[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / CodeGen / XRayInstrumentation.cpp
blob19c59e9542b41f97621b91823d3b38a4ec3ca725
1 //===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a MachineFunctionPass that inserts the appropriate
10 // XRay instrumentation instructions. We look for XRay-specific attributes
11 // on the function to determine whether we should insert the replacement
12 // operations.
14 //===---------------------------------------------------------------------===//
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Target/TargetMachine.h"
32 using namespace llvm;
34 namespace {
36 struct InstrumentationOptions {
37 // Whether to emit PATCHABLE_TAIL_CALL.
38 bool HandleTailcall;
40 // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
41 // return, e.g. conditional return.
42 bool HandleAllReturns;
45 struct XRayInstrumentation : public MachineFunctionPass {
46 static char ID;
48 XRayInstrumentation() : MachineFunctionPass(ID) {
49 initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
52 void getAnalysisUsage(AnalysisUsage &AU) const override {
53 AU.setPreservesCFG();
54 AU.addPreserved<MachineLoopInfo>();
55 AU.addPreserved<MachineDominatorTree>();
56 MachineFunctionPass::getAnalysisUsage(AU);
59 bool runOnMachineFunction(MachineFunction &MF) override;
61 private:
62 // Replace the original RET instruction with the exit sled code ("patchable
63 // ret" pseudo-instruction), so that at runtime XRay can replace the sled
64 // with a code jumping to XRay trampoline, which calls the tracing handler
65 // and, in the end, issues the RET instruction.
66 // This is the approach to go on CPUs which have a single RET instruction,
67 // like x86/x86_64.
68 void replaceRetWithPatchableRet(MachineFunction &MF,
69 const TargetInstrInfo *TII,
70 InstrumentationOptions);
72 // Prepend the original return instruction with the exit sled code ("patchable
73 // function exit" pseudo-instruction), preserving the original return
74 // instruction just after the exit sled code.
75 // This is the approach to go on CPUs which have multiple options for the
76 // return instruction, like ARM. For such CPUs we can't just jump into the
77 // XRay trampoline and issue a single return instruction there. We rather
78 // have to call the trampoline and return from it to the original return
79 // instruction of the function being instrumented.
80 void prependRetWithPatchableExit(MachineFunction &MF,
81 const TargetInstrInfo *TII,
82 InstrumentationOptions);
85 } // end anonymous namespace
87 void XRayInstrumentation::replaceRetWithPatchableRet(
88 MachineFunction &MF, const TargetInstrInfo *TII,
89 InstrumentationOptions op) {
90 // We look for *all* terminators and returns, then replace those with
91 // PATCHABLE_RET instructions.
92 SmallVector<MachineInstr *, 4> Terminators;
93 for (auto &MBB : MF) {
94 for (auto &T : MBB.terminators()) {
95 unsigned Opc = 0;
96 if (T.isReturn() &&
97 (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
98 // Replace return instructions with:
99 // PATCHABLE_RET <Opcode>, <Operand>...
100 Opc = TargetOpcode::PATCHABLE_RET;
102 if (TII->isTailCall(T) && op.HandleTailcall) {
103 // Treat the tail call as a return instruction, which has a
104 // different-looking sled than the normal return case.
105 Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
107 if (Opc != 0) {
108 auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
109 .addImm(T.getOpcode());
110 for (auto &MO : T.operands())
111 MIB.add(MO);
112 Terminators.push_back(&T);
113 if (T.isCall())
114 MF.updateCallSiteInfo(&T);
119 for (auto &I : Terminators)
120 I->eraseFromParent();
123 void XRayInstrumentation::prependRetWithPatchableExit(
124 MachineFunction &MF, const TargetInstrInfo *TII,
125 InstrumentationOptions op) {
126 for (auto &MBB : MF)
127 for (auto &T : MBB.terminators()) {
128 unsigned Opc = 0;
129 if (T.isReturn() &&
130 (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
131 Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
133 if (TII->isTailCall(T) && op.HandleTailcall) {
134 Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
136 if (Opc != 0) {
137 // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
138 // PATCHABLE_TAIL_CALL .
139 BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
144 bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
145 auto &F = MF.getFunction();
146 auto InstrAttr = F.getFnAttribute("function-instrument");
147 bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) &&
148 InstrAttr.isStringAttribute() &&
149 InstrAttr.getValueAsString() == "xray-always";
150 Attribute Attr = F.getFnAttribute("xray-instruction-threshold");
151 unsigned XRayThreshold = 0;
152 if (!AlwaysInstrument) {
153 if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute())
154 return false; // XRay threshold attribute not found.
155 if (Attr.getValueAsString().getAsInteger(10, XRayThreshold))
156 return false; // Invalid value for threshold.
158 // Count the number of MachineInstr`s in MachineFunction
159 int64_t MICount = 0;
160 for (const auto &MBB : MF)
161 MICount += MBB.size();
163 // Get MachineDominatorTree or compute it on the fly if it's unavailable
164 auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
165 MachineDominatorTree ComputedMDT;
166 if (!MDT) {
167 ComputedMDT.getBase().recalculate(MF);
168 MDT = &ComputedMDT;
171 // Get MachineLoopInfo or compute it on the fly if it's unavailable
172 auto *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
173 MachineLoopInfo ComputedMLI;
174 if (!MLI) {
175 ComputedMLI.getBase().analyze(MDT->getBase());
176 MLI = &ComputedMLI;
179 // Check if we have a loop.
180 // FIXME: Maybe make this smarter, and see whether the loops are dependent
181 // on inputs or side-effects?
182 if (MLI->empty() && MICount < XRayThreshold)
183 return false; // Function is too small and has no loops.
186 // We look for the first non-empty MachineBasicBlock, so that we can insert
187 // the function instrumentation in the appropriate place.
188 auto MBI = llvm::find_if(
189 MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
190 if (MBI == MF.end())
191 return false; // The function is empty.
193 auto *TII = MF.getSubtarget().getInstrInfo();
194 auto &FirstMBB = *MBI;
195 auto &FirstMI = *FirstMBB.begin();
197 if (!MF.getSubtarget().isXRaySupported()) {
198 FirstMI.emitError("An attempt to perform XRay instrumentation for an"
199 " unsupported target.");
200 return false;
203 // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
204 // MachineFunction.
205 BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
206 TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
208 switch (MF.getTarget().getTargetTriple().getArch()) {
209 case Triple::ArchType::arm:
210 case Triple::ArchType::thumb:
211 case Triple::ArchType::aarch64:
212 case Triple::ArchType::mips:
213 case Triple::ArchType::mipsel:
214 case Triple::ArchType::mips64:
215 case Triple::ArchType::mips64el: {
216 // For the architectures which don't have a single return instruction
217 InstrumentationOptions op;
218 op.HandleTailcall = false;
219 op.HandleAllReturns = true;
220 prependRetWithPatchableExit(MF, TII, op);
221 break;
223 case Triple::ArchType::ppc64le: {
224 // PPC has conditional returns. Turn them into branch and plain returns.
225 InstrumentationOptions op;
226 op.HandleTailcall = false;
227 op.HandleAllReturns = true;
228 replaceRetWithPatchableRet(MF, TII, op);
229 break;
231 default: {
232 // For the architectures that have a single return instruction (such as
233 // RETQ on x86_64).
234 InstrumentationOptions op;
235 op.HandleTailcall = true;
236 op.HandleAllReturns = false;
237 replaceRetWithPatchableRet(MF, TII, op);
238 break;
241 return true;
244 char XRayInstrumentation::ID = 0;
245 char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
246 INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation",
247 "Insert XRay ops", false, false)
248 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
249 INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation",
250 "Insert XRay ops", false, false)