[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blob41b3ba1733dd9736a4a18018b82315933bfe6587
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39 : TargetLoweringBase(tm) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42 return nullptr;
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52 SDValue &Chain) const {
53 const Function &F = DAG.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
57 // call sequence.
58 AttributeList CallerAttrs = F.getAttributes();
59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60 .removeAttribute(Attribute::NoAlias)
61 .removeAttribute(Attribute::NonNull)
62 .hasAttributes())
63 return false;
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68 return false;
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node, Chain);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75 const uint32_t *CallerPreservedMask,
76 const SmallVectorImpl<CCValAssign> &ArgLocs,
77 const SmallVectorImpl<SDValue> &OutVals) const {
78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79 const CCValAssign &ArgLoc = ArgLocs[I];
80 if (!ArgLoc.isRegLoc())
81 continue;
82 Register Reg = ArgLoc.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85 continue;
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value = OutVals[I];
90 if (Value->getOpcode() != ISD::CopyFromReg)
91 return false;
92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94 return false;
96 return true;
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102 unsigned ArgIdx) {
103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113 Alignment = Call->getParamAlignment(ArgIdx);
114 ByValType = nullptr;
115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116 ByValType = Call->getParamByValType(ArgIdx);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123 ArrayRef<SDValue> Ops,
124 MakeLibCallOptions CallOptions,
125 const SDLoc &dl) const {
126 TargetLowering::ArgListTy Args;
127 Args.reserve(Ops.size());
129 TargetLowering::ArgListEntry Entry;
130 for (unsigned i = 0; i < Ops.size(); ++i) {
131 SDValue NewOp = Ops[i];
132 Entry.Node = NewOp;
133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
135 CallOptions.IsSExt);
136 Entry.IsZExt = !Entry.IsSExt;
138 if (CallOptions.IsSoften &&
139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
140 Entry.IsSExt = Entry.IsZExt = false;
142 Args.push_back(Entry);
145 if (LC == RTLIB::UNKNOWN_LIBCALL)
146 report_fatal_error("Unsupported library call operation!");
147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
148 getPointerTy(DAG.getDataLayout()));
150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
151 TargetLowering::CallLoweringInfo CLI(DAG);
152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
153 bool zeroExtend = !signExtend;
155 if (CallOptions.IsSoften &&
156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
157 signExtend = zeroExtend = false;
160 CLI.setDebugLoc(dl)
161 .setChain(DAG.getEntryNode())
162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
163 .setNoReturn(CallOptions.DoesNotReturn)
164 .setDiscardResult(!CallOptions.IsReturnValueUsed)
165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
166 .setSExtResult(signExtend)
167 .setZExtResult(zeroExtend);
168 return LowerCallTo(CLI);
171 bool
172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
173 unsigned Limit, uint64_t Size,
174 unsigned DstAlign, unsigned SrcAlign,
175 bool IsMemset,
176 bool ZeroMemset,
177 bool MemcpyStrSrc,
178 bool AllowOverlap,
179 unsigned DstAS, unsigned SrcAS,
180 const AttributeList &FuncAttributes) const {
181 // If 'SrcAlign' is zero, that means the memory operation does not need to
182 // load the value, i.e. memset or memcpy from constant string. Otherwise,
183 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184 // is the specified alignment of the memory operation. If it is zero, that
185 // means it's possible to change the alignment of the destination.
186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187 // not need to be loaded.
188 if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
189 return false;
191 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
192 IsMemset, ZeroMemset, MemcpyStrSrc,
193 FuncAttributes);
195 if (VT == MVT::Other) {
196 // Use the largest integer type whose alignment constraints are satisfied.
197 // We only need to check DstAlign here as SrcAlign is always greater or
198 // equal to DstAlign (or zero).
199 VT = MVT::i64;
200 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
201 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
202 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203 assert(VT.isInteger());
205 // Find the largest legal integer type.
206 MVT LVT = MVT::i64;
207 while (!isTypeLegal(LVT))
208 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209 assert(LVT.isInteger());
211 // If the type we've chosen is larger than the largest legal integer type
212 // then use that instead.
213 if (VT.bitsGT(LVT))
214 VT = LVT;
217 unsigned NumMemOps = 0;
218 while (Size != 0) {
219 unsigned VTSize = VT.getSizeInBits() / 8;
220 while (VTSize > Size) {
221 // For now, only use non-vector load / store's for the left-over pieces.
222 EVT NewVT = VT;
223 unsigned NewVTSize;
225 bool Found = false;
226 if (VT.isVector() || VT.isFloatingPoint()) {
227 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
228 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
229 isSafeMemOpType(NewVT.getSimpleVT()))
230 Found = true;
231 else if (NewVT == MVT::i64 &&
232 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
233 isSafeMemOpType(MVT::f64)) {
234 // i64 is usually not legal on 32-bit targets, but f64 may be.
235 NewVT = MVT::f64;
236 Found = true;
240 if (!Found) {
241 do {
242 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
243 if (NewVT == MVT::i8)
244 break;
245 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
247 NewVTSize = NewVT.getSizeInBits() / 8;
249 // If the new VT cannot cover all of the remaining bits, then consider
250 // issuing a (or a pair of) unaligned and overlapping load / store.
251 bool Fast;
252 if (NumMemOps && AllowOverlap && NewVTSize < Size &&
253 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
254 MachineMemOperand::MONone, &Fast) &&
255 Fast)
256 VTSize = Size;
257 else {
258 VT = NewVT;
259 VTSize = NewVTSize;
263 if (++NumMemOps > Limit)
264 return false;
266 MemOps.push_back(VT);
267 Size -= VTSize;
270 return true;
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276 SDValue &NewLHS, SDValue &NewRHS,
277 ISD::CondCode &CCCode,
278 const SDLoc &dl, const SDValue OldLHS,
279 const SDValue OldRHS) const {
280 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
281 && "Unsupported setcc type!");
283 // Expand into one or more soft-fp libcall(s).
284 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
285 bool ShouldInvertCC = false;
286 switch (CCCode) {
287 case ISD::SETEQ:
288 case ISD::SETOEQ:
289 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
290 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
291 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
292 break;
293 case ISD::SETNE:
294 case ISD::SETUNE:
295 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
296 (VT == MVT::f64) ? RTLIB::UNE_F64 :
297 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
298 break;
299 case ISD::SETGE:
300 case ISD::SETOGE:
301 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
302 (VT == MVT::f64) ? RTLIB::OGE_F64 :
303 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
304 break;
305 case ISD::SETLT:
306 case ISD::SETOLT:
307 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
308 (VT == MVT::f64) ? RTLIB::OLT_F64 :
309 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
310 break;
311 case ISD::SETLE:
312 case ISD::SETOLE:
313 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
314 (VT == MVT::f64) ? RTLIB::OLE_F64 :
315 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
316 break;
317 case ISD::SETGT:
318 case ISD::SETOGT:
319 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
320 (VT == MVT::f64) ? RTLIB::OGT_F64 :
321 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
322 break;
323 case ISD::SETUO:
324 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
325 (VT == MVT::f64) ? RTLIB::UO_F64 :
326 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
327 break;
328 case ISD::SETO:
329 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
330 (VT == MVT::f64) ? RTLIB::O_F64 :
331 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
332 break;
333 case ISD::SETONE:
334 // SETONE = SETOLT | SETOGT
335 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
336 (VT == MVT::f64) ? RTLIB::OLT_F64 :
337 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
338 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
339 (VT == MVT::f64) ? RTLIB::OGT_F64 :
340 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
341 break;
342 case ISD::SETUEQ:
343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344 (VT == MVT::f64) ? RTLIB::UO_F64 :
345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
347 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
348 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
349 break;
350 default:
351 // Invert CC for unordered comparisons
352 ShouldInvertCC = true;
353 switch (CCCode) {
354 case ISD::SETULT:
355 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
356 (VT == MVT::f64) ? RTLIB::OGE_F64 :
357 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358 break;
359 case ISD::SETULE:
360 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
361 (VT == MVT::f64) ? RTLIB::OGT_F64 :
362 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
363 break;
364 case ISD::SETUGT:
365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366 (VT == MVT::f64) ? RTLIB::OLE_F64 :
367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
368 break;
369 case ISD::SETUGE:
370 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
371 (VT == MVT::f64) ? RTLIB::OLT_F64 :
372 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
373 break;
374 default: llvm_unreachable("Do not know how to soften this setcc!");
378 // Use the target specific return value for comparions lib calls.
379 EVT RetVT = getCmpLibcallReturnType();
380 SDValue Ops[2] = {NewLHS, NewRHS};
381 TargetLowering::MakeLibCallOptions CallOptions;
382 EVT OpsVT[2] = { OldLHS.getValueType(),
383 OldRHS.getValueType() };
384 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
385 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
386 NewRHS = DAG.getConstant(0, dl, RetVT);
388 CCCode = getCmpLibcallCC(LC1);
389 if (ShouldInvertCC)
390 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
392 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
393 SDValue Tmp = DAG.getNode(
394 ISD::SETCC, dl,
395 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
396 NewLHS, NewRHS, DAG.getCondCode(CCCode));
397 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
398 NewLHS = DAG.getNode(
399 ISD::SETCC, dl,
400 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
401 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
402 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
403 NewRHS = SDValue();
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410 // In non-pic modes, just use the address of a block.
411 if (!isPositionIndependent())
412 return MachineJumpTableInfo::EK_BlockAddress;
414 // In PIC mode, if the target supports a GPRel32 directive, use it.
415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
418 // Otherwise, use a label difference.
419 return MachineJumpTableInfo::EK_LabelDifference32;
422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
423 SelectionDAG &DAG) const {
424 // If our PIC model is GP relative, use the global offset table as the base.
425 unsigned JTEncoding = getJumpTableEncoding();
427 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
428 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
429 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
431 return Table;
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
436 const MCExpr *
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438 unsigned JTI,MCContext &Ctx) const{
439 // The normal PIC reloc base is the label at the start of the jump table.
440 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
443 bool
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
445 const TargetMachine &TM = getTargetMachine();
446 const GlobalValue *GV = GA->getGlobal();
448 // If the address is not even local to this DSO we will have to load it from
449 // a got and then add the offset.
450 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
451 return false;
453 // If the code is position independent we will have to add a base register.
454 if (isPositionIndependent())
455 return false;
457 // Otherwise we can do it.
458 return true;
461 //===----------------------------------------------------------------------===//
462 // Optimization Methods
463 //===----------------------------------------------------------------------===//
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
467 /// return true.
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
469 TargetLoweringOpt &TLO) const {
470 SDLoc DL(Op);
471 unsigned Opcode = Op.getOpcode();
473 // Do target-specific constant optimization.
474 if (targetShrinkDemandedConstant(Op, Demanded, TLO))
475 return TLO.New.getNode();
477 // FIXME: ISD::SELECT, ISD::SELECT_CC
478 switch (Opcode) {
479 default:
480 break;
481 case ISD::XOR:
482 case ISD::AND:
483 case ISD::OR: {
484 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
485 if (!Op1C)
486 return false;
488 // If this is a 'not' op, don't touch it because that's a canonical form.
489 const APInt &C = Op1C->getAPIntValue();
490 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
491 return false;
493 if (!C.isSubsetOf(Demanded)) {
494 EVT VT = Op.getValueType();
495 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
496 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
497 return TLO.CombineTo(Op, NewOp);
500 break;
504 return false;
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
511 const APInt &Demanded,
512 TargetLoweringOpt &TLO) const {
513 assert(Op.getNumOperands() == 2 &&
514 "ShrinkDemandedOp only supports binary operators!");
515 assert(Op.getNode()->getNumValues() == 1 &&
516 "ShrinkDemandedOp only supports nodes with one result!");
518 SelectionDAG &DAG = TLO.DAG;
519 SDLoc dl(Op);
521 // Early return, as this function cannot handle vector types.
522 if (Op.getValueType().isVector())
523 return false;
525 // Don't do this if the node has another user, which may require the
526 // full value.
527 if (!Op.getNode()->hasOneUse())
528 return false;
530 // Search for the smallest integer type with free casts to and from
531 // Op's type. For expedience, just check power-of-2 integer types.
532 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
533 unsigned DemandedSize = Demanded.getActiveBits();
534 unsigned SmallVTBits = DemandedSize;
535 if (!isPowerOf2_32(SmallVTBits))
536 SmallVTBits = NextPowerOf2(SmallVTBits);
537 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
538 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
539 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
540 TLI.isZExtFree(SmallVT, Op.getValueType())) {
541 // We found a type with free casts.
542 SDValue X = DAG.getNode(
543 Op.getOpcode(), dl, SmallVT,
544 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
545 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
546 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
547 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
548 return TLO.CombineTo(Op, Z);
551 return false;
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555 DAGCombinerInfo &DCI) const {
556 SelectionDAG &DAG = DCI.DAG;
557 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
558 !DCI.isBeforeLegalizeOps());
559 KnownBits Known;
561 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
562 if (Simplified) {
563 DCI.AddToWorklist(Op.getNode());
564 DCI.CommitTargetLoweringOpt(TLO);
566 return Simplified;
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
570 KnownBits &Known,
571 TargetLoweringOpt &TLO,
572 unsigned Depth,
573 bool AssumeSingleUse) const {
574 EVT VT = Op.getValueType();
575 APInt DemandedElts = VT.isVector()
576 ? APInt::getAllOnesValue(VT.getVectorNumElements())
577 : APInt(1, 1);
578 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
579 AssumeSingleUse);
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
585 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
586 SelectionDAG &DAG, unsigned Depth) const {
587 // Limit search depth.
588 if (Depth >= 6)
589 return SDValue();
591 // Ignore UNDEFs.
592 if (Op.isUndef())
593 return SDValue();
595 // Not demanding any bits/elts from Op.
596 if (DemandedBits == 0 || DemandedElts == 0)
597 return DAG.getUNDEF(Op.getValueType());
599 unsigned NumElts = DemandedElts.getBitWidth();
600 KnownBits LHSKnown, RHSKnown;
601 switch (Op.getOpcode()) {
602 case ISD::BITCAST: {
603 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
604 EVT SrcVT = Src.getValueType();
605 EVT DstVT = Op.getValueType();
606 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
607 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
609 if (NumSrcEltBits == NumDstEltBits)
610 if (SDValue V = SimplifyMultipleUseDemandedBits(
611 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
612 return DAG.getBitcast(DstVT, V);
614 // TODO - bigendian once we have test coverage.
615 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
616 DAG.getDataLayout().isLittleEndian()) {
617 unsigned Scale = NumDstEltBits / NumSrcEltBits;
618 unsigned NumSrcElts = SrcVT.getVectorNumElements();
619 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
620 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
621 for (unsigned i = 0; i != Scale; ++i) {
622 unsigned Offset = i * NumSrcEltBits;
623 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
624 if (!Sub.isNullValue()) {
625 DemandedSrcBits |= Sub;
626 for (unsigned j = 0; j != NumElts; ++j)
627 if (DemandedElts[j])
628 DemandedSrcElts.setBit((j * Scale) + i);
632 if (SDValue V = SimplifyMultipleUseDemandedBits(
633 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
634 return DAG.getBitcast(DstVT, V);
637 // TODO - bigendian once we have test coverage.
638 if ((NumSrcEltBits % NumDstEltBits) == 0 &&
639 DAG.getDataLayout().isLittleEndian()) {
640 unsigned Scale = NumSrcEltBits / NumDstEltBits;
641 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
642 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
643 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
644 for (unsigned i = 0; i != NumElts; ++i)
645 if (DemandedElts[i]) {
646 unsigned Offset = (i % Scale) * NumDstEltBits;
647 DemandedSrcBits.insertBits(DemandedBits, Offset);
648 DemandedSrcElts.setBit(i / Scale);
651 if (SDValue V = SimplifyMultipleUseDemandedBits(
652 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
653 return DAG.getBitcast(DstVT, V);
656 break;
658 case ISD::AND: {
659 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
660 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
662 // If all of the demanded bits are known 1 on one side, return the other.
663 // These bits cannot contribute to the result of the 'and' in this
664 // context.
665 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
666 return Op.getOperand(0);
667 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
668 return Op.getOperand(1);
669 break;
671 case ISD::OR: {
672 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
673 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 // If all of the demanded bits are known zero on one side, return the
676 // other. These bits cannot contribute to the result of the 'or' in this
677 // context.
678 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
679 return Op.getOperand(0);
680 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
681 return Op.getOperand(1);
682 break;
684 case ISD::XOR: {
685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 // If all of the demanded bits are known zero on one side, return the
689 // other.
690 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
691 return Op.getOperand(0);
692 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
693 return Op.getOperand(1);
694 break;
696 case ISD::SIGN_EXTEND_INREG: {
697 // If none of the extended bits are demanded, eliminate the sextinreg.
698 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
699 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
700 return Op.getOperand(0);
701 break;
703 case ISD::INSERT_VECTOR_ELT: {
704 // If we don't demand the inserted element, return the base vector.
705 SDValue Vec = Op.getOperand(0);
706 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
707 EVT VecVT = Vec.getValueType();
708 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
709 !DemandedElts[CIdx->getZExtValue()])
710 return Vec;
711 break;
713 case ISD::VECTOR_SHUFFLE: {
714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
716 // If all the demanded elts are from one operand and are inline,
717 // then we can use the operand directly.
718 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
719 for (unsigned i = 0; i != NumElts; ++i) {
720 int M = ShuffleMask[i];
721 if (M < 0 || !DemandedElts[i])
722 continue;
723 AllUndef = false;
724 IdentityLHS &= (M == (int)i);
725 IdentityRHS &= ((M - NumElts) == i);
728 if (AllUndef)
729 return DAG.getUNDEF(Op.getValueType());
730 if (IdentityLHS)
731 return Op.getOperand(0);
732 if (IdentityRHS)
733 return Op.getOperand(1);
734 break;
736 default:
737 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
738 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
739 Op, DemandedBits, DemandedElts, DAG, Depth))
740 return V;
741 break;
743 return SDValue();
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller). The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754 SDValue Op, const APInt &OriginalDemandedBits,
755 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
756 unsigned Depth, bool AssumeSingleUse) const {
757 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
758 assert(Op.getScalarValueSizeInBits() == BitWidth &&
759 "Mask size mismatches value type size!");
761 unsigned NumElts = OriginalDemandedElts.getBitWidth();
762 assert((!Op.getValueType().isVector() ||
763 NumElts == Op.getValueType().getVectorNumElements()) &&
764 "Unexpected vector size");
766 APInt DemandedBits = OriginalDemandedBits;
767 APInt DemandedElts = OriginalDemandedElts;
768 SDLoc dl(Op);
769 auto &DL = TLO.DAG.getDataLayout();
771 // Don't know anything.
772 Known = KnownBits(BitWidth);
774 // Undef operand.
775 if (Op.isUndef())
776 return false;
778 if (Op.getOpcode() == ISD::Constant) {
779 // We know all of the bits for a constant!
780 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
781 Known.Zero = ~Known.One;
782 return false;
785 // Other users may use these bits.
786 EVT VT = Op.getValueType();
787 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
788 if (Depth != 0) {
789 // If not at the root, Just compute the Known bits to
790 // simplify things downstream.
791 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
792 return false;
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedBits/Elts to all bits.
796 DemandedBits = APInt::getAllOnesValue(BitWidth);
797 DemandedElts = APInt::getAllOnesValue(NumElts);
798 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
799 // Not demanding any bits/elts from Op.
800 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
801 } else if (Depth >= 6) { // Limit search depth.
802 return false;
805 KnownBits Known2, KnownOut;
806 switch (Op.getOpcode()) {
807 case ISD::SCALAR_TO_VECTOR: {
808 if (!DemandedElts[0])
809 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
811 KnownBits SrcKnown;
812 SDValue Src = Op.getOperand(0);
813 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
814 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
815 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
816 return true;
817 Known = SrcKnown.zextOrTrunc(BitWidth, false);
818 break;
820 case ISD::BUILD_VECTOR:
821 // Collect the known bits that are shared by every demanded element.
822 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
823 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
824 return false; // Don't fall through, will infinitely loop.
825 case ISD::LOAD: {
826 LoadSDNode *LD = cast<LoadSDNode>(Op);
827 if (getTargetConstantFromLoad(LD)) {
828 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
829 return false; // Don't fall through, will infinitely loop.
831 break;
833 case ISD::INSERT_VECTOR_ELT: {
834 SDValue Vec = Op.getOperand(0);
835 SDValue Scl = Op.getOperand(1);
836 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
837 EVT VecVT = Vec.getValueType();
839 // If index isn't constant, assume we need all vector elements AND the
840 // inserted element.
841 APInt DemandedVecElts(DemandedElts);
842 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
843 unsigned Idx = CIdx->getZExtValue();
844 DemandedVecElts.clearBit(Idx);
846 // Inserted element is not required.
847 if (!DemandedElts[Idx])
848 return TLO.CombineTo(Op, Vec);
851 KnownBits KnownScl;
852 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
853 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
854 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
855 return true;
857 Known = KnownScl.zextOrTrunc(BitWidth, false);
859 KnownBits KnownVec;
860 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
861 Depth + 1))
862 return true;
864 if (!!DemandedVecElts) {
865 Known.One &= KnownVec.One;
866 Known.Zero &= KnownVec.Zero;
869 return false;
871 case ISD::INSERT_SUBVECTOR: {
872 SDValue Base = Op.getOperand(0);
873 SDValue Sub = Op.getOperand(1);
874 EVT SubVT = Sub.getValueType();
875 unsigned NumSubElts = SubVT.getVectorNumElements();
877 // If index isn't constant, assume we need the original demanded base
878 // elements and ALL the inserted subvector elements.
879 APInt BaseElts = DemandedElts;
880 APInt SubElts = APInt::getAllOnesValue(NumSubElts);
881 if (isa<ConstantSDNode>(Op.getOperand(2))) {
882 const APInt &Idx = Op.getConstantOperandAPInt(2);
883 if (Idx.ule(NumElts - NumSubElts)) {
884 unsigned SubIdx = Idx.getZExtValue();
885 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
886 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
890 KnownBits KnownSub, KnownBase;
891 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
892 Depth + 1))
893 return true;
894 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
895 Depth + 1))
896 return true;
898 Known.Zero.setAllBits();
899 Known.One.setAllBits();
900 if (!!SubElts) {
901 Known.One &= KnownSub.One;
902 Known.Zero &= KnownSub.Zero;
904 if (!!BaseElts) {
905 Known.One &= KnownBase.One;
906 Known.Zero &= KnownBase.Zero;
908 break;
910 case ISD::EXTRACT_SUBVECTOR: {
911 // If index isn't constant, assume we need all the source vector elements.
912 SDValue Src = Op.getOperand(0);
913 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
914 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
915 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
916 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
917 // Offset the demanded elts by the subvector index.
918 uint64_t Idx = SubIdx->getZExtValue();
919 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
921 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
922 return true;
923 break;
925 case ISD::CONCAT_VECTORS: {
926 Known.Zero.setAllBits();
927 Known.One.setAllBits();
928 EVT SubVT = Op.getOperand(0).getValueType();
929 unsigned NumSubVecs = Op.getNumOperands();
930 unsigned NumSubElts = SubVT.getVectorNumElements();
931 for (unsigned i = 0; i != NumSubVecs; ++i) {
932 APInt DemandedSubElts =
933 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
934 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
935 Known2, TLO, Depth + 1))
936 return true;
937 // Known bits are shared by every demanded subvector element.
938 if (!!DemandedSubElts) {
939 Known.One &= Known2.One;
940 Known.Zero &= Known2.Zero;
943 break;
945 case ISD::VECTOR_SHUFFLE: {
946 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
948 // Collect demanded elements from shuffle operands..
949 APInt DemandedLHS(NumElts, 0);
950 APInt DemandedRHS(NumElts, 0);
951 for (unsigned i = 0; i != NumElts; ++i) {
952 if (!DemandedElts[i])
953 continue;
954 int M = ShuffleMask[i];
955 if (M < 0) {
956 // For UNDEF elements, we don't know anything about the common state of
957 // the shuffle result.
958 DemandedLHS.clearAllBits();
959 DemandedRHS.clearAllBits();
960 break;
962 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
963 if (M < (int)NumElts)
964 DemandedLHS.setBit(M);
965 else
966 DemandedRHS.setBit(M - NumElts);
969 if (!!DemandedLHS || !!DemandedRHS) {
970 SDValue Op0 = Op.getOperand(0);
971 SDValue Op1 = Op.getOperand(1);
973 Known.Zero.setAllBits();
974 Known.One.setAllBits();
975 if (!!DemandedLHS) {
976 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
977 Depth + 1))
978 return true;
979 Known.One &= Known2.One;
980 Known.Zero &= Known2.Zero;
982 if (!!DemandedRHS) {
983 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
984 Depth + 1))
985 return true;
986 Known.One &= Known2.One;
987 Known.Zero &= Known2.Zero;
990 // Attempt to avoid multi-use ops if we don't need anything from them.
991 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
992 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
993 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
994 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
995 if (DemandedOp0 || DemandedOp1) {
996 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
997 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
998 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
999 return TLO.CombineTo(Op, NewOp);
1002 break;
1004 case ISD::AND: {
1005 SDValue Op0 = Op.getOperand(0);
1006 SDValue Op1 = Op.getOperand(1);
1008 // If the RHS is a constant, check to see if the LHS would be zero without
1009 // using the bits from the RHS. Below, we use knowledge about the RHS to
1010 // simplify the LHS, here we're using information from the LHS to simplify
1011 // the RHS.
1012 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1013 // Do not increment Depth here; that can cause an infinite loop.
1014 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1015 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1016 if ((LHSKnown.Zero & DemandedBits) ==
1017 (~RHSC->getAPIntValue() & DemandedBits))
1018 return TLO.CombineTo(Op, Op0);
1020 // If any of the set bits in the RHS are known zero on the LHS, shrink
1021 // the constant.
1022 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1023 return true;
1025 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1026 // constant, but if this 'and' is only clearing bits that were just set by
1027 // the xor, then this 'and' can be eliminated by shrinking the mask of
1028 // the xor. For example, for a 32-bit X:
1029 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1030 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1031 LHSKnown.One == ~RHSC->getAPIntValue()) {
1032 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1033 return TLO.CombineTo(Op, Xor);
1037 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1038 Depth + 1))
1039 return true;
1040 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1041 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1042 Known2, TLO, Depth + 1))
1043 return true;
1044 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1046 // Attempt to avoid multi-use ops if we don't need anything from them.
1047 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1048 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1049 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1050 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1051 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1052 if (DemandedOp0 || DemandedOp1) {
1053 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1054 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1055 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1056 return TLO.CombineTo(Op, NewOp);
1060 // If all of the demanded bits are known one on one side, return the other.
1061 // These bits cannot contribute to the result of the 'and'.
1062 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1063 return TLO.CombineTo(Op, Op0);
1064 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1065 return TLO.CombineTo(Op, Op1);
1066 // If all of the demanded bits in the inputs are known zeros, return zero.
1067 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1068 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1069 // If the RHS is a constant, see if we can simplify it.
1070 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1071 return true;
1072 // If the operation can be done in a smaller type, do so.
1073 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1074 return true;
1076 // Output known-1 bits are only known if set in both the LHS & RHS.
1077 Known.One &= Known2.One;
1078 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079 Known.Zero |= Known2.Zero;
1080 break;
1082 case ISD::OR: {
1083 SDValue Op0 = Op.getOperand(0);
1084 SDValue Op1 = Op.getOperand(1);
1086 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1087 Depth + 1))
1088 return true;
1089 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1090 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1091 Known2, TLO, Depth + 1))
1092 return true;
1093 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1095 // Attempt to avoid multi-use ops if we don't need anything from them.
1096 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1097 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1098 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1099 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1100 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1101 if (DemandedOp0 || DemandedOp1) {
1102 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1103 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1104 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1105 return TLO.CombineTo(Op, NewOp);
1109 // If all of the demanded bits are known zero on one side, return the other.
1110 // These bits cannot contribute to the result of the 'or'.
1111 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1112 return TLO.CombineTo(Op, Op0);
1113 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1114 return TLO.CombineTo(Op, Op1);
1115 // If the RHS is a constant, see if we can simplify it.
1116 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1117 return true;
1118 // If the operation can be done in a smaller type, do so.
1119 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1120 return true;
1122 // Output known-0 bits are only known if clear in both the LHS & RHS.
1123 Known.Zero &= Known2.Zero;
1124 // Output known-1 are known to be set if set in either the LHS | RHS.
1125 Known.One |= Known2.One;
1126 break;
1128 case ISD::XOR: {
1129 SDValue Op0 = Op.getOperand(0);
1130 SDValue Op1 = Op.getOperand(1);
1132 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1133 Depth + 1))
1134 return true;
1135 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1136 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1137 Depth + 1))
1138 return true;
1139 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1141 // Attempt to avoid multi-use ops if we don't need anything from them.
1142 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1143 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1144 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1145 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1146 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1147 if (DemandedOp0 || DemandedOp1) {
1148 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1149 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1150 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1151 return TLO.CombineTo(Op, NewOp);
1155 // If all of the demanded bits are known zero on one side, return the other.
1156 // These bits cannot contribute to the result of the 'xor'.
1157 if (DemandedBits.isSubsetOf(Known.Zero))
1158 return TLO.CombineTo(Op, Op0);
1159 if (DemandedBits.isSubsetOf(Known2.Zero))
1160 return TLO.CombineTo(Op, Op1);
1161 // If the operation can be done in a smaller type, do so.
1162 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1163 return true;
1165 // If all of the unknown bits are known to be zero on one side or the other
1166 // (but not both) turn this into an *inclusive* or.
1167 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1168 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1169 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1171 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1172 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1173 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1174 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1176 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1177 // If one side is a constant, and all of the known set bits on the other
1178 // side are also set in the constant, turn this into an AND, as we know
1179 // the bits will be cleared.
1180 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1181 // NB: it is okay if more bits are known than are requested
1182 if (C->getAPIntValue() == Known2.One) {
1183 SDValue ANDC =
1184 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1185 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1188 // If the RHS is a constant, see if we can change it. Don't alter a -1
1189 // constant because that's a 'not' op, and that is better for combining
1190 // and codegen.
1191 if (!C->isAllOnesValue()) {
1192 if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1193 // We're flipping all demanded bits. Flip the undemanded bits too.
1194 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1195 return TLO.CombineTo(Op, New);
1197 // If we can't turn this into a 'not', try to shrink the constant.
1198 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1199 return true;
1203 Known = std::move(KnownOut);
1204 break;
1206 case ISD::SELECT:
1207 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1208 Depth + 1))
1209 return true;
1210 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1211 Depth + 1))
1212 return true;
1213 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1214 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1216 // If the operands are constants, see if we can simplify them.
1217 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1218 return true;
1220 // Only known if known in both the LHS and RHS.
1221 Known.One &= Known2.One;
1222 Known.Zero &= Known2.Zero;
1223 break;
1224 case ISD::SELECT_CC:
1225 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1226 Depth + 1))
1227 return true;
1228 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1229 Depth + 1))
1230 return true;
1231 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1232 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1234 // If the operands are constants, see if we can simplify them.
1235 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1236 return true;
1238 // Only known if known in both the LHS and RHS.
1239 Known.One &= Known2.One;
1240 Known.Zero &= Known2.Zero;
1241 break;
1242 case ISD::SETCC: {
1243 SDValue Op0 = Op.getOperand(0);
1244 SDValue Op1 = Op.getOperand(1);
1245 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1246 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1247 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1248 // -1, we may be able to bypass the setcc.
1249 if (DemandedBits.isSignMask() &&
1250 Op0.getScalarValueSizeInBits() == BitWidth &&
1251 getBooleanContents(VT) ==
1252 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1253 // If we're testing X < 0, then this compare isn't needed - just use X!
1254 // FIXME: We're limiting to integer types here, but this should also work
1255 // if we don't care about FP signed-zero. The use of SETLT with FP means
1256 // that we don't care about NaNs.
1257 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1258 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1259 return TLO.CombineTo(Op, Op0);
1261 // TODO: Should we check for other forms of sign-bit comparisons?
1262 // Examples: X <= -1, X >= 0
1264 if (getBooleanContents(Op0.getValueType()) ==
1265 TargetLowering::ZeroOrOneBooleanContent &&
1266 BitWidth > 1)
1267 Known.Zero.setBitsFrom(1);
1268 break;
1270 case ISD::SHL: {
1271 SDValue Op0 = Op.getOperand(0);
1272 SDValue Op1 = Op.getOperand(1);
1274 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1275 // If the shift count is an invalid immediate, don't do anything.
1276 if (SA->getAPIntValue().uge(BitWidth))
1277 break;
1279 unsigned ShAmt = SA->getZExtValue();
1280 if (ShAmt == 0)
1281 return TLO.CombineTo(Op, Op0);
1283 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1284 // single shift. We can do this if the bottom bits (which are shifted
1285 // out) are never demanded.
1286 // TODO - support non-uniform vector amounts.
1287 if (Op0.getOpcode() == ISD::SRL) {
1288 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1289 if (ConstantSDNode *SA2 =
1290 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1291 if (SA2->getAPIntValue().ult(BitWidth)) {
1292 unsigned C1 = SA2->getZExtValue();
1293 unsigned Opc = ISD::SHL;
1294 int Diff = ShAmt - C1;
1295 if (Diff < 0) {
1296 Diff = -Diff;
1297 Opc = ISD::SRL;
1300 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1301 return TLO.CombineTo(
1302 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1308 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1309 Known, TLO, Depth + 1))
1310 return true;
1312 // Try shrinking the operation as long as the shift amount will still be
1313 // in range.
1314 if ((ShAmt < DemandedBits.getActiveBits()) &&
1315 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1316 return true;
1318 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1319 // are not demanded. This will likely allow the anyext to be folded away.
1320 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1321 SDValue InnerOp = Op0.getOperand(0);
1322 EVT InnerVT = InnerOp.getValueType();
1323 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1324 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1325 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1326 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1327 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1328 ShTy = InnerVT;
1329 SDValue NarrowShl =
1330 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1331 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1332 return TLO.CombineTo(
1333 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1335 // Repeat the SHL optimization above in cases where an extension
1336 // intervenes: (shl (anyext (shr x, c1)), c2) to
1337 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1338 // aren't demanded (as above) and that the shifted upper c1 bits of
1339 // x aren't demanded.
1340 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1341 InnerOp.hasOneUse()) {
1342 if (ConstantSDNode *SA2 =
1343 isConstOrConstSplat(InnerOp.getOperand(1))) {
1344 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1345 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1346 DemandedBits.getActiveBits() <=
1347 (InnerBits - InnerShAmt + ShAmt) &&
1348 DemandedBits.countTrailingZeros() >= ShAmt) {
1349 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1350 Op1.getValueType());
1351 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1352 InnerOp.getOperand(0));
1353 return TLO.CombineTo(
1354 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1360 Known.Zero <<= ShAmt;
1361 Known.One <<= ShAmt;
1362 // low bits known zero.
1363 Known.Zero.setLowBits(ShAmt);
1365 break;
1367 case ISD::SRL: {
1368 SDValue Op0 = Op.getOperand(0);
1369 SDValue Op1 = Op.getOperand(1);
1371 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1372 // If the shift count is an invalid immediate, don't do anything.
1373 if (SA->getAPIntValue().uge(BitWidth))
1374 break;
1376 unsigned ShAmt = SA->getZExtValue();
1377 if (ShAmt == 0)
1378 return TLO.CombineTo(Op, Op0);
1380 EVT ShiftVT = Op1.getValueType();
1381 APInt InDemandedMask = (DemandedBits << ShAmt);
1383 // If the shift is exact, then it does demand the low bits (and knows that
1384 // they are zero).
1385 if (Op->getFlags().hasExact())
1386 InDemandedMask.setLowBits(ShAmt);
1388 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1389 // single shift. We can do this if the top bits (which are shifted out)
1390 // are never demanded.
1391 // TODO - support non-uniform vector amounts.
1392 if (Op0.getOpcode() == ISD::SHL) {
1393 if (ConstantSDNode *SA2 =
1394 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1395 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1396 if (SA2->getAPIntValue().ult(BitWidth)) {
1397 unsigned C1 = SA2->getZExtValue();
1398 unsigned Opc = ISD::SRL;
1399 int Diff = ShAmt - C1;
1400 if (Diff < 0) {
1401 Diff = -Diff;
1402 Opc = ISD::SHL;
1405 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1406 return TLO.CombineTo(
1407 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1413 // Compute the new bits that are at the top now.
1414 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1415 Depth + 1))
1416 return true;
1417 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1418 Known.Zero.lshrInPlace(ShAmt);
1419 Known.One.lshrInPlace(ShAmt);
1421 Known.Zero.setHighBits(ShAmt); // High bits known zero.
1423 break;
1425 case ISD::SRA: {
1426 SDValue Op0 = Op.getOperand(0);
1427 SDValue Op1 = Op.getOperand(1);
1429 // If this is an arithmetic shift right and only the low-bit is set, we can
1430 // always convert this into a logical shr, even if the shift amount is
1431 // variable. The low bit of the shift cannot be an input sign bit unless
1432 // the shift amount is >= the size of the datatype, which is undefined.
1433 if (DemandedBits.isOneValue())
1434 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1436 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1437 // If the shift count is an invalid immediate, don't do anything.
1438 if (SA->getAPIntValue().uge(BitWidth))
1439 break;
1441 unsigned ShAmt = SA->getZExtValue();
1442 if (ShAmt == 0)
1443 return TLO.CombineTo(Op, Op0);
1445 APInt InDemandedMask = (DemandedBits << ShAmt);
1447 // If the shift is exact, then it does demand the low bits (and knows that
1448 // they are zero).
1449 if (Op->getFlags().hasExact())
1450 InDemandedMask.setLowBits(ShAmt);
1452 // If any of the demanded bits are produced by the sign extension, we also
1453 // demand the input sign bit.
1454 if (DemandedBits.countLeadingZeros() < ShAmt)
1455 InDemandedMask.setSignBit();
1457 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1458 Depth + 1))
1459 return true;
1460 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1461 Known.Zero.lshrInPlace(ShAmt);
1462 Known.One.lshrInPlace(ShAmt);
1464 // If the input sign bit is known to be zero, or if none of the top bits
1465 // are demanded, turn this into an unsigned shift right.
1466 if (Known.Zero[BitWidth - ShAmt - 1] ||
1467 DemandedBits.countLeadingZeros() >= ShAmt) {
1468 SDNodeFlags Flags;
1469 Flags.setExact(Op->getFlags().hasExact());
1470 return TLO.CombineTo(
1471 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1474 int Log2 = DemandedBits.exactLogBase2();
1475 if (Log2 >= 0) {
1476 // The bit must come from the sign.
1477 SDValue NewSA =
1478 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1479 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1482 if (Known.One[BitWidth - ShAmt - 1])
1483 // New bits are known one.
1484 Known.One.setHighBits(ShAmt);
1486 break;
1488 case ISD::FSHL:
1489 case ISD::FSHR: {
1490 SDValue Op0 = Op.getOperand(0);
1491 SDValue Op1 = Op.getOperand(1);
1492 SDValue Op2 = Op.getOperand(2);
1493 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1495 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1496 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1498 // For fshl, 0-shift returns the 1st arg.
1499 // For fshr, 0-shift returns the 2nd arg.
1500 if (Amt == 0) {
1501 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1502 Known, TLO, Depth + 1))
1503 return true;
1504 break;
1507 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1508 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1509 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1510 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1511 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1512 Depth + 1))
1513 return true;
1514 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1515 Depth + 1))
1516 return true;
1518 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1519 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1520 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1521 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1522 Known.One |= Known2.One;
1523 Known.Zero |= Known2.Zero;
1525 break;
1527 case ISD::BITREVERSE: {
1528 SDValue Src = Op.getOperand(0);
1529 APInt DemandedSrcBits = DemandedBits.reverseBits();
1530 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1531 Depth + 1))
1532 return true;
1533 Known.One = Known2.One.reverseBits();
1534 Known.Zero = Known2.Zero.reverseBits();
1535 break;
1537 case ISD::SIGN_EXTEND_INREG: {
1538 SDValue Op0 = Op.getOperand(0);
1539 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1540 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1542 // If we only care about the highest bit, don't bother shifting right.
1543 if (DemandedBits.isSignMask()) {
1544 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1545 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1546 // However if the input is already sign extended we expect the sign
1547 // extension to be dropped altogether later and do not simplify.
1548 if (!AlreadySignExtended) {
1549 // Compute the correct shift amount type, which must be getShiftAmountTy
1550 // for scalar types after legalization.
1551 EVT ShiftAmtTy = VT;
1552 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1553 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1555 SDValue ShiftAmt =
1556 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1557 return TLO.CombineTo(Op,
1558 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1562 // If none of the extended bits are demanded, eliminate the sextinreg.
1563 if (DemandedBits.getActiveBits() <= ExVTBits)
1564 return TLO.CombineTo(Op, Op0);
1566 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1568 // Since the sign extended bits are demanded, we know that the sign
1569 // bit is demanded.
1570 InputDemandedBits.setBit(ExVTBits - 1);
1572 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1573 return true;
1574 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1576 // If the sign bit of the input is known set or clear, then we know the
1577 // top bits of the result.
1579 // If the input sign bit is known zero, convert this into a zero extension.
1580 if (Known.Zero[ExVTBits - 1])
1581 return TLO.CombineTo(
1582 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1584 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1585 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1586 Known.One.setBitsFrom(ExVTBits);
1587 Known.Zero &= Mask;
1588 } else { // Input sign bit unknown
1589 Known.Zero &= Mask;
1590 Known.One &= Mask;
1592 break;
1594 case ISD::BUILD_PAIR: {
1595 EVT HalfVT = Op.getOperand(0).getValueType();
1596 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1598 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1599 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1601 KnownBits KnownLo, KnownHi;
1603 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1604 return true;
1606 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1607 return true;
1609 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1610 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1612 Known.One = KnownLo.One.zext(BitWidth) |
1613 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1614 break;
1616 case ISD::ZERO_EXTEND:
1617 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1618 SDValue Src = Op.getOperand(0);
1619 EVT SrcVT = Src.getValueType();
1620 unsigned InBits = SrcVT.getScalarSizeInBits();
1621 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1622 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1624 // If none of the top bits are demanded, convert this into an any_extend.
1625 if (DemandedBits.getActiveBits() <= InBits) {
1626 // If we only need the non-extended bits of the bottom element
1627 // then we can just bitcast to the result.
1628 if (IsVecInReg && DemandedElts == 1 &&
1629 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1630 TLO.DAG.getDataLayout().isLittleEndian())
1631 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1633 unsigned Opc =
1634 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1635 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1636 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1639 APInt InDemandedBits = DemandedBits.trunc(InBits);
1640 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1641 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1642 Depth + 1))
1643 return true;
1644 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1645 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1646 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1647 break;
1649 case ISD::SIGN_EXTEND:
1650 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1651 SDValue Src = Op.getOperand(0);
1652 EVT SrcVT = Src.getValueType();
1653 unsigned InBits = SrcVT.getScalarSizeInBits();
1654 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1655 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1657 // If none of the top bits are demanded, convert this into an any_extend.
1658 if (DemandedBits.getActiveBits() <= InBits) {
1659 // If we only need the non-extended bits of the bottom element
1660 // then we can just bitcast to the result.
1661 if (IsVecInReg && DemandedElts == 1 &&
1662 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1663 TLO.DAG.getDataLayout().isLittleEndian())
1664 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1666 unsigned Opc =
1667 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1668 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1669 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1672 APInt InDemandedBits = DemandedBits.trunc(InBits);
1673 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1675 // Since some of the sign extended bits are demanded, we know that the sign
1676 // bit is demanded.
1677 InDemandedBits.setBit(InBits - 1);
1679 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1680 Depth + 1))
1681 return true;
1682 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1683 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1685 // If the sign bit is known one, the top bits match.
1686 Known = Known.sext(BitWidth);
1688 // If the sign bit is known zero, convert this to a zero extend.
1689 if (Known.isNonNegative()) {
1690 unsigned Opc =
1691 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1692 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1693 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1695 break;
1697 case ISD::ANY_EXTEND:
1698 case ISD::ANY_EXTEND_VECTOR_INREG: {
1699 SDValue Src = Op.getOperand(0);
1700 EVT SrcVT = Src.getValueType();
1701 unsigned InBits = SrcVT.getScalarSizeInBits();
1702 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1703 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1705 // If we only need the bottom element then we can just bitcast.
1706 // TODO: Handle ANY_EXTEND?
1707 if (IsVecInReg && DemandedElts == 1 &&
1708 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1709 TLO.DAG.getDataLayout().isLittleEndian())
1710 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1712 APInt InDemandedBits = DemandedBits.trunc(InBits);
1713 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1714 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1715 Depth + 1))
1716 return true;
1717 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1718 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1719 Known = Known.zext(BitWidth, false /* => any extend */);
1720 break;
1722 case ISD::TRUNCATE: {
1723 SDValue Src = Op.getOperand(0);
1725 // Simplify the input, using demanded bit information, and compute the known
1726 // zero/one bits live out.
1727 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1728 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1729 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1730 return true;
1731 Known = Known.trunc(BitWidth);
1733 // Attempt to avoid multi-use ops if we don't need anything from them.
1734 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1735 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1736 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1738 // If the input is only used by this truncate, see if we can shrink it based
1739 // on the known demanded bits.
1740 if (Src.getNode()->hasOneUse()) {
1741 switch (Src.getOpcode()) {
1742 default:
1743 break;
1744 case ISD::SRL:
1745 // Shrink SRL by a constant if none of the high bits shifted in are
1746 // demanded.
1747 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1748 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1749 // undesirable.
1750 break;
1752 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1753 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1754 break;
1756 SDValue Shift = Src.getOperand(1);
1757 uint64_t ShVal = ShAmt->getZExtValue();
1759 if (TLO.LegalTypes())
1760 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1762 APInt HighBits =
1763 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1764 HighBits.lshrInPlace(ShVal);
1765 HighBits = HighBits.trunc(BitWidth);
1767 if (!(HighBits & DemandedBits)) {
1768 // None of the shifted in bits are needed. Add a truncate of the
1769 // shift input, then shift it.
1770 SDValue NewTrunc =
1771 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1772 return TLO.CombineTo(
1773 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1775 break;
1779 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1780 break;
1782 case ISD::AssertZext: {
1783 // AssertZext demands all of the high bits, plus any of the low bits
1784 // demanded by its users.
1785 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1786 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1787 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1788 TLO, Depth + 1))
1789 return true;
1790 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1792 Known.Zero |= ~InMask;
1793 break;
1795 case ISD::EXTRACT_VECTOR_ELT: {
1796 SDValue Src = Op.getOperand(0);
1797 SDValue Idx = Op.getOperand(1);
1798 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1799 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1801 // Demand the bits from every vector element without a constant index.
1802 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1803 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1804 if (CIdx->getAPIntValue().ult(NumSrcElts))
1805 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1807 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1808 // anything about the extended bits.
1809 APInt DemandedSrcBits = DemandedBits;
1810 if (BitWidth > EltBitWidth)
1811 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1813 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1814 Depth + 1))
1815 return true;
1817 Known = Known2;
1818 if (BitWidth > EltBitWidth)
1819 Known = Known.zext(BitWidth, false /* => any extend */);
1820 break;
1822 case ISD::BITCAST: {
1823 SDValue Src = Op.getOperand(0);
1824 EVT SrcVT = Src.getValueType();
1825 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1827 // If this is an FP->Int bitcast and if the sign bit is the only
1828 // thing demanded, turn this into a FGETSIGN.
1829 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1830 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1831 SrcVT.isFloatingPoint()) {
1832 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1833 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1834 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1835 SrcVT != MVT::f128) {
1836 // Cannot eliminate/lower SHL for f128 yet.
1837 EVT Ty = OpVTLegal ? VT : MVT::i32;
1838 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1839 // place. We expect the SHL to be eliminated by other optimizations.
1840 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1841 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1842 if (!OpVTLegal && OpVTSizeInBits > 32)
1843 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1844 unsigned ShVal = Op.getValueSizeInBits() - 1;
1845 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1846 return TLO.CombineTo(Op,
1847 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1851 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1852 // Demand the elt/bit if any of the original elts/bits are demanded.
1853 // TODO - bigendian once we have test coverage.
1854 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1855 TLO.DAG.getDataLayout().isLittleEndian()) {
1856 unsigned Scale = BitWidth / NumSrcEltBits;
1857 unsigned NumSrcElts = SrcVT.getVectorNumElements();
1858 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1859 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1860 for (unsigned i = 0; i != Scale; ++i) {
1861 unsigned Offset = i * NumSrcEltBits;
1862 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1863 if (!Sub.isNullValue()) {
1864 DemandedSrcBits |= Sub;
1865 for (unsigned j = 0; j != NumElts; ++j)
1866 if (DemandedElts[j])
1867 DemandedSrcElts.setBit((j * Scale) + i);
1871 APInt KnownSrcUndef, KnownSrcZero;
1872 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1873 KnownSrcZero, TLO, Depth + 1))
1874 return true;
1876 KnownBits KnownSrcBits;
1877 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1878 KnownSrcBits, TLO, Depth + 1))
1879 return true;
1880 } else if ((NumSrcEltBits % BitWidth) == 0 &&
1881 TLO.DAG.getDataLayout().isLittleEndian()) {
1882 unsigned Scale = NumSrcEltBits / BitWidth;
1883 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1884 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1885 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1886 for (unsigned i = 0; i != NumElts; ++i)
1887 if (DemandedElts[i]) {
1888 unsigned Offset = (i % Scale) * BitWidth;
1889 DemandedSrcBits.insertBits(DemandedBits, Offset);
1890 DemandedSrcElts.setBit(i / Scale);
1893 if (SrcVT.isVector()) {
1894 APInt KnownSrcUndef, KnownSrcZero;
1895 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1896 KnownSrcZero, TLO, Depth + 1))
1897 return true;
1900 KnownBits KnownSrcBits;
1901 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1902 KnownSrcBits, TLO, Depth + 1))
1903 return true;
1906 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1907 // recursive call where Known may be useful to the caller.
1908 if (Depth > 0) {
1909 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1910 return false;
1912 break;
1914 case ISD::ADD:
1915 case ISD::MUL:
1916 case ISD::SUB: {
1917 // Add, Sub, and Mul don't demand any bits in positions beyond that
1918 // of the highest bit demanded of them.
1919 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1920 SDNodeFlags Flags = Op.getNode()->getFlags();
1921 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1922 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1923 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1924 Depth + 1) ||
1925 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1926 Depth + 1) ||
1927 // See if the operation should be performed at a smaller bit width.
1928 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1929 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1930 // Disable the nsw and nuw flags. We can no longer guarantee that we
1931 // won't wrap after simplification.
1932 Flags.setNoSignedWrap(false);
1933 Flags.setNoUnsignedWrap(false);
1934 SDValue NewOp =
1935 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1936 return TLO.CombineTo(Op, NewOp);
1938 return true;
1941 // Attempt to avoid multi-use ops if we don't need anything from them.
1942 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1943 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1944 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1945 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1946 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1947 if (DemandedOp0 || DemandedOp1) {
1948 Flags.setNoSignedWrap(false);
1949 Flags.setNoUnsignedWrap(false);
1950 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1951 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1952 SDValue NewOp =
1953 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1954 return TLO.CombineTo(Op, NewOp);
1958 // If we have a constant operand, we may be able to turn it into -1 if we
1959 // do not demand the high bits. This can make the constant smaller to
1960 // encode, allow more general folding, or match specialized instruction
1961 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1962 // is probably not useful (and could be detrimental).
1963 ConstantSDNode *C = isConstOrConstSplat(Op1);
1964 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1965 if (C && !C->isAllOnesValue() && !C->isOne() &&
1966 (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1967 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1968 // Disable the nsw and nuw flags. We can no longer guarantee that we
1969 // won't wrap after simplification.
1970 Flags.setNoSignedWrap(false);
1971 Flags.setNoUnsignedWrap(false);
1972 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1973 return TLO.CombineTo(Op, NewOp);
1976 LLVM_FALLTHROUGH;
1978 default:
1979 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1980 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1981 Known, TLO, Depth))
1982 return true;
1983 break;
1986 // Just use computeKnownBits to compute output bits.
1987 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1988 break;
1991 // If we know the value of all of the demanded bits, return this as a
1992 // constant.
1993 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1994 // Avoid folding to a constant if any OpaqueConstant is involved.
1995 const SDNode *N = Op.getNode();
1996 for (SDNodeIterator I = SDNodeIterator::begin(N),
1997 E = SDNodeIterator::end(N);
1998 I != E; ++I) {
1999 SDNode *Op = *I;
2000 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2001 if (C->isOpaque())
2002 return false;
2004 // TODO: Handle float bits as well.
2005 if (VT.isInteger())
2006 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2009 return false;
2012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2013 const APInt &DemandedElts,
2014 APInt &KnownUndef,
2015 APInt &KnownZero,
2016 DAGCombinerInfo &DCI) const {
2017 SelectionDAG &DAG = DCI.DAG;
2018 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2019 !DCI.isBeforeLegalizeOps());
2021 bool Simplified =
2022 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2023 if (Simplified) {
2024 DCI.AddToWorklist(Op.getNode());
2025 DCI.CommitTargetLoweringOpt(TLO);
2028 return Simplified;
2031 /// Given a vector binary operation and known undefined elements for each input
2032 /// operand, compute whether each element of the output is undefined.
2033 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2034 const APInt &UndefOp0,
2035 const APInt &UndefOp1) {
2036 EVT VT = BO.getValueType();
2037 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2038 "Vector binop only");
2040 EVT EltVT = VT.getVectorElementType();
2041 unsigned NumElts = VT.getVectorNumElements();
2042 assert(UndefOp0.getBitWidth() == NumElts &&
2043 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2045 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2046 const APInt &UndefVals) {
2047 if (UndefVals[Index])
2048 return DAG.getUNDEF(EltVT);
2050 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2051 // Try hard to make sure that the getNode() call is not creating temporary
2052 // nodes. Ignore opaque integers because they do not constant fold.
2053 SDValue Elt = BV->getOperand(Index);
2054 auto *C = dyn_cast<ConstantSDNode>(Elt);
2055 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2056 return Elt;
2059 return SDValue();
2062 APInt KnownUndef = APInt::getNullValue(NumElts);
2063 for (unsigned i = 0; i != NumElts; ++i) {
2064 // If both inputs for this element are either constant or undef and match
2065 // the element type, compute the constant/undef result for this element of
2066 // the vector.
2067 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2068 // not handle FP constants. The code within getNode() should be refactored
2069 // to avoid the danger of creating a bogus temporary node here.
2070 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2071 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2072 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2073 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2074 KnownUndef.setBit(i);
2076 return KnownUndef;
2079 bool TargetLowering::SimplifyDemandedVectorElts(
2080 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2081 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2082 bool AssumeSingleUse) const {
2083 EVT VT = Op.getValueType();
2084 APInt DemandedElts = OriginalDemandedElts;
2085 unsigned NumElts = DemandedElts.getBitWidth();
2086 assert(VT.isVector() && "Expected vector op");
2087 assert(VT.getVectorNumElements() == NumElts &&
2088 "Mask size mismatches value type element count!");
2090 KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2092 // Undef operand.
2093 if (Op.isUndef()) {
2094 KnownUndef.setAllBits();
2095 return false;
2098 // If Op has other users, assume that all elements are needed.
2099 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2100 DemandedElts.setAllBits();
2102 // Not demanding any elements from Op.
2103 if (DemandedElts == 0) {
2104 KnownUndef.setAllBits();
2105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2108 // Limit search depth.
2109 if (Depth >= 6)
2110 return false;
2112 SDLoc DL(Op);
2113 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2115 switch (Op.getOpcode()) {
2116 case ISD::SCALAR_TO_VECTOR: {
2117 if (!DemandedElts[0]) {
2118 KnownUndef.setAllBits();
2119 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2121 KnownUndef.setHighBits(NumElts - 1);
2122 break;
2124 case ISD::BITCAST: {
2125 SDValue Src = Op.getOperand(0);
2126 EVT SrcVT = Src.getValueType();
2128 // We only handle vectors here.
2129 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2130 if (!SrcVT.isVector())
2131 break;
2133 // Fast handling of 'identity' bitcasts.
2134 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2135 if (NumSrcElts == NumElts)
2136 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2137 KnownZero, TLO, Depth + 1);
2139 APInt SrcZero, SrcUndef;
2140 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2142 // Bitcast from 'large element' src vector to 'small element' vector, we
2143 // must demand a source element if any DemandedElt maps to it.
2144 if ((NumElts % NumSrcElts) == 0) {
2145 unsigned Scale = NumElts / NumSrcElts;
2146 for (unsigned i = 0; i != NumElts; ++i)
2147 if (DemandedElts[i])
2148 SrcDemandedElts.setBit(i / Scale);
2150 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2151 TLO, Depth + 1))
2152 return true;
2154 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2155 // of the large element.
2156 // TODO - bigendian once we have test coverage.
2157 if (TLO.DAG.getDataLayout().isLittleEndian()) {
2158 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2159 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2160 for (unsigned i = 0; i != NumElts; ++i)
2161 if (DemandedElts[i]) {
2162 unsigned Ofs = (i % Scale) * EltSizeInBits;
2163 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2166 KnownBits Known;
2167 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2168 return true;
2171 // If the src element is zero/undef then all the output elements will be -
2172 // only demanded elements are guaranteed to be correct.
2173 for (unsigned i = 0; i != NumSrcElts; ++i) {
2174 if (SrcDemandedElts[i]) {
2175 if (SrcZero[i])
2176 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2177 if (SrcUndef[i])
2178 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2183 // Bitcast from 'small element' src vector to 'large element' vector, we
2184 // demand all smaller source elements covered by the larger demanded element
2185 // of this vector.
2186 if ((NumSrcElts % NumElts) == 0) {
2187 unsigned Scale = NumSrcElts / NumElts;
2188 for (unsigned i = 0; i != NumElts; ++i)
2189 if (DemandedElts[i])
2190 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2192 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2193 TLO, Depth + 1))
2194 return true;
2196 // If all the src elements covering an output element are zero/undef, then
2197 // the output element will be as well, assuming it was demanded.
2198 for (unsigned i = 0; i != NumElts; ++i) {
2199 if (DemandedElts[i]) {
2200 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2201 KnownZero.setBit(i);
2202 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2203 KnownUndef.setBit(i);
2207 break;
2209 case ISD::BUILD_VECTOR: {
2210 // Check all elements and simplify any unused elements with UNDEF.
2211 if (!DemandedElts.isAllOnesValue()) {
2212 // Don't simplify BROADCASTS.
2213 if (llvm::any_of(Op->op_values(),
2214 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2215 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2216 bool Updated = false;
2217 for (unsigned i = 0; i != NumElts; ++i) {
2218 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2219 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2220 KnownUndef.setBit(i);
2221 Updated = true;
2224 if (Updated)
2225 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2228 for (unsigned i = 0; i != NumElts; ++i) {
2229 SDValue SrcOp = Op.getOperand(i);
2230 if (SrcOp.isUndef()) {
2231 KnownUndef.setBit(i);
2232 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2233 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2234 KnownZero.setBit(i);
2237 break;
2239 case ISD::CONCAT_VECTORS: {
2240 EVT SubVT = Op.getOperand(0).getValueType();
2241 unsigned NumSubVecs = Op.getNumOperands();
2242 unsigned NumSubElts = SubVT.getVectorNumElements();
2243 for (unsigned i = 0; i != NumSubVecs; ++i) {
2244 SDValue SubOp = Op.getOperand(i);
2245 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2246 APInt SubUndef, SubZero;
2247 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2248 Depth + 1))
2249 return true;
2250 KnownUndef.insertBits(SubUndef, i * NumSubElts);
2251 KnownZero.insertBits(SubZero, i * NumSubElts);
2253 break;
2255 case ISD::INSERT_SUBVECTOR: {
2256 if (!isa<ConstantSDNode>(Op.getOperand(2)))
2257 break;
2258 SDValue Base = Op.getOperand(0);
2259 SDValue Sub = Op.getOperand(1);
2260 EVT SubVT = Sub.getValueType();
2261 unsigned NumSubElts = SubVT.getVectorNumElements();
2262 const APInt &Idx = Op.getConstantOperandAPInt(2);
2263 if (Idx.ugt(NumElts - NumSubElts))
2264 break;
2265 unsigned SubIdx = Idx.getZExtValue();
2266 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2267 APInt SubUndef, SubZero;
2268 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2269 Depth + 1))
2270 return true;
2271 APInt BaseElts = DemandedElts;
2272 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2274 // If none of the base operand elements are demanded, replace it with undef.
2275 if (!BaseElts && !Base.isUndef())
2276 return TLO.CombineTo(Op,
2277 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2278 TLO.DAG.getUNDEF(VT),
2279 Op.getOperand(1),
2280 Op.getOperand(2)));
2282 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2283 Depth + 1))
2284 return true;
2285 KnownUndef.insertBits(SubUndef, SubIdx);
2286 KnownZero.insertBits(SubZero, SubIdx);
2287 break;
2289 case ISD::EXTRACT_SUBVECTOR: {
2290 SDValue Src = Op.getOperand(0);
2291 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2292 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2293 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2294 // Offset the demanded elts by the subvector index.
2295 uint64_t Idx = SubIdx->getZExtValue();
2296 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2297 APInt SrcUndef, SrcZero;
2298 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2299 Depth + 1))
2300 return true;
2301 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2302 KnownZero = SrcZero.extractBits(NumElts, Idx);
2304 break;
2306 case ISD::INSERT_VECTOR_ELT: {
2307 SDValue Vec = Op.getOperand(0);
2308 SDValue Scl = Op.getOperand(1);
2309 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2311 // For a legal, constant insertion index, if we don't need this insertion
2312 // then strip it, else remove it from the demanded elts.
2313 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2314 unsigned Idx = CIdx->getZExtValue();
2315 if (!DemandedElts[Idx])
2316 return TLO.CombineTo(Op, Vec);
2318 APInt DemandedVecElts(DemandedElts);
2319 DemandedVecElts.clearBit(Idx);
2320 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2321 KnownZero, TLO, Depth + 1))
2322 return true;
2324 KnownUndef.clearBit(Idx);
2325 if (Scl.isUndef())
2326 KnownUndef.setBit(Idx);
2328 KnownZero.clearBit(Idx);
2329 if (isNullConstant(Scl) || isNullFPConstant(Scl))
2330 KnownZero.setBit(Idx);
2331 break;
2334 APInt VecUndef, VecZero;
2335 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2336 Depth + 1))
2337 return true;
2338 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2339 break;
2341 case ISD::VSELECT: {
2342 // Try to transform the select condition based on the current demanded
2343 // elements.
2344 // TODO: If a condition element is undef, we can choose from one arm of the
2345 // select (and if one arm is undef, then we can propagate that to the
2346 // result).
2347 // TODO - add support for constant vselect masks (see IR version of this).
2348 APInt UnusedUndef, UnusedZero;
2349 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2350 UnusedZero, TLO, Depth + 1))
2351 return true;
2353 // See if we can simplify either vselect operand.
2354 APInt DemandedLHS(DemandedElts);
2355 APInt DemandedRHS(DemandedElts);
2356 APInt UndefLHS, ZeroLHS;
2357 APInt UndefRHS, ZeroRHS;
2358 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2359 ZeroLHS, TLO, Depth + 1))
2360 return true;
2361 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2362 ZeroRHS, TLO, Depth + 1))
2363 return true;
2365 KnownUndef = UndefLHS & UndefRHS;
2366 KnownZero = ZeroLHS & ZeroRHS;
2367 break;
2369 case ISD::VECTOR_SHUFFLE: {
2370 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2372 // Collect demanded elements from shuffle operands..
2373 APInt DemandedLHS(NumElts, 0);
2374 APInt DemandedRHS(NumElts, 0);
2375 for (unsigned i = 0; i != NumElts; ++i) {
2376 int M = ShuffleMask[i];
2377 if (M < 0 || !DemandedElts[i])
2378 continue;
2379 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2380 if (M < (int)NumElts)
2381 DemandedLHS.setBit(M);
2382 else
2383 DemandedRHS.setBit(M - NumElts);
2386 // See if we can simplify either shuffle operand.
2387 APInt UndefLHS, ZeroLHS;
2388 APInt UndefRHS, ZeroRHS;
2389 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2390 ZeroLHS, TLO, Depth + 1))
2391 return true;
2392 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2393 ZeroRHS, TLO, Depth + 1))
2394 return true;
2396 // Simplify mask using undef elements from LHS/RHS.
2397 bool Updated = false;
2398 bool IdentityLHS = true, IdentityRHS = true;
2399 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2400 for (unsigned i = 0; i != NumElts; ++i) {
2401 int &M = NewMask[i];
2402 if (M < 0)
2403 continue;
2404 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2405 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2406 Updated = true;
2407 M = -1;
2409 IdentityLHS &= (M < 0) || (M == (int)i);
2410 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2413 // Update legal shuffle masks based on demanded elements if it won't reduce
2414 // to Identity which can cause premature removal of the shuffle mask.
2415 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2416 SDValue LegalShuffle =
2417 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2418 NewMask, TLO.DAG);
2419 if (LegalShuffle)
2420 return TLO.CombineTo(Op, LegalShuffle);
2423 // Propagate undef/zero elements from LHS/RHS.
2424 for (unsigned i = 0; i != NumElts; ++i) {
2425 int M = ShuffleMask[i];
2426 if (M < 0) {
2427 KnownUndef.setBit(i);
2428 } else if (M < (int)NumElts) {
2429 if (UndefLHS[M])
2430 KnownUndef.setBit(i);
2431 if (ZeroLHS[M])
2432 KnownZero.setBit(i);
2433 } else {
2434 if (UndefRHS[M - NumElts])
2435 KnownUndef.setBit(i);
2436 if (ZeroRHS[M - NumElts])
2437 KnownZero.setBit(i);
2440 break;
2442 case ISD::ANY_EXTEND_VECTOR_INREG:
2443 case ISD::SIGN_EXTEND_VECTOR_INREG:
2444 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2445 APInt SrcUndef, SrcZero;
2446 SDValue Src = Op.getOperand(0);
2447 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2448 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2449 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2450 Depth + 1))
2451 return true;
2452 KnownZero = SrcZero.zextOrTrunc(NumElts);
2453 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2455 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2456 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2457 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2458 // aext - if we just need the bottom element then we can bitcast.
2459 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2462 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2463 // zext(undef) upper bits are guaranteed to be zero.
2464 if (DemandedElts.isSubsetOf(KnownUndef))
2465 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2466 KnownUndef.clearAllBits();
2468 break;
2471 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2472 // MAX, saturated math, etc.
2473 case ISD::OR:
2474 case ISD::XOR:
2475 case ISD::ADD:
2476 case ISD::SUB:
2477 case ISD::FADD:
2478 case ISD::FSUB:
2479 case ISD::FMUL:
2480 case ISD::FDIV:
2481 case ISD::FREM: {
2482 APInt UndefRHS, ZeroRHS;
2483 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2484 ZeroRHS, TLO, Depth + 1))
2485 return true;
2486 APInt UndefLHS, ZeroLHS;
2487 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2488 ZeroLHS, TLO, Depth + 1))
2489 return true;
2491 KnownZero = ZeroLHS & ZeroRHS;
2492 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2493 break;
2495 case ISD::SHL:
2496 case ISD::SRL:
2497 case ISD::SRA:
2498 case ISD::ROTL:
2499 case ISD::ROTR: {
2500 APInt UndefRHS, ZeroRHS;
2501 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2502 ZeroRHS, TLO, Depth + 1))
2503 return true;
2504 APInt UndefLHS, ZeroLHS;
2505 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2506 ZeroLHS, TLO, Depth + 1))
2507 return true;
2509 KnownZero = ZeroLHS;
2510 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2511 break;
2513 case ISD::MUL:
2514 case ISD::AND: {
2515 APInt SrcUndef, SrcZero;
2516 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2517 SrcZero, TLO, Depth + 1))
2518 return true;
2519 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2520 KnownZero, TLO, Depth + 1))
2521 return true;
2523 // If either side has a zero element, then the result element is zero, even
2524 // if the other is an UNDEF.
2525 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2526 // and then handle 'and' nodes with the rest of the binop opcodes.
2527 KnownZero |= SrcZero;
2528 KnownUndef &= SrcUndef;
2529 KnownUndef &= ~KnownZero;
2530 break;
2532 case ISD::TRUNCATE:
2533 case ISD::SIGN_EXTEND:
2534 case ISD::ZERO_EXTEND:
2535 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2536 KnownZero, TLO, Depth + 1))
2537 return true;
2539 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2540 // zext(undef) upper bits are guaranteed to be zero.
2541 if (DemandedElts.isSubsetOf(KnownUndef))
2542 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2543 KnownUndef.clearAllBits();
2545 break;
2546 default: {
2547 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2548 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2549 KnownZero, TLO, Depth))
2550 return true;
2551 } else {
2552 KnownBits Known;
2553 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2554 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2555 TLO, Depth, AssumeSingleUse))
2556 return true;
2558 break;
2561 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2563 // Constant fold all undef cases.
2564 // TODO: Handle zero cases as well.
2565 if (DemandedElts.isSubsetOf(KnownUndef))
2566 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2568 return false;
2571 /// Determine which of the bits specified in Mask are known to be either zero or
2572 /// one and return them in the Known.
2573 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2574 KnownBits &Known,
2575 const APInt &DemandedElts,
2576 const SelectionDAG &DAG,
2577 unsigned Depth) const {
2578 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2579 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2580 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2581 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2582 "Should use MaskedValueIsZero if you don't know whether Op"
2583 " is a target node!");
2584 Known.resetAll();
2587 void TargetLowering::computeKnownBitsForTargetInstr(
2588 Register R, KnownBits &Known, const APInt &DemandedElts,
2589 const MachineRegisterInfo &MRI, unsigned Depth) const {
2590 Known.resetAll();
2593 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2594 KnownBits &Known,
2595 const APInt &DemandedElts,
2596 const SelectionDAG &DAG,
2597 unsigned Depth) const {
2598 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2600 if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2601 // The low bits are known zero if the pointer is aligned.
2602 Known.Zero.setLowBits(Log2_32(Align));
2606 /// This method can be implemented by targets that want to expose additional
2607 /// information about sign bits to the DAG Combiner.
2608 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2609 const APInt &,
2610 const SelectionDAG &,
2611 unsigned Depth) const {
2612 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2613 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2614 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2615 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2616 "Should use ComputeNumSignBits if you don't know whether Op"
2617 " is a target node!");
2618 return 1;
2621 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2622 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2623 TargetLoweringOpt &TLO, unsigned Depth) const {
2624 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2625 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2626 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2627 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2628 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2629 " is a target node!");
2630 return false;
2633 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2635 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2636 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2637 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2638 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2639 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2640 "Should use SimplifyDemandedBits if you don't know whether Op"
2641 " is a target node!");
2642 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2643 return false;
2646 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2647 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2648 SelectionDAG &DAG, unsigned Depth) const {
2649 assert(
2650 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2651 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2652 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2653 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2654 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2655 " is a target node!");
2656 return SDValue();
2659 SDValue
2660 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2661 SDValue N1, MutableArrayRef<int> Mask,
2662 SelectionDAG &DAG) const {
2663 bool LegalMask = isShuffleMaskLegal(Mask, VT);
2664 if (!LegalMask) {
2665 std::swap(N0, N1);
2666 ShuffleVectorSDNode::commuteMask(Mask);
2667 LegalMask = isShuffleMaskLegal(Mask, VT);
2670 if (!LegalMask)
2671 return SDValue();
2673 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2676 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2677 return nullptr;
2680 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2681 const SelectionDAG &DAG,
2682 bool SNaN,
2683 unsigned Depth) const {
2684 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2685 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2686 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2687 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2688 "Should use isKnownNeverNaN if you don't know whether Op"
2689 " is a target node!");
2690 return false;
2693 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2694 // work with truncating build vectors and vectors with elements of less than
2695 // 8 bits.
2696 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2697 if (!N)
2698 return false;
2700 APInt CVal;
2701 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2702 CVal = CN->getAPIntValue();
2703 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2704 auto *CN = BV->getConstantSplatNode();
2705 if (!CN)
2706 return false;
2708 // If this is a truncating build vector, truncate the splat value.
2709 // Otherwise, we may fail to match the expected values below.
2710 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2711 CVal = CN->getAPIntValue();
2712 if (BVEltWidth < CVal.getBitWidth())
2713 CVal = CVal.trunc(BVEltWidth);
2714 } else {
2715 return false;
2718 switch (getBooleanContents(N->getValueType(0))) {
2719 case UndefinedBooleanContent:
2720 return CVal[0];
2721 case ZeroOrOneBooleanContent:
2722 return CVal.isOneValue();
2723 case ZeroOrNegativeOneBooleanContent:
2724 return CVal.isAllOnesValue();
2727 llvm_unreachable("Invalid boolean contents");
2730 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2731 if (!N)
2732 return false;
2734 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2735 if (!CN) {
2736 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2737 if (!BV)
2738 return false;
2740 // Only interested in constant splats, we don't care about undef
2741 // elements in identifying boolean constants and getConstantSplatNode
2742 // returns NULL if all ops are undef;
2743 CN = BV->getConstantSplatNode();
2744 if (!CN)
2745 return false;
2748 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2749 return !CN->getAPIntValue()[0];
2751 return CN->isNullValue();
2754 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2755 bool SExt) const {
2756 if (VT == MVT::i1)
2757 return N->isOne();
2759 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2760 switch (Cnt) {
2761 case TargetLowering::ZeroOrOneBooleanContent:
2762 // An extended value of 1 is always true, unless its original type is i1,
2763 // in which case it will be sign extended to -1.
2764 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2765 case TargetLowering::UndefinedBooleanContent:
2766 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2767 return N->isAllOnesValue() && SExt;
2769 llvm_unreachable("Unexpected enumeration.");
2772 /// This helper function of SimplifySetCC tries to optimize the comparison when
2773 /// either operand of the SetCC node is a bitwise-and instruction.
2774 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2775 ISD::CondCode Cond, const SDLoc &DL,
2776 DAGCombinerInfo &DCI) const {
2777 // Match these patterns in any of their permutations:
2778 // (X & Y) == Y
2779 // (X & Y) != Y
2780 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2781 std::swap(N0, N1);
2783 EVT OpVT = N0.getValueType();
2784 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2785 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2786 return SDValue();
2788 SDValue X, Y;
2789 if (N0.getOperand(0) == N1) {
2790 X = N0.getOperand(1);
2791 Y = N0.getOperand(0);
2792 } else if (N0.getOperand(1) == N1) {
2793 X = N0.getOperand(0);
2794 Y = N0.getOperand(1);
2795 } else {
2796 return SDValue();
2799 SelectionDAG &DAG = DCI.DAG;
2800 SDValue Zero = DAG.getConstant(0, DL, OpVT);
2801 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2802 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2803 // Note that where Y is variable and is known to have at most one bit set
2804 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2805 // equivalent when Y == 0.
2806 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2807 if (DCI.isBeforeLegalizeOps() ||
2808 isCondCodeLegal(Cond, N0.getSimpleValueType()))
2809 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2810 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2811 // If the target supports an 'and-not' or 'and-complement' logic operation,
2812 // try to use that to make a comparison operation more efficient.
2813 // But don't do this transform if the mask is a single bit because there are
2814 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2815 // 'rlwinm' on PPC).
2817 // Bail out if the compare operand that we want to turn into a zero is
2818 // already a zero (otherwise, infinite loop).
2819 auto *YConst = dyn_cast<ConstantSDNode>(Y);
2820 if (YConst && YConst->isNullValue())
2821 return SDValue();
2823 // Transform this into: ~X & Y == 0.
2824 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2825 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2826 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2829 return SDValue();
2832 /// There are multiple IR patterns that could be checking whether certain
2833 /// truncation of a signed number would be lossy or not. The pattern which is
2834 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2835 /// We are looking for the following pattern: (KeptBits is a constant)
2836 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2837 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2838 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2839 /// We will unfold it into the natural trunc+sext pattern:
2840 /// ((%x << C) a>> C) dstcond %x
2841 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2842 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2843 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2844 const SDLoc &DL) const {
2845 // We must be comparing with a constant.
2846 ConstantSDNode *C1;
2847 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2848 return SDValue();
2850 // N0 should be: add %x, (1 << (KeptBits-1))
2851 if (N0->getOpcode() != ISD::ADD)
2852 return SDValue();
2854 // And we must be 'add'ing a constant.
2855 ConstantSDNode *C01;
2856 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2857 return SDValue();
2859 SDValue X = N0->getOperand(0);
2860 EVT XVT = X.getValueType();
2862 // Validate constants ...
2864 APInt I1 = C1->getAPIntValue();
2866 ISD::CondCode NewCond;
2867 if (Cond == ISD::CondCode::SETULT) {
2868 NewCond = ISD::CondCode::SETEQ;
2869 } else if (Cond == ISD::CondCode::SETULE) {
2870 NewCond = ISD::CondCode::SETEQ;
2871 // But need to 'canonicalize' the constant.
2872 I1 += 1;
2873 } else if (Cond == ISD::CondCode::SETUGT) {
2874 NewCond = ISD::CondCode::SETNE;
2875 // But need to 'canonicalize' the constant.
2876 I1 += 1;
2877 } else if (Cond == ISD::CondCode::SETUGE) {
2878 NewCond = ISD::CondCode::SETNE;
2879 } else
2880 return SDValue();
2882 APInt I01 = C01->getAPIntValue();
2884 auto checkConstants = [&I1, &I01]() -> bool {
2885 // Both of them must be power-of-two, and the constant from setcc is bigger.
2886 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2889 if (checkConstants()) {
2890 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2891 } else {
2892 // What if we invert constants? (and the target predicate)
2893 I1.negate();
2894 I01.negate();
2895 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2896 if (!checkConstants())
2897 return SDValue();
2898 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2901 // They are power-of-two, so which bit is set?
2902 const unsigned KeptBits = I1.logBase2();
2903 const unsigned KeptBitsMinusOne = I01.logBase2();
2905 // Magic!
2906 if (KeptBits != (KeptBitsMinusOne + 1))
2907 return SDValue();
2908 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2910 // We don't want to do this in every single case.
2911 SelectionDAG &DAG = DCI.DAG;
2912 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2913 XVT, KeptBits))
2914 return SDValue();
2916 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2917 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2919 // Unfold into: ((%x << C) a>> C) cond %x
2920 // Where 'cond' will be either 'eq' or 'ne'.
2921 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2922 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2923 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2924 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2926 return T2;
2929 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2930 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2931 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2932 DAGCombinerInfo &DCI, const SDLoc &DL) const {
2933 assert(isConstOrConstSplat(N1C) &&
2934 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2935 "Should be a comparison with 0.");
2936 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2937 "Valid only for [in]equality comparisons.");
2939 unsigned NewShiftOpcode;
2940 SDValue X, C, Y;
2942 SelectionDAG &DAG = DCI.DAG;
2943 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2945 // Look for '(C l>>/<< Y)'.
2946 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2947 // The shift should be one-use.
2948 if (!V.hasOneUse())
2949 return false;
2950 unsigned OldShiftOpcode = V.getOpcode();
2951 switch (OldShiftOpcode) {
2952 case ISD::SHL:
2953 NewShiftOpcode = ISD::SRL;
2954 break;
2955 case ISD::SRL:
2956 NewShiftOpcode = ISD::SHL;
2957 break;
2958 default:
2959 return false; // must be a logical shift.
2961 // We should be shifting a constant.
2962 // FIXME: best to use isConstantOrConstantVector().
2963 C = V.getOperand(0);
2964 ConstantSDNode *CC =
2965 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2966 if (!CC)
2967 return false;
2968 Y = V.getOperand(1);
2970 ConstantSDNode *XC =
2971 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2972 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2973 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2976 // LHS of comparison should be an one-use 'and'.
2977 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2978 return SDValue();
2980 X = N0.getOperand(0);
2981 SDValue Mask = N0.getOperand(1);
2983 // 'and' is commutative!
2984 if (!Match(Mask)) {
2985 std::swap(X, Mask);
2986 if (!Match(Mask))
2987 return SDValue();
2990 EVT VT = X.getValueType();
2992 // Produce:
2993 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2994 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2995 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2996 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2997 return T2;
3000 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3001 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3002 /// handle the commuted versions of these patterns.
3003 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3004 ISD::CondCode Cond, const SDLoc &DL,
3005 DAGCombinerInfo &DCI) const {
3006 unsigned BOpcode = N0.getOpcode();
3007 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3008 "Unexpected binop");
3009 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3011 // (X + Y) == X --> Y == 0
3012 // (X - Y) == X --> Y == 0
3013 // (X ^ Y) == X --> Y == 0
3014 SelectionDAG &DAG = DCI.DAG;
3015 EVT OpVT = N0.getValueType();
3016 SDValue X = N0.getOperand(0);
3017 SDValue Y = N0.getOperand(1);
3018 if (X == N1)
3019 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3021 if (Y != N1)
3022 return SDValue();
3024 // (X + Y) == Y --> X == 0
3025 // (X ^ Y) == Y --> X == 0
3026 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3027 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3029 // The shift would not be valid if the operands are boolean (i1).
3030 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3031 return SDValue();
3033 // (X - Y) == Y --> X == Y << 1
3034 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3035 !DCI.isBeforeLegalize());
3036 SDValue One = DAG.getConstant(1, DL, ShiftVT);
3037 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3038 if (!DCI.isCalledByLegalizer())
3039 DCI.AddToWorklist(YShl1.getNode());
3040 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3043 /// Try to simplify a setcc built with the specified operands and cc. If it is
3044 /// unable to simplify it, return a null SDValue.
3045 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3046 ISD::CondCode Cond, bool foldBooleans,
3047 DAGCombinerInfo &DCI,
3048 const SDLoc &dl) const {
3049 SelectionDAG &DAG = DCI.DAG;
3050 EVT OpVT = N0.getValueType();
3052 // Constant fold or commute setcc.
3053 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3054 return Fold;
3056 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3057 // TODO: Handle non-splat vector constants. All undef causes trouble.
3058 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3059 if (isConstOrConstSplat(N0) &&
3060 (DCI.isBeforeLegalizeOps() ||
3061 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3062 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3064 // If we have a subtract with the same 2 non-constant operands as this setcc
3065 // -- but in reverse order -- then try to commute the operands of this setcc
3066 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3067 // instruction on some targets.
3068 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3069 (DCI.isBeforeLegalizeOps() ||
3070 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3071 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3072 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3073 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3075 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3076 const APInt &C1 = N1C->getAPIntValue();
3078 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3079 // equality comparison, then we're just comparing whether X itself is
3080 // zero.
3081 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3082 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3083 N0.getOperand(1).getOpcode() == ISD::Constant) {
3084 const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3085 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3086 ShAmt == Log2_32(N0.getValueSizeInBits())) {
3087 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3088 // (srl (ctlz x), 5) == 0 -> X != 0
3089 // (srl (ctlz x), 5) != 1 -> X != 0
3090 Cond = ISD::SETNE;
3091 } else {
3092 // (srl (ctlz x), 5) != 0 -> X == 0
3093 // (srl (ctlz x), 5) == 1 -> X == 0
3094 Cond = ISD::SETEQ;
3096 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3097 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3098 Zero, Cond);
3102 SDValue CTPOP = N0;
3103 // Look through truncs that don't change the value of a ctpop.
3104 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3105 CTPOP = N0.getOperand(0);
3107 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3108 (N0 == CTPOP ||
3109 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3110 EVT CTVT = CTPOP.getValueType();
3111 SDValue CTOp = CTPOP.getOperand(0);
3113 // (ctpop x) u< 2 -> (x & x-1) == 0
3114 // (ctpop x) u> 1 -> (x & x-1) != 0
3115 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3116 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3117 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3118 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3119 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3120 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3123 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3124 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3125 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3126 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3127 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3128 SDValue Zero = DAG.getConstant(0, dl, CTVT);
3129 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3130 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3131 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3132 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3133 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3134 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3135 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3136 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3140 // (zext x) == C --> x == (trunc C)
3141 // (sext x) == C --> x == (trunc C)
3142 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3143 DCI.isBeforeLegalize() && N0->hasOneUse()) {
3144 unsigned MinBits = N0.getValueSizeInBits();
3145 SDValue PreExt;
3146 bool Signed = false;
3147 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3148 // ZExt
3149 MinBits = N0->getOperand(0).getValueSizeInBits();
3150 PreExt = N0->getOperand(0);
3151 } else if (N0->getOpcode() == ISD::AND) {
3152 // DAGCombine turns costly ZExts into ANDs
3153 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3154 if ((C->getAPIntValue()+1).isPowerOf2()) {
3155 MinBits = C->getAPIntValue().countTrailingOnes();
3156 PreExt = N0->getOperand(0);
3158 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3159 // SExt
3160 MinBits = N0->getOperand(0).getValueSizeInBits();
3161 PreExt = N0->getOperand(0);
3162 Signed = true;
3163 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3164 // ZEXTLOAD / SEXTLOAD
3165 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3166 MinBits = LN0->getMemoryVT().getSizeInBits();
3167 PreExt = N0;
3168 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3169 Signed = true;
3170 MinBits = LN0->getMemoryVT().getSizeInBits();
3171 PreExt = N0;
3175 // Figure out how many bits we need to preserve this constant.
3176 unsigned ReqdBits = Signed ?
3177 C1.getBitWidth() - C1.getNumSignBits() + 1 :
3178 C1.getActiveBits();
3180 // Make sure we're not losing bits from the constant.
3181 if (MinBits > 0 &&
3182 MinBits < C1.getBitWidth() &&
3183 MinBits >= ReqdBits) {
3184 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3185 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3186 // Will get folded away.
3187 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3188 if (MinBits == 1 && C1 == 1)
3189 // Invert the condition.
3190 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3191 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3192 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3193 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3196 // If truncating the setcc operands is not desirable, we can still
3197 // simplify the expression in some cases:
3198 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3199 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3200 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3201 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3202 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3203 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3204 SDValue TopSetCC = N0->getOperand(0);
3205 unsigned N0Opc = N0->getOpcode();
3206 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3207 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3208 TopSetCC.getOpcode() == ISD::SETCC &&
3209 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3210 (isConstFalseVal(N1C) ||
3211 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3213 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3214 (!N1C->isNullValue() && Cond == ISD::SETNE);
3216 if (!Inverse)
3217 return TopSetCC;
3219 ISD::CondCode InvCond = ISD::getSetCCInverse(
3220 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3221 TopSetCC.getOperand(0).getValueType().isInteger());
3222 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3223 TopSetCC.getOperand(1),
3224 InvCond);
3229 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3230 // equality or unsigned, and all 1 bits of the const are in the same
3231 // partial word, see if we can shorten the load.
3232 if (DCI.isBeforeLegalize() &&
3233 !ISD::isSignedIntSetCC(Cond) &&
3234 N0.getOpcode() == ISD::AND && C1 == 0 &&
3235 N0.getNode()->hasOneUse() &&
3236 isa<LoadSDNode>(N0.getOperand(0)) &&
3237 N0.getOperand(0).getNode()->hasOneUse() &&
3238 isa<ConstantSDNode>(N0.getOperand(1))) {
3239 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3240 APInt bestMask;
3241 unsigned bestWidth = 0, bestOffset = 0;
3242 if (Lod->isSimple() && Lod->isUnindexed()) {
3243 unsigned origWidth = N0.getValueSizeInBits();
3244 unsigned maskWidth = origWidth;
3245 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3246 // 8 bits, but have to be careful...
3247 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3248 origWidth = Lod->getMemoryVT().getSizeInBits();
3249 const APInt &Mask = N0.getConstantOperandAPInt(1);
3250 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3251 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3252 for (unsigned offset=0; offset<origWidth/width; offset++) {
3253 if (Mask.isSubsetOf(newMask)) {
3254 if (DAG.getDataLayout().isLittleEndian())
3255 bestOffset = (uint64_t)offset * (width/8);
3256 else
3257 bestOffset = (origWidth/width - offset - 1) * (width/8);
3258 bestMask = Mask.lshr(offset * (width/8) * 8);
3259 bestWidth = width;
3260 break;
3262 newMask <<= width;
3266 if (bestWidth) {
3267 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3268 if (newVT.isRound() &&
3269 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3270 EVT PtrType = Lod->getOperand(1).getValueType();
3271 SDValue Ptr = Lod->getBasePtr();
3272 if (bestOffset != 0)
3273 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3274 DAG.getConstant(bestOffset, dl, PtrType));
3275 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3276 SDValue NewLoad = DAG.getLoad(
3277 newVT, dl, Lod->getChain(), Ptr,
3278 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3279 return DAG.getSetCC(dl, VT,
3280 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3281 DAG.getConstant(bestMask.trunc(bestWidth),
3282 dl, newVT)),
3283 DAG.getConstant(0LL, dl, newVT), Cond);
3288 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3289 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3290 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3292 // If the comparison constant has bits in the upper part, the
3293 // zero-extended value could never match.
3294 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3295 C1.getBitWidth() - InSize))) {
3296 switch (Cond) {
3297 case ISD::SETUGT:
3298 case ISD::SETUGE:
3299 case ISD::SETEQ:
3300 return DAG.getConstant(0, dl, VT);
3301 case ISD::SETULT:
3302 case ISD::SETULE:
3303 case ISD::SETNE:
3304 return DAG.getConstant(1, dl, VT);
3305 case ISD::SETGT:
3306 case ISD::SETGE:
3307 // True if the sign bit of C1 is set.
3308 return DAG.getConstant(C1.isNegative(), dl, VT);
3309 case ISD::SETLT:
3310 case ISD::SETLE:
3311 // True if the sign bit of C1 isn't set.
3312 return DAG.getConstant(C1.isNonNegative(), dl, VT);
3313 default:
3314 break;
3318 // Otherwise, we can perform the comparison with the low bits.
3319 switch (Cond) {
3320 case ISD::SETEQ:
3321 case ISD::SETNE:
3322 case ISD::SETUGT:
3323 case ISD::SETUGE:
3324 case ISD::SETULT:
3325 case ISD::SETULE: {
3326 EVT newVT = N0.getOperand(0).getValueType();
3327 if (DCI.isBeforeLegalizeOps() ||
3328 (isOperationLegal(ISD::SETCC, newVT) &&
3329 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3330 EVT NewSetCCVT =
3331 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3332 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3334 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3335 NewConst, Cond);
3336 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3338 break;
3340 default:
3341 break; // todo, be more careful with signed comparisons
3343 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3344 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3345 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3346 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3347 EVT ExtDstTy = N0.getValueType();
3348 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3350 // If the constant doesn't fit into the number of bits for the source of
3351 // the sign extension, it is impossible for both sides to be equal.
3352 if (C1.getMinSignedBits() > ExtSrcTyBits)
3353 return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3355 SDValue ZextOp;
3356 EVT Op0Ty = N0.getOperand(0).getValueType();
3357 if (Op0Ty == ExtSrcTy) {
3358 ZextOp = N0.getOperand(0);
3359 } else {
3360 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3361 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3362 DAG.getConstant(Imm, dl, Op0Ty));
3364 if (!DCI.isCalledByLegalizer())
3365 DCI.AddToWorklist(ZextOp.getNode());
3366 // Otherwise, make this a use of a zext.
3367 return DAG.getSetCC(dl, VT, ZextOp,
3368 DAG.getConstant(C1 & APInt::getLowBitsSet(
3369 ExtDstTyBits,
3370 ExtSrcTyBits),
3371 dl, ExtDstTy),
3372 Cond);
3373 } else if ((N1C->isNullValue() || N1C->isOne()) &&
3374 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3375 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3376 if (N0.getOpcode() == ISD::SETCC &&
3377 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3378 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3379 if (TrueWhenTrue)
3380 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3381 // Invert the condition.
3382 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3383 CC = ISD::getSetCCInverse(CC,
3384 N0.getOperand(0).getValueType().isInteger());
3385 if (DCI.isBeforeLegalizeOps() ||
3386 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3387 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3390 if ((N0.getOpcode() == ISD::XOR ||
3391 (N0.getOpcode() == ISD::AND &&
3392 N0.getOperand(0).getOpcode() == ISD::XOR &&
3393 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3394 isa<ConstantSDNode>(N0.getOperand(1)) &&
3395 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3396 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3397 // can only do this if the top bits are known zero.
3398 unsigned BitWidth = N0.getValueSizeInBits();
3399 if (DAG.MaskedValueIsZero(N0,
3400 APInt::getHighBitsSet(BitWidth,
3401 BitWidth-1))) {
3402 // Okay, get the un-inverted input value.
3403 SDValue Val;
3404 if (N0.getOpcode() == ISD::XOR) {
3405 Val = N0.getOperand(0);
3406 } else {
3407 assert(N0.getOpcode() == ISD::AND &&
3408 N0.getOperand(0).getOpcode() == ISD::XOR);
3409 // ((X^1)&1)^1 -> X & 1
3410 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3411 N0.getOperand(0).getOperand(0),
3412 N0.getOperand(1));
3415 return DAG.getSetCC(dl, VT, Val, N1,
3416 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3418 } else if (N1C->isOne() &&
3419 (VT == MVT::i1 ||
3420 getBooleanContents(N0->getValueType(0)) ==
3421 ZeroOrOneBooleanContent)) {
3422 SDValue Op0 = N0;
3423 if (Op0.getOpcode() == ISD::TRUNCATE)
3424 Op0 = Op0.getOperand(0);
3426 if ((Op0.getOpcode() == ISD::XOR) &&
3427 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3428 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3429 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3430 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3431 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3432 Cond);
3434 if (Op0.getOpcode() == ISD::AND &&
3435 isa<ConstantSDNode>(Op0.getOperand(1)) &&
3436 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3437 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3438 if (Op0.getValueType().bitsGT(VT))
3439 Op0 = DAG.getNode(ISD::AND, dl, VT,
3440 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3441 DAG.getConstant(1, dl, VT));
3442 else if (Op0.getValueType().bitsLT(VT))
3443 Op0 = DAG.getNode(ISD::AND, dl, VT,
3444 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3445 DAG.getConstant(1, dl, VT));
3447 return DAG.getSetCC(dl, VT, Op0,
3448 DAG.getConstant(0, dl, Op0.getValueType()),
3449 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3451 if (Op0.getOpcode() == ISD::AssertZext &&
3452 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3453 return DAG.getSetCC(dl, VT, Op0,
3454 DAG.getConstant(0, dl, Op0.getValueType()),
3455 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3459 // Given:
3460 // icmp eq/ne (urem %x, %y), 0
3461 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3462 // icmp eq/ne %x, 0
3463 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3464 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3465 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3466 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3467 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3468 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3471 if (SDValue V =
3472 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3473 return V;
3476 // These simplifications apply to splat vectors as well.
3477 // TODO: Handle more splat vector cases.
3478 if (auto *N1C = isConstOrConstSplat(N1)) {
3479 const APInt &C1 = N1C->getAPIntValue();
3481 APInt MinVal, MaxVal;
3482 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3483 if (ISD::isSignedIntSetCC(Cond)) {
3484 MinVal = APInt::getSignedMinValue(OperandBitSize);
3485 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3486 } else {
3487 MinVal = APInt::getMinValue(OperandBitSize);
3488 MaxVal = APInt::getMaxValue(OperandBitSize);
3491 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3492 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3493 // X >= MIN --> true
3494 if (C1 == MinVal)
3495 return DAG.getBoolConstant(true, dl, VT, OpVT);
3497 if (!VT.isVector()) { // TODO: Support this for vectors.
3498 // X >= C0 --> X > (C0 - 1)
3499 APInt C = C1 - 1;
3500 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3501 if ((DCI.isBeforeLegalizeOps() ||
3502 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3503 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3504 isLegalICmpImmediate(C.getSExtValue())))) {
3505 return DAG.getSetCC(dl, VT, N0,
3506 DAG.getConstant(C, dl, N1.getValueType()),
3507 NewCC);
3512 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3513 // X <= MAX --> true
3514 if (C1 == MaxVal)
3515 return DAG.getBoolConstant(true, dl, VT, OpVT);
3517 // X <= C0 --> X < (C0 + 1)
3518 if (!VT.isVector()) { // TODO: Support this for vectors.
3519 APInt C = C1 + 1;
3520 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3521 if ((DCI.isBeforeLegalizeOps() ||
3522 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3523 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3524 isLegalICmpImmediate(C.getSExtValue())))) {
3525 return DAG.getSetCC(dl, VT, N0,
3526 DAG.getConstant(C, dl, N1.getValueType()),
3527 NewCC);
3532 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3533 if (C1 == MinVal)
3534 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3536 // TODO: Support this for vectors after legalize ops.
3537 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3538 // Canonicalize setlt X, Max --> setne X, Max
3539 if (C1 == MaxVal)
3540 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3542 // If we have setult X, 1, turn it into seteq X, 0
3543 if (C1 == MinVal+1)
3544 return DAG.getSetCC(dl, VT, N0,
3545 DAG.getConstant(MinVal, dl, N0.getValueType()),
3546 ISD::SETEQ);
3550 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3551 if (C1 == MaxVal)
3552 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3554 // TODO: Support this for vectors after legalize ops.
3555 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3556 // Canonicalize setgt X, Min --> setne X, Min
3557 if (C1 == MinVal)
3558 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3560 // If we have setugt X, Max-1, turn it into seteq X, Max
3561 if (C1 == MaxVal-1)
3562 return DAG.getSetCC(dl, VT, N0,
3563 DAG.getConstant(MaxVal, dl, N0.getValueType()),
3564 ISD::SETEQ);
3568 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3569 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3570 if (C1.isNullValue())
3571 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3572 VT, N0, N1, Cond, DCI, dl))
3573 return CC;
3576 // If we have "setcc X, C0", check to see if we can shrink the immediate
3577 // by changing cc.
3578 // TODO: Support this for vectors after legalize ops.
3579 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3580 // SETUGT X, SINTMAX -> SETLT X, 0
3581 if (Cond == ISD::SETUGT &&
3582 C1 == APInt::getSignedMaxValue(OperandBitSize))
3583 return DAG.getSetCC(dl, VT, N0,
3584 DAG.getConstant(0, dl, N1.getValueType()),
3585 ISD::SETLT);
3587 // SETULT X, SINTMIN -> SETGT X, -1
3588 if (Cond == ISD::SETULT &&
3589 C1 == APInt::getSignedMinValue(OperandBitSize)) {
3590 SDValue ConstMinusOne =
3591 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3592 N1.getValueType());
3593 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3598 // Back to non-vector simplifications.
3599 // TODO: Can we do these for vector splats?
3600 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3601 const APInt &C1 = N1C->getAPIntValue();
3603 // Fold bit comparisons when we can.
3604 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3605 (VT == N0.getValueType() ||
3606 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3607 N0.getOpcode() == ISD::AND) {
3608 auto &DL = DAG.getDataLayout();
3609 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3610 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3611 !DCI.isBeforeLegalize());
3612 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
3613 // Perform the xform if the AND RHS is a single bit.
3614 if (AndRHS->getAPIntValue().isPowerOf2()) {
3615 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3616 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3617 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3618 ShiftTy)));
3620 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3621 // (X & 8) == 8 --> (X & 8) >> 3
3622 // Perform the xform if C1 is a single bit.
3623 if (C1.isPowerOf2()) {
3624 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3625 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3626 DAG.getConstant(C1.logBase2(), dl,
3627 ShiftTy)));
3633 if (C1.getMinSignedBits() <= 64 &&
3634 !isLegalICmpImmediate(C1.getSExtValue())) {
3635 // (X & -256) == 256 -> (X >> 8) == 1
3636 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3637 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3638 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3639 const APInt &AndRHSC = AndRHS->getAPIntValue();
3640 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3641 unsigned ShiftBits = AndRHSC.countTrailingZeros();
3642 auto &DL = DAG.getDataLayout();
3643 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3644 !DCI.isBeforeLegalize());
3645 EVT CmpTy = N0.getValueType();
3646 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3647 DAG.getConstant(ShiftBits, dl,
3648 ShiftTy));
3649 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3650 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3653 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3654 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3655 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3656 // X < 0x100000000 -> (X >> 32) < 1
3657 // X >= 0x100000000 -> (X >> 32) >= 1
3658 // X <= 0x0ffffffff -> (X >> 32) < 1
3659 // X > 0x0ffffffff -> (X >> 32) >= 1
3660 unsigned ShiftBits;
3661 APInt NewC = C1;
3662 ISD::CondCode NewCond = Cond;
3663 if (AdjOne) {
3664 ShiftBits = C1.countTrailingOnes();
3665 NewC = NewC + 1;
3666 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3667 } else {
3668 ShiftBits = C1.countTrailingZeros();
3670 NewC.lshrInPlace(ShiftBits);
3671 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3672 isLegalICmpImmediate(NewC.getSExtValue())) {
3673 auto &DL = DAG.getDataLayout();
3674 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3675 !DCI.isBeforeLegalize());
3676 EVT CmpTy = N0.getValueType();
3677 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3678 DAG.getConstant(ShiftBits, dl, ShiftTy));
3679 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3680 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3686 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3687 auto *CFP = cast<ConstantFPSDNode>(N1);
3688 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3690 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3691 // constant if knowing that the operand is non-nan is enough. We prefer to
3692 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3693 // materialize 0.0.
3694 if (Cond == ISD::SETO || Cond == ISD::SETUO)
3695 return DAG.getSetCC(dl, VT, N0, N0, Cond);
3697 // setcc (fneg x), C -> setcc swap(pred) x, -C
3698 if (N0.getOpcode() == ISD::FNEG) {
3699 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3700 if (DCI.isBeforeLegalizeOps() ||
3701 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3702 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3703 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3707 // If the condition is not legal, see if we can find an equivalent one
3708 // which is legal.
3709 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3710 // If the comparison was an awkward floating-point == or != and one of
3711 // the comparison operands is infinity or negative infinity, convert the
3712 // condition to a less-awkward <= or >=.
3713 if (CFP->getValueAPF().isInfinity()) {
3714 if (CFP->getValueAPF().isNegative()) {
3715 if (Cond == ISD::SETOEQ &&
3716 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3717 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3718 if (Cond == ISD::SETUEQ &&
3719 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3720 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3721 if (Cond == ISD::SETUNE &&
3722 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3723 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3724 if (Cond == ISD::SETONE &&
3725 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3726 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3727 } else {
3728 if (Cond == ISD::SETOEQ &&
3729 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3730 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3731 if (Cond == ISD::SETUEQ &&
3732 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3733 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3734 if (Cond == ISD::SETUNE &&
3735 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3736 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3737 if (Cond == ISD::SETONE &&
3738 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3739 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3745 if (N0 == N1) {
3746 // The sext(setcc()) => setcc() optimization relies on the appropriate
3747 // constant being emitted.
3748 assert(!N0.getValueType().isInteger() &&
3749 "Integer types should be handled by FoldSetCC");
3751 bool EqTrue = ISD::isTrueWhenEqual(Cond);
3752 unsigned UOF = ISD::getUnorderedFlavor(Cond);
3753 if (UOF == 2) // FP operators that are undefined on NaNs.
3754 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3755 if (UOF == unsigned(EqTrue))
3756 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3757 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3758 // if it is not already.
3759 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3760 if (NewCond != Cond &&
3761 (DCI.isBeforeLegalizeOps() ||
3762 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3763 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3766 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3767 N0.getValueType().isInteger()) {
3768 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3769 N0.getOpcode() == ISD::XOR) {
3770 // Simplify (X+Y) == (X+Z) --> Y == Z
3771 if (N0.getOpcode() == N1.getOpcode()) {
3772 if (N0.getOperand(0) == N1.getOperand(0))
3773 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3774 if (N0.getOperand(1) == N1.getOperand(1))
3775 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3776 if (isCommutativeBinOp(N0.getOpcode())) {
3777 // If X op Y == Y op X, try other combinations.
3778 if (N0.getOperand(0) == N1.getOperand(1))
3779 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3780 Cond);
3781 if (N0.getOperand(1) == N1.getOperand(0))
3782 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3783 Cond);
3787 // If RHS is a legal immediate value for a compare instruction, we need
3788 // to be careful about increasing register pressure needlessly.
3789 bool LegalRHSImm = false;
3791 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3792 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3793 // Turn (X+C1) == C2 --> X == C2-C1
3794 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3795 return DAG.getSetCC(dl, VT, N0.getOperand(0),
3796 DAG.getConstant(RHSC->getAPIntValue()-
3797 LHSR->getAPIntValue(),
3798 dl, N0.getValueType()), Cond);
3801 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3802 if (N0.getOpcode() == ISD::XOR)
3803 // If we know that all of the inverted bits are zero, don't bother
3804 // performing the inversion.
3805 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3806 return
3807 DAG.getSetCC(dl, VT, N0.getOperand(0),
3808 DAG.getConstant(LHSR->getAPIntValue() ^
3809 RHSC->getAPIntValue(),
3810 dl, N0.getValueType()),
3811 Cond);
3814 // Turn (C1-X) == C2 --> X == C1-C2
3815 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3816 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3817 return
3818 DAG.getSetCC(dl, VT, N0.getOperand(1),
3819 DAG.getConstant(SUBC->getAPIntValue() -
3820 RHSC->getAPIntValue(),
3821 dl, N0.getValueType()),
3822 Cond);
3826 // Could RHSC fold directly into a compare?
3827 if (RHSC->getValueType(0).getSizeInBits() <= 64)
3828 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3831 // (X+Y) == X --> Y == 0 and similar folds.
3832 // Don't do this if X is an immediate that can fold into a cmp
3833 // instruction and X+Y has other uses. It could be an induction variable
3834 // chain, and the transform would increase register pressure.
3835 if (!LegalRHSImm || N0.hasOneUse())
3836 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3837 return V;
3840 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3841 N1.getOpcode() == ISD::XOR)
3842 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3843 return V;
3845 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3846 return V;
3849 // Fold remainder of division by a constant.
3850 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3851 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3852 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3854 // When division is cheap or optimizing for minimum size,
3855 // fall through to DIVREM creation by skipping this fold.
3856 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3857 if (N0.getOpcode() == ISD::UREM) {
3858 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3859 return Folded;
3860 } else if (N0.getOpcode() == ISD::SREM) {
3861 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3862 return Folded;
3867 // Fold away ALL boolean setcc's.
3868 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3869 SDValue Temp;
3870 switch (Cond) {
3871 default: llvm_unreachable("Unknown integer setcc!");
3872 case ISD::SETEQ: // X == Y -> ~(X^Y)
3873 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3874 N0 = DAG.getNOT(dl, Temp, OpVT);
3875 if (!DCI.isCalledByLegalizer())
3876 DCI.AddToWorklist(Temp.getNode());
3877 break;
3878 case ISD::SETNE: // X != Y --> (X^Y)
3879 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3880 break;
3881 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3882 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3883 Temp = DAG.getNOT(dl, N0, OpVT);
3884 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3885 if (!DCI.isCalledByLegalizer())
3886 DCI.AddToWorklist(Temp.getNode());
3887 break;
3888 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3889 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3890 Temp = DAG.getNOT(dl, N1, OpVT);
3891 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3892 if (!DCI.isCalledByLegalizer())
3893 DCI.AddToWorklist(Temp.getNode());
3894 break;
3895 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3896 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3897 Temp = DAG.getNOT(dl, N0, OpVT);
3898 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3899 if (!DCI.isCalledByLegalizer())
3900 DCI.AddToWorklist(Temp.getNode());
3901 break;
3902 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3903 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3904 Temp = DAG.getNOT(dl, N1, OpVT);
3905 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3906 break;
3908 if (VT.getScalarType() != MVT::i1) {
3909 if (!DCI.isCalledByLegalizer())
3910 DCI.AddToWorklist(N0.getNode());
3911 // FIXME: If running after legalize, we probably can't do this.
3912 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3913 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3915 return N0;
3918 // Could not fold it.
3919 return SDValue();
3922 /// Returns true (and the GlobalValue and the offset) if the node is a
3923 /// GlobalAddress + offset.
3924 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3925 int64_t &Offset) const {
3927 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3929 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3930 GA = GASD->getGlobal();
3931 Offset += GASD->getOffset();
3932 return true;
3935 if (N->getOpcode() == ISD::ADD) {
3936 SDValue N1 = N->getOperand(0);
3937 SDValue N2 = N->getOperand(1);
3938 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3939 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3940 Offset += V->getSExtValue();
3941 return true;
3943 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3944 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3945 Offset += V->getSExtValue();
3946 return true;
3951 return false;
3954 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3955 DAGCombinerInfo &DCI) const {
3956 // Default implementation: no optimization.
3957 return SDValue();
3960 //===----------------------------------------------------------------------===//
3961 // Inline Assembler Implementation Methods
3962 //===----------------------------------------------------------------------===//
3964 TargetLowering::ConstraintType
3965 TargetLowering::getConstraintType(StringRef Constraint) const {
3966 unsigned S = Constraint.size();
3968 if (S == 1) {
3969 switch (Constraint[0]) {
3970 default: break;
3971 case 'r':
3972 return C_RegisterClass;
3973 case 'm': // memory
3974 case 'o': // offsetable
3975 case 'V': // not offsetable
3976 return C_Memory;
3977 case 'n': // Simple Integer
3978 case 'E': // Floating Point Constant
3979 case 'F': // Floating Point Constant
3980 return C_Immediate;
3981 case 'i': // Simple Integer or Relocatable Constant
3982 case 's': // Relocatable Constant
3983 case 'p': // Address.
3984 case 'X': // Allow ANY value.
3985 case 'I': // Target registers.
3986 case 'J':
3987 case 'K':
3988 case 'L':
3989 case 'M':
3990 case 'N':
3991 case 'O':
3992 case 'P':
3993 case '<':
3994 case '>':
3995 return C_Other;
3999 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4000 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4001 return C_Memory;
4002 return C_Register;
4004 return C_Unknown;
4007 /// Try to replace an X constraint, which matches anything, with another that
4008 /// has more specific requirements based on the type of the corresponding
4009 /// operand.
4010 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4011 if (ConstraintVT.isInteger())
4012 return "r";
4013 if (ConstraintVT.isFloatingPoint())
4014 return "f"; // works for many targets
4015 return nullptr;
4018 SDValue TargetLowering::LowerAsmOutputForConstraint(
4019 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4020 SelectionDAG &DAG) const {
4021 return SDValue();
4024 /// Lower the specified operand into the Ops vector.
4025 /// If it is invalid, don't add anything to Ops.
4026 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4027 std::string &Constraint,
4028 std::vector<SDValue> &Ops,
4029 SelectionDAG &DAG) const {
4031 if (Constraint.length() > 1) return;
4033 char ConstraintLetter = Constraint[0];
4034 switch (ConstraintLetter) {
4035 default: break;
4036 case 'X': // Allows any operand; labels (basic block) use this.
4037 if (Op.getOpcode() == ISD::BasicBlock ||
4038 Op.getOpcode() == ISD::TargetBlockAddress) {
4039 Ops.push_back(Op);
4040 return;
4042 LLVM_FALLTHROUGH;
4043 case 'i': // Simple Integer or Relocatable Constant
4044 case 'n': // Simple Integer
4045 case 's': { // Relocatable Constant
4047 GlobalAddressSDNode *GA;
4048 ConstantSDNode *C;
4049 BlockAddressSDNode *BA;
4050 uint64_t Offset = 0;
4052 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4053 // etc., since getelementpointer is variadic. We can't use
4054 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4055 // while in this case the GA may be furthest from the root node which is
4056 // likely an ISD::ADD.
4057 while (1) {
4058 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4059 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4060 GA->getValueType(0),
4061 Offset + GA->getOffset()));
4062 return;
4063 } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4064 ConstraintLetter != 's') {
4065 // gcc prints these as sign extended. Sign extend value to 64 bits
4066 // now; without this it would get ZExt'd later in
4067 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4068 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4069 BooleanContent BCont = getBooleanContents(MVT::i64);
4070 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4071 : ISD::SIGN_EXTEND;
4072 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4073 : C->getSExtValue();
4074 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4075 SDLoc(C), MVT::i64));
4076 return;
4077 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4078 ConstraintLetter != 'n') {
4079 Ops.push_back(DAG.getTargetBlockAddress(
4080 BA->getBlockAddress(), BA->getValueType(0),
4081 Offset + BA->getOffset(), BA->getTargetFlags()));
4082 return;
4083 } else {
4084 const unsigned OpCode = Op.getOpcode();
4085 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4086 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4087 Op = Op.getOperand(1);
4088 // Subtraction is not commutative.
4089 else if (OpCode == ISD::ADD &&
4090 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4091 Op = Op.getOperand(0);
4092 else
4093 return;
4094 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4095 continue;
4098 return;
4100 break;
4105 std::pair<unsigned, const TargetRegisterClass *>
4106 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4107 StringRef Constraint,
4108 MVT VT) const {
4109 if (Constraint.empty() || Constraint[0] != '{')
4110 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4111 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4113 // Remove the braces from around the name.
4114 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4116 std::pair<unsigned, const TargetRegisterClass *> R =
4117 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4119 // Figure out which register class contains this reg.
4120 for (const TargetRegisterClass *RC : RI->regclasses()) {
4121 // If none of the value types for this register class are valid, we
4122 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4123 if (!isLegalRC(*RI, *RC))
4124 continue;
4126 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4127 I != E; ++I) {
4128 if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4129 std::pair<unsigned, const TargetRegisterClass *> S =
4130 std::make_pair(*I, RC);
4132 // If this register class has the requested value type, return it,
4133 // otherwise keep searching and return the first class found
4134 // if no other is found which explicitly has the requested type.
4135 if (RI->isTypeLegalForClass(*RC, VT))
4136 return S;
4137 if (!R.second)
4138 R = S;
4143 return R;
4146 //===----------------------------------------------------------------------===//
4147 // Constraint Selection.
4149 /// Return true of this is an input operand that is a matching constraint like
4150 /// "4".
4151 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4152 assert(!ConstraintCode.empty() && "No known constraint!");
4153 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4156 /// If this is an input matching constraint, this method returns the output
4157 /// operand it matches.
4158 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4159 assert(!ConstraintCode.empty() && "No known constraint!");
4160 return atoi(ConstraintCode.c_str());
4163 /// Split up the constraint string from the inline assembly value into the
4164 /// specific constraints and their prefixes, and also tie in the associated
4165 /// operand values.
4166 /// If this returns an empty vector, and if the constraint string itself
4167 /// isn't empty, there was an error parsing.
4168 TargetLowering::AsmOperandInfoVector
4169 TargetLowering::ParseConstraints(const DataLayout &DL,
4170 const TargetRegisterInfo *TRI,
4171 ImmutableCallSite CS) const {
4172 /// Information about all of the constraints.
4173 AsmOperandInfoVector ConstraintOperands;
4174 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4175 unsigned maCount = 0; // Largest number of multiple alternative constraints.
4177 // Do a prepass over the constraints, canonicalizing them, and building up the
4178 // ConstraintOperands list.
4179 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4180 unsigned ResNo = 0; // ResNo - The result number of the next output.
4182 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4183 ConstraintOperands.emplace_back(std::move(CI));
4184 AsmOperandInfo &OpInfo = ConstraintOperands.back();
4186 // Update multiple alternative constraint count.
4187 if (OpInfo.multipleAlternatives.size() > maCount)
4188 maCount = OpInfo.multipleAlternatives.size();
4190 OpInfo.ConstraintVT = MVT::Other;
4192 // Compute the value type for each operand.
4193 switch (OpInfo.Type) {
4194 case InlineAsm::isOutput:
4195 // Indirect outputs just consume an argument.
4196 if (OpInfo.isIndirect) {
4197 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4198 break;
4201 // The return value of the call is this value. As such, there is no
4202 // corresponding argument.
4203 assert(!CS.getType()->isVoidTy() &&
4204 "Bad inline asm!");
4205 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4206 OpInfo.ConstraintVT =
4207 getSimpleValueType(DL, STy->getElementType(ResNo));
4208 } else {
4209 assert(ResNo == 0 && "Asm only has one result!");
4210 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4212 ++ResNo;
4213 break;
4214 case InlineAsm::isInput:
4215 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4216 break;
4217 case InlineAsm::isClobber:
4218 // Nothing to do.
4219 break;
4222 if (OpInfo.CallOperandVal) {
4223 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4224 if (OpInfo.isIndirect) {
4225 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4226 if (!PtrTy)
4227 report_fatal_error("Indirect operand for inline asm not a pointer!");
4228 OpTy = PtrTy->getElementType();
4231 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4232 if (StructType *STy = dyn_cast<StructType>(OpTy))
4233 if (STy->getNumElements() == 1)
4234 OpTy = STy->getElementType(0);
4236 // If OpTy is not a single value, it may be a struct/union that we
4237 // can tile with integers.
4238 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4239 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4240 switch (BitSize) {
4241 default: break;
4242 case 1:
4243 case 8:
4244 case 16:
4245 case 32:
4246 case 64:
4247 case 128:
4248 OpInfo.ConstraintVT =
4249 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4250 break;
4252 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4253 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4254 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4255 } else {
4256 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4261 // If we have multiple alternative constraints, select the best alternative.
4262 if (!ConstraintOperands.empty()) {
4263 if (maCount) {
4264 unsigned bestMAIndex = 0;
4265 int bestWeight = -1;
4266 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4267 int weight = -1;
4268 unsigned maIndex;
4269 // Compute the sums of the weights for each alternative, keeping track
4270 // of the best (highest weight) one so far.
4271 for (maIndex = 0; maIndex < maCount; ++maIndex) {
4272 int weightSum = 0;
4273 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4274 cIndex != eIndex; ++cIndex) {
4275 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4276 if (OpInfo.Type == InlineAsm::isClobber)
4277 continue;
4279 // If this is an output operand with a matching input operand,
4280 // look up the matching input. If their types mismatch, e.g. one
4281 // is an integer, the other is floating point, or their sizes are
4282 // different, flag it as an maCantMatch.
4283 if (OpInfo.hasMatchingInput()) {
4284 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4285 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4286 if ((OpInfo.ConstraintVT.isInteger() !=
4287 Input.ConstraintVT.isInteger()) ||
4288 (OpInfo.ConstraintVT.getSizeInBits() !=
4289 Input.ConstraintVT.getSizeInBits())) {
4290 weightSum = -1; // Can't match.
4291 break;
4295 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4296 if (weight == -1) {
4297 weightSum = -1;
4298 break;
4300 weightSum += weight;
4302 // Update best.
4303 if (weightSum > bestWeight) {
4304 bestWeight = weightSum;
4305 bestMAIndex = maIndex;
4309 // Now select chosen alternative in each constraint.
4310 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4311 cIndex != eIndex; ++cIndex) {
4312 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4313 if (cInfo.Type == InlineAsm::isClobber)
4314 continue;
4315 cInfo.selectAlternative(bestMAIndex);
4320 // Check and hook up tied operands, choose constraint code to use.
4321 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4322 cIndex != eIndex; ++cIndex) {
4323 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4325 // If this is an output operand with a matching input operand, look up the
4326 // matching input. If their types mismatch, e.g. one is an integer, the
4327 // other is floating point, or their sizes are different, flag it as an
4328 // error.
4329 if (OpInfo.hasMatchingInput()) {
4330 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4332 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4333 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4334 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4335 OpInfo.ConstraintVT);
4336 std::pair<unsigned, const TargetRegisterClass *> InputRC =
4337 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4338 Input.ConstraintVT);
4339 if ((OpInfo.ConstraintVT.isInteger() !=
4340 Input.ConstraintVT.isInteger()) ||
4341 (MatchRC.second != InputRC.second)) {
4342 report_fatal_error("Unsupported asm: input constraint"
4343 " with a matching output constraint of"
4344 " incompatible type!");
4350 return ConstraintOperands;
4353 /// Return an integer indicating how general CT is.
4354 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4355 switch (CT) {
4356 case TargetLowering::C_Immediate:
4357 case TargetLowering::C_Other:
4358 case TargetLowering::C_Unknown:
4359 return 0;
4360 case TargetLowering::C_Register:
4361 return 1;
4362 case TargetLowering::C_RegisterClass:
4363 return 2;
4364 case TargetLowering::C_Memory:
4365 return 3;
4367 llvm_unreachable("Invalid constraint type");
4370 /// Examine constraint type and operand type and determine a weight value.
4371 /// This object must already have been set up with the operand type
4372 /// and the current alternative constraint selected.
4373 TargetLowering::ConstraintWeight
4374 TargetLowering::getMultipleConstraintMatchWeight(
4375 AsmOperandInfo &info, int maIndex) const {
4376 InlineAsm::ConstraintCodeVector *rCodes;
4377 if (maIndex >= (int)info.multipleAlternatives.size())
4378 rCodes = &info.Codes;
4379 else
4380 rCodes = &info.multipleAlternatives[maIndex].Codes;
4381 ConstraintWeight BestWeight = CW_Invalid;
4383 // Loop over the options, keeping track of the most general one.
4384 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4385 ConstraintWeight weight =
4386 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4387 if (weight > BestWeight)
4388 BestWeight = weight;
4391 return BestWeight;
4394 /// Examine constraint type and operand type and determine a weight value.
4395 /// This object must already have been set up with the operand type
4396 /// and the current alternative constraint selected.
4397 TargetLowering::ConstraintWeight
4398 TargetLowering::getSingleConstraintMatchWeight(
4399 AsmOperandInfo &info, const char *constraint) const {
4400 ConstraintWeight weight = CW_Invalid;
4401 Value *CallOperandVal = info.CallOperandVal;
4402 // If we don't have a value, we can't do a match,
4403 // but allow it at the lowest weight.
4404 if (!CallOperandVal)
4405 return CW_Default;
4406 // Look at the constraint type.
4407 switch (*constraint) {
4408 case 'i': // immediate integer.
4409 case 'n': // immediate integer with a known value.
4410 if (isa<ConstantInt>(CallOperandVal))
4411 weight = CW_Constant;
4412 break;
4413 case 's': // non-explicit intregal immediate.
4414 if (isa<GlobalValue>(CallOperandVal))
4415 weight = CW_Constant;
4416 break;
4417 case 'E': // immediate float if host format.
4418 case 'F': // immediate float.
4419 if (isa<ConstantFP>(CallOperandVal))
4420 weight = CW_Constant;
4421 break;
4422 case '<': // memory operand with autodecrement.
4423 case '>': // memory operand with autoincrement.
4424 case 'm': // memory operand.
4425 case 'o': // offsettable memory operand
4426 case 'V': // non-offsettable memory operand
4427 weight = CW_Memory;
4428 break;
4429 case 'r': // general register.
4430 case 'g': // general register, memory operand or immediate integer.
4431 // note: Clang converts "g" to "imr".
4432 if (CallOperandVal->getType()->isIntegerTy())
4433 weight = CW_Register;
4434 break;
4435 case 'X': // any operand.
4436 default:
4437 weight = CW_Default;
4438 break;
4440 return weight;
4443 /// If there are multiple different constraints that we could pick for this
4444 /// operand (e.g. "imr") try to pick the 'best' one.
4445 /// This is somewhat tricky: constraints fall into four classes:
4446 /// Other -> immediates and magic values
4447 /// Register -> one specific register
4448 /// RegisterClass -> a group of regs
4449 /// Memory -> memory
4450 /// Ideally, we would pick the most specific constraint possible: if we have
4451 /// something that fits into a register, we would pick it. The problem here
4452 /// is that if we have something that could either be in a register or in
4453 /// memory that use of the register could cause selection of *other*
4454 /// operands to fail: they might only succeed if we pick memory. Because of
4455 /// this the heuristic we use is:
4457 /// 1) If there is an 'other' constraint, and if the operand is valid for
4458 /// that constraint, use it. This makes us take advantage of 'i'
4459 /// constraints when available.
4460 /// 2) Otherwise, pick the most general constraint present. This prefers
4461 /// 'm' over 'r', for example.
4463 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4464 const TargetLowering &TLI,
4465 SDValue Op, SelectionDAG *DAG) {
4466 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4467 unsigned BestIdx = 0;
4468 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4469 int BestGenerality = -1;
4471 // Loop over the options, keeping track of the most general one.
4472 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4473 TargetLowering::ConstraintType CType =
4474 TLI.getConstraintType(OpInfo.Codes[i]);
4476 // If this is an 'other' or 'immediate' constraint, see if the operand is
4477 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4478 // the operand is an integer in the range [0..31] we want to use I (saving a
4479 // load of a register), otherwise we must use 'r'.
4480 if ((CType == TargetLowering::C_Other ||
4481 CType == TargetLowering::C_Immediate) && Op.getNode()) {
4482 assert(OpInfo.Codes[i].size() == 1 &&
4483 "Unhandled multi-letter 'other' constraint");
4484 std::vector<SDValue> ResultOps;
4485 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4486 ResultOps, *DAG);
4487 if (!ResultOps.empty()) {
4488 BestType = CType;
4489 BestIdx = i;
4490 break;
4494 // Things with matching constraints can only be registers, per gcc
4495 // documentation. This mainly affects "g" constraints.
4496 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4497 continue;
4499 // This constraint letter is more general than the previous one, use it.
4500 int Generality = getConstraintGenerality(CType);
4501 if (Generality > BestGenerality) {
4502 BestType = CType;
4503 BestIdx = i;
4504 BestGenerality = Generality;
4508 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4509 OpInfo.ConstraintType = BestType;
4512 /// Determines the constraint code and constraint type to use for the specific
4513 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4514 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4515 SDValue Op,
4516 SelectionDAG *DAG) const {
4517 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4519 // Single-letter constraints ('r') are very common.
4520 if (OpInfo.Codes.size() == 1) {
4521 OpInfo.ConstraintCode = OpInfo.Codes[0];
4522 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4523 } else {
4524 ChooseConstraint(OpInfo, *this, Op, DAG);
4527 // 'X' matches anything.
4528 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4529 // Labels and constants are handled elsewhere ('X' is the only thing
4530 // that matches labels). For Functions, the type here is the type of
4531 // the result, which is not what we want to look at; leave them alone.
4532 Value *v = OpInfo.CallOperandVal;
4533 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4534 OpInfo.CallOperandVal = v;
4535 return;
4538 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4539 return;
4541 // Otherwise, try to resolve it to something we know about by looking at
4542 // the actual operand type.
4543 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4544 OpInfo.ConstraintCode = Repl;
4545 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4550 /// Given an exact SDIV by a constant, create a multiplication
4551 /// with the multiplicative inverse of the constant.
4552 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4553 const SDLoc &dl, SelectionDAG &DAG,
4554 SmallVectorImpl<SDNode *> &Created) {
4555 SDValue Op0 = N->getOperand(0);
4556 SDValue Op1 = N->getOperand(1);
4557 EVT VT = N->getValueType(0);
4558 EVT SVT = VT.getScalarType();
4559 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4560 EVT ShSVT = ShVT.getScalarType();
4562 bool UseSRA = false;
4563 SmallVector<SDValue, 16> Shifts, Factors;
4565 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4566 if (C->isNullValue())
4567 return false;
4568 APInt Divisor = C->getAPIntValue();
4569 unsigned Shift = Divisor.countTrailingZeros();
4570 if (Shift) {
4571 Divisor.ashrInPlace(Shift);
4572 UseSRA = true;
4574 // Calculate the multiplicative inverse, using Newton's method.
4575 APInt t;
4576 APInt Factor = Divisor;
4577 while ((t = Divisor * Factor) != 1)
4578 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4579 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4580 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4581 return true;
4584 // Collect all magic values from the build vector.
4585 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4586 return SDValue();
4588 SDValue Shift, Factor;
4589 if (VT.isVector()) {
4590 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4591 Factor = DAG.getBuildVector(VT, dl, Factors);
4592 } else {
4593 Shift = Shifts[0];
4594 Factor = Factors[0];
4597 SDValue Res = Op0;
4599 // Shift the value upfront if it is even, so the LSB is one.
4600 if (UseSRA) {
4601 // TODO: For UDIV use SRL instead of SRA.
4602 SDNodeFlags Flags;
4603 Flags.setExact(true);
4604 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4605 Created.push_back(Res.getNode());
4608 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4611 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4612 SelectionDAG &DAG,
4613 SmallVectorImpl<SDNode *> &Created) const {
4614 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4615 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4616 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4617 return SDValue(N, 0); // Lower SDIV as SDIV
4618 return SDValue();
4621 /// Given an ISD::SDIV node expressing a divide by constant,
4622 /// return a DAG expression to select that will generate the same value by
4623 /// multiplying by a magic number.
4624 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4625 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4626 bool IsAfterLegalization,
4627 SmallVectorImpl<SDNode *> &Created) const {
4628 SDLoc dl(N);
4629 EVT VT = N->getValueType(0);
4630 EVT SVT = VT.getScalarType();
4631 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4632 EVT ShSVT = ShVT.getScalarType();
4633 unsigned EltBits = VT.getScalarSizeInBits();
4635 // Check to see if we can do this.
4636 // FIXME: We should be more aggressive here.
4637 if (!isTypeLegal(VT))
4638 return SDValue();
4640 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4641 if (N->getFlags().hasExact())
4642 return BuildExactSDIV(*this, N, dl, DAG, Created);
4644 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4646 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4647 if (C->isNullValue())
4648 return false;
4650 const APInt &Divisor = C->getAPIntValue();
4651 APInt::ms magics = Divisor.magic();
4652 int NumeratorFactor = 0;
4653 int ShiftMask = -1;
4655 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4656 // If d is +1/-1, we just multiply the numerator by +1/-1.
4657 NumeratorFactor = Divisor.getSExtValue();
4658 magics.m = 0;
4659 magics.s = 0;
4660 ShiftMask = 0;
4661 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4662 // If d > 0 and m < 0, add the numerator.
4663 NumeratorFactor = 1;
4664 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4665 // If d < 0 and m > 0, subtract the numerator.
4666 NumeratorFactor = -1;
4669 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4670 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4671 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4672 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4673 return true;
4676 SDValue N0 = N->getOperand(0);
4677 SDValue N1 = N->getOperand(1);
4679 // Collect the shifts / magic values from each element.
4680 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4681 return SDValue();
4683 SDValue MagicFactor, Factor, Shift, ShiftMask;
4684 if (VT.isVector()) {
4685 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4686 Factor = DAG.getBuildVector(VT, dl, Factors);
4687 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4688 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4689 } else {
4690 MagicFactor = MagicFactors[0];
4691 Factor = Factors[0];
4692 Shift = Shifts[0];
4693 ShiftMask = ShiftMasks[0];
4696 // Multiply the numerator (operand 0) by the magic value.
4697 // FIXME: We should support doing a MUL in a wider type.
4698 SDValue Q;
4699 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4700 : isOperationLegalOrCustom(ISD::MULHS, VT))
4701 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4702 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4703 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4704 SDValue LoHi =
4705 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4706 Q = SDValue(LoHi.getNode(), 1);
4707 } else
4708 return SDValue(); // No mulhs or equivalent.
4709 Created.push_back(Q.getNode());
4711 // (Optionally) Add/subtract the numerator using Factor.
4712 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4713 Created.push_back(Factor.getNode());
4714 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4715 Created.push_back(Q.getNode());
4717 // Shift right algebraic by shift value.
4718 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4719 Created.push_back(Q.getNode());
4721 // Extract the sign bit, mask it and add it to the quotient.
4722 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4723 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4724 Created.push_back(T.getNode());
4725 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4726 Created.push_back(T.getNode());
4727 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4730 /// Given an ISD::UDIV node expressing a divide by constant,
4731 /// return a DAG expression to select that will generate the same value by
4732 /// multiplying by a magic number.
4733 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4734 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4735 bool IsAfterLegalization,
4736 SmallVectorImpl<SDNode *> &Created) const {
4737 SDLoc dl(N);
4738 EVT VT = N->getValueType(0);
4739 EVT SVT = VT.getScalarType();
4740 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4741 EVT ShSVT = ShVT.getScalarType();
4742 unsigned EltBits = VT.getScalarSizeInBits();
4744 // Check to see if we can do this.
4745 // FIXME: We should be more aggressive here.
4746 if (!isTypeLegal(VT))
4747 return SDValue();
4749 bool UseNPQ = false;
4750 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4752 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4753 if (C->isNullValue())
4754 return false;
4755 // FIXME: We should use a narrower constant when the upper
4756 // bits are known to be zero.
4757 APInt Divisor = C->getAPIntValue();
4758 APInt::mu magics = Divisor.magicu();
4759 unsigned PreShift = 0, PostShift = 0;
4761 // If the divisor is even, we can avoid using the expensive fixup by
4762 // shifting the divided value upfront.
4763 if (magics.a != 0 && !Divisor[0]) {
4764 PreShift = Divisor.countTrailingZeros();
4765 // Get magic number for the shifted divisor.
4766 magics = Divisor.lshr(PreShift).magicu(PreShift);
4767 assert(magics.a == 0 && "Should use cheap fixup now");
4770 APInt Magic = magics.m;
4772 unsigned SelNPQ;
4773 if (magics.a == 0 || Divisor.isOneValue()) {
4774 assert(magics.s < Divisor.getBitWidth() &&
4775 "We shouldn't generate an undefined shift!");
4776 PostShift = magics.s;
4777 SelNPQ = false;
4778 } else {
4779 PostShift = magics.s - 1;
4780 SelNPQ = true;
4783 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4784 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4785 NPQFactors.push_back(
4786 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4787 : APInt::getNullValue(EltBits),
4788 dl, SVT));
4789 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4790 UseNPQ |= SelNPQ;
4791 return true;
4794 SDValue N0 = N->getOperand(0);
4795 SDValue N1 = N->getOperand(1);
4797 // Collect the shifts/magic values from each element.
4798 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4799 return SDValue();
4801 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4802 if (VT.isVector()) {
4803 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4804 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4805 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4806 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4807 } else {
4808 PreShift = PreShifts[0];
4809 MagicFactor = MagicFactors[0];
4810 PostShift = PostShifts[0];
4813 SDValue Q = N0;
4814 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4815 Created.push_back(Q.getNode());
4817 // FIXME: We should support doing a MUL in a wider type.
4818 auto GetMULHU = [&](SDValue X, SDValue Y) {
4819 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4820 : isOperationLegalOrCustom(ISD::MULHU, VT))
4821 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4822 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4823 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4824 SDValue LoHi =
4825 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4826 return SDValue(LoHi.getNode(), 1);
4828 return SDValue(); // No mulhu or equivalent
4831 // Multiply the numerator (operand 0) by the magic value.
4832 Q = GetMULHU(Q, MagicFactor);
4833 if (!Q)
4834 return SDValue();
4836 Created.push_back(Q.getNode());
4838 if (UseNPQ) {
4839 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4840 Created.push_back(NPQ.getNode());
4842 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4843 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4844 if (VT.isVector())
4845 NPQ = GetMULHU(NPQ, NPQFactor);
4846 else
4847 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4849 Created.push_back(NPQ.getNode());
4851 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4852 Created.push_back(Q.getNode());
4855 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4856 Created.push_back(Q.getNode());
4858 SDValue One = DAG.getConstant(1, dl, VT);
4859 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4860 return DAG.getSelect(dl, VT, IsOne, N0, Q);
4863 /// If all values in Values that *don't* match the predicate are same 'splat'
4864 /// value, then replace all values with that splat value.
4865 /// Else, if AlternativeReplacement was provided, then replace all values that
4866 /// do match predicate with AlternativeReplacement value.
4867 static void
4868 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4869 std::function<bool(SDValue)> Predicate,
4870 SDValue AlternativeReplacement = SDValue()) {
4871 SDValue Replacement;
4872 // Is there a value for which the Predicate does *NOT* match? What is it?
4873 auto SplatValue = llvm::find_if_not(Values, Predicate);
4874 if (SplatValue != Values.end()) {
4875 // Does Values consist only of SplatValue's and values matching Predicate?
4876 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4877 return Value == *SplatValue || Predicate(Value);
4878 })) // Then we shall replace values matching predicate with SplatValue.
4879 Replacement = *SplatValue;
4881 if (!Replacement) {
4882 // Oops, we did not find the "baseline" splat value.
4883 if (!AlternativeReplacement)
4884 return; // Nothing to do.
4885 // Let's replace with provided value then.
4886 Replacement = AlternativeReplacement;
4888 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4891 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4892 /// where the divisor is constant and the comparison target is zero,
4893 /// return a DAG expression that will generate the same comparison result
4894 /// using only multiplications, additions and shifts/rotations.
4895 /// Ref: "Hacker's Delight" 10-17.
4896 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4897 SDValue CompTargetNode,
4898 ISD::CondCode Cond,
4899 DAGCombinerInfo &DCI,
4900 const SDLoc &DL) const {
4901 SmallVector<SDNode *, 2> Built;
4902 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4903 DCI, DL, Built)) {
4904 for (SDNode *N : Built)
4905 DCI.AddToWorklist(N);
4906 return Folded;
4909 return SDValue();
4912 SDValue
4913 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4914 SDValue CompTargetNode, ISD::CondCode Cond,
4915 DAGCombinerInfo &DCI, const SDLoc &DL,
4916 SmallVectorImpl<SDNode *> &Created) const {
4917 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4918 // - D must be constant, with D = D0 * 2^K where D0 is odd
4919 // - P is the multiplicative inverse of D0 modulo 2^W
4920 // - Q = floor(((2^W) - 1) / D)
4921 // where W is the width of the common type of N and D.
4922 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4923 "Only applicable for (in)equality comparisons.");
4925 SelectionDAG &DAG = DCI.DAG;
4927 EVT VT = REMNode.getValueType();
4928 EVT SVT = VT.getScalarType();
4929 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4930 EVT ShSVT = ShVT.getScalarType();
4932 // If MUL is unavailable, we cannot proceed in any case.
4933 if (!isOperationLegalOrCustom(ISD::MUL, VT))
4934 return SDValue();
4936 // TODO: Could support comparing with non-zero too.
4937 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4938 if (!CompTarget || !CompTarget->isNullValue())
4939 return SDValue();
4941 bool HadOneDivisor = false;
4942 bool AllDivisorsAreOnes = true;
4943 bool HadEvenDivisor = false;
4944 bool AllDivisorsArePowerOfTwo = true;
4945 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4947 auto BuildUREMPattern = [&](ConstantSDNode *C) {
4948 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4949 if (C->isNullValue())
4950 return false;
4952 const APInt &D = C->getAPIntValue();
4953 // If all divisors are ones, we will prefer to avoid the fold.
4954 HadOneDivisor |= D.isOneValue();
4955 AllDivisorsAreOnes &= D.isOneValue();
4957 // Decompose D into D0 * 2^K
4958 unsigned K = D.countTrailingZeros();
4959 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4960 APInt D0 = D.lshr(K);
4962 // D is even if it has trailing zeros.
4963 HadEvenDivisor |= (K != 0);
4964 // D is a power-of-two if D0 is one.
4965 // If all divisors are power-of-two, we will prefer to avoid the fold.
4966 AllDivisorsArePowerOfTwo &= D0.isOneValue();
4968 // P = inv(D0, 2^W)
4969 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4970 unsigned W = D.getBitWidth();
4971 APInt P = D0.zext(W + 1)
4972 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4973 .trunc(W);
4974 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4975 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4977 // Q = floor((2^W - 1) / D)
4978 APInt Q = APInt::getAllOnesValue(W).udiv(D);
4980 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4981 "We are expecting that K is always less than all-ones for ShSVT");
4983 // If the divisor is 1 the result can be constant-folded.
4984 if (D.isOneValue()) {
4985 // Set P and K amount to a bogus values so we can try to splat them.
4986 P = 0;
4987 K = -1;
4988 assert(Q.isAllOnesValue() &&
4989 "Expecting all-ones comparison for one divisor");
4992 PAmts.push_back(DAG.getConstant(P, DL, SVT));
4993 KAmts.push_back(
4994 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4995 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4996 return true;
4999 SDValue N = REMNode.getOperand(0);
5000 SDValue D = REMNode.getOperand(1);
5002 // Collect the values from each element.
5003 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
5004 return SDValue();
5006 // If this is a urem by a one, avoid the fold since it can be constant-folded.
5007 if (AllDivisorsAreOnes)
5008 return SDValue();
5010 // If this is a urem by a powers-of-two, avoid the fold since it can be
5011 // best implemented as a bit test.
5012 if (AllDivisorsArePowerOfTwo)
5013 return SDValue();
5015 SDValue PVal, KVal, QVal;
5016 if (VT.isVector()) {
5017 if (HadOneDivisor) {
5018 // Try to turn PAmts into a splat, since we don't care about the values
5019 // that are currently '0'. If we can't, just keep '0'`s.
5020 turnVectorIntoSplatVector(PAmts, isNullConstant);
5021 // Try to turn KAmts into a splat, since we don't care about the values
5022 // that are currently '-1'. If we can't, change them to '0'`s.
5023 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5024 DAG.getConstant(0, DL, ShSVT));
5027 PVal = DAG.getBuildVector(VT, DL, PAmts);
5028 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5029 QVal = DAG.getBuildVector(VT, DL, QAmts);
5030 } else {
5031 PVal = PAmts[0];
5032 KVal = KAmts[0];
5033 QVal = QAmts[0];
5036 // (mul N, P)
5037 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5038 Created.push_back(Op0.getNode());
5040 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5041 // divisors as a performance improvement, since rotating by 0 is a no-op.
5042 if (HadEvenDivisor) {
5043 // We need ROTR to do this.
5044 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5045 return SDValue();
5046 SDNodeFlags Flags;
5047 Flags.setExact(true);
5048 // UREM: (rotr (mul N, P), K)
5049 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5050 Created.push_back(Op0.getNode());
5053 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5054 return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5055 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5058 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5059 /// where the divisor is constant and the comparison target is zero,
5060 /// return a DAG expression that will generate the same comparison result
5061 /// using only multiplications, additions and shifts/rotations.
5062 /// Ref: "Hacker's Delight" 10-17.
5063 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5064 SDValue CompTargetNode,
5065 ISD::CondCode Cond,
5066 DAGCombinerInfo &DCI,
5067 const SDLoc &DL) const {
5068 SmallVector<SDNode *, 7> Built;
5069 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5070 DCI, DL, Built)) {
5071 assert(Built.size() <= 7 && "Max size prediction failed.");
5072 for (SDNode *N : Built)
5073 DCI.AddToWorklist(N);
5074 return Folded;
5077 return SDValue();
5080 SDValue
5081 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5082 SDValue CompTargetNode, ISD::CondCode Cond,
5083 DAGCombinerInfo &DCI, const SDLoc &DL,
5084 SmallVectorImpl<SDNode *> &Created) const {
5085 // Fold:
5086 // (seteq/ne (srem N, D), 0)
5087 // To:
5088 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5090 // - D must be constant, with D = D0 * 2^K where D0 is odd
5091 // - P is the multiplicative inverse of D0 modulo 2^W
5092 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5093 // - Q = floor((2 * A) / (2^K))
5094 // where W is the width of the common type of N and D.
5095 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5096 "Only applicable for (in)equality comparisons.");
5098 SelectionDAG &DAG = DCI.DAG;
5100 EVT VT = REMNode.getValueType();
5101 EVT SVT = VT.getScalarType();
5102 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5103 EVT ShSVT = ShVT.getScalarType();
5105 // If MUL is unavailable, we cannot proceed in any case.
5106 if (!isOperationLegalOrCustom(ISD::MUL, VT))
5107 return SDValue();
5109 // TODO: Could support comparing with non-zero too.
5110 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5111 if (!CompTarget || !CompTarget->isNullValue())
5112 return SDValue();
5114 bool HadIntMinDivisor = false;
5115 bool HadOneDivisor = false;
5116 bool AllDivisorsAreOnes = true;
5117 bool HadEvenDivisor = false;
5118 bool NeedToApplyOffset = false;
5119 bool AllDivisorsArePowerOfTwo = true;
5120 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5122 auto BuildSREMPattern = [&](ConstantSDNode *C) {
5123 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5124 if (C->isNullValue())
5125 return false;
5127 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5129 // WARNING: this fold is only valid for positive divisors!
5130 APInt D = C->getAPIntValue();
5131 if (D.isNegative())
5132 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5134 HadIntMinDivisor |= D.isMinSignedValue();
5136 // If all divisors are ones, we will prefer to avoid the fold.
5137 HadOneDivisor |= D.isOneValue();
5138 AllDivisorsAreOnes &= D.isOneValue();
5140 // Decompose D into D0 * 2^K
5141 unsigned K = D.countTrailingZeros();
5142 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5143 APInt D0 = D.lshr(K);
5145 if (!D.isMinSignedValue()) {
5146 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5147 // we don't care about this lane in this fold, we'll special-handle it.
5148 HadEvenDivisor |= (K != 0);
5151 // D is a power-of-two if D0 is one. This includes INT_MIN.
5152 // If all divisors are power-of-two, we will prefer to avoid the fold.
5153 AllDivisorsArePowerOfTwo &= D0.isOneValue();
5155 // P = inv(D0, 2^W)
5156 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5157 unsigned W = D.getBitWidth();
5158 APInt P = D0.zext(W + 1)
5159 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5160 .trunc(W);
5161 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5162 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5164 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5165 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5166 A.clearLowBits(K);
5168 if (!D.isMinSignedValue()) {
5169 // If divisor INT_MIN, then we don't care about this lane in this fold,
5170 // we'll special-handle it.
5171 NeedToApplyOffset |= A != 0;
5174 // Q = floor((2 * A) / (2^K))
5175 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5177 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5178 "We are expecting that A is always less than all-ones for SVT");
5179 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5180 "We are expecting that K is always less than all-ones for ShSVT");
5182 // If the divisor is 1 the result can be constant-folded. Likewise, we
5183 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5184 if (D.isOneValue()) {
5185 // Set P, A and K to a bogus values so we can try to splat them.
5186 P = 0;
5187 A = -1;
5188 K = -1;
5190 // x ?% 1 == 0 <--> true <--> x u<= -1
5191 Q = -1;
5194 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5195 AAmts.push_back(DAG.getConstant(A, DL, SVT));
5196 KAmts.push_back(
5197 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5198 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5199 return true;
5202 SDValue N = REMNode.getOperand(0);
5203 SDValue D = REMNode.getOperand(1);
5205 // Collect the values from each element.
5206 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5207 return SDValue();
5209 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5210 if (AllDivisorsAreOnes)
5211 return SDValue();
5213 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5214 // since it can be best implemented as a bit test.
5215 if (AllDivisorsArePowerOfTwo)
5216 return SDValue();
5218 SDValue PVal, AVal, KVal, QVal;
5219 if (VT.isVector()) {
5220 if (HadOneDivisor) {
5221 // Try to turn PAmts into a splat, since we don't care about the values
5222 // that are currently '0'. If we can't, just keep '0'`s.
5223 turnVectorIntoSplatVector(PAmts, isNullConstant);
5224 // Try to turn AAmts into a splat, since we don't care about the
5225 // values that are currently '-1'. If we can't, change them to '0'`s.
5226 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5227 DAG.getConstant(0, DL, SVT));
5228 // Try to turn KAmts into a splat, since we don't care about the values
5229 // that are currently '-1'. If we can't, change them to '0'`s.
5230 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5231 DAG.getConstant(0, DL, ShSVT));
5234 PVal = DAG.getBuildVector(VT, DL, PAmts);
5235 AVal = DAG.getBuildVector(VT, DL, AAmts);
5236 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5237 QVal = DAG.getBuildVector(VT, DL, QAmts);
5238 } else {
5239 PVal = PAmts[0];
5240 AVal = AAmts[0];
5241 KVal = KAmts[0];
5242 QVal = QAmts[0];
5245 // (mul N, P)
5246 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5247 Created.push_back(Op0.getNode());
5249 if (NeedToApplyOffset) {
5250 // We need ADD to do this.
5251 if (!isOperationLegalOrCustom(ISD::ADD, VT))
5252 return SDValue();
5254 // (add (mul N, P), A)
5255 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5256 Created.push_back(Op0.getNode());
5259 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5260 // divisors as a performance improvement, since rotating by 0 is a no-op.
5261 if (HadEvenDivisor) {
5262 // We need ROTR to do this.
5263 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5264 return SDValue();
5265 SDNodeFlags Flags;
5266 Flags.setExact(true);
5267 // SREM: (rotr (add (mul N, P), A), K)
5268 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5269 Created.push_back(Op0.getNode());
5272 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5273 SDValue Fold =
5274 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5275 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5277 // If we didn't have lanes with INT_MIN divisor, then we're done.
5278 if (!HadIntMinDivisor)
5279 return Fold;
5281 // That fold is only valid for positive divisors. Which effectively means,
5282 // it is invalid for INT_MIN divisors. So if we have such a lane,
5283 // we must fix-up results for said lanes.
5284 assert(VT.isVector() && "Can/should only get here for vectors.");
5286 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5287 !isOperationLegalOrCustom(ISD::AND, VT) ||
5288 !isOperationLegalOrCustom(Cond, VT) ||
5289 !isOperationLegalOrCustom(ISD::VSELECT, VT))
5290 return SDValue();
5292 Created.push_back(Fold.getNode());
5294 SDValue IntMin = DAG.getConstant(
5295 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5296 SDValue IntMax = DAG.getConstant(
5297 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5298 SDValue Zero =
5299 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5301 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5302 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5303 Created.push_back(DivisorIsIntMin.getNode());
5305 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5306 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5307 Created.push_back(Masked.getNode());
5308 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5309 Created.push_back(MaskedIsZero.getNode());
5311 // To produce final result we need to blend 2 vectors: 'SetCC' and
5312 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5313 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5314 // constant-folded, select can get lowered to a shuffle with constant mask.
5315 SDValue Blended =
5316 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5318 return Blended;
5321 bool TargetLowering::
5322 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5323 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5324 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5325 "be a constant integer");
5326 return true;
5329 return false;
5332 //===----------------------------------------------------------------------===//
5333 // Legalization Utilities
5334 //===----------------------------------------------------------------------===//
5336 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5337 SDValue LHS, SDValue RHS,
5338 SmallVectorImpl<SDValue> &Result,
5339 EVT HiLoVT, SelectionDAG &DAG,
5340 MulExpansionKind Kind, SDValue LL,
5341 SDValue LH, SDValue RL, SDValue RH) const {
5342 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5343 Opcode == ISD::SMUL_LOHI);
5345 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5346 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5347 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5348 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5349 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5350 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5351 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5352 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5354 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5355 return false;
5357 unsigned OuterBitSize = VT.getScalarSizeInBits();
5358 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5359 unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5360 unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5362 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5363 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5364 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5366 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5367 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5368 bool Signed) -> bool {
5369 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5370 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5371 Hi = SDValue(Lo.getNode(), 1);
5372 return true;
5374 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5375 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5376 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5377 return true;
5379 return false;
5382 SDValue Lo, Hi;
5384 if (!LL.getNode() && !RL.getNode() &&
5385 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5386 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5387 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5390 if (!LL.getNode())
5391 return false;
5393 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5394 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5395 DAG.MaskedValueIsZero(RHS, HighMask)) {
5396 // The inputs are both zero-extended.
5397 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5398 Result.push_back(Lo);
5399 Result.push_back(Hi);
5400 if (Opcode != ISD::MUL) {
5401 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5402 Result.push_back(Zero);
5403 Result.push_back(Zero);
5405 return true;
5409 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5410 RHSSB > InnerBitSize) {
5411 // The input values are both sign-extended.
5412 // TODO non-MUL case?
5413 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5414 Result.push_back(Lo);
5415 Result.push_back(Hi);
5416 return true;
5420 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5421 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5422 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5423 // FIXME getShiftAmountTy does not always return a sensible result when VT
5424 // is an illegal type, and so the type may be too small to fit the shift
5425 // amount. Override it with i32. The shift will have to be legalized.
5426 ShiftAmountTy = MVT::i32;
5428 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5430 if (!LH.getNode() && !RH.getNode() &&
5431 isOperationLegalOrCustom(ISD::SRL, VT) &&
5432 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5433 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5434 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5435 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5436 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5439 if (!LH.getNode())
5440 return false;
5442 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5443 return false;
5445 Result.push_back(Lo);
5447 if (Opcode == ISD::MUL) {
5448 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5449 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5450 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5451 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5452 Result.push_back(Hi);
5453 return true;
5456 // Compute the full width result.
5457 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5458 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5459 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5460 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5461 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5464 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5465 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5466 return false;
5468 // This is effectively the add part of a multiply-add of half-sized operands,
5469 // so it cannot overflow.
5470 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5472 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5473 return false;
5475 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5476 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5478 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5479 isOperationLegalOrCustom(ISD::ADDE, VT));
5480 if (UseGlue)
5481 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5482 Merge(Lo, Hi));
5483 else
5484 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5485 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5487 SDValue Carry = Next.getValue(1);
5488 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5489 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5491 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5492 return false;
5494 if (UseGlue)
5495 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5496 Carry);
5497 else
5498 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5499 Zero, Carry);
5501 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5503 if (Opcode == ISD::SMUL_LOHI) {
5504 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5505 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5506 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5508 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5509 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5510 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5513 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5514 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5515 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5516 return true;
5519 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5520 SelectionDAG &DAG, MulExpansionKind Kind,
5521 SDValue LL, SDValue LH, SDValue RL,
5522 SDValue RH) const {
5523 SmallVector<SDValue, 2> Result;
5524 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5525 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5526 DAG, Kind, LL, LH, RL, RH);
5527 if (Ok) {
5528 assert(Result.size() == 2);
5529 Lo = Result[0];
5530 Hi = Result[1];
5532 return Ok;
5535 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5536 SelectionDAG &DAG) const {
5537 EVT VT = Node->getValueType(0);
5539 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5540 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5541 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5542 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5543 return false;
5545 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5546 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5547 SDValue X = Node->getOperand(0);
5548 SDValue Y = Node->getOperand(1);
5549 SDValue Z = Node->getOperand(2);
5551 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5552 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5553 SDLoc DL(SDValue(Node, 0));
5555 EVT ShVT = Z.getValueType();
5556 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5557 SDValue Zero = DAG.getConstant(0, DL, ShVT);
5559 SDValue ShAmt;
5560 if (isPowerOf2_32(EltSizeInBits)) {
5561 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5562 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5563 } else {
5564 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5567 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5568 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5569 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5570 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5572 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5573 // and that is undefined. We must compare and select to avoid UB.
5574 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5576 // For fshl, 0-shift returns the 1st arg (X).
5577 // For fshr, 0-shift returns the 2nd arg (Y).
5578 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5579 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5580 return true;
5583 // TODO: Merge with expandFunnelShift.
5584 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5585 SelectionDAG &DAG) const {
5586 EVT VT = Node->getValueType(0);
5587 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5588 bool IsLeft = Node->getOpcode() == ISD::ROTL;
5589 SDValue Op0 = Node->getOperand(0);
5590 SDValue Op1 = Node->getOperand(1);
5591 SDLoc DL(SDValue(Node, 0));
5593 EVT ShVT = Op1.getValueType();
5594 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5596 // If a rotate in the other direction is legal, use it.
5597 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5598 if (isOperationLegal(RevRot, VT)) {
5599 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5600 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5601 return true;
5604 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5605 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5606 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5607 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5608 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5609 return false;
5611 // Otherwise,
5612 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5613 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5615 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5616 "Expecting the type bitwidth to be a power of 2");
5617 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5618 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5619 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5620 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5621 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5622 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5623 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5624 DAG.getNode(HsOpc, DL, VT, Op0, And1));
5625 return true;
5628 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5629 SelectionDAG &DAG) const {
5630 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5631 SDValue Src = Node->getOperand(OpNo);
5632 EVT SrcVT = Src.getValueType();
5633 EVT DstVT = Node->getValueType(0);
5634 SDLoc dl(SDValue(Node, 0));
5636 // FIXME: Only f32 to i64 conversions are supported.
5637 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5638 return false;
5640 if (Node->isStrictFPOpcode())
5641 // When a NaN is converted to an integer a trap is allowed. We can't
5642 // use this expansion here because it would eliminate that trap. Other
5643 // traps are also allowed and cannot be eliminated. See
5644 // IEEE 754-2008 sec 5.8.
5645 return false;
5647 // Expand f32 -> i64 conversion
5648 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5649 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5650 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5651 EVT IntVT = SrcVT.changeTypeToInteger();
5652 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5654 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5655 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5656 SDValue Bias = DAG.getConstant(127, dl, IntVT);
5657 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5658 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5659 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5661 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5663 SDValue ExponentBits = DAG.getNode(
5664 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5665 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5666 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5668 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5669 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5670 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5671 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5673 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5674 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5675 DAG.getConstant(0x00800000, dl, IntVT));
5677 R = DAG.getZExtOrTrunc(R, dl, DstVT);
5679 R = DAG.getSelectCC(
5680 dl, Exponent, ExponentLoBit,
5681 DAG.getNode(ISD::SHL, dl, DstVT, R,
5682 DAG.getZExtOrTrunc(
5683 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5684 dl, IntShVT)),
5685 DAG.getNode(ISD::SRL, dl, DstVT, R,
5686 DAG.getZExtOrTrunc(
5687 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5688 dl, IntShVT)),
5689 ISD::SETGT);
5691 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5692 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5694 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5695 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5696 return true;
5699 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5700 SDValue &Chain,
5701 SelectionDAG &DAG) const {
5702 SDLoc dl(SDValue(Node, 0));
5703 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5704 SDValue Src = Node->getOperand(OpNo);
5706 EVT SrcVT = Src.getValueType();
5707 EVT DstVT = Node->getValueType(0);
5708 EVT SetCCVT =
5709 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5711 // Only expand vector types if we have the appropriate vector bit operations.
5712 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
5713 ISD::FP_TO_SINT;
5714 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
5715 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5716 return false;
5718 // If the maximum float value is smaller then the signed integer range,
5719 // the destination signmask can't be represented by the float, so we can
5720 // just use FP_TO_SINT directly.
5721 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5722 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5723 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5724 if (APFloat::opOverflow &
5725 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5726 if (Node->isStrictFPOpcode()) {
5727 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5728 { Node->getOperand(0), Src });
5729 Chain = Result.getValue(1);
5730 } else
5731 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5732 return true;
5735 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5736 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5738 bool Strict = Node->isStrictFPOpcode() ||
5739 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5741 if (Strict) {
5742 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5743 // signmask then offset (the result of which should be fully representable).
5744 // Sel = Src < 0x8000000000000000
5745 // Val = select Sel, Src, Src - 0x8000000000000000
5746 // Ofs = select Sel, 0, 0x8000000000000000
5747 // Result = fp_to_sint(Val) ^ Ofs
5749 // TODO: Should any fast-math-flags be set for the FSUB?
5750 SDValue SrcBiased;
5751 if (Node->isStrictFPOpcode())
5752 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
5753 { Node->getOperand(0), Src, Cst });
5754 else
5755 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
5756 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
5757 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5758 DAG.getConstant(SignMask, dl, DstVT));
5759 SDValue SInt;
5760 if (Node->isStrictFPOpcode()) {
5761 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5762 { SrcBiased.getValue(1), Val });
5763 Chain = SInt.getValue(1);
5764 } else
5765 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
5766 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
5767 } else {
5768 // Expand based on maximum range of FP_TO_SINT:
5769 // True = fp_to_sint(Src)
5770 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5771 // Result = select (Src < 0x8000000000000000), True, False
5773 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5774 // TODO: Should any fast-math-flags be set for the FSUB?
5775 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5776 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5777 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5778 DAG.getConstant(SignMask, dl, DstVT));
5779 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5781 return true;
5784 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5785 SelectionDAG &DAG) const {
5786 SDValue Src = Node->getOperand(0);
5787 EVT SrcVT = Src.getValueType();
5788 EVT DstVT = Node->getValueType(0);
5790 if (SrcVT.getScalarType() != MVT::i64)
5791 return false;
5793 SDLoc dl(SDValue(Node, 0));
5794 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5796 if (DstVT.getScalarType() == MVT::f32) {
5797 // Only expand vector types if we have the appropriate vector bit
5798 // operations.
5799 if (SrcVT.isVector() &&
5800 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5801 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5802 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5803 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5804 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5805 return false;
5807 // For unsigned conversions, convert them to signed conversions using the
5808 // algorithm from the x86_64 __floatundidf in compiler_rt.
5809 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5811 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5812 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5813 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5814 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5815 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5817 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5818 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5820 // TODO: This really should be implemented using a branch rather than a
5821 // select. We happen to get lucky and machinesink does the right
5822 // thing most of the time. This would be a good candidate for a
5823 // pseudo-op, or, even better, for whole-function isel.
5824 EVT SetCCVT =
5825 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5827 SDValue SignBitTest = DAG.getSetCC(
5828 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5829 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5830 return true;
5833 if (DstVT.getScalarType() == MVT::f64) {
5834 // Only expand vector types if we have the appropriate vector bit
5835 // operations.
5836 if (SrcVT.isVector() &&
5837 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5838 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5839 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5840 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5841 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5842 return false;
5844 // Implementation of unsigned i64 to f64 following the algorithm in
5845 // __floatundidf in compiler_rt. This implementation has the advantage
5846 // of performing rounding correctly, both in the default rounding mode
5847 // and in all alternate rounding modes.
5848 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5849 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5850 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5851 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5852 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5853 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5855 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5856 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5857 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5858 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5859 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5860 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5861 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5862 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5863 return true;
5866 return false;
5869 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5870 SelectionDAG &DAG) const {
5871 SDLoc dl(Node);
5872 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5873 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5874 EVT VT = Node->getValueType(0);
5875 if (isOperationLegalOrCustom(NewOp, VT)) {
5876 SDValue Quiet0 = Node->getOperand(0);
5877 SDValue Quiet1 = Node->getOperand(1);
5879 if (!Node->getFlags().hasNoNaNs()) {
5880 // Insert canonicalizes if it's possible we need to quiet to get correct
5881 // sNaN behavior.
5882 if (!DAG.isKnownNeverSNaN(Quiet0)) {
5883 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5884 Node->getFlags());
5886 if (!DAG.isKnownNeverSNaN(Quiet1)) {
5887 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5888 Node->getFlags());
5892 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5895 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5896 // instead if there are no NaNs.
5897 if (Node->getFlags().hasNoNaNs()) {
5898 unsigned IEEE2018Op =
5899 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5900 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5901 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5902 Node->getOperand(1), Node->getFlags());
5906 return SDValue();
5909 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5910 SelectionDAG &DAG) const {
5911 SDLoc dl(Node);
5912 EVT VT = Node->getValueType(0);
5913 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5914 SDValue Op = Node->getOperand(0);
5915 unsigned Len = VT.getScalarSizeInBits();
5916 assert(VT.isInteger() && "CTPOP not implemented for this type.");
5918 // TODO: Add support for irregular type lengths.
5919 if (!(Len <= 128 && Len % 8 == 0))
5920 return false;
5922 // Only expand vector types if we have the appropriate vector bit operations.
5923 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5924 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5925 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5926 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5927 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5928 return false;
5930 // This is the "best" algorithm from
5931 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5932 SDValue Mask55 =
5933 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5934 SDValue Mask33 =
5935 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5936 SDValue Mask0F =
5937 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5938 SDValue Mask01 =
5939 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5941 // v = v - ((v >> 1) & 0x55555555...)
5942 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5943 DAG.getNode(ISD::AND, dl, VT,
5944 DAG.getNode(ISD::SRL, dl, VT, Op,
5945 DAG.getConstant(1, dl, ShVT)),
5946 Mask55));
5947 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5948 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5949 DAG.getNode(ISD::AND, dl, VT,
5950 DAG.getNode(ISD::SRL, dl, VT, Op,
5951 DAG.getConstant(2, dl, ShVT)),
5952 Mask33));
5953 // v = (v + (v >> 4)) & 0x0F0F0F0F...
5954 Op = DAG.getNode(ISD::AND, dl, VT,
5955 DAG.getNode(ISD::ADD, dl, VT, Op,
5956 DAG.getNode(ISD::SRL, dl, VT, Op,
5957 DAG.getConstant(4, dl, ShVT))),
5958 Mask0F);
5959 // v = (v * 0x01010101...) >> (Len - 8)
5960 if (Len > 8)
5961 Op =
5962 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5963 DAG.getConstant(Len - 8, dl, ShVT));
5965 Result = Op;
5966 return true;
5969 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5970 SelectionDAG &DAG) const {
5971 SDLoc dl(Node);
5972 EVT VT = Node->getValueType(0);
5973 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5974 SDValue Op = Node->getOperand(0);
5975 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5977 // If the non-ZERO_UNDEF version is supported we can use that instead.
5978 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5979 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5980 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5981 return true;
5984 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5985 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5986 EVT SetCCVT =
5987 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5988 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5989 SDValue Zero = DAG.getConstant(0, dl, VT);
5990 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5991 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5992 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5993 return true;
5996 // Only expand vector types if we have the appropriate vector bit operations.
5997 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5998 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5999 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6000 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6001 return false;
6003 // for now, we do this:
6004 // x = x | (x >> 1);
6005 // x = x | (x >> 2);
6006 // ...
6007 // x = x | (x >>16);
6008 // x = x | (x >>32); // for 64-bit input
6009 // return popcount(~x);
6011 // Ref: "Hacker's Delight" by Henry Warren
6012 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6013 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6014 Op = DAG.getNode(ISD::OR, dl, VT, Op,
6015 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6017 Op = DAG.getNOT(dl, Op, VT);
6018 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6019 return true;
6022 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6023 SelectionDAG &DAG) const {
6024 SDLoc dl(Node);
6025 EVT VT = Node->getValueType(0);
6026 SDValue Op = Node->getOperand(0);
6027 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6029 // If the non-ZERO_UNDEF version is supported we can use that instead.
6030 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6031 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6032 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6033 return true;
6036 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6037 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6038 EVT SetCCVT =
6039 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6040 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6041 SDValue Zero = DAG.getConstant(0, dl, VT);
6042 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6043 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6044 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6045 return true;
6048 // Only expand vector types if we have the appropriate vector bit operations.
6049 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6050 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6051 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6052 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6053 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6054 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6055 return false;
6057 // for now, we use: { return popcount(~x & (x - 1)); }
6058 // unless the target has ctlz but not ctpop, in which case we use:
6059 // { return 32 - nlz(~x & (x-1)); }
6060 // Ref: "Hacker's Delight" by Henry Warren
6061 SDValue Tmp = DAG.getNode(
6062 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6063 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6065 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6066 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6067 Result =
6068 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6069 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6070 return true;
6073 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6074 return true;
6077 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6078 SelectionDAG &DAG) const {
6079 SDLoc dl(N);
6080 EVT VT = N->getValueType(0);
6081 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6082 SDValue Op = N->getOperand(0);
6084 // Only expand vector types if we have the appropriate vector operations.
6085 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6086 !isOperationLegalOrCustom(ISD::ADD, VT) ||
6087 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6088 return false;
6090 SDValue Shift =
6091 DAG.getNode(ISD::SRA, dl, VT, Op,
6092 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6093 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6094 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6095 return true;
6098 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6099 SelectionDAG &DAG) const {
6100 SDLoc SL(LD);
6101 SDValue Chain = LD->getChain();
6102 SDValue BasePTR = LD->getBasePtr();
6103 EVT SrcVT = LD->getMemoryVT();
6104 ISD::LoadExtType ExtType = LD->getExtensionType();
6106 unsigned NumElem = SrcVT.getVectorNumElements();
6108 EVT SrcEltVT = SrcVT.getScalarType();
6109 EVT DstEltVT = LD->getValueType(0).getScalarType();
6111 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6112 assert(SrcEltVT.isByteSized());
6114 SmallVector<SDValue, 8> Vals;
6115 SmallVector<SDValue, 8> LoadChains;
6117 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6118 SDValue ScalarLoad =
6119 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6120 LD->getPointerInfo().getWithOffset(Idx * Stride),
6121 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6122 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6124 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6126 Vals.push_back(ScalarLoad.getValue(0));
6127 LoadChains.push_back(ScalarLoad.getValue(1));
6130 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6131 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6133 return DAG.getMergeValues({Value, NewChain}, SL);
6136 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6137 SelectionDAG &DAG) const {
6138 SDLoc SL(ST);
6140 SDValue Chain = ST->getChain();
6141 SDValue BasePtr = ST->getBasePtr();
6142 SDValue Value = ST->getValue();
6143 EVT StVT = ST->getMemoryVT();
6145 // The type of the data we want to save
6146 EVT RegVT = Value.getValueType();
6147 EVT RegSclVT = RegVT.getScalarType();
6149 // The type of data as saved in memory.
6150 EVT MemSclVT = StVT.getScalarType();
6152 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6153 unsigned NumElem = StVT.getVectorNumElements();
6155 // A vector must always be stored in memory as-is, i.e. without any padding
6156 // between the elements, since various code depend on it, e.g. in the
6157 // handling of a bitcast of a vector type to int, which may be done with a
6158 // vector store followed by an integer load. A vector that does not have
6159 // elements that are byte-sized must therefore be stored as an integer
6160 // built out of the extracted vector elements.
6161 if (!MemSclVT.isByteSized()) {
6162 unsigned NumBits = StVT.getSizeInBits();
6163 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6165 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6167 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6168 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6169 DAG.getConstant(Idx, SL, IdxVT));
6170 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6171 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6172 unsigned ShiftIntoIdx =
6173 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6174 SDValue ShiftAmount =
6175 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6176 SDValue ShiftedElt =
6177 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6178 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6181 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6182 ST->getAlignment(), ST->getMemOperand()->getFlags(),
6183 ST->getAAInfo());
6186 // Store Stride in bytes
6187 unsigned Stride = MemSclVT.getSizeInBits() / 8;
6188 assert(Stride && "Zero stride!");
6189 // Extract each of the elements from the original vector and save them into
6190 // memory individually.
6191 SmallVector<SDValue, 8> Stores;
6192 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6193 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6194 DAG.getConstant(Idx, SL, IdxVT));
6196 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6198 // This scalar TruncStore may be illegal, but we legalize it later.
6199 SDValue Store = DAG.getTruncStore(
6200 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6201 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6202 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6204 Stores.push_back(Store);
6207 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6210 std::pair<SDValue, SDValue>
6211 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6212 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6213 "unaligned indexed loads not implemented!");
6214 SDValue Chain = LD->getChain();
6215 SDValue Ptr = LD->getBasePtr();
6216 EVT VT = LD->getValueType(0);
6217 EVT LoadedVT = LD->getMemoryVT();
6218 SDLoc dl(LD);
6219 auto &MF = DAG.getMachineFunction();
6221 if (VT.isFloatingPoint() || VT.isVector()) {
6222 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6223 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6224 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6225 LoadedVT.isVector()) {
6226 // Scalarize the load and let the individual components be handled.
6227 SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6228 if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6229 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6230 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6233 // Expand to a (misaligned) integer load of the same size,
6234 // then bitconvert to floating point or vector.
6235 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6236 LD->getMemOperand());
6237 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6238 if (LoadedVT != VT)
6239 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6240 ISD::ANY_EXTEND, dl, VT, Result);
6242 return std::make_pair(Result, newLoad.getValue(1));
6245 // Copy the value to a (aligned) stack slot using (unaligned) integer
6246 // loads and stores, then do a (aligned) load from the stack slot.
6247 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6248 unsigned LoadedBytes = LoadedVT.getStoreSize();
6249 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6250 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6252 // Make sure the stack slot is also aligned for the register type.
6253 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6254 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6255 SmallVector<SDValue, 8> Stores;
6256 SDValue StackPtr = StackBase;
6257 unsigned Offset = 0;
6259 EVT PtrVT = Ptr.getValueType();
6260 EVT StackPtrVT = StackPtr.getValueType();
6262 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6263 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6265 // Do all but one copies using the full register width.
6266 for (unsigned i = 1; i < NumRegs; i++) {
6267 // Load one integer register's worth from the original location.
6268 SDValue Load = DAG.getLoad(
6269 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6270 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6271 LD->getAAInfo());
6272 // Follow the load with a store to the stack slot. Remember the store.
6273 Stores.push_back(DAG.getStore(
6274 Load.getValue(1), dl, Load, StackPtr,
6275 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6276 // Increment the pointers.
6277 Offset += RegBytes;
6279 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6280 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6283 // The last copy may be partial. Do an extending load.
6284 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6285 8 * (LoadedBytes - Offset));
6286 SDValue Load =
6287 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6288 LD->getPointerInfo().getWithOffset(Offset), MemVT,
6289 MinAlign(LD->getAlignment(), Offset),
6290 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6291 // Follow the load with a store to the stack slot. Remember the store.
6292 // On big-endian machines this requires a truncating store to ensure
6293 // that the bits end up in the right place.
6294 Stores.push_back(DAG.getTruncStore(
6295 Load.getValue(1), dl, Load, StackPtr,
6296 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6298 // The order of the stores doesn't matter - say it with a TokenFactor.
6299 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6301 // Finally, perform the original load only redirected to the stack slot.
6302 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6303 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6304 LoadedVT);
6306 // Callers expect a MERGE_VALUES node.
6307 return std::make_pair(Load, TF);
6310 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6311 "Unaligned load of unsupported type.");
6313 // Compute the new VT that is half the size of the old one. This is an
6314 // integer MVT.
6315 unsigned NumBits = LoadedVT.getSizeInBits();
6316 EVT NewLoadedVT;
6317 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6318 NumBits >>= 1;
6320 unsigned Alignment = LD->getAlignment();
6321 unsigned IncrementSize = NumBits / 8;
6322 ISD::LoadExtType HiExtType = LD->getExtensionType();
6324 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6325 if (HiExtType == ISD::NON_EXTLOAD)
6326 HiExtType = ISD::ZEXTLOAD;
6328 // Load the value in two parts
6329 SDValue Lo, Hi;
6330 if (DAG.getDataLayout().isLittleEndian()) {
6331 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6332 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6333 LD->getAAInfo());
6335 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6336 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6337 LD->getPointerInfo().getWithOffset(IncrementSize),
6338 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6339 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6340 } else {
6341 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6342 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6343 LD->getAAInfo());
6345 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6346 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6347 LD->getPointerInfo().getWithOffset(IncrementSize),
6348 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6349 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6352 // aggregate the two parts
6353 SDValue ShiftAmount =
6354 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6355 DAG.getDataLayout()));
6356 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6357 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6359 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6360 Hi.getValue(1));
6362 return std::make_pair(Result, TF);
6365 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6366 SelectionDAG &DAG) const {
6367 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6368 "unaligned indexed stores not implemented!");
6369 SDValue Chain = ST->getChain();
6370 SDValue Ptr = ST->getBasePtr();
6371 SDValue Val = ST->getValue();
6372 EVT VT = Val.getValueType();
6373 int Alignment = ST->getAlignment();
6374 auto &MF = DAG.getMachineFunction();
6375 EVT StoreMemVT = ST->getMemoryVT();
6377 SDLoc dl(ST);
6378 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6379 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6380 if (isTypeLegal(intVT)) {
6381 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6382 StoreMemVT.isVector()) {
6383 // Scalarize the store and let the individual components be handled.
6384 SDValue Result = scalarizeVectorStore(ST, DAG);
6385 return Result;
6387 // Expand to a bitconvert of the value to the integer type of the
6388 // same size, then a (misaligned) int store.
6389 // FIXME: Does not handle truncating floating point stores!
6390 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6391 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6392 Alignment, ST->getMemOperand()->getFlags());
6393 return Result;
6395 // Do a (aligned) store to a stack slot, then copy from the stack slot
6396 // to the final destination using (unaligned) integer loads and stores.
6397 MVT RegVT = getRegisterType(
6398 *DAG.getContext(),
6399 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6400 EVT PtrVT = Ptr.getValueType();
6401 unsigned StoredBytes = StoreMemVT.getStoreSize();
6402 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6403 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6405 // Make sure the stack slot is also aligned for the register type.
6406 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6407 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6409 // Perform the original store, only redirected to the stack slot.
6410 SDValue Store = DAG.getTruncStore(
6411 Chain, dl, Val, StackPtr,
6412 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6414 EVT StackPtrVT = StackPtr.getValueType();
6416 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6417 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6418 SmallVector<SDValue, 8> Stores;
6419 unsigned Offset = 0;
6421 // Do all but one copies using the full register width.
6422 for (unsigned i = 1; i < NumRegs; i++) {
6423 // Load one integer register's worth from the stack slot.
6424 SDValue Load = DAG.getLoad(
6425 RegVT, dl, Store, StackPtr,
6426 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6427 // Store it to the final location. Remember the store.
6428 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6429 ST->getPointerInfo().getWithOffset(Offset),
6430 MinAlign(ST->getAlignment(), Offset),
6431 ST->getMemOperand()->getFlags()));
6432 // Increment the pointers.
6433 Offset += RegBytes;
6434 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6435 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6438 // The last store may be partial. Do a truncating store. On big-endian
6439 // machines this requires an extending load from the stack slot to ensure
6440 // that the bits are in the right place.
6441 EVT LoadMemVT =
6442 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6444 // Load from the stack slot.
6445 SDValue Load = DAG.getExtLoad(
6446 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6447 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6449 Stores.push_back(
6450 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6451 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6452 MinAlign(ST->getAlignment(), Offset),
6453 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6454 // The order of the stores doesn't matter - say it with a TokenFactor.
6455 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6456 return Result;
6459 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6460 "Unaligned store of unknown type.");
6461 // Get the half-size VT
6462 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6463 int NumBits = NewStoredVT.getSizeInBits();
6464 int IncrementSize = NumBits / 8;
6466 // Divide the stored value in two parts.
6467 SDValue ShiftAmount = DAG.getConstant(
6468 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6469 SDValue Lo = Val;
6470 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6472 // Store the two parts
6473 SDValue Store1, Store2;
6474 Store1 = DAG.getTruncStore(Chain, dl,
6475 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6476 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6477 ST->getMemOperand()->getFlags());
6479 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6480 Alignment = MinAlign(Alignment, IncrementSize);
6481 Store2 = DAG.getTruncStore(
6482 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6483 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6484 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6486 SDValue Result =
6487 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6488 return Result;
6491 SDValue
6492 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6493 const SDLoc &DL, EVT DataVT,
6494 SelectionDAG &DAG,
6495 bool IsCompressedMemory) const {
6496 SDValue Increment;
6497 EVT AddrVT = Addr.getValueType();
6498 EVT MaskVT = Mask.getValueType();
6499 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6500 "Incompatible types of Data and Mask");
6501 if (IsCompressedMemory) {
6502 // Incrementing the pointer according to number of '1's in the mask.
6503 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6504 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6505 if (MaskIntVT.getSizeInBits() < 32) {
6506 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6507 MaskIntVT = MVT::i32;
6510 // Count '1's with POPCNT.
6511 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6512 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6513 // Scale is an element size in bytes.
6514 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6515 AddrVT);
6516 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6517 } else
6518 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6520 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6523 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6524 SDValue Idx,
6525 EVT VecVT,
6526 const SDLoc &dl) {
6527 if (isa<ConstantSDNode>(Idx))
6528 return Idx;
6530 EVT IdxVT = Idx.getValueType();
6531 unsigned NElts = VecVT.getVectorNumElements();
6532 if (isPowerOf2_32(NElts)) {
6533 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6534 Log2_32(NElts));
6535 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6536 DAG.getConstant(Imm, dl, IdxVT));
6539 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6540 DAG.getConstant(NElts - 1, dl, IdxVT));
6543 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6544 SDValue VecPtr, EVT VecVT,
6545 SDValue Index) const {
6546 SDLoc dl(Index);
6547 // Make sure the index type is big enough to compute in.
6548 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6550 EVT EltVT = VecVT.getVectorElementType();
6552 // Calculate the element offset and add it to the pointer.
6553 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6554 assert(EltSize * 8 == EltVT.getSizeInBits() &&
6555 "Converting bits to bytes lost precision");
6557 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6559 EVT IdxVT = Index.getValueType();
6561 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6562 DAG.getConstant(EltSize, dl, IdxVT));
6563 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6566 //===----------------------------------------------------------------------===//
6567 // Implementation of Emulated TLS Model
6568 //===----------------------------------------------------------------------===//
6570 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6571 SelectionDAG &DAG) const {
6572 // Access to address of TLS varialbe xyz is lowered to a function call:
6573 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6574 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6575 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6576 SDLoc dl(GA);
6578 ArgListTy Args;
6579 ArgListEntry Entry;
6580 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6581 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6582 StringRef EmuTlsVarName(NameString);
6583 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6584 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6585 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6586 Entry.Ty = VoidPtrType;
6587 Args.push_back(Entry);
6589 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6591 TargetLowering::CallLoweringInfo CLI(DAG);
6592 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6593 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6594 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6596 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6597 // At last for X86 targets, maybe good for other targets too?
6598 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6599 MFI.setAdjustsStack(true); // Is this only for X86 target?
6600 MFI.setHasCalls(true);
6602 assert((GA->getOffset() == 0) &&
6603 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6604 return CallResult.first;
6607 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6608 SelectionDAG &DAG) const {
6609 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6610 if (!isCtlzFast())
6611 return SDValue();
6612 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6613 SDLoc dl(Op);
6614 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6615 if (C->isNullValue() && CC == ISD::SETEQ) {
6616 EVT VT = Op.getOperand(0).getValueType();
6617 SDValue Zext = Op.getOperand(0);
6618 if (VT.bitsLT(MVT::i32)) {
6619 VT = MVT::i32;
6620 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6622 unsigned Log2b = Log2_32(VT.getSizeInBits());
6623 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6624 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6625 DAG.getConstant(Log2b, dl, MVT::i32));
6626 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6629 return SDValue();
6632 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6633 unsigned Opcode = Node->getOpcode();
6634 SDValue LHS = Node->getOperand(0);
6635 SDValue RHS = Node->getOperand(1);
6636 EVT VT = LHS.getValueType();
6637 SDLoc dl(Node);
6639 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6640 assert(VT.isInteger() && "Expected operands to be integers");
6642 // usub.sat(a, b) -> umax(a, b) - b
6643 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6644 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6645 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6648 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6649 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6650 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6651 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6654 unsigned OverflowOp;
6655 switch (Opcode) {
6656 case ISD::SADDSAT:
6657 OverflowOp = ISD::SADDO;
6658 break;
6659 case ISD::UADDSAT:
6660 OverflowOp = ISD::UADDO;
6661 break;
6662 case ISD::SSUBSAT:
6663 OverflowOp = ISD::SSUBO;
6664 break;
6665 case ISD::USUBSAT:
6666 OverflowOp = ISD::USUBO;
6667 break;
6668 default:
6669 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6670 "addition or subtraction node.");
6673 unsigned BitWidth = LHS.getScalarValueSizeInBits();
6674 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6675 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6676 LHS, RHS);
6677 SDValue SumDiff = Result.getValue(0);
6678 SDValue Overflow = Result.getValue(1);
6679 SDValue Zero = DAG.getConstant(0, dl, VT);
6680 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6682 if (Opcode == ISD::UADDSAT) {
6683 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6684 // (LHS + RHS) | OverflowMask
6685 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6686 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6688 // Overflow ? 0xffff.... : (LHS + RHS)
6689 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6690 } else if (Opcode == ISD::USUBSAT) {
6691 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6692 // (LHS - RHS) & ~OverflowMask
6693 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6694 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6695 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6697 // Overflow ? 0 : (LHS - RHS)
6698 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6699 } else {
6700 // SatMax -> Overflow && SumDiff < 0
6701 // SatMin -> Overflow && SumDiff >= 0
6702 APInt MinVal = APInt::getSignedMinValue(BitWidth);
6703 APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6704 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6705 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6706 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6707 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6708 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6712 SDValue
6713 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6714 assert((Node->getOpcode() == ISD::SMULFIX ||
6715 Node->getOpcode() == ISD::UMULFIX ||
6716 Node->getOpcode() == ISD::SMULFIXSAT ||
6717 Node->getOpcode() == ISD::UMULFIXSAT) &&
6718 "Expected a fixed point multiplication opcode");
6720 SDLoc dl(Node);
6721 SDValue LHS = Node->getOperand(0);
6722 SDValue RHS = Node->getOperand(1);
6723 EVT VT = LHS.getValueType();
6724 unsigned Scale = Node->getConstantOperandVal(2);
6725 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
6726 Node->getOpcode() == ISD::UMULFIXSAT);
6727 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
6728 Node->getOpcode() == ISD::SMULFIXSAT);
6729 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6730 unsigned VTSize = VT.getScalarSizeInBits();
6732 if (!Scale) {
6733 // [us]mul.fix(a, b, 0) -> mul(a, b)
6734 if (!Saturating) {
6735 if (isOperationLegalOrCustom(ISD::MUL, VT))
6736 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6737 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6738 SDValue Result =
6739 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6740 SDValue Product = Result.getValue(0);
6741 SDValue Overflow = Result.getValue(1);
6742 SDValue Zero = DAG.getConstant(0, dl, VT);
6744 APInt MinVal = APInt::getSignedMinValue(VTSize);
6745 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6746 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6747 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6748 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6749 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6750 return DAG.getSelect(dl, VT, Overflow, Result, Product);
6751 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
6752 SDValue Result =
6753 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6754 SDValue Product = Result.getValue(0);
6755 SDValue Overflow = Result.getValue(1);
6757 APInt MaxVal = APInt::getMaxValue(VTSize);
6758 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6759 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
6763 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6764 "Expected scale to be less than the number of bits if signed or at "
6765 "most the number of bits if unsigned.");
6766 assert(LHS.getValueType() == RHS.getValueType() &&
6767 "Expected both operands to be the same type");
6769 // Get the upper and lower bits of the result.
6770 SDValue Lo, Hi;
6771 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6772 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6773 if (isOperationLegalOrCustom(LoHiOp, VT)) {
6774 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6775 Lo = Result.getValue(0);
6776 Hi = Result.getValue(1);
6777 } else if (isOperationLegalOrCustom(HiOp, VT)) {
6778 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6779 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6780 } else if (VT.isVector()) {
6781 return SDValue();
6782 } else {
6783 report_fatal_error("Unable to expand fixed point multiplication.");
6786 if (Scale == VTSize)
6787 // Result is just the top half since we'd be shifting by the width of the
6788 // operand. Overflow impossible so this works for both UMULFIX and
6789 // UMULFIXSAT.
6790 return Hi;
6792 // The result will need to be shifted right by the scale since both operands
6793 // are scaled. The result is given to us in 2 halves, so we only want part of
6794 // both in the result.
6795 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6796 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6797 DAG.getConstant(Scale, dl, ShiftTy));
6798 if (!Saturating)
6799 return Result;
6801 if (!Signed) {
6802 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
6803 // widened multiplication) aren't all zeroes.
6805 // Saturate to max if ((Hi >> Scale) != 0),
6806 // which is the same as if (Hi > ((1 << Scale) - 1))
6807 APInt MaxVal = APInt::getMaxValue(VTSize);
6808 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
6809 dl, VT);
6810 Result = DAG.getSelectCC(dl, Hi, LowMask,
6811 DAG.getConstant(MaxVal, dl, VT), Result,
6812 ISD::SETUGT);
6814 return Result;
6817 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
6818 // widened multiplication) aren't all ones or all zeroes.
6820 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
6821 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
6823 if (Scale == 0) {
6824 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
6825 DAG.getConstant(VTSize - 1, dl, ShiftTy));
6826 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
6827 // Saturated to SatMin if wide product is negative, and SatMax if wide
6828 // product is positive ...
6829 SDValue Zero = DAG.getConstant(0, dl, VT);
6830 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
6831 ISD::SETLT);
6832 // ... but only if we overflowed.
6833 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
6836 // We handled Scale==0 above so all the bits to examine is in Hi.
6838 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
6839 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
6840 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
6841 dl, VT);
6842 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
6843 // Saturate to min if (Hi >> (Scale - 1)) < -1),
6844 // which is the same as if (HI < (-1 << (Scale - 1))
6845 SDValue HighMask =
6846 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
6847 dl, VT);
6848 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
6849 return Result;
6852 void TargetLowering::expandUADDSUBO(
6853 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6854 SDLoc dl(Node);
6855 SDValue LHS = Node->getOperand(0);
6856 SDValue RHS = Node->getOperand(1);
6857 bool IsAdd = Node->getOpcode() == ISD::UADDO;
6859 // If ADD/SUBCARRY is legal, use that instead.
6860 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6861 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6862 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6863 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6864 { LHS, RHS, CarryIn });
6865 Result = SDValue(NodeCarry.getNode(), 0);
6866 Overflow = SDValue(NodeCarry.getNode(), 1);
6867 return;
6870 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6871 LHS.getValueType(), LHS, RHS);
6873 EVT ResultType = Node->getValueType(1);
6874 EVT SetCCType = getSetCCResultType(
6875 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6876 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6877 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6878 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6881 void TargetLowering::expandSADDSUBO(
6882 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6883 SDLoc dl(Node);
6884 SDValue LHS = Node->getOperand(0);
6885 SDValue RHS = Node->getOperand(1);
6886 bool IsAdd = Node->getOpcode() == ISD::SADDO;
6888 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6889 LHS.getValueType(), LHS, RHS);
6891 EVT ResultType = Node->getValueType(1);
6892 EVT OType = getSetCCResultType(
6893 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6895 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6896 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6897 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6898 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6899 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6900 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6901 return;
6904 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6906 // LHSSign -> LHS >= 0
6907 // RHSSign -> RHS >= 0
6908 // SumSign -> Result >= 0
6910 // Add:
6911 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6912 // Sub:
6913 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6914 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6915 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6916 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6917 IsAdd ? ISD::SETEQ : ISD::SETNE);
6919 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6920 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6922 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6923 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6926 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6927 SDValue &Overflow, SelectionDAG &DAG) const {
6928 SDLoc dl(Node);
6929 EVT VT = Node->getValueType(0);
6930 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6931 SDValue LHS = Node->getOperand(0);
6932 SDValue RHS = Node->getOperand(1);
6933 bool isSigned = Node->getOpcode() == ISD::SMULO;
6935 // For power-of-two multiplications we can use a simpler shift expansion.
6936 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6937 const APInt &C = RHSC->getAPIntValue();
6938 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6939 if (C.isPowerOf2()) {
6940 // smulo(x, signed_min) is same as umulo(x, signed_min).
6941 bool UseArithShift = isSigned && !C.isMinSignedValue();
6942 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6943 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6944 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6945 Overflow = DAG.getSetCC(dl, SetCCVT,
6946 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6947 dl, VT, Result, ShiftAmt),
6948 LHS, ISD::SETNE);
6949 return true;
6953 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6954 if (VT.isVector())
6955 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6956 VT.getVectorNumElements());
6958 SDValue BottomHalf;
6959 SDValue TopHalf;
6960 static const unsigned Ops[2][3] =
6961 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6962 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6963 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6964 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6965 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6966 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6967 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6968 RHS);
6969 TopHalf = BottomHalf.getValue(1);
6970 } else if (isTypeLegal(WideVT)) {
6971 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6972 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6973 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6974 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6975 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6976 getShiftAmountTy(WideVT, DAG.getDataLayout()));
6977 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6978 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6979 } else {
6980 if (VT.isVector())
6981 return false;
6983 // We can fall back to a libcall with an illegal type for the MUL if we
6984 // have a libcall big enough.
6985 // Also, we can fall back to a division in some cases, but that's a big
6986 // performance hit in the general case.
6987 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6988 if (WideVT == MVT::i16)
6989 LC = RTLIB::MUL_I16;
6990 else if (WideVT == MVT::i32)
6991 LC = RTLIB::MUL_I32;
6992 else if (WideVT == MVT::i64)
6993 LC = RTLIB::MUL_I64;
6994 else if (WideVT == MVT::i128)
6995 LC = RTLIB::MUL_I128;
6996 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6998 SDValue HiLHS;
6999 SDValue HiRHS;
7000 if (isSigned) {
7001 // The high part is obtained by SRA'ing all but one of the bits of low
7002 // part.
7003 unsigned LoSize = VT.getSizeInBits();
7004 HiLHS =
7005 DAG.getNode(ISD::SRA, dl, VT, LHS,
7006 DAG.getConstant(LoSize - 1, dl,
7007 getPointerTy(DAG.getDataLayout())));
7008 HiRHS =
7009 DAG.getNode(ISD::SRA, dl, VT, RHS,
7010 DAG.getConstant(LoSize - 1, dl,
7011 getPointerTy(DAG.getDataLayout())));
7012 } else {
7013 HiLHS = DAG.getConstant(0, dl, VT);
7014 HiRHS = DAG.getConstant(0, dl, VT);
7017 // Here we're passing the 2 arguments explicitly as 4 arguments that are
7018 // pre-lowered to the correct types. This all depends upon WideVT not
7019 // being a legal type for the architecture and thus has to be split to
7020 // two arguments.
7021 SDValue Ret;
7022 TargetLowering::MakeLibCallOptions CallOptions;
7023 CallOptions.setSExt(isSigned);
7024 CallOptions.setIsPostTypeLegalization(true);
7025 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7026 // Halves of WideVT are packed into registers in different order
7027 // depending on platform endianness. This is usually handled by
7028 // the C calling convention, but we can't defer to it in
7029 // the legalizer.
7030 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7031 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7032 } else {
7033 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7034 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7036 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7037 "Ret value is a collection of constituent nodes holding result.");
7038 if (DAG.getDataLayout().isLittleEndian()) {
7039 // Same as above.
7040 BottomHalf = Ret.getOperand(0);
7041 TopHalf = Ret.getOperand(1);
7042 } else {
7043 BottomHalf = Ret.getOperand(1);
7044 TopHalf = Ret.getOperand(0);
7048 Result = BottomHalf;
7049 if (isSigned) {
7050 SDValue ShiftAmt = DAG.getConstant(
7051 VT.getScalarSizeInBits() - 1, dl,
7052 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7053 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7054 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7055 } else {
7056 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7057 DAG.getConstant(0, dl, VT), ISD::SETNE);
7060 // Truncate the result if SetCC returns a larger type than needed.
7061 EVT RType = Node->getValueType(1);
7062 if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7063 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7065 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7066 "Unexpected result type for S/UMULO legalization");
7067 return true;
7070 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7071 SDLoc dl(Node);
7072 bool NoNaN = Node->getFlags().hasNoNaNs();
7073 unsigned BaseOpcode = 0;
7074 switch (Node->getOpcode()) {
7075 default: llvm_unreachable("Expected VECREDUCE opcode");
7076 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7077 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7078 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
7079 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
7080 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
7081 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
7082 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
7083 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7084 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7085 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7086 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7087 case ISD::VECREDUCE_FMAX:
7088 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7089 break;
7090 case ISD::VECREDUCE_FMIN:
7091 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7092 break;
7095 SDValue Op = Node->getOperand(0);
7096 EVT VT = Op.getValueType();
7098 // Try to use a shuffle reduction for power of two vectors.
7099 if (VT.isPow2VectorType()) {
7100 while (VT.getVectorNumElements() > 1) {
7101 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7102 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7103 break;
7105 SDValue Lo, Hi;
7106 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7107 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7108 VT = HalfVT;
7112 EVT EltVT = VT.getVectorElementType();
7113 unsigned NumElts = VT.getVectorNumElements();
7115 SmallVector<SDValue, 8> Ops;
7116 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7118 SDValue Res = Ops[0];
7119 for (unsigned i = 1; i < NumElts; i++)
7120 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7122 // Result type may be wider than element type.
7123 if (EltVT != Node->getValueType(0))
7124 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7125 return Res;