
);
5452 Result
.push_back(Hi
);
5456 // Compute the full width result.
5457 auto Merge
= [&](SDValue Lo
, SDValue Hi
) -> SDValue
{
5458 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
5459 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
5460 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
5461 return DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
);
5464 SDValue Next
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
5465 if (!MakeMUL_LOHI(LL
, RH
, Lo
, Hi
, false))
5468 // This is effectively the add part of a multiply-add of half-sized operands,
5469 // so it cannot overflow.
5470 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
5472 if (!MakeMUL_LOHI(LH
, RL
, Lo
, Hi
, false))
5475 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
5476 EVT BoolType
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5478 bool UseGlue
= (isOperationLegalOrCustom(ISD::ADDC
, VT
) &&
5479 isOperationLegalOrCustom(ISD::ADDE
, VT
));
5481 Next
= DAG
.getNode(ISD::ADDC
, dl
, DAG
.getVTList(VT
, MVT::Glue
), Next
,
5484 Next
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(VT
, BoolType
), Next
,
5485 Merge(Lo
, Hi
), DAG
.getConstant(0, dl
, BoolType
));
5487 SDValue Carry
= Next
.getValue(1);
5488 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5489 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
5491 if (!MakeMUL_LOHI(LH
, RH
, Lo
, Hi
, Opcode
== ISD::SMUL_LOHI
))
5495 Hi
= DAG
.getNode(ISD::ADDE
, dl
, DAG
.getVTList(HiLoVT
, MVT::Glue
), Hi
, Zero
,
5498 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(HiLoVT
, BoolType
), Hi
,
5501 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
5503 if (Opcode
== ISD::SMUL_LOHI
) {
5504 SDValue NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
5505 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, RL
));
5506 Next
= DAG
.getSelectCC(dl
, LH
, Zero
, NextSub
, Next
, ISD::SETLT
);
5508 NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
5509 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, LL
));
5510 Next
= DAG
.getSelectCC(dl
, RH
, Zero
, NextSub
, Next
, ISD::SETLT
);
5513 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5514 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
5515 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5519 bool TargetLowering::expandMUL(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
, EVT HiLoVT
,
5520 SelectionDAG
&DAG
, MulExpansionKind Kind
,
5521 SDValue LL
, SDValue LH
, SDValue RL
,
5523 SmallVector
<SDValue
, 2> Result
;
5524 bool Ok
= expandMUL_LOHI(N
->getOpcode(), N
->getValueType(0), N
,
5525 N
->getOperand(0), N
->getOperand(1), Result
, HiLoVT
,
5526 DAG
, Kind
, LL
, LH
, RL
, RH
);
5528 assert(Result
.size() == 2);
5535 bool TargetLowering::expandFunnelShift(SDNode
*Node
, SDValue
&Result
,
5536 SelectionDAG
&DAG
) const {
5537 EVT VT
= Node
->getValueType(0);
5539 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
5540 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5541 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5542 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
5545 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5546 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5547 SDValue X
= Node
->getOperand(0);
5548 SDValue Y
= Node
->getOperand(1);
5549 SDValue Z
= Node
->getOperand(2);
5551 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5552 bool IsFSHL
= Node
->getOpcode() == ISD::FSHL
;
5553 SDLoc
DL(SDValue(Node
, 0));
5555 EVT ShVT
= Z
.getValueType();
5556 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
5557 SDValue Zero
= DAG
.getConstant(0, DL
, ShVT
);
5560 if (isPowerOf2_32(EltSizeInBits
)) {
5561 SDValue Mask
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
5562 ShAmt
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Z
, Mask
);
5564 ShAmt
= DAG
.getNode(ISD::UREM
, DL
, ShVT
, Z
, BitWidthC
);
5567 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, ShAmt
);
5568 SDValue ShX
= DAG
.getNode(ISD::SHL
, DL
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
5569 SDValue ShY
= DAG
.getNode(ISD::SRL
, DL
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
5570 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShX
, ShY
);
5572 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5573 // and that is undefined. We must compare and select to avoid UB.
5574 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), ShVT
);
5576 // For fshl, 0-shift returns the 1st arg (X).
5577 // For fshr, 0-shift returns the 2nd arg (Y).
5578 SDValue IsZeroShift
= DAG
.getSetCC(DL
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
5579 Result
= DAG
.getSelect(DL
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
);
5583 // TODO: Merge with expandFunnelShift.
5584 bool TargetLowering::expandROT(SDNode
*Node
, SDValue
&Result
,
5585 SelectionDAG
&DAG
) const {
5586 EVT VT
= Node
->getValueType(0);
5587 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5588 bool IsLeft
= Node
->getOpcode() == ISD::ROTL
;
5589 SDValue Op0
= Node
->getOperand(0);
5590 SDValue Op1
= Node
->getOperand(1);
5591 SDLoc
DL(SDValue(Node
, 0));
5593 EVT ShVT
= Op1
.getValueType();
5594 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
5596 // If a rotate in the other direction is legal, use it.
5597 unsigned RevRot
= IsLeft
? ISD::ROTR
: ISD::ROTL
;
5598 if (isOperationLegal(RevRot
, VT
)) {
5599 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
5600 Result
= DAG
.getNode(RevRot
, DL
, VT
, Op0
, Sub
);
5604 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
5605 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5606 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5607 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
) ||
5608 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
5612 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5613 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5615 assert(isPowerOf2_32(EltSizeInBits
) && EltSizeInBits
> 1 &&
5616 "Expecting the type bitwidth to be a power of 2");
5617 unsigned ShOpc
= IsLeft
? ISD::SHL
: ISD::SRL
;
5618 unsigned HsOpc
= IsLeft
? ISD::SRL
: ISD::SHL
;
5619 SDValue BitWidthMinusOneC
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
5620 SDValue NegOp1
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
5621 SDValue And0
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Op1
, BitWidthMinusOneC
);
5622 SDValue And1
= DAG
.getNode(ISD::AND
, DL
, ShVT
, NegOp1
, BitWidthMinusOneC
);
5623 Result
= DAG
.getNode(ISD::OR
, DL
, VT
, DAG
.getNode(ShOpc
, DL
, VT
, Op0
, And0
),
5624 DAG
.getNode(HsOpc
, DL
, VT
, Op0
, And1
));
5628 bool TargetLowering::expandFP_TO_SINT(SDNode
*Node
, SDValue
&Result
,
5629 SelectionDAG
&DAG
) const {
5630 unsigned OpNo
= Node
->isStrictFPOpcode() ? 1 : 0;
5631 SDValue Src
= Node
->getOperand(OpNo
);
5632 EVT SrcVT
= Src
.getValueType();
5633 EVT DstVT
= Node
->getValueType(0);
5634 SDLoc
dl(SDValue(Node
, 0));
5636 // FIXME: Only f32 to i64 conversions are supported.
5637 if (SrcVT
!= MVT::f32
|| DstVT
!= MVT::i64
)
5640 if (Node
->isStrictFPOpcode())
5641 // When a NaN is converted to an integer a trap is allowed. We can't
5642 // use this expansion here because it would eliminate that trap. Other
5643 // traps are also allowed and cannot be eliminated. See
5644 // IEEE 754-2008 sec 5.8.
5647 // Expand f32 -> i64 conversion
5648 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5649 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5650 unsigned SrcEltBits
= SrcVT
.getScalarSizeInBits();
5651 EVT IntVT
= SrcVT
.changeTypeToInteger();
5652 EVT IntShVT
= getShiftAmountTy(IntVT
, DAG
.getDataLayout());
5654 SDValue ExponentMask
= DAG
.getConstant(0x7F800000, dl
, IntVT
);
5655 SDValue ExponentLoBit
= DAG
.getConstant(23, dl
, IntVT
);
5656 SDValue Bias
= DAG
.getConstant(127, dl
, IntVT
);
5657 SDValue SignMask
= DAG
.getConstant(APInt::getSignMask(SrcEltBits
), dl
, IntVT
);
5658 SDValue SignLowBit
= DAG
.getConstant(SrcEltBits
- 1, dl
, IntVT
);
5659 SDValue MantissaMask
= DAG
.getConstant(0x007FFFFF, dl
, IntVT
);
5661 SDValue Bits
= DAG
.getNode(ISD::BITCAST
, dl
, IntVT
, Src
);
5663 SDValue ExponentBits
= DAG
.getNode(
5664 ISD::SRL
, dl
, IntVT
, DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, ExponentMask
),
5665 DAG
.getZExtOrTrunc(ExponentLoBit
, dl
, IntShVT
));
5666 SDValue Exponent
= DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentBits
, Bias
);
5668 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, IntVT
,
5669 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, SignMask
),
5670 DAG
.getZExtOrTrunc(SignLowBit
, dl
, IntShVT
));
5671 Sign
= DAG
.getSExtOrTrunc(Sign
, dl
, DstVT
);
5673 SDValue R
= DAG
.getNode(ISD::OR
, dl
, IntVT
,
5674 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, MantissaMask
),
5675 DAG
.getConstant(0x00800000, dl
, IntVT
));
5677 R
= DAG
.getZExtOrTrunc(R
, dl
, DstVT
);
5679 R
= DAG
.getSelectCC(
5680 dl
, Exponent
, ExponentLoBit
,
5681 DAG
.getNode(ISD::SHL
, dl
, DstVT
, R
,
5683 DAG
.getNode(ISD::SUB
, dl
, IntVT
, Exponent
, ExponentLoBit
),
5685 DAG
.getNode(ISD::SRL
, dl
, DstVT
, R
,
5687 DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentLoBit
, Exponent
),
5691 SDValue Ret
= DAG
.getNode(ISD::SUB
, dl
, DstVT
,
5692 DAG
.getNode(ISD::XOR
, dl
, DstVT
, R
, Sign
), Sign
);
5694 Result
= DAG
.getSelectCC(dl
, Exponent
, DAG
.getConstant(0, dl
, IntVT
),
5695 DAG
.getConstant(0, dl
, DstVT
), Ret
, ISD::SETLT
);
5699 bool TargetLowering::expandFP_TO_UINT(SDNode
*Node
, SDValue
&Result
,
5701 SelectionDAG
&DAG
) const {
5702 SDLoc
dl(SDValue(Node
, 0));
5703 unsigned OpNo
= Node
->isStrictFPOpcode() ? 1 : 0;
5704 SDValue Src
= Node
->getOperand(OpNo
);
5706 EVT SrcVT
= Src
.getValueType();
5707 EVT DstVT
= Node
->getValueType(0);
5709 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
5711 // Only expand vector types if we have the appropriate vector bit operations.
5712 unsigned SIntOpcode
= Node
->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT
:
5714 if (DstVT
.isVector() && (!isOperationLegalOrCustom(SIntOpcode
, DstVT
) ||
5715 !isOperationLegalOrCustomOrPromote(ISD::XOR
, SrcVT
)))
5718 // If the maximum float value is smaller then the signed integer range,
5719 // the destination signmask can't be represented by the float, so we can
5720 // just use FP_TO_SINT directly.
5721 const fltSemantics
&APFSem
= DAG
.EVTToAPFloatSemantics(SrcVT
);
5722 APFloat
APF(APFSem
, APInt::getNullValue(SrcVT
.getScalarSizeInBits()));
5723 APInt SignMask
= APInt::getSignMask(DstVT
.getScalarSizeInBits());
5724 if (APFloat::opOverflow
&
5725 APF
.convertFromAPInt(SignMask
, false, APFloat::rmNearestTiesToEven
)) {
5726 if (Node
->isStrictFPOpcode()) {
5727 Result
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
, { DstVT
, MVT::Other
},
5728 { Node
->getOperand(0), Src
});
5729 Chain
= Result
.getValue(1);
5731 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
5735 SDValue Cst
= DAG
.getConstantFP(APF
, dl
, SrcVT
);
5736 SDValue Sel
= DAG
.getSetCC(dl
, SetCCVT
, Src
, Cst
, ISD::SETLT
);
5738 bool Strict
= Node
->isStrictFPOpcode() ||
5739 shouldUseStrictFP_TO_INT(SrcVT
, DstVT
, /*IsSigned*/ false);
5742 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5743 // signmask then offset (the result of which should be fully representable).
5744 // Sel = Src < 0x8000000000000000
5745 // Val = select Sel, Src, Src - 0x8000000000000000
5746 // Ofs = select Sel, 0, 0x8000000000000000
5747 // Result = fp_to_sint(Val) ^ Ofs
5749 // TODO: Should any fast-math-flags be set for the FSUB?
5751 if (Node
->isStrictFPOpcode())
5752 SrcBiased
= DAG
.getNode(ISD::STRICT_FSUB
, dl
, { SrcVT
, MVT::Other
},
5753 { Node
->getOperand(0), Src
, Cst
});
5755 SrcBiased
= DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
);
5756 SDValue Val
= DAG
.getSelect(dl
, SrcVT
, Sel
, Src
, SrcBiased
);
5757 SDValue Ofs
= DAG
.getSelect(dl
, DstVT
, Sel
, DAG
.getConstant(0, dl
, DstVT
),
5758 DAG
.getConstant(SignMask
, dl
, DstVT
));
5760 if (Node
->isStrictFPOpcode()) {
5761 SInt
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
, { DstVT
, MVT::Other
},
5762 { SrcBiased
.getValue(1), Val
});
5763 Chain
= SInt
.getValue(1);
5765 SInt
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Val
);
5766 Result
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, SInt
, Ofs
);
5768 // Expand based on maximum range of FP_TO_SINT:
5769 // True = fp_to_sint(Src)
5770 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5771 // Result = select (Src < 0x8000000000000000), True, False
5773 SDValue True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
5774 // TODO: Should any fast-math-flags be set for the FSUB?
5775 SDValue False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
,
5776 DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
));
5777 False
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, False
,
5778 DAG
.getConstant(SignMask
, dl
, DstVT
));
5779 Result
= DAG
.getSelect(dl
, DstVT
, Sel
, True
, False
);
5784 bool TargetLowering::expandUINT_TO_FP(SDNode
*Node
, SDValue
&Result
,
5785 SelectionDAG
&DAG
) const {
5786 SDValue Src
= Node
->getOperand(0);
5787 EVT SrcVT
= Src
.getValueType();
5788 EVT DstVT
= Node
->getValueType(0);
5790 if (SrcVT
.getScalarType() != MVT::i64
)
5793 SDLoc
dl(SDValue(Node
, 0));
5794 EVT ShiftVT
= getShiftAmountTy(SrcVT
, DAG
.getDataLayout());
5796 if (DstVT
.getScalarType() == MVT::f32
) {
5797 // Only expand vector types if we have the appropriate vector bit
5799 if (SrcVT
.isVector() &&
5800 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
5801 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
5802 !isOperationLegalOrCustom(ISD::SINT_TO_FP
, SrcVT
) ||
5803 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
5804 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
5807 // For unsigned conversions, convert them to signed conversions using the
5808 // algorithm from the x86_64 __floatundidf in compiler_rt.
5809 SDValue Fast
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Src
);
5811 SDValue ShiftConst
= DAG
.getConstant(1, dl
, ShiftVT
);
5812 SDValue Shr
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, ShiftConst
);
5813 SDValue AndConst
= DAG
.getConstant(1, dl
, SrcVT
);
5814 SDValue And
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, AndConst
);
5815 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, And
, Shr
);
5817 SDValue SignCvt
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Or
);
5818 SDValue Slow
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, SignCvt
, SignCvt
);
5820 // TODO: This really should be implemented using a branch rather than a
5821 // select. We happen to get lucky and machinesink does the right
5822 // thing most of the time. This would be a good candidate for a
5823 // pseudo-op, or, even better, for whole-function isel.
5825 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
5827 SDValue SignBitTest
= DAG
.getSetCC(
5828 dl
, SetCCVT
, Src
, DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
5829 Result
= DAG
.getSelect(dl
, DstVT
, SignBitTest
, Slow
, Fast
);
5833 if (DstVT
.getScalarType() == MVT::f64
) {
5834 // Only expand vector types if we have the appropriate vector bit
5836 if (SrcVT
.isVector() &&
5837 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
5838 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
5839 !isOperationLegalOrCustom(ISD::FSUB
, DstVT
) ||
5840 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
5841 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
5844 // Implementation of unsigned i64 to f64 following the algorithm in
5845 // __floatundidf in compiler_rt. This implementation has the advantage
5846 // of performing rounding correctly, both in the default rounding mode
5847 // and in all alternate rounding modes.
5848 SDValue TwoP52
= DAG
.getConstant(UINT64_C(0x4330000000000000), dl
, SrcVT
);
5849 SDValue TwoP84PlusTwoP52
= DAG
.getConstantFP(
5850 BitsToDouble(UINT64_C(0x4530000000100000)), dl
, DstVT
);
5851 SDValue TwoP84
= DAG
.getConstant(UINT64_C(0x4530000000000000), dl
, SrcVT
);
5852 SDValue LoMask
= DAG
.getConstant(UINT64_C(0x00000000FFFFFFFF), dl
, SrcVT
);
5853 SDValue HiShift
= DAG
.getConstant(32, dl
, ShiftVT
);
5855 SDValue Lo
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, LoMask
);
5856 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, HiShift
);
5857 SDValue LoOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Lo
, TwoP52
);
5858 SDValue HiOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Hi
, TwoP84
);
5859 SDValue LoFlt
= DAG
.getBitcast(DstVT
, LoOr
);
5860 SDValue HiFlt
= DAG
.getBitcast(DstVT
, HiOr
);
5861 SDValue HiSub
= DAG
.getNode(ISD::FSUB
, dl
, DstVT
, HiFlt
, TwoP84PlusTwoP52
);
5862 Result
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, LoFlt
, HiSub
);
5869 SDValue
TargetLowering::expandFMINNUM_FMAXNUM(SDNode
*Node
,
5870 SelectionDAG
&DAG
) const {
5872 unsigned NewOp
= Node
->getOpcode() == ISD::FMINNUM
?
5873 ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
5874 EVT VT
= Node
->getValueType(0);
5875 if (isOperationLegalOrCustom(NewOp
, VT
)) {
5876 SDValue Quiet0
= Node
->getOperand(0);
5877 SDValue Quiet1
= Node
->getOperand(1);
5879 if (!Node
->getFlags().hasNoNaNs()) {
5880 // Insert canonicalizes if it's possible we need to quiet to get correct
5882 if (!DAG
.isKnownNeverSNaN(Quiet0
)) {
5883 Quiet0
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet0
,
5886 if (!DAG
.isKnownNeverSNaN(Quiet1
)) {
5887 Quiet1
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet1
,
5892 return DAG
.getNode(NewOp
, dl
, VT
, Quiet0
, Quiet1
, Node
->getFlags());
5895 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5896 // instead if there are no NaNs.
5897 if (Node
->getFlags().hasNoNaNs()) {
5898 unsigned IEEE2018Op
=
5899 Node
->getOpcode() == ISD::FMINNUM
? ISD::FMINIMUM
: ISD::FMAXIMUM
;
5900 if (isOperationLegalOrCustom(IEEE2018Op
, VT
)) {
5901 return DAG
.getNode(IEEE2018Op
, dl
, VT
, Node
->getOperand(0),
5902 Node
->getOperand(1), Node
->getFlags());
5909 bool TargetLowering::expandCTPOP(SDNode
*Node
, SDValue
&Result
,
5910 SelectionDAG
&DAG
) const {
5912 EVT VT
= Node
->getValueType(0);
5913 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5914 SDValue Op
= Node
->getOperand(0);
5915 unsigned Len
= VT
.getScalarSizeInBits();
5916 assert(VT
.isInteger() && "CTPOP not implemented for this type.");
5918 // TODO: Add support for irregular type lengths.
5919 if (!(Len
<= 128 && Len
% 8 == 0))
5922 // Only expand vector types if we have the appropriate vector bit operations.
5923 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::ADD
, VT
) ||
5924 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5925 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5926 (Len
!= 8 && !isOperationLegalOrCustom(ISD::MUL
, VT
)) ||
5927 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
5930 // This is the "best" algorithm from
5931 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5933 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x55)), dl
, VT
);
5935 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x33)), dl
, VT
);
5937 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x0F)), dl
, VT
);
5939 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x01)), dl
, VT
);
5941 // v = v - ((v >> 1) & 0x55555555...)
5942 Op
= DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
5943 DAG
.getNode(ISD::AND
, dl
, VT
,
5944 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
5945 DAG
.getConstant(1, dl
, ShVT
)),
5947 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5948 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Mask33
),
5949 DAG
.getNode(ISD::AND
, dl
, VT
,
5950 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
5951 DAG
.getConstant(2, dl
, ShVT
)),
5953 // v = (v + (v >> 4)) & 0x0F0F0F0F...
5954 Op
= DAG
.getNode(ISD::AND
, dl
, VT
,
5955 DAG
.getNode(ISD::ADD
, dl
, VT
, Op
,
5956 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
5957 DAG
.getConstant(4, dl
, ShVT
))),
5959 // v = (v * 0x01010101...) >> (Len - 8)
5962 DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::MUL
, dl
, VT
, Op
, Mask01
),
5963 DAG
.getConstant(Len
- 8, dl
, ShVT
));
5969 bool TargetLowering::expandCTLZ(SDNode
*Node
, SDValue
&Result
,
5970 SelectionDAG
&DAG
) const {
5972 EVT VT
= Node
->getValueType(0);
5973 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5974 SDValue Op
= Node
->getOperand(0);
5975 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
5977 // If the non-ZERO_UNDEF version is supported we can use that instead.
5978 if (Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
&&
5979 isOperationLegalOrCustom(ISD::CTLZ
, VT
)) {
5980 Result
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Op
);
5984 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5985 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
5987 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5988 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, dl
, VT
, Op
);
5989 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
5990 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
5991 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
5992 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTLZ
);
5996 // Only expand vector types if we have the appropriate vector bit operations.
5997 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
5998 !isOperationLegalOrCustom(ISD::CTPOP
, VT
) ||
5999 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
6000 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
6003 // for now, we do this:
6004 // x = x | (x >> 1);
6005 // x = x | (x >> 2);
6007 // x = x | (x >>16);
6008 // x = x | (x >>32); // for 64-bit input
6009 // return popcount(~x);
6011 // Ref: "Hacker's Delight" by Henry Warren
6012 for (unsigned i
= 0; (1U << i
) <= (NumBitsPerElt
/ 2); ++i
) {
6013 SDValue Tmp
= DAG
.getConstant(1ULL << i
, dl
, ShVT
);
6014 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
6015 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp
));
6017 Op
= DAG
.getNOT(dl
, Op
, VT
);
6018 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
6022 bool TargetLowering::expandCTTZ(SDNode
*Node
, SDValue
&Result
,
6023 SelectionDAG
&DAG
) const {
6025 EVT VT
= Node
->getValueType(0);
6026 SDValue Op
= Node
->getOperand(0);
6027 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
6029 // If the non-ZERO_UNDEF version is supported we can use that instead.
6030 if (Node
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
&&
6031 isOperationLegalOrCustom(ISD::CTTZ
, VT
)) {
6032 Result
= DAG
.getNode(ISD::CTTZ
, dl
, VT
, Op
);
6036 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6037 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
6039 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6040 SDValue CTTZ
= DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, dl
, VT
, Op
);
6041 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6042 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
6043 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
6044 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTTZ
);
6048 // Only expand vector types if we have the appropriate vector bit operations.
6049 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
6050 (!isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
6051 !isOperationLegalOrCustom(ISD::CTLZ
, VT
)) ||
6052 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
6053 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
6054 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
6057 // for now, we use: { return popcount(~x & (x - 1)); }
6058 // unless the target has ctlz but not ctpop, in which case we use:
6059 // { return 32 - nlz(~x & (x-1)); }
6060 // Ref: "Hacker's Delight" by Henry Warren
6061 SDValue Tmp
= DAG
.getNode(
6062 ISD::AND
, dl
, VT
, DAG
.getNOT(dl
, Op
, VT
),
6063 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
, DAG
.getConstant(1, dl
, VT
)));
6065 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6066 if (isOperationLegal(ISD::CTLZ
, VT
) && !isOperationLegal(ISD::CTPOP
, VT
)) {
6068 DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(NumBitsPerElt
, dl
, VT
),
6069 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp
));
6073 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp
);
6077 bool TargetLowering::expandABS(SDNode
*N
, SDValue
&Result
,
6078 SelectionDAG
&DAG
) const {
6080 EVT VT
= N
->getValueType(0);
6081 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6082 SDValue Op
= N
->getOperand(0);
6084 // Only expand vector types if we have the appropriate vector operations.
6085 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SRA
, VT
) ||
6086 !isOperationLegalOrCustom(ISD::ADD
, VT
) ||
6087 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
6091 DAG
.getNode(ISD::SRA
, dl
, VT
, Op
,
6092 DAG
.getConstant(VT
.getScalarSizeInBits() - 1, dl
, ShVT
));
6093 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Shift
);
6094 Result
= DAG
.getNode(ISD::XOR
, dl
, VT
, Add
, Shift
);
6098 SDValue
TargetLowering::scalarizeVectorLoad(LoadSDNode
*LD
,
6099 SelectionDAG
&DAG
) const {
6101 SDValue Chain
= LD
->getChain();
6102 SDValue BasePTR
= LD
->getBasePtr();
6103 EVT SrcVT
= LD
->getMemoryVT();
6104 ISD::LoadExtType ExtType
= LD
->getExtensionType();
6106 unsigned NumElem
= SrcVT
.getVectorNumElements();
6108 EVT SrcEltVT
= SrcVT
.getScalarType();
6109 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
6111 unsigned Stride
= SrcEltVT
.getSizeInBits() / 8;
6112 assert(SrcEltVT
.isByteSized());
6114 SmallVector
<SDValue
, 8> Vals
;
6115 SmallVector
<SDValue
, 8> LoadChains
;
6117 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6118 SDValue ScalarLoad
=
6119 DAG
.getExtLoad(ExtType
, SL
, DstEltVT
, Chain
, BasePTR
,
6120 LD
->getPointerInfo().getWithOffset(Idx
* Stride
),
6121 SrcEltVT
, MinAlign(LD
->getAlignment(), Idx
* Stride
),
6122 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6124 BasePTR
= DAG
.getObjectPtrOffset(SL
, BasePTR
, Stride
);
6126 Vals
.push_back(ScalarLoad
.getValue(0));
6127 LoadChains
.push_back(ScalarLoad
.getValue(1));
6130 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoadChains
);
6131 SDValue Value
= DAG
.getBuildVector(LD
->getValueType(0), SL
, Vals
);
6133 return DAG
.getMergeValues({Value
, NewChain
}, SL
);
6136 SDValue
TargetLowering::scalarizeVectorStore(StoreSDNode
*ST
,
6137 SelectionDAG
&DAG
) const {
6140 SDValue Chain
= ST
->getChain();
6141 SDValue BasePtr
= ST
->getBasePtr();
6142 SDValue Value
= ST
->getValue();
6143 EVT StVT
= ST
->getMemoryVT();
6145 // The type of the data we want to save
6146 EVT RegVT
= Value
.getValueType();
6147 EVT RegSclVT
= RegVT
.getScalarType();
6149 // The type of data as saved in memory.
6150 EVT MemSclVT
= StVT
.getScalarType();
6152 EVT IdxVT
= getVectorIdxTy(DAG
.getDataLayout());
6153 unsigned NumElem
= StVT
.getVectorNumElements();
6155 // A vector must always be stored in memory as-is, i.e. without any padding
6156 // between the elements, since various code depend on it, e.g. in the
6157 // handling of a bitcast of a vector type to int, which may be done with a
6158 // vector store followed by an integer load. A vector that does not have
6159 // elements that are byte-sized must therefore be stored as an integer
6160 // built out of the extracted vector elements.
6161 if (!MemSclVT
.isByteSized()) {
6162 unsigned NumBits
= StVT
.getSizeInBits();
6163 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
6165 SDValue CurrVal
= DAG
.getConstant(0, SL
, IntVT
);
6167 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6168 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
6169 DAG
.getConstant(Idx
, SL
, IdxVT
));
6170 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MemSclVT
, Elt
);
6171 SDValue ExtElt
= DAG
.getNode(ISD::ZERO_EXTEND
, SL
, IntVT
, Trunc
);
6172 unsigned ShiftIntoIdx
=
6173 (DAG
.getDataLayout().isBigEndian() ? (NumElem
- 1) - Idx
: Idx
);
6174 SDValue ShiftAmount
=
6175 DAG
.getConstant(ShiftIntoIdx
* MemSclVT
.getSizeInBits(), SL
, IntVT
);
6176 SDValue ShiftedElt
=
6177 DAG
.getNode(ISD::SHL
, SL
, IntVT
, ExtElt
, ShiftAmount
);
6178 CurrVal
= DAG
.getNode(ISD::OR
, SL
, IntVT
, CurrVal
, ShiftedElt
);
6181 return DAG
.getStore(Chain
, SL
, CurrVal
, BasePtr
, ST
->getPointerInfo(),
6182 ST
->getAlignment(), ST
->getMemOperand()->getFlags(),
6186 // Store Stride in bytes
6187 unsigned Stride
= MemSclVT
.getSizeInBits() / 8;
6188 assert(Stride
&& "Zero stride!");
6189 // Extract each of the elements from the original vector and save them into
6190 // memory individually.
6191 SmallVector
<SDValue
, 8> Stores
;
6192 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6193 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
6194 DAG
.getConstant(Idx
, SL
, IdxVT
));
6196 SDValue Ptr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Idx
* Stride
);
6198 // This scalar TruncStore may be illegal, but we legalize it later.
6199 SDValue Store
= DAG
.getTruncStore(
6200 Chain
, SL
, Elt
, Ptr
, ST
->getPointerInfo().getWithOffset(Idx
* Stride
),
6201 MemSclVT
, MinAlign(ST
->getAlignment(), Idx
* Stride
),
6202 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
6204 Stores
.push_back(Store
);
6207 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, Stores
);
6210 std::pair
<SDValue
, SDValue
>
6211 TargetLowering::expandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) const {
6212 assert(LD
->getAddressingMode() == ISD::UNINDEXED
&&
6213 "unaligned indexed loads not implemented!");
6214 SDValue Chain
= LD
->getChain();
6215 SDValue Ptr
= LD
->getBasePtr();
6216 EVT VT
= LD
->getValueType(0);
6217 EVT LoadedVT
= LD
->getMemoryVT();
6219 auto &MF
= DAG
.getMachineFunction();
6221 if (VT
.isFloatingPoint() || VT
.isVector()) {
6222 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadedVT
.getSizeInBits());
6223 if (isTypeLegal(intVT
) && isTypeLegal(LoadedVT
)) {
6224 if (!isOperationLegalOrCustom(ISD::LOAD
, intVT
) &&
6225 LoadedVT
.isVector()) {
6226 // Scalarize the load and let the individual components be handled.
6227 SDValue Scalarized
= scalarizeVectorLoad(LD
, DAG
);
6228 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
)
6229 return std::make_pair(Scalarized
.getOperand(0), Scalarized
.getOperand(1));
6230 return std::make_pair(Scalarized
.getValue(0), Scalarized
.getValue(1));
6233 // Expand to a (misaligned) integer load of the same size,
6234 // then bitconvert to floating point or vector.
6235 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
,
6236 LD
->getMemOperand());
6237 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, LoadedVT
, newLoad
);
6239 Result
= DAG
.getNode(VT
.isFloatingPoint() ? ISD::FP_EXTEND
:
6240 ISD::ANY_EXTEND
, dl
, VT
, Result
);
6242 return std::make_pair(Result
, newLoad
.getValue(1));
6245 // Copy the value to a (aligned) stack slot using (unaligned) integer
6246 // loads and stores, then do a (aligned) load from the stack slot.
6247 MVT RegVT
= getRegisterType(*DAG
.getContext(), intVT
);
6248 unsigned LoadedBytes
= LoadedVT
.getStoreSize();
6249 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
6250 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
6252 // Make sure the stack slot is also aligned for the register type.
6253 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
6254 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackBase
.getNode())->getIndex();
6255 SmallVector
<SDValue
, 8> Stores
;
6256 SDValue StackPtr
= StackBase
;
6257 unsigned Offset
= 0;
6259 EVT PtrVT
= Ptr
.getValueType();
6260 EVT StackPtrVT
= StackPtr
.getValueType();
6262 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
6263 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
6265 // Do all but one copies using the full register width.
6266 for (unsigned i
= 1; i
< NumRegs
; i
++) {
6267 // Load one integer register's worth from the original location.
6268 SDValue Load
= DAG
.getLoad(
6269 RegVT
, dl
, Chain
, Ptr
, LD
->getPointerInfo().getWithOffset(Offset
),
6270 MinAlign(LD
->getAlignment(), Offset
), LD
->getMemOperand()->getFlags(),
6272 // Follow the load with a store to the stack slot. Remember the store.
6273 Stores
.push_back(DAG
.getStore(
6274 Load
.getValue(1), dl
, Load
, StackPtr
,
6275 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
)));
6276 // Increment the pointers.
6279 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
6280 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
6283 // The last copy may be partial. Do an extending load.
6284 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(),
6285 8 * (LoadedBytes
- Offset
));
6287 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
6288 LD
->getPointerInfo().getWithOffset(Offset
), MemVT
,
6289 MinAlign(LD
->getAlignment(), Offset
),
6290 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6291 // Follow the load with a store to the stack slot. Remember the store.
6292 // On big-endian machines this requires a truncating store to ensure
6293 // that the bits end up in the right place.
6294 Stores
.push_back(DAG
.getTruncStore(
6295 Load
.getValue(1), dl
, Load
, StackPtr
,
6296 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), MemVT
));
6298 // The order of the stores doesn't matter - say it with a TokenFactor.
6299 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
6301 // Finally, perform the original load only redirected to the stack slot.
6302 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
6303 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0),
6306 // Callers expect a MERGE_VALUES node.
6307 return std::make_pair(Load
, TF
);
6310 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
6311 "Unaligned load of unsupported type.");
6313 // Compute the new VT that is half the size of the old one. This is an
6315 unsigned NumBits
= LoadedVT
.getSizeInBits();
6317 NewLoadedVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
/2);
6320 unsigned Alignment
= LD
->getAlignment();
6321 unsigned IncrementSize
= NumBits
/ 8;
6322 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
6324 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6325 if (HiExtType
== ISD::NON_EXTLOAD
)
6326 HiExtType
= ISD::ZEXTLOAD
;
6328 // Load the value in two parts
6330 if (DAG
.getDataLayout().isLittleEndian()) {
6331 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
6332 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
6335 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6336 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
,
6337 LD
->getPointerInfo().getWithOffset(IncrementSize
),
6338 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
6339 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6341 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
6342 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
6345 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6346 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
,
6347 LD
->getPointerInfo().getWithOffset(IncrementSize
),
6348 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
6349 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6352 // aggregate the two parts
6353 SDValue ShiftAmount
=
6354 DAG
.getConstant(NumBits
, dl
, getShiftAmountTy(Hi
.getValueType(),
6355 DAG
.getDataLayout()));
6356 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
6357 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
6359 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
6362 return std::make_pair(Result
, TF
);
6365 SDValue
TargetLowering::expandUnalignedStore(StoreSDNode
*ST
,
6366 SelectionDAG
&DAG
) const {
6367 assert(ST
->getAddressingMode() == ISD::UNINDEXED
&&
6368 "unaligned indexed stores not implemented!");
6369 SDValue Chain
= ST
->getChain();
6370 SDValue Ptr
= ST
->getBasePtr();
6371 SDValue Val
= ST
->getValue();
6372 EVT VT
= Val
.getValueType();
6373 int Alignment
= ST
->getAlignment();
6374 auto &MF
= DAG
.getMachineFunction();
6375 EVT StoreMemVT
= ST
->getMemoryVT();
6378 if (StoreMemVT
.isFloatingPoint() || StoreMemVT
.isVector()) {
6379 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
6380 if (isTypeLegal(intVT
)) {
6381 if (!isOperationLegalOrCustom(ISD::STORE
, intVT
) &&
6382 StoreMemVT
.isVector()) {
6383 // Scalarize the store and let the individual components be handled.
6384 SDValue Result
= scalarizeVectorStore(ST
, DAG
);
6387 // Expand to a bitconvert of the value to the integer type of the
6388 // same size, then a (misaligned) int store.
6389 // FIXME: Does not handle truncating floating point stores!
6390 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, intVT
, Val
);
6391 Result
= DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getPointerInfo(),
6392 Alignment
, ST
->getMemOperand()->getFlags());
6395 // Do a (aligned) store to a stack slot, then copy from the stack slot
6396 // to the final destination using (unaligned) integer loads and stores.
6397 MVT RegVT
= getRegisterType(
6399 EVT::getIntegerVT(*DAG
.getContext(), StoreMemVT
.getSizeInBits()));
6400 EVT PtrVT
= Ptr
.getValueType();
6401 unsigned StoredBytes
= StoreMemVT
.getStoreSize();
6402 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
6403 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
6405 // Make sure the stack slot is also aligned for the register type.
6406 SDValue StackPtr
= DAG
.CreateStackTemporary(StoreMemVT
, RegVT
);
6407 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
6409 // Perform the original store, only redirected to the stack slot.
6410 SDValue Store
= DAG
.getTruncStore(
6411 Chain
, dl
, Val
, StackPtr
,
6412 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0), StoreMemVT
);
6414 EVT StackPtrVT
= StackPtr
.getValueType();
6416 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
6417 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
6418 SmallVector
<SDValue
, 8> Stores
;
6419 unsigned Offset
= 0;
6421 // Do all but one copies using the full register width.
6422 for (unsigned i
= 1; i
< NumRegs
; i
++) {
6423 // Load one integer register's worth from the stack slot.
6424 SDValue Load
= DAG
.getLoad(
6425 RegVT
, dl
, Store
, StackPtr
,
6426 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
));
6427 // Store it to the final location. Remember the store.
6428 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
6429 ST
->getPointerInfo().getWithOffset(Offset
),
6430 MinAlign(ST
->getAlignment(), Offset
),
6431 ST
->getMemOperand()->getFlags()));
6432 // Increment the pointers.
6434 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
6435 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
6438 // The last store may be partial. Do a truncating store. On big-endian
6439 // machines this requires an extending load from the stack slot to ensure
6440 // that the bits are in the right place.
6442 EVT::getIntegerVT(*DAG
.getContext(), 8 * (StoredBytes
- Offset
));
6444 // Load from the stack slot.
6445 SDValue Load
= DAG
.getExtLoad(
6446 ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
6447 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), LoadMemVT
);
6450 DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
6451 ST
->getPointerInfo().getWithOffset(Offset
), LoadMemVT
,
6452 MinAlign(ST
->getAlignment(), Offset
),
6453 ST
->getMemOperand()->getFlags(), ST
->getAAInfo()));
6454 // The order of the stores doesn't matter - say it with a TokenFactor.
6455 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
6459 assert(StoreMemVT
.isInteger() && !StoreMemVT
.isVector() &&
6460 "Unaligned store of unknown type.");
6461 // Get the half-size VT
6462 EVT NewStoredVT
= StoreMemVT
.getHalfSizedIntegerVT(*DAG
.getContext());
6463 int NumBits
= NewStoredVT
.getSizeInBits();
6464 int IncrementSize
= NumBits
/ 8;
6466 // Divide the stored value in two parts.
6467 SDValue ShiftAmount
= DAG
.getConstant(
6468 NumBits
, dl
, getShiftAmountTy(Val
.getValueType(), DAG
.getDataLayout()));
6470 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
6472 // Store the two parts
6473 SDValue Store1
, Store2
;
6474 Store1
= DAG
.getTruncStore(Chain
, dl
,
6475 DAG
.getDataLayout().isLittleEndian() ? Lo
: Hi
,
6476 Ptr
, ST
->getPointerInfo(), NewStoredVT
, Alignment
,
6477 ST
->getMemOperand()->getFlags());
6479 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6480 Alignment
= MinAlign(Alignment
, IncrementSize
);
6481 Store2
= DAG
.getTruncStore(
6482 Chain
, dl
, DAG
.getDataLayout().isLittleEndian() ? Hi
: Lo
, Ptr
,
6483 ST
->getPointerInfo().getWithOffset(IncrementSize
), NewStoredVT
, Alignment
,
6484 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
6487 DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
6492 TargetLowering::IncrementMemoryAddress(SDValue Addr
, SDValue Mask
,
6493 const SDLoc
&DL
, EVT DataVT
,
6495 bool IsCompressedMemory
) const {
6497 EVT AddrVT
= Addr
.getValueType();
6498 EVT MaskVT
= Mask
.getValueType();
6499 assert(DataVT
.getVectorNumElements() == MaskVT
.getVectorNumElements() &&
6500 "Incompatible types of Data and Mask");
6501 if (IsCompressedMemory
) {
6502 // Incrementing the pointer according to number of '1's in the mask.
6503 EVT MaskIntVT
= EVT::getIntegerVT(*DAG
.getContext(), MaskVT
.getSizeInBits());
6504 SDValue MaskInIntReg
= DAG
.getBitcast(MaskIntVT
, Mask
);
6505 if (MaskIntVT
.getSizeInBits() < 32) {
6506 MaskInIntReg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, MaskInIntReg
);
6507 MaskIntVT
= MVT::i32
;
6510 // Count '1's with POPCNT.
6511 Increment
= DAG
.getNode(ISD::CTPOP
, DL
, MaskIntVT
, MaskInIntReg
);
6512 Increment
= DAG
.getZExtOrTrunc(Increment
, DL
, AddrVT
);
6513 // Scale is an element size in bytes.
6514 SDValue Scale
= DAG
.getConstant(DataVT
.getScalarSizeInBits() / 8, DL
,
6516 Increment
= DAG
.getNode(ISD::MUL
, DL
, AddrVT
, Increment
, Scale
);
6518 Increment
= DAG
.getConstant(DataVT
.getStoreSize(), DL
, AddrVT
);
6520 return DAG
.getNode(ISD::ADD
, DL
, AddrVT
, Addr
, Increment
);
6523 static SDValue
clampDynamicVectorIndex(SelectionDAG
&DAG
,
6527 if (isa
<ConstantSDNode
>(Idx
))
6530 EVT IdxVT
= Idx
.getValueType();
6531 unsigned NElts
= VecVT
.getVectorNumElements();
6532 if (isPowerOf2_32(NElts
)) {
6533 APInt Imm
= APInt::getLowBitsSet(IdxVT
.getSizeInBits(),
6535 return DAG
.getNode(ISD::AND
, dl
, IdxVT
, Idx
,
6536 DAG
.getConstant(Imm
, dl
, IdxVT
));
6539 return DAG
.getNode(ISD::UMIN
, dl
, IdxVT
, Idx
,
6540 DAG
.getConstant(NElts
- 1, dl
, IdxVT
));
6543 SDValue
TargetLowering::getVectorElementPointer(SelectionDAG
&DAG
,
6544 SDValue VecPtr
, EVT VecVT
,
6545 SDValue Index
) const {
6547 // Make sure the index type is big enough to compute in.
6548 Index
= DAG
.getZExtOrTrunc(Index
, dl
, VecPtr
.getValueType());
6550 EVT EltVT
= VecVT
.getVectorElementType();
6552 // Calculate the element offset and add it to the pointer.
6553 unsigned EltSize
= EltVT
.getSizeInBits() / 8; // FIXME: should be ABI size.
6554 assert(EltSize
* 8 == EltVT
.getSizeInBits() &&
6555 "Converting bits to bytes lost precision");
6557 Index
= clampDynamicVectorIndex(DAG
, Index
, VecVT
, dl
);
6559 EVT IdxVT
= Index
.getValueType();
6561 Index
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Index
,
6562 DAG
.getConstant(EltSize
, dl
, IdxVT
));
6563 return DAG
.getNode(ISD::ADD
, dl
, IdxVT
, VecPtr
, Index
);
6566 //===----------------------------------------------------------------------===//
6567 // Implementation of Emulated TLS Model
6568 //===----------------------------------------------------------------------===//
6570 SDValue
TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode
*GA
,
6571 SelectionDAG
&DAG
) const {
6572 // Access to address of TLS varialbe xyz is lowered to a function call:
6573 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6574 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6575 PointerType
*VoidPtrType
= Type::getInt8PtrTy(*DAG
.getContext());
6580 std::string NameString
= ("__emutls_v." + GA
->getGlobal()->getName()).str();
6581 Module
*VariableModule
= const_cast<Module
*>(GA
->getGlobal()->getParent());
6582 StringRef
EmuTlsVarName(NameString
);
6583 GlobalVariable
*EmuTlsVar
= VariableModule
->getNamedGlobal(EmuTlsVarName
);
6584 assert(EmuTlsVar
&& "Cannot find EmuTlsVar ");
6585 Entry
.Node
= DAG
.getGlobalAddress(EmuTlsVar
, dl
, PtrVT
);
6586 Entry
.Ty
= VoidPtrType
;
6587 Args
.push_back(Entry
);
6589 SDValue EmuTlsGetAddr
= DAG
.getExternalSymbol("__emutls_get_address", PtrVT
);
6591 TargetLowering::CallLoweringInfo
CLI(DAG
);
6592 CLI
.setDebugLoc(dl
).setChain(DAG
.getEntryNode());
6593 CLI
.setLibCallee(CallingConv::C
, VoidPtrType
, EmuTlsGetAddr
, std::move(Args
));
6594 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
6596 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6597 // At last for X86 targets, maybe good for other targets too?
6598 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
6599 MFI
.setAdjustsStack(true); // Is this only for X86 target?
6600 MFI
.setHasCalls(true);
6602 assert((GA
->getOffset() == 0) &&
6603 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6604 return CallResult
.first
;
6607 SDValue
TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op
,
6608 SelectionDAG
&DAG
) const {
6609 assert((Op
->getOpcode() == ISD::SETCC
) && "Input has to be a SETCC node.");
6612 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
6614 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
6615 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
6616 EVT VT
= Op
.getOperand(0).getValueType();
6617 SDValue Zext
= Op
.getOperand(0);
6618 if (VT
.bitsLT(MVT::i32
)) {
6620 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
6622 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
6623 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
6624 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
6625 DAG
.getConstant(Log2b
, dl
, MVT::i32
));
6626 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
6632 SDValue
TargetLowering::expandAddSubSat(SDNode
*Node
, SelectionDAG
&DAG
) const {
6633 unsigned Opcode
= Node
->getOpcode();
6634 SDValue LHS
= Node
->getOperand(0);
6635 SDValue RHS
= Node
->getOperand(1);
6636 EVT VT
= LHS
.getValueType();
6639 assert(VT
== RHS
.getValueType() && "Expected operands to be the same type");
6640 assert(VT
.isInteger() && "Expected operands to be integers");
6642 // usub.sat(a, b) -> umax(a, b) - b
6643 if (Opcode
== ISD::USUBSAT
&& isOperationLegalOrCustom(ISD::UMAX
, VT
)) {
6644 SDValue Max
= DAG
.getNode(ISD::UMAX
, dl
, VT
, LHS
, RHS
);
6645 return DAG
.getNode(ISD::SUB
, dl
, VT
, Max
, RHS
);
6648 if (Opcode
== ISD::UADDSAT
&& isOperationLegalOrCustom(ISD::UMIN
, VT
)) {
6649 SDValue InvRHS
= DAG
.getNOT(dl
, RHS
, VT
);
6650 SDValue Min
= DAG
.getNode(ISD::UMIN
, dl
, VT
, LHS
, InvRHS
);
6651 return DAG
.getNode(ISD::ADD
, dl
, VT
, Min
, RHS
);
6654 unsigned OverflowOp
;
6657 OverflowOp
= ISD::SADDO
;
6660 OverflowOp
= ISD::UADDO
;
6663 OverflowOp
= ISD::SSUBO
;
6666 OverflowOp
= ISD::USUBO
;
6669 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6670 "addition or subtraction node.");
6673 unsigned BitWidth
= LHS
.getScalarValueSizeInBits();
6674 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6675 SDValue Result
= DAG
.getNode(OverflowOp
, dl
, DAG
.getVTList(VT
, BoolVT
),
6677 SDValue SumDiff
= Result
.getValue(0);
6678 SDValue Overflow
= Result
.getValue(1);
6679 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6680 SDValue AllOnes
= DAG
.getAllOnesConstant(dl
, VT
);
6682 if (Opcode
== ISD::UADDSAT
) {
6683 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
6684 // (LHS + RHS) | OverflowMask
6685 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
6686 return DAG
.getNode(ISD::OR
, dl
, VT
, SumDiff
, OverflowMask
);
6688 // Overflow ? 0xffff.... : (LHS + RHS)
6689 return DAG
.getSelect(dl
, VT
, Overflow
, AllOnes
, SumDiff
);
6690 } else if (Opcode
== ISD::USUBSAT
) {
6691 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
6692 // (LHS - RHS) & ~OverflowMask
6693 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
6694 SDValue Not
= DAG
.getNOT(dl
, OverflowMask
, VT
);
6695 return DAG
.getNode(ISD::AND
, dl
, VT
, SumDiff
, Not
);
6697 // Overflow ? 0 : (LHS - RHS)
6698 return DAG
.getSelect(dl
, VT
, Overflow
, Zero
, SumDiff
);
6700 // SatMax -> Overflow && SumDiff < 0
6701 // SatMin -> Overflow && SumDiff >= 0
6702 APInt MinVal
= APInt::getSignedMinValue(BitWidth
);
6703 APInt MaxVal
= APInt::getSignedMaxValue(BitWidth
);
6704 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6705 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6706 SDValue SumNeg
= DAG
.getSetCC(dl
, BoolVT
, SumDiff
, Zero
, ISD::SETLT
);
6707 Result
= DAG
.getSelect(dl
, VT
, SumNeg
, SatMax
, SatMin
);
6708 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, SumDiff
);
6713 TargetLowering::expandFixedPointMul(SDNode
*Node
, SelectionDAG
&DAG
) const {
6714 assert((Node
->getOpcode() == ISD::SMULFIX
||
6715 Node
->getOpcode() == ISD::UMULFIX
||
6716 Node
->getOpcode() == ISD::SMULFIXSAT
||
6717 Node
->getOpcode() == ISD::UMULFIXSAT
) &&
6718 "Expected a fixed point multiplication opcode");
6721 SDValue LHS
= Node
->getOperand(0);
6722 SDValue RHS
= Node
->getOperand(1);
6723 EVT VT
= LHS
.getValueType();
6724 unsigned Scale
= Node
->getConstantOperandVal(2);
6725 bool Saturating
= (Node
->getOpcode() == ISD::SMULFIXSAT
||
6726 Node
->getOpcode() == ISD::UMULFIXSAT
);
6727 bool Signed
= (Node
->getOpcode() == ISD::SMULFIX
||
6728 Node
->getOpcode() == ISD::SMULFIXSAT
);
6729 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6730 unsigned VTSize
= VT
.getScalarSizeInBits();
6733 // [us]mul.fix(a, b, 0) -> mul(a, b)
6735 if (isOperationLegalOrCustom(ISD::MUL
, VT
))
6736 return DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6737 } else if (Signed
&& isOperationLegalOrCustom(ISD::SMULO
, VT
)) {
6739 DAG
.getNode(ISD::SMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
6740 SDValue Product
= Result
.getValue(0);
6741 SDValue Overflow
= Result
.getValue(1);
6742 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6744 APInt MinVal
= APInt::getSignedMinValue(VTSize
);
6745 APInt MaxVal
= APInt::getSignedMaxValue(VTSize
);
6746 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6747 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6748 SDValue ProdNeg
= DAG
.getSetCC(dl
, BoolVT
, Product
, Zero
, ISD::SETLT
);
6749 Result
= DAG
.getSelect(dl
, VT
, ProdNeg
, SatMax
, SatMin
);
6750 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, Product
);
6751 } else if (!Signed
&& isOperationLegalOrCustom(ISD::UMULO
, VT
)) {
6753 DAG
.getNode(ISD::UMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
6754 SDValue Product
= Result
.getValue(0);
6755 SDValue Overflow
= Result
.getValue(1);
6757 APInt MaxVal
= APInt::getMaxValue(VTSize
);
6758 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6759 return DAG
.getSelect(dl
, VT
, Overflow
, SatMax
, Product
);
6763 assert(((Signed
&& Scale
< VTSize
) || (!Signed
&& Scale
<= VTSize
)) &&
6764 "Expected scale to be less than the number of bits if signed or at "
6765 "most the number of bits if unsigned.");
6766 assert(LHS
.getValueType() == RHS
.getValueType() &&
6767 "Expected both operands to be the same type");
6769 // Get the upper and lower bits of the result.
6771 unsigned LoHiOp
= Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
;
6772 unsigned HiOp
= Signed
? ISD::MULHS
: ISD::MULHU
;
6773 if (isOperationLegalOrCustom(LoHiOp
, VT
)) {
6774 SDValue Result
= DAG
.getNode(LoHiOp
, dl
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
6775 Lo
= Result
.getValue(0);
6776 Hi
= Result
.getValue(1);
6777 } else if (isOperationLegalOrCustom(HiOp
, VT
)) {
6778 Lo
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6779 Hi
= DAG
.getNode(HiOp
, dl
, VT
, LHS
, RHS
);
6780 } else if (VT
.isVector()) {
6783 report_fatal_error("Unable to expand fixed point multiplication.");
6786 if (Scale
== VTSize
)
6787 // Result is just the top half since we'd be shifting by the width of the
6788 // operand. Overflow impossible so this works for both UMULFIX and
6792 // The result will need to be shifted right by the scale since both operands
6793 // are scaled. The result is given to us in 2 halves, so we only want part of
6794 // both in the result.
6795 EVT ShiftTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6796 SDValue Result
= DAG
.getNode(ISD::FSHR
, dl
, VT
, Hi
, Lo
,
6797 DAG
.getConstant(Scale
, dl
, ShiftTy
));
6802 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
6803 // widened multiplication) aren't all zeroes.
6805 // Saturate to max if ((Hi >> Scale) != 0),
6806 // which is the same as if (Hi > ((1 << Scale) - 1))
6807 APInt MaxVal
= APInt::getMaxValue(VTSize
);
6808 SDValue LowMask
= DAG
.getConstant(APInt::getLowBitsSet(VTSize
, Scale
),
6810 Result
= DAG
.getSelectCC(dl
, Hi
, LowMask
,
6811 DAG
.getConstant(MaxVal
, dl
, VT
), Result
,
6817 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
6818 // widened multiplication) aren't all ones or all zeroes.
6820 SDValue SatMin
= DAG
.getConstant(APInt::getSignedMinValue(VTSize
), dl
, VT
);
6821 SDValue SatMax
= DAG
.getConstant(APInt::getSignedMaxValue(VTSize
), dl
, VT
);
6824 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, Lo
,
6825 DAG
.getConstant(VTSize
- 1, dl
, ShiftTy
));
6826 SDValue Overflow
= DAG
.getSetCC(dl
, BoolVT
, Hi
, Sign
, ISD::SETNE
);
6827 // Saturated to SatMin if wide product is negative, and SatMax if wide
6828 // product is positive ...
6829 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6830 SDValue ResultIfOverflow
= DAG
.getSelectCC(dl
, Hi
, Zero
, SatMin
, SatMax
,
6832 // ... but only if we overflowed.
6833 return DAG
.getSelect(dl
, VT
, Overflow
, ResultIfOverflow
, Result
);
6836 // We handled Scale==0 above so all the bits to examine is in Hi.
6838 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
6839 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
6840 SDValue LowMask
= DAG
.getConstant(APInt::getLowBitsSet(VTSize
, Scale
- 1),
6842 Result
= DAG
.getSelectCC(dl
, Hi
, LowMask
, SatMax
, Result
, ISD::SETGT
);
6843 // Saturate to min if (Hi >> (Scale - 1)) < -1),
6844 // which is the same as if (HI < (-1 << (Scale - 1))
6846 DAG
.getConstant(APInt::getHighBitsSet(VTSize
, VTSize
- Scale
+ 1),
6848 Result
= DAG
.getSelectCC(dl
, Hi
, HighMask
, SatMin
, Result
, ISD::SETLT
);
6852 void TargetLowering::expandUADDSUBO(
6853 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
6855 SDValue LHS
= Node
->getOperand(0);
6856 SDValue RHS
= Node
->getOperand(1);
6857 bool IsAdd
= Node
->getOpcode() == ISD::UADDO
;
6859 // If ADD/SUBCARRY is legal, use that instead.
6860 unsigned OpcCarry
= IsAdd
? ISD::ADDCARRY
: ISD::SUBCARRY
;
6861 if (isOperationLegalOrCustom(OpcCarry
, Node
->getValueType(0))) {
6862 SDValue CarryIn
= DAG
.getConstant(0, dl
, Node
->getValueType(1));
6863 SDValue NodeCarry
= DAG
.getNode(OpcCarry
, dl
, Node
->getVTList(),
6864 { LHS
, RHS
, CarryIn
});
6865 Result
= SDValue(NodeCarry
.getNode(), 0);
6866 Overflow
= SDValue(NodeCarry
.getNode(), 1);
6870 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
6871 LHS
.getValueType(), LHS
, RHS
);
6873 EVT ResultType
= Node
->getValueType(1);
6874 EVT SetCCType
= getSetCCResultType(
6875 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
6876 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
6877 SDValue SetCC
= DAG
.getSetCC(dl
, SetCCType
, Result
, LHS
, CC
);
6878 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
6881 void TargetLowering::expandSADDSUBO(
6882 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
6884 SDValue LHS
= Node
->getOperand(0);
6885 SDValue RHS
= Node
->getOperand(1);
6886 bool IsAdd
= Node
->getOpcode() == ISD::SADDO
;
6888 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
6889 LHS
.getValueType(), LHS
, RHS
);
6891 EVT ResultType
= Node
->getValueType(1);
6892 EVT OType
= getSetCCResultType(
6893 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
6895 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6896 unsigned OpcSat
= IsAdd
? ISD::SADDSAT
: ISD::SSUBSAT
;
6897 if (isOperationLegalOrCustom(OpcSat
, LHS
.getValueType())) {
6898 SDValue Sat
= DAG
.getNode(OpcSat
, dl
, LHS
.getValueType(), LHS
, RHS
);
6899 SDValue SetCC
= DAG
.getSetCC(dl
, OType
, Result
, Sat
, ISD::SETNE
);
6900 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
6904 SDValue Zero
= DAG
.getConstant(0, dl
, LHS
.getValueType());
6906 // LHSSign -> LHS >= 0
6907 // RHSSign -> RHS >= 0
6908 // SumSign -> Result >= 0
6911 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6913 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6914 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
6915 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
6916 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
6917 IsAdd
? ISD::SETEQ
: ISD::SETNE
);
6919 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Result
, Zero
, ISD::SETGE
);
6920 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
6922 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
6923 Overflow
= DAG
.getBoolExtOrTrunc(Cmp
, dl
, ResultType
, ResultType
);
6926 bool TargetLowering::expandMULO(SDNode
*Node
, SDValue
&Result
,
6927 SDValue
&Overflow
, SelectionDAG
&DAG
) const {
6929 EVT VT
= Node
->getValueType(0);
6930 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6931 SDValue LHS
= Node
->getOperand(0);
6932 SDValue RHS
= Node
->getOperand(1);
6933 bool isSigned
= Node
->getOpcode() == ISD::SMULO
;
6935 // For power-of-two multiplications we can use a simpler shift expansion.
6936 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(RHS
)) {
6937 const APInt
&C
= RHSC
->getAPIntValue();
6938 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6939 if (C
.isPowerOf2()) {
6940 // smulo(x, signed_min) is same as umulo(x, signed_min).
6941 bool UseArithShift
= isSigned
&& !C
.isMinSignedValue();
6942 EVT ShiftAmtTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6943 SDValue ShiftAmt
= DAG
.getConstant(C
.logBase2(), dl
, ShiftAmtTy
);
6944 Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, LHS
, ShiftAmt
);
6945 Overflow
= DAG
.getSetCC(dl
, SetCCVT
,
6946 DAG
.getNode(UseArithShift
? ISD::SRA
: ISD::SRL
,
6947 dl
, VT
, Result
, ShiftAmt
),
6953 EVT WideVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getScalarSizeInBits() * 2);
6955 WideVT
= EVT::getVectorVT(*DAG
.getContext(), WideVT
,
6956 VT
.getVectorNumElements());
6960 static const unsigned Ops
[2][3] =
6961 { { ISD::MULHU
, ISD::UMUL_LOHI
, ISD::ZERO_EXTEND
},
6962 { ISD::MULHS
, ISD::SMUL_LOHI
, ISD::SIGN_EXTEND
}};
6963 if (isOperationLegalOrCustom(Ops
[isSigned
][0], VT
)) {
6964 BottomHalf
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6965 TopHalf
= DAG
.getNode(Ops
[isSigned
][0], dl
, VT
, LHS
, RHS
);
6966 } else if (isOperationLegalOrCustom(Ops
[isSigned
][1], VT
)) {
6967 BottomHalf
= DAG
.getNode(Ops
[isSigned
][1], dl
, DAG
.getVTList(VT
, VT
), LHS
,
6969 TopHalf
= BottomHalf
.getValue(1);
6970 } else if (isTypeLegal(WideVT
)) {
6971 LHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, LHS
);
6972 RHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, RHS
);
6973 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, WideVT
, LHS
, RHS
);
6974 BottomHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Mul
);
6975 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits(), dl
,
6976 getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
6977 TopHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
6978 DAG
.getNode(ISD::SRL
, dl
, WideVT
, Mul
, ShiftAmt
));
6983 // We can fall back to a libcall with an illegal type for the MUL if we
6984 // have a libcall big enough.
6985 // Also, we can fall back to a division in some cases, but that's a big
6986 // performance hit in the general case.
6987 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
6988 if (WideVT
== MVT::i16
)
6989 LC
= RTLIB::MUL_I16
;
6990 else if (WideVT
== MVT::i32
)
6991 LC
= RTLIB::MUL_I32
;
6992 else if (WideVT
== MVT::i64
)
6993 LC
= RTLIB::MUL_I64
;
6994 else if (WideVT
== MVT::i128
)
6995 LC
= RTLIB::MUL_I128
;
6996 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Cannot expand this operation!");
7001 // The high part is obtained by SRA'ing all but one of the bits of low
7003 unsigned LoSize
= VT
.getSizeInBits();
7005 DAG
.getNode(ISD::SRA
, dl
, VT
, LHS
,
7006 DAG
.getConstant(LoSize
- 1, dl
,
7007 getPointerTy(DAG
.getDataLayout())));
7009 DAG
.getNode(ISD::SRA
, dl
, VT
, RHS
,
7010 DAG
.getConstant(LoSize
- 1, dl
,
7011 getPointerTy(DAG
.getDataLayout())));
7013 HiLHS
= DAG
.getConstant(0, dl
, VT
);
7014 HiRHS
= DAG
.getConstant(0, dl
, VT
);
7017 // Here we're passing the 2 arguments explicitly as 4 arguments that are
7018 // pre-lowered to the correct types. This all depends upon WideVT not
7019 // being a legal type for the architecture and thus has to be split to
7022 TargetLowering::MakeLibCallOptions CallOptions
;
7023 CallOptions
.setSExt(isSigned
);
7024 CallOptions
.setIsPostTypeLegalization(true);
7025 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG
.getDataLayout())) {
7026 // Halves of WideVT are packed into registers in different order
7027 // depending on platform endianness. This is usually handled by
7028 // the C calling convention, but we can't defer to it in
7030 SDValue Args
[] = { LHS
, HiLHS
, RHS
, HiRHS
};
7031 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, CallOptions
, dl
).first
;
7033 SDValue Args
[] = { HiLHS
, LHS
, HiRHS
, RHS
};
7034 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, CallOptions
, dl
).first
;
7036 assert(Ret
.getOpcode() == ISD::MERGE_VALUES
&&
7037 "Ret value is a collection of constituent nodes holding result.");
7038 if (DAG
.getDataLayout().isLittleEndian()) {
7040 BottomHalf
= Ret
.getOperand(0);
7041 TopHalf
= Ret
.getOperand(1);
7043 BottomHalf
= Ret
.getOperand(1);
7044 TopHalf
= Ret
.getOperand(0);
7048 Result
= BottomHalf
;
7050 SDValue ShiftAmt
= DAG
.getConstant(
7051 VT
.getScalarSizeInBits() - 1, dl
,
7052 getShiftAmountTy(BottomHalf
.getValueType(), DAG
.getDataLayout()));
7053 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, BottomHalf
, ShiftAmt
);
7054 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
, Sign
, ISD::SETNE
);
7056 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
,
7057 DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
7060 // Truncate the result if SetCC returns a larger type than needed.
7061 EVT RType
= Node
->getValueType(1);
7062 if (RType
.getSizeInBits() < Overflow
.getValueSizeInBits())
7063 Overflow
= DAG
.getNode(ISD::TRUNCATE
, dl
, RType
, Overflow
);
7065 assert(RType
.getSizeInBits() == Overflow
.getValueSizeInBits() &&
7066 "Unexpected result type for S/UMULO legalization");
7070 SDValue
TargetLowering::expandVecReduce(SDNode
*Node
, SelectionDAG
&DAG
) const {
7072 bool NoNaN
= Node
->getFlags().hasNoNaNs();
7073 unsigned BaseOpcode
= 0;
7074 switch (Node
->getOpcode()) {
7075 default: llvm_unreachable("Expected VECREDUCE opcode");
7076 case ISD::VECREDUCE_FADD
: BaseOpcode
= ISD::FADD
; break;
7077 case ISD::VECREDUCE_FMUL
: BaseOpcode
= ISD::FMUL
; break;
7078 case ISD::VECREDUCE_ADD
: BaseOpcode
= ISD::ADD
; break;
7079 case ISD::VECREDUCE_MUL
: BaseOpcode
= ISD::MUL
; break;
7080 case ISD::VECREDUCE_AND
: BaseOpcode
= ISD::AND
; break;
7081 case ISD::VECREDUCE_OR
: BaseOpcode
= ISD::OR
; break;
7082 case ISD::VECREDUCE_XOR
: BaseOpcode
= ISD::XOR
; break;
7083 case ISD::VECREDUCE_SMAX
: BaseOpcode
= ISD::SMAX
; break;
7084 case ISD::VECREDUCE_SMIN
: BaseOpcode
= ISD::SMIN
; break;
7085 case ISD::VECREDUCE_UMAX
: BaseOpcode
= ISD::UMAX
; break;
7086 case ISD::VECREDUCE_UMIN
: BaseOpcode
= ISD::UMIN
; break;
7087 case ISD::VECREDUCE_FMAX
:
7088 BaseOpcode
= NoNaN
? ISD::FMAXNUM
: ISD::FMAXIMUM
;
7090 case ISD::VECREDUCE_FMIN
:
7091 BaseOpcode
= NoNaN
? ISD::FMINNUM
: ISD::FMINIMUM
;
7095 SDValue Op
= Node
->getOperand(0);
7096 EVT VT
= Op
.getValueType();
7098 // Try to use a shuffle reduction for power of two vectors.
7099 if (VT
.isPow2VectorType()) {
7100 while (VT
.getVectorNumElements() > 1) {
7101 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
7102 if (!isOperationLegalOrCustom(BaseOpcode
, HalfVT
))
7106 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op
, dl
);
7107 Op
= DAG
.getNode(BaseOpcode
, dl
, HalfVT
, Lo
, Hi
);
7112 EVT EltVT
= VT
.getVectorElementType();
7113 unsigned NumElts
= VT
.getVectorNumElements();
7115 SmallVector
<SDValue
, 8> Ops
;
7116 DAG
.ExtractVectorElements(Op
, Ops
, 0, NumElts
);
7118 SDValue Res
= Ops
[0];
7119 for (unsigned i
= 1; i
< NumElts
; i
++)
7120 Res
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Res
, Ops
[i
], Node
->getFlags());
7122 // Result type may be wider than element type.
7123 if (EltVT
!= Node
->getValueType(0))
7124 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Node
->getValueType(0), Res
);