[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / Transforms / IPO / SampleProfile.cpp
blobd0cf63b35f4b960451e99da560dc3c85ef669330
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include "llvm/Transforms/Utils/MisExpect.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <queue>
84 #include <string>
85 #include <system_error>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
90 using namespace sampleprof;
91 using ProfileCount = Function::ProfileCount;
92 #define DEBUG_TYPE "sample-profile"
94 // Command line option to specify the file to read samples from. This is
95 // mainly used for debugging.
96 static cl::opt<std::string> SampleProfileFile(
97 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
100 // The named file contains a set of transformations that may have been applied
101 // to the symbol names between the program from which the sample data was
102 // collected and the current program's symbols.
103 static cl::opt<std::string> SampleProfileRemappingFile(
104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
107 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
108 "sample-profile-max-propagate-iterations", cl::init(100),
109 cl::desc("Maximum number of iterations to go through when propagating "
110 "sample block/edge weights through the CFG."));
112 static cl::opt<unsigned> SampleProfileRecordCoverage(
113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
114 cl::desc("Emit a warning if less than N% of records in the input profile "
115 "are matched to the IR."));
117 static cl::opt<unsigned> SampleProfileSampleCoverage(
118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
119 cl::desc("Emit a warning if less than N% of samples in the input profile "
120 "are matched to the IR."));
122 static cl::opt<bool> NoWarnSampleUnused(
123 "no-warn-sample-unused", cl::init(false), cl::Hidden,
124 cl::desc("Use this option to turn off/on warnings about function with "
125 "samples but without debug information to use those samples. "));
127 static cl::opt<bool> ProfileSampleAccurate(
128 "profile-sample-accurate", cl::Hidden, cl::init(false),
129 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
130 "callsite and function as having 0 samples. Otherwise, treat "
131 "un-sampled callsites and functions conservatively as unknown. "));
133 namespace {
135 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
136 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
137 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
138 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
139 using BlockEdgeMap =
140 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
142 class SampleCoverageTracker {
143 public:
144 SampleCoverageTracker() = default;
146 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
147 uint32_t Discriminator, uint64_t Samples);
148 unsigned computeCoverage(unsigned Used, unsigned Total) const;
149 unsigned countUsedRecords(const FunctionSamples *FS,
150 ProfileSummaryInfo *PSI) const;
151 unsigned countBodyRecords(const FunctionSamples *FS,
152 ProfileSummaryInfo *PSI) const;
153 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
154 uint64_t countBodySamples(const FunctionSamples *FS,
155 ProfileSummaryInfo *PSI) const;
157 void clear() {
158 SampleCoverage.clear();
159 TotalUsedSamples = 0;
162 private:
163 using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
164 using FunctionSamplesCoverageMap =
165 DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
167 /// Coverage map for sampling records.
169 /// This map keeps a record of sampling records that have been matched to
170 /// an IR instruction. This is used to detect some form of staleness in
171 /// profiles (see flag -sample-profile-check-coverage).
173 /// Each entry in the map corresponds to a FunctionSamples instance. This is
174 /// another map that counts how many times the sample record at the
175 /// given location has been used.
176 FunctionSamplesCoverageMap SampleCoverage;
178 /// Number of samples used from the profile.
180 /// When a sampling record is used for the first time, the samples from
181 /// that record are added to this accumulator. Coverage is later computed
182 /// based on the total number of samples available in this function and
183 /// its callsites.
185 /// Note that this accumulator tracks samples used from a single function
186 /// and all the inlined callsites. Strictly, we should have a map of counters
187 /// keyed by FunctionSamples pointers, but these stats are cleared after
188 /// every function, so we just need to keep a single counter.
189 uint64_t TotalUsedSamples = 0;
192 class GUIDToFuncNameMapper {
193 public:
194 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
195 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
196 : CurrentReader(Reader), CurrentModule(M),
197 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
198 if (CurrentReader.getFormat() != SPF_Compact_Binary)
199 return;
201 for (const auto &F : CurrentModule) {
202 StringRef OrigName = F.getName();
203 CurrentGUIDToFuncNameMap.insert(
204 {Function::getGUID(OrigName), OrigName});
206 // Local to global var promotion used by optimization like thinlto
207 // will rename the var and add suffix like ".llvm.xxx" to the
208 // original local name. In sample profile, the suffixes of function
209 // names are all stripped. Since it is possible that the mapper is
210 // built in post-thin-link phase and var promotion has been done,
211 // we need to add the substring of function name without the suffix
212 // into the GUIDToFuncNameMap.
213 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
214 if (CanonName != OrigName)
215 CurrentGUIDToFuncNameMap.insert(
216 {Function::getGUID(CanonName), CanonName});
219 // Update GUIDToFuncNameMap for each function including inlinees.
220 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
223 ~GUIDToFuncNameMapper() {
224 if (CurrentReader.getFormat() != SPF_Compact_Binary)
225 return;
227 CurrentGUIDToFuncNameMap.clear();
229 // Reset GUIDToFuncNameMap for of each function as they're no
230 // longer valid at this point.
231 SetGUIDToFuncNameMapForAll(nullptr);
234 private:
235 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
236 std::queue<FunctionSamples *> FSToUpdate;
237 for (auto &IFS : CurrentReader.getProfiles()) {
238 FSToUpdate.push(&IFS.second);
241 while (!FSToUpdate.empty()) {
242 FunctionSamples *FS = FSToUpdate.front();
243 FSToUpdate.pop();
244 FS->GUIDToFuncNameMap = Map;
245 for (const auto &ICS : FS->getCallsiteSamples()) {
246 const FunctionSamplesMap &FSMap = ICS.second;
247 for (auto &IFS : FSMap) {
248 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
249 FSToUpdate.push(&FS);
255 SampleProfileReader &CurrentReader;
256 Module &CurrentModule;
257 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
260 /// Sample profile pass.
262 /// This pass reads profile data from the file specified by
263 /// -sample-profile-file and annotates every affected function with the
264 /// profile information found in that file.
265 class SampleProfileLoader {
266 public:
267 SampleProfileLoader(
268 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
269 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
270 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
271 : GetAC(std::move(GetAssumptionCache)),
272 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
273 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
275 bool doInitialization(Module &M);
276 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
277 ProfileSummaryInfo *_PSI);
279 void dump() { Reader->dump(); }
281 protected:
282 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
283 unsigned getFunctionLoc(Function &F);
284 bool emitAnnotations(Function &F);
285 ErrorOr<uint64_t> getInstWeight(const Instruction &I);
286 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
287 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
288 std::vector<const FunctionSamples *>
289 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
290 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
291 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
292 bool inlineCallInstruction(Instruction *I);
293 bool inlineHotFunctions(Function &F,
294 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
295 void printEdgeWeight(raw_ostream &OS, Edge E);
296 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
297 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
298 bool computeBlockWeights(Function &F);
299 void findEquivalenceClasses(Function &F);
300 template <bool IsPostDom>
301 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
302 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
304 void propagateWeights(Function &F);
305 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
306 void buildEdges(Function &F);
307 bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
308 void computeDominanceAndLoopInfo(Function &F);
309 void clearFunctionData();
311 /// Map basic blocks to their computed weights.
313 /// The weight of a basic block is defined to be the maximum
314 /// of all the instruction weights in that block.
315 BlockWeightMap BlockWeights;
317 /// Map edges to their computed weights.
319 /// Edge weights are computed by propagating basic block weights in
320 /// SampleProfile::propagateWeights.
321 EdgeWeightMap EdgeWeights;
323 /// Set of visited blocks during propagation.
324 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
326 /// Set of visited edges during propagation.
327 SmallSet<Edge, 32> VisitedEdges;
329 /// Equivalence classes for block weights.
331 /// Two blocks BB1 and BB2 are in the same equivalence class if they
332 /// dominate and post-dominate each other, and they are in the same loop
333 /// nest. When this happens, the two blocks are guaranteed to execute
334 /// the same number of times.
335 EquivalenceClassMap EquivalenceClass;
337 /// Map from function name to Function *. Used to find the function from
338 /// the function name. If the function name contains suffix, additional
339 /// entry is added to map from the stripped name to the function if there
340 /// is one-to-one mapping.
341 StringMap<Function *> SymbolMap;
343 /// Dominance, post-dominance and loop information.
344 std::unique_ptr<DominatorTree> DT;
345 std::unique_ptr<PostDominatorTree> PDT;
346 std::unique_ptr<LoopInfo> LI;
348 std::function<AssumptionCache &(Function &)> GetAC;
349 std::function<TargetTransformInfo &(Function &)> GetTTI;
351 /// Predecessors for each basic block in the CFG.
352 BlockEdgeMap Predecessors;
354 /// Successors for each basic block in the CFG.
355 BlockEdgeMap Successors;
357 SampleCoverageTracker CoverageTracker;
359 /// Profile reader object.
360 std::unique_ptr<SampleProfileReader> Reader;
362 /// Samples collected for the body of this function.
363 FunctionSamples *Samples = nullptr;
365 /// Name of the profile file to load.
366 std::string Filename;
368 /// Name of the profile remapping file to load.
369 std::string RemappingFilename;
371 /// Flag indicating whether the profile input loaded successfully.
372 bool ProfileIsValid = false;
374 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
376 /// In this phase, in annotation, we should not promote indirect calls.
377 /// Instead, we will mark GUIDs that needs to be annotated to the function.
378 bool IsThinLTOPreLink;
380 /// Profile Summary Info computed from sample profile.
381 ProfileSummaryInfo *PSI = nullptr;
383 /// Profle Symbol list tells whether a function name appears in the binary
384 /// used to generate the current profile.
385 std::unique_ptr<ProfileSymbolList> PSL;
387 /// Total number of samples collected in this profile.
389 /// This is the sum of all the samples collected in all the functions executed
390 /// at runtime.
391 uint64_t TotalCollectedSamples = 0;
393 /// Optimization Remark Emitter used to emit diagnostic remarks.
394 OptimizationRemarkEmitter *ORE = nullptr;
396 // Information recorded when we declined to inline a call site
397 // because we have determined it is too cold is accumulated for
398 // each callee function. Initially this is just the entry count.
399 struct NotInlinedProfileInfo {
400 uint64_t entryCount;
402 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
404 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
405 // all the function symbols defined or declared in current module.
406 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
409 class SampleProfileLoaderLegacyPass : public ModulePass {
410 public:
411 // Class identification, replacement for typeinfo
412 static char ID;
414 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
415 bool IsThinLTOPreLink = false)
416 : ModulePass(ID),
417 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
418 [&](Function &F) -> AssumptionCache & {
419 return ACT->getAssumptionCache(F);
421 [&](Function &F) -> TargetTransformInfo & {
422 return TTIWP->getTTI(F);
423 }) {
424 initializeSampleProfileLoaderLegacyPassPass(
425 *PassRegistry::getPassRegistry());
428 void dump() { SampleLoader.dump(); }
430 bool doInitialization(Module &M) override {
431 return SampleLoader.doInitialization(M);
434 StringRef getPassName() const override { return "Sample profile pass"; }
435 bool runOnModule(Module &M) override;
437 void getAnalysisUsage(AnalysisUsage &AU) const override {
438 AU.addRequired<AssumptionCacheTracker>();
439 AU.addRequired<TargetTransformInfoWrapperPass>();
440 AU.addRequired<ProfileSummaryInfoWrapperPass>();
443 private:
444 SampleProfileLoader SampleLoader;
445 AssumptionCacheTracker *ACT = nullptr;
446 TargetTransformInfoWrapperPass *TTIWP = nullptr;
449 } // end anonymous namespace
451 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
453 /// Functions that were inlined in the original binary will be represented
454 /// in the inline stack in the sample profile. If the profile shows that
455 /// the original inline decision was "good" (i.e., the callsite is executed
456 /// frequently), then we will recreate the inline decision and apply the
457 /// profile from the inlined callsite.
459 /// To decide whether an inlined callsite is hot, we compare the callsite
460 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
461 /// regarded as hot if the count is above the cutoff value.
462 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
463 ProfileSummaryInfo *PSI) {
464 if (!CallsiteFS)
465 return false; // The callsite was not inlined in the original binary.
467 assert(PSI && "PSI is expected to be non null");
468 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
469 return PSI->isHotCount(CallsiteTotalSamples);
472 /// Mark as used the sample record for the given function samples at
473 /// (LineOffset, Discriminator).
475 /// \returns true if this is the first time we mark the given record.
476 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
477 uint32_t LineOffset,
478 uint32_t Discriminator,
479 uint64_t Samples) {
480 LineLocation Loc(LineOffset, Discriminator);
481 unsigned &Count = SampleCoverage[FS][Loc];
482 bool FirstTime = (++Count == 1);
483 if (FirstTime)
484 TotalUsedSamples += Samples;
485 return FirstTime;
488 /// Return the number of sample records that were applied from this profile.
490 /// This count does not include records from cold inlined callsites.
491 unsigned
492 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
493 ProfileSummaryInfo *PSI) const {
494 auto I = SampleCoverage.find(FS);
496 // The size of the coverage map for FS represents the number of records
497 // that were marked used at least once.
498 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
500 // If there are inlined callsites in this function, count the samples found
501 // in the respective bodies. However, do not bother counting callees with 0
502 // total samples, these are callees that were never invoked at runtime.
503 for (const auto &I : FS->getCallsiteSamples())
504 for (const auto &J : I.second) {
505 const FunctionSamples *CalleeSamples = &J.second;
506 if (callsiteIsHot(CalleeSamples, PSI))
507 Count += countUsedRecords(CalleeSamples, PSI);
510 return Count;
513 /// Return the number of sample records in the body of this profile.
515 /// This count does not include records from cold inlined callsites.
516 unsigned
517 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
518 ProfileSummaryInfo *PSI) const {
519 unsigned Count = FS->getBodySamples().size();
521 // Only count records in hot callsites.
522 for (const auto &I : FS->getCallsiteSamples())
523 for (const auto &J : I.second) {
524 const FunctionSamples *CalleeSamples = &J.second;
525 if (callsiteIsHot(CalleeSamples, PSI))
526 Count += countBodyRecords(CalleeSamples, PSI);
529 return Count;
532 /// Return the number of samples collected in the body of this profile.
534 /// This count does not include samples from cold inlined callsites.
535 uint64_t
536 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
537 ProfileSummaryInfo *PSI) const {
538 uint64_t Total = 0;
539 for (const auto &I : FS->getBodySamples())
540 Total += I.second.getSamples();
542 // Only count samples in hot callsites.
543 for (const auto &I : FS->getCallsiteSamples())
544 for (const auto &J : I.second) {
545 const FunctionSamples *CalleeSamples = &J.second;
546 if (callsiteIsHot(CalleeSamples, PSI))
547 Total += countBodySamples(CalleeSamples, PSI);
550 return Total;
553 /// Return the fraction of sample records used in this profile.
555 /// The returned value is an unsigned integer in the range 0-100 indicating
556 /// the percentage of sample records that were used while applying this
557 /// profile to the associated function.
558 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
559 unsigned Total) const {
560 assert(Used <= Total &&
561 "number of used records cannot exceed the total number of records");
562 return Total > 0 ? Used * 100 / Total : 100;
565 /// Clear all the per-function data used to load samples and propagate weights.
566 void SampleProfileLoader::clearFunctionData() {
567 BlockWeights.clear();
568 EdgeWeights.clear();
569 VisitedBlocks.clear();
570 VisitedEdges.clear();
571 EquivalenceClass.clear();
572 DT = nullptr;
573 PDT = nullptr;
574 LI = nullptr;
575 Predecessors.clear();
576 Successors.clear();
577 CoverageTracker.clear();
580 #ifndef NDEBUG
581 /// Print the weight of edge \p E on stream \p OS.
583 /// \param OS Stream to emit the output to.
584 /// \param E Edge to print.
585 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
586 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
587 << "]: " << EdgeWeights[E] << "\n";
590 /// Print the equivalence class of block \p BB on stream \p OS.
592 /// \param OS Stream to emit the output to.
593 /// \param BB Block to print.
594 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
595 const BasicBlock *BB) {
596 const BasicBlock *Equiv = EquivalenceClass[BB];
597 OS << "equivalence[" << BB->getName()
598 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
601 /// Print the weight of block \p BB on stream \p OS.
603 /// \param OS Stream to emit the output to.
604 /// \param BB Block to print.
605 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
606 const BasicBlock *BB) const {
607 const auto &I = BlockWeights.find(BB);
608 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
609 OS << "weight[" << BB->getName() << "]: " << W << "\n";
611 #endif
613 /// Get the weight for an instruction.
615 /// The "weight" of an instruction \p Inst is the number of samples
616 /// collected on that instruction at runtime. To retrieve it, we
617 /// need to compute the line number of \p Inst relative to the start of its
618 /// function. We use HeaderLineno to compute the offset. We then
619 /// look up the samples collected for \p Inst using BodySamples.
621 /// \param Inst Instruction to query.
623 /// \returns the weight of \p Inst.
624 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
625 const DebugLoc &DLoc = Inst.getDebugLoc();
626 if (!DLoc)
627 return std::error_code();
629 const FunctionSamples *FS = findFunctionSamples(Inst);
630 if (!FS)
631 return std::error_code();
633 // Ignore all intrinsics, phinodes and branch instructions.
634 // Branch and phinodes instruction usually contains debug info from sources outside of
635 // the residing basic block, thus we ignore them during annotation.
636 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
637 return std::error_code();
639 // If a direct call/invoke instruction is inlined in profile
640 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
641 // it means that the inlined callsite has no sample, thus the call
642 // instruction should have 0 count.
643 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
644 !ImmutableCallSite(&Inst).isIndirectCall() &&
645 findCalleeFunctionSamples(Inst))
646 return 0;
648 const DILocation *DIL = DLoc;
649 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
650 uint32_t Discriminator = DIL->getBaseDiscriminator();
651 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
652 if (R) {
653 bool FirstMark =
654 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
655 if (FirstMark) {
656 ORE->emit([&]() {
657 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
658 Remark << "Applied " << ore::NV("NumSamples", *R);
659 Remark << " samples from profile (offset: ";
660 Remark << ore::NV("LineOffset", LineOffset);
661 if (Discriminator) {
662 Remark << ".";
663 Remark << ore::NV("Discriminator", Discriminator);
665 Remark << ")";
666 return Remark;
669 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
670 << DIL->getBaseDiscriminator() << ":" << Inst
671 << " (line offset: " << LineOffset << "."
672 << DIL->getBaseDiscriminator() << " - weight: " << R.get()
673 << ")\n");
675 return R;
678 /// Compute the weight of a basic block.
680 /// The weight of basic block \p BB is the maximum weight of all the
681 /// instructions in BB.
683 /// \param BB The basic block to query.
685 /// \returns the weight for \p BB.
686 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
687 uint64_t Max = 0;
688 bool HasWeight = false;
689 for (auto &I : BB->getInstList()) {
690 const ErrorOr<uint64_t> &R = getInstWeight(I);
691 if (R) {
692 Max = std::max(Max, R.get());
693 HasWeight = true;
696 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
699 /// Compute and store the weights of every basic block.
701 /// This populates the BlockWeights map by computing
702 /// the weights of every basic block in the CFG.
704 /// \param F The function to query.
705 bool SampleProfileLoader::computeBlockWeights(Function &F) {
706 bool Changed = false;
707 LLVM_DEBUG(dbgs() << "Block weights\n");
708 for (const auto &BB : F) {
709 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
710 if (Weight) {
711 BlockWeights[&BB] = Weight.get();
712 VisitedBlocks.insert(&BB);
713 Changed = true;
715 LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
718 return Changed;
721 /// Get the FunctionSamples for a call instruction.
723 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
724 /// instance in which that call instruction is calling to. It contains
725 /// all samples that resides in the inlined instance. We first find the
726 /// inlined instance in which the call instruction is from, then we
727 /// traverse its children to find the callsite with the matching
728 /// location.
730 /// \param Inst Call/Invoke instruction to query.
732 /// \returns The FunctionSamples pointer to the inlined instance.
733 const FunctionSamples *
734 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
735 const DILocation *DIL = Inst.getDebugLoc();
736 if (!DIL) {
737 return nullptr;
740 StringRef CalleeName;
741 if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
742 if (Function *Callee = CI->getCalledFunction())
743 CalleeName = Callee->getName();
745 const FunctionSamples *FS = findFunctionSamples(Inst);
746 if (FS == nullptr)
747 return nullptr;
749 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
750 DIL->getBaseDiscriminator()),
751 CalleeName);
754 /// Returns a vector of FunctionSamples that are the indirect call targets
755 /// of \p Inst. The vector is sorted by the total number of samples. Stores
756 /// the total call count of the indirect call in \p Sum.
757 std::vector<const FunctionSamples *>
758 SampleProfileLoader::findIndirectCallFunctionSamples(
759 const Instruction &Inst, uint64_t &Sum) const {
760 const DILocation *DIL = Inst.getDebugLoc();
761 std::vector<const FunctionSamples *> R;
763 if (!DIL) {
764 return R;
767 const FunctionSamples *FS = findFunctionSamples(Inst);
768 if (FS == nullptr)
769 return R;
771 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
772 uint32_t Discriminator = DIL->getBaseDiscriminator();
774 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
775 Sum = 0;
776 if (T)
777 for (const auto &T_C : T.get())
778 Sum += T_C.second;
779 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
780 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
781 if (M->empty())
782 return R;
783 for (const auto &NameFS : *M) {
784 Sum += NameFS.second.getEntrySamples();
785 R.push_back(&NameFS.second);
787 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
788 if (L->getEntrySamples() != R->getEntrySamples())
789 return L->getEntrySamples() > R->getEntrySamples();
790 return FunctionSamples::getGUID(L->getName()) <
791 FunctionSamples::getGUID(R->getName());
794 return R;
797 /// Get the FunctionSamples for an instruction.
799 /// The FunctionSamples of an instruction \p Inst is the inlined instance
800 /// in which that instruction is coming from. We traverse the inline stack
801 /// of that instruction, and match it with the tree nodes in the profile.
803 /// \param Inst Instruction to query.
805 /// \returns the FunctionSamples pointer to the inlined instance.
806 const FunctionSamples *
807 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
808 const DILocation *DIL = Inst.getDebugLoc();
809 if (!DIL)
810 return Samples;
812 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
813 if (it.second)
814 it.first->second = Samples->findFunctionSamples(DIL);
815 return it.first->second;
818 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
819 assert(isa<CallInst>(I) || isa<InvokeInst>(I));
820 CallSite CS(I);
821 Function *CalledFunction = CS.getCalledFunction();
822 assert(CalledFunction);
823 DebugLoc DLoc = I->getDebugLoc();
824 BasicBlock *BB = I->getParent();
825 InlineParams Params = getInlineParams();
826 Params.ComputeFullInlineCost = true;
827 // Checks if there is anything in the reachable portion of the callee at
828 // this callsite that makes this inlining potentially illegal. Need to
829 // set ComputeFullInlineCost, otherwise getInlineCost may return early
830 // when cost exceeds threshold without checking all IRs in the callee.
831 // The acutal cost does not matter because we only checks isNever() to
832 // see if it is legal to inline the callsite.
833 InlineCost Cost =
834 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
835 None, nullptr, nullptr);
836 if (Cost.isNever()) {
837 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
838 << "incompatible inlining");
839 return false;
841 InlineFunctionInfo IFI(nullptr, &GetAC);
842 if (InlineFunction(CS, IFI)) {
843 // The call to InlineFunction erases I, so we can't pass it here.
844 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
845 << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
846 << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
847 return true;
849 return false;
852 /// Iteratively inline hot callsites of a function.
854 /// Iteratively traverse all callsites of the function \p F, and find if
855 /// the corresponding inlined instance exists and is hot in profile. If
856 /// it is hot enough, inline the callsites and adds new callsites of the
857 /// callee into the caller. If the call is an indirect call, first promote
858 /// it to direct call. Each indirect call is limited with a single target.
860 /// \param F function to perform iterative inlining.
861 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
862 /// inlined in the profiled binary.
864 /// \returns True if there is any inline happened.
865 bool SampleProfileLoader::inlineHotFunctions(
866 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
867 DenseSet<Instruction *> PromotedInsns;
869 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
870 bool Changed = false;
871 while (true) {
872 bool LocalChanged = false;
873 SmallVector<Instruction *, 10> CIS;
874 for (auto &BB : F) {
875 bool Hot = false;
876 SmallVector<Instruction *, 10> Candidates;
877 for (auto &I : BB.getInstList()) {
878 const FunctionSamples *FS = nullptr;
879 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
880 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
881 Candidates.push_back(&I);
882 if (FS->getEntrySamples() > 0)
883 localNotInlinedCallSites.try_emplace(&I, FS);
884 if (callsiteIsHot(FS, PSI))
885 Hot = true;
888 if (Hot) {
889 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
892 for (auto I : CIS) {
893 Function *CalledFunction = CallSite(I).getCalledFunction();
894 // Do not inline recursive calls.
895 if (CalledFunction == &F)
896 continue;
897 if (CallSite(I).isIndirectCall()) {
898 if (PromotedInsns.count(I))
899 continue;
900 uint64_t Sum;
901 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
902 if (IsThinLTOPreLink) {
903 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
904 PSI->getOrCompHotCountThreshold());
905 continue;
907 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
908 // If it is a recursive call, we do not inline it as it could bloat
909 // the code exponentially. There is way to better handle this, e.g.
910 // clone the caller first, and inline the cloned caller if it is
911 // recursive. As llvm does not inline recursive calls, we will
912 // simply ignore it instead of handling it explicitly.
913 if (CalleeFunctionName == F.getName())
914 continue;
916 if (!callsiteIsHot(FS, PSI))
917 continue;
919 const char *Reason = "Callee function not available";
920 auto R = SymbolMap.find(CalleeFunctionName);
921 if (R != SymbolMap.end() && R->getValue() &&
922 !R->getValue()->isDeclaration() &&
923 R->getValue()->getSubprogram() &&
924 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
925 uint64_t C = FS->getEntrySamples();
926 Instruction *DI =
927 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
928 Sum -= C;
929 PromotedInsns.insert(I);
930 // If profile mismatches, we should not attempt to inline DI.
931 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
932 inlineCallInstruction(DI)) {
933 localNotInlinedCallSites.erase(I);
934 LocalChanged = true;
936 } else {
937 LLVM_DEBUG(dbgs()
938 << "\nFailed to promote indirect call to "
939 << CalleeFunctionName << " because " << Reason << "\n");
942 } else if (CalledFunction && CalledFunction->getSubprogram() &&
943 !CalledFunction->isDeclaration()) {
944 if (inlineCallInstruction(I)) {
945 localNotInlinedCallSites.erase(I);
946 LocalChanged = true;
948 } else if (IsThinLTOPreLink) {
949 findCalleeFunctionSamples(*I)->findInlinedFunctions(
950 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
953 if (LocalChanged) {
954 Changed = true;
955 } else {
956 break;
960 // Accumulate not inlined callsite information into notInlinedSamples
961 for (const auto &Pair : localNotInlinedCallSites) {
962 Instruction *I = Pair.getFirst();
963 Function *Callee = CallSite(I).getCalledFunction();
964 if (!Callee || Callee->isDeclaration())
965 continue;
966 const FunctionSamples *FS = Pair.getSecond();
967 auto pair =
968 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
969 pair.first->second.entryCount += FS->getEntrySamples();
971 return Changed;
974 /// Find equivalence classes for the given block.
976 /// This finds all the blocks that are guaranteed to execute the same
977 /// number of times as \p BB1. To do this, it traverses all the
978 /// descendants of \p BB1 in the dominator or post-dominator tree.
980 /// A block BB2 will be in the same equivalence class as \p BB1 if
981 /// the following holds:
983 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
984 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
985 /// dominate BB1 in the post-dominator tree.
987 /// 2- Both BB2 and \p BB1 must be in the same loop.
989 /// For every block BB2 that meets those two requirements, we set BB2's
990 /// equivalence class to \p BB1.
992 /// \param BB1 Block to check.
993 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
994 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
995 /// with blocks from \p BB1's dominator tree, then
996 /// this is the post-dominator tree, and vice versa.
997 template <bool IsPostDom>
998 void SampleProfileLoader::findEquivalencesFor(
999 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1000 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1001 const BasicBlock *EC = EquivalenceClass[BB1];
1002 uint64_t Weight = BlockWeights[EC];
1003 for (const auto *BB2 : Descendants) {
1004 bool IsDomParent = DomTree->dominates(BB2, BB1);
1005 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1006 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1007 EquivalenceClass[BB2] = EC;
1008 // If BB2 is visited, then the entire EC should be marked as visited.
1009 if (VisitedBlocks.count(BB2)) {
1010 VisitedBlocks.insert(EC);
1013 // If BB2 is heavier than BB1, make BB2 have the same weight
1014 // as BB1.
1016 // Note that we don't worry about the opposite situation here
1017 // (when BB2 is lighter than BB1). We will deal with this
1018 // during the propagation phase. Right now, we just want to
1019 // make sure that BB1 has the largest weight of all the
1020 // members of its equivalence set.
1021 Weight = std::max(Weight, BlockWeights[BB2]);
1024 if (EC == &EC->getParent()->getEntryBlock()) {
1025 BlockWeights[EC] = Samples->getHeadSamples() + 1;
1026 } else {
1027 BlockWeights[EC] = Weight;
1031 /// Find equivalence classes.
1033 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1034 /// the weights of all the blocks in the same equivalence class to the same
1035 /// weight. To compute the concept of equivalence, we use dominance and loop
1036 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1037 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1039 /// \param F The function to query.
1040 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1041 SmallVector<BasicBlock *, 8> DominatedBBs;
1042 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1043 // Find equivalence sets based on dominance and post-dominance information.
1044 for (auto &BB : F) {
1045 BasicBlock *BB1 = &BB;
1047 // Compute BB1's equivalence class once.
1048 if (EquivalenceClass.count(BB1)) {
1049 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1050 continue;
1053 // By default, blocks are in their own equivalence class.
1054 EquivalenceClass[BB1] = BB1;
1056 // Traverse all the blocks dominated by BB1. We are looking for
1057 // every basic block BB2 such that:
1059 // 1- BB1 dominates BB2.
1060 // 2- BB2 post-dominates BB1.
1061 // 3- BB1 and BB2 are in the same loop nest.
1063 // If all those conditions hold, it means that BB2 is executed
1064 // as many times as BB1, so they are placed in the same equivalence
1065 // class by making BB2's equivalence class be BB1.
1066 DominatedBBs.clear();
1067 DT->getDescendants(BB1, DominatedBBs);
1068 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1070 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1073 // Assign weights to equivalence classes.
1075 // All the basic blocks in the same equivalence class will execute
1076 // the same number of times. Since we know that the head block in
1077 // each equivalence class has the largest weight, assign that weight
1078 // to all the blocks in that equivalence class.
1079 LLVM_DEBUG(
1080 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1081 for (auto &BI : F) {
1082 const BasicBlock *BB = &BI;
1083 const BasicBlock *EquivBB = EquivalenceClass[BB];
1084 if (BB != EquivBB)
1085 BlockWeights[BB] = BlockWeights[EquivBB];
1086 LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1090 /// Visit the given edge to decide if it has a valid weight.
1092 /// If \p E has not been visited before, we copy to \p UnknownEdge
1093 /// and increment the count of unknown edges.
1095 /// \param E Edge to visit.
1096 /// \param NumUnknownEdges Current number of unknown edges.
1097 /// \param UnknownEdge Set if E has not been visited before.
1099 /// \returns E's weight, if known. Otherwise, return 0.
1100 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1101 Edge *UnknownEdge) {
1102 if (!VisitedEdges.count(E)) {
1103 (*NumUnknownEdges)++;
1104 *UnknownEdge = E;
1105 return 0;
1108 return EdgeWeights[E];
1111 /// Propagate weights through incoming/outgoing edges.
1113 /// If the weight of a basic block is known, and there is only one edge
1114 /// with an unknown weight, we can calculate the weight of that edge.
1116 /// Similarly, if all the edges have a known count, we can calculate the
1117 /// count of the basic block, if needed.
1119 /// \param F Function to process.
1120 /// \param UpdateBlockCount Whether we should update basic block counts that
1121 /// has already been annotated.
1123 /// \returns True if new weights were assigned to edges or blocks.
1124 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1125 bool UpdateBlockCount) {
1126 bool Changed = false;
1127 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1128 for (const auto &BI : F) {
1129 const BasicBlock *BB = &BI;
1130 const BasicBlock *EC = EquivalenceClass[BB];
1132 // Visit all the predecessor and successor edges to determine
1133 // which ones have a weight assigned already. Note that it doesn't
1134 // matter that we only keep track of a single unknown edge. The
1135 // only case we are interested in handling is when only a single
1136 // edge is unknown (see setEdgeOrBlockWeight).
1137 for (unsigned i = 0; i < 2; i++) {
1138 uint64_t TotalWeight = 0;
1139 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1140 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1142 if (i == 0) {
1143 // First, visit all predecessor edges.
1144 NumTotalEdges = Predecessors[BB].size();
1145 for (auto *Pred : Predecessors[BB]) {
1146 Edge E = std::make_pair(Pred, BB);
1147 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1148 if (E.first == E.second)
1149 SelfReferentialEdge = E;
1151 if (NumTotalEdges == 1) {
1152 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1154 } else {
1155 // On the second round, visit all successor edges.
1156 NumTotalEdges = Successors[BB].size();
1157 for (auto *Succ : Successors[BB]) {
1158 Edge E = std::make_pair(BB, Succ);
1159 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1161 if (NumTotalEdges == 1) {
1162 SingleEdge = std::make_pair(BB, Successors[BB][0]);
1166 // After visiting all the edges, there are three cases that we
1167 // can handle immediately:
1169 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1170 // In this case, we simply check that the sum of all the edges
1171 // is the same as BB's weight. If not, we change BB's weight
1172 // to match. Additionally, if BB had not been visited before,
1173 // we mark it visited.
1175 // - Only one edge is unknown and BB has already been visited.
1176 // In this case, we can compute the weight of the edge by
1177 // subtracting the total block weight from all the known
1178 // edge weights. If the edges weight more than BB, then the
1179 // edge of the last remaining edge is set to zero.
1181 // - There exists a self-referential edge and the weight of BB is
1182 // known. In this case, this edge can be based on BB's weight.
1183 // We add up all the other known edges and set the weight on
1184 // the self-referential edge as we did in the previous case.
1186 // In any other case, we must continue iterating. Eventually,
1187 // all edges will get a weight, or iteration will stop when
1188 // it reaches SampleProfileMaxPropagateIterations.
1189 if (NumUnknownEdges <= 1) {
1190 uint64_t &BBWeight = BlockWeights[EC];
1191 if (NumUnknownEdges == 0) {
1192 if (!VisitedBlocks.count(EC)) {
1193 // If we already know the weight of all edges, the weight of the
1194 // basic block can be computed. It should be no larger than the sum
1195 // of all edge weights.
1196 if (TotalWeight > BBWeight) {
1197 BBWeight = TotalWeight;
1198 Changed = true;
1199 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1200 << " known. Set weight for block: ";
1201 printBlockWeight(dbgs(), BB););
1203 } else if (NumTotalEdges == 1 &&
1204 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1205 // If there is only one edge for the visited basic block, use the
1206 // block weight to adjust edge weight if edge weight is smaller.
1207 EdgeWeights[SingleEdge] = BlockWeights[EC];
1208 Changed = true;
1210 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1211 // If there is a single unknown edge and the block has been
1212 // visited, then we can compute E's weight.
1213 if (BBWeight >= TotalWeight)
1214 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1215 else
1216 EdgeWeights[UnknownEdge] = 0;
1217 const BasicBlock *OtherEC;
1218 if (i == 0)
1219 OtherEC = EquivalenceClass[UnknownEdge.first];
1220 else
1221 OtherEC = EquivalenceClass[UnknownEdge.second];
1222 // Edge weights should never exceed the BB weights it connects.
1223 if (VisitedBlocks.count(OtherEC) &&
1224 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1225 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1226 VisitedEdges.insert(UnknownEdge);
1227 Changed = true;
1228 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1229 printEdgeWeight(dbgs(), UnknownEdge));
1231 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1232 // If a block Weights 0, all its in/out edges should weight 0.
1233 if (i == 0) {
1234 for (auto *Pred : Predecessors[BB]) {
1235 Edge E = std::make_pair(Pred, BB);
1236 EdgeWeights[E] = 0;
1237 VisitedEdges.insert(E);
1239 } else {
1240 for (auto *Succ : Successors[BB]) {
1241 Edge E = std::make_pair(BB, Succ);
1242 EdgeWeights[E] = 0;
1243 VisitedEdges.insert(E);
1246 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1247 uint64_t &BBWeight = BlockWeights[BB];
1248 // We have a self-referential edge and the weight of BB is known.
1249 if (BBWeight >= TotalWeight)
1250 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1251 else
1252 EdgeWeights[SelfReferentialEdge] = 0;
1253 VisitedEdges.insert(SelfReferentialEdge);
1254 Changed = true;
1255 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1256 printEdgeWeight(dbgs(), SelfReferentialEdge));
1258 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1259 BlockWeights[EC] = TotalWeight;
1260 VisitedBlocks.insert(EC);
1261 Changed = true;
1266 return Changed;
1269 /// Build in/out edge lists for each basic block in the CFG.
1271 /// We are interested in unique edges. If a block B1 has multiple
1272 /// edges to another block B2, we only add a single B1->B2 edge.
1273 void SampleProfileLoader::buildEdges(Function &F) {
1274 for (auto &BI : F) {
1275 BasicBlock *B1 = &BI;
1277 // Add predecessors for B1.
1278 SmallPtrSet<BasicBlock *, 16> Visited;
1279 if (!Predecessors[B1].empty())
1280 llvm_unreachable("Found a stale predecessors list in a basic block.");
1281 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1282 BasicBlock *B2 = *PI;
1283 if (Visited.insert(B2).second)
1284 Predecessors[B1].push_back(B2);
1287 // Add successors for B1.
1288 Visited.clear();
1289 if (!Successors[B1].empty())
1290 llvm_unreachable("Found a stale successors list in a basic block.");
1291 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1292 BasicBlock *B2 = *SI;
1293 if (Visited.insert(B2).second)
1294 Successors[B1].push_back(B2);
1299 /// Returns the sorted CallTargetMap \p M by count in descending order.
1300 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1301 const SampleRecord::CallTargetMap & M) {
1302 SmallVector<InstrProfValueData, 2> R;
1303 for (const auto &I : SampleRecord::SortCallTargets(M)) {
1304 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1306 return R;
1309 /// Propagate weights into edges
1311 /// The following rules are applied to every block BB in the CFG:
1313 /// - If BB has a single predecessor/successor, then the weight
1314 /// of that edge is the weight of the block.
1316 /// - If all incoming or outgoing edges are known except one, and the
1317 /// weight of the block is already known, the weight of the unknown
1318 /// edge will be the weight of the block minus the sum of all the known
1319 /// edges. If the sum of all the known edges is larger than BB's weight,
1320 /// we set the unknown edge weight to zero.
1322 /// - If there is a self-referential edge, and the weight of the block is
1323 /// known, the weight for that edge is set to the weight of the block
1324 /// minus the weight of the other incoming edges to that block (if
1325 /// known).
1326 void SampleProfileLoader::propagateWeights(Function &F) {
1327 bool Changed = true;
1328 unsigned I = 0;
1330 // If BB weight is larger than its corresponding loop's header BB weight,
1331 // use the BB weight to replace the loop header BB weight.
1332 for (auto &BI : F) {
1333 BasicBlock *BB = &BI;
1334 Loop *L = LI->getLoopFor(BB);
1335 if (!L) {
1336 continue;
1338 BasicBlock *Header = L->getHeader();
1339 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1340 BlockWeights[Header] = BlockWeights[BB];
1344 // Before propagation starts, build, for each block, a list of
1345 // unique predecessors and successors. This is necessary to handle
1346 // identical edges in multiway branches. Since we visit all blocks and all
1347 // edges of the CFG, it is cleaner to build these lists once at the start
1348 // of the pass.
1349 buildEdges(F);
1351 // Propagate until we converge or we go past the iteration limit.
1352 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1353 Changed = propagateThroughEdges(F, false);
1356 // The first propagation propagates BB counts from annotated BBs to unknown
1357 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1358 // to propagate edge weights.
1359 VisitedEdges.clear();
1360 Changed = true;
1361 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1362 Changed = propagateThroughEdges(F, false);
1365 // The 3rd propagation pass allows adjust annotated BB weights that are
1366 // obviously wrong.
1367 Changed = true;
1368 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1369 Changed = propagateThroughEdges(F, true);
1372 // Generate MD_prof metadata for every branch instruction using the
1373 // edge weights computed during propagation.
1374 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1375 LLVMContext &Ctx = F.getContext();
1376 MDBuilder MDB(Ctx);
1377 for (auto &BI : F) {
1378 BasicBlock *BB = &BI;
1380 if (BlockWeights[BB]) {
1381 for (auto &I : BB->getInstList()) {
1382 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1383 continue;
1384 CallSite CS(&I);
1385 if (!CS.getCalledFunction()) {
1386 const DebugLoc &DLoc = I.getDebugLoc();
1387 if (!DLoc)
1388 continue;
1389 const DILocation *DIL = DLoc;
1390 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1391 uint32_t Discriminator = DIL->getBaseDiscriminator();
1393 const FunctionSamples *FS = findFunctionSamples(I);
1394 if (!FS)
1395 continue;
1396 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1397 if (!T || T.get().empty())
1398 continue;
1399 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1400 GetSortedValueDataFromCallTargets(T.get());
1401 uint64_t Sum;
1402 findIndirectCallFunctionSamples(I, Sum);
1403 annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1404 SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1405 SortedCallTargets.size());
1406 } else if (!isa<IntrinsicInst>(&I)) {
1407 I.setMetadata(LLVMContext::MD_prof,
1408 MDB.createBranchWeights(
1409 {static_cast<uint32_t>(BlockWeights[BB])}));
1413 Instruction *TI = BB->getTerminator();
1414 if (TI->getNumSuccessors() == 1)
1415 continue;
1416 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1417 continue;
1419 DebugLoc BranchLoc = TI->getDebugLoc();
1420 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1421 << ((BranchLoc) ? Twine(BranchLoc.getLine())
1422 : Twine("<UNKNOWN LOCATION>"))
1423 << ".\n");
1424 SmallVector<uint32_t, 4> Weights;
1425 uint32_t MaxWeight = 0;
1426 Instruction *MaxDestInst;
1427 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1428 BasicBlock *Succ = TI->getSuccessor(I);
1429 Edge E = std::make_pair(BB, Succ);
1430 uint64_t Weight = EdgeWeights[E];
1431 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1432 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1433 // if needed. Sample counts in profiles are 64-bit unsigned values,
1434 // but internally branch weights are expressed as 32-bit values.
1435 if (Weight > std::numeric_limits<uint32_t>::max()) {
1436 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1437 Weight = std::numeric_limits<uint32_t>::max();
1439 // Weight is added by one to avoid propagation errors introduced by
1440 // 0 weights.
1441 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1442 if (Weight != 0) {
1443 if (Weight > MaxWeight) {
1444 MaxWeight = Weight;
1445 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1450 misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1452 uint64_t TempWeight;
1453 // Only set weights if there is at least one non-zero weight.
1454 // In any other case, let the analyzer set weights.
1455 // Do not set weights if the weights are present. In ThinLTO, the profile
1456 // annotation is done twice. If the first annotation already set the
1457 // weights, the second pass does not need to set it.
1458 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1459 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1460 TI->setMetadata(LLVMContext::MD_prof,
1461 MDB.createBranchWeights(Weights));
1462 ORE->emit([&]() {
1463 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1464 << "most popular destination for conditional branches at "
1465 << ore::NV("CondBranchesLoc", BranchLoc);
1467 } else {
1468 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1473 /// Get the line number for the function header.
1475 /// This looks up function \p F in the current compilation unit and
1476 /// retrieves the line number where the function is defined. This is
1477 /// line 0 for all the samples read from the profile file. Every line
1478 /// number is relative to this line.
1480 /// \param F Function object to query.
1482 /// \returns the line number where \p F is defined. If it returns 0,
1483 /// it means that there is no debug information available for \p F.
1484 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1485 if (DISubprogram *S = F.getSubprogram())
1486 return S->getLine();
1488 if (NoWarnSampleUnused)
1489 return 0;
1491 // If the start of \p F is missing, emit a diagnostic to inform the user
1492 // about the missed opportunity.
1493 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1494 "No debug information found in function " + F.getName() +
1495 ": Function profile not used",
1496 DS_Warning));
1497 return 0;
1500 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1501 DT.reset(new DominatorTree);
1502 DT->recalculate(F);
1504 PDT.reset(new PostDominatorTree(F));
1506 LI.reset(new LoopInfo);
1507 LI->analyze(*DT);
1510 /// Generate branch weight metadata for all branches in \p F.
1512 /// Branch weights are computed out of instruction samples using a
1513 /// propagation heuristic. Propagation proceeds in 3 phases:
1515 /// 1- Assignment of block weights. All the basic blocks in the function
1516 /// are initial assigned the same weight as their most frequently
1517 /// executed instruction.
1519 /// 2- Creation of equivalence classes. Since samples may be missing from
1520 /// blocks, we can fill in the gaps by setting the weights of all the
1521 /// blocks in the same equivalence class to the same weight. To compute
1522 /// the concept of equivalence, we use dominance and loop information.
1523 /// Two blocks B1 and B2 are in the same equivalence class if B1
1524 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1526 /// 3- Propagation of block weights into edges. This uses a simple
1527 /// propagation heuristic. The following rules are applied to every
1528 /// block BB in the CFG:
1530 /// - If BB has a single predecessor/successor, then the weight
1531 /// of that edge is the weight of the block.
1533 /// - If all the edges are known except one, and the weight of the
1534 /// block is already known, the weight of the unknown edge will
1535 /// be the weight of the block minus the sum of all the known
1536 /// edges. If the sum of all the known edges is larger than BB's weight,
1537 /// we set the unknown edge weight to zero.
1539 /// - If there is a self-referential edge, and the weight of the block is
1540 /// known, the weight for that edge is set to the weight of the block
1541 /// minus the weight of the other incoming edges to that block (if
1542 /// known).
1544 /// Since this propagation is not guaranteed to finalize for every CFG, we
1545 /// only allow it to proceed for a limited number of iterations (controlled
1546 /// by -sample-profile-max-propagate-iterations).
1548 /// FIXME: Try to replace this propagation heuristic with a scheme
1549 /// that is guaranteed to finalize. A work-list approach similar to
1550 /// the standard value propagation algorithm used by SSA-CCP might
1551 /// work here.
1553 /// Once all the branch weights are computed, we emit the MD_prof
1554 /// metadata on BB using the computed values for each of its branches.
1556 /// \param F The function to query.
1558 /// \returns true if \p F was modified. Returns false, otherwise.
1559 bool SampleProfileLoader::emitAnnotations(Function &F) {
1560 bool Changed = false;
1562 if (getFunctionLoc(F) == 0)
1563 return false;
1565 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1566 << F.getName() << ": " << getFunctionLoc(F) << "\n");
1568 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1569 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1571 // Compute basic block weights.
1572 Changed |= computeBlockWeights(F);
1574 if (Changed) {
1575 // Add an entry count to the function using the samples gathered at the
1576 // function entry.
1577 // Sets the GUIDs that are inlined in the profiled binary. This is used
1578 // for ThinLink to make correct liveness analysis, and also make the IR
1579 // match the profiled binary before annotation.
1580 F.setEntryCount(
1581 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1582 &InlinedGUIDs);
1584 // Compute dominance and loop info needed for propagation.
1585 computeDominanceAndLoopInfo(F);
1587 // Find equivalence classes.
1588 findEquivalenceClasses(F);
1590 // Propagate weights to all edges.
1591 propagateWeights(F);
1594 // If coverage checking was requested, compute it now.
1595 if (SampleProfileRecordCoverage) {
1596 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1597 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1598 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1599 if (Coverage < SampleProfileRecordCoverage) {
1600 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1601 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1602 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1603 Twine(Coverage) + "%) were applied",
1604 DS_Warning));
1608 if (SampleProfileSampleCoverage) {
1609 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1610 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1611 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1612 if (Coverage < SampleProfileSampleCoverage) {
1613 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1614 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1615 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1616 Twine(Coverage) + "%) were applied",
1617 DS_Warning));
1620 return Changed;
1623 char SampleProfileLoaderLegacyPass::ID = 0;
1625 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1626 "Sample Profile loader", false, false)
1627 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1628 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1629 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1630 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1631 "Sample Profile loader", false, false)
1633 bool SampleProfileLoader::doInitialization(Module &M) {
1634 auto &Ctx = M.getContext();
1635 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1636 if (std::error_code EC = ReaderOrErr.getError()) {
1637 std::string Msg = "Could not open profile: " + EC.message();
1638 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1639 return false;
1641 Reader = std::move(ReaderOrErr.get());
1642 Reader->collectFuncsToUse(M);
1643 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1644 PSL = Reader->getProfileSymbolList();
1646 if (!RemappingFilename.empty()) {
1647 // Apply profile remappings to the loaded profile data if requested.
1648 // For now, we only support remapping symbols encoded using the Itanium
1649 // C++ ABI's name mangling scheme.
1650 ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1651 RemappingFilename, Ctx, std::move(Reader));
1652 if (std::error_code EC = ReaderOrErr.getError()) {
1653 std::string Msg = "Could not open profile remapping file: " + EC.message();
1654 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1655 return false;
1657 Reader = std::move(ReaderOrErr.get());
1658 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1660 return true;
1663 ModulePass *llvm::createSampleProfileLoaderPass() {
1664 return new SampleProfileLoaderLegacyPass();
1667 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1668 return new SampleProfileLoaderLegacyPass(Name);
1671 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1672 ProfileSummaryInfo *_PSI) {
1673 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1674 if (!ProfileIsValid)
1675 return false;
1677 PSI = _PSI;
1678 if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1679 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1680 ProfileSummary::PSK_Sample);
1682 // Compute the total number of samples collected in this profile.
1683 for (const auto &I : Reader->getProfiles())
1684 TotalCollectedSamples += I.second.getTotalSamples();
1686 // Populate the symbol map.
1687 for (const auto &N_F : M.getValueSymbolTable()) {
1688 StringRef OrigName = N_F.getKey();
1689 Function *F = dyn_cast<Function>(N_F.getValue());
1690 if (F == nullptr)
1691 continue;
1692 SymbolMap[OrigName] = F;
1693 auto pos = OrigName.find('.');
1694 if (pos != StringRef::npos) {
1695 StringRef NewName = OrigName.substr(0, pos);
1696 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1697 // Failiing to insert means there is already an entry in SymbolMap,
1698 // thus there are multiple functions that are mapped to the same
1699 // stripped name. In this case of name conflicting, set the value
1700 // to nullptr to avoid confusion.
1701 if (!r.second)
1702 r.first->second = nullptr;
1706 bool retval = false;
1707 for (auto &F : M)
1708 if (!F.isDeclaration()) {
1709 clearFunctionData();
1710 retval |= runOnFunction(F, AM);
1713 // Account for cold calls not inlined....
1714 for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1715 notInlinedCallInfo)
1716 updateProfileCallee(pair.first, pair.second.entryCount);
1718 return retval;
1721 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1722 ACT = &getAnalysis<AssumptionCacheTracker>();
1723 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1724 ProfileSummaryInfo *PSI =
1725 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1726 return SampleLoader.runOnModule(M, nullptr, PSI);
1729 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1731 DILocation2SampleMap.clear();
1732 // By default the entry count is initialized to -1, which will be treated
1733 // conservatively by getEntryCount as the same as unknown (None). This is
1734 // to avoid newly added code to be treated as cold. If we have samples
1735 // this will be overwritten in emitAnnotations.
1737 // PSL -- profile symbol list include all the symbols in sampled binary.
1738 // If ProfileSampleAccurate is true or F has profile-sample-accurate
1739 // attribute, and if there is no profile symbol list read in, initialize
1740 // all the function entry counts to 0; if there is profile symbol list, only
1741 // initialize the entry count to 0 when current function is in the list.
1742 uint64_t initialEntryCount =
1743 ((ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) &&
1744 (!PSL || PSL->contains(F.getName())))
1746 : -1;
1747 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1748 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1749 if (AM) {
1750 auto &FAM =
1751 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1752 .getManager();
1753 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1754 } else {
1755 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1756 ORE = OwnedORE.get();
1758 Samples = Reader->getSamplesFor(F);
1759 if (Samples && !Samples->empty())
1760 return emitAnnotations(F);
1761 return false;
1764 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1765 ModuleAnalysisManager &AM) {
1766 FunctionAnalysisManager &FAM =
1767 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1769 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1770 return FAM.getResult<AssumptionAnalysis>(F);
1772 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1773 return FAM.getResult<TargetIRAnalysis>(F);
1776 SampleProfileLoader SampleLoader(
1777 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1778 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1779 : ProfileRemappingFileName,
1780 IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1782 SampleLoader.doInitialization(M);
1784 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1785 if (!SampleLoader.runOnModule(M, &AM, PSI))
1786 return PreservedAnalyses::all();
1788 return PreservedAnalyses::none();