[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / Transforms / IPO / FunctionAttrs.cpp
blob0e923a717e6eadb2ce4c3c5034d8caa128285c12
1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CGSCCPassManager.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/LazyCallGraph.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
59 #include <cassert>
60 #include <iterator>
61 #include <map>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "functionattrs"
68 STATISTIC(NumReadNone, "Number of functions marked readnone");
69 STATISTIC(NumReadOnly, "Number of functions marked readonly");
70 STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
71 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
72 STATISTIC(NumReturned, "Number of arguments marked returned");
73 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
74 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
75 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
76 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
77 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
78 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
79 STATISTIC(NumNoFree, "Number of functions marked as nofree");
81 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
82 // in C/C++ code compiled by clang:
83 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
84 static cl::opt<bool> EnableNonnullArgPropagation(
85 "enable-nonnull-arg-prop", cl::Hidden,
86 cl::desc("Try to propagate nonnull argument attributes from callsites to "
87 "caller functions."));
89 static cl::opt<bool> DisableNoUnwindInference(
90 "disable-nounwind-inference", cl::Hidden,
91 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
93 static cl::opt<bool> DisableNoFreeInference(
94 "disable-nofree-inference", cl::Hidden,
95 cl::desc("Stop inferring nofree attribute during function-attrs pass"));
97 namespace {
99 using SCCNodeSet = SmallSetVector<Function *, 8>;
101 } // end anonymous namespace
103 /// Returns the memory access attribute for function F using AAR for AA results,
104 /// where SCCNodes is the current SCC.
106 /// If ThisBody is true, this function may examine the function body and will
107 /// return a result pertaining to this copy of the function. If it is false, the
108 /// result will be based only on AA results for the function declaration; it
109 /// will be assumed that some other (perhaps less optimized) version of the
110 /// function may be selected at link time.
111 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
112 AAResults &AAR,
113 const SCCNodeSet &SCCNodes) {
114 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
115 if (MRB == FMRB_DoesNotAccessMemory)
116 // Already perfect!
117 return MAK_ReadNone;
119 if (!ThisBody) {
120 if (AliasAnalysis::onlyReadsMemory(MRB))
121 return MAK_ReadOnly;
123 if (AliasAnalysis::doesNotReadMemory(MRB))
124 return MAK_WriteOnly;
126 // Conservatively assume it reads and writes to memory.
127 return MAK_MayWrite;
130 // Scan the function body for instructions that may read or write memory.
131 bool ReadsMemory = false;
132 bool WritesMemory = false;
133 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
134 Instruction *I = &*II;
136 // Some instructions can be ignored even if they read or write memory.
137 // Detect these now, skipping to the next instruction if one is found.
138 if (auto *Call = dyn_cast<CallBase>(I)) {
139 // Ignore calls to functions in the same SCC, as long as the call sites
140 // don't have operand bundles. Calls with operand bundles are allowed to
141 // have memory effects not described by the memory effects of the call
142 // target.
143 if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
144 SCCNodes.count(Call->getCalledFunction()))
145 continue;
146 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
147 ModRefInfo MRI = createModRefInfo(MRB);
149 // If the call doesn't access memory, we're done.
150 if (isNoModRef(MRI))
151 continue;
153 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
154 // The call could access any memory. If that includes writes, note it.
155 if (isModSet(MRI))
156 WritesMemory = true;
157 // If it reads, note it.
158 if (isRefSet(MRI))
159 ReadsMemory = true;
160 continue;
163 // Check whether all pointer arguments point to local memory, and
164 // ignore calls that only access local memory.
165 for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end();
166 CI != CE; ++CI) {
167 Value *Arg = *CI;
168 if (!Arg->getType()->isPtrOrPtrVectorTy())
169 continue;
171 AAMDNodes AAInfo;
172 I->getAAMetadata(AAInfo);
173 MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);
175 // Skip accesses to local or constant memory as they don't impact the
176 // externally visible mod/ref behavior.
177 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
178 continue;
180 if (isModSet(MRI))
181 // Writes non-local memory.
182 WritesMemory = true;
183 if (isRefSet(MRI))
184 // Ok, it reads non-local memory.
185 ReadsMemory = true;
187 continue;
188 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
189 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
190 if (!LI->isVolatile()) {
191 MemoryLocation Loc = MemoryLocation::get(LI);
192 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
193 continue;
195 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
196 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
197 if (!SI->isVolatile()) {
198 MemoryLocation Loc = MemoryLocation::get(SI);
199 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
200 continue;
202 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
203 // Ignore vaargs on local memory.
204 MemoryLocation Loc = MemoryLocation::get(VI);
205 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
206 continue;
209 // Any remaining instructions need to be taken seriously! Check if they
210 // read or write memory.
212 // Writes memory, remember that.
213 WritesMemory |= I->mayWriteToMemory();
215 // If this instruction may read memory, remember that.
216 ReadsMemory |= I->mayReadFromMemory();
219 if (WritesMemory) {
220 if (!ReadsMemory)
221 return MAK_WriteOnly;
222 else
223 return MAK_MayWrite;
226 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
229 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
230 AAResults &AAR) {
231 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
234 /// Deduce readonly/readnone attributes for the SCC.
235 template <typename AARGetterT>
236 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
237 // Check if any of the functions in the SCC read or write memory. If they
238 // write memory then they can't be marked readnone or readonly.
239 bool ReadsMemory = false;
240 bool WritesMemory = false;
241 for (Function *F : SCCNodes) {
242 // Call the callable parameter to look up AA results for this function.
243 AAResults &AAR = AARGetter(*F);
245 // Non-exact function definitions may not be selected at link time, and an
246 // alternative version that writes to memory may be selected. See the
247 // comment on GlobalValue::isDefinitionExact for more details.
248 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
249 AAR, SCCNodes)) {
250 case MAK_MayWrite:
251 return false;
252 case MAK_ReadOnly:
253 ReadsMemory = true;
254 break;
255 case MAK_WriteOnly:
256 WritesMemory = true;
257 break;
258 case MAK_ReadNone:
259 // Nothing to do!
260 break;
264 // If the SCC contains both functions that read and functions that write, then
265 // we cannot add readonly attributes.
266 if (ReadsMemory && WritesMemory)
267 return false;
269 // Success! Functions in this SCC do not access memory, or only read memory.
270 // Give them the appropriate attribute.
271 bool MadeChange = false;
273 for (Function *F : SCCNodes) {
274 if (F->doesNotAccessMemory())
275 // Already perfect!
276 continue;
278 if (F->onlyReadsMemory() && ReadsMemory)
279 // No change.
280 continue;
282 if (F->doesNotReadMemory() && WritesMemory)
283 continue;
285 MadeChange = true;
287 // Clear out any existing attributes.
288 F->removeFnAttr(Attribute::ReadOnly);
289 F->removeFnAttr(Attribute::ReadNone);
290 F->removeFnAttr(Attribute::WriteOnly);
292 if (!WritesMemory && !ReadsMemory) {
293 // Clear out any "access range attributes" if readnone was deduced.
294 F->removeFnAttr(Attribute::ArgMemOnly);
295 F->removeFnAttr(Attribute::InaccessibleMemOnly);
296 F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
299 // Add in the new attribute.
300 if (WritesMemory && !ReadsMemory)
301 F->addFnAttr(Attribute::WriteOnly);
302 else
303 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
305 if (WritesMemory && !ReadsMemory)
306 ++NumWriteOnly;
307 else if (ReadsMemory)
308 ++NumReadOnly;
309 else
310 ++NumReadNone;
313 return MadeChange;
316 namespace {
318 /// For a given pointer Argument, this retains a list of Arguments of functions
319 /// in the same SCC that the pointer data flows into. We use this to build an
320 /// SCC of the arguments.
321 struct ArgumentGraphNode {
322 Argument *Definition;
323 SmallVector<ArgumentGraphNode *, 4> Uses;
326 class ArgumentGraph {
327 // We store pointers to ArgumentGraphNode objects, so it's important that
328 // that they not move around upon insert.
329 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
331 ArgumentMapTy ArgumentMap;
333 // There is no root node for the argument graph, in fact:
334 // void f(int *x, int *y) { if (...) f(x, y); }
335 // is an example where the graph is disconnected. The SCCIterator requires a
336 // single entry point, so we maintain a fake ("synthetic") root node that
337 // uses every node. Because the graph is directed and nothing points into
338 // the root, it will not participate in any SCCs (except for its own).
339 ArgumentGraphNode SyntheticRoot;
341 public:
342 ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
344 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
346 iterator begin() { return SyntheticRoot.Uses.begin(); }
347 iterator end() { return SyntheticRoot.Uses.end(); }
348 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
350 ArgumentGraphNode *operator[](Argument *A) {
351 ArgumentGraphNode &Node = ArgumentMap[A];
352 Node.Definition = A;
353 SyntheticRoot.Uses.push_back(&Node);
354 return &Node;
358 /// This tracker checks whether callees are in the SCC, and if so it does not
359 /// consider that a capture, instead adding it to the "Uses" list and
360 /// continuing with the analysis.
361 struct ArgumentUsesTracker : public CaptureTracker {
362 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
364 void tooManyUses() override { Captured = true; }
366 bool captured(const Use *U) override {
367 CallSite CS(U->getUser());
368 if (!CS.getInstruction()) {
369 Captured = true;
370 return true;
373 Function *F = CS.getCalledFunction();
374 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
375 Captured = true;
376 return true;
379 // Note: the callee and the two successor blocks *follow* the argument
380 // operands. This means there is no need to adjust UseIndex to account for
381 // these.
383 unsigned UseIndex =
384 std::distance(const_cast<const Use *>(CS.arg_begin()), U);
386 assert(UseIndex < CS.data_operands_size() &&
387 "Indirect function calls should have been filtered above!");
389 if (UseIndex >= CS.getNumArgOperands()) {
390 // Data operand, but not a argument operand -- must be a bundle operand
391 assert(CS.hasOperandBundles() && "Must be!");
393 // CaptureTracking told us that we're being captured by an operand bundle
394 // use. In this case it does not matter if the callee is within our SCC
395 // or not -- we've been captured in some unknown way, and we have to be
396 // conservative.
397 Captured = true;
398 return true;
401 if (UseIndex >= F->arg_size()) {
402 assert(F->isVarArg() && "More params than args in non-varargs call");
403 Captured = true;
404 return true;
407 Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
408 return false;
411 // True only if certainly captured (used outside our SCC).
412 bool Captured = false;
414 // Uses within our SCC.
415 SmallVector<Argument *, 4> Uses;
417 const SCCNodeSet &SCCNodes;
420 } // end anonymous namespace
422 namespace llvm {
424 template <> struct GraphTraits<ArgumentGraphNode *> {
425 using NodeRef = ArgumentGraphNode *;
426 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
428 static NodeRef getEntryNode(NodeRef A) { return A; }
429 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
430 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
433 template <>
434 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
435 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
437 static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
438 return AG->begin();
441 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
444 } // end namespace llvm
446 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
447 static Attribute::AttrKind
448 determinePointerReadAttrs(Argument *A,
449 const SmallPtrSet<Argument *, 8> &SCCNodes) {
450 SmallVector<Use *, 32> Worklist;
451 SmallPtrSet<Use *, 32> Visited;
453 // inalloca arguments are always clobbered by the call.
454 if (A->hasInAllocaAttr())
455 return Attribute::None;
457 bool IsRead = false;
458 // We don't need to track IsWritten. If A is written to, return immediately.
460 for (Use &U : A->uses()) {
461 Visited.insert(&U);
462 Worklist.push_back(&U);
465 while (!Worklist.empty()) {
466 Use *U = Worklist.pop_back_val();
467 Instruction *I = cast<Instruction>(U->getUser());
469 switch (I->getOpcode()) {
470 case Instruction::BitCast:
471 case Instruction::GetElementPtr:
472 case Instruction::PHI:
473 case Instruction::Select:
474 case Instruction::AddrSpaceCast:
475 // The original value is not read/written via this if the new value isn't.
476 for (Use &UU : I->uses())
477 if (Visited.insert(&UU).second)
478 Worklist.push_back(&UU);
479 break;
481 case Instruction::Call:
482 case Instruction::Invoke: {
483 bool Captures = true;
485 if (I->getType()->isVoidTy())
486 Captures = false;
488 auto AddUsersToWorklistIfCapturing = [&] {
489 if (Captures)
490 for (Use &UU : I->uses())
491 if (Visited.insert(&UU).second)
492 Worklist.push_back(&UU);
495 CallSite CS(I);
496 if (CS.doesNotAccessMemory()) {
497 AddUsersToWorklistIfCapturing();
498 continue;
501 Function *F = CS.getCalledFunction();
502 if (!F) {
503 if (CS.onlyReadsMemory()) {
504 IsRead = true;
505 AddUsersToWorklistIfCapturing();
506 continue;
508 return Attribute::None;
511 // Note: the callee and the two successor blocks *follow* the argument
512 // operands. This means there is no need to adjust UseIndex to account
513 // for these.
515 unsigned UseIndex = std::distance(CS.arg_begin(), U);
517 // U cannot be the callee operand use: since we're exploring the
518 // transitive uses of an Argument, having such a use be a callee would
519 // imply the CallSite is an indirect call or invoke; and we'd take the
520 // early exit above.
521 assert(UseIndex < CS.data_operands_size() &&
522 "Data operand use expected!");
524 bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
526 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
527 assert(F->isVarArg() && "More params than args in non-varargs call");
528 return Attribute::None;
531 Captures &= !CS.doesNotCapture(UseIndex);
533 // Since the optimizer (by design) cannot see the data flow corresponding
534 // to a operand bundle use, these cannot participate in the optimistic SCC
535 // analysis. Instead, we model the operand bundle uses as arguments in
536 // call to a function external to the SCC.
537 if (IsOperandBundleUse ||
538 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
540 // The accessors used on CallSite here do the right thing for calls and
541 // invokes with operand bundles.
543 if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
544 return Attribute::None;
545 if (!CS.doesNotAccessMemory(UseIndex))
546 IsRead = true;
549 AddUsersToWorklistIfCapturing();
550 break;
553 case Instruction::Load:
554 // A volatile load has side effects beyond what readonly can be relied
555 // upon.
556 if (cast<LoadInst>(I)->isVolatile())
557 return Attribute::None;
559 IsRead = true;
560 break;
562 case Instruction::ICmp:
563 case Instruction::Ret:
564 break;
566 default:
567 return Attribute::None;
571 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
574 /// Deduce returned attributes for the SCC.
575 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
576 bool Changed = false;
578 // Check each function in turn, determining if an argument is always returned.
579 for (Function *F : SCCNodes) {
580 // We can infer and propagate function attributes only when we know that the
581 // definition we'll get at link time is *exactly* the definition we see now.
582 // For more details, see GlobalValue::mayBeDerefined.
583 if (!F->hasExactDefinition())
584 continue;
586 if (F->getReturnType()->isVoidTy())
587 continue;
589 // There is nothing to do if an argument is already marked as 'returned'.
590 if (llvm::any_of(F->args(),
591 [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
592 continue;
594 auto FindRetArg = [&]() -> Value * {
595 Value *RetArg = nullptr;
596 for (BasicBlock &BB : *F)
597 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
598 // Note that stripPointerCasts should look through functions with
599 // returned arguments.
600 Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
601 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
602 return nullptr;
604 if (!RetArg)
605 RetArg = RetVal;
606 else if (RetArg != RetVal)
607 return nullptr;
610 return RetArg;
613 if (Value *RetArg = FindRetArg()) {
614 auto *A = cast<Argument>(RetArg);
615 A->addAttr(Attribute::Returned);
616 ++NumReturned;
617 Changed = true;
621 return Changed;
624 /// If a callsite has arguments that are also arguments to the parent function,
625 /// try to propagate attributes from the callsite's arguments to the parent's
626 /// arguments. This may be important because inlining can cause information loss
627 /// when attribute knowledge disappears with the inlined call.
628 static bool addArgumentAttrsFromCallsites(Function &F) {
629 if (!EnableNonnullArgPropagation)
630 return false;
632 bool Changed = false;
634 // For an argument attribute to transfer from a callsite to the parent, the
635 // call must be guaranteed to execute every time the parent is called.
636 // Conservatively, just check for calls in the entry block that are guaranteed
637 // to execute.
638 // TODO: This could be enhanced by testing if the callsite post-dominates the
639 // entry block or by doing simple forward walks or backward walks to the
640 // callsite.
641 BasicBlock &Entry = F.getEntryBlock();
642 for (Instruction &I : Entry) {
643 if (auto CS = CallSite(&I)) {
644 if (auto *CalledFunc = CS.getCalledFunction()) {
645 for (auto &CSArg : CalledFunc->args()) {
646 if (!CSArg.hasNonNullAttr())
647 continue;
649 // If the non-null callsite argument operand is an argument to 'F'
650 // (the caller) and the call is guaranteed to execute, then the value
651 // must be non-null throughout 'F'.
652 auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
653 if (FArg && !FArg->hasNonNullAttr()) {
654 FArg->addAttr(Attribute::NonNull);
655 Changed = true;
660 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
661 break;
664 return Changed;
667 static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
668 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
669 && "Must be a Read attribute.");
670 assert(A && "Argument must not be null.");
672 // If the argument already has the attribute, nothing needs to be done.
673 if (A->hasAttribute(R))
674 return false;
676 // Otherwise, remove potentially conflicting attribute, add the new one,
677 // and update statistics.
678 A->removeAttr(Attribute::WriteOnly);
679 A->removeAttr(Attribute::ReadOnly);
680 A->removeAttr(Attribute::ReadNone);
681 A->addAttr(R);
682 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
683 return true;
686 /// Deduce nocapture attributes for the SCC.
687 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
688 bool Changed = false;
690 ArgumentGraph AG;
692 // Check each function in turn, determining which pointer arguments are not
693 // captured.
694 for (Function *F : SCCNodes) {
695 // We can infer and propagate function attributes only when we know that the
696 // definition we'll get at link time is *exactly* the definition we see now.
697 // For more details, see GlobalValue::mayBeDerefined.
698 if (!F->hasExactDefinition())
699 continue;
701 Changed |= addArgumentAttrsFromCallsites(*F);
703 // Functions that are readonly (or readnone) and nounwind and don't return
704 // a value can't capture arguments. Don't analyze them.
705 if (F->onlyReadsMemory() && F->doesNotThrow() &&
706 F->getReturnType()->isVoidTy()) {
707 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
708 ++A) {
709 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
710 A->addAttr(Attribute::NoCapture);
711 ++NumNoCapture;
712 Changed = true;
715 continue;
718 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
719 ++A) {
720 if (!A->getType()->isPointerTy())
721 continue;
722 bool HasNonLocalUses = false;
723 if (!A->hasNoCaptureAttr()) {
724 ArgumentUsesTracker Tracker(SCCNodes);
725 PointerMayBeCaptured(&*A, &Tracker);
726 if (!Tracker.Captured) {
727 if (Tracker.Uses.empty()) {
728 // If it's trivially not captured, mark it nocapture now.
729 A->addAttr(Attribute::NoCapture);
730 ++NumNoCapture;
731 Changed = true;
732 } else {
733 // If it's not trivially captured and not trivially not captured,
734 // then it must be calling into another function in our SCC. Save
735 // its particulars for Argument-SCC analysis later.
736 ArgumentGraphNode *Node = AG[&*A];
737 for (Argument *Use : Tracker.Uses) {
738 Node->Uses.push_back(AG[Use]);
739 if (Use != &*A)
740 HasNonLocalUses = true;
744 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
746 if (!HasNonLocalUses && !A->onlyReadsMemory()) {
747 // Can we determine that it's readonly/readnone without doing an SCC?
748 // Note that we don't allow any calls at all here, or else our result
749 // will be dependent on the iteration order through the functions in the
750 // SCC.
751 SmallPtrSet<Argument *, 8> Self;
752 Self.insert(&*A);
753 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
754 if (R != Attribute::None)
755 Changed = addReadAttr(A, R);
760 // The graph we've collected is partial because we stopped scanning for
761 // argument uses once we solved the argument trivially. These partial nodes
762 // show up as ArgumentGraphNode objects with an empty Uses list, and for
763 // these nodes the final decision about whether they capture has already been
764 // made. If the definition doesn't have a 'nocapture' attribute by now, it
765 // captures.
767 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
768 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
769 if (ArgumentSCC.size() == 1) {
770 if (!ArgumentSCC[0]->Definition)
771 continue; // synthetic root node
773 // eg. "void f(int* x) { if (...) f(x); }"
774 if (ArgumentSCC[0]->Uses.size() == 1 &&
775 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
776 Argument *A = ArgumentSCC[0]->Definition;
777 A->addAttr(Attribute::NoCapture);
778 ++NumNoCapture;
779 Changed = true;
781 continue;
784 bool SCCCaptured = false;
785 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
786 I != E && !SCCCaptured; ++I) {
787 ArgumentGraphNode *Node = *I;
788 if (Node->Uses.empty()) {
789 if (!Node->Definition->hasNoCaptureAttr())
790 SCCCaptured = true;
793 if (SCCCaptured)
794 continue;
796 SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
797 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
798 // quickly looking up whether a given Argument is in this ArgumentSCC.
799 for (ArgumentGraphNode *I : ArgumentSCC) {
800 ArgumentSCCNodes.insert(I->Definition);
803 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
804 I != E && !SCCCaptured; ++I) {
805 ArgumentGraphNode *N = *I;
806 for (ArgumentGraphNode *Use : N->Uses) {
807 Argument *A = Use->Definition;
808 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
809 continue;
810 SCCCaptured = true;
811 break;
814 if (SCCCaptured)
815 continue;
817 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
818 Argument *A = ArgumentSCC[i]->Definition;
819 A->addAttr(Attribute::NoCapture);
820 ++NumNoCapture;
821 Changed = true;
824 // We also want to compute readonly/readnone. With a small number of false
825 // negatives, we can assume that any pointer which is captured isn't going
826 // to be provably readonly or readnone, since by definition we can't
827 // analyze all uses of a captured pointer.
829 // The false negatives happen when the pointer is captured by a function
830 // that promises readonly/readnone behaviour on the pointer, then the
831 // pointer's lifetime ends before anything that writes to arbitrary memory.
832 // Also, a readonly/readnone pointer may be returned, but returning a
833 // pointer is capturing it.
835 Attribute::AttrKind ReadAttr = Attribute::ReadNone;
836 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
837 Argument *A = ArgumentSCC[i]->Definition;
838 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
839 if (K == Attribute::ReadNone)
840 continue;
841 if (K == Attribute::ReadOnly) {
842 ReadAttr = Attribute::ReadOnly;
843 continue;
845 ReadAttr = K;
846 break;
849 if (ReadAttr != Attribute::None) {
850 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
851 Argument *A = ArgumentSCC[i]->Definition;
852 Changed = addReadAttr(A, ReadAttr);
857 return Changed;
860 /// Tests whether a function is "malloc-like".
862 /// A function is "malloc-like" if it returns either null or a pointer that
863 /// doesn't alias any other pointer visible to the caller.
864 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
865 SmallSetVector<Value *, 8> FlowsToReturn;
866 for (BasicBlock &BB : *F)
867 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
868 FlowsToReturn.insert(Ret->getReturnValue());
870 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
871 Value *RetVal = FlowsToReturn[i];
873 if (Constant *C = dyn_cast<Constant>(RetVal)) {
874 if (!C->isNullValue() && !isa<UndefValue>(C))
875 return false;
877 continue;
880 if (isa<Argument>(RetVal))
881 return false;
883 if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
884 switch (RVI->getOpcode()) {
885 // Extend the analysis by looking upwards.
886 case Instruction::BitCast:
887 case Instruction::GetElementPtr:
888 case Instruction::AddrSpaceCast:
889 FlowsToReturn.insert(RVI->getOperand(0));
890 continue;
891 case Instruction::Select: {
892 SelectInst *SI = cast<SelectInst>(RVI);
893 FlowsToReturn.insert(SI->getTrueValue());
894 FlowsToReturn.insert(SI->getFalseValue());
895 continue;
897 case Instruction::PHI: {
898 PHINode *PN = cast<PHINode>(RVI);
899 for (Value *IncValue : PN->incoming_values())
900 FlowsToReturn.insert(IncValue);
901 continue;
904 // Check whether the pointer came from an allocation.
905 case Instruction::Alloca:
906 break;
907 case Instruction::Call:
908 case Instruction::Invoke: {
909 CallSite CS(RVI);
910 if (CS.hasRetAttr(Attribute::NoAlias))
911 break;
912 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
913 break;
914 LLVM_FALLTHROUGH;
916 default:
917 return false; // Did not come from an allocation.
920 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
921 return false;
924 return true;
927 /// Deduce noalias attributes for the SCC.
928 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
929 // Check each function in turn, determining which functions return noalias
930 // pointers.
931 for (Function *F : SCCNodes) {
932 // Already noalias.
933 if (F->returnDoesNotAlias())
934 continue;
936 // We can infer and propagate function attributes only when we know that the
937 // definition we'll get at link time is *exactly* the definition we see now.
938 // For more details, see GlobalValue::mayBeDerefined.
939 if (!F->hasExactDefinition())
940 return false;
942 // We annotate noalias return values, which are only applicable to
943 // pointer types.
944 if (!F->getReturnType()->isPointerTy())
945 continue;
947 if (!isFunctionMallocLike(F, SCCNodes))
948 return false;
951 bool MadeChange = false;
952 for (Function *F : SCCNodes) {
953 if (F->returnDoesNotAlias() ||
954 !F->getReturnType()->isPointerTy())
955 continue;
957 F->setReturnDoesNotAlias();
958 ++NumNoAlias;
959 MadeChange = true;
962 return MadeChange;
965 /// Tests whether this function is known to not return null.
967 /// Requires that the function returns a pointer.
969 /// Returns true if it believes the function will not return a null, and sets
970 /// \p Speculative based on whether the returned conclusion is a speculative
971 /// conclusion due to SCC calls.
972 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
973 bool &Speculative) {
974 assert(F->getReturnType()->isPointerTy() &&
975 "nonnull only meaningful on pointer types");
976 Speculative = false;
978 SmallSetVector<Value *, 8> FlowsToReturn;
979 for (BasicBlock &BB : *F)
980 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
981 FlowsToReturn.insert(Ret->getReturnValue());
983 auto &DL = F->getParent()->getDataLayout();
985 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
986 Value *RetVal = FlowsToReturn[i];
988 // If this value is locally known to be non-null, we're good
989 if (isKnownNonZero(RetVal, DL))
990 continue;
992 // Otherwise, we need to look upwards since we can't make any local
993 // conclusions.
994 Instruction *RVI = dyn_cast<Instruction>(RetVal);
995 if (!RVI)
996 return false;
997 switch (RVI->getOpcode()) {
998 // Extend the analysis by looking upwards.
999 case Instruction::BitCast:
1000 case Instruction::GetElementPtr:
1001 case Instruction::AddrSpaceCast:
1002 FlowsToReturn.insert(RVI->getOperand(0));
1003 continue;
1004 case Instruction::Select: {
1005 SelectInst *SI = cast<SelectInst>(RVI);
1006 FlowsToReturn.insert(SI->getTrueValue());
1007 FlowsToReturn.insert(SI->getFalseValue());
1008 continue;
1010 case Instruction::PHI: {
1011 PHINode *PN = cast<PHINode>(RVI);
1012 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1013 FlowsToReturn.insert(PN->getIncomingValue(i));
1014 continue;
1016 case Instruction::Call:
1017 case Instruction::Invoke: {
1018 CallSite CS(RVI);
1019 Function *Callee = CS.getCalledFunction();
1020 // A call to a node within the SCC is assumed to return null until
1021 // proven otherwise
1022 if (Callee && SCCNodes.count(Callee)) {
1023 Speculative = true;
1024 continue;
1026 return false;
1028 default:
1029 return false; // Unknown source, may be null
1031 llvm_unreachable("should have either continued or returned");
1034 return true;
1037 /// Deduce nonnull attributes for the SCC.
1038 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
1039 // Speculative that all functions in the SCC return only nonnull
1040 // pointers. We may refute this as we analyze functions.
1041 bool SCCReturnsNonNull = true;
1043 bool MadeChange = false;
1045 // Check each function in turn, determining which functions return nonnull
1046 // pointers.
1047 for (Function *F : SCCNodes) {
1048 // Already nonnull.
1049 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1050 Attribute::NonNull))
1051 continue;
1053 // We can infer and propagate function attributes only when we know that the
1054 // definition we'll get at link time is *exactly* the definition we see now.
1055 // For more details, see GlobalValue::mayBeDerefined.
1056 if (!F->hasExactDefinition())
1057 return false;
1059 // We annotate nonnull return values, which are only applicable to
1060 // pointer types.
1061 if (!F->getReturnType()->isPointerTy())
1062 continue;
1064 bool Speculative = false;
1065 if (isReturnNonNull(F, SCCNodes, Speculative)) {
1066 if (!Speculative) {
1067 // Mark the function eagerly since we may discover a function
1068 // which prevents us from speculating about the entire SCC
1069 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1070 << " as nonnull\n");
1071 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1072 ++NumNonNullReturn;
1073 MadeChange = true;
1075 continue;
1077 // At least one function returns something which could be null, can't
1078 // speculate any more.
1079 SCCReturnsNonNull = false;
1082 if (SCCReturnsNonNull) {
1083 for (Function *F : SCCNodes) {
1084 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1085 Attribute::NonNull) ||
1086 !F->getReturnType()->isPointerTy())
1087 continue;
1089 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1090 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1091 ++NumNonNullReturn;
1092 MadeChange = true;
1096 return MadeChange;
1099 namespace {
1101 /// Collects a set of attribute inference requests and performs them all in one
1102 /// go on a single SCC Node. Inference involves scanning function bodies
1103 /// looking for instructions that violate attribute assumptions.
1104 /// As soon as all the bodies are fine we are free to set the attribute.
1105 /// Customization of inference for individual attributes is performed by
1106 /// providing a handful of predicates for each attribute.
1107 class AttributeInferer {
1108 public:
1109 /// Describes a request for inference of a single attribute.
1110 struct InferenceDescriptor {
1112 /// Returns true if this function does not have to be handled.
1113 /// General intent for this predicate is to provide an optimization
1114 /// for functions that do not need this attribute inference at all
1115 /// (say, for functions that already have the attribute).
1116 std::function<bool(const Function &)> SkipFunction;
1118 /// Returns true if this instruction violates attribute assumptions.
1119 std::function<bool(Instruction &)> InstrBreaksAttribute;
1121 /// Sets the inferred attribute for this function.
1122 std::function<void(Function &)> SetAttribute;
1124 /// Attribute we derive.
1125 Attribute::AttrKind AKind;
1127 /// If true, only "exact" definitions can be used to infer this attribute.
1128 /// See GlobalValue::isDefinitionExact.
1129 bool RequiresExactDefinition;
1131 InferenceDescriptor(Attribute::AttrKind AK,
1132 std::function<bool(const Function &)> SkipFunc,
1133 std::function<bool(Instruction &)> InstrScan,
1134 std::function<void(Function &)> SetAttr,
1135 bool ReqExactDef)
1136 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1137 SetAttribute(SetAttr), AKind(AK),
1138 RequiresExactDefinition(ReqExactDef) {}
1141 private:
1142 SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1144 public:
1145 void registerAttrInference(InferenceDescriptor AttrInference) {
1146 InferenceDescriptors.push_back(AttrInference);
1149 bool run(const SCCNodeSet &SCCNodes);
1152 /// Perform all the requested attribute inference actions according to the
1153 /// attribute predicates stored before.
1154 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1155 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1156 // Go through all the functions in SCC and check corresponding attribute
1157 // assumptions for each of them. Attributes that are invalid for this SCC
1158 // will be removed from InferInSCC.
1159 for (Function *F : SCCNodes) {
1161 // No attributes whose assumptions are still valid - done.
1162 if (InferInSCC.empty())
1163 return false;
1165 // Check if our attributes ever need scanning/can be scanned.
1166 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1167 if (ID.SkipFunction(*F))
1168 return false;
1170 // Remove from further inference (invalidate) when visiting a function
1171 // that has no instructions to scan/has an unsuitable definition.
1172 return F->isDeclaration() ||
1173 (ID.RequiresExactDefinition && !F->hasExactDefinition());
1176 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1177 // set up the F instructions scan to verify assumptions of the attribute.
1178 SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1179 llvm::copy_if(
1180 InferInSCC, std::back_inserter(InferInThisFunc),
1181 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1183 if (InferInThisFunc.empty())
1184 continue;
1186 // Start instruction scan.
1187 for (Instruction &I : instructions(*F)) {
1188 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1189 if (!ID.InstrBreaksAttribute(I))
1190 return false;
1191 // Remove attribute from further inference on any other functions
1192 // because attribute assumptions have just been violated.
1193 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1194 return D.AKind == ID.AKind;
1196 // Remove attribute from the rest of current instruction scan.
1197 return true;
1200 if (InferInThisFunc.empty())
1201 break;
1205 if (InferInSCC.empty())
1206 return false;
1208 bool Changed = false;
1209 for (Function *F : SCCNodes)
1210 // At this point InferInSCC contains only functions that were either:
1211 // - explicitly skipped from scan/inference, or
1212 // - verified to have no instructions that break attribute assumptions.
1213 // Hence we just go and force the attribute for all non-skipped functions.
1214 for (auto &ID : InferInSCC) {
1215 if (ID.SkipFunction(*F))
1216 continue;
1217 Changed = true;
1218 ID.SetAttribute(*F);
1220 return Changed;
1223 } // end anonymous namespace
1225 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1226 static bool InstrBreaksNonConvergent(Instruction &I,
1227 const SCCNodeSet &SCCNodes) {
1228 const CallSite CS(&I);
1229 // Breaks non-convergent assumption if CS is a convergent call to a function
1230 // not in the SCC.
1231 return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0;
1234 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1235 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1236 if (!I.mayThrow())
1237 return false;
1238 if (const auto *CI = dyn_cast<CallInst>(&I)) {
1239 if (Function *Callee = CI->getCalledFunction()) {
1240 // I is a may-throw call to a function inside our SCC. This doesn't
1241 // invalidate our current working assumption that the SCC is no-throw; we
1242 // just have to scan that other function.
1243 if (SCCNodes.count(Callee) > 0)
1244 return false;
1247 return true;
1250 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1251 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
1252 CallSite CS(&I);
1253 if (!CS)
1254 return false;
1256 Function *Callee = CS.getCalledFunction();
1257 if (!Callee)
1258 return true;
1260 if (Callee->doesNotFreeMemory())
1261 return false;
1263 if (SCCNodes.count(Callee) > 0)
1264 return false;
1266 return true;
1269 /// Infer attributes from all functions in the SCC by scanning every
1270 /// instruction for compliance to the attribute assumptions. Currently it
1271 /// does:
1272 /// - removal of Convergent attribute
1273 /// - addition of NoUnwind attribute
1275 /// Returns true if any changes to function attributes were made.
1276 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1278 AttributeInferer AI;
1280 // Request to remove the convergent attribute from all functions in the SCC
1281 // if every callsite within the SCC is not convergent (except for calls
1282 // to functions within the SCC).
1283 // Note: Removal of the attr from the callsites will happen in
1284 // InstCombineCalls separately.
1285 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1286 Attribute::Convergent,
1287 // Skip non-convergent functions.
1288 [](const Function &F) { return !F.isConvergent(); },
1289 // Instructions that break non-convergent assumption.
1290 [SCCNodes](Instruction &I) {
1291 return InstrBreaksNonConvergent(I, SCCNodes);
1293 [](Function &F) {
1294 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1295 << "\n");
1296 F.setNotConvergent();
1298 /* RequiresExactDefinition= */ false});
1300 if (!DisableNoUnwindInference)
1301 // Request to infer nounwind attribute for all the functions in the SCC if
1302 // every callsite within the SCC is not throwing (except for calls to
1303 // functions within the SCC). Note that nounwind attribute suffers from
1304 // derefinement - results may change depending on how functions are
1305 // optimized. Thus it can be inferred only from exact definitions.
1306 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1307 Attribute::NoUnwind,
1308 // Skip non-throwing functions.
1309 [](const Function &F) { return F.doesNotThrow(); },
1310 // Instructions that break non-throwing assumption.
1311 [SCCNodes](Instruction &I) {
1312 return InstrBreaksNonThrowing(I, SCCNodes);
1314 [](Function &F) {
1315 LLVM_DEBUG(dbgs()
1316 << "Adding nounwind attr to fn " << F.getName() << "\n");
1317 F.setDoesNotThrow();
1318 ++NumNoUnwind;
1320 /* RequiresExactDefinition= */ true});
1322 if (!DisableNoFreeInference)
1323 // Request to infer nofree attribute for all the functions in the SCC if
1324 // every callsite within the SCC does not directly or indirectly free
1325 // memory (except for calls to functions within the SCC). Note that nofree
1326 // attribute suffers from derefinement - results may change depending on
1327 // how functions are optimized. Thus it can be inferred only from exact
1328 // definitions.
1329 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1330 Attribute::NoFree,
1331 // Skip functions known not to free memory.
1332 [](const Function &F) { return F.doesNotFreeMemory(); },
1333 // Instructions that break non-deallocating assumption.
1334 [SCCNodes](Instruction &I) {
1335 return InstrBreaksNoFree(I, SCCNodes);
1337 [](Function &F) {
1338 LLVM_DEBUG(dbgs()
1339 << "Adding nofree attr to fn " << F.getName() << "\n");
1340 F.setDoesNotFreeMemory();
1341 ++NumNoFree;
1343 /* RequiresExactDefinition= */ true});
1345 // Perform all the requested attribute inference actions.
1346 return AI.run(SCCNodes);
1349 static bool setDoesNotRecurse(Function &F) {
1350 if (F.doesNotRecurse())
1351 return false;
1352 F.setDoesNotRecurse();
1353 ++NumNoRecurse;
1354 return true;
1357 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1358 // Try and identify functions that do not recurse.
1360 // If the SCC contains multiple nodes we know for sure there is recursion.
1361 if (SCCNodes.size() != 1)
1362 return false;
1364 Function *F = *SCCNodes.begin();
1365 if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
1366 return false;
1368 // If all of the calls in F are identifiable and are to norecurse functions, F
1369 // is norecurse. This check also detects self-recursion as F is not currently
1370 // marked norecurse, so any called from F to F will not be marked norecurse.
1371 for (auto &BB : *F)
1372 for (auto &I : BB.instructionsWithoutDebug())
1373 if (auto CS = CallSite(&I)) {
1374 Function *Callee = CS.getCalledFunction();
1375 if (!Callee || Callee == F || !Callee->doesNotRecurse())
1376 // Function calls a potentially recursive function.
1377 return false;
1380 // Every call was to a non-recursive function other than this function, and
1381 // we have no indirect recursion as the SCC size is one. This function cannot
1382 // recurse.
1383 return setDoesNotRecurse(*F);
1386 template <typename AARGetterT>
1387 static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes,
1388 AARGetterT &&AARGetter,
1389 bool HasUnknownCall) {
1390 bool Changed = false;
1392 // Bail if the SCC only contains optnone functions.
1393 if (SCCNodes.empty())
1394 return Changed;
1396 Changed |= addArgumentReturnedAttrs(SCCNodes);
1397 Changed |= addReadAttrs(SCCNodes, AARGetter);
1398 Changed |= addArgumentAttrs(SCCNodes);
1400 // If we have no external nodes participating in the SCC, we can deduce some
1401 // more precise attributes as well.
1402 if (!HasUnknownCall) {
1403 Changed |= addNoAliasAttrs(SCCNodes);
1404 Changed |= addNonNullAttrs(SCCNodes);
1405 Changed |= inferAttrsFromFunctionBodies(SCCNodes);
1406 Changed |= addNoRecurseAttrs(SCCNodes);
1409 return Changed;
1412 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1413 CGSCCAnalysisManager &AM,
1414 LazyCallGraph &CG,
1415 CGSCCUpdateResult &) {
1416 FunctionAnalysisManager &FAM =
1417 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1419 // We pass a lambda into functions to wire them up to the analysis manager
1420 // for getting function analyses.
1421 auto AARGetter = [&](Function &F) -> AAResults & {
1422 return FAM.getResult<AAManager>(F);
1425 // Fill SCCNodes with the elements of the SCC. Also track whether there are
1426 // any external or opt-none nodes that will prevent us from optimizing any
1427 // part of the SCC.
1428 SCCNodeSet SCCNodes;
1429 bool HasUnknownCall = false;
1430 for (LazyCallGraph::Node &N : C) {
1431 Function &F = N.getFunction();
1432 if (F.hasOptNone() || F.hasFnAttribute(Attribute::Naked)) {
1433 // Treat any function we're trying not to optimize as if it were an
1434 // indirect call and omit it from the node set used below.
1435 HasUnknownCall = true;
1436 continue;
1438 // Track whether any functions in this SCC have an unknown call edge.
1439 // Note: if this is ever a performance hit, we can common it with
1440 // subsequent routines which also do scans over the instructions of the
1441 // function.
1442 if (!HasUnknownCall)
1443 for (Instruction &I : instructions(F))
1444 if (auto CS = CallSite(&I))
1445 if (!CS.getCalledFunction()) {
1446 HasUnknownCall = true;
1447 break;
1450 SCCNodes.insert(&F);
1453 if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
1454 return PreservedAnalyses::none();
1456 return PreservedAnalyses::all();
1459 namespace {
1461 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1462 // Pass identification, replacement for typeid
1463 static char ID;
1465 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1466 initializePostOrderFunctionAttrsLegacyPassPass(
1467 *PassRegistry::getPassRegistry());
1470 bool runOnSCC(CallGraphSCC &SCC) override;
1472 void getAnalysisUsage(AnalysisUsage &AU) const override {
1473 AU.setPreservesCFG();
1474 AU.addRequired<AssumptionCacheTracker>();
1475 getAAResultsAnalysisUsage(AU);
1476 CallGraphSCCPass::getAnalysisUsage(AU);
1480 } // end anonymous namespace
1482 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1483 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1484 "Deduce function attributes", false, false)
1485 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1486 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1487 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1488 "Deduce function attributes", false, false)
1490 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1491 return new PostOrderFunctionAttrsLegacyPass();
1494 template <typename AARGetterT>
1495 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1497 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1498 // whether a given CallGraphNode is in this SCC. Also track whether there are
1499 // any external or opt-none nodes that will prevent us from optimizing any
1500 // part of the SCC.
1501 SCCNodeSet SCCNodes;
1502 bool ExternalNode = false;
1503 for (CallGraphNode *I : SCC) {
1504 Function *F = I->getFunction();
1505 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
1506 // External node or function we're trying not to optimize - we both avoid
1507 // transform them and avoid leveraging information they provide.
1508 ExternalNode = true;
1509 continue;
1512 SCCNodes.insert(F);
1515 return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
1518 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1519 if (skipSCC(SCC))
1520 return false;
1521 return runImpl(SCC, LegacyAARGetter(*this));
1524 namespace {
1526 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1527 // Pass identification, replacement for typeid
1528 static char ID;
1530 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1531 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1532 *PassRegistry::getPassRegistry());
1535 bool runOnModule(Module &M) override;
1537 void getAnalysisUsage(AnalysisUsage &AU) const override {
1538 AU.setPreservesCFG();
1539 AU.addRequired<CallGraphWrapperPass>();
1540 AU.addPreserved<CallGraphWrapperPass>();
1544 } // end anonymous namespace
1546 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1548 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1549 "Deduce function attributes in RPO", false, false)
1550 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1551 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1552 "Deduce function attributes in RPO", false, false)
1554 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1555 return new ReversePostOrderFunctionAttrsLegacyPass();
1558 static bool addNoRecurseAttrsTopDown(Function &F) {
1559 // We check the preconditions for the function prior to calling this to avoid
1560 // the cost of building up a reversible post-order list. We assert them here
1561 // to make sure none of the invariants this relies on were violated.
1562 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1563 assert(!F.doesNotRecurse() &&
1564 "This function has already been deduced as norecurs!");
1565 assert(F.hasInternalLinkage() &&
1566 "Can only do top-down deduction for internal linkage functions!");
1568 // If F is internal and all of its uses are calls from a non-recursive
1569 // functions, then none of its calls could in fact recurse without going
1570 // through a function marked norecurse, and so we can mark this function too
1571 // as norecurse. Note that the uses must actually be calls -- otherwise
1572 // a pointer to this function could be returned from a norecurse function but
1573 // this function could be recursively (indirectly) called. Note that this
1574 // also detects if F is directly recursive as F is not yet marked as
1575 // a norecurse function.
1576 for (auto *U : F.users()) {
1577 auto *I = dyn_cast<Instruction>(U);
1578 if (!I)
1579 return false;
1580 CallSite CS(I);
1581 if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1582 return false;
1584 return setDoesNotRecurse(F);
1587 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1588 // We only have a post-order SCC traversal (because SCCs are inherently
1589 // discovered in post-order), so we accumulate them in a vector and then walk
1590 // it in reverse. This is simpler than using the RPO iterator infrastructure
1591 // because we need to combine SCC detection and the PO walk of the call
1592 // graph. We can also cheat egregiously because we're primarily interested in
1593 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1594 // with multiple functions in them will clearly be recursive.
1595 SmallVector<Function *, 16> Worklist;
1596 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1597 if (I->size() != 1)
1598 continue;
1600 Function *F = I->front()->getFunction();
1601 if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1602 F->hasInternalLinkage())
1603 Worklist.push_back(F);
1606 bool Changed = false;
1607 for (auto *F : llvm::reverse(Worklist))
1608 Changed |= addNoRecurseAttrsTopDown(*F);
1610 return Changed;
1613 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1614 if (skipModule(M))
1615 return false;
1617 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1619 return deduceFunctionAttributeInRPO(M, CG);
1622 PreservedAnalyses
1623 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1624 auto &CG = AM.getResult<CallGraphAnalysis>(M);
1626 if (!deduceFunctionAttributeInRPO(M, CG))
1627 return PreservedAnalyses::all();
1629 PreservedAnalyses PA;
1630 PA.preserve<CallGraphAnalysis>();
1631 return PA;