1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include "llvm/Transforms/Utils/MisExpect.h"
85 #include <system_error>
90 using namespace sampleprof
;
91 using ProfileCount
= Function::ProfileCount
;
92 #define DEBUG_TYPE "sample-profile"
94 // Command line option to specify the file to read samples from. This is
95 // mainly used for debugging.
96 static cl::opt
<std::string
> SampleProfileFile(
97 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden
);
100 // The named file contains a set of transformations that may have been applied
101 // to the symbol names between the program from which the sample data was
102 // collected and the current program's symbols.
103 static cl::opt
<std::string
> SampleProfileRemappingFile(
104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden
);
107 static cl::opt
<unsigned> SampleProfileMaxPropagateIterations(
108 "sample-profile-max-propagate-iterations", cl::init(100),
109 cl::desc("Maximum number of iterations to go through when propagating "
110 "sample block/edge weights through the CFG."));
112 static cl::opt
<unsigned> SampleProfileRecordCoverage(
113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
114 cl::desc("Emit a warning if less than N% of records in the input profile "
115 "are matched to the IR."));
117 static cl::opt
<unsigned> SampleProfileSampleCoverage(
118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
119 cl::desc("Emit a warning if less than N% of samples in the input profile "
120 "are matched to the IR."));
122 static cl::opt
<bool> NoWarnSampleUnused(
123 "no-warn-sample-unused", cl::init(false), cl::Hidden
,
124 cl::desc("Use this option to turn off/on warnings about function with "
125 "samples but without debug information to use those samples. "));
127 static cl::opt
<bool> ProfileSampleAccurate(
128 "profile-sample-accurate", cl::Hidden
, cl::init(false),
129 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
130 "callsite and function as having 0 samples. Otherwise, treat "
131 "un-sampled callsites and functions conservatively as unknown. "));
135 using BlockWeightMap
= DenseMap
<const BasicBlock
*, uint64_t>;
136 using EquivalenceClassMap
= DenseMap
<const BasicBlock
*, const BasicBlock
*>;
137 using Edge
= std::pair
<const BasicBlock
*, const BasicBlock
*>;
138 using EdgeWeightMap
= DenseMap
<Edge
, uint64_t>;
140 DenseMap
<const BasicBlock
*, SmallVector
<const BasicBlock
*, 8>>;
142 class SampleCoverageTracker
{
144 SampleCoverageTracker() = default;
146 bool markSamplesUsed(const FunctionSamples
*FS
, uint32_t LineOffset
,
147 uint32_t Discriminator
, uint64_t Samples
);
148 unsigned computeCoverage(unsigned Used
, unsigned Total
) const;
149 unsigned countUsedRecords(const FunctionSamples
*FS
,
150 ProfileSummaryInfo
*PSI
) const;
151 unsigned countBodyRecords(const FunctionSamples
*FS
,
152 ProfileSummaryInfo
*PSI
) const;
153 uint64_t getTotalUsedSamples() const { return TotalUsedSamples
; }
154 uint64_t countBodySamples(const FunctionSamples
*FS
,
155 ProfileSummaryInfo
*PSI
) const;
158 SampleCoverage
.clear();
159 TotalUsedSamples
= 0;
163 using BodySampleCoverageMap
= std::map
<LineLocation
, unsigned>;
164 using FunctionSamplesCoverageMap
=
165 DenseMap
<const FunctionSamples
*, BodySampleCoverageMap
>;
167 /// Coverage map for sampling records.
169 /// This map keeps a record of sampling records that have been matched to
170 /// an IR instruction. This is used to detect some form of staleness in
171 /// profiles (see flag -sample-profile-check-coverage).
173 /// Each entry in the map corresponds to a FunctionSamples instance. This is
174 /// another map that counts how many times the sample record at the
175 /// given location has been used.
176 FunctionSamplesCoverageMap SampleCoverage
;
178 /// Number of samples used from the profile.
180 /// When a sampling record is used for the first time, the samples from
181 /// that record are added to this accumulator. Coverage is later computed
182 /// based on the total number of samples available in this function and
185 /// Note that this accumulator tracks samples used from a single function
186 /// and all the inlined callsites. Strictly, we should have a map of counters
187 /// keyed by FunctionSamples pointers, but these stats are cleared after
188 /// every function, so we just need to keep a single counter.
189 uint64_t TotalUsedSamples
= 0;
192 class GUIDToFuncNameMapper
{
194 GUIDToFuncNameMapper(Module
&M
, SampleProfileReader
&Reader
,
195 DenseMap
<uint64_t, StringRef
> &GUIDToFuncNameMap
)
196 : CurrentReader(Reader
), CurrentModule(M
),
197 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap
) {
198 if (CurrentReader
.getFormat() != SPF_Compact_Binary
)
201 for (const auto &F
: CurrentModule
) {
202 StringRef OrigName
= F
.getName();
203 CurrentGUIDToFuncNameMap
.insert(
204 {Function::getGUID(OrigName
), OrigName
});
206 // Local to global var promotion used by optimization like thinlto
207 // will rename the var and add suffix like ".llvm.xxx" to the
208 // original local name. In sample profile, the suffixes of function
209 // names are all stripped. Since it is possible that the mapper is
210 // built in post-thin-link phase and var promotion has been done,
211 // we need to add the substring of function name without the suffix
212 // into the GUIDToFuncNameMap.
213 StringRef CanonName
= FunctionSamples::getCanonicalFnName(F
);
214 if (CanonName
!= OrigName
)
215 CurrentGUIDToFuncNameMap
.insert(
216 {Function::getGUID(CanonName
), CanonName
});
219 // Update GUIDToFuncNameMap for each function including inlinees.
220 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap
);
223 ~GUIDToFuncNameMapper() {
224 if (CurrentReader
.getFormat() != SPF_Compact_Binary
)
227 CurrentGUIDToFuncNameMap
.clear();
229 // Reset GUIDToFuncNameMap for of each function as they're no
230 // longer valid at this point.
231 SetGUIDToFuncNameMapForAll(nullptr);
235 void SetGUIDToFuncNameMapForAll(DenseMap
<uint64_t, StringRef
> *Map
) {
236 std::queue
<FunctionSamples
*> FSToUpdate
;
237 for (auto &IFS
: CurrentReader
.getProfiles()) {
238 FSToUpdate
.push(&IFS
.second
);
241 while (!FSToUpdate
.empty()) {
242 FunctionSamples
*FS
= FSToUpdate
.front();
244 FS
->GUIDToFuncNameMap
= Map
;
245 for (const auto &ICS
: FS
->getCallsiteSamples()) {
246 const FunctionSamplesMap
&FSMap
= ICS
.second
;
247 for (auto &IFS
: FSMap
) {
248 FunctionSamples
&FS
= const_cast<FunctionSamples
&>(IFS
.second
);
249 FSToUpdate
.push(&FS
);
255 SampleProfileReader
&CurrentReader
;
256 Module
&CurrentModule
;
257 DenseMap
<uint64_t, StringRef
> &CurrentGUIDToFuncNameMap
;
260 /// Sample profile pass.
262 /// This pass reads profile data from the file specified by
263 /// -sample-profile-file and annotates every affected function with the
264 /// profile information found in that file.
265 class SampleProfileLoader
{
268 StringRef Name
, StringRef RemapName
, bool IsThinLTOPreLink
,
269 std::function
<AssumptionCache
&(Function
&)> GetAssumptionCache
,
270 std::function
<TargetTransformInfo
&(Function
&)> GetTargetTransformInfo
)
271 : GetAC(std::move(GetAssumptionCache
)),
272 GetTTI(std::move(GetTargetTransformInfo
)), Filename(Name
),
273 RemappingFilename(RemapName
), IsThinLTOPreLink(IsThinLTOPreLink
) {}
275 bool doInitialization(Module
&M
);
276 bool runOnModule(Module
&M
, ModuleAnalysisManager
*AM
,
277 ProfileSummaryInfo
*_PSI
);
279 void dump() { Reader
->dump(); }
282 bool runOnFunction(Function
&F
, ModuleAnalysisManager
*AM
);
283 unsigned getFunctionLoc(Function
&F
);
284 bool emitAnnotations(Function
&F
);
285 ErrorOr
<uint64_t> getInstWeight(const Instruction
&I
);
286 ErrorOr
<uint64_t> getBlockWeight(const BasicBlock
*BB
);
287 const FunctionSamples
*findCalleeFunctionSamples(const Instruction
&I
) const;
288 std::vector
<const FunctionSamples
*>
289 findIndirectCallFunctionSamples(const Instruction
&I
, uint64_t &Sum
) const;
290 mutable DenseMap
<const DILocation
*, const FunctionSamples
*> DILocation2SampleMap
;
291 const FunctionSamples
*findFunctionSamples(const Instruction
&I
) const;
292 bool inlineCallInstruction(Instruction
*I
);
293 bool inlineHotFunctions(Function
&F
,
294 DenseSet
<GlobalValue::GUID
> &InlinedGUIDs
);
295 void printEdgeWeight(raw_ostream
&OS
, Edge E
);
296 void printBlockWeight(raw_ostream
&OS
, const BasicBlock
*BB
) const;
297 void printBlockEquivalence(raw_ostream
&OS
, const BasicBlock
*BB
);
298 bool computeBlockWeights(Function
&F
);
299 void findEquivalenceClasses(Function
&F
);
300 template <bool IsPostDom
>
301 void findEquivalencesFor(BasicBlock
*BB1
, ArrayRef
<BasicBlock
*> Descendants
,
302 DominatorTreeBase
<BasicBlock
, IsPostDom
> *DomTree
);
304 void propagateWeights(Function
&F
);
305 uint64_t visitEdge(Edge E
, unsigned *NumUnknownEdges
, Edge
*UnknownEdge
);
306 void buildEdges(Function
&F
);
307 bool propagateThroughEdges(Function
&F
, bool UpdateBlockCount
);
308 void computeDominanceAndLoopInfo(Function
&F
);
309 void clearFunctionData();
311 /// Map basic blocks to their computed weights.
313 /// The weight of a basic block is defined to be the maximum
314 /// of all the instruction weights in that block.
315 BlockWeightMap BlockWeights
;
317 /// Map edges to their computed weights.
319 /// Edge weights are computed by propagating basic block weights in
320 /// SampleProfile::propagateWeights.
321 EdgeWeightMap EdgeWeights
;
323 /// Set of visited blocks during propagation.
324 SmallPtrSet
<const BasicBlock
*, 32> VisitedBlocks
;
326 /// Set of visited edges during propagation.
327 SmallSet
<Edge
, 32> VisitedEdges
;
329 /// Equivalence classes for block weights.
331 /// Two blocks BB1 and BB2 are in the same equivalence class if they
332 /// dominate and post-dominate each other, and they are in the same loop
333 /// nest. When this happens, the two blocks are guaranteed to execute
334 /// the same number of times.
335 EquivalenceClassMap EquivalenceClass
;
337 /// Map from function name to Function *. Used to find the function from
338 /// the function name. If the function name contains suffix, additional
339 /// entry is added to map from the stripped name to the function if there
340 /// is one-to-one mapping.
341 StringMap
<Function
*> SymbolMap
;
343 /// Dominance, post-dominance and loop information.
344 std::unique_ptr
<DominatorTree
> DT
;
345 std::unique_ptr
<PostDominatorTree
> PDT
;
346 std::unique_ptr
<LoopInfo
> LI
;
348 std::function
<AssumptionCache
&(Function
&)> GetAC
;
349 std::function
<TargetTransformInfo
&(Function
&)> GetTTI
;
351 /// Predecessors for each basic block in the CFG.
352 BlockEdgeMap Predecessors
;
354 /// Successors for each basic block in the CFG.
355 BlockEdgeMap Successors
;
357 SampleCoverageTracker CoverageTracker
;
359 /// Profile reader object.
360 std::unique_ptr
<SampleProfileReader
> Reader
;
362 /// Samples collected for the body of this function.
363 FunctionSamples
*Samples
= nullptr;
365 /// Name of the profile file to load.
366 std::string Filename
;
368 /// Name of the profile remapping file to load.
369 std::string RemappingFilename
;
371 /// Flag indicating whether the profile input loaded successfully.
372 bool ProfileIsValid
= false;
374 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
376 /// In this phase, in annotation, we should not promote indirect calls.
377 /// Instead, we will mark GUIDs that needs to be annotated to the function.
378 bool IsThinLTOPreLink
;
380 /// Profile Summary Info computed from sample profile.
381 ProfileSummaryInfo
*PSI
= nullptr;
383 /// Profle Symbol list tells whether a function name appears in the binary
384 /// used to generate the current profile.
385 std::unique_ptr
<ProfileSymbolList
> PSL
;
387 /// Total number of samples collected in this profile.
389 /// This is the sum of all the samples collected in all the functions executed
391 uint64_t TotalCollectedSamples
= 0;
393 /// Optimization Remark Emitter used to emit diagnostic remarks.
394 OptimizationRemarkEmitter
*ORE
= nullptr;
396 // Information recorded when we declined to inline a call site
397 // because we have determined it is too cold is accumulated for
398 // each callee function. Initially this is just the entry count.
399 struct NotInlinedProfileInfo
{
402 DenseMap
<Function
*, NotInlinedProfileInfo
> notInlinedCallInfo
;
404 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
405 // all the function symbols defined or declared in current module.
406 DenseMap
<uint64_t, StringRef
> GUIDToFuncNameMap
;
409 class SampleProfileLoaderLegacyPass
: public ModulePass
{
411 // Class identification, replacement for typeinfo
414 SampleProfileLoaderLegacyPass(StringRef Name
= SampleProfileFile
,
415 bool IsThinLTOPreLink
= false)
417 SampleLoader(Name
, SampleProfileRemappingFile
, IsThinLTOPreLink
,
418 [&](Function
&F
) -> AssumptionCache
& {
419 return ACT
->getAssumptionCache(F
);
421 [&](Function
&F
) -> TargetTransformInfo
& {
422 return TTIWP
->getTTI(F
);
424 initializeSampleProfileLoaderLegacyPassPass(
425 *PassRegistry::getPassRegistry());
428 void dump() { SampleLoader
.dump(); }
430 bool doInitialization(Module
&M
) override
{
431 return SampleLoader
.doInitialization(M
);
434 StringRef
getPassName() const override
{ return "Sample profile pass"; }
435 bool runOnModule(Module
&M
) override
;
437 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
438 AU
.addRequired
<AssumptionCacheTracker
>();
439 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
440 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
444 SampleProfileLoader SampleLoader
;
445 AssumptionCacheTracker
*ACT
= nullptr;
446 TargetTransformInfoWrapperPass
*TTIWP
= nullptr;
449 } // end anonymous namespace
451 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
453 /// Functions that were inlined in the original binary will be represented
454 /// in the inline stack in the sample profile. If the profile shows that
455 /// the original inline decision was "good" (i.e., the callsite is executed
456 /// frequently), then we will recreate the inline decision and apply the
457 /// profile from the inlined callsite.
459 /// To decide whether an inlined callsite is hot, we compare the callsite
460 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
461 /// regarded as hot if the count is above the cutoff value.
462 static bool callsiteIsHot(const FunctionSamples
*CallsiteFS
,
463 ProfileSummaryInfo
*PSI
) {
465 return false; // The callsite was not inlined in the original binary.
467 assert(PSI
&& "PSI is expected to be non null");
468 uint64_t CallsiteTotalSamples
= CallsiteFS
->getTotalSamples();
469 return PSI
->isHotCount(CallsiteTotalSamples
);
472 /// Mark as used the sample record for the given function samples at
473 /// (LineOffset, Discriminator).
475 /// \returns true if this is the first time we mark the given record.
476 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples
*FS
,
478 uint32_t Discriminator
,
480 LineLocation
Loc(LineOffset
, Discriminator
);
481 unsigned &Count
= SampleCoverage
[FS
][Loc
];
482 bool FirstTime
= (++Count
== 1);
484 TotalUsedSamples
+= Samples
;
488 /// Return the number of sample records that were applied from this profile.
490 /// This count does not include records from cold inlined callsites.
492 SampleCoverageTracker::countUsedRecords(const FunctionSamples
*FS
,
493 ProfileSummaryInfo
*PSI
) const {
494 auto I
= SampleCoverage
.find(FS
);
496 // The size of the coverage map for FS represents the number of records
497 // that were marked used at least once.
498 unsigned Count
= (I
!= SampleCoverage
.end()) ? I
->second
.size() : 0;
500 // If there are inlined callsites in this function, count the samples found
501 // in the respective bodies. However, do not bother counting callees with 0
502 // total samples, these are callees that were never invoked at runtime.
503 for (const auto &I
: FS
->getCallsiteSamples())
504 for (const auto &J
: I
.second
) {
505 const FunctionSamples
*CalleeSamples
= &J
.second
;
506 if (callsiteIsHot(CalleeSamples
, PSI
))
507 Count
+= countUsedRecords(CalleeSamples
, PSI
);
513 /// Return the number of sample records in the body of this profile.
515 /// This count does not include records from cold inlined callsites.
517 SampleCoverageTracker::countBodyRecords(const FunctionSamples
*FS
,
518 ProfileSummaryInfo
*PSI
) const {
519 unsigned Count
= FS
->getBodySamples().size();
521 // Only count records in hot callsites.
522 for (const auto &I
: FS
->getCallsiteSamples())
523 for (const auto &J
: I
.second
) {
524 const FunctionSamples
*CalleeSamples
= &J
.second
;
525 if (callsiteIsHot(CalleeSamples
, PSI
))
526 Count
+= countBodyRecords(CalleeSamples
, PSI
);
532 /// Return the number of samples collected in the body of this profile.
534 /// This count does not include samples from cold inlined callsites.
536 SampleCoverageTracker::countBodySamples(const FunctionSamples
*FS
,
537 ProfileSummaryInfo
*PSI
) const {
539 for (const auto &I
: FS
->getBodySamples())
540 Total
+= I
.second
.getSamples();
542 // Only count samples in hot callsites.
543 for (const auto &I
: FS
->getCallsiteSamples())
544 for (const auto &J
: I
.second
) {
545 const FunctionSamples
*CalleeSamples
= &J
.second
;
546 if (callsiteIsHot(CalleeSamples
, PSI
))
547 Total
+= countBodySamples(CalleeSamples
, PSI
);
553 /// Return the fraction of sample records used in this profile.
555 /// The returned value is an unsigned integer in the range 0-100 indicating
556 /// the percentage of sample records that were used while applying this
557 /// profile to the associated function.
558 unsigned SampleCoverageTracker::computeCoverage(unsigned Used
,
559 unsigned Total
) const {
560 assert(Used
<= Total
&&
561 "number of used records cannot exceed the total number of records");
562 return Total
> 0 ? Used
* 100 / Total
: 100;
565 /// Clear all the per-function data used to load samples and propagate weights.
566 void SampleProfileLoader::clearFunctionData() {
567 BlockWeights
.clear();
569 VisitedBlocks
.clear();
570 VisitedEdges
.clear();
571 EquivalenceClass
.clear();
575 Predecessors
.clear();
577 CoverageTracker
.clear();
581 /// Print the weight of edge \p E on stream \p OS.
583 /// \param OS Stream to emit the output to.
584 /// \param E Edge to print.
585 void SampleProfileLoader::printEdgeWeight(raw_ostream
&OS
, Edge E
) {
586 OS
<< "weight[" << E
.first
->getName() << "->" << E
.second
->getName()
587 << "]: " << EdgeWeights
[E
] << "\n";
590 /// Print the equivalence class of block \p BB on stream \p OS.
592 /// \param OS Stream to emit the output to.
593 /// \param BB Block to print.
594 void SampleProfileLoader::printBlockEquivalence(raw_ostream
&OS
,
595 const BasicBlock
*BB
) {
596 const BasicBlock
*Equiv
= EquivalenceClass
[BB
];
597 OS
<< "equivalence[" << BB
->getName()
598 << "]: " << ((Equiv
) ? EquivalenceClass
[BB
]->getName() : "NONE") << "\n";
601 /// Print the weight of block \p BB on stream \p OS.
603 /// \param OS Stream to emit the output to.
604 /// \param BB Block to print.
605 void SampleProfileLoader::printBlockWeight(raw_ostream
&OS
,
606 const BasicBlock
*BB
) const {
607 const auto &I
= BlockWeights
.find(BB
);
608 uint64_t W
= (I
== BlockWeights
.end() ? 0 : I
->second
);
609 OS
<< "weight[" << BB
->getName() << "]: " << W
<< "\n";
613 /// Get the weight for an instruction.
615 /// The "weight" of an instruction \p Inst is the number of samples
616 /// collected on that instruction at runtime. To retrieve it, we
617 /// need to compute the line number of \p Inst relative to the start of its
618 /// function. We use HeaderLineno to compute the offset. We then
619 /// look up the samples collected for \p Inst using BodySamples.
621 /// \param Inst Instruction to query.
623 /// \returns the weight of \p Inst.
624 ErrorOr
<uint64_t> SampleProfileLoader::getInstWeight(const Instruction
&Inst
) {
625 const DebugLoc
&DLoc
= Inst
.getDebugLoc();
627 return std::error_code();
629 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
631 return std::error_code();
633 // Ignore all intrinsics, phinodes and branch instructions.
634 // Branch and phinodes instruction usually contains debug info from sources outside of
635 // the residing basic block, thus we ignore them during annotation.
636 if (isa
<BranchInst
>(Inst
) || isa
<IntrinsicInst
>(Inst
) || isa
<PHINode
>(Inst
))
637 return std::error_code();
639 // If a direct call/invoke instruction is inlined in profile
640 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
641 // it means that the inlined callsite has no sample, thus the call
642 // instruction should have 0 count.
643 if ((isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) &&
644 !ImmutableCallSite(&Inst
).isIndirectCall() &&
645 findCalleeFunctionSamples(Inst
))
648 const DILocation
*DIL
= DLoc
;
649 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
650 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
651 ErrorOr
<uint64_t> R
= FS
->findSamplesAt(LineOffset
, Discriminator
);
654 CoverageTracker
.markSamplesUsed(FS
, LineOffset
, Discriminator
, R
.get());
657 OptimizationRemarkAnalysis
Remark(DEBUG_TYPE
, "AppliedSamples", &Inst
);
658 Remark
<< "Applied " << ore::NV("NumSamples", *R
);
659 Remark
<< " samples from profile (offset: ";
660 Remark
<< ore::NV("LineOffset", LineOffset
);
663 Remark
<< ore::NV("Discriminator", Discriminator
);
669 LLVM_DEBUG(dbgs() << " " << DLoc
.getLine() << "."
670 << DIL
->getBaseDiscriminator() << ":" << Inst
671 << " (line offset: " << LineOffset
<< "."
672 << DIL
->getBaseDiscriminator() << " - weight: " << R
.get()
678 /// Compute the weight of a basic block.
680 /// The weight of basic block \p BB is the maximum weight of all the
681 /// instructions in BB.
683 /// \param BB The basic block to query.
685 /// \returns the weight for \p BB.
686 ErrorOr
<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock
*BB
) {
688 bool HasWeight
= false;
689 for (auto &I
: BB
->getInstList()) {
690 const ErrorOr
<uint64_t> &R
= getInstWeight(I
);
692 Max
= std::max(Max
, R
.get());
696 return HasWeight
? ErrorOr
<uint64_t>(Max
) : std::error_code();
699 /// Compute and store the weights of every basic block.
701 /// This populates the BlockWeights map by computing
702 /// the weights of every basic block in the CFG.
704 /// \param F The function to query.
705 bool SampleProfileLoader::computeBlockWeights(Function
&F
) {
706 bool Changed
= false;
707 LLVM_DEBUG(dbgs() << "Block weights\n");
708 for (const auto &BB
: F
) {
709 ErrorOr
<uint64_t> Weight
= getBlockWeight(&BB
);
711 BlockWeights
[&BB
] = Weight
.get();
712 VisitedBlocks
.insert(&BB
);
715 LLVM_DEBUG(printBlockWeight(dbgs(), &BB
));
721 /// Get the FunctionSamples for a call instruction.
723 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
724 /// instance in which that call instruction is calling to. It contains
725 /// all samples that resides in the inlined instance. We first find the
726 /// inlined instance in which the call instruction is from, then we
727 /// traverse its children to find the callsite with the matching
730 /// \param Inst Call/Invoke instruction to query.
732 /// \returns The FunctionSamples pointer to the inlined instance.
733 const FunctionSamples
*
734 SampleProfileLoader::findCalleeFunctionSamples(const Instruction
&Inst
) const {
735 const DILocation
*DIL
= Inst
.getDebugLoc();
740 StringRef CalleeName
;
741 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
742 if (Function
*Callee
= CI
->getCalledFunction())
743 CalleeName
= Callee
->getName();
745 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
749 return FS
->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL
),
750 DIL
->getBaseDiscriminator()),
754 /// Returns a vector of FunctionSamples that are the indirect call targets
755 /// of \p Inst. The vector is sorted by the total number of samples. Stores
756 /// the total call count of the indirect call in \p Sum.
757 std::vector
<const FunctionSamples
*>
758 SampleProfileLoader::findIndirectCallFunctionSamples(
759 const Instruction
&Inst
, uint64_t &Sum
) const {
760 const DILocation
*DIL
= Inst
.getDebugLoc();
761 std::vector
<const FunctionSamples
*> R
;
767 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
771 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
772 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
774 auto T
= FS
->findCallTargetMapAt(LineOffset
, Discriminator
);
777 for (const auto &T_C
: T
.get())
779 if (const FunctionSamplesMap
*M
= FS
->findFunctionSamplesMapAt(LineLocation(
780 FunctionSamples::getOffset(DIL
), DIL
->getBaseDiscriminator()))) {
783 for (const auto &NameFS
: *M
) {
784 Sum
+= NameFS
.second
.getEntrySamples();
785 R
.push_back(&NameFS
.second
);
787 llvm::sort(R
, [](const FunctionSamples
*L
, const FunctionSamples
*R
) {
788 if (L
->getEntrySamples() != R
->getEntrySamples())
789 return L
->getEntrySamples() > R
->getEntrySamples();
790 return FunctionSamples::getGUID(L
->getName()) <
791 FunctionSamples::getGUID(R
->getName());
797 /// Get the FunctionSamples for an instruction.
799 /// The FunctionSamples of an instruction \p Inst is the inlined instance
800 /// in which that instruction is coming from. We traverse the inline stack
801 /// of that instruction, and match it with the tree nodes in the profile.
803 /// \param Inst Instruction to query.
805 /// \returns the FunctionSamples pointer to the inlined instance.
806 const FunctionSamples
*
807 SampleProfileLoader::findFunctionSamples(const Instruction
&Inst
) const {
808 const DILocation
*DIL
= Inst
.getDebugLoc();
812 auto it
= DILocation2SampleMap
.try_emplace(DIL
,nullptr);
814 it
.first
->second
= Samples
->findFunctionSamples(DIL
);
815 return it
.first
->second
;
818 bool SampleProfileLoader::inlineCallInstruction(Instruction
*I
) {
819 assert(isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
));
821 Function
*CalledFunction
= CS
.getCalledFunction();
822 assert(CalledFunction
);
823 DebugLoc DLoc
= I
->getDebugLoc();
824 BasicBlock
*BB
= I
->getParent();
825 InlineParams Params
= getInlineParams();
826 Params
.ComputeFullInlineCost
= true;
827 // Checks if there is anything in the reachable portion of the callee at
828 // this callsite that makes this inlining potentially illegal. Need to
829 // set ComputeFullInlineCost, otherwise getInlineCost may return early
830 // when cost exceeds threshold without checking all IRs in the callee.
831 // The acutal cost does not matter because we only checks isNever() to
832 // see if it is legal to inline the callsite.
834 getInlineCost(cast
<CallBase
>(*I
), Params
, GetTTI(*CalledFunction
), GetAC
,
835 None
, nullptr, nullptr);
836 if (Cost
.isNever()) {
837 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "Not inline", DLoc
, BB
)
838 << "incompatible inlining");
841 InlineFunctionInfo
IFI(nullptr, &GetAC
);
842 if (InlineFunction(CS
, IFI
)) {
843 // The call to InlineFunction erases I, so we can't pass it here.
844 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "HotInline", DLoc
, BB
)
845 << "inlined hot callee '" << ore::NV("Callee", CalledFunction
)
846 << "' into '" << ore::NV("Caller", BB
->getParent()) << "'");
852 /// Iteratively inline hot callsites of a function.
854 /// Iteratively traverse all callsites of the function \p F, and find if
855 /// the corresponding inlined instance exists and is hot in profile. If
856 /// it is hot enough, inline the callsites and adds new callsites of the
857 /// callee into the caller. If the call is an indirect call, first promote
858 /// it to direct call. Each indirect call is limited with a single target.
860 /// \param F function to perform iterative inlining.
861 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
862 /// inlined in the profiled binary.
864 /// \returns True if there is any inline happened.
865 bool SampleProfileLoader::inlineHotFunctions(
866 Function
&F
, DenseSet
<GlobalValue::GUID
> &InlinedGUIDs
) {
867 DenseSet
<Instruction
*> PromotedInsns
;
869 DenseMap
<Instruction
*, const FunctionSamples
*> localNotInlinedCallSites
;
870 bool Changed
= false;
872 bool LocalChanged
= false;
873 SmallVector
<Instruction
*, 10> CIS
;
876 SmallVector
<Instruction
*, 10> Candidates
;
877 for (auto &I
: BB
.getInstList()) {
878 const FunctionSamples
*FS
= nullptr;
879 if ((isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) &&
880 !isa
<IntrinsicInst
>(I
) && (FS
= findCalleeFunctionSamples(I
))) {
881 Candidates
.push_back(&I
);
882 if (FS
->getEntrySamples() > 0)
883 localNotInlinedCallSites
.try_emplace(&I
, FS
);
884 if (callsiteIsHot(FS
, PSI
))
889 CIS
.insert(CIS
.begin(), Candidates
.begin(), Candidates
.end());
893 Function
*CalledFunction
= CallSite(I
).getCalledFunction();
894 // Do not inline recursive calls.
895 if (CalledFunction
== &F
)
897 if (CallSite(I
).isIndirectCall()) {
898 if (PromotedInsns
.count(I
))
901 for (const auto *FS
: findIndirectCallFunctionSamples(*I
, Sum
)) {
902 if (IsThinLTOPreLink
) {
903 FS
->findInlinedFunctions(InlinedGUIDs
, F
.getParent(),
904 PSI
->getOrCompHotCountThreshold());
907 auto CalleeFunctionName
= FS
->getFuncNameInModule(F
.getParent());
908 // If it is a recursive call, we do not inline it as it could bloat
909 // the code exponentially. There is way to better handle this, e.g.
910 // clone the caller first, and inline the cloned caller if it is
911 // recursive. As llvm does not inline recursive calls, we will
912 // simply ignore it instead of handling it explicitly.
913 if (CalleeFunctionName
== F
.getName())
916 if (!callsiteIsHot(FS
, PSI
))
919 const char *Reason
= "Callee function not available";
920 auto R
= SymbolMap
.find(CalleeFunctionName
);
921 if (R
!= SymbolMap
.end() && R
->getValue() &&
922 !R
->getValue()->isDeclaration() &&
923 R
->getValue()->getSubprogram() &&
924 isLegalToPromote(CallSite(I
), R
->getValue(), &Reason
)) {
925 uint64_t C
= FS
->getEntrySamples();
927 pgo::promoteIndirectCall(I
, R
->getValue(), C
, Sum
, false, ORE
);
929 PromotedInsns
.insert(I
);
930 // If profile mismatches, we should not attempt to inline DI.
931 if ((isa
<CallInst
>(DI
) || isa
<InvokeInst
>(DI
)) &&
932 inlineCallInstruction(DI
)) {
933 localNotInlinedCallSites
.erase(I
);
938 << "\nFailed to promote indirect call to "
939 << CalleeFunctionName
<< " because " << Reason
<< "\n");
942 } else if (CalledFunction
&& CalledFunction
->getSubprogram() &&
943 !CalledFunction
->isDeclaration()) {
944 if (inlineCallInstruction(I
)) {
945 localNotInlinedCallSites
.erase(I
);
948 } else if (IsThinLTOPreLink
) {
949 findCalleeFunctionSamples(*I
)->findInlinedFunctions(
950 InlinedGUIDs
, F
.getParent(), PSI
->getOrCompHotCountThreshold());
960 // Accumulate not inlined callsite information into notInlinedSamples
961 for (const auto &Pair
: localNotInlinedCallSites
) {
962 Instruction
*I
= Pair
.getFirst();
963 Function
*Callee
= CallSite(I
).getCalledFunction();
964 if (!Callee
|| Callee
->isDeclaration())
966 const FunctionSamples
*FS
= Pair
.getSecond();
968 notInlinedCallInfo
.try_emplace(Callee
, NotInlinedProfileInfo
{0});
969 pair
.first
->second
.entryCount
+= FS
->getEntrySamples();
974 /// Find equivalence classes for the given block.
976 /// This finds all the blocks that are guaranteed to execute the same
977 /// number of times as \p BB1. To do this, it traverses all the
978 /// descendants of \p BB1 in the dominator or post-dominator tree.
980 /// A block BB2 will be in the same equivalence class as \p BB1 if
981 /// the following holds:
983 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
984 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
985 /// dominate BB1 in the post-dominator tree.
987 /// 2- Both BB2 and \p BB1 must be in the same loop.
989 /// For every block BB2 that meets those two requirements, we set BB2's
990 /// equivalence class to \p BB1.
992 /// \param BB1 Block to check.
993 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
994 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
995 /// with blocks from \p BB1's dominator tree, then
996 /// this is the post-dominator tree, and vice versa.
997 template <bool IsPostDom
>
998 void SampleProfileLoader::findEquivalencesFor(
999 BasicBlock
*BB1
, ArrayRef
<BasicBlock
*> Descendants
,
1000 DominatorTreeBase
<BasicBlock
, IsPostDom
> *DomTree
) {
1001 const BasicBlock
*EC
= EquivalenceClass
[BB1
];
1002 uint64_t Weight
= BlockWeights
[EC
];
1003 for (const auto *BB2
: Descendants
) {
1004 bool IsDomParent
= DomTree
->dominates(BB2
, BB1
);
1005 bool IsInSameLoop
= LI
->getLoopFor(BB1
) == LI
->getLoopFor(BB2
);
1006 if (BB1
!= BB2
&& IsDomParent
&& IsInSameLoop
) {
1007 EquivalenceClass
[BB2
] = EC
;
1008 // If BB2 is visited, then the entire EC should be marked as visited.
1009 if (VisitedBlocks
.count(BB2
)) {
1010 VisitedBlocks
.insert(EC
);
1013 // If BB2 is heavier than BB1, make BB2 have the same weight
1016 // Note that we don't worry about the opposite situation here
1017 // (when BB2 is lighter than BB1). We will deal with this
1018 // during the propagation phase. Right now, we just want to
1019 // make sure that BB1 has the largest weight of all the
1020 // members of its equivalence set.
1021 Weight
= std::max(Weight
, BlockWeights
[BB2
]);
1024 if (EC
== &EC
->getParent()->getEntryBlock()) {
1025 BlockWeights
[EC
] = Samples
->getHeadSamples() + 1;
1027 BlockWeights
[EC
] = Weight
;
1031 /// Find equivalence classes.
1033 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1034 /// the weights of all the blocks in the same equivalence class to the same
1035 /// weight. To compute the concept of equivalence, we use dominance and loop
1036 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1037 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1039 /// \param F The function to query.
1040 void SampleProfileLoader::findEquivalenceClasses(Function
&F
) {
1041 SmallVector
<BasicBlock
*, 8> DominatedBBs
;
1042 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1043 // Find equivalence sets based on dominance and post-dominance information.
1044 for (auto &BB
: F
) {
1045 BasicBlock
*BB1
= &BB
;
1047 // Compute BB1's equivalence class once.
1048 if (EquivalenceClass
.count(BB1
)) {
1049 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1
));
1053 // By default, blocks are in their own equivalence class.
1054 EquivalenceClass
[BB1
] = BB1
;
1056 // Traverse all the blocks dominated by BB1. We are looking for
1057 // every basic block BB2 such that:
1059 // 1- BB1 dominates BB2.
1060 // 2- BB2 post-dominates BB1.
1061 // 3- BB1 and BB2 are in the same loop nest.
1063 // If all those conditions hold, it means that BB2 is executed
1064 // as many times as BB1, so they are placed in the same equivalence
1065 // class by making BB2's equivalence class be BB1.
1066 DominatedBBs
.clear();
1067 DT
->getDescendants(BB1
, DominatedBBs
);
1068 findEquivalencesFor(BB1
, DominatedBBs
, PDT
.get());
1070 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1
));
1073 // Assign weights to equivalence classes.
1075 // All the basic blocks in the same equivalence class will execute
1076 // the same number of times. Since we know that the head block in
1077 // each equivalence class has the largest weight, assign that weight
1078 // to all the blocks in that equivalence class.
1080 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1081 for (auto &BI
: F
) {
1082 const BasicBlock
*BB
= &BI
;
1083 const BasicBlock
*EquivBB
= EquivalenceClass
[BB
];
1085 BlockWeights
[BB
] = BlockWeights
[EquivBB
];
1086 LLVM_DEBUG(printBlockWeight(dbgs(), BB
));
1090 /// Visit the given edge to decide if it has a valid weight.
1092 /// If \p E has not been visited before, we copy to \p UnknownEdge
1093 /// and increment the count of unknown edges.
1095 /// \param E Edge to visit.
1096 /// \param NumUnknownEdges Current number of unknown edges.
1097 /// \param UnknownEdge Set if E has not been visited before.
1099 /// \returns E's weight, if known. Otherwise, return 0.
1100 uint64_t SampleProfileLoader::visitEdge(Edge E
, unsigned *NumUnknownEdges
,
1101 Edge
*UnknownEdge
) {
1102 if (!VisitedEdges
.count(E
)) {
1103 (*NumUnknownEdges
)++;
1108 return EdgeWeights
[E
];
1111 /// Propagate weights through incoming/outgoing edges.
1113 /// If the weight of a basic block is known, and there is only one edge
1114 /// with an unknown weight, we can calculate the weight of that edge.
1116 /// Similarly, if all the edges have a known count, we can calculate the
1117 /// count of the basic block, if needed.
1119 /// \param F Function to process.
1120 /// \param UpdateBlockCount Whether we should update basic block counts that
1121 /// has already been annotated.
1123 /// \returns True if new weights were assigned to edges or blocks.
1124 bool SampleProfileLoader::propagateThroughEdges(Function
&F
,
1125 bool UpdateBlockCount
) {
1126 bool Changed
= false;
1127 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1128 for (const auto &BI
: F
) {
1129 const BasicBlock
*BB
= &BI
;
1130 const BasicBlock
*EC
= EquivalenceClass
[BB
];
1132 // Visit all the predecessor and successor edges to determine
1133 // which ones have a weight assigned already. Note that it doesn't
1134 // matter that we only keep track of a single unknown edge. The
1135 // only case we are interested in handling is when only a single
1136 // edge is unknown (see setEdgeOrBlockWeight).
1137 for (unsigned i
= 0; i
< 2; i
++) {
1138 uint64_t TotalWeight
= 0;
1139 unsigned NumUnknownEdges
= 0, NumTotalEdges
= 0;
1140 Edge UnknownEdge
, SelfReferentialEdge
, SingleEdge
;
1143 // First, visit all predecessor edges.
1144 NumTotalEdges
= Predecessors
[BB
].size();
1145 for (auto *Pred
: Predecessors
[BB
]) {
1146 Edge E
= std::make_pair(Pred
, BB
);
1147 TotalWeight
+= visitEdge(E
, &NumUnknownEdges
, &UnknownEdge
);
1148 if (E
.first
== E
.second
)
1149 SelfReferentialEdge
= E
;
1151 if (NumTotalEdges
== 1) {
1152 SingleEdge
= std::make_pair(Predecessors
[BB
][0], BB
);
1155 // On the second round, visit all successor edges.
1156 NumTotalEdges
= Successors
[BB
].size();
1157 for (auto *Succ
: Successors
[BB
]) {
1158 Edge E
= std::make_pair(BB
, Succ
);
1159 TotalWeight
+= visitEdge(E
, &NumUnknownEdges
, &UnknownEdge
);
1161 if (NumTotalEdges
== 1) {
1162 SingleEdge
= std::make_pair(BB
, Successors
[BB
][0]);
1166 // After visiting all the edges, there are three cases that we
1167 // can handle immediately:
1169 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1170 // In this case, we simply check that the sum of all the edges
1171 // is the same as BB's weight. If not, we change BB's weight
1172 // to match. Additionally, if BB had not been visited before,
1173 // we mark it visited.
1175 // - Only one edge is unknown and BB has already been visited.
1176 // In this case, we can compute the weight of the edge by
1177 // subtracting the total block weight from all the known
1178 // edge weights. If the edges weight more than BB, then the
1179 // edge of the last remaining edge is set to zero.
1181 // - There exists a self-referential edge and the weight of BB is
1182 // known. In this case, this edge can be based on BB's weight.
1183 // We add up all the other known edges and set the weight on
1184 // the self-referential edge as we did in the previous case.
1186 // In any other case, we must continue iterating. Eventually,
1187 // all edges will get a weight, or iteration will stop when
1188 // it reaches SampleProfileMaxPropagateIterations.
1189 if (NumUnknownEdges
<= 1) {
1190 uint64_t &BBWeight
= BlockWeights
[EC
];
1191 if (NumUnknownEdges
== 0) {
1192 if (!VisitedBlocks
.count(EC
)) {
1193 // If we already know the weight of all edges, the weight of the
1194 // basic block can be computed. It should be no larger than the sum
1195 // of all edge weights.
1196 if (TotalWeight
> BBWeight
) {
1197 BBWeight
= TotalWeight
;
1199 LLVM_DEBUG(dbgs() << "All edge weights for " << BB
->getName()
1200 << " known. Set weight for block: ";
1201 printBlockWeight(dbgs(), BB
););
1203 } else if (NumTotalEdges
== 1 &&
1204 EdgeWeights
[SingleEdge
] < BlockWeights
[EC
]) {
1205 // If there is only one edge for the visited basic block, use the
1206 // block weight to adjust edge weight if edge weight is smaller.
1207 EdgeWeights
[SingleEdge
] = BlockWeights
[EC
];
1210 } else if (NumUnknownEdges
== 1 && VisitedBlocks
.count(EC
)) {
1211 // If there is a single unknown edge and the block has been
1212 // visited, then we can compute E's weight.
1213 if (BBWeight
>= TotalWeight
)
1214 EdgeWeights
[UnknownEdge
] = BBWeight
- TotalWeight
;
1216 EdgeWeights
[UnknownEdge
] = 0;
1217 const BasicBlock
*OtherEC
;
1219 OtherEC
= EquivalenceClass
[UnknownEdge
.first
];
1221 OtherEC
= EquivalenceClass
[UnknownEdge
.second
];
1222 // Edge weights should never exceed the BB weights it connects.
1223 if (VisitedBlocks
.count(OtherEC
) &&
1224 EdgeWeights
[UnknownEdge
] > BlockWeights
[OtherEC
])
1225 EdgeWeights
[UnknownEdge
] = BlockWeights
[OtherEC
];
1226 VisitedEdges
.insert(UnknownEdge
);
1228 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1229 printEdgeWeight(dbgs(), UnknownEdge
));
1231 } else if (VisitedBlocks
.count(EC
) && BlockWeights
[EC
] == 0) {
1232 // If a block Weights 0, all its in/out edges should weight 0.
1234 for (auto *Pred
: Predecessors
[BB
]) {
1235 Edge E
= std::make_pair(Pred
, BB
);
1237 VisitedEdges
.insert(E
);
1240 for (auto *Succ
: Successors
[BB
]) {
1241 Edge E
= std::make_pair(BB
, Succ
);
1243 VisitedEdges
.insert(E
);
1246 } else if (SelfReferentialEdge
.first
&& VisitedBlocks
.count(EC
)) {
1247 uint64_t &BBWeight
= BlockWeights
[BB
];
1248 // We have a self-referential edge and the weight of BB is known.
1249 if (BBWeight
>= TotalWeight
)
1250 EdgeWeights
[SelfReferentialEdge
] = BBWeight
- TotalWeight
;
1252 EdgeWeights
[SelfReferentialEdge
] = 0;
1253 VisitedEdges
.insert(SelfReferentialEdge
);
1255 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1256 printEdgeWeight(dbgs(), SelfReferentialEdge
));
1258 if (UpdateBlockCount
&& !VisitedBlocks
.count(EC
) && TotalWeight
> 0) {
1259 BlockWeights
[EC
] = TotalWeight
;
1260 VisitedBlocks
.insert(EC
);
1269 /// Build in/out edge lists for each basic block in the CFG.
1271 /// We are interested in unique edges. If a block B1 has multiple
1272 /// edges to another block B2, we only add a single B1->B2 edge.
1273 void SampleProfileLoader::buildEdges(Function
&F
) {
1274 for (auto &BI
: F
) {
1275 BasicBlock
*B1
= &BI
;
1277 // Add predecessors for B1.
1278 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1279 if (!Predecessors
[B1
].empty())
1280 llvm_unreachable("Found a stale predecessors list in a basic block.");
1281 for (pred_iterator PI
= pred_begin(B1
), PE
= pred_end(B1
); PI
!= PE
; ++PI
) {
1282 BasicBlock
*B2
= *PI
;
1283 if (Visited
.insert(B2
).second
)
1284 Predecessors
[B1
].push_back(B2
);
1287 // Add successors for B1.
1289 if (!Successors
[B1
].empty())
1290 llvm_unreachable("Found a stale successors list in a basic block.");
1291 for (succ_iterator SI
= succ_begin(B1
), SE
= succ_end(B1
); SI
!= SE
; ++SI
) {
1292 BasicBlock
*B2
= *SI
;
1293 if (Visited
.insert(B2
).second
)
1294 Successors
[B1
].push_back(B2
);
1299 /// Returns the sorted CallTargetMap \p M by count in descending order.
1300 static SmallVector
<InstrProfValueData
, 2> GetSortedValueDataFromCallTargets(
1301 const SampleRecord::CallTargetMap
& M
) {
1302 SmallVector
<InstrProfValueData
, 2> R
;
1303 for (const auto &I
: SampleRecord::SortCallTargets(M
)) {
1304 R
.emplace_back(InstrProfValueData
{FunctionSamples::getGUID(I
.first
), I
.second
});
1309 /// Propagate weights into edges
1311 /// The following rules are applied to every block BB in the CFG:
1313 /// - If BB has a single predecessor/successor, then the weight
1314 /// of that edge is the weight of the block.
1316 /// - If all incoming or outgoing edges are known except one, and the
1317 /// weight of the block is already known, the weight of the unknown
1318 /// edge will be the weight of the block minus the sum of all the known
1319 /// edges. If the sum of all the known edges is larger than BB's weight,
1320 /// we set the unknown edge weight to zero.
1322 /// - If there is a self-referential edge, and the weight of the block is
1323 /// known, the weight for that edge is set to the weight of the block
1324 /// minus the weight of the other incoming edges to that block (if
1326 void SampleProfileLoader::propagateWeights(Function
&F
) {
1327 bool Changed
= true;
1330 // If BB weight is larger than its corresponding loop's header BB weight,
1331 // use the BB weight to replace the loop header BB weight.
1332 for (auto &BI
: F
) {
1333 BasicBlock
*BB
= &BI
;
1334 Loop
*L
= LI
->getLoopFor(BB
);
1338 BasicBlock
*Header
= L
->getHeader();
1339 if (Header
&& BlockWeights
[BB
] > BlockWeights
[Header
]) {
1340 BlockWeights
[Header
] = BlockWeights
[BB
];
1344 // Before propagation starts, build, for each block, a list of
1345 // unique predecessors and successors. This is necessary to handle
1346 // identical edges in multiway branches. Since we visit all blocks and all
1347 // edges of the CFG, it is cleaner to build these lists once at the start
1351 // Propagate until we converge or we go past the iteration limit.
1352 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1353 Changed
= propagateThroughEdges(F
, false);
1356 // The first propagation propagates BB counts from annotated BBs to unknown
1357 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1358 // to propagate edge weights.
1359 VisitedEdges
.clear();
1361 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1362 Changed
= propagateThroughEdges(F
, false);
1365 // The 3rd propagation pass allows adjust annotated BB weights that are
1368 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1369 Changed
= propagateThroughEdges(F
, true);
1372 // Generate MD_prof metadata for every branch instruction using the
1373 // edge weights computed during propagation.
1374 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1375 LLVMContext
&Ctx
= F
.getContext();
1377 for (auto &BI
: F
) {
1378 BasicBlock
*BB
= &BI
;
1380 if (BlockWeights
[BB
]) {
1381 for (auto &I
: BB
->getInstList()) {
1382 if (!isa
<CallInst
>(I
) && !isa
<InvokeInst
>(I
))
1385 if (!CS
.getCalledFunction()) {
1386 const DebugLoc
&DLoc
= I
.getDebugLoc();
1389 const DILocation
*DIL
= DLoc
;
1390 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
1391 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
1393 const FunctionSamples
*FS
= findFunctionSamples(I
);
1396 auto T
= FS
->findCallTargetMapAt(LineOffset
, Discriminator
);
1397 if (!T
|| T
.get().empty())
1399 SmallVector
<InstrProfValueData
, 2> SortedCallTargets
=
1400 GetSortedValueDataFromCallTargets(T
.get());
1402 findIndirectCallFunctionSamples(I
, Sum
);
1403 annotateValueSite(*I
.getParent()->getParent()->getParent(), I
,
1404 SortedCallTargets
, Sum
, IPVK_IndirectCallTarget
,
1405 SortedCallTargets
.size());
1406 } else if (!isa
<IntrinsicInst
>(&I
)) {
1407 I
.setMetadata(LLVMContext::MD_prof
,
1408 MDB
.createBranchWeights(
1409 {static_cast<uint32_t>(BlockWeights
[BB
])}));
1413 Instruction
*TI
= BB
->getTerminator();
1414 if (TI
->getNumSuccessors() == 1)
1416 if (!isa
<BranchInst
>(TI
) && !isa
<SwitchInst
>(TI
))
1419 DebugLoc BranchLoc
= TI
->getDebugLoc();
1420 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1421 << ((BranchLoc
) ? Twine(BranchLoc
.getLine())
1422 : Twine("<UNKNOWN LOCATION>"))
1424 SmallVector
<uint32_t, 4> Weights
;
1425 uint32_t MaxWeight
= 0;
1426 Instruction
*MaxDestInst
;
1427 for (unsigned I
= 0; I
< TI
->getNumSuccessors(); ++I
) {
1428 BasicBlock
*Succ
= TI
->getSuccessor(I
);
1429 Edge E
= std::make_pair(BB
, Succ
);
1430 uint64_t Weight
= EdgeWeights
[E
];
1431 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E
));
1432 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1433 // if needed. Sample counts in profiles are 64-bit unsigned values,
1434 // but internally branch weights are expressed as 32-bit values.
1435 if (Weight
> std::numeric_limits
<uint32_t>::max()) {
1436 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1437 Weight
= std::numeric_limits
<uint32_t>::max();
1439 // Weight is added by one to avoid propagation errors introduced by
1441 Weights
.push_back(static_cast<uint32_t>(Weight
+ 1));
1443 if (Weight
> MaxWeight
) {
1445 MaxDestInst
= Succ
->getFirstNonPHIOrDbgOrLifetime();
1450 misexpect::verifyMisExpect(TI
, Weights
, TI
->getContext());
1452 uint64_t TempWeight
;
1453 // Only set weights if there is at least one non-zero weight.
1454 // In any other case, let the analyzer set weights.
1455 // Do not set weights if the weights are present. In ThinLTO, the profile
1456 // annotation is done twice. If the first annotation already set the
1457 // weights, the second pass does not need to set it.
1458 if (MaxWeight
> 0 && !TI
->extractProfTotalWeight(TempWeight
)) {
1459 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1460 TI
->setMetadata(LLVMContext::MD_prof
,
1461 MDB
.createBranchWeights(Weights
));
1463 return OptimizationRemark(DEBUG_TYPE
, "PopularDest", MaxDestInst
)
1464 << "most popular destination for conditional branches at "
1465 << ore::NV("CondBranchesLoc", BranchLoc
);
1468 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1473 /// Get the line number for the function header.
1475 /// This looks up function \p F in the current compilation unit and
1476 /// retrieves the line number where the function is defined. This is
1477 /// line 0 for all the samples read from the profile file. Every line
1478 /// number is relative to this line.
1480 /// \param F Function object to query.
1482 /// \returns the line number where \p F is defined. If it returns 0,
1483 /// it means that there is no debug information available for \p F.
1484 unsigned SampleProfileLoader::getFunctionLoc(Function
&F
) {
1485 if (DISubprogram
*S
= F
.getSubprogram())
1486 return S
->getLine();
1488 if (NoWarnSampleUnused
)
1491 // If the start of \p F is missing, emit a diagnostic to inform the user
1492 // about the missed opportunity.
1493 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1494 "No debug information found in function " + F
.getName() +
1495 ": Function profile not used",
1500 void SampleProfileLoader::computeDominanceAndLoopInfo(Function
&F
) {
1501 DT
.reset(new DominatorTree
);
1504 PDT
.reset(new PostDominatorTree(F
));
1506 LI
.reset(new LoopInfo
);
1510 /// Generate branch weight metadata for all branches in \p F.
1512 /// Branch weights are computed out of instruction samples using a
1513 /// propagation heuristic. Propagation proceeds in 3 phases:
1515 /// 1- Assignment of block weights. All the basic blocks in the function
1516 /// are initial assigned the same weight as their most frequently
1517 /// executed instruction.
1519 /// 2- Creation of equivalence classes. Since samples may be missing from
1520 /// blocks, we can fill in the gaps by setting the weights of all the
1521 /// blocks in the same equivalence class to the same weight. To compute
1522 /// the concept of equivalence, we use dominance and loop information.
1523 /// Two blocks B1 and B2 are in the same equivalence class if B1
1524 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1526 /// 3- Propagation of block weights into edges. This uses a simple
1527 /// propagation heuristic. The following rules are applied to every
1528 /// block BB in the CFG:
1530 /// - If BB has a single predecessor/successor, then the weight
1531 /// of that edge is the weight of the block.
1533 /// - If all the edges are known except one, and the weight of the
1534 /// block is already known, the weight of the unknown edge will
1535 /// be the weight of the block minus the sum of all the known
1536 /// edges. If the sum of all the known edges is larger than BB's weight,
1537 /// we set the unknown edge weight to zero.
1539 /// - If there is a self-referential edge, and the weight of the block is
1540 /// known, the weight for that edge is set to the weight of the block
1541 /// minus the weight of the other incoming edges to that block (if
1544 /// Since this propagation is not guaranteed to finalize for every CFG, we
1545 /// only allow it to proceed for a limited number of iterations (controlled
1546 /// by -sample-profile-max-propagate-iterations).
1548 /// FIXME: Try to replace this propagation heuristic with a scheme
1549 /// that is guaranteed to finalize. A work-list approach similar to
1550 /// the standard value propagation algorithm used by SSA-CCP might
1553 /// Once all the branch weights are computed, we emit the MD_prof
1554 /// metadata on BB using the computed values for each of its branches.
1556 /// \param F The function to query.
1558 /// \returns true if \p F was modified. Returns false, otherwise.
1559 bool SampleProfileLoader::emitAnnotations(Function
&F
) {
1560 bool Changed
= false;
1562 if (getFunctionLoc(F
) == 0)
1565 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1566 << F
.getName() << ": " << getFunctionLoc(F
) << "\n");
1568 DenseSet
<GlobalValue::GUID
> InlinedGUIDs
;
1569 Changed
|= inlineHotFunctions(F
, InlinedGUIDs
);
1571 // Compute basic block weights.
1572 Changed
|= computeBlockWeights(F
);
1575 // Add an entry count to the function using the samples gathered at the
1577 // Sets the GUIDs that are inlined in the profiled binary. This is used
1578 // for ThinLink to make correct liveness analysis, and also make the IR
1579 // match the profiled binary before annotation.
1581 ProfileCount(Samples
->getHeadSamples() + 1, Function::PCT_Real
),
1584 // Compute dominance and loop info needed for propagation.
1585 computeDominanceAndLoopInfo(F
);
1587 // Find equivalence classes.
1588 findEquivalenceClasses(F
);
1590 // Propagate weights to all edges.
1591 propagateWeights(F
);
1594 // If coverage checking was requested, compute it now.
1595 if (SampleProfileRecordCoverage
) {
1596 unsigned Used
= CoverageTracker
.countUsedRecords(Samples
, PSI
);
1597 unsigned Total
= CoverageTracker
.countBodyRecords(Samples
, PSI
);
1598 unsigned Coverage
= CoverageTracker
.computeCoverage(Used
, Total
);
1599 if (Coverage
< SampleProfileRecordCoverage
) {
1600 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1601 F
.getSubprogram()->getFilename(), getFunctionLoc(F
),
1602 Twine(Used
) + " of " + Twine(Total
) + " available profile records (" +
1603 Twine(Coverage
) + "%) were applied",
1608 if (SampleProfileSampleCoverage
) {
1609 uint64_t Used
= CoverageTracker
.getTotalUsedSamples();
1610 uint64_t Total
= CoverageTracker
.countBodySamples(Samples
, PSI
);
1611 unsigned Coverage
= CoverageTracker
.computeCoverage(Used
, Total
);
1612 if (Coverage
< SampleProfileSampleCoverage
) {
1613 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1614 F
.getSubprogram()->getFilename(), getFunctionLoc(F
),
1615 Twine(Used
) + " of " + Twine(Total
) + " available profile samples (" +
1616 Twine(Coverage
) + "%) were applied",
1623 char SampleProfileLoaderLegacyPass::ID
= 0;
1625 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass
, "sample-profile",
1626 "Sample Profile loader", false, false)
1627 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1628 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1629 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
1630 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass
, "sample-profile",
1631 "Sample Profile loader", false, false)
1633 bool SampleProfileLoader::doInitialization(Module
&M
) {
1634 auto &Ctx
= M
.getContext();
1635 auto ReaderOrErr
= SampleProfileReader::create(Filename
, Ctx
);
1636 if (std::error_code EC
= ReaderOrErr
.getError()) {
1637 std::string Msg
= "Could not open profile: " + EC
.message();
1638 Ctx
.diagnose(DiagnosticInfoSampleProfile(Filename
, Msg
));
1641 Reader
= std::move(ReaderOrErr
.get());
1642 Reader
->collectFuncsToUse(M
);
1643 ProfileIsValid
= (Reader
->read() == sampleprof_error::success
);
1644 PSL
= Reader
->getProfileSymbolList();
1646 if (!RemappingFilename
.empty()) {
1647 // Apply profile remappings to the loaded profile data if requested.
1648 // For now, we only support remapping symbols encoded using the Itanium
1649 // C++ ABI's name mangling scheme.
1650 ReaderOrErr
= SampleProfileReaderItaniumRemapper::create(
1651 RemappingFilename
, Ctx
, std::move(Reader
));
1652 if (std::error_code EC
= ReaderOrErr
.getError()) {
1653 std::string Msg
= "Could not open profile remapping file: " + EC
.message();
1654 Ctx
.diagnose(DiagnosticInfoSampleProfile(Filename
, Msg
));
1657 Reader
= std::move(ReaderOrErr
.get());
1658 ProfileIsValid
= (Reader
->read() == sampleprof_error::success
);
1663 ModulePass
*llvm::createSampleProfileLoaderPass() {
1664 return new SampleProfileLoaderLegacyPass();
1667 ModulePass
*llvm::createSampleProfileLoaderPass(StringRef Name
) {
1668 return new SampleProfileLoaderLegacyPass(Name
);
1671 bool SampleProfileLoader::runOnModule(Module
&M
, ModuleAnalysisManager
*AM
,
1672 ProfileSummaryInfo
*_PSI
) {
1673 GUIDToFuncNameMapper
Mapper(M
, *Reader
, GUIDToFuncNameMap
);
1674 if (!ProfileIsValid
)
1678 if (M
.getProfileSummary(/* IsCS */ false) == nullptr)
1679 M
.setProfileSummary(Reader
->getSummary().getMD(M
.getContext()),
1680 ProfileSummary::PSK_Sample
);
1682 // Compute the total number of samples collected in this profile.
1683 for (const auto &I
: Reader
->getProfiles())
1684 TotalCollectedSamples
+= I
.second
.getTotalSamples();
1686 // Populate the symbol map.
1687 for (const auto &N_F
: M
.getValueSymbolTable()) {
1688 StringRef OrigName
= N_F
.getKey();
1689 Function
*F
= dyn_cast
<Function
>(N_F
.getValue());
1692 SymbolMap
[OrigName
] = F
;
1693 auto pos
= OrigName
.find('.');
1694 if (pos
!= StringRef::npos
) {
1695 StringRef NewName
= OrigName
.substr(0, pos
);
1696 auto r
= SymbolMap
.insert(std::make_pair(NewName
, F
));
1697 // Failiing to insert means there is already an entry in SymbolMap,
1698 // thus there are multiple functions that are mapped to the same
1699 // stripped name. In this case of name conflicting, set the value
1700 // to nullptr to avoid confusion.
1702 r
.first
->second
= nullptr;
1706 bool retval
= false;
1708 if (!F
.isDeclaration()) {
1709 clearFunctionData();
1710 retval
|= runOnFunction(F
, AM
);
1713 // Account for cold calls not inlined....
1714 for (const std::pair
<Function
*, NotInlinedProfileInfo
> &pair
:
1716 updateProfileCallee(pair
.first
, pair
.second
.entryCount
);
1721 bool SampleProfileLoaderLegacyPass::runOnModule(Module
&M
) {
1722 ACT
= &getAnalysis
<AssumptionCacheTracker
>();
1723 TTIWP
= &getAnalysis
<TargetTransformInfoWrapperPass
>();
1724 ProfileSummaryInfo
*PSI
=
1725 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
1726 return SampleLoader
.runOnModule(M
, nullptr, PSI
);
1729 bool SampleProfileLoader::runOnFunction(Function
&F
, ModuleAnalysisManager
*AM
) {
1731 DILocation2SampleMap
.clear();
1732 // By default the entry count is initialized to -1, which will be treated
1733 // conservatively by getEntryCount as the same as unknown (None). This is
1734 // to avoid newly added code to be treated as cold. If we have samples
1735 // this will be overwritten in emitAnnotations.
1737 // PSL -- profile symbol list include all the symbols in sampled binary.
1738 // If ProfileSampleAccurate is true or F has profile-sample-accurate
1739 // attribute, and if there is no profile symbol list read in, initialize
1740 // all the function entry counts to 0; if there is profile symbol list, only
1741 // initialize the entry count to 0 when current function is in the list.
1742 uint64_t initialEntryCount
=
1743 ((ProfileSampleAccurate
|| F
.hasFnAttribute("profile-sample-accurate")) &&
1744 (!PSL
|| PSL
->contains(F
.getName())))
1747 F
.setEntryCount(ProfileCount(initialEntryCount
, Function::PCT_Real
));
1748 std::unique_ptr
<OptimizationRemarkEmitter
> OwnedORE
;
1751 AM
->getResult
<FunctionAnalysisManagerModuleProxy
>(*F
.getParent())
1753 ORE
= &FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1755 OwnedORE
= std::make_unique
<OptimizationRemarkEmitter
>(&F
);
1756 ORE
= OwnedORE
.get();
1758 Samples
= Reader
->getSamplesFor(F
);
1759 if (Samples
&& !Samples
->empty())
1760 return emitAnnotations(F
);
1764 PreservedAnalyses
SampleProfileLoaderPass::run(Module
&M
,
1765 ModuleAnalysisManager
&AM
) {
1766 FunctionAnalysisManager
&FAM
=
1767 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1769 auto GetAssumptionCache
= [&](Function
&F
) -> AssumptionCache
& {
1770 return FAM
.getResult
<AssumptionAnalysis
>(F
);
1772 auto GetTTI
= [&](Function
&F
) -> TargetTransformInfo
& {
1773 return FAM
.getResult
<TargetIRAnalysis
>(F
);
1776 SampleProfileLoader
SampleLoader(
1777 ProfileFileName
.empty() ? SampleProfileFile
: ProfileFileName
,
1778 ProfileRemappingFileName
.empty() ? SampleProfileRemappingFile
1779 : ProfileRemappingFileName
,
1780 IsThinLTOPreLink
, GetAssumptionCache
, GetTTI
);
1782 SampleLoader
.doInitialization(M
);
1784 ProfileSummaryInfo
*PSI
= &AM
.getResult
<ProfileSummaryAnalysis
>(M
);
1785 if (!SampleLoader
.runOnModule(M
, &AM
, PSI
))
1786 return PreservedAnalyses::all();
1788 return PreservedAnalyses::none();