1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
84 using namespace PatternMatch
;
86 #define DEBUG_TYPE "simplifycfg"
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt
<unsigned> PHINodeFoldingThreshold(
93 "phi-node-folding-threshold", cl::Hidden
, cl::init(2),
95 "Control the amount of phi node folding to perform (default = 2)"));
97 static cl::opt
<unsigned> TwoEntryPHINodeFoldingThreshold(
98 "two-entry-phi-node-folding-threshold", cl::Hidden
, cl::init(4),
99 cl::desc("Control the maximal total instruction cost that we are willing "
100 "to speculatively execute to fold a 2-entry PHI node into a "
101 "select (default = 4)"));
103 static cl::opt
<bool> DupRet(
104 "simplifycfg-dup-ret", cl::Hidden
, cl::init(false),
105 cl::desc("Duplicate return instructions into unconditional branches"));
108 SinkCommon("simplifycfg-sink-common", cl::Hidden
, cl::init(true),
109 cl::desc("Sink common instructions down to the end block"));
111 static cl::opt
<bool> HoistCondStores(
112 "simplifycfg-hoist-cond-stores", cl::Hidden
, cl::init(true),
113 cl::desc("Hoist conditional stores if an unconditional store precedes"));
115 static cl::opt
<bool> MergeCondStores(
116 "simplifycfg-merge-cond-stores", cl::Hidden
, cl::init(true),
117 cl::desc("Hoist conditional stores even if an unconditional store does not "
118 "precede - hoist multiple conditional stores into a single "
119 "predicated store"));
121 static cl::opt
<bool> MergeCondStoresAggressively(
122 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden
, cl::init(false),
123 cl::desc("When merging conditional stores, do so even if the resultant "
124 "basic blocks are unlikely to be if-converted as a result"));
126 static cl::opt
<bool> SpeculateOneExpensiveInst(
127 "speculate-one-expensive-inst", cl::Hidden
, cl::init(true),
128 cl::desc("Allow exactly one expensive instruction to be speculatively "
131 static cl::opt
<unsigned> MaxSpeculationDepth(
132 "max-speculation-depth", cl::Hidden
, cl::init(10),
133 cl::desc("Limit maximum recursion depth when calculating costs of "
134 "speculatively executed instructions"));
136 STATISTIC(NumBitMaps
, "Number of switch instructions turned into bitmaps");
137 STATISTIC(NumLinearMaps
,
138 "Number of switch instructions turned into linear mapping");
139 STATISTIC(NumLookupTables
,
140 "Number of switch instructions turned into lookup tables");
142 NumLookupTablesHoles
,
143 "Number of switch instructions turned into lookup tables (holes checked)");
144 STATISTIC(NumTableCmpReuses
, "Number of reused switch table lookup compares");
145 STATISTIC(NumSinkCommons
,
146 "Number of common instructions sunk down to the end block");
147 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
151 // The first field contains the value that the switch produces when a certain
152 // case group is selected, and the second field is a vector containing the
153 // cases composing the case group.
154 using SwitchCaseResultVectorTy
=
155 SmallVector
<std::pair
<Constant
*, SmallVector
<ConstantInt
*, 4>>, 2>;
157 // The first field contains the phi node that generates a result of the switch
158 // and the second field contains the value generated for a certain case in the
159 // switch for that PHI.
160 using SwitchCaseResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
162 /// ValueEqualityComparisonCase - Represents a case of a switch.
163 struct ValueEqualityComparisonCase
{
167 ValueEqualityComparisonCase(ConstantInt
*Value
, BasicBlock
*Dest
)
168 : Value(Value
), Dest(Dest
) {}
170 bool operator<(ValueEqualityComparisonCase RHS
) const {
171 // Comparing pointers is ok as we only rely on the order for uniquing.
172 return Value
< RHS
.Value
;
175 bool operator==(BasicBlock
*RHSDest
) const { return Dest
== RHSDest
; }
178 class SimplifyCFGOpt
{
179 const TargetTransformInfo
&TTI
;
180 const DataLayout
&DL
;
181 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
;
182 const SimplifyCFGOptions
&Options
;
185 Value
*isValueEqualityComparison(Instruction
*TI
);
186 BasicBlock
*GetValueEqualityComparisonCases(
187 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
);
188 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction
*TI
,
190 IRBuilder
<> &Builder
);
191 bool FoldValueComparisonIntoPredecessors(Instruction
*TI
,
192 IRBuilder
<> &Builder
);
194 bool SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
);
195 bool SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
);
196 bool SimplifySingleResume(ResumeInst
*RI
);
197 bool SimplifyCommonResume(ResumeInst
*RI
);
198 bool SimplifyCleanupReturn(CleanupReturnInst
*RI
);
199 bool SimplifyUnreachable(UnreachableInst
*UI
);
200 bool SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
201 bool SimplifyIndirectBr(IndirectBrInst
*IBI
);
202 bool SimplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
203 bool SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
205 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
206 IRBuilder
<> &Builder
);
209 SimplifyCFGOpt(const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
210 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
,
211 const SimplifyCFGOptions
&Opts
)
212 : TTI(TTI
), DL(DL
), LoopHeaders(LoopHeaders
), Options(Opts
) {}
214 bool run(BasicBlock
*BB
);
215 bool simplifyOnce(BasicBlock
*BB
);
217 // Helper to set Resimplify and return change indication.
218 bool requestResimplify() {
224 } // end anonymous namespace
226 /// Return true if it is safe to merge these two
227 /// terminator instructions together.
229 SafeToMergeTerminators(Instruction
*SI1
, Instruction
*SI2
,
230 SmallSetVector
<BasicBlock
*, 4> *FailBlocks
= nullptr) {
232 return false; // Can't merge with self!
234 // It is not safe to merge these two switch instructions if they have a common
235 // successor, and if that successor has a PHI node, and if *that* PHI node has
236 // conflicting incoming values from the two switch blocks.
237 BasicBlock
*SI1BB
= SI1
->getParent();
238 BasicBlock
*SI2BB
= SI2
->getParent();
240 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
242 for (BasicBlock
*Succ
: successors(SI2BB
))
243 if (SI1Succs
.count(Succ
))
244 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
245 PHINode
*PN
= cast
<PHINode
>(BBI
);
246 if (PN
->getIncomingValueForBlock(SI1BB
) !=
247 PN
->getIncomingValueForBlock(SI2BB
)) {
249 FailBlocks
->insert(Succ
);
257 /// Return true if it is safe and profitable to merge these two terminator
258 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
259 /// store all PHI nodes in common successors.
261 isProfitableToFoldUnconditional(BranchInst
*SI1
, BranchInst
*SI2
,
263 SmallVectorImpl
<PHINode
*> &PhiNodes
) {
265 return false; // Can't merge with self!
266 assert(SI1
->isUnconditional() && SI2
->isConditional());
268 // We fold the unconditional branch if we can easily update all PHI nodes in
269 // common successors:
270 // 1> We have a constant incoming value for the conditional branch;
271 // 2> We have "Cond" as the incoming value for the unconditional branch;
272 // 3> SI2->getCondition() and Cond have same operands.
273 CmpInst
*Ci2
= dyn_cast
<CmpInst
>(SI2
->getCondition());
276 if (!(Cond
->getOperand(0) == Ci2
->getOperand(0) &&
277 Cond
->getOperand(1) == Ci2
->getOperand(1)) &&
278 !(Cond
->getOperand(0) == Ci2
->getOperand(1) &&
279 Cond
->getOperand(1) == Ci2
->getOperand(0)))
282 BasicBlock
*SI1BB
= SI1
->getParent();
283 BasicBlock
*SI2BB
= SI2
->getParent();
284 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
285 for (BasicBlock
*Succ
: successors(SI2BB
))
286 if (SI1Succs
.count(Succ
))
287 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
288 PHINode
*PN
= cast
<PHINode
>(BBI
);
289 if (PN
->getIncomingValueForBlock(SI1BB
) != Cond
||
290 !isa
<ConstantInt
>(PN
->getIncomingValueForBlock(SI2BB
)))
292 PhiNodes
.push_back(PN
);
297 /// Update PHI nodes in Succ to indicate that there will now be entries in it
298 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
299 /// will be the same as those coming in from ExistPred, an existing predecessor
301 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
302 BasicBlock
*ExistPred
,
303 MemorySSAUpdater
*MSSAU
= nullptr) {
304 for (PHINode
&PN
: Succ
->phis())
305 PN
.addIncoming(PN
.getIncomingValueForBlock(ExistPred
), NewPred
);
307 if (auto *MPhi
= MSSAU
->getMemorySSA()->getMemoryAccess(Succ
))
308 MPhi
->addIncoming(MPhi
->getIncomingValueForBlock(ExistPred
), NewPred
);
311 /// Compute an abstract "cost" of speculating the given instruction,
312 /// which is assumed to be safe to speculate. TCC_Free means cheap,
313 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
315 static unsigned ComputeSpeculationCost(const User
*I
,
316 const TargetTransformInfo
&TTI
) {
317 assert(isSafeToSpeculativelyExecute(I
) &&
318 "Instruction is not safe to speculatively execute!");
319 return TTI
.getUserCost(I
);
322 /// If we have a merge point of an "if condition" as accepted above,
323 /// return true if the specified value dominates the block. We
324 /// don't handle the true generality of domination here, just a special case
325 /// which works well enough for us.
327 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
328 /// see if V (which must be an instruction) and its recursive operands
329 /// that do not dominate BB have a combined cost lower than CostRemaining and
330 /// are non-trapping. If both are true, the instruction is inserted into the
331 /// set and true is returned.
333 /// The cost for most non-trapping instructions is defined as 1 except for
334 /// Select whose cost is 2.
336 /// After this function returns, CostRemaining is decreased by the cost of
337 /// V plus its non-dominating operands. If that cost is greater than
338 /// CostRemaining, false is returned and CostRemaining is undefined.
339 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
340 SmallPtrSetImpl
<Instruction
*> &AggressiveInsts
,
341 int &BudgetRemaining
,
342 const TargetTransformInfo
&TTI
,
343 unsigned Depth
= 0) {
344 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
345 // so limit the recursion depth.
346 // TODO: While this recursion limit does prevent pathological behavior, it
347 // would be better to track visited instructions to avoid cycles.
348 if (Depth
== MaxSpeculationDepth
)
351 Instruction
*I
= dyn_cast
<Instruction
>(V
);
353 // Non-instructions all dominate instructions, but not all constantexprs
354 // can be executed unconditionally.
355 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
360 BasicBlock
*PBB
= I
->getParent();
362 // We don't want to allow weird loops that might have the "if condition" in
363 // the bottom of this block.
367 // If this instruction is defined in a block that contains an unconditional
368 // branch to BB, then it must be in the 'conditional' part of the "if
369 // statement". If not, it definitely dominates the region.
370 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
371 if (!BI
|| BI
->isConditional() || BI
->getSuccessor(0) != BB
)
374 // If we have seen this instruction before, don't count it again.
375 if (AggressiveInsts
.count(I
))
378 // Okay, it looks like the instruction IS in the "condition". Check to
379 // see if it's a cheap instruction to unconditionally compute, and if it
380 // only uses stuff defined outside of the condition. If so, hoist it out.
381 if (!isSafeToSpeculativelyExecute(I
))
384 BudgetRemaining
-= ComputeSpeculationCost(I
, TTI
);
386 // Allow exactly one instruction to be speculated regardless of its cost
387 // (as long as it is safe to do so).
388 // This is intended to flatten the CFG even if the instruction is a division
389 // or other expensive operation. The speculation of an expensive instruction
390 // is expected to be undone in CodeGenPrepare if the speculation has not
391 // enabled further IR optimizations.
392 if (BudgetRemaining
< 0 &&
393 (!SpeculateOneExpensiveInst
|| !AggressiveInsts
.empty() || Depth
> 0))
396 // Okay, we can only really hoist these out if their operands do
397 // not take us over the cost threshold.
398 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
399 if (!DominatesMergePoint(*i
, BB
, AggressiveInsts
, BudgetRemaining
, TTI
,
402 // Okay, it's safe to do this! Remember this instruction.
403 AggressiveInsts
.insert(I
);
407 /// Extract ConstantInt from value, looking through IntToPtr
408 /// and PointerNullValue. Return NULL if value is not a constant int.
409 static ConstantInt
*GetConstantInt(Value
*V
, const DataLayout
&DL
) {
410 // Normal constant int.
411 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
412 if (CI
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
415 // This is some kind of pointer constant. Turn it into a pointer-sized
416 // ConstantInt if possible.
417 IntegerType
*PtrTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
419 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
420 if (isa
<ConstantPointerNull
>(V
))
421 return ConstantInt::get(PtrTy
, 0);
423 // IntToPtr const int.
424 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
425 if (CE
->getOpcode() == Instruction::IntToPtr
)
426 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
427 // The constant is very likely to have the right type already.
428 if (CI
->getType() == PtrTy
)
431 return cast
<ConstantInt
>(
432 ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
439 /// Given a chain of or (||) or and (&&) comparison of a value against a
440 /// constant, this will try to recover the information required for a switch
442 /// It will depth-first traverse the chain of comparison, seeking for patterns
443 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
444 /// representing the different cases for the switch.
445 /// Note that if the chain is composed of '||' it will build the set of elements
446 /// that matches the comparisons (i.e. any of this value validate the chain)
447 /// while for a chain of '&&' it will build the set elements that make the test
449 struct ConstantComparesGatherer
{
450 const DataLayout
&DL
;
452 /// Value found for the switch comparison
453 Value
*CompValue
= nullptr;
455 /// Extra clause to be checked before the switch
456 Value
*Extra
= nullptr;
458 /// Set of integers to match in switch
459 SmallVector
<ConstantInt
*, 8> Vals
;
461 /// Number of comparisons matched in the and/or chain
462 unsigned UsedICmps
= 0;
464 /// Construct and compute the result for the comparison instruction Cond
465 ConstantComparesGatherer(Instruction
*Cond
, const DataLayout
&DL
) : DL(DL
) {
469 ConstantComparesGatherer(const ConstantComparesGatherer
&) = delete;
470 ConstantComparesGatherer
&
471 operator=(const ConstantComparesGatherer
&) = delete;
474 /// Try to set the current value used for the comparison, it succeeds only if
475 /// it wasn't set before or if the new value is the same as the old one
476 bool setValueOnce(Value
*NewVal
) {
477 if (CompValue
&& CompValue
!= NewVal
)
480 return (CompValue
!= nullptr);
483 /// Try to match Instruction "I" as a comparison against a constant and
484 /// populates the array Vals with the set of values that match (or do not
485 /// match depending on isEQ).
486 /// Return false on failure. On success, the Value the comparison matched
487 /// against is placed in CompValue.
488 /// If CompValue is already set, the function is expected to fail if a match
489 /// is found but the value compared to is different.
490 bool matchInstruction(Instruction
*I
, bool isEQ
) {
491 // If this is an icmp against a constant, handle this as one of the cases.
494 if (!((ICI
= dyn_cast
<ICmpInst
>(I
)) &&
495 (C
= GetConstantInt(I
->getOperand(1), DL
)))) {
502 // Pattern match a special case
503 // (x & ~2^z) == y --> x == y || x == y|2^z
504 // This undoes a transformation done by instcombine to fuse 2 compares.
505 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
)) {
506 // It's a little bit hard to see why the following transformations are
507 // correct. Here is a CVC3 program to verify them for 64-bit values:
510 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
514 mask : BITVECTOR(64) = BVSHL(ONE, z);
515 QUERY( (y & ~mask = y) =>
516 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
518 QUERY( (y | mask = y) =>
519 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
523 // Please note that each pattern must be a dual implication (<--> or
524 // iff). One directional implication can create spurious matches. If the
525 // implication is only one-way, an unsatisfiable condition on the left
526 // side can imply a satisfiable condition on the right side. Dual
527 // implication ensures that satisfiable conditions are transformed to
528 // other satisfiable conditions and unsatisfiable conditions are
529 // transformed to other unsatisfiable conditions.
531 // Here is a concrete example of a unsatisfiable condition on the left
532 // implying a satisfiable condition on the right:
535 // (x & ~mask) == y --> (x == y || x == (y | mask))
537 // Substituting y = 3, z = 0 yields:
538 // (x & -2) == 3 --> (x == 3 || x == 2)
540 // Pattern match a special case:
542 QUERY( (y & ~mask = y) =>
543 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
546 if (match(ICI
->getOperand(0),
547 m_And(m_Value(RHSVal
), m_APInt(RHSC
)))) {
549 if (Mask
.isPowerOf2() && (C
->getValue() & ~Mask
) == C
->getValue()) {
550 // If we already have a value for the switch, it has to match!
551 if (!setValueOnce(RHSVal
))
556 ConstantInt::get(C
->getContext(),
557 C
->getValue() | Mask
));
563 // Pattern match a special case:
565 QUERY( (y | mask = y) =>
566 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
569 if (match(ICI
->getOperand(0),
570 m_Or(m_Value(RHSVal
), m_APInt(RHSC
)))) {
572 if (Mask
.isPowerOf2() && (C
->getValue() | Mask
) == C
->getValue()) {
573 // If we already have a value for the switch, it has to match!
574 if (!setValueOnce(RHSVal
))
578 Vals
.push_back(ConstantInt::get(C
->getContext(),
579 C
->getValue() & ~Mask
));
585 // If we already have a value for the switch, it has to match!
586 if (!setValueOnce(ICI
->getOperand(0)))
591 return ICI
->getOperand(0);
594 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
595 ConstantRange Span
= ConstantRange::makeAllowedICmpRegion(
596 ICI
->getPredicate(), C
->getValue());
598 // Shift the range if the compare is fed by an add. This is the range
599 // compare idiom as emitted by instcombine.
600 Value
*CandidateVal
= I
->getOperand(0);
601 if (match(I
->getOperand(0), m_Add(m_Value(RHSVal
), m_APInt(RHSC
)))) {
602 Span
= Span
.subtract(*RHSC
);
603 CandidateVal
= RHSVal
;
606 // If this is an and/!= check, then we are looking to build the set of
607 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
610 Span
= Span
.inverse();
612 // If there are a ton of values, we don't want to make a ginormous switch.
613 if (Span
.isSizeLargerThan(8) || Span
.isEmptySet()) {
617 // If we already have a value for the switch, it has to match!
618 if (!setValueOnce(CandidateVal
))
621 // Add all values from the range to the set
622 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
623 Vals
.push_back(ConstantInt::get(I
->getContext(), Tmp
));
629 /// Given a potentially 'or'd or 'and'd together collection of icmp
630 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
631 /// the value being compared, and stick the list constants into the Vals
633 /// One "Extra" case is allowed to differ from the other.
634 void gather(Value
*V
) {
635 Instruction
*I
= dyn_cast
<Instruction
>(V
);
636 bool isEQ
= (I
->getOpcode() == Instruction::Or
);
638 // Keep a stack (SmallVector for efficiency) for depth-first traversal
639 SmallVector
<Value
*, 8> DFT
;
640 SmallPtrSet
<Value
*, 8> Visited
;
646 while (!DFT
.empty()) {
647 V
= DFT
.pop_back_val();
649 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
650 // If it is a || (or && depending on isEQ), process the operands.
651 if (I
->getOpcode() == (isEQ
? Instruction::Or
: Instruction::And
)) {
652 if (Visited
.insert(I
->getOperand(1)).second
)
653 DFT
.push_back(I
->getOperand(1));
654 if (Visited
.insert(I
->getOperand(0)).second
)
655 DFT
.push_back(I
->getOperand(0));
659 // Try to match the current instruction
660 if (matchInstruction(I
, isEQ
))
661 // Match succeed, continue the loop
665 // One element of the sequence of || (or &&) could not be match as a
666 // comparison against the same value as the others.
667 // We allow only one "Extra" case to be checked before the switch
672 // Failed to parse a proper sequence, abort now
679 } // end anonymous namespace
681 static void EraseTerminatorAndDCECond(Instruction
*TI
,
682 MemorySSAUpdater
*MSSAU
= nullptr) {
683 Instruction
*Cond
= nullptr;
684 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
685 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
686 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
687 if (BI
->isConditional())
688 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
689 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
690 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
693 TI
->eraseFromParent();
695 RecursivelyDeleteTriviallyDeadInstructions(Cond
, nullptr, MSSAU
);
698 /// Return true if the specified terminator checks
699 /// to see if a value is equal to constant integer value.
700 Value
*SimplifyCFGOpt::isValueEqualityComparison(Instruction
*TI
) {
702 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
703 // Do not permit merging of large switch instructions into their
704 // predecessors unless there is only one predecessor.
705 if (!SI
->getParent()->hasNPredecessorsOrMore(128 / SI
->getNumSuccessors()))
706 CV
= SI
->getCondition();
707 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
708 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
709 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
710 if (ICI
->isEquality() && GetConstantInt(ICI
->getOperand(1), DL
))
711 CV
= ICI
->getOperand(0);
714 // Unwrap any lossless ptrtoint cast.
716 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
)) {
717 Value
*Ptr
= PTII
->getPointerOperand();
718 if (PTII
->getType() == DL
.getIntPtrType(Ptr
->getType()))
725 /// Given a value comparison instruction,
726 /// decode all of the 'cases' that it represents and return the 'default' block.
727 BasicBlock
*SimplifyCFGOpt::GetValueEqualityComparisonCases(
728 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
) {
729 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
730 Cases
.reserve(SI
->getNumCases());
731 for (auto Case
: SI
->cases())
732 Cases
.push_back(ValueEqualityComparisonCase(Case
.getCaseValue(),
733 Case
.getCaseSuccessor()));
734 return SI
->getDefaultDest();
737 BranchInst
*BI
= cast
<BranchInst
>(TI
);
738 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
739 BasicBlock
*Succ
= BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_NE
);
740 Cases
.push_back(ValueEqualityComparisonCase(
741 GetConstantInt(ICI
->getOperand(1), DL
), Succ
));
742 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
745 /// Given a vector of bb/value pairs, remove any entries
746 /// in the list that match the specified block.
748 EliminateBlockCases(BasicBlock
*BB
,
749 std::vector
<ValueEqualityComparisonCase
> &Cases
) {
750 Cases
.erase(std::remove(Cases
.begin(), Cases
.end(), BB
), Cases
.end());
753 /// Return true if there are any keys in C1 that exist in C2 as well.
754 static bool ValuesOverlap(std::vector
<ValueEqualityComparisonCase
> &C1
,
755 std::vector
<ValueEqualityComparisonCase
> &C2
) {
756 std::vector
<ValueEqualityComparisonCase
> *V1
= &C1
, *V2
= &C2
;
758 // Make V1 be smaller than V2.
759 if (V1
->size() > V2
->size())
764 if (V1
->size() == 1) {
766 ConstantInt
*TheVal
= (*V1
)[0].Value
;
767 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
768 if (TheVal
== (*V2
)[i
].Value
)
772 // Otherwise, just sort both lists and compare element by element.
773 array_pod_sort(V1
->begin(), V1
->end());
774 array_pod_sort(V2
->begin(), V2
->end());
775 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
776 while (i1
!= e1
&& i2
!= e2
) {
777 if ((*V1
)[i1
].Value
== (*V2
)[i2
].Value
)
779 if ((*V1
)[i1
].Value
< (*V2
)[i2
].Value
)
787 // Set branch weights on SwitchInst. This sets the metadata if there is at
788 // least one non-zero weight.
789 static void setBranchWeights(SwitchInst
*SI
, ArrayRef
<uint32_t> Weights
) {
790 // Check that there is at least one non-zero weight. Otherwise, pass
791 // nullptr to setMetadata which will erase the existing metadata.
793 if (llvm::any_of(Weights
, [](uint32_t W
) { return W
!= 0; }))
794 N
= MDBuilder(SI
->getParent()->getContext()).createBranchWeights(Weights
);
795 SI
->setMetadata(LLVMContext::MD_prof
, N
);
798 // Similar to the above, but for branch and select instructions that take
799 // exactly 2 weights.
800 static void setBranchWeights(Instruction
*I
, uint32_t TrueWeight
,
801 uint32_t FalseWeight
) {
802 assert(isa
<BranchInst
>(I
) || isa
<SelectInst
>(I
));
803 // Check that there is at least one non-zero weight. Otherwise, pass
804 // nullptr to setMetadata which will erase the existing metadata.
806 if (TrueWeight
|| FalseWeight
)
807 N
= MDBuilder(I
->getParent()->getContext())
808 .createBranchWeights(TrueWeight
, FalseWeight
);
809 I
->setMetadata(LLVMContext::MD_prof
, N
);
812 /// If TI is known to be a terminator instruction and its block is known to
813 /// only have a single predecessor block, check to see if that predecessor is
814 /// also a value comparison with the same value, and if that comparison
815 /// determines the outcome of this comparison. If so, simplify TI. This does a
816 /// very limited form of jump threading.
817 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
818 Instruction
*TI
, BasicBlock
*Pred
, IRBuilder
<> &Builder
) {
819 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
821 return false; // Not a value comparison in predecessor.
823 Value
*ThisVal
= isValueEqualityComparison(TI
);
824 assert(ThisVal
&& "This isn't a value comparison!!");
825 if (ThisVal
!= PredVal
)
826 return false; // Different predicates.
828 // TODO: Preserve branch weight metadata, similarly to how
829 // FoldValueComparisonIntoPredecessors preserves it.
831 // Find out information about when control will move from Pred to TI's block.
832 std::vector
<ValueEqualityComparisonCase
> PredCases
;
833 BasicBlock
*PredDef
=
834 GetValueEqualityComparisonCases(Pred
->getTerminator(), PredCases
);
835 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
837 // Find information about how control leaves this block.
838 std::vector
<ValueEqualityComparisonCase
> ThisCases
;
839 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
840 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
842 // If TI's block is the default block from Pred's comparison, potentially
843 // simplify TI based on this knowledge.
844 if (PredDef
== TI
->getParent()) {
845 // If we are here, we know that the value is none of those cases listed in
846 // PredCases. If there are any cases in ThisCases that are in PredCases, we
848 if (!ValuesOverlap(PredCases
, ThisCases
))
851 if (isa
<BranchInst
>(TI
)) {
852 // Okay, one of the successors of this condbr is dead. Convert it to a
854 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
855 // Insert the new branch.
856 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
859 // Remove PHI node entries for the dead edge.
860 ThisCases
[0].Dest
->removePredecessor(TI
->getParent());
862 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
863 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
866 EraseTerminatorAndDCECond(TI
);
870 SwitchInstProfUpdateWrapper SI
= *cast
<SwitchInst
>(TI
);
871 // Okay, TI has cases that are statically dead, prune them away.
872 SmallPtrSet
<Constant
*, 16> DeadCases
;
873 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
874 DeadCases
.insert(PredCases
[i
].Value
);
876 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
877 << "Through successor TI: " << *TI
);
879 for (SwitchInst::CaseIt i
= SI
->case_end(), e
= SI
->case_begin(); i
!= e
;) {
881 if (DeadCases
.count(i
->getCaseValue())) {
882 i
->getCaseSuccessor()->removePredecessor(TI
->getParent());
886 LLVM_DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
890 // Otherwise, TI's block must correspond to some matched value. Find out
891 // which value (or set of values) this is.
892 ConstantInt
*TIV
= nullptr;
893 BasicBlock
*TIBB
= TI
->getParent();
894 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
895 if (PredCases
[i
].Dest
== TIBB
) {
897 return false; // Cannot handle multiple values coming to this block.
898 TIV
= PredCases
[i
].Value
;
900 assert(TIV
&& "No edge from pred to succ?");
902 // Okay, we found the one constant that our value can be if we get into TI's
903 // BB. Find out which successor will unconditionally be branched to.
904 BasicBlock
*TheRealDest
= nullptr;
905 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
906 if (ThisCases
[i
].Value
== TIV
) {
907 TheRealDest
= ThisCases
[i
].Dest
;
911 // If not handled by any explicit cases, it is handled by the default case.
913 TheRealDest
= ThisDef
;
915 // Remove PHI node entries for dead edges.
916 BasicBlock
*CheckEdge
= TheRealDest
;
917 for (BasicBlock
*Succ
: successors(TIBB
))
918 if (Succ
!= CheckEdge
)
919 Succ
->removePredecessor(TIBB
);
923 // Insert the new branch.
924 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
927 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
928 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
931 EraseTerminatorAndDCECond(TI
);
937 /// This class implements a stable ordering of constant
938 /// integers that does not depend on their address. This is important for
939 /// applications that sort ConstantInt's to ensure uniqueness.
940 struct ConstantIntOrdering
{
941 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
942 return LHS
->getValue().ult(RHS
->getValue());
946 } // end anonymous namespace
948 static int ConstantIntSortPredicate(ConstantInt
*const *P1
,
949 ConstantInt
*const *P2
) {
950 const ConstantInt
*LHS
= *P1
;
951 const ConstantInt
*RHS
= *P2
;
954 return LHS
->getValue().ult(RHS
->getValue()) ? 1 : -1;
957 static inline bool HasBranchWeights(const Instruction
*I
) {
958 MDNode
*ProfMD
= I
->getMetadata(LLVMContext::MD_prof
);
959 if (ProfMD
&& ProfMD
->getOperand(0))
960 if (MDString
*MDS
= dyn_cast
<MDString
>(ProfMD
->getOperand(0)))
961 return MDS
->getString().equals("branch_weights");
966 /// Get Weights of a given terminator, the default weight is at the front
967 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
969 static void GetBranchWeights(Instruction
*TI
,
970 SmallVectorImpl
<uint64_t> &Weights
) {
971 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_prof
);
973 for (unsigned i
= 1, e
= MD
->getNumOperands(); i
< e
; ++i
) {
974 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
975 Weights
.push_back(CI
->getValue().getZExtValue());
978 // If TI is a conditional eq, the default case is the false case,
979 // and the corresponding branch-weight data is at index 2. We swap the
980 // default weight to be the first entry.
981 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
982 assert(Weights
.size() == 2);
983 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
984 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
985 std::swap(Weights
.front(), Weights
.back());
989 /// Keep halving the weights until all can fit in uint32_t.
990 static void FitWeights(MutableArrayRef
<uint64_t> Weights
) {
991 uint64_t Max
= *std::max_element(Weights
.begin(), Weights
.end());
992 if (Max
> UINT_MAX
) {
993 unsigned Offset
= 32 - countLeadingZeros(Max
);
994 for (uint64_t &I
: Weights
)
999 /// The specified terminator is a value equality comparison instruction
1000 /// (either a switch or a branch on "X == c").
1001 /// See if any of the predecessors of the terminator block are value comparisons
1002 /// on the same value. If so, and if safe to do so, fold them together.
1003 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction
*TI
,
1004 IRBuilder
<> &Builder
) {
1005 BasicBlock
*BB
= TI
->getParent();
1006 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
1007 assert(CV
&& "Not a comparison?");
1008 bool Changed
= false;
1010 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
1011 while (!Preds
.empty()) {
1012 BasicBlock
*Pred
= Preds
.pop_back_val();
1014 // See if the predecessor is a comparison with the same value.
1015 Instruction
*PTI
= Pred
->getTerminator();
1016 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
1018 if (PCV
== CV
&& TI
!= PTI
) {
1019 SmallSetVector
<BasicBlock
*, 4> FailBlocks
;
1020 if (!SafeToMergeTerminators(TI
, PTI
, &FailBlocks
)) {
1021 for (auto *Succ
: FailBlocks
) {
1022 if (!SplitBlockPredecessors(Succ
, TI
->getParent(), ".fold.split"))
1027 // Figure out which 'cases' to copy from SI to PSI.
1028 std::vector
<ValueEqualityComparisonCase
> BBCases
;
1029 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
1031 std::vector
<ValueEqualityComparisonCase
> PredCases
;
1032 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
1034 // Based on whether the default edge from PTI goes to BB or not, fill in
1035 // PredCases and PredDefault with the new switch cases we would like to
1037 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
1039 // Update the branch weight metadata along the way
1040 SmallVector
<uint64_t, 8> Weights
;
1041 bool PredHasWeights
= HasBranchWeights(PTI
);
1042 bool SuccHasWeights
= HasBranchWeights(TI
);
1044 if (PredHasWeights
) {
1045 GetBranchWeights(PTI
, Weights
);
1046 // branch-weight metadata is inconsistent here.
1047 if (Weights
.size() != 1 + PredCases
.size())
1048 PredHasWeights
= SuccHasWeights
= false;
1049 } else if (SuccHasWeights
)
1050 // If there are no predecessor weights but there are successor weights,
1051 // populate Weights with 1, which will later be scaled to the sum of
1052 // successor's weights
1053 Weights
.assign(1 + PredCases
.size(), 1);
1055 SmallVector
<uint64_t, 8> SuccWeights
;
1056 if (SuccHasWeights
) {
1057 GetBranchWeights(TI
, SuccWeights
);
1058 // branch-weight metadata is inconsistent here.
1059 if (SuccWeights
.size() != 1 + BBCases
.size())
1060 PredHasWeights
= SuccHasWeights
= false;
1061 } else if (PredHasWeights
)
1062 SuccWeights
.assign(1 + BBCases
.size(), 1);
1064 if (PredDefault
== BB
) {
1065 // If this is the default destination from PTI, only the edges in TI
1066 // that don't occur in PTI, or that branch to BB will be activated.
1067 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1068 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1069 if (PredCases
[i
].Dest
!= BB
)
1070 PTIHandled
.insert(PredCases
[i
].Value
);
1072 // The default destination is BB, we don't need explicit targets.
1073 std::swap(PredCases
[i
], PredCases
.back());
1075 if (PredHasWeights
|| SuccHasWeights
) {
1076 // Increase weight for the default case.
1077 Weights
[0] += Weights
[i
+ 1];
1078 std::swap(Weights
[i
+ 1], Weights
.back());
1082 PredCases
.pop_back();
1087 // Reconstruct the new switch statement we will be building.
1088 if (PredDefault
!= BBDefault
) {
1089 PredDefault
->removePredecessor(Pred
);
1090 PredDefault
= BBDefault
;
1091 NewSuccessors
.push_back(BBDefault
);
1094 unsigned CasesFromPred
= Weights
.size();
1095 uint64_t ValidTotalSuccWeight
= 0;
1096 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1097 if (!PTIHandled
.count(BBCases
[i
].Value
) &&
1098 BBCases
[i
].Dest
!= BBDefault
) {
1099 PredCases
.push_back(BBCases
[i
]);
1100 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1101 if (SuccHasWeights
|| PredHasWeights
) {
1102 // The default weight is at index 0, so weight for the ith case
1103 // should be at index i+1. Scale the cases from successor by
1104 // PredDefaultWeight (Weights[0]).
1105 Weights
.push_back(Weights
[0] * SuccWeights
[i
+ 1]);
1106 ValidTotalSuccWeight
+= SuccWeights
[i
+ 1];
1110 if (SuccHasWeights
|| PredHasWeights
) {
1111 ValidTotalSuccWeight
+= SuccWeights
[0];
1112 // Scale the cases from predecessor by ValidTotalSuccWeight.
1113 for (unsigned i
= 1; i
< CasesFromPred
; ++i
)
1114 Weights
[i
] *= ValidTotalSuccWeight
;
1115 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1116 Weights
[0] *= SuccWeights
[0];
1119 // If this is not the default destination from PSI, only the edges
1120 // in SI that occur in PSI with a destination of BB will be
1122 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1123 std::map
<ConstantInt
*, uint64_t> WeightsForHandled
;
1124 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1125 if (PredCases
[i
].Dest
== BB
) {
1126 PTIHandled
.insert(PredCases
[i
].Value
);
1128 if (PredHasWeights
|| SuccHasWeights
) {
1129 WeightsForHandled
[PredCases
[i
].Value
] = Weights
[i
+ 1];
1130 std::swap(Weights
[i
+ 1], Weights
.back());
1134 std::swap(PredCases
[i
], PredCases
.back());
1135 PredCases
.pop_back();
1140 // Okay, now we know which constants were sent to BB from the
1141 // predecessor. Figure out where they will all go now.
1142 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1143 if (PTIHandled
.count(BBCases
[i
].Value
)) {
1144 // If this is one we are capable of getting...
1145 if (PredHasWeights
|| SuccHasWeights
)
1146 Weights
.push_back(WeightsForHandled
[BBCases
[i
].Value
]);
1147 PredCases
.push_back(BBCases
[i
]);
1148 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1150 BBCases
[i
].Value
); // This constant is taken care of
1153 // If there are any constants vectored to BB that TI doesn't handle,
1154 // they must go to the default destination of TI.
1155 for (ConstantInt
*I
: PTIHandled
) {
1156 if (PredHasWeights
|| SuccHasWeights
)
1157 Weights
.push_back(WeightsForHandled
[I
]);
1158 PredCases
.push_back(ValueEqualityComparisonCase(I
, BBDefault
));
1159 NewSuccessors
.push_back(BBDefault
);
1163 // Okay, at this point, we know which new successor Pred will get. Make
1164 // sure we update the number of entries in the PHI nodes for these
1166 for (BasicBlock
*NewSuccessor
: NewSuccessors
)
1167 AddPredecessorToBlock(NewSuccessor
, Pred
, BB
);
1169 Builder
.SetInsertPoint(PTI
);
1170 // Convert pointer to int before we switch.
1171 if (CV
->getType()->isPointerTy()) {
1172 CV
= Builder
.CreatePtrToInt(CV
, DL
.getIntPtrType(CV
->getType()),
1176 // Now that the successors are updated, create the new Switch instruction.
1178 Builder
.CreateSwitch(CV
, PredDefault
, PredCases
.size());
1179 NewSI
->setDebugLoc(PTI
->getDebugLoc());
1180 for (ValueEqualityComparisonCase
&V
: PredCases
)
1181 NewSI
->addCase(V
.Value
, V
.Dest
);
1183 if (PredHasWeights
|| SuccHasWeights
) {
1184 // Halve the weights if any of them cannot fit in an uint32_t
1185 FitWeights(Weights
);
1187 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
1189 setBranchWeights(NewSI
, MDWeights
);
1192 EraseTerminatorAndDCECond(PTI
);
1194 // Okay, last check. If BB is still a successor of PSI, then we must
1195 // have an infinite loop case. If so, add an infinitely looping block
1196 // to handle the case to preserve the behavior of the code.
1197 BasicBlock
*InfLoopBlock
= nullptr;
1198 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
1199 if (NewSI
->getSuccessor(i
) == BB
) {
1200 if (!InfLoopBlock
) {
1201 // Insert it at the end of the function, because it's either code,
1202 // or it won't matter if it's hot. :)
1203 InfLoopBlock
= BasicBlock::Create(BB
->getContext(), "infloop",
1205 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1207 NewSI
->setSuccessor(i
, InfLoopBlock
);
1216 // If we would need to insert a select that uses the value of this invoke
1217 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1218 // can't hoist the invoke, as there is nowhere to put the select in this case.
1219 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
1220 Instruction
*I1
, Instruction
*I2
) {
1221 for (BasicBlock
*Succ
: successors(BB1
)) {
1222 for (const PHINode
&PN
: Succ
->phis()) {
1223 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1224 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1225 if (BB1V
!= BB2V
&& (BB1V
== I1
|| BB2V
== I2
)) {
1233 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
);
1235 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1236 /// in the two blocks up into the branch block. The caller of this function
1237 /// guarantees that BI's block dominates BB1 and BB2.
1238 static bool HoistThenElseCodeToIf(BranchInst
*BI
,
1239 const TargetTransformInfo
&TTI
) {
1240 // This does very trivial matching, with limited scanning, to find identical
1241 // instructions in the two blocks. In particular, we don't want to get into
1242 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1243 // such, we currently just scan for obviously identical instructions in an
1245 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
1246 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
1248 BasicBlock::iterator BB1_Itr
= BB1
->begin();
1249 BasicBlock::iterator BB2_Itr
= BB2
->begin();
1251 Instruction
*I1
= &*BB1_Itr
++, *I2
= &*BB2_Itr
++;
1252 // Skip debug info if it is not identical.
1253 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1254 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1255 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1256 while (isa
<DbgInfoIntrinsic
>(I1
))
1258 while (isa
<DbgInfoIntrinsic
>(I2
))
1261 // FIXME: Can we define a safety predicate for CallBr?
1262 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
1263 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)) ||
1264 isa
<CallBrInst
>(I1
))
1267 BasicBlock
*BIParent
= BI
->getParent();
1269 bool Changed
= false;
1271 // If we are hoisting the terminator instruction, don't move one (making a
1272 // broken BB), instead clone it, and remove BI.
1273 if (I1
->isTerminator())
1274 goto HoistTerminator
;
1276 // If we're going to hoist a call, make sure that the two instructions we're
1277 // commoning/hoisting are both marked with musttail, or neither of them is
1278 // marked as such. Otherwise, we might end up in a situation where we hoist
1279 // from a block where the terminator is a `ret` to a block where the terminator
1280 // is a `br`, and `musttail` calls expect to be followed by a return.
1281 auto *C1
= dyn_cast
<CallInst
>(I1
);
1282 auto *C2
= dyn_cast
<CallInst
>(I2
);
1284 if (C1
->isMustTailCall() != C2
->isMustTailCall())
1287 if (!TTI
.isProfitableToHoist(I1
) || !TTI
.isProfitableToHoist(I2
))
1290 if (isa
<DbgInfoIntrinsic
>(I1
) || isa
<DbgInfoIntrinsic
>(I2
)) {
1291 assert (isa
<DbgInfoIntrinsic
>(I1
) && isa
<DbgInfoIntrinsic
>(I2
));
1292 // The debug location is an integral part of a debug info intrinsic
1293 // and can't be separated from it or replaced. Instead of attempting
1294 // to merge locations, simply hoist both copies of the intrinsic.
1295 BIParent
->getInstList().splice(BI
->getIterator(),
1296 BB1
->getInstList(), I1
);
1297 BIParent
->getInstList().splice(BI
->getIterator(),
1298 BB2
->getInstList(), I2
);
1301 // For a normal instruction, we just move one to right before the branch,
1302 // then replace all uses of the other with the first. Finally, we remove
1303 // the now redundant second instruction.
1304 BIParent
->getInstList().splice(BI
->getIterator(),
1305 BB1
->getInstList(), I1
);
1306 if (!I2
->use_empty())
1307 I2
->replaceAllUsesWith(I1
);
1309 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
,
1310 LLVMContext::MD_range
,
1311 LLVMContext::MD_fpmath
,
1312 LLVMContext::MD_invariant_load
,
1313 LLVMContext::MD_nonnull
,
1314 LLVMContext::MD_invariant_group
,
1315 LLVMContext::MD_align
,
1316 LLVMContext::MD_dereferenceable
,
1317 LLVMContext::MD_dereferenceable_or_null
,
1318 LLVMContext::MD_mem_parallel_loop_access
,
1319 LLVMContext::MD_access_group
,
1320 LLVMContext::MD_preserve_access_index
};
1321 combineMetadata(I1
, I2
, KnownIDs
, true);
1323 // I1 and I2 are being combined into a single instruction. Its debug
1324 // location is the merged locations of the original instructions.
1325 I1
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1327 I2
->eraseFromParent();
1333 // Skip debug info if it is not identical.
1334 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1335 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1336 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1337 while (isa
<DbgInfoIntrinsic
>(I1
))
1339 while (isa
<DbgInfoIntrinsic
>(I2
))
1342 } while (I1
->isIdenticalToWhenDefined(I2
));
1347 // It may not be possible to hoist an invoke.
1348 // FIXME: Can we define a safety predicate for CallBr?
1349 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
1352 // TODO: callbr hoisting currently disabled pending further study.
1353 if (isa
<CallBrInst
>(I1
))
1356 for (BasicBlock
*Succ
: successors(BB1
)) {
1357 for (PHINode
&PN
: Succ
->phis()) {
1358 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1359 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1363 // Check for passingValueIsAlwaysUndefined here because we would rather
1364 // eliminate undefined control flow then converting it to a select.
1365 if (passingValueIsAlwaysUndefined(BB1V
, &PN
) ||
1366 passingValueIsAlwaysUndefined(BB2V
, &PN
))
1369 if (isa
<ConstantExpr
>(BB1V
) && !isSafeToSpeculativelyExecute(BB1V
))
1371 if (isa
<ConstantExpr
>(BB2V
) && !isSafeToSpeculativelyExecute(BB2V
))
1376 // Okay, it is safe to hoist the terminator.
1377 Instruction
*NT
= I1
->clone();
1378 BIParent
->getInstList().insert(BI
->getIterator(), NT
);
1379 if (!NT
->getType()->isVoidTy()) {
1380 I1
->replaceAllUsesWith(NT
);
1381 I2
->replaceAllUsesWith(NT
);
1385 // Ensure terminator gets a debug location, even an unknown one, in case
1386 // it involves inlinable calls.
1387 NT
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1389 // PHIs created below will adopt NT's merged DebugLoc.
1390 IRBuilder
<NoFolder
> Builder(NT
);
1392 // Hoisting one of the terminators from our successor is a great thing.
1393 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1394 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1395 // nodes, so we insert select instruction to compute the final result.
1396 std::map
<std::pair
<Value
*, Value
*>, SelectInst
*> InsertedSelects
;
1397 for (BasicBlock
*Succ
: successors(BB1
)) {
1398 for (PHINode
&PN
: Succ
->phis()) {
1399 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1400 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1404 // These values do not agree. Insert a select instruction before NT
1405 // that determines the right value.
1406 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
1408 SI
= cast
<SelectInst
>(
1409 Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
1410 BB1V
->getName() + "." + BB2V
->getName(), BI
));
1412 // Make the PHI node use the select for all incoming values for BB1/BB2
1413 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1414 if (PN
.getIncomingBlock(i
) == BB1
|| PN
.getIncomingBlock(i
) == BB2
)
1415 PN
.setIncomingValue(i
, SI
);
1419 // Update any PHI nodes in our new successors.
1420 for (BasicBlock
*Succ
: successors(BB1
))
1421 AddPredecessorToBlock(Succ
, BIParent
, BB1
);
1423 EraseTerminatorAndDCECond(BI
);
1427 // Check lifetime markers.
1428 static bool isLifeTimeMarker(const Instruction
*I
) {
1429 if (auto II
= dyn_cast
<IntrinsicInst
>(I
)) {
1430 switch (II
->getIntrinsicID()) {
1433 case Intrinsic::lifetime_start
:
1434 case Intrinsic::lifetime_end
:
1441 // All instructions in Insts belong to different blocks that all unconditionally
1442 // branch to a common successor. Analyze each instruction and return true if it
1443 // would be possible to sink them into their successor, creating one common
1444 // instruction instead. For every value that would be required to be provided by
1445 // PHI node (because an operand varies in each input block), add to PHIOperands.
1446 static bool canSinkInstructions(
1447 ArrayRef
<Instruction
*> Insts
,
1448 DenseMap
<Instruction
*, SmallVector
<Value
*, 4>> &PHIOperands
) {
1449 // Prune out obviously bad instructions to move. Each instruction must have
1450 // exactly zero or one use, and we check later that use is by a single, common
1451 // PHI instruction in the successor.
1452 bool HasUse
= !Insts
.front()->user_empty();
1453 for (auto *I
: Insts
) {
1454 // These instructions may change or break semantics if moved.
1455 if (isa
<PHINode
>(I
) || I
->isEHPad() || isa
<AllocaInst
>(I
) ||
1456 I
->getType()->isTokenTy())
1459 // Conservatively return false if I is an inline-asm instruction. Sinking
1460 // and merging inline-asm instructions can potentially create arguments
1461 // that cannot satisfy the inline-asm constraints.
1462 if (const auto *C
= dyn_cast
<CallBase
>(I
))
1463 if (C
->isInlineAsm())
1466 // Each instruction must have zero or one use.
1467 if (HasUse
&& !I
->hasOneUse())
1469 if (!HasUse
&& !I
->user_empty())
1473 const Instruction
*I0
= Insts
.front();
1474 for (auto *I
: Insts
)
1475 if (!I
->isSameOperationAs(I0
))
1478 // All instructions in Insts are known to be the same opcode. If they have a
1479 // use, check that the only user is a PHI or in the same block as the
1480 // instruction, because if a user is in the same block as an instruction we're
1481 // contemplating sinking, it must already be determined to be sinkable.
1483 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1484 auto *Succ
= I0
->getParent()->getTerminator()->getSuccessor(0);
1485 if (!all_of(Insts
, [&PNUse
,&Succ
](const Instruction
*I
) -> bool {
1486 auto *U
= cast
<Instruction
>(*I
->user_begin());
1488 PNUse
->getParent() == Succ
&&
1489 PNUse
->getIncomingValueForBlock(I
->getParent()) == I
) ||
1490 U
->getParent() == I
->getParent();
1495 // Because SROA can't handle speculating stores of selects, try not to sink
1496 // loads, stores or lifetime markers of allocas when we'd have to create a
1497 // PHI for the address operand. Also, because it is likely that loads or
1498 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1500 // This can cause code churn which can have unintended consequences down
1501 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1502 // FIXME: This is a workaround for a deficiency in SROA - see
1503 // https://llvm.org/bugs/show_bug.cgi?id=30188
1504 if (isa
<StoreInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1505 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1508 if (isa
<LoadInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1509 return isa
<AllocaInst
>(I
->getOperand(0)->stripPointerCasts());
1512 if (isLifeTimeMarker(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1513 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1517 for (unsigned OI
= 0, OE
= I0
->getNumOperands(); OI
!= OE
; ++OI
) {
1518 if (I0
->getOperand(OI
)->getType()->isTokenTy())
1519 // Don't touch any operand of token type.
1522 auto SameAsI0
= [&I0
, OI
](const Instruction
*I
) {
1523 assert(I
->getNumOperands() == I0
->getNumOperands());
1524 return I
->getOperand(OI
) == I0
->getOperand(OI
);
1526 if (!all_of(Insts
, SameAsI0
)) {
1527 if (!canReplaceOperandWithVariable(I0
, OI
))
1528 // We can't create a PHI from this GEP.
1530 // Don't create indirect calls! The called value is the final operand.
1531 if (isa
<CallBase
>(I0
) && OI
== OE
- 1) {
1532 // FIXME: if the call was *already* indirect, we should do this.
1535 for (auto *I
: Insts
)
1536 PHIOperands
[I
].push_back(I
->getOperand(OI
));
1542 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1543 // instruction of every block in Blocks to their common successor, commoning
1544 // into one instruction.
1545 static bool sinkLastInstruction(ArrayRef
<BasicBlock
*> Blocks
) {
1546 auto *BBEnd
= Blocks
[0]->getTerminator()->getSuccessor(0);
1548 // canSinkLastInstruction returning true guarantees that every block has at
1549 // least one non-terminator instruction.
1550 SmallVector
<Instruction
*,4> Insts
;
1551 for (auto *BB
: Blocks
) {
1552 Instruction
*I
= BB
->getTerminator();
1554 I
= I
->getPrevNode();
1555 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= &BB
->front());
1556 if (!isa
<DbgInfoIntrinsic
>(I
))
1560 // The only checking we need to do now is that all users of all instructions
1561 // are the same PHI node. canSinkLastInstruction should have checked this but
1562 // it is slightly over-aggressive - it gets confused by commutative instructions
1563 // so double-check it here.
1564 Instruction
*I0
= Insts
.front();
1565 if (!I0
->user_empty()) {
1566 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1567 if (!all_of(Insts
, [&PNUse
](const Instruction
*I
) -> bool {
1568 auto *U
= cast
<Instruction
>(*I
->user_begin());
1574 // We don't need to do any more checking here; canSinkLastInstruction should
1575 // have done it all for us.
1576 SmallVector
<Value
*, 4> NewOperands
;
1577 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
) {
1578 // This check is different to that in canSinkLastInstruction. There, we
1579 // cared about the global view once simplifycfg (and instcombine) have
1580 // completed - it takes into account PHIs that become trivially
1581 // simplifiable. However here we need a more local view; if an operand
1582 // differs we create a PHI and rely on instcombine to clean up the very
1583 // small mess we may make.
1584 bool NeedPHI
= any_of(Insts
, [&I0
, O
](const Instruction
*I
) {
1585 return I
->getOperand(O
) != I0
->getOperand(O
);
1588 NewOperands
.push_back(I0
->getOperand(O
));
1592 // Create a new PHI in the successor block and populate it.
1593 auto *Op
= I0
->getOperand(O
);
1594 assert(!Op
->getType()->isTokenTy() && "Can't PHI tokens!");
1595 auto *PN
= PHINode::Create(Op
->getType(), Insts
.size(),
1596 Op
->getName() + ".sink", &BBEnd
->front());
1597 for (auto *I
: Insts
)
1598 PN
->addIncoming(I
->getOperand(O
), I
->getParent());
1599 NewOperands
.push_back(PN
);
1602 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1603 // and move it to the start of the successor block.
1604 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
)
1605 I0
->getOperandUse(O
).set(NewOperands
[O
]);
1606 I0
->moveBefore(&*BBEnd
->getFirstInsertionPt());
1608 // Update metadata and IR flags, and merge debug locations.
1609 for (auto *I
: Insts
)
1611 // The debug location for the "common" instruction is the merged locations
1612 // of all the commoned instructions. We start with the original location
1613 // of the "common" instruction and iteratively merge each location in the
1615 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1616 // However, as N-way merge for CallInst is rare, so we use simplified API
1617 // instead of using complex API for N-way merge.
1618 I0
->applyMergedLocation(I0
->getDebugLoc(), I
->getDebugLoc());
1619 combineMetadataForCSE(I0
, I
, true);
1623 if (!I0
->user_empty()) {
1624 // canSinkLastInstruction checked that all instructions were used by
1625 // one and only one PHI node. Find that now, RAUW it to our common
1626 // instruction and nuke it.
1627 auto *PN
= cast
<PHINode
>(*I0
->user_begin());
1628 PN
->replaceAllUsesWith(I0
);
1629 PN
->eraseFromParent();
1632 // Finally nuke all instructions apart from the common instruction.
1633 for (auto *I
: Insts
)
1635 I
->eraseFromParent();
1642 // LockstepReverseIterator - Iterates through instructions
1643 // in a set of blocks in reverse order from the first non-terminator.
1644 // For example (assume all blocks have size n):
1645 // LockstepReverseIterator I([B1, B2, B3]);
1646 // *I-- = [B1[n], B2[n], B3[n]];
1647 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1648 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1650 class LockstepReverseIterator
{
1651 ArrayRef
<BasicBlock
*> Blocks
;
1652 SmallVector
<Instruction
*,4> Insts
;
1656 LockstepReverseIterator(ArrayRef
<BasicBlock
*> Blocks
) : Blocks(Blocks
) {
1663 for (auto *BB
: Blocks
) {
1664 Instruction
*Inst
= BB
->getTerminator();
1665 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1666 Inst
= Inst
->getPrevNode();
1668 // Block wasn't big enough.
1672 Insts
.push_back(Inst
);
1676 bool isValid() const {
1683 for (auto *&Inst
: Insts
) {
1684 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1685 Inst
= Inst
->getPrevNode();
1686 // Already at beginning of block.
1694 ArrayRef
<Instruction
*> operator * () const {
1699 } // end anonymous namespace
1701 /// Check whether BB's predecessors end with unconditional branches. If it is
1702 /// true, sink any common code from the predecessors to BB.
1703 /// We also allow one predecessor to end with conditional branch (but no more
1705 static bool SinkCommonCodeFromPredecessors(BasicBlock
*BB
) {
1706 // We support two situations:
1707 // (1) all incoming arcs are unconditional
1708 // (2) one incoming arc is conditional
1710 // (2) is very common in switch defaults and
1711 // else-if patterns;
1714 // else if (b) f(2);
1727 // [end] has two unconditional predecessor arcs and one conditional. The
1728 // conditional refers to the implicit empty 'else' arc. This conditional
1729 // arc can also be caused by an empty default block in a switch.
1731 // In this case, we attempt to sink code from all *unconditional* arcs.
1732 // If we can sink instructions from these arcs (determined during the scan
1733 // phase below) we insert a common successor for all unconditional arcs and
1734 // connect that to [end], to enable sinking:
1747 SmallVector
<BasicBlock
*,4> UnconditionalPreds
;
1748 Instruction
*Cond
= nullptr;
1749 for (auto *B
: predecessors(BB
)) {
1750 auto *T
= B
->getTerminator();
1751 if (isa
<BranchInst
>(T
) && cast
<BranchInst
>(T
)->isUnconditional())
1752 UnconditionalPreds
.push_back(B
);
1753 else if ((isa
<BranchInst
>(T
) || isa
<SwitchInst
>(T
)) && !Cond
)
1758 if (UnconditionalPreds
.size() < 2)
1761 bool Changed
= false;
1762 // We take a two-step approach to tail sinking. First we scan from the end of
1763 // each block upwards in lockstep. If the n'th instruction from the end of each
1764 // block can be sunk, those instructions are added to ValuesToSink and we
1765 // carry on. If we can sink an instruction but need to PHI-merge some operands
1766 // (because they're not identical in each instruction) we add these to
1768 unsigned ScanIdx
= 0;
1769 SmallPtrSet
<Value
*,4> InstructionsToSink
;
1770 DenseMap
<Instruction
*, SmallVector
<Value
*,4>> PHIOperands
;
1771 LockstepReverseIterator
LRI(UnconditionalPreds
);
1772 while (LRI
.isValid() &&
1773 canSinkInstructions(*LRI
, PHIOperands
)) {
1774 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI
)[0]
1776 InstructionsToSink
.insert((*LRI
).begin(), (*LRI
).end());
1781 auto ProfitableToSinkInstruction
= [&](LockstepReverseIterator
&LRI
) {
1782 unsigned NumPHIdValues
= 0;
1783 for (auto *I
: *LRI
)
1784 for (auto *V
: PHIOperands
[I
])
1785 if (InstructionsToSink
.count(V
) == 0)
1787 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues
<< "\n");
1788 unsigned NumPHIInsts
= NumPHIdValues
/ UnconditionalPreds
.size();
1789 if ((NumPHIdValues
% UnconditionalPreds
.size()) != 0)
1792 return NumPHIInsts
<= 1;
1795 if (ScanIdx
> 0 && Cond
) {
1796 // Check if we would actually sink anything first! This mutates the CFG and
1797 // adds an extra block. The goal in doing this is to allow instructions that
1798 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1799 // (such as trunc, add) can be sunk and predicated already. So we check that
1800 // we're going to sink at least one non-speculatable instruction.
1803 bool Profitable
= false;
1804 while (ProfitableToSinkInstruction(LRI
) && Idx
< ScanIdx
) {
1805 if (!isSafeToSpeculativelyExecute((*LRI
)[0])) {
1815 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1816 // We have a conditional edge and we're going to sink some instructions.
1817 // Insert a new block postdominating all blocks we're going to sink from.
1818 if (!SplitBlockPredecessors(BB
, UnconditionalPreds
, ".sink.split"))
1819 // Edges couldn't be split.
1824 // Now that we've analyzed all potential sinking candidates, perform the
1825 // actual sink. We iteratively sink the last non-terminator of the source
1826 // blocks into their common successor unless doing so would require too
1827 // many PHI instructions to be generated (currently only one PHI is allowed
1828 // per sunk instruction).
1830 // We can use InstructionsToSink to discount values needing PHI-merging that will
1831 // actually be sunk in a later iteration. This allows us to be more
1832 // aggressive in what we sink. This does allow a false positive where we
1833 // sink presuming a later value will also be sunk, but stop half way through
1834 // and never actually sink it which means we produce more PHIs than intended.
1835 // This is unlikely in practice though.
1836 for (unsigned SinkIdx
= 0; SinkIdx
!= ScanIdx
; ++SinkIdx
) {
1837 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1838 << *UnconditionalPreds
[0]->getTerminator()->getPrevNode()
1841 // Because we've sunk every instruction in turn, the current instruction to
1842 // sink is always at index 0.
1844 if (!ProfitableToSinkInstruction(LRI
)) {
1845 // Too many PHIs would be created.
1847 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1851 if (!sinkLastInstruction(UnconditionalPreds
))
1859 /// Determine if we can hoist sink a sole store instruction out of a
1860 /// conditional block.
1862 /// We are looking for code like the following:
1864 /// store i32 %add, i32* %arrayidx2
1865 /// ... // No other stores or function calls (we could be calling a memory
1866 /// ... // function).
1867 /// %cmp = icmp ult %x, %y
1868 /// br i1 %cmp, label %EndBB, label %ThenBB
1870 /// store i32 %add5, i32* %arrayidx2
1874 /// We are going to transform this into:
1876 /// store i32 %add, i32* %arrayidx2
1878 /// %cmp = icmp ult %x, %y
1879 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1880 /// store i32 %add.add5, i32* %arrayidx2
1883 /// \return The pointer to the value of the previous store if the store can be
1884 /// hoisted into the predecessor block. 0 otherwise.
1885 static Value
*isSafeToSpeculateStore(Instruction
*I
, BasicBlock
*BrBB
,
1886 BasicBlock
*StoreBB
, BasicBlock
*EndBB
) {
1887 StoreInst
*StoreToHoist
= dyn_cast
<StoreInst
>(I
);
1891 // Volatile or atomic.
1892 if (!StoreToHoist
->isSimple())
1895 Value
*StorePtr
= StoreToHoist
->getPointerOperand();
1897 // Look for a store to the same pointer in BrBB.
1898 unsigned MaxNumInstToLookAt
= 9;
1899 for (Instruction
&CurI
: reverse(BrBB
->instructionsWithoutDebug())) {
1900 if (!MaxNumInstToLookAt
)
1902 --MaxNumInstToLookAt
;
1904 // Could be calling an instruction that affects memory like free().
1905 if (CurI
.mayHaveSideEffects() && !isa
<StoreInst
>(CurI
))
1908 if (auto *SI
= dyn_cast
<StoreInst
>(&CurI
)) {
1909 // Found the previous store make sure it stores to the same location.
1910 if (SI
->getPointerOperand() == StorePtr
)
1911 // Found the previous store, return its value operand.
1912 return SI
->getValueOperand();
1913 return nullptr; // Unknown store.
1920 /// Speculate a conditional basic block flattening the CFG.
1922 /// Note that this is a very risky transform currently. Speculating
1923 /// instructions like this is most often not desirable. Instead, there is an MI
1924 /// pass which can do it with full awareness of the resource constraints.
1925 /// However, some cases are "obvious" and we should do directly. An example of
1926 /// this is speculating a single, reasonably cheap instruction.
1928 /// There is only one distinct advantage to flattening the CFG at the IR level:
1929 /// it makes very common but simplistic optimizations such as are common in
1930 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1931 /// modeling their effects with easier to reason about SSA value graphs.
1934 /// An illustration of this transform is turning this IR:
1937 /// %cmp = icmp ult %x, %y
1938 /// br i1 %cmp, label %EndBB, label %ThenBB
1940 /// %sub = sub %x, %y
1943 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1950 /// %cmp = icmp ult %x, %y
1951 /// %sub = sub %x, %y
1952 /// %cond = select i1 %cmp, 0, %sub
1956 /// \returns true if the conditional block is removed.
1957 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
1958 const TargetTransformInfo
&TTI
) {
1959 // Be conservative for now. FP select instruction can often be expensive.
1960 Value
*BrCond
= BI
->getCondition();
1961 if (isa
<FCmpInst
>(BrCond
))
1964 BasicBlock
*BB
= BI
->getParent();
1965 BasicBlock
*EndBB
= ThenBB
->getTerminator()->getSuccessor(0);
1967 // If ThenBB is actually on the false edge of the conditional branch, remember
1968 // to swap the select operands later.
1969 bool Invert
= false;
1970 if (ThenBB
!= BI
->getSuccessor(0)) {
1971 assert(ThenBB
== BI
->getSuccessor(1) && "No edge from 'if' block?");
1974 assert(EndBB
== BI
->getSuccessor(!Invert
) && "No edge from to end block");
1976 // Keep a count of how many times instructions are used within ThenBB when
1977 // they are candidates for sinking into ThenBB. Specifically:
1978 // - They are defined in BB, and
1979 // - They have no side effects, and
1980 // - All of their uses are in ThenBB.
1981 SmallDenseMap
<Instruction
*, unsigned, 4> SinkCandidateUseCounts
;
1983 SmallVector
<Instruction
*, 4> SpeculatedDbgIntrinsics
;
1985 unsigned SpeculatedInstructions
= 0;
1986 Value
*SpeculatedStoreValue
= nullptr;
1987 StoreInst
*SpeculatedStore
= nullptr;
1988 for (BasicBlock::iterator BBI
= ThenBB
->begin(),
1989 BBE
= std::prev(ThenBB
->end());
1990 BBI
!= BBE
; ++BBI
) {
1991 Instruction
*I
= &*BBI
;
1993 if (isa
<DbgInfoIntrinsic
>(I
)) {
1994 SpeculatedDbgIntrinsics
.push_back(I
);
1998 // Only speculatively execute a single instruction (not counting the
1999 // terminator) for now.
2000 ++SpeculatedInstructions
;
2001 if (SpeculatedInstructions
> 1)
2004 // Don't hoist the instruction if it's unsafe or expensive.
2005 if (!isSafeToSpeculativelyExecute(I
) &&
2006 !(HoistCondStores
&& (SpeculatedStoreValue
= isSafeToSpeculateStore(
2007 I
, BB
, ThenBB
, EndBB
))))
2009 if (!SpeculatedStoreValue
&&
2010 ComputeSpeculationCost(I
, TTI
) >
2011 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
)
2014 // Store the store speculation candidate.
2015 if (SpeculatedStoreValue
)
2016 SpeculatedStore
= cast
<StoreInst
>(I
);
2018 // Do not hoist the instruction if any of its operands are defined but not
2019 // used in BB. The transformation will prevent the operand from
2020 // being sunk into the use block.
2021 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
) {
2022 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
2023 if (!OpI
|| OpI
->getParent() != BB
|| OpI
->mayHaveSideEffects())
2024 continue; // Not a candidate for sinking.
2026 ++SinkCandidateUseCounts
[OpI
];
2030 // Consider any sink candidates which are only used in ThenBB as costs for
2031 // speculation. Note, while we iterate over a DenseMap here, we are summing
2032 // and so iteration order isn't significant.
2033 for (SmallDenseMap
<Instruction
*, unsigned, 4>::iterator
2034 I
= SinkCandidateUseCounts
.begin(),
2035 E
= SinkCandidateUseCounts
.end();
2037 if (I
->first
->hasNUses(I
->second
)) {
2038 ++SpeculatedInstructions
;
2039 if (SpeculatedInstructions
> 1)
2043 // Check that the PHI nodes can be converted to selects.
2044 bool HaveRewritablePHIs
= false;
2045 for (PHINode
&PN
: EndBB
->phis()) {
2046 Value
*OrigV
= PN
.getIncomingValueForBlock(BB
);
2047 Value
*ThenV
= PN
.getIncomingValueForBlock(ThenBB
);
2049 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2050 // Skip PHIs which are trivial.
2054 // Don't convert to selects if we could remove undefined behavior instead.
2055 if (passingValueIsAlwaysUndefined(OrigV
, &PN
) ||
2056 passingValueIsAlwaysUndefined(ThenV
, &PN
))
2059 HaveRewritablePHIs
= true;
2060 ConstantExpr
*OrigCE
= dyn_cast
<ConstantExpr
>(OrigV
);
2061 ConstantExpr
*ThenCE
= dyn_cast
<ConstantExpr
>(ThenV
);
2062 if (!OrigCE
&& !ThenCE
)
2063 continue; // Known safe and cheap.
2065 if ((ThenCE
&& !isSafeToSpeculativelyExecute(ThenCE
)) ||
2066 (OrigCE
&& !isSafeToSpeculativelyExecute(OrigCE
)))
2068 unsigned OrigCost
= OrigCE
? ComputeSpeculationCost(OrigCE
, TTI
) : 0;
2069 unsigned ThenCost
= ThenCE
? ComputeSpeculationCost(ThenCE
, TTI
) : 0;
2071 2 * PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2072 if (OrigCost
+ ThenCost
> MaxCost
)
2075 // Account for the cost of an unfolded ConstantExpr which could end up
2076 // getting expanded into Instructions.
2077 // FIXME: This doesn't account for how many operations are combined in the
2078 // constant expression.
2079 ++SpeculatedInstructions
;
2080 if (SpeculatedInstructions
> 1)
2084 // If there are no PHIs to process, bail early. This helps ensure idempotence
2086 if (!HaveRewritablePHIs
&& !(HoistCondStores
&& SpeculatedStoreValue
))
2089 // If we get here, we can hoist the instruction and if-convert.
2090 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB
<< "\n";);
2092 // Insert a select of the value of the speculated store.
2093 if (SpeculatedStoreValue
) {
2094 IRBuilder
<NoFolder
> Builder(BI
);
2095 Value
*TrueV
= SpeculatedStore
->getValueOperand();
2096 Value
*FalseV
= SpeculatedStoreValue
;
2098 std::swap(TrueV
, FalseV
);
2099 Value
*S
= Builder
.CreateSelect(
2100 BrCond
, TrueV
, FalseV
, "spec.store.select", BI
);
2101 SpeculatedStore
->setOperand(0, S
);
2102 SpeculatedStore
->applyMergedLocation(BI
->getDebugLoc(),
2103 SpeculatedStore
->getDebugLoc());
2106 // Metadata can be dependent on the condition we are hoisting above.
2107 // Conservatively strip all metadata on the instruction.
2108 for (auto &I
: *ThenBB
)
2109 I
.dropUnknownNonDebugMetadata();
2111 // Hoist the instructions.
2112 BB
->getInstList().splice(BI
->getIterator(), ThenBB
->getInstList(),
2113 ThenBB
->begin(), std::prev(ThenBB
->end()));
2115 // Insert selects and rewrite the PHI operands.
2116 IRBuilder
<NoFolder
> Builder(BI
);
2117 for (PHINode
&PN
: EndBB
->phis()) {
2118 unsigned OrigI
= PN
.getBasicBlockIndex(BB
);
2119 unsigned ThenI
= PN
.getBasicBlockIndex(ThenBB
);
2120 Value
*OrigV
= PN
.getIncomingValue(OrigI
);
2121 Value
*ThenV
= PN
.getIncomingValue(ThenI
);
2123 // Skip PHIs which are trivial.
2127 // Create a select whose true value is the speculatively executed value and
2128 // false value is the preexisting value. Swap them if the branch
2129 // destinations were inverted.
2130 Value
*TrueV
= ThenV
, *FalseV
= OrigV
;
2132 std::swap(TrueV
, FalseV
);
2133 Value
*V
= Builder
.CreateSelect(
2134 BrCond
, TrueV
, FalseV
, "spec.select", BI
);
2135 PN
.setIncomingValue(OrigI
, V
);
2136 PN
.setIncomingValue(ThenI
, V
);
2139 // Remove speculated dbg intrinsics.
2140 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2141 // dbg value for the different flows and inserting it after the select.
2142 for (Instruction
*I
: SpeculatedDbgIntrinsics
)
2143 I
->eraseFromParent();
2149 /// Return true if we can thread a branch across this block.
2150 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
2153 for (Instruction
&I
: BB
->instructionsWithoutDebug()) {
2155 return false; // Don't clone large BB's.
2158 // We can only support instructions that do not define values that are
2159 // live outside of the current basic block.
2160 for (User
*U
: I
.users()) {
2161 Instruction
*UI
= cast
<Instruction
>(U
);
2162 if (UI
->getParent() != BB
|| isa
<PHINode
>(UI
))
2166 // Looks ok, continue checking.
2172 /// If we have a conditional branch on a PHI node value that is defined in the
2173 /// same block as the branch and if any PHI entries are constants, thread edges
2174 /// corresponding to that entry to be branches to their ultimate destination.
2175 static bool FoldCondBranchOnPHI(BranchInst
*BI
, const DataLayout
&DL
,
2176 AssumptionCache
*AC
) {
2177 BasicBlock
*BB
= BI
->getParent();
2178 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
2179 // NOTE: we currently cannot transform this case if the PHI node is used
2180 // outside of the block.
2181 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
2184 // Degenerate case of a single entry PHI.
2185 if (PN
->getNumIncomingValues() == 1) {
2186 FoldSingleEntryPHINodes(PN
->getParent());
2190 // Now we know that this block has multiple preds and two succs.
2191 if (!BlockIsSimpleEnoughToThreadThrough(BB
))
2194 // Can't fold blocks that contain noduplicate or convergent calls.
2195 if (any_of(*BB
, [](const Instruction
&I
) {
2196 const CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
2197 return CI
&& (CI
->cannotDuplicate() || CI
->isConvergent());
2201 // Okay, this is a simple enough basic block. See if any phi values are
2203 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2204 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
2205 if (!CB
|| !CB
->getType()->isIntegerTy(1))
2208 // Okay, we now know that all edges from PredBB should be revectored to
2209 // branch to RealDest.
2210 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
2211 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
2214 continue; // Skip self loops.
2215 // Skip if the predecessor's terminator is an indirect branch.
2216 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
2219 // The dest block might have PHI nodes, other predecessors and other
2220 // difficult cases. Instead of being smart about this, just insert a new
2221 // block that jumps to the destination block, effectively splitting
2222 // the edge we are about to create.
2223 BasicBlock
*EdgeBB
=
2224 BasicBlock::Create(BB
->getContext(), RealDest
->getName() + ".critedge",
2225 RealDest
->getParent(), RealDest
);
2226 BranchInst
*CritEdgeBranch
= BranchInst::Create(RealDest
, EdgeBB
);
2227 CritEdgeBranch
->setDebugLoc(BI
->getDebugLoc());
2229 // Update PHI nodes.
2230 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
2232 // BB may have instructions that are being threaded over. Clone these
2233 // instructions into EdgeBB. We know that there will be no uses of the
2234 // cloned instructions outside of EdgeBB.
2235 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
2236 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
2237 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
2238 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
2239 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2242 // Clone the instruction.
2243 Instruction
*N
= BBI
->clone();
2245 N
->setName(BBI
->getName() + ".c");
2247 // Update operands due to translation.
2248 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end(); i
!= e
; ++i
) {
2249 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(*i
);
2250 if (PI
!= TranslateMap
.end())
2254 // Check for trivial simplification.
2255 if (Value
*V
= SimplifyInstruction(N
, {DL
, nullptr, nullptr, AC
})) {
2256 if (!BBI
->use_empty())
2257 TranslateMap
[&*BBI
] = V
;
2258 if (!N
->mayHaveSideEffects()) {
2259 N
->deleteValue(); // Instruction folded away, don't need actual inst
2263 if (!BBI
->use_empty())
2264 TranslateMap
[&*BBI
] = N
;
2266 // Insert the new instruction into its new home.
2268 EdgeBB
->getInstList().insert(InsertPt
, N
);
2270 // Register the new instruction with the assumption cache if necessary.
2271 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(N
))
2272 if (II
->getIntrinsicID() == Intrinsic::assume
)
2273 AC
->registerAssumption(II
);
2276 // Loop over all of the edges from PredBB to BB, changing them to branch
2277 // to EdgeBB instead.
2278 Instruction
*PredBBTI
= PredBB
->getTerminator();
2279 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
2280 if (PredBBTI
->getSuccessor(i
) == BB
) {
2281 BB
->removePredecessor(PredBB
);
2282 PredBBTI
->setSuccessor(i
, EdgeBB
);
2285 // Recurse, simplifying any other constants.
2286 return FoldCondBranchOnPHI(BI
, DL
, AC
) || true;
2292 /// Given a BB that starts with the specified two-entry PHI node,
2293 /// see if we can eliminate it.
2294 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetTransformInfo
&TTI
,
2295 const DataLayout
&DL
) {
2296 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2297 // statement", which has a very simple dominance structure. Basically, we
2298 // are trying to find the condition that is being branched on, which
2299 // subsequently causes this merge to happen. We really want control
2300 // dependence information for this check, but simplifycfg can't keep it up
2301 // to date, and this catches most of the cases we care about anyway.
2302 BasicBlock
*BB
= PN
->getParent();
2303 const Function
*Fn
= BB
->getParent();
2304 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
2307 BasicBlock
*IfTrue
, *IfFalse
;
2308 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
2310 // Don't bother if the branch will be constant folded trivially.
2311 isa
<ConstantInt
>(IfCond
))
2314 // Okay, we found that we can merge this two-entry phi node into a select.
2315 // Doing so would require us to fold *all* two entry phi nodes in this block.
2316 // At some point this becomes non-profitable (particularly if the target
2317 // doesn't support cmov's). Only do this transformation if there are two or
2318 // fewer PHI nodes in this block.
2319 unsigned NumPhis
= 0;
2320 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
2324 // Loop over the PHI's seeing if we can promote them all to select
2325 // instructions. While we are at it, keep track of the instructions
2326 // that need to be moved to the dominating block.
2327 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
2328 int BudgetRemaining
=
2329 TwoEntryPHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2331 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
2332 PHINode
*PN
= cast
<PHINode
>(II
++);
2333 if (Value
*V
= SimplifyInstruction(PN
, {DL
, PN
})) {
2334 PN
->replaceAllUsesWith(V
);
2335 PN
->eraseFromParent();
2339 if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
, AggressiveInsts
,
2340 BudgetRemaining
, TTI
) ||
2341 !DominatesMergePoint(PN
->getIncomingValue(1), BB
, AggressiveInsts
,
2342 BudgetRemaining
, TTI
))
2346 // If we folded the first phi, PN dangles at this point. Refresh it. If
2347 // we ran out of PHIs then we simplified them all.
2348 PN
= dyn_cast
<PHINode
>(BB
->begin());
2352 // Return true if at least one of these is a 'not', and another is either
2353 // a 'not' too, or a constant.
2354 auto CanHoistNotFromBothValues
= [](Value
*V0
, Value
*V1
) {
2355 if (!match(V0
, m_Not(m_Value())))
2357 auto Invertible
= m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2358 return match(V0
, m_Not(m_Value())) && match(V1
, Invertible
);
2361 // Don't fold i1 branches on PHIs which contain binary operators, unless one
2362 // of the incoming values is an 'not' and another one is freely invertible.
2363 // These can often be turned into switches and other things.
2364 if (PN
->getType()->isIntegerTy(1) &&
2365 (isa
<BinaryOperator
>(PN
->getIncomingValue(0)) ||
2366 isa
<BinaryOperator
>(PN
->getIncomingValue(1)) ||
2367 isa
<BinaryOperator
>(IfCond
)) &&
2368 !CanHoistNotFromBothValues(PN
->getIncomingValue(0),
2369 PN
->getIncomingValue(1)))
2372 // If all PHI nodes are promotable, check to make sure that all instructions
2373 // in the predecessor blocks can be promoted as well. If not, we won't be able
2374 // to get rid of the control flow, so it's not worth promoting to select
2376 BasicBlock
*DomBlock
= nullptr;
2377 BasicBlock
*IfBlock1
= PN
->getIncomingBlock(0);
2378 BasicBlock
*IfBlock2
= PN
->getIncomingBlock(1);
2379 if (cast
<BranchInst
>(IfBlock1
->getTerminator())->isConditional()) {
2382 DomBlock
= *pred_begin(IfBlock1
);
2383 for (BasicBlock::iterator I
= IfBlock1
->begin(); !I
->isTerminator(); ++I
)
2384 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2385 // This is not an aggressive instruction that we can promote.
2386 // Because of this, we won't be able to get rid of the control flow, so
2387 // the xform is not worth it.
2392 if (cast
<BranchInst
>(IfBlock2
->getTerminator())->isConditional()) {
2395 DomBlock
= *pred_begin(IfBlock2
);
2396 for (BasicBlock::iterator I
= IfBlock2
->begin(); !I
->isTerminator(); ++I
)
2397 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2398 // This is not an aggressive instruction that we can promote.
2399 // Because of this, we won't be able to get rid of the control flow, so
2400 // the xform is not worth it.
2405 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2406 << " T: " << IfTrue
->getName()
2407 << " F: " << IfFalse
->getName() << "\n");
2409 // If we can still promote the PHI nodes after this gauntlet of tests,
2410 // do all of the PHI's now.
2411 Instruction
*InsertPt
= DomBlock
->getTerminator();
2412 IRBuilder
<NoFolder
> Builder(InsertPt
);
2414 // Move all 'aggressive' instructions, which are defined in the
2415 // conditional parts of the if's up to the dominating block.
2417 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock1
);
2419 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock2
);
2421 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
2422 // Change the PHI node into a select instruction.
2423 Value
*TrueVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
2424 Value
*FalseVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
2426 Value
*Sel
= Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, "", InsertPt
);
2427 PN
->replaceAllUsesWith(Sel
);
2429 PN
->eraseFromParent();
2432 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2433 // has been flattened. Change DomBlock to jump directly to our new block to
2434 // avoid other simplifycfg's kicking in on the diamond.
2435 Instruction
*OldTI
= DomBlock
->getTerminator();
2436 Builder
.SetInsertPoint(OldTI
);
2437 Builder
.CreateBr(BB
);
2438 OldTI
->eraseFromParent();
2442 /// If we found a conditional branch that goes to two returning blocks,
2443 /// try to merge them together into one return,
2444 /// introducing a select if the return values disagree.
2445 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
,
2446 IRBuilder
<> &Builder
) {
2447 assert(BI
->isConditional() && "Must be a conditional branch");
2448 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
2449 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
2450 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
2451 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
2453 // Check to ensure both blocks are empty (just a return) or optionally empty
2454 // with PHI nodes. If there are other instructions, merging would cause extra
2455 // computation on one path or the other.
2456 if (!TrueSucc
->getFirstNonPHIOrDbg()->isTerminator())
2458 if (!FalseSucc
->getFirstNonPHIOrDbg()->isTerminator())
2461 Builder
.SetInsertPoint(BI
);
2462 // Okay, we found a branch that is going to two return nodes. If
2463 // there is no return value for this function, just change the
2464 // branch into a return.
2465 if (FalseRet
->getNumOperands() == 0) {
2466 TrueSucc
->removePredecessor(BI
->getParent());
2467 FalseSucc
->removePredecessor(BI
->getParent());
2468 Builder
.CreateRetVoid();
2469 EraseTerminatorAndDCECond(BI
);
2473 // Otherwise, figure out what the true and false return values are
2474 // so we can insert a new select instruction.
2475 Value
*TrueValue
= TrueRet
->getReturnValue();
2476 Value
*FalseValue
= FalseRet
->getReturnValue();
2478 // Unwrap any PHI nodes in the return blocks.
2479 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
2480 if (TVPN
->getParent() == TrueSucc
)
2481 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
2482 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
2483 if (FVPN
->getParent() == FalseSucc
)
2484 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
2486 // In order for this transformation to be safe, we must be able to
2487 // unconditionally execute both operands to the return. This is
2488 // normally the case, but we could have a potentially-trapping
2489 // constant expression that prevents this transformation from being
2491 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
2494 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
2498 // Okay, we collected all the mapped values and checked them for sanity, and
2499 // defined to really do this transformation. First, update the CFG.
2500 TrueSucc
->removePredecessor(BI
->getParent());
2501 FalseSucc
->removePredecessor(BI
->getParent());
2503 // Insert select instructions where needed.
2504 Value
*BrCond
= BI
->getCondition();
2506 // Insert a select if the results differ.
2507 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
2508 } else if (isa
<UndefValue
>(TrueValue
)) {
2509 TrueValue
= FalseValue
;
2512 Builder
.CreateSelect(BrCond
, TrueValue
, FalseValue
, "retval", BI
);
2517 !TrueValue
? Builder
.CreateRetVoid() : Builder
.CreateRet(TrueValue
);
2521 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2522 << "\n " << *BI
<< "NewRet = " << *RI
<< "TRUEBLOCK: "
2523 << *TrueSucc
<< "FALSEBLOCK: " << *FalseSucc
);
2525 EraseTerminatorAndDCECond(BI
);
2530 /// Return true if the given instruction is available
2531 /// in its predecessor block. If yes, the instruction will be removed.
2532 static bool tryCSEWithPredecessor(Instruction
*Inst
, BasicBlock
*PB
) {
2533 if (!isa
<BinaryOperator
>(Inst
) && !isa
<CmpInst
>(Inst
))
2535 for (Instruction
&I
: *PB
) {
2536 Instruction
*PBI
= &I
;
2537 // Check whether Inst and PBI generate the same value.
2538 if (Inst
->isIdenticalTo(PBI
)) {
2539 Inst
->replaceAllUsesWith(PBI
);
2540 Inst
->eraseFromParent();
2547 /// Return true if either PBI or BI has branch weight available, and store
2548 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2549 /// not have branch weight, use 1:1 as its weight.
2550 static bool extractPredSuccWeights(BranchInst
*PBI
, BranchInst
*BI
,
2551 uint64_t &PredTrueWeight
,
2552 uint64_t &PredFalseWeight
,
2553 uint64_t &SuccTrueWeight
,
2554 uint64_t &SuccFalseWeight
) {
2555 bool PredHasWeights
=
2556 PBI
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
);
2557 bool SuccHasWeights
=
2558 BI
->extractProfMetadata(SuccTrueWeight
, SuccFalseWeight
);
2559 if (PredHasWeights
|| SuccHasWeights
) {
2560 if (!PredHasWeights
)
2561 PredTrueWeight
= PredFalseWeight
= 1;
2562 if (!SuccHasWeights
)
2563 SuccTrueWeight
= SuccFalseWeight
= 1;
2570 /// If this basic block is simple enough, and if a predecessor branches to us
2571 /// and one of our successors, fold the block into the predecessor and use
2572 /// logical operations to pick the right destination.
2573 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
, MemorySSAUpdater
*MSSAU
,
2574 unsigned BonusInstThreshold
) {
2575 BasicBlock
*BB
= BI
->getParent();
2577 const unsigned PredCount
= pred_size(BB
);
2579 Instruction
*Cond
= nullptr;
2580 if (BI
->isConditional())
2581 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
2583 // For unconditional branch, check for a simple CFG pattern, where
2584 // BB has a single predecessor and BB's successor is also its predecessor's
2585 // successor. If such pattern exists, check for CSE between BB and its
2587 if (BasicBlock
*PB
= BB
->getSinglePredecessor())
2588 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PB
->getTerminator()))
2589 if (PBI
->isConditional() &&
2590 (BI
->getSuccessor(0) == PBI
->getSuccessor(0) ||
2591 BI
->getSuccessor(0) == PBI
->getSuccessor(1))) {
2592 for (auto I
= BB
->instructionsWithoutDebug().begin(),
2593 E
= BB
->instructionsWithoutDebug().end();
2595 Instruction
*Curr
= &*I
++;
2596 if (isa
<CmpInst
>(Curr
)) {
2600 // Quit if we can't remove this instruction.
2601 if (!tryCSEWithPredecessor(Curr
, PB
))
2610 if (!Cond
|| (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
2611 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
2614 // Make sure the instruction after the condition is the cond branch.
2615 BasicBlock::iterator CondIt
= ++Cond
->getIterator();
2617 // Ignore dbg intrinsics.
2618 while (isa
<DbgInfoIntrinsic
>(CondIt
))
2624 // Only allow this transformation if computing the condition doesn't involve
2625 // too many instructions and these involved instructions can be executed
2626 // unconditionally. We denote all involved instructions except the condition
2627 // as "bonus instructions", and only allow this transformation when the
2628 // number of the bonus instructions we'll need to create when cloning into
2629 // each predecessor does not exceed a certain threshold.
2630 unsigned NumBonusInsts
= 0;
2631 for (auto I
= BB
->begin(); Cond
!= &*I
; ++I
) {
2632 // Ignore dbg intrinsics.
2633 if (isa
<DbgInfoIntrinsic
>(I
))
2635 if (!I
->hasOneUse() || !isSafeToSpeculativelyExecute(&*I
))
2637 // I has only one use and can be executed unconditionally.
2638 Instruction
*User
= dyn_cast
<Instruction
>(I
->user_back());
2639 if (User
== nullptr || User
->getParent() != BB
)
2641 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2642 // to use any other instruction, User must be an instruction between next(I)
2645 // Account for the cost of duplicating this instruction into each
2647 NumBonusInsts
+= PredCount
;
2648 // Early exits once we reach the limit.
2649 if (NumBonusInsts
> BonusInstThreshold
)
2653 // Cond is known to be a compare or binary operator. Check to make sure that
2654 // neither operand is a potentially-trapping constant expression.
2655 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
2658 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
2662 // Finally, don't infinitely unroll conditional loops.
2663 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
2664 BasicBlock
*FalseDest
= (BI
->isConditional()) ? BI
->getSuccessor(1) : nullptr;
2665 if (TrueDest
== BB
|| FalseDest
== BB
)
2668 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
2669 BasicBlock
*PredBlock
= *PI
;
2670 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
2672 // Check that we have two conditional branches. If there is a PHI node in
2673 // the common successor, verify that the same value flows in from both
2675 SmallVector
<PHINode
*, 4> PHIs
;
2676 if (!PBI
|| PBI
->isUnconditional() ||
2677 (BI
->isConditional() && !SafeToMergeTerminators(BI
, PBI
)) ||
2678 (!BI
->isConditional() &&
2679 !isProfitableToFoldUnconditional(BI
, PBI
, Cond
, PHIs
)))
2682 // Determine if the two branches share a common destination.
2683 Instruction::BinaryOps Opc
= Instruction::BinaryOpsEnd
;
2684 bool InvertPredCond
= false;
2686 if (BI
->isConditional()) {
2687 if (PBI
->getSuccessor(0) == TrueDest
) {
2688 Opc
= Instruction::Or
;
2689 } else if (PBI
->getSuccessor(1) == FalseDest
) {
2690 Opc
= Instruction::And
;
2691 } else if (PBI
->getSuccessor(0) == FalseDest
) {
2692 Opc
= Instruction::And
;
2693 InvertPredCond
= true;
2694 } else if (PBI
->getSuccessor(1) == TrueDest
) {
2695 Opc
= Instruction::Or
;
2696 InvertPredCond
= true;
2701 if (PBI
->getSuccessor(0) != TrueDest
&& PBI
->getSuccessor(1) != TrueDest
)
2705 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
2706 IRBuilder
<> Builder(PBI
);
2708 // If we need to invert the condition in the pred block to match, do so now.
2709 if (InvertPredCond
) {
2710 Value
*NewCond
= PBI
->getCondition();
2712 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
2713 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
2714 CI
->setPredicate(CI
->getInversePredicate());
2717 Builder
.CreateNot(NewCond
, PBI
->getCondition()->getName() + ".not");
2720 PBI
->setCondition(NewCond
);
2721 PBI
->swapSuccessors();
2724 // If we have bonus instructions, clone them into the predecessor block.
2725 // Note that there may be multiple predecessor blocks, so we cannot move
2726 // bonus instructions to a predecessor block.
2727 ValueToValueMapTy VMap
; // maps original values to cloned values
2728 // We already make sure Cond is the last instruction before BI. Therefore,
2729 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2731 for (auto BonusInst
= BB
->begin(); Cond
!= &*BonusInst
; ++BonusInst
) {
2732 if (isa
<DbgInfoIntrinsic
>(BonusInst
))
2734 Instruction
*NewBonusInst
= BonusInst
->clone();
2735 RemapInstruction(NewBonusInst
, VMap
,
2736 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2737 VMap
[&*BonusInst
] = NewBonusInst
;
2739 // If we moved a load, we cannot any longer claim any knowledge about
2740 // its potential value. The previous information might have been valid
2741 // only given the branch precondition.
2742 // For an analogous reason, we must also drop all the metadata whose
2743 // semantics we don't understand.
2744 NewBonusInst
->dropUnknownNonDebugMetadata();
2746 PredBlock
->getInstList().insert(PBI
->getIterator(), NewBonusInst
);
2747 NewBonusInst
->takeName(&*BonusInst
);
2748 BonusInst
->setName(BonusInst
->getName() + ".old");
2751 // Clone Cond into the predecessor basic block, and or/and the
2752 // two conditions together.
2753 Instruction
*CondInPred
= Cond
->clone();
2754 RemapInstruction(CondInPred
, VMap
,
2755 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2756 PredBlock
->getInstList().insert(PBI
->getIterator(), CondInPred
);
2757 CondInPred
->takeName(Cond
);
2758 Cond
->setName(CondInPred
->getName() + ".old");
2760 if (BI
->isConditional()) {
2761 Instruction
*NewCond
= cast
<Instruction
>(
2762 Builder
.CreateBinOp(Opc
, PBI
->getCondition(), CondInPred
, "or.cond"));
2763 PBI
->setCondition(NewCond
);
2765 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
2767 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
2768 SuccTrueWeight
, SuccFalseWeight
);
2769 SmallVector
<uint64_t, 8> NewWeights
;
2771 if (PBI
->getSuccessor(0) == BB
) {
2773 // PBI: br i1 %x, BB, FalseDest
2774 // BI: br i1 %y, TrueDest, FalseDest
2775 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2776 NewWeights
.push_back(PredTrueWeight
* SuccTrueWeight
);
2777 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2778 // TrueWeight for PBI * FalseWeight for BI.
2779 // We assume that total weights of a BranchInst can fit into 32 bits.
2780 // Therefore, we will not have overflow using 64-bit arithmetic.
2781 NewWeights
.push_back(PredFalseWeight
*
2782 (SuccFalseWeight
+ SuccTrueWeight
) +
2783 PredTrueWeight
* SuccFalseWeight
);
2785 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
, MSSAU
);
2786 PBI
->setSuccessor(0, TrueDest
);
2788 if (PBI
->getSuccessor(1) == BB
) {
2790 // PBI: br i1 %x, TrueDest, BB
2791 // BI: br i1 %y, TrueDest, FalseDest
2792 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2793 // FalseWeight for PBI * TrueWeight for BI.
2794 NewWeights
.push_back(PredTrueWeight
*
2795 (SuccFalseWeight
+ SuccTrueWeight
) +
2796 PredFalseWeight
* SuccTrueWeight
);
2797 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2798 NewWeights
.push_back(PredFalseWeight
* SuccFalseWeight
);
2800 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
, MSSAU
);
2801 PBI
->setSuccessor(1, FalseDest
);
2803 if (NewWeights
.size() == 2) {
2804 // Halve the weights if any of them cannot fit in an uint32_t
2805 FitWeights(NewWeights
);
2807 SmallVector
<uint32_t, 8> MDWeights(NewWeights
.begin(),
2809 setBranchWeights(PBI
, MDWeights
[0], MDWeights
[1]);
2811 PBI
->setMetadata(LLVMContext::MD_prof
, nullptr);
2813 // Update PHI nodes in the common successors.
2814 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
) {
2815 ConstantInt
*PBI_C
= cast
<ConstantInt
>(
2816 PHIs
[i
]->getIncomingValueForBlock(PBI
->getParent()));
2817 assert(PBI_C
->getType()->isIntegerTy(1));
2818 Instruction
*MergedCond
= nullptr;
2819 if (PBI
->getSuccessor(0) == TrueDest
) {
2820 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2821 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2822 // is false: !PBI_Cond and BI_Value
2823 Instruction
*NotCond
= cast
<Instruction
>(
2824 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2825 MergedCond
= cast
<Instruction
>(
2826 Builder
.CreateBinOp(Instruction::And
, NotCond
, CondInPred
,
2829 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2830 Instruction::Or
, PBI
->getCondition(), MergedCond
, "or.cond"));
2832 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2833 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2834 // is false: PBI_Cond and BI_Value
2835 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2836 Instruction::And
, PBI
->getCondition(), CondInPred
, "and.cond"));
2837 if (PBI_C
->isOne()) {
2838 Instruction
*NotCond
= cast
<Instruction
>(
2839 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2840 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2841 Instruction::Or
, NotCond
, MergedCond
, "or.cond"));
2845 PHIs
[i
]->setIncomingValueForBlock(PBI
->getParent(), MergedCond
);
2848 // PBI is changed to branch to TrueDest below. Remove itself from
2849 // potential phis from all other successors.
2851 MSSAU
->changeCondBranchToUnconditionalTo(PBI
, TrueDest
);
2853 // Change PBI from Conditional to Unconditional.
2854 BranchInst
*New_PBI
= BranchInst::Create(TrueDest
, PBI
);
2855 EraseTerminatorAndDCECond(PBI
, MSSAU
);
2859 // If BI was a loop latch, it may have had associated loop metadata.
2860 // We need to copy it to the new latch, that is, PBI.
2861 if (MDNode
*LoopMD
= BI
->getMetadata(LLVMContext::MD_loop
))
2862 PBI
->setMetadata(LLVMContext::MD_loop
, LoopMD
);
2864 // TODO: If BB is reachable from all paths through PredBlock, then we
2865 // could replace PBI's branch probabilities with BI's.
2867 // Copy any debug value intrinsics into the end of PredBlock.
2868 for (Instruction
&I
: *BB
)
2869 if (isa
<DbgInfoIntrinsic
>(I
))
2870 I
.clone()->insertBefore(PBI
);
2877 // If there is only one store in BB1 and BB2, return it, otherwise return
2879 static StoreInst
*findUniqueStoreInBlocks(BasicBlock
*BB1
, BasicBlock
*BB2
) {
2880 StoreInst
*S
= nullptr;
2881 for (auto *BB
: {BB1
, BB2
}) {
2885 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2887 // Multiple stores seen.
2896 static Value
*ensureValueAvailableInSuccessor(Value
*V
, BasicBlock
*BB
,
2897 Value
*AlternativeV
= nullptr) {
2898 // PHI is going to be a PHI node that allows the value V that is defined in
2899 // BB to be referenced in BB's only successor.
2901 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2902 // doesn't matter to us what the other operand is (it'll never get used). We
2903 // could just create a new PHI with an undef incoming value, but that could
2904 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2905 // other PHI. So here we directly look for some PHI in BB's successor with V
2906 // as an incoming operand. If we find one, we use it, else we create a new
2909 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2910 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2911 // where OtherBB is the single other predecessor of BB's only successor.
2912 PHINode
*PHI
= nullptr;
2913 BasicBlock
*Succ
= BB
->getSingleSuccessor();
2915 for (auto I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
)
2916 if (cast
<PHINode
>(I
)->getIncomingValueForBlock(BB
) == V
) {
2917 PHI
= cast
<PHINode
>(I
);
2921 assert(Succ
->hasNPredecessors(2));
2922 auto PredI
= pred_begin(Succ
);
2923 BasicBlock
*OtherPredBB
= *PredI
== BB
? *++PredI
: *PredI
;
2924 if (PHI
->getIncomingValueForBlock(OtherPredBB
) == AlternativeV
)
2931 // If V is not an instruction defined in BB, just return it.
2932 if (!AlternativeV
&&
2933 (!isa
<Instruction
>(V
) || cast
<Instruction
>(V
)->getParent() != BB
))
2936 PHI
= PHINode::Create(V
->getType(), 2, "simplifycfg.merge", &Succ
->front());
2937 PHI
->addIncoming(V
, BB
);
2938 for (BasicBlock
*PredBB
: predecessors(Succ
))
2941 AlternativeV
? AlternativeV
: UndefValue::get(V
->getType()), PredBB
);
2945 static bool mergeConditionalStoreToAddress(BasicBlock
*PTB
, BasicBlock
*PFB
,
2946 BasicBlock
*QTB
, BasicBlock
*QFB
,
2947 BasicBlock
*PostBB
, Value
*Address
,
2948 bool InvertPCond
, bool InvertQCond
,
2949 const DataLayout
&DL
) {
2950 auto IsaBitcastOfPointerType
= [](const Instruction
&I
) {
2951 return Operator::getOpcode(&I
) == Instruction::BitCast
&&
2952 I
.getType()->isPointerTy();
2955 // If we're not in aggressive mode, we only optimize if we have some
2956 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2957 auto IsWorthwhile
= [&](BasicBlock
*BB
) {
2960 // Heuristic: if the block can be if-converted/phi-folded and the
2961 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2962 // thread this store.
2964 for (auto &I
: BB
->instructionsWithoutDebug()) {
2965 // Cheap instructions viable for folding.
2966 if (isa
<BinaryOperator
>(I
) || isa
<GetElementPtrInst
>(I
) ||
2969 // Free instructions.
2970 else if (I
.isTerminator() || IsaBitcastOfPointerType(I
))
2975 // The store we want to merge is counted in N, so add 1 to make sure
2976 // we're counting the instructions that would be left.
2977 return N
<= (PHINodeFoldingThreshold
+ 1);
2980 if (!MergeCondStoresAggressively
&&
2981 (!IsWorthwhile(PTB
) || !IsWorthwhile(PFB
) || !IsWorthwhile(QTB
) ||
2982 !IsWorthwhile(QFB
)))
2985 // For every pointer, there must be exactly two stores, one coming from
2986 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2987 // store (to any address) in PTB,PFB or QTB,QFB.
2988 // FIXME: We could relax this restriction with a bit more work and performance
2990 StoreInst
*PStore
= findUniqueStoreInBlocks(PTB
, PFB
);
2991 StoreInst
*QStore
= findUniqueStoreInBlocks(QTB
, QFB
);
2992 if (!PStore
|| !QStore
)
2995 // Now check the stores are compatible.
2996 if (!QStore
->isUnordered() || !PStore
->isUnordered())
2999 // Check that sinking the store won't cause program behavior changes. Sinking
3000 // the store out of the Q blocks won't change any behavior as we're sinking
3001 // from a block to its unconditional successor. But we're moving a store from
3002 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3003 // So we need to check that there are no aliasing loads or stores in
3004 // QBI, QTB and QFB. We also need to check there are no conflicting memory
3005 // operations between PStore and the end of its parent block.
3007 // The ideal way to do this is to query AliasAnalysis, but we don't
3008 // preserve AA currently so that is dangerous. Be super safe and just
3009 // check there are no other memory operations at all.
3010 for (auto &I
: *QFB
->getSinglePredecessor())
3011 if (I
.mayReadOrWriteMemory())
3013 for (auto &I
: *QFB
)
3014 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
3017 for (auto &I
: *QTB
)
3018 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
3020 for (auto I
= BasicBlock::iterator(PStore
), E
= PStore
->getParent()->end();
3022 if (&*I
!= PStore
&& I
->mayReadOrWriteMemory())
3025 // If PostBB has more than two predecessors, we need to split it so we can
3027 if (std::next(pred_begin(PostBB
), 2) != pred_end(PostBB
)) {
3028 // We know that QFB's only successor is PostBB. And QFB has a single
3029 // predecessor. If QTB exists, then its only successor is also PostBB.
3030 // If QTB does not exist, then QFB's only predecessor has a conditional
3031 // branch to QFB and PostBB.
3032 BasicBlock
*TruePred
= QTB
? QTB
: QFB
->getSinglePredecessor();
3033 BasicBlock
*NewBB
= SplitBlockPredecessors(PostBB
, { QFB
, TruePred
},
3040 // OK, we're going to sink the stores to PostBB. The store has to be
3041 // conditional though, so first create the predicate.
3042 Value
*PCond
= cast
<BranchInst
>(PFB
->getSinglePredecessor()->getTerminator())
3044 Value
*QCond
= cast
<BranchInst
>(QFB
->getSinglePredecessor()->getTerminator())
3047 Value
*PPHI
= ensureValueAvailableInSuccessor(PStore
->getValueOperand(),
3048 PStore
->getParent());
3049 Value
*QPHI
= ensureValueAvailableInSuccessor(QStore
->getValueOperand(),
3050 QStore
->getParent(), PPHI
);
3052 IRBuilder
<> QB(&*PostBB
->getFirstInsertionPt());
3054 Value
*PPred
= PStore
->getParent() == PTB
? PCond
: QB
.CreateNot(PCond
);
3055 Value
*QPred
= QStore
->getParent() == QTB
? QCond
: QB
.CreateNot(QCond
);
3058 PPred
= QB
.CreateNot(PPred
);
3060 QPred
= QB
.CreateNot(QPred
);
3061 Value
*CombinedPred
= QB
.CreateOr(PPred
, QPred
);
3064 SplitBlockAndInsertIfThen(CombinedPred
, &*QB
.GetInsertPoint(), false);
3065 QB
.SetInsertPoint(T
);
3066 StoreInst
*SI
= cast
<StoreInst
>(QB
.CreateStore(QPHI
, Address
));
3068 PStore
->getAAMetadata(AAMD
, /*Merge=*/false);
3069 PStore
->getAAMetadata(AAMD
, /*Merge=*/true);
3070 SI
->setAAMetadata(AAMD
);
3071 unsigned PAlignment
= PStore
->getAlignment();
3072 unsigned QAlignment
= QStore
->getAlignment();
3073 unsigned TypeAlignment
=
3074 DL
.getABITypeAlignment(SI
->getValueOperand()->getType());
3075 unsigned MinAlignment
;
3076 unsigned MaxAlignment
;
3077 std::tie(MinAlignment
, MaxAlignment
) = std::minmax(PAlignment
, QAlignment
);
3078 // Choose the minimum alignment. If we could prove both stores execute, we
3079 // could use biggest one. In this case, though, we only know that one of the
3080 // stores executes. And we don't know it's safe to take the alignment from a
3081 // store that doesn't execute.
3082 if (MinAlignment
!= 0) {
3083 // Choose the minimum of all non-zero alignments.
3084 SI
->setAlignment(MinAlignment
);
3085 } else if (MaxAlignment
!= 0) {
3086 // Choose the minimal alignment between the non-zero alignment and the ABI
3087 // default alignment for the type of the stored value.
3088 SI
->setAlignment(std::min(MaxAlignment
, TypeAlignment
));
3090 // If both alignments are zero, use ABI default alignment for the type of
3091 // the stored value.
3092 SI
->setAlignment(TypeAlignment
);
3095 QStore
->eraseFromParent();
3096 PStore
->eraseFromParent();
3101 static bool mergeConditionalStores(BranchInst
*PBI
, BranchInst
*QBI
,
3102 const DataLayout
&DL
) {
3103 // The intention here is to find diamonds or triangles (see below) where each
3104 // conditional block contains a store to the same address. Both of these
3105 // stores are conditional, so they can't be unconditionally sunk. But it may
3106 // be profitable to speculatively sink the stores into one merged store at the
3107 // end, and predicate the merged store on the union of the two conditions of
3110 // This can reduce the number of stores executed if both of the conditions are
3111 // true, and can allow the blocks to become small enough to be if-converted.
3112 // This optimization will also chain, so that ladders of test-and-set
3113 // sequences can be if-converted away.
3115 // We only deal with simple diamonds or triangles:
3117 // PBI or PBI or a combination of the two
3127 // We model triangles as a type of diamond with a nullptr "true" block.
3128 // Triangles are canonicalized so that the fallthrough edge is represented by
3129 // a true condition, as in the diagram above.
3130 BasicBlock
*PTB
= PBI
->getSuccessor(0);
3131 BasicBlock
*PFB
= PBI
->getSuccessor(1);
3132 BasicBlock
*QTB
= QBI
->getSuccessor(0);
3133 BasicBlock
*QFB
= QBI
->getSuccessor(1);
3134 BasicBlock
*PostBB
= QFB
->getSingleSuccessor();
3136 // Make sure we have a good guess for PostBB. If QTB's only successor is
3137 // QFB, then QFB is a better PostBB.
3138 if (QTB
->getSingleSuccessor() == QFB
)
3141 // If we couldn't find a good PostBB, stop.
3145 bool InvertPCond
= false, InvertQCond
= false;
3146 // Canonicalize fallthroughs to the true branches.
3147 if (PFB
== QBI
->getParent()) {
3148 std::swap(PFB
, PTB
);
3151 if (QFB
== PostBB
) {
3152 std::swap(QFB
, QTB
);
3156 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3157 // and QFB may not. Model fallthroughs as a nullptr block.
3158 if (PTB
== QBI
->getParent())
3163 // Legality bailouts. We must have at least the non-fallthrough blocks and
3164 // the post-dominating block, and the non-fallthroughs must only have one
3166 auto HasOnePredAndOneSucc
= [](BasicBlock
*BB
, BasicBlock
*P
, BasicBlock
*S
) {
3167 return BB
->getSinglePredecessor() == P
&& BB
->getSingleSuccessor() == S
;
3169 if (!HasOnePredAndOneSucc(PFB
, PBI
->getParent(), QBI
->getParent()) ||
3170 !HasOnePredAndOneSucc(QFB
, QBI
->getParent(), PostBB
))
3172 if ((PTB
&& !HasOnePredAndOneSucc(PTB
, PBI
->getParent(), QBI
->getParent())) ||
3173 (QTB
&& !HasOnePredAndOneSucc(QTB
, QBI
->getParent(), PostBB
)))
3175 if (!QBI
->getParent()->hasNUses(2))
3178 // OK, this is a sequence of two diamonds or triangles.
3179 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3180 SmallPtrSet
<Value
*, 4> PStoreAddresses
, QStoreAddresses
;
3181 for (auto *BB
: {PTB
, PFB
}) {
3185 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3186 PStoreAddresses
.insert(SI
->getPointerOperand());
3188 for (auto *BB
: {QTB
, QFB
}) {
3192 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3193 QStoreAddresses
.insert(SI
->getPointerOperand());
3196 set_intersect(PStoreAddresses
, QStoreAddresses
);
3197 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3198 // clear what it contains.
3199 auto &CommonAddresses
= PStoreAddresses
;
3201 bool Changed
= false;
3202 for (auto *Address
: CommonAddresses
)
3203 Changed
|= mergeConditionalStoreToAddress(
3204 PTB
, PFB
, QTB
, QFB
, PostBB
, Address
, InvertPCond
, InvertQCond
, DL
);
3208 /// If we have a conditional branch as a predecessor of another block,
3209 /// this function tries to simplify it. We know
3210 /// that PBI and BI are both conditional branches, and BI is in one of the
3211 /// successor blocks of PBI - PBI branches to BI.
3212 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3213 const DataLayout
&DL
) {
3214 assert(PBI
->isConditional() && BI
->isConditional());
3215 BasicBlock
*BB
= BI
->getParent();
3217 // If this block ends with a branch instruction, and if there is a
3218 // predecessor that ends on a branch of the same condition, make
3219 // this conditional branch redundant.
3220 if (PBI
->getCondition() == BI
->getCondition() &&
3221 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3222 // Okay, the outcome of this conditional branch is statically
3223 // knowable. If this block had a single pred, handle specially.
3224 if (BB
->getSinglePredecessor()) {
3225 // Turn this into a branch on constant.
3226 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3228 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
));
3229 return true; // Nuke the branch on constant.
3232 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3233 // in the constant and simplify the block result. Subsequent passes of
3234 // simplifycfg will thread the block.
3235 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
3236 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
3237 PHINode
*NewPN
= PHINode::Create(
3238 Type::getInt1Ty(BB
->getContext()), std::distance(PB
, PE
),
3239 BI
->getCondition()->getName() + ".pr", &BB
->front());
3240 // Okay, we're going to insert the PHI node. Since PBI is not the only
3241 // predecessor, compute the PHI'd conditional value for all of the preds.
3242 // Any predecessor where the condition is not computable we keep symbolic.
3243 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
3244 BasicBlock
*P
= *PI
;
3245 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) && PBI
!= BI
&&
3246 PBI
->isConditional() && PBI
->getCondition() == BI
->getCondition() &&
3247 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3248 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3250 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
),
3253 NewPN
->addIncoming(BI
->getCondition(), P
);
3257 BI
->setCondition(NewPN
);
3262 if (auto *CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
3266 // If both branches are conditional and both contain stores to the same
3267 // address, remove the stores from the conditionals and create a conditional
3268 // merged store at the end.
3269 if (MergeCondStores
&& mergeConditionalStores(PBI
, BI
, DL
))
3272 // If this is a conditional branch in an empty block, and if any
3273 // predecessors are a conditional branch to one of our destinations,
3274 // fold the conditions into logical ops and one cond br.
3276 // Ignore dbg intrinsics.
3277 if (&*BB
->instructionsWithoutDebug().begin() != BI
)
3281 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3284 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3287 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3290 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3297 // Check to make sure that the other destination of this branch
3298 // isn't BB itself. If so, this is an infinite loop that will
3299 // keep getting unwound.
3300 if (PBI
->getSuccessor(PBIOp
) == BB
)
3303 // Do not perform this transformation if it would require
3304 // insertion of a large number of select instructions. For targets
3305 // without predication/cmovs, this is a big pessimization.
3307 // Also do not perform this transformation if any phi node in the common
3308 // destination block can trap when reached by BB or PBB (PR17073). In that
3309 // case, it would be unsafe to hoist the operation into a select instruction.
3311 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
3312 unsigned NumPhis
= 0;
3313 for (BasicBlock::iterator II
= CommonDest
->begin(); isa
<PHINode
>(II
);
3315 if (NumPhis
> 2) // Disable this xform.
3318 PHINode
*PN
= cast
<PHINode
>(II
);
3319 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
3320 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BIV
))
3324 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
3325 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
3326 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PBIV
))
3331 // Finally, if everything is ok, fold the branches to logical ops.
3332 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
3334 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
3335 << "AND: " << *BI
->getParent());
3337 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3338 // branch in it, where one edge (OtherDest) goes back to itself but the other
3339 // exits. We don't *know* that the program avoids the infinite loop
3340 // (even though that seems likely). If we do this xform naively, we'll end up
3341 // recursively unpeeling the loop. Since we know that (after the xform is
3342 // done) that the block *is* infinite if reached, we just make it an obviously
3343 // infinite loop with no cond branch.
3344 if (OtherDest
== BB
) {
3345 // Insert it at the end of the function, because it's either code,
3346 // or it won't matter if it's hot. :)
3347 BasicBlock
*InfLoopBlock
=
3348 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
3349 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
3350 OtherDest
= InfLoopBlock
;
3353 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3355 // BI may have other predecessors. Because of this, we leave
3356 // it alone, but modify PBI.
3358 // Make sure we get to CommonDest on True&True directions.
3359 Value
*PBICond
= PBI
->getCondition();
3360 IRBuilder
<NoFolder
> Builder(PBI
);
3362 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName() + ".not");
3364 Value
*BICond
= BI
->getCondition();
3366 BICond
= Builder
.CreateNot(BICond
, BICond
->getName() + ".not");
3368 // Merge the conditions.
3369 Value
*Cond
= Builder
.CreateOr(PBICond
, BICond
, "brmerge");
3371 // Modify PBI to branch on the new condition to the new dests.
3372 PBI
->setCondition(Cond
);
3373 PBI
->setSuccessor(0, CommonDest
);
3374 PBI
->setSuccessor(1, OtherDest
);
3376 // Update branch weight for PBI.
3377 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3378 uint64_t PredCommon
, PredOther
, SuccCommon
, SuccOther
;
3380 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3381 SuccTrueWeight
, SuccFalseWeight
);
3383 PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3384 PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3385 SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3386 SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3387 // The weight to CommonDest should be PredCommon * SuccTotal +
3388 // PredOther * SuccCommon.
3389 // The weight to OtherDest should be PredOther * SuccOther.
3390 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
) +
3391 PredOther
* SuccCommon
,
3392 PredOther
* SuccOther
};
3393 // Halve the weights if any of them cannot fit in an uint32_t
3394 FitWeights(NewWeights
);
3396 setBranchWeights(PBI
, NewWeights
[0], NewWeights
[1]);
3399 // OtherDest may have phi nodes. If so, add an entry from PBI's
3400 // block that are identical to the entries for BI's block.
3401 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
3403 // We know that the CommonDest already had an edge from PBI to
3404 // it. If it has PHIs though, the PHIs may have different
3405 // entries for BB and PBI's BB. If so, insert a select to make
3407 for (PHINode
&PN
: CommonDest
->phis()) {
3408 Value
*BIV
= PN
.getIncomingValueForBlock(BB
);
3409 unsigned PBBIdx
= PN
.getBasicBlockIndex(PBI
->getParent());
3410 Value
*PBIV
= PN
.getIncomingValue(PBBIdx
);
3412 // Insert a select in PBI to pick the right value.
3413 SelectInst
*NV
= cast
<SelectInst
>(
3414 Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName() + ".mux"));
3415 PN
.setIncomingValue(PBBIdx
, NV
);
3416 // Although the select has the same condition as PBI, the original branch
3417 // weights for PBI do not apply to the new select because the select's
3418 // 'logical' edges are incoming edges of the phi that is eliminated, not
3419 // the outgoing edges of PBI.
3421 uint64_t PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3422 uint64_t PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3423 uint64_t SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3424 uint64_t SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3425 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3426 // The weight to PredOtherDest should be PredOther * SuccCommon.
3427 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
),
3428 PredOther
* SuccCommon
};
3430 FitWeights(NewWeights
);
3432 setBranchWeights(NV
, NewWeights
[0], NewWeights
[1]);
3437 LLVM_DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
3438 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3440 // This basic block is probably dead. We know it has at least
3441 // one fewer predecessor.
3445 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3446 // true or to FalseBB if Cond is false.
3447 // Takes care of updating the successors and removing the old terminator.
3448 // Also makes sure not to introduce new successors by assuming that edges to
3449 // non-successor TrueBBs and FalseBBs aren't reachable.
3450 static bool SimplifyTerminatorOnSelect(Instruction
*OldTerm
, Value
*Cond
,
3451 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
,
3452 uint32_t TrueWeight
,
3453 uint32_t FalseWeight
) {
3454 // Remove any superfluous successor edges from the CFG.
3455 // First, figure out which successors to preserve.
3456 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3458 BasicBlock
*KeepEdge1
= TrueBB
;
3459 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: nullptr;
3461 // Then remove the rest.
3462 for (BasicBlock
*Succ
: successors(OldTerm
)) {
3463 // Make sure only to keep exactly one copy of each edge.
3464 if (Succ
== KeepEdge1
)
3465 KeepEdge1
= nullptr;
3466 else if (Succ
== KeepEdge2
)
3467 KeepEdge2
= nullptr;
3469 Succ
->removePredecessor(OldTerm
->getParent(),
3470 /*KeepOneInputPHIs=*/true);
3473 IRBuilder
<> Builder(OldTerm
);
3474 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
3476 // Insert an appropriate new terminator.
3477 if (!KeepEdge1
&& !KeepEdge2
) {
3478 if (TrueBB
== FalseBB
)
3479 // We were only looking for one successor, and it was present.
3480 // Create an unconditional branch to it.
3481 Builder
.CreateBr(TrueBB
);
3483 // We found both of the successors we were looking for.
3484 // Create a conditional branch sharing the condition of the select.
3485 BranchInst
*NewBI
= Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
3486 if (TrueWeight
!= FalseWeight
)
3487 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
3489 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
3490 // Neither of the selected blocks were successors, so this
3491 // terminator must be unreachable.
3492 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
3494 // One of the selected values was a successor, but the other wasn't.
3495 // Insert an unconditional branch to the one that was found;
3496 // the edge to the one that wasn't must be unreachable.
3498 // Only TrueBB was found.
3499 Builder
.CreateBr(TrueBB
);
3501 // Only FalseBB was found.
3502 Builder
.CreateBr(FalseBB
);
3505 EraseTerminatorAndDCECond(OldTerm
);
3510 // (switch (select cond, X, Y)) on constant X, Y
3511 // with a branch - conditional if X and Y lead to distinct BBs,
3512 // unconditional otherwise.
3513 static bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
) {
3514 // Check for constant integer values in the select.
3515 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
3516 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
3517 if (!TrueVal
|| !FalseVal
)
3520 // Find the relevant condition and destinations.
3521 Value
*Condition
= Select
->getCondition();
3522 BasicBlock
*TrueBB
= SI
->findCaseValue(TrueVal
)->getCaseSuccessor();
3523 BasicBlock
*FalseBB
= SI
->findCaseValue(FalseVal
)->getCaseSuccessor();
3525 // Get weight for TrueBB and FalseBB.
3526 uint32_t TrueWeight
= 0, FalseWeight
= 0;
3527 SmallVector
<uint64_t, 8> Weights
;
3528 bool HasWeights
= HasBranchWeights(SI
);
3530 GetBranchWeights(SI
, Weights
);
3531 if (Weights
.size() == 1 + SI
->getNumCases()) {
3533 (uint32_t)Weights
[SI
->findCaseValue(TrueVal
)->getSuccessorIndex()];
3535 (uint32_t)Weights
[SI
->findCaseValue(FalseVal
)->getSuccessorIndex()];
3539 // Perform the actual simplification.
3540 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
, TrueWeight
,
3545 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3546 // blockaddress(@fn, BlockB)))
3548 // (br cond, BlockA, BlockB).
3549 static bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
) {
3550 // Check that both operands of the select are block addresses.
3551 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
3552 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
3556 // Extract the actual blocks.
3557 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
3558 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
3560 // Perform the actual simplification.
3561 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
, 0,
3565 /// This is called when we find an icmp instruction
3566 /// (a seteq/setne with a constant) as the only instruction in a
3567 /// block that ends with an uncond branch. We are looking for a very specific
3568 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3569 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3570 /// default value goes to an uncond block with a seteq in it, we get something
3573 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3575 /// %tmp = icmp eq i8 %A, 92
3578 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3580 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3581 /// the PHI, merging the third icmp into the switch.
3582 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3583 ICmpInst
*ICI
, IRBuilder
<> &Builder
) {
3584 BasicBlock
*BB
= ICI
->getParent();
3586 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3588 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse())
3591 Value
*V
= ICI
->getOperand(0);
3592 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
3594 // The pattern we're looking for is where our only predecessor is a switch on
3595 // 'V' and this block is the default case for the switch. In this case we can
3596 // fold the compared value into the switch to simplify things.
3597 BasicBlock
*Pred
= BB
->getSinglePredecessor();
3598 if (!Pred
|| !isa
<SwitchInst
>(Pred
->getTerminator()))
3601 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
3602 if (SI
->getCondition() != V
)
3605 // If BB is reachable on a non-default case, then we simply know the value of
3606 // V in this block. Substitute it and constant fold the icmp instruction
3608 if (SI
->getDefaultDest() != BB
) {
3609 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
3610 assert(VVal
&& "Should have a unique destination value");
3611 ICI
->setOperand(0, VVal
);
3613 if (Value
*V
= SimplifyInstruction(ICI
, {DL
, ICI
})) {
3614 ICI
->replaceAllUsesWith(V
);
3615 ICI
->eraseFromParent();
3617 // BB is now empty, so it is likely to simplify away.
3618 return requestResimplify();
3621 // Ok, the block is reachable from the default dest. If the constant we're
3622 // comparing exists in one of the other edges, then we can constant fold ICI
3624 if (SI
->findCaseValue(Cst
) != SI
->case_default()) {
3626 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3627 V
= ConstantInt::getFalse(BB
->getContext());
3629 V
= ConstantInt::getTrue(BB
->getContext());
3631 ICI
->replaceAllUsesWith(V
);
3632 ICI
->eraseFromParent();
3633 // BB is now empty, so it is likely to simplify away.
3634 return requestResimplify();
3637 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3639 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
3640 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->user_back());
3641 if (PHIUse
== nullptr || PHIUse
!= &SuccBlock
->front() ||
3642 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
3645 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3647 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
3648 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
3650 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3651 std::swap(DefaultCst
, NewCst
);
3653 // Replace ICI (which is used by the PHI for the default value) with true or
3654 // false depending on if it is EQ or NE.
3655 ICI
->replaceAllUsesWith(DefaultCst
);
3656 ICI
->eraseFromParent();
3658 // Okay, the switch goes to this block on a default value. Add an edge from
3659 // the switch to the merge point on the compared value.
3661 BasicBlock::Create(BB
->getContext(), "switch.edge", BB
->getParent(), BB
);
3663 SwitchInstProfUpdateWrapper
SIW(*SI
);
3664 auto W0
= SIW
.getSuccessorWeight(0);
3665 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW
;
3667 NewW
= ((uint64_t(*W0
) + 1) >> 1);
3668 SIW
.setSuccessorWeight(0, *NewW
);
3670 SIW
.addCase(Cst
, NewBB
, NewW
);
3673 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3674 Builder
.SetInsertPoint(NewBB
);
3675 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
3676 Builder
.CreateBr(SuccBlock
);
3677 PHIUse
->addIncoming(NewCst
, NewBB
);
3681 /// The specified branch is a conditional branch.
3682 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3683 /// fold it into a switch instruction if so.
3684 static bool SimplifyBranchOnICmpChain(BranchInst
*BI
, IRBuilder
<> &Builder
,
3685 const DataLayout
&DL
) {
3686 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
3690 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3691 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3692 // 'setne's and'ed together, collect them.
3694 // Try to gather values from a chain of and/or to be turned into a switch
3695 ConstantComparesGatherer
ConstantCompare(Cond
, DL
);
3696 // Unpack the result
3697 SmallVectorImpl
<ConstantInt
*> &Values
= ConstantCompare
.Vals
;
3698 Value
*CompVal
= ConstantCompare
.CompValue
;
3699 unsigned UsedICmps
= ConstantCompare
.UsedICmps
;
3700 Value
*ExtraCase
= ConstantCompare
.Extra
;
3702 // If we didn't have a multiply compared value, fail.
3706 // Avoid turning single icmps into a switch.
3710 bool TrueWhenEqual
= (Cond
->getOpcode() == Instruction::Or
);
3712 // There might be duplicate constants in the list, which the switch
3713 // instruction can't handle, remove them now.
3714 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
3715 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
3717 // If Extra was used, we require at least two switch values to do the
3718 // transformation. A switch with one value is just a conditional branch.
3719 if (ExtraCase
&& Values
.size() < 2)
3722 // TODO: Preserve branch weight metadata, similarly to how
3723 // FoldValueComparisonIntoPredecessors preserves it.
3725 // Figure out which block is which destination.
3726 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
3727 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
3729 std::swap(DefaultBB
, EdgeBB
);
3731 BasicBlock
*BB
= BI
->getParent();
3733 // MSAN does not like undefs as branch condition which can be introduced
3734 // with "explicit branch".
3735 if (ExtraCase
&& BB
->getParent()->hasFnAttribute(Attribute::SanitizeMemory
))
3738 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
3739 << " cases into SWITCH. BB is:\n"
3742 // If there are any extra values that couldn't be folded into the switch
3743 // then we evaluate them with an explicit branch first. Split the block
3744 // right before the condbr to handle it.
3747 BB
->splitBasicBlock(BI
->getIterator(), "switch.early.test");
3748 // Remove the uncond branch added to the old block.
3749 Instruction
*OldTI
= BB
->getTerminator();
3750 Builder
.SetInsertPoint(OldTI
);
3753 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
3755 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
3757 OldTI
->eraseFromParent();
3759 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3760 // for the edge we just added.
3761 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
3763 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3764 << "\nEXTRABB = " << *BB
);
3768 Builder
.SetInsertPoint(BI
);
3769 // Convert pointer to int before we switch.
3770 if (CompVal
->getType()->isPointerTy()) {
3771 CompVal
= Builder
.CreatePtrToInt(
3772 CompVal
, DL
.getIntPtrType(CompVal
->getType()), "magicptr");
3775 // Create the new switch instruction now.
3776 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
3778 // Add all of the 'cases' to the switch instruction.
3779 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
3780 New
->addCase(Values
[i
], EdgeBB
);
3782 // We added edges from PI to the EdgeBB. As such, if there were any
3783 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3784 // the number of edges added.
3785 for (BasicBlock::iterator BBI
= EdgeBB
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
3786 PHINode
*PN
= cast
<PHINode
>(BBI
);
3787 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
3788 for (unsigned i
= 0, e
= Values
.size() - 1; i
!= e
; ++i
)
3789 PN
->addIncoming(InVal
, BB
);
3792 // Erase the old branch instruction.
3793 EraseTerminatorAndDCECond(BI
);
3795 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
3799 bool SimplifyCFGOpt::SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
) {
3800 if (isa
<PHINode
>(RI
->getValue()))
3801 return SimplifyCommonResume(RI
);
3802 else if (isa
<LandingPadInst
>(RI
->getParent()->getFirstNonPHI()) &&
3803 RI
->getValue() == RI
->getParent()->getFirstNonPHI())
3804 // The resume must unwind the exception that caused control to branch here.
3805 return SimplifySingleResume(RI
);
3810 // Simplify resume that is shared by several landing pads (phi of landing pad).
3811 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst
*RI
) {
3812 BasicBlock
*BB
= RI
->getParent();
3814 // Check that there are no other instructions except for debug intrinsics
3815 // between the phi of landing pads (RI->getValue()) and resume instruction.
3816 BasicBlock::iterator I
= cast
<Instruction
>(RI
->getValue())->getIterator(),
3817 E
= RI
->getIterator();
3819 if (!isa
<DbgInfoIntrinsic
>(I
))
3822 SmallSetVector
<BasicBlock
*, 4> TrivialUnwindBlocks
;
3823 auto *PhiLPInst
= cast
<PHINode
>(RI
->getValue());
3825 // Check incoming blocks to see if any of them are trivial.
3826 for (unsigned Idx
= 0, End
= PhiLPInst
->getNumIncomingValues(); Idx
!= End
;
3828 auto *IncomingBB
= PhiLPInst
->getIncomingBlock(Idx
);
3829 auto *IncomingValue
= PhiLPInst
->getIncomingValue(Idx
);
3831 // If the block has other successors, we can not delete it because
3832 // it has other dependents.
3833 if (IncomingBB
->getUniqueSuccessor() != BB
)
3836 auto *LandingPad
= dyn_cast
<LandingPadInst
>(IncomingBB
->getFirstNonPHI());
3837 // Not the landing pad that caused the control to branch here.
3838 if (IncomingValue
!= LandingPad
)
3841 bool isTrivial
= true;
3843 I
= IncomingBB
->getFirstNonPHI()->getIterator();
3844 E
= IncomingBB
->getTerminator()->getIterator();
3846 if (!isa
<DbgInfoIntrinsic
>(I
)) {
3852 TrivialUnwindBlocks
.insert(IncomingBB
);
3855 // If no trivial unwind blocks, don't do any simplifications.
3856 if (TrivialUnwindBlocks
.empty())
3859 // Turn all invokes that unwind here into calls.
3860 for (auto *TrivialBB
: TrivialUnwindBlocks
) {
3861 // Blocks that will be simplified should be removed from the phi node.
3862 // Note there could be multiple edges to the resume block, and we need
3863 // to remove them all.
3864 while (PhiLPInst
->getBasicBlockIndex(TrivialBB
) != -1)
3865 BB
->removePredecessor(TrivialBB
, true);
3867 for (pred_iterator PI
= pred_begin(TrivialBB
), PE
= pred_end(TrivialBB
);
3869 BasicBlock
*Pred
= *PI
++;
3870 removeUnwindEdge(Pred
);
3873 // In each SimplifyCFG run, only the current processed block can be erased.
3874 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3875 // of erasing TrivialBB, we only remove the branch to the common resume
3876 // block so that we can later erase the resume block since it has no
3878 TrivialBB
->getTerminator()->eraseFromParent();
3879 new UnreachableInst(RI
->getContext(), TrivialBB
);
3882 // Delete the resume block if all its predecessors have been removed.
3884 BB
->eraseFromParent();
3886 return !TrivialUnwindBlocks
.empty();
3889 // Simplify resume that is only used by a single (non-phi) landing pad.
3890 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst
*RI
) {
3891 BasicBlock
*BB
= RI
->getParent();
3892 LandingPadInst
*LPInst
= dyn_cast
<LandingPadInst
>(BB
->getFirstNonPHI());
3893 assert(RI
->getValue() == LPInst
&&
3894 "Resume must unwind the exception that caused control to here");
3896 // Check that there are no other instructions except for debug intrinsics.
3897 BasicBlock::iterator I
= LPInst
->getIterator(), E
= RI
->getIterator();
3899 if (!isa
<DbgInfoIntrinsic
>(I
))
3902 // Turn all invokes that unwind here into calls and delete the basic block.
3903 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
3904 BasicBlock
*Pred
= *PI
++;
3905 removeUnwindEdge(Pred
);
3908 // The landingpad is now unreachable. Zap it.
3910 LoopHeaders
->erase(BB
);
3911 BB
->eraseFromParent();
3915 static bool removeEmptyCleanup(CleanupReturnInst
*RI
) {
3916 // If this is a trivial cleanup pad that executes no instructions, it can be
3917 // eliminated. If the cleanup pad continues to the caller, any predecessor
3918 // that is an EH pad will be updated to continue to the caller and any
3919 // predecessor that terminates with an invoke instruction will have its invoke
3920 // instruction converted to a call instruction. If the cleanup pad being
3921 // simplified does not continue to the caller, each predecessor will be
3922 // updated to continue to the unwind destination of the cleanup pad being
3924 BasicBlock
*BB
= RI
->getParent();
3925 CleanupPadInst
*CPInst
= RI
->getCleanupPad();
3926 if (CPInst
->getParent() != BB
)
3927 // This isn't an empty cleanup.
3930 // We cannot kill the pad if it has multiple uses. This typically arises
3931 // from unreachable basic blocks.
3932 if (!CPInst
->hasOneUse())
3935 // Check that there are no other instructions except for benign intrinsics.
3936 BasicBlock::iterator I
= CPInst
->getIterator(), E
= RI
->getIterator();
3938 auto *II
= dyn_cast
<IntrinsicInst
>(I
);
3942 Intrinsic::ID IntrinsicID
= II
->getIntrinsicID();
3943 switch (IntrinsicID
) {
3944 case Intrinsic::dbg_declare
:
3945 case Intrinsic::dbg_value
:
3946 case Intrinsic::dbg_label
:
3947 case Intrinsic::lifetime_end
:
3954 // If the cleanup return we are simplifying unwinds to the caller, this will
3955 // set UnwindDest to nullptr.
3956 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
3957 Instruction
*DestEHPad
= UnwindDest
? UnwindDest
->getFirstNonPHI() : nullptr;
3959 // We're about to remove BB from the control flow. Before we do, sink any
3960 // PHINodes into the unwind destination. Doing this before changing the
3961 // control flow avoids some potentially slow checks, since we can currently
3962 // be certain that UnwindDest and BB have no common predecessors (since they
3963 // are both EH pads).
3965 // First, go through the PHI nodes in UnwindDest and update any nodes that
3966 // reference the block we are removing
3967 for (BasicBlock::iterator I
= UnwindDest
->begin(),
3968 IE
= DestEHPad
->getIterator();
3970 PHINode
*DestPN
= cast
<PHINode
>(I
);
3972 int Idx
= DestPN
->getBasicBlockIndex(BB
);
3973 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3975 // This PHI node has an incoming value that corresponds to a control
3976 // path through the cleanup pad we are removing. If the incoming
3977 // value is in the cleanup pad, it must be a PHINode (because we
3978 // verified above that the block is otherwise empty). Otherwise, the
3979 // value is either a constant or a value that dominates the cleanup
3980 // pad being removed.
3982 // Because BB and UnwindDest are both EH pads, all of their
3983 // predecessors must unwind to these blocks, and since no instruction
3984 // can have multiple unwind destinations, there will be no overlap in
3985 // incoming blocks between SrcPN and DestPN.
3986 Value
*SrcVal
= DestPN
->getIncomingValue(Idx
);
3987 PHINode
*SrcPN
= dyn_cast
<PHINode
>(SrcVal
);
3989 // Remove the entry for the block we are deleting.
3990 DestPN
->removeIncomingValue(Idx
, false);
3992 if (SrcPN
&& SrcPN
->getParent() == BB
) {
3993 // If the incoming value was a PHI node in the cleanup pad we are
3994 // removing, we need to merge that PHI node's incoming values into
3996 for (unsigned SrcIdx
= 0, SrcE
= SrcPN
->getNumIncomingValues();
3997 SrcIdx
!= SrcE
; ++SrcIdx
) {
3998 DestPN
->addIncoming(SrcPN
->getIncomingValue(SrcIdx
),
3999 SrcPN
->getIncomingBlock(SrcIdx
));
4002 // Otherwise, the incoming value came from above BB and
4003 // so we can just reuse it. We must associate all of BB's
4004 // predecessors with this value.
4005 for (auto *pred
: predecessors(BB
)) {
4006 DestPN
->addIncoming(SrcVal
, pred
);
4011 // Sink any remaining PHI nodes directly into UnwindDest.
4012 Instruction
*InsertPt
= DestEHPad
;
4013 for (BasicBlock::iterator I
= BB
->begin(),
4014 IE
= BB
->getFirstNonPHI()->getIterator();
4016 // The iterator must be incremented here because the instructions are
4017 // being moved to another block.
4018 PHINode
*PN
= cast
<PHINode
>(I
++);
4019 if (PN
->use_empty())
4020 // If the PHI node has no uses, just leave it. It will be erased
4021 // when we erase BB below.
4024 // Otherwise, sink this PHI node into UnwindDest.
4025 // Any predecessors to UnwindDest which are not already represented
4026 // must be back edges which inherit the value from the path through
4027 // BB. In this case, the PHI value must reference itself.
4028 for (auto *pred
: predecessors(UnwindDest
))
4030 PN
->addIncoming(PN
, pred
);
4031 PN
->moveBefore(InsertPt
);
4035 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
4036 // The iterator must be updated here because we are removing this pred.
4037 BasicBlock
*PredBB
= *PI
++;
4038 if (UnwindDest
== nullptr) {
4039 removeUnwindEdge(PredBB
);
4041 Instruction
*TI
= PredBB
->getTerminator();
4042 TI
->replaceUsesOfWith(BB
, UnwindDest
);
4046 // The cleanup pad is now unreachable. Zap it.
4047 BB
->eraseFromParent();
4051 // Try to merge two cleanuppads together.
4052 static bool mergeCleanupPad(CleanupReturnInst
*RI
) {
4053 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4055 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4059 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4060 // be safe to merge without code duplication.
4061 if (UnwindDest
->getSinglePredecessor() != RI
->getParent())
4064 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4065 auto *SuccessorCleanupPad
= dyn_cast
<CleanupPadInst
>(&UnwindDest
->front());
4066 if (!SuccessorCleanupPad
)
4069 CleanupPadInst
*PredecessorCleanupPad
= RI
->getCleanupPad();
4070 // Replace any uses of the successor cleanupad with the predecessor pad
4071 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4072 // funclet bundle operands.
4073 SuccessorCleanupPad
->replaceAllUsesWith(PredecessorCleanupPad
);
4074 // Remove the old cleanuppad.
4075 SuccessorCleanupPad
->eraseFromParent();
4076 // Now, we simply replace the cleanupret with a branch to the unwind
4078 BranchInst::Create(UnwindDest
, RI
->getParent());
4079 RI
->eraseFromParent();
4084 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst
*RI
) {
4085 // It is possible to transiantly have an undef cleanuppad operand because we
4086 // have deleted some, but not all, dead blocks.
4087 // Eventually, this block will be deleted.
4088 if (isa
<UndefValue
>(RI
->getOperand(0)))
4091 if (mergeCleanupPad(RI
))
4094 if (removeEmptyCleanup(RI
))
4100 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
) {
4101 BasicBlock
*BB
= RI
->getParent();
4102 if (!BB
->getFirstNonPHIOrDbg()->isTerminator())
4105 // Find predecessors that end with branches.
4106 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
4107 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
4108 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
4109 BasicBlock
*P
= *PI
;
4110 Instruction
*PTI
= P
->getTerminator();
4111 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
4112 if (BI
->isUnconditional())
4113 UncondBranchPreds
.push_back(P
);
4115 CondBranchPreds
.push_back(BI
);
4119 // If we found some, do the transformation!
4120 if (!UncondBranchPreds
.empty() && DupRet
) {
4121 while (!UncondBranchPreds
.empty()) {
4122 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
4123 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4124 << "INTO UNCOND BRANCH PRED: " << *Pred
);
4125 (void)FoldReturnIntoUncondBranch(RI
, BB
, Pred
);
4128 // If we eliminated all predecessors of the block, delete the block now.
4129 if (pred_empty(BB
)) {
4130 // We know there are no successors, so just nuke the block.
4132 LoopHeaders
->erase(BB
);
4133 BB
->eraseFromParent();
4139 // Check out all of the conditional branches going to this return
4140 // instruction. If any of them just select between returns, change the
4141 // branch itself into a select/return pair.
4142 while (!CondBranchPreds
.empty()) {
4143 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
4145 // Check to see if the non-BB successor is also a return block.
4146 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
4147 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
4148 SimplifyCondBranchToTwoReturns(BI
, Builder
))
4154 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst
*UI
) {
4155 BasicBlock
*BB
= UI
->getParent();
4157 bool Changed
= false;
4159 // If there are any instructions immediately before the unreachable that can
4160 // be removed, do so.
4161 while (UI
->getIterator() != BB
->begin()) {
4162 BasicBlock::iterator BBI
= UI
->getIterator();
4164 // Do not delete instructions that can have side effects which might cause
4165 // the unreachable to not be reachable; specifically, calls and volatile
4166 // operations may have this effect.
4167 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
))
4170 if (BBI
->mayHaveSideEffects()) {
4171 if (auto *SI
= dyn_cast
<StoreInst
>(BBI
)) {
4172 if (SI
->isVolatile())
4174 } else if (auto *LI
= dyn_cast
<LoadInst
>(BBI
)) {
4175 if (LI
->isVolatile())
4177 } else if (auto *RMWI
= dyn_cast
<AtomicRMWInst
>(BBI
)) {
4178 if (RMWI
->isVolatile())
4180 } else if (auto *CXI
= dyn_cast
<AtomicCmpXchgInst
>(BBI
)) {
4181 if (CXI
->isVolatile())
4183 } else if (isa
<CatchPadInst
>(BBI
)) {
4184 // A catchpad may invoke exception object constructors and such, which
4185 // in some languages can be arbitrary code, so be conservative by
4187 // For CoreCLR, it just involves a type test, so can be removed.
4188 if (classifyEHPersonality(BB
->getParent()->getPersonalityFn()) !=
4189 EHPersonality::CoreCLR
)
4191 } else if (!isa
<FenceInst
>(BBI
) && !isa
<VAArgInst
>(BBI
) &&
4192 !isa
<LandingPadInst
>(BBI
)) {
4195 // Note that deleting LandingPad's here is in fact okay, although it
4196 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4197 // all the predecessors of this block will be the unwind edges of Invokes,
4198 // and we can therefore guarantee this block will be erased.
4201 // Delete this instruction (any uses are guaranteed to be dead)
4202 if (!BBI
->use_empty())
4203 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
4204 BBI
->eraseFromParent();
4208 // If the unreachable instruction is the first in the block, take a gander
4209 // at all of the predecessors of this instruction, and simplify them.
4210 if (&BB
->front() != UI
)
4213 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
4214 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
4215 Instruction
*TI
= Preds
[i
]->getTerminator();
4216 IRBuilder
<> Builder(TI
);
4217 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
4218 if (BI
->isUnconditional()) {
4219 assert(BI
->getSuccessor(0) == BB
&& "Incorrect CFG");
4220 new UnreachableInst(TI
->getContext(), TI
);
4221 TI
->eraseFromParent();
4224 Value
* Cond
= BI
->getCondition();
4225 if (BI
->getSuccessor(0) == BB
) {
4226 Builder
.CreateAssumption(Builder
.CreateNot(Cond
));
4227 Builder
.CreateBr(BI
->getSuccessor(1));
4229 assert(BI
->getSuccessor(1) == BB
&& "Incorrect CFG");
4230 Builder
.CreateAssumption(Cond
);
4231 Builder
.CreateBr(BI
->getSuccessor(0));
4233 EraseTerminatorAndDCECond(BI
);
4236 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
4237 SwitchInstProfUpdateWrapper
SU(*SI
);
4238 for (auto i
= SU
->case_begin(), e
= SU
->case_end(); i
!= e
;) {
4239 if (i
->getCaseSuccessor() != BB
) {
4243 BB
->removePredecessor(SU
->getParent());
4244 i
= SU
.removeCase(i
);
4248 } else if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
4249 if (II
->getUnwindDest() == BB
) {
4250 removeUnwindEdge(TI
->getParent());
4253 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
4254 if (CSI
->getUnwindDest() == BB
) {
4255 removeUnwindEdge(TI
->getParent());
4260 for (CatchSwitchInst::handler_iterator I
= CSI
->handler_begin(),
4261 E
= CSI
->handler_end();
4264 CSI
->removeHandler(I
);
4270 if (CSI
->getNumHandlers() == 0) {
4271 BasicBlock
*CatchSwitchBB
= CSI
->getParent();
4272 if (CSI
->hasUnwindDest()) {
4273 // Redirect preds to the unwind dest
4274 CatchSwitchBB
->replaceAllUsesWith(CSI
->getUnwindDest());
4276 // Rewrite all preds to unwind to caller (or from invoke to call).
4277 SmallVector
<BasicBlock
*, 8> EHPreds(predecessors(CatchSwitchBB
));
4278 for (BasicBlock
*EHPred
: EHPreds
)
4279 removeUnwindEdge(EHPred
);
4281 // The catchswitch is no longer reachable.
4282 new UnreachableInst(CSI
->getContext(), CSI
);
4283 CSI
->eraseFromParent();
4286 } else if (isa
<CleanupReturnInst
>(TI
)) {
4287 new UnreachableInst(TI
->getContext(), TI
);
4288 TI
->eraseFromParent();
4293 // If this block is now dead, remove it.
4294 if (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) {
4295 // We know there are no successors, so just nuke the block.
4297 LoopHeaders
->erase(BB
);
4298 BB
->eraseFromParent();
4305 static bool CasesAreContiguous(SmallVectorImpl
<ConstantInt
*> &Cases
) {
4306 assert(Cases
.size() >= 1);
4308 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
4309 for (size_t I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
4310 if (Cases
[I
- 1]->getValue() != Cases
[I
]->getValue() + 1)
4316 static void createUnreachableSwitchDefault(SwitchInst
*Switch
) {
4317 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4318 BasicBlock
*NewDefaultBlock
=
4319 SplitBlockPredecessors(Switch
->getDefaultDest(), Switch
->getParent(), "");
4320 Switch
->setDefaultDest(&*NewDefaultBlock
);
4321 SplitBlock(&*NewDefaultBlock
, &NewDefaultBlock
->front());
4322 auto *NewTerminator
= NewDefaultBlock
->getTerminator();
4323 new UnreachableInst(Switch
->getContext(), NewTerminator
);
4324 EraseTerminatorAndDCECond(NewTerminator
);
4327 /// Turn a switch with two reachable destinations into an integer range
4328 /// comparison and branch.
4329 static bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
4330 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
4333 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4335 // Partition the cases into two sets with different destinations.
4336 BasicBlock
*DestA
= HasDefault
? SI
->getDefaultDest() : nullptr;
4337 BasicBlock
*DestB
= nullptr;
4338 SmallVector
<ConstantInt
*, 16> CasesA
;
4339 SmallVector
<ConstantInt
*, 16> CasesB
;
4341 for (auto Case
: SI
->cases()) {
4342 BasicBlock
*Dest
= Case
.getCaseSuccessor();
4345 if (Dest
== DestA
) {
4346 CasesA
.push_back(Case
.getCaseValue());
4351 if (Dest
== DestB
) {
4352 CasesB
.push_back(Case
.getCaseValue());
4355 return false; // More than two destinations.
4358 assert(DestA
&& DestB
&&
4359 "Single-destination switch should have been folded.");
4360 assert(DestA
!= DestB
);
4361 assert(DestB
!= SI
->getDefaultDest());
4362 assert(!CasesB
.empty() && "There must be non-default cases.");
4363 assert(!CasesA
.empty() || HasDefault
);
4365 // Figure out if one of the sets of cases form a contiguous range.
4366 SmallVectorImpl
<ConstantInt
*> *ContiguousCases
= nullptr;
4367 BasicBlock
*ContiguousDest
= nullptr;
4368 BasicBlock
*OtherDest
= nullptr;
4369 if (!CasesA
.empty() && CasesAreContiguous(CasesA
)) {
4370 ContiguousCases
= &CasesA
;
4371 ContiguousDest
= DestA
;
4373 } else if (CasesAreContiguous(CasesB
)) {
4374 ContiguousCases
= &CasesB
;
4375 ContiguousDest
= DestB
;
4380 // Start building the compare and branch.
4382 Constant
*Offset
= ConstantExpr::getNeg(ContiguousCases
->back());
4383 Constant
*NumCases
=
4384 ConstantInt::get(Offset
->getType(), ContiguousCases
->size());
4386 Value
*Sub
= SI
->getCondition();
4387 if (!Offset
->isNullValue())
4388 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName() + ".off");
4391 // If NumCases overflowed, then all possible values jump to the successor.
4392 if (NumCases
->isNullValue() && !ContiguousCases
->empty())
4393 Cmp
= ConstantInt::getTrue(SI
->getContext());
4395 Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
4396 BranchInst
*NewBI
= Builder
.CreateCondBr(Cmp
, ContiguousDest
, OtherDest
);
4398 // Update weight for the newly-created conditional branch.
4399 if (HasBranchWeights(SI
)) {
4400 SmallVector
<uint64_t, 8> Weights
;
4401 GetBranchWeights(SI
, Weights
);
4402 if (Weights
.size() == 1 + SI
->getNumCases()) {
4403 uint64_t TrueWeight
= 0;
4404 uint64_t FalseWeight
= 0;
4405 for (size_t I
= 0, E
= Weights
.size(); I
!= E
; ++I
) {
4406 if (SI
->getSuccessor(I
) == ContiguousDest
)
4407 TrueWeight
+= Weights
[I
];
4409 FalseWeight
+= Weights
[I
];
4411 while (TrueWeight
> UINT32_MAX
|| FalseWeight
> UINT32_MAX
) {
4415 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
4419 // Prune obsolete incoming values off the successors' PHI nodes.
4420 for (auto BBI
= ContiguousDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4421 unsigned PreviousEdges
= ContiguousCases
->size();
4422 if (ContiguousDest
== SI
->getDefaultDest())
4424 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4425 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4427 for (auto BBI
= OtherDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4428 unsigned PreviousEdges
= SI
->getNumCases() - ContiguousCases
->size();
4429 if (OtherDest
== SI
->getDefaultDest())
4431 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4432 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4435 // Clean up the default block - it may have phis or other instructions before
4436 // the unreachable terminator.
4438 createUnreachableSwitchDefault(SI
);
4441 SI
->eraseFromParent();
4446 /// Compute masked bits for the condition of a switch
4447 /// and use it to remove dead cases.
4448 static bool eliminateDeadSwitchCases(SwitchInst
*SI
, AssumptionCache
*AC
,
4449 const DataLayout
&DL
) {
4450 Value
*Cond
= SI
->getCondition();
4451 unsigned Bits
= Cond
->getType()->getIntegerBitWidth();
4452 KnownBits Known
= computeKnownBits(Cond
, DL
, 0, AC
, SI
);
4454 // We can also eliminate cases by determining that their values are outside of
4455 // the limited range of the condition based on how many significant (non-sign)
4456 // bits are in the condition value.
4457 unsigned ExtraSignBits
= ComputeNumSignBits(Cond
, DL
, 0, AC
, SI
) - 1;
4458 unsigned MaxSignificantBitsInCond
= Bits
- ExtraSignBits
;
4460 // Gather dead cases.
4461 SmallVector
<ConstantInt
*, 8> DeadCases
;
4462 for (auto &Case
: SI
->cases()) {
4463 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
4464 if (Known
.Zero
.intersects(CaseVal
) || !Known
.One
.isSubsetOf(CaseVal
) ||
4465 (CaseVal
.getMinSignedBits() > MaxSignificantBitsInCond
)) {
4466 DeadCases
.push_back(Case
.getCaseValue());
4467 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4472 // If we can prove that the cases must cover all possible values, the
4473 // default destination becomes dead and we can remove it. If we know some
4474 // of the bits in the value, we can use that to more precisely compute the
4475 // number of possible unique case values.
4477 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4478 const unsigned NumUnknownBits
=
4479 Bits
- (Known
.Zero
| Known
.One
).countPopulation();
4480 assert(NumUnknownBits
<= Bits
);
4481 if (HasDefault
&& DeadCases
.empty() &&
4482 NumUnknownBits
< 64 /* avoid overflow */ &&
4483 SI
->getNumCases() == (1ULL << NumUnknownBits
)) {
4484 createUnreachableSwitchDefault(SI
);
4488 if (DeadCases
.empty())
4491 SwitchInstProfUpdateWrapper
SIW(*SI
);
4492 for (ConstantInt
*DeadCase
: DeadCases
) {
4493 SwitchInst::CaseIt CaseI
= SI
->findCaseValue(DeadCase
);
4494 assert(CaseI
!= SI
->case_default() &&
4495 "Case was not found. Probably mistake in DeadCases forming.");
4496 // Prune unused values from PHI nodes.
4497 CaseI
->getCaseSuccessor()->removePredecessor(SI
->getParent());
4498 SIW
.removeCase(CaseI
);
4504 /// If BB would be eligible for simplification by
4505 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4506 /// by an unconditional branch), look at the phi node for BB in the successor
4507 /// block and see if the incoming value is equal to CaseValue. If so, return
4508 /// the phi node, and set PhiIndex to BB's index in the phi node.
4509 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
4510 BasicBlock
*BB
, int *PhiIndex
) {
4511 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
4512 return nullptr; // BB must be empty to be a candidate for simplification.
4513 if (!BB
->getSinglePredecessor())
4514 return nullptr; // BB must be dominated by the switch.
4516 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
4517 if (!Branch
|| !Branch
->isUnconditional())
4518 return nullptr; // Terminator must be unconditional branch.
4520 BasicBlock
*Succ
= Branch
->getSuccessor(0);
4522 for (PHINode
&PHI
: Succ
->phis()) {
4523 int Idx
= PHI
.getBasicBlockIndex(BB
);
4524 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
4526 Value
*InValue
= PHI
.getIncomingValue(Idx
);
4527 if (InValue
!= CaseValue
)
4537 /// Try to forward the condition of a switch instruction to a phi node
4538 /// dominated by the switch, if that would mean that some of the destination
4539 /// blocks of the switch can be folded away. Return true if a change is made.
4540 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
4541 using ForwardingNodesMap
= DenseMap
<PHINode
*, SmallVector
<int, 4>>;
4543 ForwardingNodesMap ForwardingNodes
;
4544 BasicBlock
*SwitchBlock
= SI
->getParent();
4545 bool Changed
= false;
4546 for (auto &Case
: SI
->cases()) {
4547 ConstantInt
*CaseValue
= Case
.getCaseValue();
4548 BasicBlock
*CaseDest
= Case
.getCaseSuccessor();
4550 // Replace phi operands in successor blocks that are using the constant case
4551 // value rather than the switch condition variable:
4553 // switch i32 %x, label %default [
4554 // i32 17, label %succ
4557 // %r = phi i32 ... [ 17, %switchbb ] ...
4559 // %r = phi i32 ... [ %x, %switchbb ] ...
4561 for (PHINode
&Phi
: CaseDest
->phis()) {
4562 // This only works if there is exactly 1 incoming edge from the switch to
4563 // a phi. If there is >1, that means multiple cases of the switch map to 1
4564 // value in the phi, and that phi value is not the switch condition. Thus,
4565 // this transform would not make sense (the phi would be invalid because
4566 // a phi can't have different incoming values from the same block).
4567 int SwitchBBIdx
= Phi
.getBasicBlockIndex(SwitchBlock
);
4568 if (Phi
.getIncomingValue(SwitchBBIdx
) == CaseValue
&&
4569 count(Phi
.blocks(), SwitchBlock
) == 1) {
4570 Phi
.setIncomingValue(SwitchBBIdx
, SI
->getCondition());
4575 // Collect phi nodes that are indirectly using this switch's case constants.
4577 if (auto *Phi
= FindPHIForConditionForwarding(CaseValue
, CaseDest
, &PhiIdx
))
4578 ForwardingNodes
[Phi
].push_back(PhiIdx
);
4581 for (auto &ForwardingNode
: ForwardingNodes
) {
4582 PHINode
*Phi
= ForwardingNode
.first
;
4583 SmallVectorImpl
<int> &Indexes
= ForwardingNode
.second
;
4584 if (Indexes
.size() < 2)
4587 for (int Index
: Indexes
)
4588 Phi
->setIncomingValue(Index
, SI
->getCondition());
4595 /// Return true if the backend will be able to handle
4596 /// initializing an array of constants like C.
4597 static bool ValidLookupTableConstant(Constant
*C
, const TargetTransformInfo
&TTI
) {
4598 if (C
->isThreadDependent())
4600 if (C
->isDLLImportDependent())
4603 if (!isa
<ConstantFP
>(C
) && !isa
<ConstantInt
>(C
) &&
4604 !isa
<ConstantPointerNull
>(C
) && !isa
<GlobalValue
>(C
) &&
4605 !isa
<UndefValue
>(C
) && !isa
<ConstantExpr
>(C
))
4608 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
4609 if (!CE
->isGEPWithNoNotionalOverIndexing())
4611 if (!ValidLookupTableConstant(CE
->getOperand(0), TTI
))
4615 if (!TTI
.shouldBuildLookupTablesForConstant(C
))
4621 /// If V is a Constant, return it. Otherwise, try to look up
4622 /// its constant value in ConstantPool, returning 0 if it's not there.
4624 LookupConstant(Value
*V
,
4625 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4626 if (Constant
*C
= dyn_cast
<Constant
>(V
))
4628 return ConstantPool
.lookup(V
);
4631 /// Try to fold instruction I into a constant. This works for
4632 /// simple instructions such as binary operations where both operands are
4633 /// constant or can be replaced by constants from the ConstantPool. Returns the
4634 /// resulting constant on success, 0 otherwise.
4636 ConstantFold(Instruction
*I
, const DataLayout
&DL
,
4637 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4638 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(I
)) {
4639 Constant
*A
= LookupConstant(Select
->getCondition(), ConstantPool
);
4642 if (A
->isAllOnesValue())
4643 return LookupConstant(Select
->getTrueValue(), ConstantPool
);
4644 if (A
->isNullValue())
4645 return LookupConstant(Select
->getFalseValue(), ConstantPool
);
4649 SmallVector
<Constant
*, 4> COps
;
4650 for (unsigned N
= 0, E
= I
->getNumOperands(); N
!= E
; ++N
) {
4651 if (Constant
*A
= LookupConstant(I
->getOperand(N
), ConstantPool
))
4657 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
4658 return ConstantFoldCompareInstOperands(Cmp
->getPredicate(), COps
[0],
4662 return ConstantFoldInstOperands(I
, COps
, DL
);
4665 /// Try to determine the resulting constant values in phi nodes
4666 /// at the common destination basic block, *CommonDest, for one of the case
4667 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4668 /// case), of a switch instruction SI.
4670 GetCaseResults(SwitchInst
*SI
, ConstantInt
*CaseVal
, BasicBlock
*CaseDest
,
4671 BasicBlock
**CommonDest
,
4672 SmallVectorImpl
<std::pair
<PHINode
*, Constant
*>> &Res
,
4673 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
4674 // The block from which we enter the common destination.
4675 BasicBlock
*Pred
= SI
->getParent();
4677 // If CaseDest is empty except for some side-effect free instructions through
4678 // which we can constant-propagate the CaseVal, continue to its successor.
4679 SmallDenseMap
<Value
*, Constant
*> ConstantPool
;
4680 ConstantPool
.insert(std::make_pair(SI
->getCondition(), CaseVal
));
4681 for (Instruction
&I
:CaseDest
->instructionsWithoutDebug()) {
4682 if (I
.isTerminator()) {
4683 // If the terminator is a simple branch, continue to the next block.
4684 if (I
.getNumSuccessors() != 1 || I
.isExceptionalTerminator())
4687 CaseDest
= I
.getSuccessor(0);
4688 } else if (Constant
*C
= ConstantFold(&I
, DL
, ConstantPool
)) {
4689 // Instruction is side-effect free and constant.
4691 // If the instruction has uses outside this block or a phi node slot for
4692 // the block, it is not safe to bypass the instruction since it would then
4693 // no longer dominate all its uses.
4694 for (auto &Use
: I
.uses()) {
4695 User
*User
= Use
.getUser();
4696 if (Instruction
*I
= dyn_cast
<Instruction
>(User
))
4697 if (I
->getParent() == CaseDest
)
4699 if (PHINode
*Phi
= dyn_cast
<PHINode
>(User
))
4700 if (Phi
->getIncomingBlock(Use
) == CaseDest
)
4705 ConstantPool
.insert(std::make_pair(&I
, C
));
4711 // If we did not have a CommonDest before, use the current one.
4713 *CommonDest
= CaseDest
;
4714 // If the destination isn't the common one, abort.
4715 if (CaseDest
!= *CommonDest
)
4718 // Get the values for this case from phi nodes in the destination block.
4719 for (PHINode
&PHI
: (*CommonDest
)->phis()) {
4720 int Idx
= PHI
.getBasicBlockIndex(Pred
);
4724 Constant
*ConstVal
=
4725 LookupConstant(PHI
.getIncomingValue(Idx
), ConstantPool
);
4729 // Be conservative about which kinds of constants we support.
4730 if (!ValidLookupTableConstant(ConstVal
, TTI
))
4733 Res
.push_back(std::make_pair(&PHI
, ConstVal
));
4736 return Res
.size() > 0;
4739 // Helper function used to add CaseVal to the list of cases that generate
4740 // Result. Returns the updated number of cases that generate this result.
4741 static uintptr_t MapCaseToResult(ConstantInt
*CaseVal
,
4742 SwitchCaseResultVectorTy
&UniqueResults
,
4744 for (auto &I
: UniqueResults
) {
4745 if (I
.first
== Result
) {
4746 I
.second
.push_back(CaseVal
);
4747 return I
.second
.size();
4750 UniqueResults
.push_back(
4751 std::make_pair(Result
, SmallVector
<ConstantInt
*, 4>(1, CaseVal
)));
4755 // Helper function that initializes a map containing
4756 // results for the PHI node of the common destination block for a switch
4757 // instruction. Returns false if multiple PHI nodes have been found or if
4758 // there is not a common destination block for the switch.
4760 InitializeUniqueCases(SwitchInst
*SI
, PHINode
*&PHI
, BasicBlock
*&CommonDest
,
4761 SwitchCaseResultVectorTy
&UniqueResults
,
4762 Constant
*&DefaultResult
, const DataLayout
&DL
,
4763 const TargetTransformInfo
&TTI
,
4764 uintptr_t MaxUniqueResults
, uintptr_t MaxCasesPerResult
) {
4765 for (auto &I
: SI
->cases()) {
4766 ConstantInt
*CaseVal
= I
.getCaseValue();
4768 // Resulting value at phi nodes for this case value.
4769 SwitchCaseResultsTy Results
;
4770 if (!GetCaseResults(SI
, CaseVal
, I
.getCaseSuccessor(), &CommonDest
, Results
,
4774 // Only one value per case is permitted.
4775 if (Results
.size() > 1)
4778 // Add the case->result mapping to UniqueResults.
4779 const uintptr_t NumCasesForResult
=
4780 MapCaseToResult(CaseVal
, UniqueResults
, Results
.begin()->second
);
4782 // Early out if there are too many cases for this result.
4783 if (NumCasesForResult
> MaxCasesPerResult
)
4786 // Early out if there are too many unique results.
4787 if (UniqueResults
.size() > MaxUniqueResults
)
4790 // Check the PHI consistency.
4792 PHI
= Results
[0].first
;
4793 else if (PHI
!= Results
[0].first
)
4796 // Find the default result value.
4797 SmallVector
<std::pair
<PHINode
*, Constant
*>, 1> DefaultResults
;
4798 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
4799 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
, DefaultResults
,
4801 // If the default value is not found abort unless the default destination
4804 DefaultResults
.size() == 1 ? DefaultResults
.begin()->second
: nullptr;
4805 if ((!DefaultResult
&&
4806 !isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg())))
4812 // Helper function that checks if it is possible to transform a switch with only
4813 // two cases (or two cases + default) that produces a result into a select.
4816 // case 10: %0 = icmp eq i32 %a, 10
4817 // return 10; %1 = select i1 %0, i32 10, i32 4
4818 // case 20: ----> %2 = icmp eq i32 %a, 20
4819 // return 2; %3 = select i1 %2, i32 2, i32 %1
4823 static Value
*ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy
&ResultVector
,
4824 Constant
*DefaultResult
, Value
*Condition
,
4825 IRBuilder
<> &Builder
) {
4826 assert(ResultVector
.size() == 2 &&
4827 "We should have exactly two unique results at this point");
4828 // If we are selecting between only two cases transform into a simple
4829 // select or a two-way select if default is possible.
4830 if (ResultVector
[0].second
.size() == 1 &&
4831 ResultVector
[1].second
.size() == 1) {
4832 ConstantInt
*const FirstCase
= ResultVector
[0].second
[0];
4833 ConstantInt
*const SecondCase
= ResultVector
[1].second
[0];
4835 bool DefaultCanTrigger
= DefaultResult
;
4836 Value
*SelectValue
= ResultVector
[1].first
;
4837 if (DefaultCanTrigger
) {
4838 Value
*const ValueCompare
=
4839 Builder
.CreateICmpEQ(Condition
, SecondCase
, "switch.selectcmp");
4840 SelectValue
= Builder
.CreateSelect(ValueCompare
, ResultVector
[1].first
,
4841 DefaultResult
, "switch.select");
4843 Value
*const ValueCompare
=
4844 Builder
.CreateICmpEQ(Condition
, FirstCase
, "switch.selectcmp");
4845 return Builder
.CreateSelect(ValueCompare
, ResultVector
[0].first
,
4846 SelectValue
, "switch.select");
4852 // Helper function to cleanup a switch instruction that has been converted into
4853 // a select, fixing up PHI nodes and basic blocks.
4854 static void RemoveSwitchAfterSelectConversion(SwitchInst
*SI
, PHINode
*PHI
,
4856 IRBuilder
<> &Builder
) {
4857 BasicBlock
*SelectBB
= SI
->getParent();
4858 while (PHI
->getBasicBlockIndex(SelectBB
) >= 0)
4859 PHI
->removeIncomingValue(SelectBB
);
4860 PHI
->addIncoming(SelectValue
, SelectBB
);
4862 Builder
.CreateBr(PHI
->getParent());
4864 // Remove the switch.
4865 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
4866 BasicBlock
*Succ
= SI
->getSuccessor(i
);
4868 if (Succ
== PHI
->getParent())
4870 Succ
->removePredecessor(SelectBB
);
4872 SI
->eraseFromParent();
4875 /// If the switch is only used to initialize one or more
4876 /// phi nodes in a common successor block with only two different
4877 /// constant values, replace the switch with select.
4878 static bool switchToSelect(SwitchInst
*SI
, IRBuilder
<> &Builder
,
4879 const DataLayout
&DL
,
4880 const TargetTransformInfo
&TTI
) {
4881 Value
*const Cond
= SI
->getCondition();
4882 PHINode
*PHI
= nullptr;
4883 BasicBlock
*CommonDest
= nullptr;
4884 Constant
*DefaultResult
;
4885 SwitchCaseResultVectorTy UniqueResults
;
4886 // Collect all the cases that will deliver the same value from the switch.
4887 if (!InitializeUniqueCases(SI
, PHI
, CommonDest
, UniqueResults
, DefaultResult
,
4890 // Selects choose between maximum two values.
4891 if (UniqueResults
.size() != 2)
4893 assert(PHI
!= nullptr && "PHI for value select not found");
4895 Builder
.SetInsertPoint(SI
);
4896 Value
*SelectValue
=
4897 ConvertTwoCaseSwitch(UniqueResults
, DefaultResult
, Cond
, Builder
);
4899 RemoveSwitchAfterSelectConversion(SI
, PHI
, SelectValue
, Builder
);
4902 // The switch couldn't be converted into a select.
4908 /// This class represents a lookup table that can be used to replace a switch.
4909 class SwitchLookupTable
{
4911 /// Create a lookup table to use as a switch replacement with the contents
4912 /// of Values, using DefaultValue to fill any holes in the table.
4914 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4915 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4916 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
);
4918 /// Build instructions with Builder to retrieve the value at
4919 /// the position given by Index in the lookup table.
4920 Value
*BuildLookup(Value
*Index
, IRBuilder
<> &Builder
);
4922 /// Return true if a table with TableSize elements of
4923 /// type ElementType would fit in a target-legal register.
4924 static bool WouldFitInRegister(const DataLayout
&DL
, uint64_t TableSize
,
4928 // Depending on the contents of the table, it can be represented in
4931 // For tables where each element contains the same value, we just have to
4932 // store that single value and return it for each lookup.
4935 // For tables where there is a linear relationship between table index
4936 // and values. We calculate the result with a simple multiplication
4937 // and addition instead of a table lookup.
4940 // For small tables with integer elements, we can pack them into a bitmap
4941 // that fits into a target-legal register. Values are retrieved by
4942 // shift and mask operations.
4945 // The table is stored as an array of values. Values are retrieved by load
4946 // instructions from the table.
4950 // For SingleValueKind, this is the single value.
4951 Constant
*SingleValue
= nullptr;
4953 // For BitMapKind, this is the bitmap.
4954 ConstantInt
*BitMap
= nullptr;
4955 IntegerType
*BitMapElementTy
= nullptr;
4957 // For LinearMapKind, these are the constants used to derive the value.
4958 ConstantInt
*LinearOffset
= nullptr;
4959 ConstantInt
*LinearMultiplier
= nullptr;
4961 // For ArrayKind, this is the array.
4962 GlobalVariable
*Array
= nullptr;
4965 } // end anonymous namespace
4967 SwitchLookupTable::SwitchLookupTable(
4968 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4969 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4970 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
) {
4971 assert(Values
.size() && "Can't build lookup table without values!");
4972 assert(TableSize
>= Values
.size() && "Can't fit values in table!");
4974 // If all values in the table are equal, this is that value.
4975 SingleValue
= Values
.begin()->second
;
4977 Type
*ValueType
= Values
.begin()->second
->getType();
4979 // Build up the table contents.
4980 SmallVector
<Constant
*, 64> TableContents(TableSize
);
4981 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
4982 ConstantInt
*CaseVal
= Values
[I
].first
;
4983 Constant
*CaseRes
= Values
[I
].second
;
4984 assert(CaseRes
->getType() == ValueType
);
4986 uint64_t Idx
= (CaseVal
->getValue() - Offset
->getValue()).getLimitedValue();
4987 TableContents
[Idx
] = CaseRes
;
4989 if (CaseRes
!= SingleValue
)
4990 SingleValue
= nullptr;
4993 // Fill in any holes in the table with the default result.
4994 if (Values
.size() < TableSize
) {
4995 assert(DefaultValue
&&
4996 "Need a default value to fill the lookup table holes.");
4997 assert(DefaultValue
->getType() == ValueType
);
4998 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
4999 if (!TableContents
[I
])
5000 TableContents
[I
] = DefaultValue
;
5003 if (DefaultValue
!= SingleValue
)
5004 SingleValue
= nullptr;
5007 // If each element in the table contains the same value, we only need to store
5008 // that single value.
5010 Kind
= SingleValueKind
;
5014 // Check if we can derive the value with a linear transformation from the
5016 if (isa
<IntegerType
>(ValueType
)) {
5017 bool LinearMappingPossible
= true;
5020 assert(TableSize
>= 2 && "Should be a SingleValue table.");
5021 // Check if there is the same distance between two consecutive values.
5022 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5023 ConstantInt
*ConstVal
= dyn_cast
<ConstantInt
>(TableContents
[I
]);
5025 // This is an undef. We could deal with it, but undefs in lookup tables
5026 // are very seldom. It's probably not worth the additional complexity.
5027 LinearMappingPossible
= false;
5030 const APInt
&Val
= ConstVal
->getValue();
5032 APInt Dist
= Val
- PrevVal
;
5035 } else if (Dist
!= DistToPrev
) {
5036 LinearMappingPossible
= false;
5042 if (LinearMappingPossible
) {
5043 LinearOffset
= cast
<ConstantInt
>(TableContents
[0]);
5044 LinearMultiplier
= ConstantInt::get(M
.getContext(), DistToPrev
);
5045 Kind
= LinearMapKind
;
5051 // If the type is integer and the table fits in a register, build a bitmap.
5052 if (WouldFitInRegister(DL
, TableSize
, ValueType
)) {
5053 IntegerType
*IT
= cast
<IntegerType
>(ValueType
);
5054 APInt
TableInt(TableSize
* IT
->getBitWidth(), 0);
5055 for (uint64_t I
= TableSize
; I
> 0; --I
) {
5056 TableInt
<<= IT
->getBitWidth();
5057 // Insert values into the bitmap. Undef values are set to zero.
5058 if (!isa
<UndefValue
>(TableContents
[I
- 1])) {
5059 ConstantInt
*Val
= cast
<ConstantInt
>(TableContents
[I
- 1]);
5060 TableInt
|= Val
->getValue().zext(TableInt
.getBitWidth());
5063 BitMap
= ConstantInt::get(M
.getContext(), TableInt
);
5064 BitMapElementTy
= IT
;
5070 // Store the table in an array.
5071 ArrayType
*ArrayTy
= ArrayType::get(ValueType
, TableSize
);
5072 Constant
*Initializer
= ConstantArray::get(ArrayTy
, TableContents
);
5074 Array
= new GlobalVariable(M
, ArrayTy
, /*isConstant=*/true,
5075 GlobalVariable::PrivateLinkage
, Initializer
,
5076 "switch.table." + FuncName
);
5077 Array
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
5078 // Set the alignment to that of an array items. We will be only loading one
5080 Array
->setAlignment(DL
.getPrefTypeAlignment(ValueType
));
5084 Value
*SwitchLookupTable::BuildLookup(Value
*Index
, IRBuilder
<> &Builder
) {
5086 case SingleValueKind
:
5088 case LinearMapKind
: {
5089 // Derive the result value from the input value.
5090 Value
*Result
= Builder
.CreateIntCast(Index
, LinearMultiplier
->getType(),
5091 false, "switch.idx.cast");
5092 if (!LinearMultiplier
->isOne())
5093 Result
= Builder
.CreateMul(Result
, LinearMultiplier
, "switch.idx.mult");
5094 if (!LinearOffset
->isZero())
5095 Result
= Builder
.CreateAdd(Result
, LinearOffset
, "switch.offset");
5099 // Type of the bitmap (e.g. i59).
5100 IntegerType
*MapTy
= BitMap
->getType();
5102 // Cast Index to the same type as the bitmap.
5103 // Note: The Index is <= the number of elements in the table, so
5104 // truncating it to the width of the bitmask is safe.
5105 Value
*ShiftAmt
= Builder
.CreateZExtOrTrunc(Index
, MapTy
, "switch.cast");
5107 // Multiply the shift amount by the element width.
5108 ShiftAmt
= Builder
.CreateMul(
5109 ShiftAmt
, ConstantInt::get(MapTy
, BitMapElementTy
->getBitWidth()),
5113 Value
*DownShifted
=
5114 Builder
.CreateLShr(BitMap
, ShiftAmt
, "switch.downshift");
5116 return Builder
.CreateTrunc(DownShifted
, BitMapElementTy
, "switch.masked");
5119 // Make sure the table index will not overflow when treated as signed.
5120 IntegerType
*IT
= cast
<IntegerType
>(Index
->getType());
5121 uint64_t TableSize
=
5122 Array
->getInitializer()->getType()->getArrayNumElements();
5123 if (TableSize
> (1ULL << (IT
->getBitWidth() - 1)))
5124 Index
= Builder
.CreateZExt(
5125 Index
, IntegerType::get(IT
->getContext(), IT
->getBitWidth() + 1),
5126 "switch.tableidx.zext");
5128 Value
*GEPIndices
[] = {Builder
.getInt32(0), Index
};
5129 Value
*GEP
= Builder
.CreateInBoundsGEP(Array
->getValueType(), Array
,
5130 GEPIndices
, "switch.gep");
5131 return Builder
.CreateLoad(
5132 cast
<ArrayType
>(Array
->getValueType())->getElementType(), GEP
,
5136 llvm_unreachable("Unknown lookup table kind!");
5139 bool SwitchLookupTable::WouldFitInRegister(const DataLayout
&DL
,
5141 Type
*ElementType
) {
5142 auto *IT
= dyn_cast
<IntegerType
>(ElementType
);
5145 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5146 // are <= 15, we could try to narrow the type.
5148 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5149 if (TableSize
>= UINT_MAX
/ IT
->getBitWidth())
5151 return DL
.fitsInLegalInteger(TableSize
* IT
->getBitWidth());
5154 /// Determine whether a lookup table should be built for this switch, based on
5155 /// the number of cases, size of the table, and the types of the results.
5157 ShouldBuildLookupTable(SwitchInst
*SI
, uint64_t TableSize
,
5158 const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
5159 const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
) {
5160 if (SI
->getNumCases() > TableSize
|| TableSize
>= UINT64_MAX
/ 10)
5161 return false; // TableSize overflowed, or mul below might overflow.
5163 bool AllTablesFitInRegister
= true;
5164 bool HasIllegalType
= false;
5165 for (const auto &I
: ResultTypes
) {
5166 Type
*Ty
= I
.second
;
5168 // Saturate this flag to true.
5169 HasIllegalType
= HasIllegalType
|| !TTI
.isTypeLegal(Ty
);
5171 // Saturate this flag to false.
5172 AllTablesFitInRegister
=
5173 AllTablesFitInRegister
&&
5174 SwitchLookupTable::WouldFitInRegister(DL
, TableSize
, Ty
);
5176 // If both flags saturate, we're done. NOTE: This *only* works with
5177 // saturating flags, and all flags have to saturate first due to the
5178 // non-deterministic behavior of iterating over a dense map.
5179 if (HasIllegalType
&& !AllTablesFitInRegister
)
5183 // If each table would fit in a register, we should build it anyway.
5184 if (AllTablesFitInRegister
)
5187 // Don't build a table that doesn't fit in-register if it has illegal types.
5191 // The table density should be at least 40%. This is the same criterion as for
5192 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5193 // FIXME: Find the best cut-off.
5194 return SI
->getNumCases() * 10 >= TableSize
* 4;
5197 /// Try to reuse the switch table index compare. Following pattern:
5199 /// if (idx < tablesize)
5200 /// r = table[idx]; // table does not contain default_value
5202 /// r = default_value;
5203 /// if (r != default_value)
5206 /// Is optimized to:
5208 /// cond = idx < tablesize;
5212 /// r = default_value;
5216 /// Jump threading will then eliminate the second if(cond).
5217 static void reuseTableCompare(
5218 User
*PhiUser
, BasicBlock
*PhiBlock
, BranchInst
*RangeCheckBranch
,
5219 Constant
*DefaultValue
,
5220 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
) {
5221 ICmpInst
*CmpInst
= dyn_cast
<ICmpInst
>(PhiUser
);
5225 // We require that the compare is in the same block as the phi so that jump
5226 // threading can do its work afterwards.
5227 if (CmpInst
->getParent() != PhiBlock
)
5230 Constant
*CmpOp1
= dyn_cast
<Constant
>(CmpInst
->getOperand(1));
5234 Value
*RangeCmp
= RangeCheckBranch
->getCondition();
5235 Constant
*TrueConst
= ConstantInt::getTrue(RangeCmp
->getType());
5236 Constant
*FalseConst
= ConstantInt::getFalse(RangeCmp
->getType());
5238 // Check if the compare with the default value is constant true or false.
5239 Constant
*DefaultConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5240 DefaultValue
, CmpOp1
, true);
5241 if (DefaultConst
!= TrueConst
&& DefaultConst
!= FalseConst
)
5244 // Check if the compare with the case values is distinct from the default
5246 for (auto ValuePair
: Values
) {
5247 Constant
*CaseConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5248 ValuePair
.second
, CmpOp1
, true);
5249 if (!CaseConst
|| CaseConst
== DefaultConst
|| isa
<UndefValue
>(CaseConst
))
5251 assert((CaseConst
== TrueConst
|| CaseConst
== FalseConst
) &&
5252 "Expect true or false as compare result.");
5255 // Check if the branch instruction dominates the phi node. It's a simple
5256 // dominance check, but sufficient for our needs.
5257 // Although this check is invariant in the calling loops, it's better to do it
5258 // at this late stage. Practically we do it at most once for a switch.
5259 BasicBlock
*BranchBlock
= RangeCheckBranch
->getParent();
5260 for (auto PI
= pred_begin(PhiBlock
), E
= pred_end(PhiBlock
); PI
!= E
; ++PI
) {
5261 BasicBlock
*Pred
= *PI
;
5262 if (Pred
!= BranchBlock
&& Pred
->getUniquePredecessor() != BranchBlock
)
5266 if (DefaultConst
== FalseConst
) {
5267 // The compare yields the same result. We can replace it.
5268 CmpInst
->replaceAllUsesWith(RangeCmp
);
5269 ++NumTableCmpReuses
;
5271 // The compare yields the same result, just inverted. We can replace it.
5272 Value
*InvertedTableCmp
= BinaryOperator::CreateXor(
5273 RangeCmp
, ConstantInt::get(RangeCmp
->getType(), 1), "inverted.cmp",
5275 CmpInst
->replaceAllUsesWith(InvertedTableCmp
);
5276 ++NumTableCmpReuses
;
5280 /// If the switch is only used to initialize one or more phi nodes in a common
5281 /// successor block with different constant values, replace the switch with
5283 static bool SwitchToLookupTable(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5284 const DataLayout
&DL
,
5285 const TargetTransformInfo
&TTI
) {
5286 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
5288 Function
*Fn
= SI
->getParent()->getParent();
5289 // Only build lookup table when we have a target that supports it or the
5290 // attribute is not set.
5291 if (!TTI
.shouldBuildLookupTables() ||
5292 (Fn
->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5295 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5296 // split off a dense part and build a lookup table for that.
5298 // FIXME: This creates arrays of GEPs to constant strings, which means each
5299 // GEP needs a runtime relocation in PIC code. We should just build one big
5300 // string and lookup indices into that.
5302 // Ignore switches with less than three cases. Lookup tables will not make
5303 // them faster, so we don't analyze them.
5304 if (SI
->getNumCases() < 3)
5307 // Figure out the corresponding result for each case value and phi node in the
5308 // common destination, as well as the min and max case values.
5309 assert(!empty(SI
->cases()));
5310 SwitchInst::CaseIt CI
= SI
->case_begin();
5311 ConstantInt
*MinCaseVal
= CI
->getCaseValue();
5312 ConstantInt
*MaxCaseVal
= CI
->getCaseValue();
5314 BasicBlock
*CommonDest
= nullptr;
5316 using ResultListTy
= SmallVector
<std::pair
<ConstantInt
*, Constant
*>, 4>;
5317 SmallDenseMap
<PHINode
*, ResultListTy
> ResultLists
;
5319 SmallDenseMap
<PHINode
*, Constant
*> DefaultResults
;
5320 SmallDenseMap
<PHINode
*, Type
*> ResultTypes
;
5321 SmallVector
<PHINode
*, 4> PHIs
;
5323 for (SwitchInst::CaseIt E
= SI
->case_end(); CI
!= E
; ++CI
) {
5324 ConstantInt
*CaseVal
= CI
->getCaseValue();
5325 if (CaseVal
->getValue().slt(MinCaseVal
->getValue()))
5326 MinCaseVal
= CaseVal
;
5327 if (CaseVal
->getValue().sgt(MaxCaseVal
->getValue()))
5328 MaxCaseVal
= CaseVal
;
5330 // Resulting value at phi nodes for this case value.
5331 using ResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
5333 if (!GetCaseResults(SI
, CaseVal
, CI
->getCaseSuccessor(), &CommonDest
,
5337 // Append the result from this case to the list for each phi.
5338 for (const auto &I
: Results
) {
5339 PHINode
*PHI
= I
.first
;
5340 Constant
*Value
= I
.second
;
5341 if (!ResultLists
.count(PHI
))
5342 PHIs
.push_back(PHI
);
5343 ResultLists
[PHI
].push_back(std::make_pair(CaseVal
, Value
));
5347 // Keep track of the result types.
5348 for (PHINode
*PHI
: PHIs
) {
5349 ResultTypes
[PHI
] = ResultLists
[PHI
][0].second
->getType();
5352 uint64_t NumResults
= ResultLists
[PHIs
[0]].size();
5353 APInt RangeSpread
= MaxCaseVal
->getValue() - MinCaseVal
->getValue();
5354 uint64_t TableSize
= RangeSpread
.getLimitedValue() + 1;
5355 bool TableHasHoles
= (NumResults
< TableSize
);
5357 // If the table has holes, we need a constant result for the default case
5358 // or a bitmask that fits in a register.
5359 SmallVector
<std::pair
<PHINode
*, Constant
*>, 4> DefaultResultsList
;
5360 bool HasDefaultResults
=
5361 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
,
5362 DefaultResultsList
, DL
, TTI
);
5364 bool NeedMask
= (TableHasHoles
&& !HasDefaultResults
);
5366 // As an extra penalty for the validity test we require more cases.
5367 if (SI
->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5369 if (!DL
.fitsInLegalInteger(TableSize
))
5373 for (const auto &I
: DefaultResultsList
) {
5374 PHINode
*PHI
= I
.first
;
5375 Constant
*Result
= I
.second
;
5376 DefaultResults
[PHI
] = Result
;
5379 if (!ShouldBuildLookupTable(SI
, TableSize
, TTI
, DL
, ResultTypes
))
5382 // Create the BB that does the lookups.
5383 Module
&Mod
= *CommonDest
->getParent()->getParent();
5384 BasicBlock
*LookupBB
= BasicBlock::Create(
5385 Mod
.getContext(), "switch.lookup", CommonDest
->getParent(), CommonDest
);
5387 // Compute the table index value.
5388 Builder
.SetInsertPoint(SI
);
5390 if (MinCaseVal
->isNullValue())
5391 TableIndex
= SI
->getCondition();
5393 TableIndex
= Builder
.CreateSub(SI
->getCondition(), MinCaseVal
,
5396 // Compute the maximum table size representable by the integer type we are
5398 unsigned CaseSize
= MinCaseVal
->getType()->getPrimitiveSizeInBits();
5399 uint64_t MaxTableSize
= CaseSize
> 63 ? UINT64_MAX
: 1ULL << CaseSize
;
5400 assert(MaxTableSize
>= TableSize
&&
5401 "It is impossible for a switch to have more entries than the max "
5402 "representable value of its input integer type's size.");
5404 // If the default destination is unreachable, or if the lookup table covers
5405 // all values of the conditional variable, branch directly to the lookup table
5406 // BB. Otherwise, check that the condition is within the case range.
5407 const bool DefaultIsReachable
=
5408 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5409 const bool GeneratingCoveredLookupTable
= (MaxTableSize
== TableSize
);
5410 BranchInst
*RangeCheckBranch
= nullptr;
5412 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5413 Builder
.CreateBr(LookupBB
);
5414 // Note: We call removeProdecessor later since we need to be able to get the
5415 // PHI value for the default case in case we're using a bit mask.
5417 Value
*Cmp
= Builder
.CreateICmpULT(
5418 TableIndex
, ConstantInt::get(MinCaseVal
->getType(), TableSize
));
5420 Builder
.CreateCondBr(Cmp
, LookupBB
, SI
->getDefaultDest());
5423 // Populate the BB that does the lookups.
5424 Builder
.SetInsertPoint(LookupBB
);
5427 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5428 // re-purposed to do the hole check, and we create a new LookupBB.
5429 BasicBlock
*MaskBB
= LookupBB
;
5430 MaskBB
->setName("switch.hole_check");
5431 LookupBB
= BasicBlock::Create(Mod
.getContext(), "switch.lookup",
5432 CommonDest
->getParent(), CommonDest
);
5434 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5435 // unnecessary illegal types.
5436 uint64_t TableSizePowOf2
= NextPowerOf2(std::max(7ULL, TableSize
- 1ULL));
5437 APInt
MaskInt(TableSizePowOf2
, 0);
5438 APInt
One(TableSizePowOf2
, 1);
5439 // Build bitmask; fill in a 1 bit for every case.
5440 const ResultListTy
&ResultList
= ResultLists
[PHIs
[0]];
5441 for (size_t I
= 0, E
= ResultList
.size(); I
!= E
; ++I
) {
5442 uint64_t Idx
= (ResultList
[I
].first
->getValue() - MinCaseVal
->getValue())
5444 MaskInt
|= One
<< Idx
;
5446 ConstantInt
*TableMask
= ConstantInt::get(Mod
.getContext(), MaskInt
);
5448 // Get the TableIndex'th bit of the bitmask.
5449 // If this bit is 0 (meaning hole) jump to the default destination,
5450 // else continue with table lookup.
5451 IntegerType
*MapTy
= TableMask
->getType();
5453 Builder
.CreateZExtOrTrunc(TableIndex
, MapTy
, "switch.maskindex");
5454 Value
*Shifted
= Builder
.CreateLShr(TableMask
, MaskIndex
, "switch.shifted");
5455 Value
*LoBit
= Builder
.CreateTrunc(
5456 Shifted
, Type::getInt1Ty(Mod
.getContext()), "switch.lobit");
5457 Builder
.CreateCondBr(LoBit
, LookupBB
, SI
->getDefaultDest());
5459 Builder
.SetInsertPoint(LookupBB
);
5460 AddPredecessorToBlock(SI
->getDefaultDest(), MaskBB
, SI
->getParent());
5463 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5464 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5465 // do not delete PHINodes here.
5466 SI
->getDefaultDest()->removePredecessor(SI
->getParent(),
5467 /*KeepOneInputPHIs=*/true);
5470 bool ReturnedEarly
= false;
5471 for (PHINode
*PHI
: PHIs
) {
5472 const ResultListTy
&ResultList
= ResultLists
[PHI
];
5474 // If using a bitmask, use any value to fill the lookup table holes.
5475 Constant
*DV
= NeedMask
? ResultLists
[PHI
][0].second
: DefaultResults
[PHI
];
5476 StringRef FuncName
= Fn
->getName();
5477 SwitchLookupTable
Table(Mod
, TableSize
, MinCaseVal
, ResultList
, DV
, DL
,
5480 Value
*Result
= Table
.BuildLookup(TableIndex
, Builder
);
5482 // If the result is used to return immediately from the function, we want to
5483 // do that right here.
5484 if (PHI
->hasOneUse() && isa
<ReturnInst
>(*PHI
->user_begin()) &&
5485 PHI
->user_back() == CommonDest
->getFirstNonPHIOrDbg()) {
5486 Builder
.CreateRet(Result
);
5487 ReturnedEarly
= true;
5491 // Do a small peephole optimization: re-use the switch table compare if
5493 if (!TableHasHoles
&& HasDefaultResults
&& RangeCheckBranch
) {
5494 BasicBlock
*PhiBlock
= PHI
->getParent();
5495 // Search for compare instructions which use the phi.
5496 for (auto *User
: PHI
->users()) {
5497 reuseTableCompare(User
, PhiBlock
, RangeCheckBranch
, DV
, ResultList
);
5501 PHI
->addIncoming(Result
, LookupBB
);
5505 Builder
.CreateBr(CommonDest
);
5507 // Remove the switch.
5508 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
5509 BasicBlock
*Succ
= SI
->getSuccessor(i
);
5511 if (Succ
== SI
->getDefaultDest())
5513 Succ
->removePredecessor(SI
->getParent());
5515 SI
->eraseFromParent();
5519 ++NumLookupTablesHoles
;
5523 static bool isSwitchDense(ArrayRef
<int64_t> Values
) {
5524 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5525 uint64_t Diff
= (uint64_t)Values
.back() - (uint64_t)Values
.front();
5526 uint64_t Range
= Diff
+ 1;
5527 uint64_t NumCases
= Values
.size();
5528 // 40% is the default density for building a jump table in optsize/minsize mode.
5529 uint64_t MinDensity
= 40;
5531 return NumCases
* 100 >= Range
* MinDensity
;
5534 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5537 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5538 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5540 /// This converts a sparse switch into a dense switch which allows better
5541 /// lowering and could also allow transforming into a lookup table.
5542 static bool ReduceSwitchRange(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5543 const DataLayout
&DL
,
5544 const TargetTransformInfo
&TTI
) {
5545 auto *CondTy
= cast
<IntegerType
>(SI
->getCondition()->getType());
5546 if (CondTy
->getIntegerBitWidth() > 64 ||
5547 !DL
.fitsInLegalInteger(CondTy
->getIntegerBitWidth()))
5549 // Only bother with this optimization if there are more than 3 switch cases;
5550 // SDAG will only bother creating jump tables for 4 or more cases.
5551 if (SI
->getNumCases() < 4)
5554 // This transform is agnostic to the signedness of the input or case values. We
5555 // can treat the case values as signed or unsigned. We can optimize more common
5556 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5558 SmallVector
<int64_t,4> Values
;
5559 for (auto &C
: SI
->cases())
5560 Values
.push_back(C
.getCaseValue()->getValue().getSExtValue());
5563 // If the switch is already dense, there's nothing useful to do here.
5564 if (isSwitchDense(Values
))
5567 // First, transform the values such that they start at zero and ascend.
5568 int64_t Base
= Values
[0];
5569 for (auto &V
: Values
)
5570 V
-= (uint64_t)(Base
);
5572 // Now we have signed numbers that have been shifted so that, given enough
5573 // precision, there are no negative values. Since the rest of the transform
5574 // is bitwise only, we switch now to an unsigned representation.
5576 // This transform can be done speculatively because it is so cheap - it
5577 // results in a single rotate operation being inserted.
5578 // FIXME: It's possible that optimizing a switch on powers of two might also
5579 // be beneficial - flag values are often powers of two and we could use a CLZ
5580 // as the key function.
5582 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5583 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5585 unsigned Shift
= 64;
5586 for (auto &V
: Values
)
5587 Shift
= std::min(Shift
, countTrailingZeros((uint64_t)V
));
5590 for (auto &V
: Values
)
5591 V
= (int64_t)((uint64_t)V
>> Shift
);
5593 if (!isSwitchDense(Values
))
5594 // Transform didn't create a dense switch.
5597 // The obvious transform is to shift the switch condition right and emit a
5598 // check that the condition actually cleanly divided by GCD, i.e.
5599 // C & (1 << Shift - 1) == 0
5600 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5602 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5603 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5604 // are nonzero then the switch condition will be very large and will hit the
5607 auto *Ty
= cast
<IntegerType
>(SI
->getCondition()->getType());
5608 Builder
.SetInsertPoint(SI
);
5609 auto *ShiftC
= ConstantInt::get(Ty
, Shift
);
5610 auto *Sub
= Builder
.CreateSub(SI
->getCondition(), ConstantInt::get(Ty
, Base
));
5611 auto *LShr
= Builder
.CreateLShr(Sub
, ShiftC
);
5612 auto *Shl
= Builder
.CreateShl(Sub
, Ty
->getBitWidth() - Shift
);
5613 auto *Rot
= Builder
.CreateOr(LShr
, Shl
);
5614 SI
->replaceUsesOfWith(SI
->getCondition(), Rot
);
5616 for (auto Case
: SI
->cases()) {
5617 auto *Orig
= Case
.getCaseValue();
5618 auto Sub
= Orig
->getValue() - APInt(Ty
->getBitWidth(), Base
);
5620 cast
<ConstantInt
>(ConstantInt::get(Ty
, Sub
.lshr(ShiftC
->getValue()))));
5625 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
5626 BasicBlock
*BB
= SI
->getParent();
5628 if (isValueEqualityComparison(SI
)) {
5629 // If we only have one predecessor, and if it is a branch on this value,
5630 // see if that predecessor totally determines the outcome of this switch.
5631 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5632 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
5633 return requestResimplify();
5635 Value
*Cond
= SI
->getCondition();
5636 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
5637 if (SimplifySwitchOnSelect(SI
, Select
))
5638 return requestResimplify();
5640 // If the block only contains the switch, see if we can fold the block
5641 // away into any preds.
5642 if (SI
== &*BB
->instructionsWithoutDebug().begin())
5643 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
5644 return requestResimplify();
5647 // Try to transform the switch into an icmp and a branch.
5648 if (TurnSwitchRangeIntoICmp(SI
, Builder
))
5649 return requestResimplify();
5651 // Remove unreachable cases.
5652 if (eliminateDeadSwitchCases(SI
, Options
.AC
, DL
))
5653 return requestResimplify();
5655 if (switchToSelect(SI
, Builder
, DL
, TTI
))
5656 return requestResimplify();
5658 if (Options
.ForwardSwitchCondToPhi
&& ForwardSwitchConditionToPHI(SI
))
5659 return requestResimplify();
5661 // The conversion from switch to lookup tables results in difficult-to-analyze
5662 // code and makes pruning branches much harder. This is a problem if the
5663 // switch expression itself can still be restricted as a result of inlining or
5664 // CVP. Therefore, only apply this transformation during late stages of the
5665 // optimisation pipeline.
5666 if (Options
.ConvertSwitchToLookupTable
&&
5667 SwitchToLookupTable(SI
, Builder
, DL
, TTI
))
5668 return requestResimplify();
5670 if (ReduceSwitchRange(SI
, Builder
, DL
, TTI
))
5671 return requestResimplify();
5676 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst
*IBI
) {
5677 BasicBlock
*BB
= IBI
->getParent();
5678 bool Changed
= false;
5680 // Eliminate redundant destinations.
5681 SmallPtrSet
<Value
*, 8> Succs
;
5682 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
5683 BasicBlock
*Dest
= IBI
->getDestination(i
);
5684 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
).second
) {
5685 Dest
->removePredecessor(BB
);
5686 IBI
->removeDestination(i
);
5693 if (IBI
->getNumDestinations() == 0) {
5694 // If the indirectbr has no successors, change it to unreachable.
5695 new UnreachableInst(IBI
->getContext(), IBI
);
5696 EraseTerminatorAndDCECond(IBI
);
5700 if (IBI
->getNumDestinations() == 1) {
5701 // If the indirectbr has one successor, change it to a direct branch.
5702 BranchInst::Create(IBI
->getDestination(0), IBI
);
5703 EraseTerminatorAndDCECond(IBI
);
5707 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
5708 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
5709 return requestResimplify();
5714 /// Given an block with only a single landing pad and a unconditional branch
5715 /// try to find another basic block which this one can be merged with. This
5716 /// handles cases where we have multiple invokes with unique landing pads, but
5717 /// a shared handler.
5719 /// We specifically choose to not worry about merging non-empty blocks
5720 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5721 /// practice, the optimizer produces empty landing pad blocks quite frequently
5722 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5723 /// sinking in this file)
5725 /// This is primarily a code size optimization. We need to avoid performing
5726 /// any transform which might inhibit optimization (such as our ability to
5727 /// specialize a particular handler via tail commoning). We do this by not
5728 /// merging any blocks which require us to introduce a phi. Since the same
5729 /// values are flowing through both blocks, we don't lose any ability to
5730 /// specialize. If anything, we make such specialization more likely.
5732 /// TODO - This transformation could remove entries from a phi in the target
5733 /// block when the inputs in the phi are the same for the two blocks being
5734 /// merged. In some cases, this could result in removal of the PHI entirely.
5735 static bool TryToMergeLandingPad(LandingPadInst
*LPad
, BranchInst
*BI
,
5737 auto Succ
= BB
->getUniqueSuccessor();
5739 // If there's a phi in the successor block, we'd likely have to introduce
5740 // a phi into the merged landing pad block.
5741 if (isa
<PHINode
>(*Succ
->begin()))
5744 for (BasicBlock
*OtherPred
: predecessors(Succ
)) {
5745 if (BB
== OtherPred
)
5747 BasicBlock::iterator I
= OtherPred
->begin();
5748 LandingPadInst
*LPad2
= dyn_cast
<LandingPadInst
>(I
);
5749 if (!LPad2
|| !LPad2
->isIdenticalTo(LPad
))
5751 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5753 BranchInst
*BI2
= dyn_cast
<BranchInst
>(I
);
5754 if (!BI2
|| !BI2
->isIdenticalTo(BI
))
5757 // We've found an identical block. Update our predecessors to take that
5758 // path instead and make ourselves dead.
5759 SmallPtrSet
<BasicBlock
*, 16> Preds
;
5760 Preds
.insert(pred_begin(BB
), pred_end(BB
));
5761 for (BasicBlock
*Pred
: Preds
) {
5762 InvokeInst
*II
= cast
<InvokeInst
>(Pred
->getTerminator());
5763 assert(II
->getNormalDest() != BB
&& II
->getUnwindDest() == BB
&&
5764 "unexpected successor");
5765 II
->setUnwindDest(OtherPred
);
5768 // The debug info in OtherPred doesn't cover the merged control flow that
5769 // used to go through BB. We need to delete it or update it.
5770 for (auto I
= OtherPred
->begin(), E
= OtherPred
->end(); I
!= E
;) {
5771 Instruction
&Inst
= *I
;
5773 if (isa
<DbgInfoIntrinsic
>(Inst
))
5774 Inst
.eraseFromParent();
5777 SmallPtrSet
<BasicBlock
*, 16> Succs
;
5778 Succs
.insert(succ_begin(BB
), succ_end(BB
));
5779 for (BasicBlock
*Succ
: Succs
) {
5780 Succ
->removePredecessor(BB
);
5783 IRBuilder
<> Builder(BI
);
5784 Builder
.CreateUnreachable();
5785 BI
->eraseFromParent();
5791 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst
*BI
,
5792 IRBuilder
<> &Builder
) {
5793 BasicBlock
*BB
= BI
->getParent();
5794 BasicBlock
*Succ
= BI
->getSuccessor(0);
5796 // If the Terminator is the only non-phi instruction, simplify the block.
5797 // If LoopHeader is provided, check if the block or its successor is a loop
5798 // header. (This is for early invocations before loop simplify and
5799 // vectorization to keep canonical loop forms for nested loops. These blocks
5800 // can be eliminated when the pass is invoked later in the back-end.)
5801 // Note that if BB has only one predecessor then we do not introduce new
5802 // backedge, so we can eliminate BB.
5803 bool NeedCanonicalLoop
=
5804 Options
.NeedCanonicalLoop
&&
5805 (LoopHeaders
&& BB
->hasNPredecessorsOrMore(2) &&
5806 (LoopHeaders
->count(BB
) || LoopHeaders
->count(Succ
)));
5807 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg()->getIterator();
5808 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
5809 !NeedCanonicalLoop
&& TryToSimplifyUncondBranchFromEmptyBlock(BB
))
5812 // If the only instruction in the block is a seteq/setne comparison against a
5813 // constant, try to simplify the block.
5814 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
5815 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
5816 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5818 if (I
->isTerminator() &&
5819 tryToSimplifyUncondBranchWithICmpInIt(ICI
, Builder
))
5823 // See if we can merge an empty landing pad block with another which is
5825 if (LandingPadInst
*LPad
= dyn_cast
<LandingPadInst
>(I
)) {
5826 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5828 if (I
->isTerminator() && TryToMergeLandingPad(LPad
, BI
, BB
))
5832 // If this basic block is ONLY a compare and a branch, and if a predecessor
5833 // branches to us and our successor, fold the comparison into the
5834 // predecessor and use logical operations to update the incoming value
5835 // for PHI nodes in common successor.
5836 if (FoldBranchToCommonDest(BI
, nullptr, Options
.BonusInstThreshold
))
5837 return requestResimplify();
5841 static BasicBlock
*allPredecessorsComeFromSameSource(BasicBlock
*BB
) {
5842 BasicBlock
*PredPred
= nullptr;
5843 for (auto *P
: predecessors(BB
)) {
5844 BasicBlock
*PPred
= P
->getSinglePredecessor();
5845 if (!PPred
|| (PredPred
&& PredPred
!= PPred
))
5852 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
5853 BasicBlock
*BB
= BI
->getParent();
5854 const Function
*Fn
= BB
->getParent();
5855 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
5858 // Conditional branch
5859 if (isValueEqualityComparison(BI
)) {
5860 // If we only have one predecessor, and if it is a branch on this value,
5861 // see if that predecessor totally determines the outcome of this
5863 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5864 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
5865 return requestResimplify();
5867 // This block must be empty, except for the setcond inst, if it exists.
5868 // Ignore dbg intrinsics.
5869 auto I
= BB
->instructionsWithoutDebug().begin();
5871 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
5872 return requestResimplify();
5873 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())) {
5875 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
5876 return requestResimplify();
5880 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5881 if (SimplifyBranchOnICmpChain(BI
, Builder
, DL
))
5884 // If this basic block has dominating predecessor blocks and the dominating
5885 // blocks' conditions imply BI's condition, we know the direction of BI.
5886 Optional
<bool> Imp
= isImpliedByDomCondition(BI
->getCondition(), BI
, DL
);
5888 // Turn this into a branch on constant.
5889 auto *OldCond
= BI
->getCondition();
5890 ConstantInt
*TorF
= *Imp
? ConstantInt::getTrue(BB
->getContext())
5891 : ConstantInt::getFalse(BB
->getContext());
5892 BI
->setCondition(TorF
);
5893 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
5894 return requestResimplify();
5897 // If this basic block is ONLY a compare and a branch, and if a predecessor
5898 // branches to us and one of our successors, fold the comparison into the
5899 // predecessor and use logical operations to pick the right destination.
5900 if (FoldBranchToCommonDest(BI
, nullptr, Options
.BonusInstThreshold
))
5901 return requestResimplify();
5903 // We have a conditional branch to two blocks that are only reachable
5904 // from BI. We know that the condbr dominates the two blocks, so see if
5905 // there is any identical code in the "then" and "else" blocks. If so, we
5906 // can hoist it up to the branching block.
5907 if (BI
->getSuccessor(0)->getSinglePredecessor()) {
5908 if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5909 if (HoistThenElseCodeToIf(BI
, TTI
))
5910 return requestResimplify();
5912 // If Successor #1 has multiple preds, we may be able to conditionally
5913 // execute Successor #0 if it branches to Successor #1.
5914 Instruction
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
5915 if (Succ0TI
->getNumSuccessors() == 1 &&
5916 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
5917 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0), TTI
))
5918 return requestResimplify();
5920 } else if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5921 // If Successor #0 has multiple preds, we may be able to conditionally
5922 // execute Successor #1 if it branches to Successor #0.
5923 Instruction
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
5924 if (Succ1TI
->getNumSuccessors() == 1 &&
5925 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
5926 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1), TTI
))
5927 return requestResimplify();
5930 // If this is a branch on a phi node in the current block, thread control
5931 // through this block if any PHI node entries are constants.
5932 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
5933 if (PN
->getParent() == BI
->getParent())
5934 if (FoldCondBranchOnPHI(BI
, DL
, Options
.AC
))
5935 return requestResimplify();
5937 // Scan predecessor blocks for conditional branches.
5938 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
5939 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
5940 if (PBI
!= BI
&& PBI
->isConditional())
5941 if (SimplifyCondBranchToCondBranch(PBI
, BI
, DL
))
5942 return requestResimplify();
5944 // Look for diamond patterns.
5945 if (MergeCondStores
)
5946 if (BasicBlock
*PrevBB
= allPredecessorsComeFromSameSource(BB
))
5947 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PrevBB
->getTerminator()))
5948 if (PBI
!= BI
&& PBI
->isConditional())
5949 if (mergeConditionalStores(PBI
, BI
, DL
))
5950 return requestResimplify();
5955 /// Check if passing a value to an instruction will cause undefined behavior.
5956 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
) {
5957 Constant
*C
= dyn_cast
<Constant
>(V
);
5964 if (C
->isNullValue() || isa
<UndefValue
>(C
)) {
5965 // Only look at the first use, avoid hurting compile time with long uselists
5966 User
*Use
= *I
->user_begin();
5968 // Now make sure that there are no instructions in between that can alter
5969 // control flow (eg. calls)
5970 for (BasicBlock::iterator
5971 i
= ++BasicBlock::iterator(I
),
5972 UI
= BasicBlock::iterator(dyn_cast
<Instruction
>(Use
));
5974 if (i
== I
->getParent()->end() || i
->mayHaveSideEffects())
5977 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5978 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Use
))
5979 if (GEP
->getPointerOperand() == I
)
5980 return passingValueIsAlwaysUndefined(V
, GEP
);
5982 // Look through bitcasts.
5983 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Use
))
5984 return passingValueIsAlwaysUndefined(V
, BC
);
5986 // Load from null is undefined.
5987 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Use
))
5988 if (!LI
->isVolatile())
5989 return !NullPointerIsDefined(LI
->getFunction(),
5990 LI
->getPointerAddressSpace());
5992 // Store to null is undefined.
5993 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Use
))
5994 if (!SI
->isVolatile())
5995 return (!NullPointerIsDefined(SI
->getFunction(),
5996 SI
->getPointerAddressSpace())) &&
5997 SI
->getPointerOperand() == I
;
5999 // A call to null is undefined.
6000 if (auto CS
= CallSite(Use
))
6001 return !NullPointerIsDefined(CS
->getFunction()) &&
6002 CS
.getCalledValue() == I
;
6007 /// If BB has an incoming value that will always trigger undefined behavior
6008 /// (eg. null pointer dereference), remove the branch leading here.
6009 static bool removeUndefIntroducingPredecessor(BasicBlock
*BB
) {
6010 for (PHINode
&PHI
: BB
->phis())
6011 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
)
6012 if (passingValueIsAlwaysUndefined(PHI
.getIncomingValue(i
), &PHI
)) {
6013 Instruction
*T
= PHI
.getIncomingBlock(i
)->getTerminator();
6014 IRBuilder
<> Builder(T
);
6015 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
6016 BB
->removePredecessor(PHI
.getIncomingBlock(i
));
6017 // Turn uncoditional branches into unreachables and remove the dead
6018 // destination from conditional branches.
6019 if (BI
->isUnconditional())
6020 Builder
.CreateUnreachable();
6022 Builder
.CreateBr(BI
->getSuccessor(0) == BB
? BI
->getSuccessor(1)
6023 : BI
->getSuccessor(0));
6024 BI
->eraseFromParent();
6027 // TODO: SwitchInst.
6033 bool SimplifyCFGOpt::simplifyOnce(BasicBlock
*BB
) {
6034 bool Changed
= false;
6036 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
6037 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
6039 // Remove basic blocks that have no predecessors (except the entry block)...
6040 // or that just have themself as a predecessor. These are unreachable.
6041 if ((pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) ||
6042 BB
->getSinglePredecessor() == BB
) {
6043 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB
);
6044 DeleteDeadBlock(BB
);
6048 // Check to see if we can constant propagate this terminator instruction
6050 Changed
|= ConstantFoldTerminator(BB
, true);
6052 // Check for and eliminate duplicate PHI nodes in this block.
6053 Changed
|= EliminateDuplicatePHINodes(BB
);
6055 // Check for and remove branches that will always cause undefined behavior.
6056 Changed
|= removeUndefIntroducingPredecessor(BB
);
6058 // Merge basic blocks into their predecessor if there is only one distinct
6059 // pred, and if there is only one distinct successor of the predecessor, and
6060 // if there are no PHI nodes.
6061 if (MergeBlockIntoPredecessor(BB
))
6064 if (SinkCommon
&& Options
.SinkCommonInsts
)
6065 Changed
|= SinkCommonCodeFromPredecessors(BB
);
6067 IRBuilder
<> Builder(BB
);
6069 // If there is a trivial two-entry PHI node in this basic block, and we can
6070 // eliminate it, do so now.
6071 if (auto *PN
= dyn_cast
<PHINode
>(BB
->begin()))
6072 if (PN
->getNumIncomingValues() == 2)
6073 Changed
|= FoldTwoEntryPHINode(PN
, TTI
, DL
);
6075 Builder
.SetInsertPoint(BB
->getTerminator());
6076 if (auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
6077 if (BI
->isUnconditional()) {
6078 if (SimplifyUncondBranch(BI
, Builder
))
6081 if (SimplifyCondBranch(BI
, Builder
))
6084 } else if (auto *RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
6085 if (SimplifyReturn(RI
, Builder
))
6087 } else if (auto *RI
= dyn_cast
<ResumeInst
>(BB
->getTerminator())) {
6088 if (SimplifyResume(RI
, Builder
))
6090 } else if (auto *RI
= dyn_cast
<CleanupReturnInst
>(BB
->getTerminator())) {
6091 if (SimplifyCleanupReturn(RI
))
6093 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
6094 if (SimplifySwitch(SI
, Builder
))
6096 } else if (auto *UI
= dyn_cast
<UnreachableInst
>(BB
->getTerminator())) {
6097 if (SimplifyUnreachable(UI
))
6099 } else if (auto *IBI
= dyn_cast
<IndirectBrInst
>(BB
->getTerminator())) {
6100 if (SimplifyIndirectBr(IBI
))
6107 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
6108 bool Changed
= false;
6110 // Repeated simplify BB as long as resimplification is requested.
6114 // Perform one round of simplifcation. Resimplify flag will be set if
6115 // another iteration is requested.
6116 Changed
|= simplifyOnce(BB
);
6117 } while (Resimplify
);
6122 bool llvm::simplifyCFG(BasicBlock
*BB
, const TargetTransformInfo
&TTI
,
6123 const SimplifyCFGOptions
&Options
,
6124 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
) {
6125 return SimplifyCFGOpt(TTI
, BB
->getModule()->getDataLayout(), LoopHeaders
,