[SimplifyCFG] FoldTwoEntryPHINode(): consider *total* speculation cost, not per-BB...
[llvm-complete.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
blob12c114f83d4bee41d58943fc44838140669c9580
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Vectorize.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <iterator>
92 #include <memory>
93 #include <set>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 #include <vector>
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 using namespace slpvectorizer;
103 #define SV_NAME "slp-vectorizer"
104 #define DEBUG_TYPE "SLP"
106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
108 cl::opt<bool>
109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
110 cl::desc("Run the SLP vectorization passes"));
112 static cl::opt<int>
113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
114 cl::desc("Only vectorize if you gain more than this "
115 "number "));
117 static cl::opt<bool>
118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
119 cl::desc("Attempt to vectorize horizontal reductions"));
121 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
123 cl::desc(
124 "Attempt to vectorize horizontal reductions feeding into a store"));
126 static cl::opt<int>
127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
128 cl::desc("Attempt to vectorize for this register size in bits"));
130 /// Limits the size of scheduling regions in a block.
131 /// It avoid long compile times for _very_ large blocks where vector
132 /// instructions are spread over a wide range.
133 /// This limit is way higher than needed by real-world functions.
134 static cl::opt<int>
135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
136 cl::desc("Limit the size of the SLP scheduling region per block"));
138 static cl::opt<int> MinVectorRegSizeOption(
139 "slp-min-reg-size", cl::init(128), cl::Hidden,
140 cl::desc("Attempt to vectorize for this register size in bits"));
142 static cl::opt<unsigned> RecursionMaxDepth(
143 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
144 cl::desc("Limit the recursion depth when building a vectorizable tree"));
146 static cl::opt<unsigned> MinTreeSize(
147 "slp-min-tree-size", cl::init(3), cl::Hidden,
148 cl::desc("Only vectorize small trees if they are fully vectorizable"));
150 static cl::opt<bool>
151 ViewSLPTree("view-slp-tree", cl::Hidden,
152 cl::desc("Display the SLP trees with Graphviz"));
154 // Limit the number of alias checks. The limit is chosen so that
155 // it has no negative effect on the llvm benchmarks.
156 static const unsigned AliasedCheckLimit = 10;
158 // Another limit for the alias checks: The maximum distance between load/store
159 // instructions where alias checks are done.
160 // This limit is useful for very large basic blocks.
161 static const unsigned MaxMemDepDistance = 160;
163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
164 /// regions to be handled.
165 static const int MinScheduleRegionSize = 16;
167 /// Predicate for the element types that the SLP vectorizer supports.
169 /// The most important thing to filter here are types which are invalid in LLVM
170 /// vectors. We also filter target specific types which have absolutely no
171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
172 /// avoids spending time checking the cost model and realizing that they will
173 /// be inevitably scalarized.
174 static bool isValidElementType(Type *Ty) {
175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
176 !Ty->isPPC_FP128Ty();
179 /// \returns true if all of the instructions in \p VL are in the same block or
180 /// false otherwise.
181 static bool allSameBlock(ArrayRef<Value *> VL) {
182 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
183 if (!I0)
184 return false;
185 BasicBlock *BB = I0->getParent();
186 for (int i = 1, e = VL.size(); i < e; i++) {
187 Instruction *I = dyn_cast<Instruction>(VL[i]);
188 if (!I)
189 return false;
191 if (BB != I->getParent())
192 return false;
194 return true;
197 /// \returns True if all of the values in \p VL are constants (but not
198 /// globals/constant expressions).
199 static bool allConstant(ArrayRef<Value *> VL) {
200 // Constant expressions and globals can't be vectorized like normal integer/FP
201 // constants.
202 for (Value *i : VL)
203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
204 return false;
205 return true;
208 /// \returns True if all of the values in \p VL are identical.
209 static bool isSplat(ArrayRef<Value *> VL) {
210 for (unsigned i = 1, e = VL.size(); i < e; ++i)
211 if (VL[i] != VL[0])
212 return false;
213 return true;
216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
217 static bool isCommutative(Instruction *I) {
218 if (auto *IC = dyn_cast<CmpInst>(I))
219 return IC->isCommutative();
220 return I->isCommutative();
223 /// Checks if the vector of instructions can be represented as a shuffle, like:
224 /// %x0 = extractelement <4 x i8> %x, i32 0
225 /// %x3 = extractelement <4 x i8> %x, i32 3
226 /// %y1 = extractelement <4 x i8> %y, i32 1
227 /// %y2 = extractelement <4 x i8> %y, i32 2
228 /// %x0x0 = mul i8 %x0, %x0
229 /// %x3x3 = mul i8 %x3, %x3
230 /// %y1y1 = mul i8 %y1, %y1
231 /// %y2y2 = mul i8 %y2, %y2
232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
236 /// ret <4 x i8> %ins4
237 /// can be transformed into:
238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
239 /// i32 6>
240 /// %2 = mul <4 x i8> %1, %1
241 /// ret <4 x i8> %2
242 /// We convert this initially to something like:
243 /// %x0 = extractelement <4 x i8> %x, i32 0
244 /// %x3 = extractelement <4 x i8> %x, i32 3
245 /// %y1 = extractelement <4 x i8> %y, i32 1
246 /// %y2 = extractelement <4 x i8> %y, i32 2
247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
251 /// %5 = mul <4 x i8> %4, %4
252 /// %6 = extractelement <4 x i8> %5, i32 0
253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
254 /// %7 = extractelement <4 x i8> %5, i32 1
255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
256 /// %8 = extractelement <4 x i8> %5, i32 2
257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
258 /// %9 = extractelement <4 x i8> %5, i32 3
259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
260 /// ret <4 x i8> %ins4
261 /// InstCombiner transforms this into a shuffle and vector mul
262 /// TODO: Can we split off and reuse the shuffle mask detection from
263 /// TargetTransformInfo::getInstructionThroughput?
264 static Optional<TargetTransformInfo::ShuffleKind>
265 isShuffle(ArrayRef<Value *> VL) {
266 auto *EI0 = cast<ExtractElementInst>(VL[0]);
267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
268 Value *Vec1 = nullptr;
269 Value *Vec2 = nullptr;
270 enum ShuffleMode { Unknown, Select, Permute };
271 ShuffleMode CommonShuffleMode = Unknown;
272 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
273 auto *EI = cast<ExtractElementInst>(VL[I]);
274 auto *Vec = EI->getVectorOperand();
275 // All vector operands must have the same number of vector elements.
276 if (Vec->getType()->getVectorNumElements() != Size)
277 return None;
278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
279 if (!Idx)
280 return None;
281 // Undefined behavior if Idx is negative or >= Size.
282 if (Idx->getValue().uge(Size))
283 continue;
284 unsigned IntIdx = Idx->getValue().getZExtValue();
285 // We can extractelement from undef vector.
286 if (isa<UndefValue>(Vec))
287 continue;
288 // For correct shuffling we have to have at most 2 different vector operands
289 // in all extractelement instructions.
290 if (!Vec1 || Vec1 == Vec)
291 Vec1 = Vec;
292 else if (!Vec2 || Vec2 == Vec)
293 Vec2 = Vec;
294 else
295 return None;
296 if (CommonShuffleMode == Permute)
297 continue;
298 // If the extract index is not the same as the operation number, it is a
299 // permutation.
300 if (IntIdx != I) {
301 CommonShuffleMode = Permute;
302 continue;
304 CommonShuffleMode = Select;
306 // If we're not crossing lanes in different vectors, consider it as blending.
307 if (CommonShuffleMode == Select && Vec2)
308 return TargetTransformInfo::SK_Select;
309 // If Vec2 was never used, we have a permutation of a single vector, otherwise
310 // we have permutation of 2 vectors.
311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
312 : TargetTransformInfo::SK_PermuteSingleSrc;
315 namespace {
317 /// Main data required for vectorization of instructions.
318 struct InstructionsState {
319 /// The very first instruction in the list with the main opcode.
320 Value *OpValue = nullptr;
322 /// The main/alternate instruction.
323 Instruction *MainOp = nullptr;
324 Instruction *AltOp = nullptr;
326 /// The main/alternate opcodes for the list of instructions.
327 unsigned getOpcode() const {
328 return MainOp ? MainOp->getOpcode() : 0;
331 unsigned getAltOpcode() const {
332 return AltOp ? AltOp->getOpcode() : 0;
335 /// Some of the instructions in the list have alternate opcodes.
336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
338 bool isOpcodeOrAlt(Instruction *I) const {
339 unsigned CheckedOpcode = I->getOpcode();
340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
343 InstructionsState() = delete;
344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
348 } // end anonymous namespace
350 /// Chooses the correct key for scheduling data. If \p Op has the same (or
351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
352 /// OpValue.
353 static Value *isOneOf(const InstructionsState &S, Value *Op) {
354 auto *I = dyn_cast<Instruction>(Op);
355 if (I && S.isOpcodeOrAlt(I))
356 return Op;
357 return S.OpValue;
360 /// \returns analysis of the Instructions in \p VL described in
361 /// InstructionsState, the Opcode that we suppose the whole list
362 /// could be vectorized even if its structure is diverse.
363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
364 unsigned BaseIndex = 0) {
365 // Make sure these are all Instructions.
366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
367 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
372 unsigned AltOpcode = Opcode;
373 unsigned AltIndex = BaseIndex;
375 // Check for one alternate opcode from another BinaryOperator.
376 // TODO - generalize to support all operators (types, calls etc.).
377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
380 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
381 continue;
382 if (Opcode == AltOpcode) {
383 AltOpcode = InstOpcode;
384 AltIndex = Cnt;
385 continue;
387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
390 if (Ty0 == Ty1) {
391 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
392 continue;
393 if (Opcode == AltOpcode) {
394 AltOpcode = InstOpcode;
395 AltIndex = Cnt;
396 continue;
399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
400 continue;
401 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
405 cast<Instruction>(VL[AltIndex]));
408 /// \returns true if all of the values in \p VL have the same type or false
409 /// otherwise.
410 static bool allSameType(ArrayRef<Value *> VL) {
411 Type *Ty = VL[0]->getType();
412 for (int i = 1, e = VL.size(); i < e; i++)
413 if (VL[i]->getType() != Ty)
414 return false;
416 return true;
419 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
420 static Optional<unsigned> getExtractIndex(Instruction *E) {
421 unsigned Opcode = E->getOpcode();
422 assert((Opcode == Instruction::ExtractElement ||
423 Opcode == Instruction::ExtractValue) &&
424 "Expected extractelement or extractvalue instruction.");
425 if (Opcode == Instruction::ExtractElement) {
426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
427 if (!CI)
428 return None;
429 return CI->getZExtValue();
431 ExtractValueInst *EI = cast<ExtractValueInst>(E);
432 if (EI->getNumIndices() != 1)
433 return None;
434 return *EI->idx_begin();
437 /// \returns True if in-tree use also needs extract. This refers to
438 /// possible scalar operand in vectorized instruction.
439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
440 TargetLibraryInfo *TLI) {
441 unsigned Opcode = UserInst->getOpcode();
442 switch (Opcode) {
443 case Instruction::Load: {
444 LoadInst *LI = cast<LoadInst>(UserInst);
445 return (LI->getPointerOperand() == Scalar);
447 case Instruction::Store: {
448 StoreInst *SI = cast<StoreInst>(UserInst);
449 return (SI->getPointerOperand() == Scalar);
451 case Instruction::Call: {
452 CallInst *CI = cast<CallInst>(UserInst);
453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
455 if (hasVectorInstrinsicScalarOpd(ID, i))
456 return (CI->getArgOperand(i) == Scalar);
458 LLVM_FALLTHROUGH;
460 default:
461 return false;
465 /// \returns the AA location that is being access by the instruction.
466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
467 if (StoreInst *SI = dyn_cast<StoreInst>(I))
468 return MemoryLocation::get(SI);
469 if (LoadInst *LI = dyn_cast<LoadInst>(I))
470 return MemoryLocation::get(LI);
471 return MemoryLocation();
474 /// \returns True if the instruction is not a volatile or atomic load/store.
475 static bool isSimple(Instruction *I) {
476 if (LoadInst *LI = dyn_cast<LoadInst>(I))
477 return LI->isSimple();
478 if (StoreInst *SI = dyn_cast<StoreInst>(I))
479 return SI->isSimple();
480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
481 return !MI->isVolatile();
482 return true;
485 namespace llvm {
487 namespace slpvectorizer {
489 /// Bottom Up SLP Vectorizer.
490 class BoUpSLP {
491 struct TreeEntry;
492 struct ScheduleData;
494 public:
495 using ValueList = SmallVector<Value *, 8>;
496 using InstrList = SmallVector<Instruction *, 16>;
497 using ValueSet = SmallPtrSet<Value *, 16>;
498 using StoreList = SmallVector<StoreInst *, 8>;
499 using ExtraValueToDebugLocsMap =
500 MapVector<Value *, SmallVector<Instruction *, 2>>;
502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
505 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
508 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
509 // Use the vector register size specified by the target unless overridden
510 // by a command-line option.
511 // TODO: It would be better to limit the vectorization factor based on
512 // data type rather than just register size. For example, x86 AVX has
513 // 256-bit registers, but it does not support integer operations
514 // at that width (that requires AVX2).
515 if (MaxVectorRegSizeOption.getNumOccurrences())
516 MaxVecRegSize = MaxVectorRegSizeOption;
517 else
518 MaxVecRegSize = TTI->getRegisterBitWidth(true);
520 if (MinVectorRegSizeOption.getNumOccurrences())
521 MinVecRegSize = MinVectorRegSizeOption;
522 else
523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
526 /// Vectorize the tree that starts with the elements in \p VL.
527 /// Returns the vectorized root.
528 Value *vectorizeTree();
530 /// Vectorize the tree but with the list of externally used values \p
531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
532 /// generated extractvalue instructions.
533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
535 /// \returns the cost incurred by unwanted spills and fills, caused by
536 /// holding live values over call sites.
537 int getSpillCost() const;
539 /// \returns the vectorization cost of the subtree that starts at \p VL.
540 /// A negative number means that this is profitable.
541 int getTreeCost();
543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
545 void buildTree(ArrayRef<Value *> Roots,
546 ArrayRef<Value *> UserIgnoreLst = None);
548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
550 /// into account (anf updating it, if required) list of externally used
551 /// values stored in \p ExternallyUsedValues.
552 void buildTree(ArrayRef<Value *> Roots,
553 ExtraValueToDebugLocsMap &ExternallyUsedValues,
554 ArrayRef<Value *> UserIgnoreLst = None);
556 /// Clear the internal data structures that are created by 'buildTree'.
557 void deleteTree() {
558 VectorizableTree.clear();
559 ScalarToTreeEntry.clear();
560 MustGather.clear();
561 ExternalUses.clear();
562 NumOpsWantToKeepOrder.clear();
563 NumOpsWantToKeepOriginalOrder = 0;
564 for (auto &Iter : BlocksSchedules) {
565 BlockScheduling *BS = Iter.second.get();
566 BS->clear();
568 MinBWs.clear();
571 unsigned getTreeSize() const { return VectorizableTree.size(); }
573 /// Perform LICM and CSE on the newly generated gather sequences.
574 void optimizeGatherSequence();
576 /// \returns The best order of instructions for vectorization.
577 Optional<ArrayRef<unsigned>> bestOrder() const {
578 auto I = std::max_element(
579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
582 return D1.second < D2.second;
584 if (I == NumOpsWantToKeepOrder.end() ||
585 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
586 return None;
588 return makeArrayRef(I->getFirst());
591 /// \return The vector element size in bits to use when vectorizing the
592 /// expression tree ending at \p V. If V is a store, the size is the width of
593 /// the stored value. Otherwise, the size is the width of the largest loaded
594 /// value reaching V. This method is used by the vectorizer to calculate
595 /// vectorization factors.
596 unsigned getVectorElementSize(Value *V) const;
598 /// Compute the minimum type sizes required to represent the entries in a
599 /// vectorizable tree.
600 void computeMinimumValueSizes();
602 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
603 unsigned getMaxVecRegSize() const {
604 return MaxVecRegSize;
607 // \returns minimum vector register size as set by cl::opt.
608 unsigned getMinVecRegSize() const {
609 return MinVecRegSize;
612 /// Check if ArrayType or StructType is isomorphic to some VectorType.
614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
615 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
617 /// \returns True if the VectorizableTree is both tiny and not fully
618 /// vectorizable. We do not vectorize such trees.
619 bool isTreeTinyAndNotFullyVectorizable() const;
621 OptimizationRemarkEmitter *getORE() { return ORE; }
623 /// This structure holds any data we need about the edges being traversed
624 /// during buildTree_rec(). We keep track of:
625 /// (i) the user TreeEntry index, and
626 /// (ii) the index of the edge.
627 struct EdgeInfo {
628 EdgeInfo() = default;
629 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
630 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
631 /// The user TreeEntry.
632 TreeEntry *UserTE = nullptr;
633 /// The operand index of the use.
634 unsigned EdgeIdx = UINT_MAX;
635 #ifndef NDEBUG
636 friend inline raw_ostream &operator<<(raw_ostream &OS,
637 const BoUpSLP::EdgeInfo &EI) {
638 EI.dump(OS);
639 return OS;
641 /// Debug print.
642 void dump(raw_ostream &OS) const {
643 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
644 << " EdgeIdx:" << EdgeIdx << "}";
646 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
647 #endif
650 /// A helper data structure to hold the operands of a vector of instructions.
651 /// This supports a fixed vector length for all operand vectors.
652 class VLOperands {
653 /// For each operand we need (i) the value, and (ii) the opcode that it
654 /// would be attached to if the expression was in a left-linearized form.
655 /// This is required to avoid illegal operand reordering.
656 /// For example:
657 /// \verbatim
658 /// 0 Op1
659 /// |/
660 /// Op1 Op2 Linearized + Op2
661 /// \ / ----------> |/
662 /// - -
664 /// Op1 - Op2 (0 + Op1) - Op2
665 /// \endverbatim
667 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
669 /// Another way to think of this is to track all the operations across the
670 /// path from the operand all the way to the root of the tree and to
671 /// calculate the operation that corresponds to this path. For example, the
672 /// path from Op2 to the root crosses the RHS of the '-', therefore the
673 /// corresponding operation is a '-' (which matches the one in the
674 /// linearized tree, as shown above).
676 /// For lack of a better term, we refer to this operation as Accumulated
677 /// Path Operation (APO).
678 struct OperandData {
679 OperandData() = default;
680 OperandData(Value *V, bool APO, bool IsUsed)
681 : V(V), APO(APO), IsUsed(IsUsed) {}
682 /// The operand value.
683 Value *V = nullptr;
684 /// TreeEntries only allow a single opcode, or an alternate sequence of
685 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
686 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
687 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
688 /// (e.g., Add/Mul)
689 bool APO = false;
690 /// Helper data for the reordering function.
691 bool IsUsed = false;
694 /// During operand reordering, we are trying to select the operand at lane
695 /// that matches best with the operand at the neighboring lane. Our
696 /// selection is based on the type of value we are looking for. For example,
697 /// if the neighboring lane has a load, we need to look for a load that is
698 /// accessing a consecutive address. These strategies are summarized in the
699 /// 'ReorderingMode' enumerator.
700 enum class ReorderingMode {
701 Load, ///< Matching loads to consecutive memory addresses
702 Opcode, ///< Matching instructions based on opcode (same or alternate)
703 Constant, ///< Matching constants
704 Splat, ///< Matching the same instruction multiple times (broadcast)
705 Failed, ///< We failed to create a vectorizable group
708 using OperandDataVec = SmallVector<OperandData, 2>;
710 /// A vector of operand vectors.
711 SmallVector<OperandDataVec, 4> OpsVec;
713 const DataLayout &DL;
714 ScalarEvolution &SE;
716 /// \returns the operand data at \p OpIdx and \p Lane.
717 OperandData &getData(unsigned OpIdx, unsigned Lane) {
718 return OpsVec[OpIdx][Lane];
721 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
722 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
723 return OpsVec[OpIdx][Lane];
726 /// Clears the used flag for all entries.
727 void clearUsed() {
728 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
729 OpIdx != NumOperands; ++OpIdx)
730 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
731 ++Lane)
732 OpsVec[OpIdx][Lane].IsUsed = false;
735 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
736 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
737 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
740 // Search all operands in Ops[*][Lane] for the one that matches best
741 // Ops[OpIdx][LastLane] and return its opreand index.
742 // If no good match can be found, return None.
743 Optional<unsigned>
744 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
745 ArrayRef<ReorderingMode> ReorderingModes) {
746 unsigned NumOperands = getNumOperands();
748 // The operand of the previous lane at OpIdx.
749 Value *OpLastLane = getData(OpIdx, LastLane).V;
751 // Our strategy mode for OpIdx.
752 ReorderingMode RMode = ReorderingModes[OpIdx];
754 // The linearized opcode of the operand at OpIdx, Lane.
755 bool OpIdxAPO = getData(OpIdx, Lane).APO;
757 const unsigned BestScore = 2;
758 const unsigned GoodScore = 1;
760 // The best operand index and its score.
761 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
762 // are using the score to differentiate between the two.
763 struct BestOpData {
764 Optional<unsigned> Idx = None;
765 unsigned Score = 0;
766 } BestOp;
768 // Iterate through all unused operands and look for the best.
769 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
770 // Get the operand at Idx and Lane.
771 OperandData &OpData = getData(Idx, Lane);
772 Value *Op = OpData.V;
773 bool OpAPO = OpData.APO;
775 // Skip already selected operands.
776 if (OpData.IsUsed)
777 continue;
779 // Skip if we are trying to move the operand to a position with a
780 // different opcode in the linearized tree form. This would break the
781 // semantics.
782 if (OpAPO != OpIdxAPO)
783 continue;
785 // Look for an operand that matches the current mode.
786 switch (RMode) {
787 case ReorderingMode::Load:
788 if (isa<LoadInst>(Op)) {
789 // Figure out which is left and right, so that we can check for
790 // consecutive loads
791 bool LeftToRight = Lane > LastLane;
792 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
793 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
794 if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
795 cast<LoadInst>(OpRight), DL, SE))
796 BestOp.Idx = Idx;
798 break;
799 case ReorderingMode::Opcode:
800 // We accept both Instructions and Undefs, but with different scores.
801 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
802 cast<Instruction>(Op)->getOpcode() ==
803 cast<Instruction>(OpLastLane)->getOpcode()) ||
804 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
805 isa<UndefValue>(Op)) {
806 // An instruction has a higher score than an undef.
807 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
808 if (Score > BestOp.Score) {
809 BestOp.Idx = Idx;
810 BestOp.Score = Score;
813 break;
814 case ReorderingMode::Constant:
815 if (isa<Constant>(Op)) {
816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
817 if (Score > BestOp.Score) {
818 BestOp.Idx = Idx;
819 BestOp.Score = Score;
822 break;
823 case ReorderingMode::Splat:
824 if (Op == OpLastLane)
825 BestOp.Idx = Idx;
826 break;
827 case ReorderingMode::Failed:
828 return None;
832 if (BestOp.Idx) {
833 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
834 return BestOp.Idx;
836 // If we could not find a good match return None.
837 return None;
840 /// Helper for reorderOperandVecs. \Returns the lane that we should start
841 /// reordering from. This is the one which has the least number of operands
842 /// that can freely move about.
843 unsigned getBestLaneToStartReordering() const {
844 unsigned BestLane = 0;
845 unsigned Min = UINT_MAX;
846 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
847 ++Lane) {
848 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
849 if (NumFreeOps < Min) {
850 Min = NumFreeOps;
851 BestLane = Lane;
854 return BestLane;
857 /// \Returns the maximum number of operands that are allowed to be reordered
858 /// for \p Lane. This is used as a heuristic for selecting the first lane to
859 /// start operand reordering.
860 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
861 unsigned CntTrue = 0;
862 unsigned NumOperands = getNumOperands();
863 // Operands with the same APO can be reordered. We therefore need to count
864 // how many of them we have for each APO, like this: Cnt[APO] = x.
865 // Since we only have two APOs, namely true and false, we can avoid using
866 // a map. Instead we can simply count the number of operands that
867 // correspond to one of them (in this case the 'true' APO), and calculate
868 // the other by subtracting it from the total number of operands.
869 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
870 if (getData(OpIdx, Lane).APO)
871 ++CntTrue;
872 unsigned CntFalse = NumOperands - CntTrue;
873 return std::max(CntTrue, CntFalse);
876 /// Go through the instructions in VL and append their operands.
877 void appendOperandsOfVL(ArrayRef<Value *> VL) {
878 assert(!VL.empty() && "Bad VL");
879 assert((empty() || VL.size() == getNumLanes()) &&
880 "Expected same number of lanes");
881 assert(isa<Instruction>(VL[0]) && "Expected instruction");
882 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
883 OpsVec.resize(NumOperands);
884 unsigned NumLanes = VL.size();
885 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
886 OpsVec[OpIdx].resize(NumLanes);
887 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
888 assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
889 // Our tree has just 3 nodes: the root and two operands.
890 // It is therefore trivial to get the APO. We only need to check the
891 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
892 // RHS operand. The LHS operand of both add and sub is never attached
893 // to an inversese operation in the linearized form, therefore its APO
894 // is false. The RHS is true only if VL[Lane] is an inverse operation.
896 // Since operand reordering is performed on groups of commutative
897 // operations or alternating sequences (e.g., +, -), we can safely
898 // tell the inverse operations by checking commutativity.
899 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
900 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
901 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
902 APO, false};
907 /// \returns the number of operands.
908 unsigned getNumOperands() const { return OpsVec.size(); }
910 /// \returns the number of lanes.
911 unsigned getNumLanes() const { return OpsVec[0].size(); }
913 /// \returns the operand value at \p OpIdx and \p Lane.
914 Value *getValue(unsigned OpIdx, unsigned Lane) const {
915 return getData(OpIdx, Lane).V;
918 /// \returns true if the data structure is empty.
919 bool empty() const { return OpsVec.empty(); }
921 /// Clears the data.
922 void clear() { OpsVec.clear(); }
924 /// \Returns true if there are enough operands identical to \p Op to fill
925 /// the whole vector.
926 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
927 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
928 bool OpAPO = getData(OpIdx, Lane).APO;
929 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
930 if (Ln == Lane)
931 continue;
932 // This is set to true if we found a candidate for broadcast at Lane.
933 bool FoundCandidate = false;
934 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
935 OperandData &Data = getData(OpI, Ln);
936 if (Data.APO != OpAPO || Data.IsUsed)
937 continue;
938 if (Data.V == Op) {
939 FoundCandidate = true;
940 Data.IsUsed = true;
941 break;
944 if (!FoundCandidate)
945 return false;
947 return true;
950 public:
951 /// Initialize with all the operands of the instruction vector \p RootVL.
952 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
953 ScalarEvolution &SE)
954 : DL(DL), SE(SE) {
955 // Append all the operands of RootVL.
956 appendOperandsOfVL(RootVL);
959 /// \Returns a value vector with the operands across all lanes for the
960 /// opearnd at \p OpIdx.
961 ValueList getVL(unsigned OpIdx) const {
962 ValueList OpVL(OpsVec[OpIdx].size());
963 assert(OpsVec[OpIdx].size() == getNumLanes() &&
964 "Expected same num of lanes across all operands");
965 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
966 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
967 return OpVL;
970 // Performs operand reordering for 2 or more operands.
971 // The original operands are in OrigOps[OpIdx][Lane].
972 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
973 void reorder() {
974 unsigned NumOperands = getNumOperands();
975 unsigned NumLanes = getNumLanes();
976 // Each operand has its own mode. We are using this mode to help us select
977 // the instructions for each lane, so that they match best with the ones
978 // we have selected so far.
979 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
981 // This is a greedy single-pass algorithm. We are going over each lane
982 // once and deciding on the best order right away with no back-tracking.
983 // However, in order to increase its effectiveness, we start with the lane
984 // that has operands that can move the least. For example, given the
985 // following lanes:
986 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
987 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
988 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
989 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
990 // we will start at Lane 1, since the operands of the subtraction cannot
991 // be reordered. Then we will visit the rest of the lanes in a circular
992 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
994 // Find the first lane that we will start our search from.
995 unsigned FirstLane = getBestLaneToStartReordering();
997 // Initialize the modes.
998 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
999 Value *OpLane0 = getValue(OpIdx, FirstLane);
1000 // Keep track if we have instructions with all the same opcode on one
1001 // side.
1002 if (isa<LoadInst>(OpLane0))
1003 ReorderingModes[OpIdx] = ReorderingMode::Load;
1004 else if (isa<Instruction>(OpLane0)) {
1005 // Check if OpLane0 should be broadcast.
1006 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1007 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1008 else
1009 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1011 else if (isa<Constant>(OpLane0))
1012 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1013 else if (isa<Argument>(OpLane0))
1014 // Our best hope is a Splat. It may save some cost in some cases.
1015 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1016 else
1017 // NOTE: This should be unreachable.
1018 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1021 // If the initial strategy fails for any of the operand indexes, then we
1022 // perform reordering again in a second pass. This helps avoid assigning
1023 // high priority to the failed strategy, and should improve reordering for
1024 // the non-failed operand indexes.
1025 for (int Pass = 0; Pass != 2; ++Pass) {
1026 // Skip the second pass if the first pass did not fail.
1027 bool StrategyFailed = false;
1028 // Mark all operand data as free to use.
1029 clearUsed();
1030 // We keep the original operand order for the FirstLane, so reorder the
1031 // rest of the lanes. We are visiting the nodes in a circular fashion,
1032 // using FirstLane as the center point and increasing the radius
1033 // distance.
1034 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1035 // Visit the lane on the right and then the lane on the left.
1036 for (int Direction : {+1, -1}) {
1037 int Lane = FirstLane + Direction * Distance;
1038 if (Lane < 0 || Lane >= (int)NumLanes)
1039 continue;
1040 int LastLane = Lane - Direction;
1041 assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1042 "Out of bounds");
1043 // Look for a good match for each operand.
1044 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1045 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1046 Optional<unsigned> BestIdx =
1047 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1048 // By not selecting a value, we allow the operands that follow to
1049 // select a better matching value. We will get a non-null value in
1050 // the next run of getBestOperand().
1051 if (BestIdx) {
1052 // Swap the current operand with the one returned by
1053 // getBestOperand().
1054 swap(OpIdx, BestIdx.getValue(), Lane);
1055 } else {
1056 // We failed to find a best operand, set mode to 'Failed'.
1057 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1058 // Enable the second pass.
1059 StrategyFailed = true;
1064 // Skip second pass if the strategy did not fail.
1065 if (!StrategyFailed)
1066 break;
1070 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1071 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1072 switch (RMode) {
1073 case ReorderingMode::Load:
1074 return "Load";
1075 case ReorderingMode::Opcode:
1076 return "Opcode";
1077 case ReorderingMode::Constant:
1078 return "Constant";
1079 case ReorderingMode::Splat:
1080 return "Splat";
1081 case ReorderingMode::Failed:
1082 return "Failed";
1084 llvm_unreachable("Unimplemented Reordering Type");
1087 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1088 raw_ostream &OS) {
1089 return OS << getModeStr(RMode);
1092 /// Debug print.
1093 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1094 printMode(RMode, dbgs());
1097 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1098 return printMode(RMode, OS);
1101 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1102 const unsigned Indent = 2;
1103 unsigned Cnt = 0;
1104 for (const OperandDataVec &OpDataVec : OpsVec) {
1105 OS << "Operand " << Cnt++ << "\n";
1106 for (const OperandData &OpData : OpDataVec) {
1107 OS.indent(Indent) << "{";
1108 if (Value *V = OpData.V)
1109 OS << *V;
1110 else
1111 OS << "null";
1112 OS << ", APO:" << OpData.APO << "}\n";
1114 OS << "\n";
1116 return OS;
1119 /// Debug print.
1120 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1121 #endif
1124 private:
1125 /// Checks if all users of \p I are the part of the vectorization tree.
1126 bool areAllUsersVectorized(Instruction *I) const;
1128 /// \returns the cost of the vectorizable entry.
1129 int getEntryCost(TreeEntry *E);
1131 /// This is the recursive part of buildTree.
1132 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1133 const EdgeInfo &EI);
1135 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1136 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1137 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1138 /// returns false, setting \p CurrentOrder to either an empty vector or a
1139 /// non-identity permutation that allows to reuse extract instructions.
1140 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1141 SmallVectorImpl<unsigned> &CurrentOrder) const;
1143 /// Vectorize a single entry in the tree.
1144 Value *vectorizeTree(TreeEntry *E);
1146 /// Vectorize a single entry in the tree, starting in \p VL.
1147 Value *vectorizeTree(ArrayRef<Value *> VL);
1149 /// \returns the scalarization cost for this type. Scalarization in this
1150 /// context means the creation of vectors from a group of scalars.
1151 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1153 /// \returns the scalarization cost for this list of values. Assuming that
1154 /// this subtree gets vectorized, we may need to extract the values from the
1155 /// roots. This method calculates the cost of extracting the values.
1156 int getGatherCost(ArrayRef<Value *> VL) const;
1158 /// Set the Builder insert point to one after the last instruction in
1159 /// the bundle
1160 void setInsertPointAfterBundle(TreeEntry *E);
1162 /// \returns a vector from a collection of scalars in \p VL.
1163 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1165 /// \returns whether the VectorizableTree is fully vectorizable and will
1166 /// be beneficial even the tree height is tiny.
1167 bool isFullyVectorizableTinyTree() const;
1169 /// Reorder commutative or alt operands to get better probability of
1170 /// generating vectorized code.
1171 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1172 SmallVectorImpl<Value *> &Left,
1173 SmallVectorImpl<Value *> &Right,
1174 const DataLayout &DL,
1175 ScalarEvolution &SE);
1176 struct TreeEntry {
1177 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1178 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1180 /// \returns true if the scalars in VL are equal to this entry.
1181 bool isSame(ArrayRef<Value *> VL) const {
1182 if (VL.size() == Scalars.size())
1183 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1184 return VL.size() == ReuseShuffleIndices.size() &&
1185 std::equal(
1186 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1187 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1190 /// A vector of scalars.
1191 ValueList Scalars;
1193 /// The Scalars are vectorized into this value. It is initialized to Null.
1194 Value *VectorizedValue = nullptr;
1196 /// Do we need to gather this sequence ?
1197 bool NeedToGather = false;
1199 /// Does this sequence require some shuffling?
1200 SmallVector<unsigned, 4> ReuseShuffleIndices;
1202 /// Does this entry require reordering?
1203 ArrayRef<unsigned> ReorderIndices;
1205 /// Points back to the VectorizableTree.
1207 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1208 /// to be a pointer and needs to be able to initialize the child iterator.
1209 /// Thus we need a reference back to the container to translate the indices
1210 /// to entries.
1211 VecTreeTy &Container;
1213 /// The TreeEntry index containing the user of this entry. We can actually
1214 /// have multiple users so the data structure is not truly a tree.
1215 SmallVector<EdgeInfo, 1> UserTreeIndices;
1217 /// The index of this treeEntry in VectorizableTree.
1218 int Idx = -1;
1220 private:
1221 /// The operands of each instruction in each lane Operands[op_index][lane].
1222 /// Note: This helps avoid the replication of the code that performs the
1223 /// reordering of operands during buildTree_rec() and vectorizeTree().
1224 SmallVector<ValueList, 2> Operands;
1226 /// The main/alternate instruction.
1227 Instruction *MainOp = nullptr;
1228 Instruction *AltOp = nullptr;
1230 public:
1231 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1232 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1233 if (Operands.size() < OpIdx + 1)
1234 Operands.resize(OpIdx + 1);
1235 assert(Operands[OpIdx].size() == 0 && "Already resized?");
1236 Operands[OpIdx].resize(Scalars.size());
1237 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1238 Operands[OpIdx][Lane] = OpVL[Lane];
1241 /// Set the operands of this bundle in their original order.
1242 void setOperandsInOrder() {
1243 assert(Operands.empty() && "Already initialized?");
1244 auto *I0 = cast<Instruction>(Scalars[0]);
1245 Operands.resize(I0->getNumOperands());
1246 unsigned NumLanes = Scalars.size();
1247 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1248 OpIdx != NumOperands; ++OpIdx) {
1249 Operands[OpIdx].resize(NumLanes);
1250 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1251 auto *I = cast<Instruction>(Scalars[Lane]);
1252 assert(I->getNumOperands() == NumOperands &&
1253 "Expected same number of operands");
1254 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1259 /// \returns the \p OpIdx operand of this TreeEntry.
1260 ValueList &getOperand(unsigned OpIdx) {
1261 assert(OpIdx < Operands.size() && "Off bounds");
1262 return Operands[OpIdx];
1265 /// \returns the number of operands.
1266 unsigned getNumOperands() const { return Operands.size(); }
1268 /// \return the single \p OpIdx operand.
1269 Value *getSingleOperand(unsigned OpIdx) const {
1270 assert(OpIdx < Operands.size() && "Off bounds");
1271 assert(!Operands[OpIdx].empty() && "No operand available");
1272 return Operands[OpIdx][0];
1275 /// Some of the instructions in the list have alternate opcodes.
1276 bool isAltShuffle() const {
1277 return getOpcode() != getAltOpcode();
1280 bool isOpcodeOrAlt(Instruction *I) const {
1281 unsigned CheckedOpcode = I->getOpcode();
1282 return (getOpcode() == CheckedOpcode ||
1283 getAltOpcode() == CheckedOpcode);
1286 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1287 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1288 /// \p OpValue.
1289 Value *isOneOf(Value *Op) const {
1290 auto *I = dyn_cast<Instruction>(Op);
1291 if (I && isOpcodeOrAlt(I))
1292 return Op;
1293 return MainOp;
1296 void setOperations(const InstructionsState &S) {
1297 MainOp = S.MainOp;
1298 AltOp = S.AltOp;
1301 Instruction *getMainOp() const {
1302 return MainOp;
1305 Instruction *getAltOp() const {
1306 return AltOp;
1309 /// The main/alternate opcodes for the list of instructions.
1310 unsigned getOpcode() const {
1311 return MainOp ? MainOp->getOpcode() : 0;
1314 unsigned getAltOpcode() const {
1315 return AltOp ? AltOp->getOpcode() : 0;
1318 /// Update operations state of this entry if reorder occurred.
1319 bool updateStateIfReorder() {
1320 if (ReorderIndices.empty())
1321 return false;
1322 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1323 setOperations(S);
1324 return true;
1327 #ifndef NDEBUG
1328 /// Debug printer.
1329 LLVM_DUMP_METHOD void dump() const {
1330 dbgs() << Idx << ".\n";
1331 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1332 dbgs() << "Operand " << OpI << ":\n";
1333 for (const Value *V : Operands[OpI])
1334 dbgs().indent(2) << *V << "\n";
1336 dbgs() << "Scalars: \n";
1337 for (Value *V : Scalars)
1338 dbgs().indent(2) << *V << "\n";
1339 dbgs() << "NeedToGather: " << NeedToGather << "\n";
1340 dbgs() << "MainOp: " << *MainOp << "\n";
1341 dbgs() << "AltOp: " << *AltOp << "\n";
1342 dbgs() << "VectorizedValue: ";
1343 if (VectorizedValue)
1344 dbgs() << *VectorizedValue;
1345 else
1346 dbgs() << "NULL";
1347 dbgs() << "\n";
1348 dbgs() << "ReuseShuffleIndices: ";
1349 if (ReuseShuffleIndices.empty())
1350 dbgs() << "Emtpy";
1351 else
1352 for (unsigned ReuseIdx : ReuseShuffleIndices)
1353 dbgs() << ReuseIdx << ", ";
1354 dbgs() << "\n";
1355 dbgs() << "ReorderIndices: ";
1356 for (unsigned ReorderIdx : ReorderIndices)
1357 dbgs() << ReorderIdx << ", ";
1358 dbgs() << "\n";
1359 dbgs() << "UserTreeIndices: ";
1360 for (const auto &EInfo : UserTreeIndices)
1361 dbgs() << EInfo << ", ";
1362 dbgs() << "\n";
1364 #endif
1367 /// Create a new VectorizableTree entry.
1368 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1369 const InstructionsState &S,
1370 const EdgeInfo &UserTreeIdx,
1371 ArrayRef<unsigned> ReuseShuffleIndices = None,
1372 ArrayRef<unsigned> ReorderIndices = None) {
1373 bool Vectorized = (bool)Bundle;
1374 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1375 TreeEntry *Last = VectorizableTree.back().get();
1376 Last->Idx = VectorizableTree.size() - 1;
1377 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1378 Last->NeedToGather = !Vectorized;
1379 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1380 ReuseShuffleIndices.end());
1381 Last->ReorderIndices = ReorderIndices;
1382 Last->setOperations(S);
1383 if (Vectorized) {
1384 for (int i = 0, e = VL.size(); i != e; ++i) {
1385 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1386 ScalarToTreeEntry[VL[i]] = Last;
1388 // Update the scheduler bundle to point to this TreeEntry.
1389 unsigned Lane = 0;
1390 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1391 BundleMember = BundleMember->NextInBundle) {
1392 BundleMember->TE = Last;
1393 BundleMember->Lane = Lane;
1394 ++Lane;
1396 assert((!Bundle.getValue() || Lane == VL.size()) &&
1397 "Bundle and VL out of sync");
1398 } else {
1399 MustGather.insert(VL.begin(), VL.end());
1402 if (UserTreeIdx.UserTE)
1403 Last->UserTreeIndices.push_back(UserTreeIdx);
1405 return Last;
1408 /// -- Vectorization State --
1409 /// Holds all of the tree entries.
1410 TreeEntry::VecTreeTy VectorizableTree;
1412 #ifndef NDEBUG
1413 /// Debug printer.
1414 LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1415 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1416 VectorizableTree[Id]->dump();
1417 dbgs() << "\n";
1420 #endif
1422 TreeEntry *getTreeEntry(Value *V) {
1423 auto I = ScalarToTreeEntry.find(V);
1424 if (I != ScalarToTreeEntry.end())
1425 return I->second;
1426 return nullptr;
1429 const TreeEntry *getTreeEntry(Value *V) const {
1430 auto I = ScalarToTreeEntry.find(V);
1431 if (I != ScalarToTreeEntry.end())
1432 return I->second;
1433 return nullptr;
1436 /// Maps a specific scalar to its tree entry.
1437 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1439 /// A list of scalars that we found that we need to keep as scalars.
1440 ValueSet MustGather;
1442 /// This POD struct describes one external user in the vectorized tree.
1443 struct ExternalUser {
1444 ExternalUser(Value *S, llvm::User *U, int L)
1445 : Scalar(S), User(U), Lane(L) {}
1447 // Which scalar in our function.
1448 Value *Scalar;
1450 // Which user that uses the scalar.
1451 llvm::User *User;
1453 // Which lane does the scalar belong to.
1454 int Lane;
1456 using UserList = SmallVector<ExternalUser, 16>;
1458 /// Checks if two instructions may access the same memory.
1460 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1461 /// is invariant in the calling loop.
1462 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1463 Instruction *Inst2) {
1464 // First check if the result is already in the cache.
1465 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1466 Optional<bool> &result = AliasCache[key];
1467 if (result.hasValue()) {
1468 return result.getValue();
1470 MemoryLocation Loc2 = getLocation(Inst2, AA);
1471 bool aliased = true;
1472 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1473 // Do the alias check.
1474 aliased = AA->alias(Loc1, Loc2);
1476 // Store the result in the cache.
1477 result = aliased;
1478 return aliased;
1481 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1483 /// Cache for alias results.
1484 /// TODO: consider moving this to the AliasAnalysis itself.
1485 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1487 /// Removes an instruction from its block and eventually deletes it.
1488 /// It's like Instruction::eraseFromParent() except that the actual deletion
1489 /// is delayed until BoUpSLP is destructed.
1490 /// This is required to ensure that there are no incorrect collisions in the
1491 /// AliasCache, which can happen if a new instruction is allocated at the
1492 /// same address as a previously deleted instruction.
1493 void eraseInstruction(Instruction *I) {
1494 I->removeFromParent();
1495 I->dropAllReferences();
1496 DeletedInstructions.emplace_back(I);
1499 /// Temporary store for deleted instructions. Instructions will be deleted
1500 /// eventually when the BoUpSLP is destructed.
1501 SmallVector<unique_value, 8> DeletedInstructions;
1503 /// A list of values that need to extracted out of the tree.
1504 /// This list holds pairs of (Internal Scalar : External User). External User
1505 /// can be nullptr, it means that this Internal Scalar will be used later,
1506 /// after vectorization.
1507 UserList ExternalUses;
1509 /// Values used only by @llvm.assume calls.
1510 SmallPtrSet<const Value *, 32> EphValues;
1512 /// Holds all of the instructions that we gathered.
1513 SetVector<Instruction *> GatherSeq;
1515 /// A list of blocks that we are going to CSE.
1516 SetVector<BasicBlock *> CSEBlocks;
1518 /// Contains all scheduling relevant data for an instruction.
1519 /// A ScheduleData either represents a single instruction or a member of an
1520 /// instruction bundle (= a group of instructions which is combined into a
1521 /// vector instruction).
1522 struct ScheduleData {
1523 // The initial value for the dependency counters. It means that the
1524 // dependencies are not calculated yet.
1525 enum { InvalidDeps = -1 };
1527 ScheduleData() = default;
1529 void init(int BlockSchedulingRegionID, Value *OpVal) {
1530 FirstInBundle = this;
1531 NextInBundle = nullptr;
1532 NextLoadStore = nullptr;
1533 IsScheduled = false;
1534 SchedulingRegionID = BlockSchedulingRegionID;
1535 UnscheduledDepsInBundle = UnscheduledDeps;
1536 clearDependencies();
1537 OpValue = OpVal;
1538 TE = nullptr;
1539 Lane = -1;
1542 /// Returns true if the dependency information has been calculated.
1543 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1545 /// Returns true for single instructions and for bundle representatives
1546 /// (= the head of a bundle).
1547 bool isSchedulingEntity() const { return FirstInBundle == this; }
1549 /// Returns true if it represents an instruction bundle and not only a
1550 /// single instruction.
1551 bool isPartOfBundle() const {
1552 return NextInBundle != nullptr || FirstInBundle != this;
1555 /// Returns true if it is ready for scheduling, i.e. it has no more
1556 /// unscheduled depending instructions/bundles.
1557 bool isReady() const {
1558 assert(isSchedulingEntity() &&
1559 "can't consider non-scheduling entity for ready list");
1560 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1563 /// Modifies the number of unscheduled dependencies, also updating it for
1564 /// the whole bundle.
1565 int incrementUnscheduledDeps(int Incr) {
1566 UnscheduledDeps += Incr;
1567 return FirstInBundle->UnscheduledDepsInBundle += Incr;
1570 /// Sets the number of unscheduled dependencies to the number of
1571 /// dependencies.
1572 void resetUnscheduledDeps() {
1573 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1576 /// Clears all dependency information.
1577 void clearDependencies() {
1578 Dependencies = InvalidDeps;
1579 resetUnscheduledDeps();
1580 MemoryDependencies.clear();
1583 void dump(raw_ostream &os) const {
1584 if (!isSchedulingEntity()) {
1585 os << "/ " << *Inst;
1586 } else if (NextInBundle) {
1587 os << '[' << *Inst;
1588 ScheduleData *SD = NextInBundle;
1589 while (SD) {
1590 os << ';' << *SD->Inst;
1591 SD = SD->NextInBundle;
1593 os << ']';
1594 } else {
1595 os << *Inst;
1599 Instruction *Inst = nullptr;
1601 /// Points to the head in an instruction bundle (and always to this for
1602 /// single instructions).
1603 ScheduleData *FirstInBundle = nullptr;
1605 /// Single linked list of all instructions in a bundle. Null if it is a
1606 /// single instruction.
1607 ScheduleData *NextInBundle = nullptr;
1609 /// Single linked list of all memory instructions (e.g. load, store, call)
1610 /// in the block - until the end of the scheduling region.
1611 ScheduleData *NextLoadStore = nullptr;
1613 /// The dependent memory instructions.
1614 /// This list is derived on demand in calculateDependencies().
1615 SmallVector<ScheduleData *, 4> MemoryDependencies;
1617 /// This ScheduleData is in the current scheduling region if this matches
1618 /// the current SchedulingRegionID of BlockScheduling.
1619 int SchedulingRegionID = 0;
1621 /// Used for getting a "good" final ordering of instructions.
1622 int SchedulingPriority = 0;
1624 /// The number of dependencies. Constitutes of the number of users of the
1625 /// instruction plus the number of dependent memory instructions (if any).
1626 /// This value is calculated on demand.
1627 /// If InvalidDeps, the number of dependencies is not calculated yet.
1628 int Dependencies = InvalidDeps;
1630 /// The number of dependencies minus the number of dependencies of scheduled
1631 /// instructions. As soon as this is zero, the instruction/bundle gets ready
1632 /// for scheduling.
1633 /// Note that this is negative as long as Dependencies is not calculated.
1634 int UnscheduledDeps = InvalidDeps;
1636 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1637 /// single instructions.
1638 int UnscheduledDepsInBundle = InvalidDeps;
1640 /// True if this instruction is scheduled (or considered as scheduled in the
1641 /// dry-run).
1642 bool IsScheduled = false;
1644 /// Opcode of the current instruction in the schedule data.
1645 Value *OpValue = nullptr;
1647 /// The TreeEntry that this instruction corresponds to.
1648 TreeEntry *TE = nullptr;
1650 /// The lane of this node in the TreeEntry.
1651 int Lane = -1;
1654 #ifndef NDEBUG
1655 friend inline raw_ostream &operator<<(raw_ostream &os,
1656 const BoUpSLP::ScheduleData &SD) {
1657 SD.dump(os);
1658 return os;
1660 #endif
1662 friend struct GraphTraits<BoUpSLP *>;
1663 friend struct DOTGraphTraits<BoUpSLP *>;
1665 /// Contains all scheduling data for a basic block.
1666 struct BlockScheduling {
1667 BlockScheduling(BasicBlock *BB)
1668 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1670 void clear() {
1671 ReadyInsts.clear();
1672 ScheduleStart = nullptr;
1673 ScheduleEnd = nullptr;
1674 FirstLoadStoreInRegion = nullptr;
1675 LastLoadStoreInRegion = nullptr;
1677 // Reduce the maximum schedule region size by the size of the
1678 // previous scheduling run.
1679 ScheduleRegionSizeLimit -= ScheduleRegionSize;
1680 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1681 ScheduleRegionSizeLimit = MinScheduleRegionSize;
1682 ScheduleRegionSize = 0;
1684 // Make a new scheduling region, i.e. all existing ScheduleData is not
1685 // in the new region yet.
1686 ++SchedulingRegionID;
1689 ScheduleData *getScheduleData(Value *V) {
1690 ScheduleData *SD = ScheduleDataMap[V];
1691 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1692 return SD;
1693 return nullptr;
1696 ScheduleData *getScheduleData(Value *V, Value *Key) {
1697 if (V == Key)
1698 return getScheduleData(V);
1699 auto I = ExtraScheduleDataMap.find(V);
1700 if (I != ExtraScheduleDataMap.end()) {
1701 ScheduleData *SD = I->second[Key];
1702 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1703 return SD;
1705 return nullptr;
1708 bool isInSchedulingRegion(ScheduleData *SD) {
1709 return SD->SchedulingRegionID == SchedulingRegionID;
1712 /// Marks an instruction as scheduled and puts all dependent ready
1713 /// instructions into the ready-list.
1714 template <typename ReadyListType>
1715 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1716 SD->IsScheduled = true;
1717 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
1719 ScheduleData *BundleMember = SD;
1720 while (BundleMember) {
1721 if (BundleMember->Inst != BundleMember->OpValue) {
1722 BundleMember = BundleMember->NextInBundle;
1723 continue;
1725 // Handle the def-use chain dependencies.
1727 // Decrement the unscheduled counter and insert to ready list if ready.
1728 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
1729 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1730 if (OpDef && OpDef->hasValidDependencies() &&
1731 OpDef->incrementUnscheduledDeps(-1) == 0) {
1732 // There are no more unscheduled dependencies after
1733 // decrementing, so we can put the dependent instruction
1734 // into the ready list.
1735 ScheduleData *DepBundle = OpDef->FirstInBundle;
1736 assert(!DepBundle->IsScheduled &&
1737 "already scheduled bundle gets ready");
1738 ReadyList.insert(DepBundle);
1739 LLVM_DEBUG(dbgs()
1740 << "SLP: gets ready (def): " << *DepBundle << "\n");
1745 // If BundleMember is a vector bundle, its operands may have been
1746 // reordered duiring buildTree(). We therefore need to get its operands
1747 // through the TreeEntry.
1748 if (TreeEntry *TE = BundleMember->TE) {
1749 int Lane = BundleMember->Lane;
1750 assert(Lane >= 0 && "Lane not set");
1751 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
1752 OpIdx != NumOperands; ++OpIdx)
1753 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
1754 DecrUnsched(I);
1755 } else {
1756 // If BundleMember is a stand-alone instruction, no operand reordering
1757 // has taken place, so we directly access its operands.
1758 for (Use &U : BundleMember->Inst->operands())
1759 if (auto *I = dyn_cast<Instruction>(U.get()))
1760 DecrUnsched(I);
1762 // Handle the memory dependencies.
1763 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1764 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1765 // There are no more unscheduled dependencies after decrementing,
1766 // so we can put the dependent instruction into the ready list.
1767 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1768 assert(!DepBundle->IsScheduled &&
1769 "already scheduled bundle gets ready");
1770 ReadyList.insert(DepBundle);
1771 LLVM_DEBUG(dbgs()
1772 << "SLP: gets ready (mem): " << *DepBundle << "\n");
1775 BundleMember = BundleMember->NextInBundle;
1779 void doForAllOpcodes(Value *V,
1780 function_ref<void(ScheduleData *SD)> Action) {
1781 if (ScheduleData *SD = getScheduleData(V))
1782 Action(SD);
1783 auto I = ExtraScheduleDataMap.find(V);
1784 if (I != ExtraScheduleDataMap.end())
1785 for (auto &P : I->second)
1786 if (P.second->SchedulingRegionID == SchedulingRegionID)
1787 Action(P.second);
1790 /// Put all instructions into the ReadyList which are ready for scheduling.
1791 template <typename ReadyListType>
1792 void initialFillReadyList(ReadyListType &ReadyList) {
1793 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1794 doForAllOpcodes(I, [&](ScheduleData *SD) {
1795 if (SD->isSchedulingEntity() && SD->isReady()) {
1796 ReadyList.insert(SD);
1797 LLVM_DEBUG(dbgs()
1798 << "SLP: initially in ready list: " << *I << "\n");
1804 /// Checks if a bundle of instructions can be scheduled, i.e. has no
1805 /// cyclic dependencies. This is only a dry-run, no instructions are
1806 /// actually moved at this stage.
1807 /// \returns the scheduling bundle. The returned Optional value is non-None
1808 /// if \p VL is allowed to be scheduled.
1809 Optional<ScheduleData *>
1810 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
1811 const InstructionsState &S);
1813 /// Un-bundles a group of instructions.
1814 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1816 /// Allocates schedule data chunk.
1817 ScheduleData *allocateScheduleDataChunks();
1819 /// Extends the scheduling region so that V is inside the region.
1820 /// \returns true if the region size is within the limit.
1821 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
1823 /// Initialize the ScheduleData structures for new instructions in the
1824 /// scheduling region.
1825 void initScheduleData(Instruction *FromI, Instruction *ToI,
1826 ScheduleData *PrevLoadStore,
1827 ScheduleData *NextLoadStore);
1829 /// Updates the dependency information of a bundle and of all instructions/
1830 /// bundles which depend on the original bundle.
1831 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1832 BoUpSLP *SLP);
1834 /// Sets all instruction in the scheduling region to un-scheduled.
1835 void resetSchedule();
1837 BasicBlock *BB;
1839 /// Simple memory allocation for ScheduleData.
1840 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1842 /// The size of a ScheduleData array in ScheduleDataChunks.
1843 int ChunkSize;
1845 /// The allocator position in the current chunk, which is the last entry
1846 /// of ScheduleDataChunks.
1847 int ChunkPos;
1849 /// Attaches ScheduleData to Instruction.
1850 /// Note that the mapping survives during all vectorization iterations, i.e.
1851 /// ScheduleData structures are recycled.
1852 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1854 /// Attaches ScheduleData to Instruction with the leading key.
1855 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1856 ExtraScheduleDataMap;
1858 struct ReadyList : SmallVector<ScheduleData *, 8> {
1859 void insert(ScheduleData *SD) { push_back(SD); }
1862 /// The ready-list for scheduling (only used for the dry-run).
1863 ReadyList ReadyInsts;
1865 /// The first instruction of the scheduling region.
1866 Instruction *ScheduleStart = nullptr;
1868 /// The first instruction _after_ the scheduling region.
1869 Instruction *ScheduleEnd = nullptr;
1871 /// The first memory accessing instruction in the scheduling region
1872 /// (can be null).
1873 ScheduleData *FirstLoadStoreInRegion = nullptr;
1875 /// The last memory accessing instruction in the scheduling region
1876 /// (can be null).
1877 ScheduleData *LastLoadStoreInRegion = nullptr;
1879 /// The current size of the scheduling region.
1880 int ScheduleRegionSize = 0;
1882 /// The maximum size allowed for the scheduling region.
1883 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1885 /// The ID of the scheduling region. For a new vectorization iteration this
1886 /// is incremented which "removes" all ScheduleData from the region.
1887 // Make sure that the initial SchedulingRegionID is greater than the
1888 // initial SchedulingRegionID in ScheduleData (which is 0).
1889 int SchedulingRegionID = 1;
1892 /// Attaches the BlockScheduling structures to basic blocks.
1893 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1895 /// Performs the "real" scheduling. Done before vectorization is actually
1896 /// performed in a basic block.
1897 void scheduleBlock(BlockScheduling *BS);
1899 /// List of users to ignore during scheduling and that don't need extracting.
1900 ArrayRef<Value *> UserIgnoreList;
1902 using OrdersType = SmallVector<unsigned, 4>;
1903 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1904 /// sorted SmallVectors of unsigned.
1905 struct OrdersTypeDenseMapInfo {
1906 static OrdersType getEmptyKey() {
1907 OrdersType V;
1908 V.push_back(~1U);
1909 return V;
1912 static OrdersType getTombstoneKey() {
1913 OrdersType V;
1914 V.push_back(~2U);
1915 return V;
1918 static unsigned getHashValue(const OrdersType &V) {
1919 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1922 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
1923 return LHS == RHS;
1927 /// Contains orders of operations along with the number of bundles that have
1928 /// operations in this order. It stores only those orders that require
1929 /// reordering, if reordering is not required it is counted using \a
1930 /// NumOpsWantToKeepOriginalOrder.
1931 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
1932 /// Number of bundles that do not require reordering.
1933 unsigned NumOpsWantToKeepOriginalOrder = 0;
1935 // Analysis and block reference.
1936 Function *F;
1937 ScalarEvolution *SE;
1938 TargetTransformInfo *TTI;
1939 TargetLibraryInfo *TLI;
1940 AliasAnalysis *AA;
1941 LoopInfo *LI;
1942 DominatorTree *DT;
1943 AssumptionCache *AC;
1944 DemandedBits *DB;
1945 const DataLayout *DL;
1946 OptimizationRemarkEmitter *ORE;
1948 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1949 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1951 /// Instruction builder to construct the vectorized tree.
1952 IRBuilder<> Builder;
1954 /// A map of scalar integer values to the smallest bit width with which they
1955 /// can legally be represented. The values map to (width, signed) pairs,
1956 /// where "width" indicates the minimum bit width and "signed" is True if the
1957 /// value must be signed-extended, rather than zero-extended, back to its
1958 /// original width.
1959 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1962 } // end namespace slpvectorizer
1964 template <> struct GraphTraits<BoUpSLP *> {
1965 using TreeEntry = BoUpSLP::TreeEntry;
1967 /// NodeRef has to be a pointer per the GraphWriter.
1968 using NodeRef = TreeEntry *;
1970 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
1972 /// Add the VectorizableTree to the index iterator to be able to return
1973 /// TreeEntry pointers.
1974 struct ChildIteratorType
1975 : public iterator_adaptor_base<
1976 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
1977 ContainerTy &VectorizableTree;
1979 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
1980 ContainerTy &VT)
1981 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1983 NodeRef operator*() { return I->UserTE; }
1986 static NodeRef getEntryNode(BoUpSLP &R) {
1987 return R.VectorizableTree[0].get();
1990 static ChildIteratorType child_begin(NodeRef N) {
1991 return {N->UserTreeIndices.begin(), N->Container};
1994 static ChildIteratorType child_end(NodeRef N) {
1995 return {N->UserTreeIndices.end(), N->Container};
1998 /// For the node iterator we just need to turn the TreeEntry iterator into a
1999 /// TreeEntry* iterator so that it dereferences to NodeRef.
2000 class nodes_iterator {
2001 using ItTy = ContainerTy::iterator;
2002 ItTy It;
2004 public:
2005 nodes_iterator(const ItTy &It2) : It(It2) {}
2006 NodeRef operator*() { return It->get(); }
2007 nodes_iterator operator++() {
2008 ++It;
2009 return *this;
2011 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2014 static nodes_iterator nodes_begin(BoUpSLP *R) {
2015 return nodes_iterator(R->VectorizableTree.begin());
2018 static nodes_iterator nodes_end(BoUpSLP *R) {
2019 return nodes_iterator(R->VectorizableTree.end());
2022 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2025 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2026 using TreeEntry = BoUpSLP::TreeEntry;
2028 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2030 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2031 std::string Str;
2032 raw_string_ostream OS(Str);
2033 if (isSplat(Entry->Scalars)) {
2034 OS << "<splat> " << *Entry->Scalars[0];
2035 return Str;
2037 for (auto V : Entry->Scalars) {
2038 OS << *V;
2039 if (std::any_of(
2040 R->ExternalUses.begin(), R->ExternalUses.end(),
2041 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2042 OS << " <extract>";
2043 OS << "\n";
2045 return Str;
2048 static std::string getNodeAttributes(const TreeEntry *Entry,
2049 const BoUpSLP *) {
2050 if (Entry->NeedToGather)
2051 return "color=red";
2052 return "";
2056 } // end namespace llvm
2058 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2059 ArrayRef<Value *> UserIgnoreLst) {
2060 ExtraValueToDebugLocsMap ExternallyUsedValues;
2061 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2064 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2065 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2066 ArrayRef<Value *> UserIgnoreLst) {
2067 deleteTree();
2068 UserIgnoreList = UserIgnoreLst;
2069 if (!allSameType(Roots))
2070 return;
2071 buildTree_rec(Roots, 0, EdgeInfo());
2073 // Collect the values that we need to extract from the tree.
2074 for (auto &TEPtr : VectorizableTree) {
2075 TreeEntry *Entry = TEPtr.get();
2077 // No need to handle users of gathered values.
2078 if (Entry->NeedToGather)
2079 continue;
2081 // For each lane:
2082 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2083 Value *Scalar = Entry->Scalars[Lane];
2084 int FoundLane = Lane;
2085 if (!Entry->ReuseShuffleIndices.empty()) {
2086 FoundLane =
2087 std::distance(Entry->ReuseShuffleIndices.begin(),
2088 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2091 // Check if the scalar is externally used as an extra arg.
2092 auto ExtI = ExternallyUsedValues.find(Scalar);
2093 if (ExtI != ExternallyUsedValues.end()) {
2094 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2095 << Lane << " from " << *Scalar << ".\n");
2096 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2098 for (User *U : Scalar->users()) {
2099 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2101 Instruction *UserInst = dyn_cast<Instruction>(U);
2102 if (!UserInst)
2103 continue;
2105 // Skip in-tree scalars that become vectors
2106 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2107 Value *UseScalar = UseEntry->Scalars[0];
2108 // Some in-tree scalars will remain as scalar in vectorized
2109 // instructions. If that is the case, the one in Lane 0 will
2110 // be used.
2111 if (UseScalar != U ||
2112 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2113 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2114 << ".\n");
2115 assert(!UseEntry->NeedToGather && "Bad state");
2116 continue;
2120 // Ignore users in the user ignore list.
2121 if (is_contained(UserIgnoreList, UserInst))
2122 continue;
2124 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2125 << Lane << " from " << *Scalar << ".\n");
2126 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2132 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2133 const EdgeInfo &UserTreeIdx) {
2134 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2136 InstructionsState S = getSameOpcode(VL);
2137 if (Depth == RecursionMaxDepth) {
2138 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2139 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2140 return;
2143 // Don't handle vectors.
2144 if (S.OpValue->getType()->isVectorTy()) {
2145 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2146 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2147 return;
2150 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2151 if (SI->getValueOperand()->getType()->isVectorTy()) {
2152 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2154 return;
2157 // If all of the operands are identical or constant we have a simple solution.
2158 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2159 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2161 return;
2164 // We now know that this is a vector of instructions of the same type from
2165 // the same block.
2167 // Don't vectorize ephemeral values.
2168 for (Value *V : VL) {
2169 if (EphValues.count(V)) {
2170 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2171 << ") is ephemeral.\n");
2172 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2173 return;
2177 // Check if this is a duplicate of another entry.
2178 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2179 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2180 if (!E->isSame(VL)) {
2181 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2183 return;
2185 // Record the reuse of the tree node. FIXME, currently this is only used to
2186 // properly draw the graph rather than for the actual vectorization.
2187 E->UserTreeIndices.push_back(UserTreeIdx);
2188 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2189 << ".\n");
2190 return;
2193 // Check that none of the instructions in the bundle are already in the tree.
2194 for (Value *V : VL) {
2195 auto *I = dyn_cast<Instruction>(V);
2196 if (!I)
2197 continue;
2198 if (getTreeEntry(I)) {
2199 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2200 << ") is already in tree.\n");
2201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2202 return;
2206 // If any of the scalars is marked as a value that needs to stay scalar, then
2207 // we need to gather the scalars.
2208 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2209 for (Value *V : VL) {
2210 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2211 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2213 return;
2217 // Check that all of the users of the scalars that we want to vectorize are
2218 // schedulable.
2219 auto *VL0 = cast<Instruction>(S.OpValue);
2220 BasicBlock *BB = VL0->getParent();
2222 if (!DT->isReachableFromEntry(BB)) {
2223 // Don't go into unreachable blocks. They may contain instructions with
2224 // dependency cycles which confuse the final scheduling.
2225 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2227 return;
2230 // Check that every instruction appears once in this bundle.
2231 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2232 SmallVector<Value *, 4> UniqueValues;
2233 DenseMap<Value *, unsigned> UniquePositions;
2234 for (Value *V : VL) {
2235 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2236 ReuseShuffleIndicies.emplace_back(Res.first->second);
2237 if (Res.second)
2238 UniqueValues.emplace_back(V);
2240 size_t NumUniqueScalarValues = UniqueValues.size();
2241 if (NumUniqueScalarValues == VL.size()) {
2242 ReuseShuffleIndicies.clear();
2243 } else {
2244 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2245 if (NumUniqueScalarValues <= 1 ||
2246 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2247 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2249 return;
2251 VL = UniqueValues;
2254 auto &BSRef = BlocksSchedules[BB];
2255 if (!BSRef)
2256 BSRef = std::make_unique<BlockScheduling>(BB);
2258 BlockScheduling &BS = *BSRef.get();
2260 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2261 if (!Bundle) {
2262 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2263 assert((!BS.getScheduleData(VL0) ||
2264 !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2265 "tryScheduleBundle should cancelScheduling on failure");
2266 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2267 ReuseShuffleIndicies);
2268 return;
2270 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2272 unsigned ShuffleOrOp = S.isAltShuffle() ?
2273 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2274 switch (ShuffleOrOp) {
2275 case Instruction::PHI: {
2276 auto *PH = cast<PHINode>(VL0);
2278 // Check for terminator values (e.g. invoke).
2279 for (unsigned j = 0; j < VL.size(); ++j)
2280 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2281 Instruction *Term = dyn_cast<Instruction>(
2282 cast<PHINode>(VL[j])->getIncomingValueForBlock(
2283 PH->getIncomingBlock(i)));
2284 if (Term && Term->isTerminator()) {
2285 LLVM_DEBUG(dbgs()
2286 << "SLP: Need to swizzle PHINodes (terminator use).\n");
2287 BS.cancelScheduling(VL, VL0);
2288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2289 ReuseShuffleIndicies);
2290 return;
2294 TreeEntry *TE =
2295 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2296 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2298 // Keeps the reordered operands to avoid code duplication.
2299 SmallVector<ValueList, 2> OperandsVec;
2300 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2301 ValueList Operands;
2302 // Prepare the operand vector.
2303 for (Value *j : VL)
2304 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2305 PH->getIncomingBlock(i)));
2306 TE->setOperand(i, Operands);
2307 OperandsVec.push_back(Operands);
2309 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2310 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2311 return;
2313 case Instruction::ExtractValue:
2314 case Instruction::ExtractElement: {
2315 OrdersType CurrentOrder;
2316 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2317 if (Reuse) {
2318 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2319 ++NumOpsWantToKeepOriginalOrder;
2320 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2321 ReuseShuffleIndicies);
2322 // This is a special case, as it does not gather, but at the same time
2323 // we are not extending buildTree_rec() towards the operands.
2324 ValueList Op0;
2325 Op0.assign(VL.size(), VL0->getOperand(0));
2326 VectorizableTree.back()->setOperand(0, Op0);
2327 return;
2329 if (!CurrentOrder.empty()) {
2330 LLVM_DEBUG({
2331 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2332 "with order";
2333 for (unsigned Idx : CurrentOrder)
2334 dbgs() << " " << Idx;
2335 dbgs() << "\n";
2337 // Insert new order with initial value 0, if it does not exist,
2338 // otherwise return the iterator to the existing one.
2339 auto StoredCurrentOrderAndNum =
2340 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2341 ++StoredCurrentOrderAndNum->getSecond();
2342 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2343 ReuseShuffleIndicies,
2344 StoredCurrentOrderAndNum->getFirst());
2345 // This is a special case, as it does not gather, but at the same time
2346 // we are not extending buildTree_rec() towards the operands.
2347 ValueList Op0;
2348 Op0.assign(VL.size(), VL0->getOperand(0));
2349 VectorizableTree.back()->setOperand(0, Op0);
2350 return;
2352 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2353 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2354 ReuseShuffleIndicies);
2355 BS.cancelScheduling(VL, VL0);
2356 return;
2358 case Instruction::Load: {
2359 // Check that a vectorized load would load the same memory as a scalar
2360 // load. For example, we don't want to vectorize loads that are smaller
2361 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2362 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2363 // from such a struct, we read/write packed bits disagreeing with the
2364 // unvectorized version.
2365 Type *ScalarTy = VL0->getType();
2367 if (DL->getTypeSizeInBits(ScalarTy) !=
2368 DL->getTypeAllocSizeInBits(ScalarTy)) {
2369 BS.cancelScheduling(VL, VL0);
2370 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2371 ReuseShuffleIndicies);
2372 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2373 return;
2376 // Make sure all loads in the bundle are simple - we can't vectorize
2377 // atomic or volatile loads.
2378 SmallVector<Value *, 4> PointerOps(VL.size());
2379 auto POIter = PointerOps.begin();
2380 for (Value *V : VL) {
2381 auto *L = cast<LoadInst>(V);
2382 if (!L->isSimple()) {
2383 BS.cancelScheduling(VL, VL0);
2384 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2385 ReuseShuffleIndicies);
2386 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2387 return;
2389 *POIter = L->getPointerOperand();
2390 ++POIter;
2393 OrdersType CurrentOrder;
2394 // Check the order of pointer operands.
2395 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2396 Value *Ptr0;
2397 Value *PtrN;
2398 if (CurrentOrder.empty()) {
2399 Ptr0 = PointerOps.front();
2400 PtrN = PointerOps.back();
2401 } else {
2402 Ptr0 = PointerOps[CurrentOrder.front()];
2403 PtrN = PointerOps[CurrentOrder.back()];
2405 const SCEV *Scev0 = SE->getSCEV(Ptr0);
2406 const SCEV *ScevN = SE->getSCEV(PtrN);
2407 const auto *Diff =
2408 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2409 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2410 // Check that the sorted loads are consecutive.
2411 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
2412 if (CurrentOrder.empty()) {
2413 // Original loads are consecutive and does not require reordering.
2414 ++NumOpsWantToKeepOriginalOrder;
2415 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2416 UserTreeIdx, ReuseShuffleIndicies);
2417 TE->setOperandsInOrder();
2418 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2419 } else {
2420 // Need to reorder.
2421 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2422 ++I->getSecond();
2423 TreeEntry *TE =
2424 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2425 ReuseShuffleIndicies, I->getFirst());
2426 TE->setOperandsInOrder();
2427 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2429 return;
2433 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2434 BS.cancelScheduling(VL, VL0);
2435 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2436 ReuseShuffleIndicies);
2437 return;
2439 case Instruction::ZExt:
2440 case Instruction::SExt:
2441 case Instruction::FPToUI:
2442 case Instruction::FPToSI:
2443 case Instruction::FPExt:
2444 case Instruction::PtrToInt:
2445 case Instruction::IntToPtr:
2446 case Instruction::SIToFP:
2447 case Instruction::UIToFP:
2448 case Instruction::Trunc:
2449 case Instruction::FPTrunc:
2450 case Instruction::BitCast: {
2451 Type *SrcTy = VL0->getOperand(0)->getType();
2452 for (Value *V : VL) {
2453 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2454 if (Ty != SrcTy || !isValidElementType(Ty)) {
2455 BS.cancelScheduling(VL, VL0);
2456 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2457 ReuseShuffleIndicies);
2458 LLVM_DEBUG(dbgs()
2459 << "SLP: Gathering casts with different src types.\n");
2460 return;
2463 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2464 ReuseShuffleIndicies);
2465 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2467 TE->setOperandsInOrder();
2468 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2469 ValueList Operands;
2470 // Prepare the operand vector.
2471 for (Value *V : VL)
2472 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2474 buildTree_rec(Operands, Depth + 1, {TE, i});
2476 return;
2478 case Instruction::ICmp:
2479 case Instruction::FCmp: {
2480 // Check that all of the compares have the same predicate.
2481 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2482 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2483 Type *ComparedTy = VL0->getOperand(0)->getType();
2484 for (Value *V : VL) {
2485 CmpInst *Cmp = cast<CmpInst>(V);
2486 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2487 Cmp->getOperand(0)->getType() != ComparedTy) {
2488 BS.cancelScheduling(VL, VL0);
2489 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2490 ReuseShuffleIndicies);
2491 LLVM_DEBUG(dbgs()
2492 << "SLP: Gathering cmp with different predicate.\n");
2493 return;
2497 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2498 ReuseShuffleIndicies);
2499 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2501 ValueList Left, Right;
2502 if (cast<CmpInst>(VL0)->isCommutative()) {
2503 // Commutative predicate - collect + sort operands of the instructions
2504 // so that each side is more likely to have the same opcode.
2505 assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2506 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2507 } else {
2508 // Collect operands - commute if it uses the swapped predicate.
2509 for (Value *V : VL) {
2510 auto *Cmp = cast<CmpInst>(V);
2511 Value *LHS = Cmp->getOperand(0);
2512 Value *RHS = Cmp->getOperand(1);
2513 if (Cmp->getPredicate() != P0)
2514 std::swap(LHS, RHS);
2515 Left.push_back(LHS);
2516 Right.push_back(RHS);
2519 TE->setOperand(0, Left);
2520 TE->setOperand(1, Right);
2521 buildTree_rec(Left, Depth + 1, {TE, 0});
2522 buildTree_rec(Right, Depth + 1, {TE, 1});
2523 return;
2525 case Instruction::Select:
2526 case Instruction::FNeg:
2527 case Instruction::Add:
2528 case Instruction::FAdd:
2529 case Instruction::Sub:
2530 case Instruction::FSub:
2531 case Instruction::Mul:
2532 case Instruction::FMul:
2533 case Instruction::UDiv:
2534 case Instruction::SDiv:
2535 case Instruction::FDiv:
2536 case Instruction::URem:
2537 case Instruction::SRem:
2538 case Instruction::FRem:
2539 case Instruction::Shl:
2540 case Instruction::LShr:
2541 case Instruction::AShr:
2542 case Instruction::And:
2543 case Instruction::Or:
2544 case Instruction::Xor: {
2545 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2546 ReuseShuffleIndicies);
2547 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2549 // Sort operands of the instructions so that each side is more likely to
2550 // have the same opcode.
2551 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2552 ValueList Left, Right;
2553 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2554 TE->setOperand(0, Left);
2555 TE->setOperand(1, Right);
2556 buildTree_rec(Left, Depth + 1, {TE, 0});
2557 buildTree_rec(Right, Depth + 1, {TE, 1});
2558 return;
2561 TE->setOperandsInOrder();
2562 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2563 ValueList Operands;
2564 // Prepare the operand vector.
2565 for (Value *j : VL)
2566 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2568 buildTree_rec(Operands, Depth + 1, {TE, i});
2570 return;
2572 case Instruction::GetElementPtr: {
2573 // We don't combine GEPs with complicated (nested) indexing.
2574 for (Value *V : VL) {
2575 if (cast<Instruction>(V)->getNumOperands() != 2) {
2576 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2577 BS.cancelScheduling(VL, VL0);
2578 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2579 ReuseShuffleIndicies);
2580 return;
2584 // We can't combine several GEPs into one vector if they operate on
2585 // different types.
2586 Type *Ty0 = VL0->getOperand(0)->getType();
2587 for (Value *V : VL) {
2588 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2589 if (Ty0 != CurTy) {
2590 LLVM_DEBUG(dbgs()
2591 << "SLP: not-vectorizable GEP (different types).\n");
2592 BS.cancelScheduling(VL, VL0);
2593 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2594 ReuseShuffleIndicies);
2595 return;
2599 // We don't combine GEPs with non-constant indexes.
2600 for (Value *V : VL) {
2601 auto Op = cast<Instruction>(V)->getOperand(1);
2602 if (!isa<ConstantInt>(Op)) {
2603 LLVM_DEBUG(dbgs()
2604 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2605 BS.cancelScheduling(VL, VL0);
2606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2607 ReuseShuffleIndicies);
2608 return;
2612 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2613 ReuseShuffleIndicies);
2614 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2615 TE->setOperandsInOrder();
2616 for (unsigned i = 0, e = 2; i < e; ++i) {
2617 ValueList Operands;
2618 // Prepare the operand vector.
2619 for (Value *V : VL)
2620 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2622 buildTree_rec(Operands, Depth + 1, {TE, i});
2624 return;
2626 case Instruction::Store: {
2627 // Check if the stores are consecutive or if we need to swizzle them.
2628 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
2629 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
2630 BS.cancelScheduling(VL, VL0);
2631 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2632 ReuseShuffleIndicies);
2633 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
2634 return;
2637 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2638 ReuseShuffleIndicies);
2639 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2641 ValueList Operands;
2642 for (Value *V : VL)
2643 Operands.push_back(cast<Instruction>(V)->getOperand(0));
2644 TE->setOperandsInOrder();
2645 buildTree_rec(Operands, Depth + 1, {TE, 0});
2646 return;
2648 case Instruction::Call: {
2649 // Check if the calls are all to the same vectorizable intrinsic.
2650 CallInst *CI = cast<CallInst>(VL0);
2651 // Check if this is an Intrinsic call or something that can be
2652 // represented by an intrinsic call
2653 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2654 if (!isTriviallyVectorizable(ID)) {
2655 BS.cancelScheduling(VL, VL0);
2656 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2657 ReuseShuffleIndicies);
2658 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
2659 return;
2661 Function *Int = CI->getCalledFunction();
2662 unsigned NumArgs = CI->getNumArgOperands();
2663 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
2664 for (unsigned j = 0; j != NumArgs; ++j)
2665 if (hasVectorInstrinsicScalarOpd(ID, j))
2666 ScalarArgs[j] = CI->getArgOperand(j);
2667 for (Value *V : VL) {
2668 CallInst *CI2 = dyn_cast<CallInst>(V);
2669 if (!CI2 || CI2->getCalledFunction() != Int ||
2670 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
2671 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
2672 BS.cancelScheduling(VL, VL0);
2673 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2674 ReuseShuffleIndicies);
2675 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
2676 << "\n");
2677 return;
2679 // Some intrinsics have scalar arguments and should be same in order for
2680 // them to be vectorized.
2681 for (unsigned j = 0; j != NumArgs; ++j) {
2682 if (hasVectorInstrinsicScalarOpd(ID, j)) {
2683 Value *A1J = CI2->getArgOperand(j);
2684 if (ScalarArgs[j] != A1J) {
2685 BS.cancelScheduling(VL, VL0);
2686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2687 ReuseShuffleIndicies);
2688 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
2689 << " argument " << ScalarArgs[j] << "!=" << A1J
2690 << "\n");
2691 return;
2695 // Verify that the bundle operands are identical between the two calls.
2696 if (CI->hasOperandBundles() &&
2697 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
2698 CI->op_begin() + CI->getBundleOperandsEndIndex(),
2699 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
2700 BS.cancelScheduling(VL, VL0);
2701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2702 ReuseShuffleIndicies);
2703 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
2704 << *CI << "!=" << *V << '\n');
2705 return;
2709 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2710 ReuseShuffleIndicies);
2711 TE->setOperandsInOrder();
2712 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
2713 ValueList Operands;
2714 // Prepare the operand vector.
2715 for (Value *V : VL) {
2716 auto *CI2 = cast<CallInst>(V);
2717 Operands.push_back(CI2->getArgOperand(i));
2719 buildTree_rec(Operands, Depth + 1, {TE, i});
2721 return;
2723 case Instruction::ShuffleVector: {
2724 // If this is not an alternate sequence of opcode like add-sub
2725 // then do not vectorize this instruction.
2726 if (!S.isAltShuffle()) {
2727 BS.cancelScheduling(VL, VL0);
2728 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2729 ReuseShuffleIndicies);
2730 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
2731 return;
2733 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2734 ReuseShuffleIndicies);
2735 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
2737 // Reorder operands if reordering would enable vectorization.
2738 if (isa<BinaryOperator>(VL0)) {
2739 ValueList Left, Right;
2740 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2741 TE->setOperand(0, Left);
2742 TE->setOperand(1, Right);
2743 buildTree_rec(Left, Depth + 1, {TE, 0});
2744 buildTree_rec(Right, Depth + 1, {TE, 1});
2745 return;
2748 TE->setOperandsInOrder();
2749 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2750 ValueList Operands;
2751 // Prepare the operand vector.
2752 for (Value *V : VL)
2753 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2755 buildTree_rec(Operands, Depth + 1, {TE, i});
2757 return;
2759 default:
2760 BS.cancelScheduling(VL, VL0);
2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2762 ReuseShuffleIndicies);
2763 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
2764 return;
2768 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
2769 unsigned N;
2770 Type *EltTy;
2771 auto *ST = dyn_cast<StructType>(T);
2772 if (ST) {
2773 N = ST->getNumElements();
2774 EltTy = *ST->element_begin();
2775 } else {
2776 N = cast<ArrayType>(T)->getNumElements();
2777 EltTy = cast<ArrayType>(T)->getElementType();
2779 if (!isValidElementType(EltTy))
2780 return 0;
2781 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
2782 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
2783 return 0;
2784 if (ST) {
2785 // Check that struct is homogeneous.
2786 for (const auto *Ty : ST->elements())
2787 if (Ty != EltTy)
2788 return 0;
2790 return N;
2793 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2794 SmallVectorImpl<unsigned> &CurrentOrder) const {
2795 Instruction *E0 = cast<Instruction>(OpValue);
2796 assert(E0->getOpcode() == Instruction::ExtractElement ||
2797 E0->getOpcode() == Instruction::ExtractValue);
2798 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
2799 // Check if all of the extracts come from the same vector and from the
2800 // correct offset.
2801 Value *Vec = E0->getOperand(0);
2803 CurrentOrder.clear();
2805 // We have to extract from a vector/aggregate with the same number of elements.
2806 unsigned NElts;
2807 if (E0->getOpcode() == Instruction::ExtractValue) {
2808 const DataLayout &DL = E0->getModule()->getDataLayout();
2809 NElts = canMapToVector(Vec->getType(), DL);
2810 if (!NElts)
2811 return false;
2812 // Check if load can be rewritten as load of vector.
2813 LoadInst *LI = dyn_cast<LoadInst>(Vec);
2814 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
2815 return false;
2816 } else {
2817 NElts = Vec->getType()->getVectorNumElements();
2820 if (NElts != VL.size())
2821 return false;
2823 // Check that all of the indices extract from the correct offset.
2824 bool ShouldKeepOrder = true;
2825 unsigned E = VL.size();
2826 // Assign to all items the initial value E + 1 so we can check if the extract
2827 // instruction index was used already.
2828 // Also, later we can check that all the indices are used and we have a
2829 // consecutive access in the extract instructions, by checking that no
2830 // element of CurrentOrder still has value E + 1.
2831 CurrentOrder.assign(E, E + 1);
2832 unsigned I = 0;
2833 for (; I < E; ++I) {
2834 auto *Inst = cast<Instruction>(VL[I]);
2835 if (Inst->getOperand(0) != Vec)
2836 break;
2837 Optional<unsigned> Idx = getExtractIndex(Inst);
2838 if (!Idx)
2839 break;
2840 const unsigned ExtIdx = *Idx;
2841 if (ExtIdx != I) {
2842 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
2843 break;
2844 ShouldKeepOrder = false;
2845 CurrentOrder[ExtIdx] = I;
2846 } else {
2847 if (CurrentOrder[I] != E + 1)
2848 break;
2849 CurrentOrder[I] = I;
2852 if (I < E) {
2853 CurrentOrder.clear();
2854 return false;
2857 return ShouldKeepOrder;
2860 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
2861 return I->hasOneUse() ||
2862 std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
2863 return ScalarToTreeEntry.count(U) > 0;
2867 int BoUpSLP::getEntryCost(TreeEntry *E) {
2868 ArrayRef<Value*> VL = E->Scalars;
2870 Type *ScalarTy = VL[0]->getType();
2871 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2872 ScalarTy = SI->getValueOperand()->getType();
2873 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
2874 ScalarTy = CI->getOperand(0)->getType();
2875 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2877 // If we have computed a smaller type for the expression, update VecTy so
2878 // that the costs will be accurate.
2879 if (MinBWs.count(VL[0]))
2880 VecTy = VectorType::get(
2881 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2883 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2884 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2885 int ReuseShuffleCost = 0;
2886 if (NeedToShuffleReuses) {
2887 ReuseShuffleCost =
2888 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2890 if (E->NeedToGather) {
2891 if (allConstant(VL))
2892 return 0;
2893 if (isSplat(VL)) {
2894 return ReuseShuffleCost +
2895 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2897 if (E->getOpcode() == Instruction::ExtractElement &&
2898 allSameType(VL) && allSameBlock(VL)) {
2899 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2900 if (ShuffleKind.hasValue()) {
2901 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2902 for (auto *V : VL) {
2903 // If all users of instruction are going to be vectorized and this
2904 // instruction itself is not going to be vectorized, consider this
2905 // instruction as dead and remove its cost from the final cost of the
2906 // vectorized tree.
2907 if (areAllUsersVectorized(cast<Instruction>(V)) &&
2908 !ScalarToTreeEntry.count(V)) {
2909 auto *IO = cast<ConstantInt>(
2910 cast<ExtractElementInst>(V)->getIndexOperand());
2911 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2912 IO->getZExtValue());
2915 return ReuseShuffleCost + Cost;
2918 return ReuseShuffleCost + getGatherCost(VL);
2920 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2921 Instruction *VL0 = E->getMainOp();
2922 unsigned ShuffleOrOp =
2923 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
2924 switch (ShuffleOrOp) {
2925 case Instruction::PHI:
2926 return 0;
2928 case Instruction::ExtractValue:
2929 case Instruction::ExtractElement:
2930 if (NeedToShuffleReuses) {
2931 unsigned Idx = 0;
2932 for (unsigned I : E->ReuseShuffleIndices) {
2933 if (ShuffleOrOp == Instruction::ExtractElement) {
2934 auto *IO = cast<ConstantInt>(
2935 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2936 Idx = IO->getZExtValue();
2937 ReuseShuffleCost -= TTI->getVectorInstrCost(
2938 Instruction::ExtractElement, VecTy, Idx);
2939 } else {
2940 ReuseShuffleCost -= TTI->getVectorInstrCost(
2941 Instruction::ExtractElement, VecTy, Idx);
2942 ++Idx;
2945 Idx = ReuseShuffleNumbers;
2946 for (Value *V : VL) {
2947 if (ShuffleOrOp == Instruction::ExtractElement) {
2948 auto *IO = cast<ConstantInt>(
2949 cast<ExtractElementInst>(V)->getIndexOperand());
2950 Idx = IO->getZExtValue();
2951 } else {
2952 --Idx;
2954 ReuseShuffleCost +=
2955 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2958 if (!E->NeedToGather) {
2959 int DeadCost = ReuseShuffleCost;
2960 if (!E->ReorderIndices.empty()) {
2961 // TODO: Merge this shuffle with the ReuseShuffleCost.
2962 DeadCost += TTI->getShuffleCost(
2963 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2965 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2966 Instruction *E = cast<Instruction>(VL[i]);
2967 // If all users are going to be vectorized, instruction can be
2968 // considered as dead.
2969 // The same, if have only one user, it will be vectorized for sure.
2970 if (areAllUsersVectorized(E)) {
2971 // Take credit for instruction that will become dead.
2972 if (E->hasOneUse()) {
2973 Instruction *Ext = E->user_back();
2974 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2975 all_of(Ext->users(),
2976 [](User *U) { return isa<GetElementPtrInst>(U); })) {
2977 // Use getExtractWithExtendCost() to calculate the cost of
2978 // extractelement/ext pair.
2979 DeadCost -= TTI->getExtractWithExtendCost(
2980 Ext->getOpcode(), Ext->getType(), VecTy, i);
2981 // Add back the cost of s|zext which is subtracted separately.
2982 DeadCost += TTI->getCastInstrCost(
2983 Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
2984 continue;
2987 DeadCost -=
2988 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
2991 return DeadCost;
2993 return ReuseShuffleCost + getGatherCost(VL);
2995 case Instruction::ZExt:
2996 case Instruction::SExt:
2997 case Instruction::FPToUI:
2998 case Instruction::FPToSI:
2999 case Instruction::FPExt:
3000 case Instruction::PtrToInt:
3001 case Instruction::IntToPtr:
3002 case Instruction::SIToFP:
3003 case Instruction::UIToFP:
3004 case Instruction::Trunc:
3005 case Instruction::FPTrunc:
3006 case Instruction::BitCast: {
3007 Type *SrcTy = VL0->getOperand(0)->getType();
3008 int ScalarEltCost =
3009 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
3010 if (NeedToShuffleReuses) {
3011 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3014 // Calculate the cost of this instruction.
3015 int ScalarCost = VL.size() * ScalarEltCost;
3017 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3018 int VecCost = 0;
3019 // Check if the values are candidates to demote.
3020 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3021 VecCost = ReuseShuffleCost +
3022 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
3024 return VecCost - ScalarCost;
3026 case Instruction::FCmp:
3027 case Instruction::ICmp:
3028 case Instruction::Select: {
3029 // Calculate the cost of this instruction.
3030 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3031 Builder.getInt1Ty(), VL0);
3032 if (NeedToShuffleReuses) {
3033 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3035 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3036 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3037 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
3038 return ReuseShuffleCost + VecCost - ScalarCost;
3040 case Instruction::FNeg:
3041 case Instruction::Add:
3042 case Instruction::FAdd:
3043 case Instruction::Sub:
3044 case Instruction::FSub:
3045 case Instruction::Mul:
3046 case Instruction::FMul:
3047 case Instruction::UDiv:
3048 case Instruction::SDiv:
3049 case Instruction::FDiv:
3050 case Instruction::URem:
3051 case Instruction::SRem:
3052 case Instruction::FRem:
3053 case Instruction::Shl:
3054 case Instruction::LShr:
3055 case Instruction::AShr:
3056 case Instruction::And:
3057 case Instruction::Or:
3058 case Instruction::Xor: {
3059 // Certain instructions can be cheaper to vectorize if they have a
3060 // constant second vector operand.
3061 TargetTransformInfo::OperandValueKind Op1VK =
3062 TargetTransformInfo::OK_AnyValue;
3063 TargetTransformInfo::OperandValueKind Op2VK =
3064 TargetTransformInfo::OK_UniformConstantValue;
3065 TargetTransformInfo::OperandValueProperties Op1VP =
3066 TargetTransformInfo::OP_None;
3067 TargetTransformInfo::OperandValueProperties Op2VP =
3068 TargetTransformInfo::OP_PowerOf2;
3070 // If all operands are exactly the same ConstantInt then set the
3071 // operand kind to OK_UniformConstantValue.
3072 // If instead not all operands are constants, then set the operand kind
3073 // to OK_AnyValue. If all operands are constants but not the same,
3074 // then set the operand kind to OK_NonUniformConstantValue.
3075 ConstantInt *CInt0 = nullptr;
3076 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3077 const Instruction *I = cast<Instruction>(VL[i]);
3078 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3079 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3080 if (!CInt) {
3081 Op2VK = TargetTransformInfo::OK_AnyValue;
3082 Op2VP = TargetTransformInfo::OP_None;
3083 break;
3085 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3086 !CInt->getValue().isPowerOf2())
3087 Op2VP = TargetTransformInfo::OP_None;
3088 if (i == 0) {
3089 CInt0 = CInt;
3090 continue;
3092 if (CInt0 != CInt)
3093 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3096 SmallVector<const Value *, 4> Operands(VL0->operand_values());
3097 int ScalarEltCost = TTI->getArithmeticInstrCost(
3098 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
3099 if (NeedToShuffleReuses) {
3100 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3102 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3103 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK,
3104 Op2VK, Op1VP, Op2VP, Operands);
3105 return ReuseShuffleCost + VecCost - ScalarCost;
3107 case Instruction::GetElementPtr: {
3108 TargetTransformInfo::OperandValueKind Op1VK =
3109 TargetTransformInfo::OK_AnyValue;
3110 TargetTransformInfo::OperandValueKind Op2VK =
3111 TargetTransformInfo::OK_UniformConstantValue;
3113 int ScalarEltCost =
3114 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
3115 if (NeedToShuffleReuses) {
3116 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3118 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3119 int VecCost =
3120 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
3121 return ReuseShuffleCost + VecCost - ScalarCost;
3123 case Instruction::Load: {
3124 // Cost of wide load - cost of scalar loads.
3125 unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
3126 int ScalarEltCost =
3127 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
3128 if (NeedToShuffleReuses) {
3129 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3131 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3132 int VecLdCost =
3133 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
3134 if (!E->ReorderIndices.empty()) {
3135 // TODO: Merge this shuffle with the ReuseShuffleCost.
3136 VecLdCost += TTI->getShuffleCost(
3137 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3139 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3141 case Instruction::Store: {
3142 // We know that we can merge the stores. Calculate the cost.
3143 unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
3144 int ScalarEltCost =
3145 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
3146 if (NeedToShuffleReuses) {
3147 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3149 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3150 int VecStCost =
3151 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
3152 return ReuseShuffleCost + VecStCost - ScalarStCost;
3154 case Instruction::Call: {
3155 CallInst *CI = cast<CallInst>(VL0);
3156 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3158 // Calculate the cost of the scalar and vector calls.
3159 SmallVector<Type *, 4> ScalarTys;
3160 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3161 ScalarTys.push_back(CI->getArgOperand(op)->getType());
3163 FastMathFlags FMF;
3164 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3165 FMF = FPMO->getFastMathFlags();
3167 int ScalarEltCost =
3168 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3169 if (NeedToShuffleReuses) {
3170 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3172 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3174 SmallVector<Value *, 4> Args(CI->arg_operands());
3175 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3176 VecTy->getNumElements());
3178 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3179 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3180 << " for " << *CI << "\n");
3182 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3184 case Instruction::ShuffleVector: {
3185 assert(E->isAltShuffle() &&
3186 ((Instruction::isBinaryOp(E->getOpcode()) &&
3187 Instruction::isBinaryOp(E->getAltOpcode())) ||
3188 (Instruction::isCast(E->getOpcode()) &&
3189 Instruction::isCast(E->getAltOpcode()))) &&
3190 "Invalid Shuffle Vector Operand");
3191 int ScalarCost = 0;
3192 if (NeedToShuffleReuses) {
3193 for (unsigned Idx : E->ReuseShuffleIndices) {
3194 Instruction *I = cast<Instruction>(VL[Idx]);
3195 ReuseShuffleCost -= TTI->getInstructionCost(
3196 I, TargetTransformInfo::TCK_RecipThroughput);
3198 for (Value *V : VL) {
3199 Instruction *I = cast<Instruction>(V);
3200 ReuseShuffleCost += TTI->getInstructionCost(
3201 I, TargetTransformInfo::TCK_RecipThroughput);
3204 for (Value *V : VL) {
3205 Instruction *I = cast<Instruction>(V);
3206 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3207 ScalarCost += TTI->getInstructionCost(
3208 I, TargetTransformInfo::TCK_RecipThroughput);
3210 // VecCost is equal to sum of the cost of creating 2 vectors
3211 // and the cost of creating shuffle.
3212 int VecCost = 0;
3213 if (Instruction::isBinaryOp(E->getOpcode())) {
3214 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
3215 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
3216 } else {
3217 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3218 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3219 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3220 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3221 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
3222 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
3224 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3225 return ReuseShuffleCost + VecCost - ScalarCost;
3227 default:
3228 llvm_unreachable("Unknown instruction");
3232 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3233 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3234 << VectorizableTree.size() << " is fully vectorizable .\n");
3236 // We only handle trees of heights 1 and 2.
3237 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
3238 return true;
3240 if (VectorizableTree.size() != 2)
3241 return false;
3243 // Handle splat and all-constants stores.
3244 if (!VectorizableTree[0]->NeedToGather &&
3245 (allConstant(VectorizableTree[1]->Scalars) ||
3246 isSplat(VectorizableTree[1]->Scalars)))
3247 return true;
3249 // Gathering cost would be too much for tiny trees.
3250 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
3251 return false;
3253 return true;
3256 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3257 // We can vectorize the tree if its size is greater than or equal to the
3258 // minimum size specified by the MinTreeSize command line option.
3259 if (VectorizableTree.size() >= MinTreeSize)
3260 return false;
3262 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3263 // can vectorize it if we can prove it fully vectorizable.
3264 if (isFullyVectorizableTinyTree())
3265 return false;
3267 assert(VectorizableTree.empty()
3268 ? ExternalUses.empty()
3269 : true && "We shouldn't have any external users");
3271 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3272 // vectorizable.
3273 return true;
3276 int BoUpSLP::getSpillCost() const {
3277 // Walk from the bottom of the tree to the top, tracking which values are
3278 // live. When we see a call instruction that is not part of our tree,
3279 // query TTI to see if there is a cost to keeping values live over it
3280 // (for example, if spills and fills are required).
3281 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3282 int Cost = 0;
3284 SmallPtrSet<Instruction*, 4> LiveValues;
3285 Instruction *PrevInst = nullptr;
3287 for (const auto &TEPtr : VectorizableTree) {
3288 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3289 if (!Inst)
3290 continue;
3292 if (!PrevInst) {
3293 PrevInst = Inst;
3294 continue;
3297 // Update LiveValues.
3298 LiveValues.erase(PrevInst);
3299 for (auto &J : PrevInst->operands()) {
3300 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3301 LiveValues.insert(cast<Instruction>(&*J));
3304 LLVM_DEBUG({
3305 dbgs() << "SLP: #LV: " << LiveValues.size();
3306 for (auto *X : LiveValues)
3307 dbgs() << " " << X->getName();
3308 dbgs() << ", Looking at ";
3309 Inst->dump();
3312 // Now find the sequence of instructions between PrevInst and Inst.
3313 unsigned NumCalls = 0;
3314 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3315 PrevInstIt =
3316 PrevInst->getIterator().getReverse();
3317 while (InstIt != PrevInstIt) {
3318 if (PrevInstIt == PrevInst->getParent()->rend()) {
3319 PrevInstIt = Inst->getParent()->rbegin();
3320 continue;
3323 // Debug informations don't impact spill cost.
3324 if ((isa<CallInst>(&*PrevInstIt) &&
3325 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3326 &*PrevInstIt != PrevInst)
3327 NumCalls++;
3329 ++PrevInstIt;
3332 if (NumCalls) {
3333 SmallVector<Type*, 4> V;
3334 for (auto *II : LiveValues)
3335 V.push_back(VectorType::get(II->getType(), BundleWidth));
3336 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3339 PrevInst = Inst;
3342 return Cost;
3345 int BoUpSLP::getTreeCost() {
3346 int Cost = 0;
3347 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3348 << VectorizableTree.size() << ".\n");
3350 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3352 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3353 TreeEntry &TE = *VectorizableTree[I].get();
3355 // We create duplicate tree entries for gather sequences that have multiple
3356 // uses. However, we should not compute the cost of duplicate sequences.
3357 // For example, if we have a build vector (i.e., insertelement sequence)
3358 // that is used by more than one vector instruction, we only need to
3359 // compute the cost of the insertelement instructions once. The redundant
3360 // instructions will be eliminated by CSE.
3362 // We should consider not creating duplicate tree entries for gather
3363 // sequences, and instead add additional edges to the tree representing
3364 // their uses. Since such an approach results in fewer total entries,
3365 // existing heuristics based on tree size may yield different results.
3367 if (TE.NeedToGather &&
3368 std::any_of(
3369 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
3370 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3371 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
3373 continue;
3375 int C = getEntryCost(&TE);
3376 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3377 << " for bundle that starts with " << *TE.Scalars[0]
3378 << ".\n");
3379 Cost += C;
3382 SmallPtrSet<Value *, 16> ExtractCostCalculated;
3383 int ExtractCost = 0;
3384 for (ExternalUser &EU : ExternalUses) {
3385 // We only add extract cost once for the same scalar.
3386 if (!ExtractCostCalculated.insert(EU.Scalar).second)
3387 continue;
3389 // Uses by ephemeral values are free (because the ephemeral value will be
3390 // removed prior to code generation, and so the extraction will be
3391 // removed as well).
3392 if (EphValues.count(EU.User))
3393 continue;
3395 // If we plan to rewrite the tree in a smaller type, we will need to sign
3396 // extend the extracted value back to the original type. Here, we account
3397 // for the extract and the added cost of the sign extend if needed.
3398 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3399 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3400 if (MinBWs.count(ScalarRoot)) {
3401 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3402 auto Extend =
3403 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3404 VecTy = VectorType::get(MinTy, BundleWidth);
3405 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3406 VecTy, EU.Lane);
3407 } else {
3408 ExtractCost +=
3409 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3413 int SpillCost = getSpillCost();
3414 Cost += SpillCost + ExtractCost;
3416 std::string Str;
3418 raw_string_ostream OS(Str);
3419 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3420 << "SLP: Extract Cost = " << ExtractCost << ".\n"
3421 << "SLP: Total Cost = " << Cost << ".\n";
3423 LLVM_DEBUG(dbgs() << Str);
3425 if (ViewSLPTree)
3426 ViewGraph(this, "SLP" + F->getName(), false, Str);
3428 return Cost;
3431 int BoUpSLP::getGatherCost(Type *Ty,
3432 const DenseSet<unsigned> &ShuffledIndices) const {
3433 int Cost = 0;
3434 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3435 if (!ShuffledIndices.count(i))
3436 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3437 if (!ShuffledIndices.empty())
3438 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3439 return Cost;
3442 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3443 // Find the type of the operands in VL.
3444 Type *ScalarTy = VL[0]->getType();
3445 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3446 ScalarTy = SI->getValueOperand()->getType();
3447 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3448 // Find the cost of inserting/extracting values from the vector.
3449 // Check if the same elements are inserted several times and count them as
3450 // shuffle candidates.
3451 DenseSet<unsigned> ShuffledElements;
3452 DenseSet<Value *> UniqueElements;
3453 // Iterate in reverse order to consider insert elements with the high cost.
3454 for (unsigned I = VL.size(); I > 0; --I) {
3455 unsigned Idx = I - 1;
3456 if (!UniqueElements.insert(VL[Idx]).second)
3457 ShuffledElements.insert(Idx);
3459 return getGatherCost(VecTy, ShuffledElements);
3462 // Perform operand reordering on the instructions in VL and return the reordered
3463 // operands in Left and Right.
3464 void BoUpSLP::reorderInputsAccordingToOpcode(
3465 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
3466 SmallVectorImpl<Value *> &Right, const DataLayout &DL,
3467 ScalarEvolution &SE) {
3468 if (VL.empty())
3469 return;
3470 VLOperands Ops(VL, DL, SE);
3471 // Reorder the operands in place.
3472 Ops.reorder();
3473 Left = Ops.getVL(0);
3474 Right = Ops.getVL(1);
3477 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3478 // Get the basic block this bundle is in. All instructions in the bundle
3479 // should be in this block.
3480 auto *Front = E->getMainOp();
3481 auto *BB = Front->getParent();
3482 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3483 [=](Value *V) -> bool {
3484 auto *I = cast<Instruction>(V);
3485 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3486 }));
3488 // The last instruction in the bundle in program order.
3489 Instruction *LastInst = nullptr;
3491 // Find the last instruction. The common case should be that BB has been
3492 // scheduled, and the last instruction is VL.back(). So we start with
3493 // VL.back() and iterate over schedule data until we reach the end of the
3494 // bundle. The end of the bundle is marked by null ScheduleData.
3495 if (BlocksSchedules.count(BB)) {
3496 auto *Bundle =
3497 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3498 if (Bundle && Bundle->isPartOfBundle())
3499 for (; Bundle; Bundle = Bundle->NextInBundle)
3500 if (Bundle->OpValue == Bundle->Inst)
3501 LastInst = Bundle->Inst;
3504 // LastInst can still be null at this point if there's either not an entry
3505 // for BB in BlocksSchedules or there's no ScheduleData available for
3506 // VL.back(). This can be the case if buildTree_rec aborts for various
3507 // reasons (e.g., the maximum recursion depth is reached, the maximum region
3508 // size is reached, etc.). ScheduleData is initialized in the scheduling
3509 // "dry-run".
3511 // If this happens, we can still find the last instruction by brute force. We
3512 // iterate forwards from Front (inclusive) until we either see all
3513 // instructions in the bundle or reach the end of the block. If Front is the
3514 // last instruction in program order, LastInst will be set to Front, and we
3515 // will visit all the remaining instructions in the block.
3517 // One of the reasons we exit early from buildTree_rec is to place an upper
3518 // bound on compile-time. Thus, taking an additional compile-time hit here is
3519 // not ideal. However, this should be exceedingly rare since it requires that
3520 // we both exit early from buildTree_rec and that the bundle be out-of-order
3521 // (causing us to iterate all the way to the end of the block).
3522 if (!LastInst) {
3523 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
3524 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3525 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
3526 LastInst = &I;
3527 if (Bundle.empty())
3528 break;
3531 assert(LastInst && "Failed to find last instruction in bundle");
3533 // Set the insertion point after the last instruction in the bundle. Set the
3534 // debug location to Front.
3535 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3536 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3539 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3540 Value *Vec = UndefValue::get(Ty);
3541 // Generate the 'InsertElement' instruction.
3542 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3543 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3544 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
3545 GatherSeq.insert(Insrt);
3546 CSEBlocks.insert(Insrt->getParent());
3548 // Add to our 'need-to-extract' list.
3549 if (TreeEntry *E = getTreeEntry(VL[i])) {
3550 // Find which lane we need to extract.
3551 int FoundLane = -1;
3552 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3553 // Is this the lane of the scalar that we are looking for ?
3554 if (E->Scalars[Lane] == VL[i]) {
3555 FoundLane = Lane;
3556 break;
3559 assert(FoundLane >= 0 && "Could not find the correct lane");
3560 if (!E->ReuseShuffleIndices.empty()) {
3561 FoundLane =
3562 std::distance(E->ReuseShuffleIndices.begin(),
3563 llvm::find(E->ReuseShuffleIndices, FoundLane));
3565 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3570 return Vec;
3573 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3574 InstructionsState S = getSameOpcode(VL);
3575 if (S.getOpcode()) {
3576 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3577 if (E->isSame(VL)) {
3578 Value *V = vectorizeTree(E);
3579 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3580 // We need to get the vectorized value but without shuffle.
3581 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3582 V = SV->getOperand(0);
3583 } else {
3584 // Reshuffle to get only unique values.
3585 SmallVector<unsigned, 4> UniqueIdxs;
3586 SmallSet<unsigned, 4> UsedIdxs;
3587 for(unsigned Idx : E->ReuseShuffleIndices)
3588 if (UsedIdxs.insert(Idx).second)
3589 UniqueIdxs.emplace_back(Idx);
3590 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3591 UniqueIdxs);
3594 return V;
3599 Type *ScalarTy = S.OpValue->getType();
3600 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3601 ScalarTy = SI->getValueOperand()->getType();
3603 // Check that every instruction appears once in this bundle.
3604 SmallVector<unsigned, 4> ReuseShuffleIndicies;
3605 SmallVector<Value *, 4> UniqueValues;
3606 if (VL.size() > 2) {
3607 DenseMap<Value *, unsigned> UniquePositions;
3608 for (Value *V : VL) {
3609 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3610 ReuseShuffleIndicies.emplace_back(Res.first->second);
3611 if (Res.second || isa<Constant>(V))
3612 UniqueValues.emplace_back(V);
3614 // Do not shuffle single element or if number of unique values is not power
3615 // of 2.
3616 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
3617 !llvm::isPowerOf2_32(UniqueValues.size()))
3618 ReuseShuffleIndicies.clear();
3619 else
3620 VL = UniqueValues;
3622 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3624 Value *V = Gather(VL, VecTy);
3625 if (!ReuseShuffleIndicies.empty()) {
3626 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3627 ReuseShuffleIndicies, "shuffle");
3628 if (auto *I = dyn_cast<Instruction>(V)) {
3629 GatherSeq.insert(I);
3630 CSEBlocks.insert(I->getParent());
3633 return V;
3636 static void inversePermutation(ArrayRef<unsigned> Indices,
3637 SmallVectorImpl<unsigned> &Mask) {
3638 Mask.clear();
3639 const unsigned E = Indices.size();
3640 Mask.resize(E);
3641 for (unsigned I = 0; I < E; ++I)
3642 Mask[Indices[I]] = I;
3645 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
3646 IRBuilder<>::InsertPointGuard Guard(Builder);
3648 if (E->VectorizedValue) {
3649 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
3650 return E->VectorizedValue;
3653 Instruction *VL0 = E->getMainOp();
3654 Type *ScalarTy = VL0->getType();
3655 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3656 ScalarTy = SI->getValueOperand()->getType();
3657 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
3659 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3661 if (E->NeedToGather) {
3662 setInsertPointAfterBundle(E);
3663 auto *V = Gather(E->Scalars, VecTy);
3664 if (NeedToShuffleReuses) {
3665 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3666 E->ReuseShuffleIndices, "shuffle");
3667 if (auto *I = dyn_cast<Instruction>(V)) {
3668 GatherSeq.insert(I);
3669 CSEBlocks.insert(I->getParent());
3672 E->VectorizedValue = V;
3673 return V;
3676 unsigned ShuffleOrOp =
3677 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3678 switch (ShuffleOrOp) {
3679 case Instruction::PHI: {
3680 auto *PH = cast<PHINode>(VL0);
3681 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
3682 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3683 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
3684 Value *V = NewPhi;
3685 if (NeedToShuffleReuses) {
3686 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3687 E->ReuseShuffleIndices, "shuffle");
3689 E->VectorizedValue = V;
3691 // PHINodes may have multiple entries from the same block. We want to
3692 // visit every block once.
3693 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
3695 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
3696 ValueList Operands;
3697 BasicBlock *IBB = PH->getIncomingBlock(i);
3699 if (!VisitedBBs.insert(IBB).second) {
3700 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
3701 continue;
3704 Builder.SetInsertPoint(IBB->getTerminator());
3705 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3706 Value *Vec = vectorizeTree(E->getOperand(i));
3707 NewPhi->addIncoming(Vec, IBB);
3710 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
3711 "Invalid number of incoming values");
3712 return V;
3715 case Instruction::ExtractElement: {
3716 if (!E->NeedToGather) {
3717 Value *V = E->getSingleOperand(0);
3718 if (!E->ReorderIndices.empty()) {
3719 OrdersType Mask;
3720 inversePermutation(E->ReorderIndices, Mask);
3721 Builder.SetInsertPoint(VL0);
3722 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
3723 "reorder_shuffle");
3725 if (NeedToShuffleReuses) {
3726 // TODO: Merge this shuffle with the ReorderShuffleMask.
3727 if (E->ReorderIndices.empty())
3728 Builder.SetInsertPoint(VL0);
3729 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3730 E->ReuseShuffleIndices, "shuffle");
3732 E->VectorizedValue = V;
3733 return V;
3735 setInsertPointAfterBundle(E);
3736 auto *V = Gather(E->Scalars, VecTy);
3737 if (NeedToShuffleReuses) {
3738 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3739 E->ReuseShuffleIndices, "shuffle");
3740 if (auto *I = dyn_cast<Instruction>(V)) {
3741 GatherSeq.insert(I);
3742 CSEBlocks.insert(I->getParent());
3745 E->VectorizedValue = V;
3746 return V;
3748 case Instruction::ExtractValue: {
3749 if (!E->NeedToGather) {
3750 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
3751 Builder.SetInsertPoint(LI);
3752 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3753 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3754 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
3755 Value *NewV = propagateMetadata(V, E->Scalars);
3756 if (!E->ReorderIndices.empty()) {
3757 OrdersType Mask;
3758 inversePermutation(E->ReorderIndices, Mask);
3759 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
3760 "reorder_shuffle");
3762 if (NeedToShuffleReuses) {
3763 // TODO: Merge this shuffle with the ReorderShuffleMask.
3764 NewV = Builder.CreateShuffleVector(
3765 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3767 E->VectorizedValue = NewV;
3768 return NewV;
3770 setInsertPointAfterBundle(E);
3771 auto *V = Gather(E->Scalars, VecTy);
3772 if (NeedToShuffleReuses) {
3773 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3774 E->ReuseShuffleIndices, "shuffle");
3775 if (auto *I = dyn_cast<Instruction>(V)) {
3776 GatherSeq.insert(I);
3777 CSEBlocks.insert(I->getParent());
3780 E->VectorizedValue = V;
3781 return V;
3783 case Instruction::ZExt:
3784 case Instruction::SExt:
3785 case Instruction::FPToUI:
3786 case Instruction::FPToSI:
3787 case Instruction::FPExt:
3788 case Instruction::PtrToInt:
3789 case Instruction::IntToPtr:
3790 case Instruction::SIToFP:
3791 case Instruction::UIToFP:
3792 case Instruction::Trunc:
3793 case Instruction::FPTrunc:
3794 case Instruction::BitCast: {
3795 setInsertPointAfterBundle(E);
3797 Value *InVec = vectorizeTree(E->getOperand(0));
3799 if (E->VectorizedValue) {
3800 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3801 return E->VectorizedValue;
3804 auto *CI = cast<CastInst>(VL0);
3805 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3806 if (NeedToShuffleReuses) {
3807 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3808 E->ReuseShuffleIndices, "shuffle");
3810 E->VectorizedValue = V;
3811 ++NumVectorInstructions;
3812 return V;
3814 case Instruction::FCmp:
3815 case Instruction::ICmp: {
3816 setInsertPointAfterBundle(E);
3818 Value *L = vectorizeTree(E->getOperand(0));
3819 Value *R = vectorizeTree(E->getOperand(1));
3821 if (E->VectorizedValue) {
3822 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3823 return E->VectorizedValue;
3826 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3827 Value *V;
3828 if (E->getOpcode() == Instruction::FCmp)
3829 V = Builder.CreateFCmp(P0, L, R);
3830 else
3831 V = Builder.CreateICmp(P0, L, R);
3833 propagateIRFlags(V, E->Scalars, VL0);
3834 if (NeedToShuffleReuses) {
3835 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3836 E->ReuseShuffleIndices, "shuffle");
3838 E->VectorizedValue = V;
3839 ++NumVectorInstructions;
3840 return V;
3842 case Instruction::Select: {
3843 setInsertPointAfterBundle(E);
3845 Value *Cond = vectorizeTree(E->getOperand(0));
3846 Value *True = vectorizeTree(E->getOperand(1));
3847 Value *False = vectorizeTree(E->getOperand(2));
3849 if (E->VectorizedValue) {
3850 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3851 return E->VectorizedValue;
3854 Value *V = Builder.CreateSelect(Cond, True, False);
3855 if (NeedToShuffleReuses) {
3856 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3857 E->ReuseShuffleIndices, "shuffle");
3859 E->VectorizedValue = V;
3860 ++NumVectorInstructions;
3861 return V;
3863 case Instruction::FNeg: {
3864 setInsertPointAfterBundle(E);
3866 Value *Op = vectorizeTree(E->getOperand(0));
3868 if (E->VectorizedValue) {
3869 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3870 return E->VectorizedValue;
3873 Value *V = Builder.CreateUnOp(
3874 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
3875 propagateIRFlags(V, E->Scalars, VL0);
3876 if (auto *I = dyn_cast<Instruction>(V))
3877 V = propagateMetadata(I, E->Scalars);
3879 if (NeedToShuffleReuses) {
3880 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3881 E->ReuseShuffleIndices, "shuffle");
3883 E->VectorizedValue = V;
3884 ++NumVectorInstructions;
3886 return V;
3888 case Instruction::Add:
3889 case Instruction::FAdd:
3890 case Instruction::Sub:
3891 case Instruction::FSub:
3892 case Instruction::Mul:
3893 case Instruction::FMul:
3894 case Instruction::UDiv:
3895 case Instruction::SDiv:
3896 case Instruction::FDiv:
3897 case Instruction::URem:
3898 case Instruction::SRem:
3899 case Instruction::FRem:
3900 case Instruction::Shl:
3901 case Instruction::LShr:
3902 case Instruction::AShr:
3903 case Instruction::And:
3904 case Instruction::Or:
3905 case Instruction::Xor: {
3906 setInsertPointAfterBundle(E);
3908 Value *LHS = vectorizeTree(E->getOperand(0));
3909 Value *RHS = vectorizeTree(E->getOperand(1));
3911 if (E->VectorizedValue) {
3912 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3913 return E->VectorizedValue;
3916 Value *V = Builder.CreateBinOp(
3917 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
3918 RHS);
3919 propagateIRFlags(V, E->Scalars, VL0);
3920 if (auto *I = dyn_cast<Instruction>(V))
3921 V = propagateMetadata(I, E->Scalars);
3923 if (NeedToShuffleReuses) {
3924 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3925 E->ReuseShuffleIndices, "shuffle");
3927 E->VectorizedValue = V;
3928 ++NumVectorInstructions;
3930 return V;
3932 case Instruction::Load: {
3933 // Loads are inserted at the head of the tree because we don't want to
3934 // sink them all the way down past store instructions.
3935 bool IsReorder = E->updateStateIfReorder();
3936 if (IsReorder)
3937 VL0 = E->getMainOp();
3938 setInsertPointAfterBundle(E);
3940 LoadInst *LI = cast<LoadInst>(VL0);
3941 Type *ScalarLoadTy = LI->getType();
3942 unsigned AS = LI->getPointerAddressSpace();
3944 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
3945 VecTy->getPointerTo(AS));
3947 // The pointer operand uses an in-tree scalar so we add the new BitCast to
3948 // ExternalUses list to make sure that an extract will be generated in the
3949 // future.
3950 Value *PO = LI->getPointerOperand();
3951 if (getTreeEntry(PO))
3952 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
3954 unsigned Alignment = LI->getAlignment();
3955 LI = Builder.CreateLoad(VecTy, VecPtr);
3956 if (!Alignment) {
3957 Alignment = DL->getABITypeAlignment(ScalarLoadTy);
3959 LI->setAlignment(Alignment);
3960 Value *V = propagateMetadata(LI, E->Scalars);
3961 if (IsReorder) {
3962 OrdersType Mask;
3963 inversePermutation(E->ReorderIndices, Mask);
3964 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3965 Mask, "reorder_shuffle");
3967 if (NeedToShuffleReuses) {
3968 // TODO: Merge this shuffle with the ReorderShuffleMask.
3969 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3970 E->ReuseShuffleIndices, "shuffle");
3972 E->VectorizedValue = V;
3973 ++NumVectorInstructions;
3974 return V;
3976 case Instruction::Store: {
3977 StoreInst *SI = cast<StoreInst>(VL0);
3978 unsigned Alignment = SI->getAlignment();
3979 unsigned AS = SI->getPointerAddressSpace();
3981 setInsertPointAfterBundle(E);
3983 Value *VecValue = vectorizeTree(E->getOperand(0));
3984 Value *ScalarPtr = SI->getPointerOperand();
3985 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
3986 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
3988 // The pointer operand uses an in-tree scalar, so add the new BitCast to
3989 // ExternalUses to make sure that an extract will be generated in the
3990 // future.
3991 if (getTreeEntry(ScalarPtr))
3992 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
3994 if (!Alignment)
3995 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
3997 ST->setAlignment(Alignment);
3998 Value *V = propagateMetadata(ST, E->Scalars);
3999 if (NeedToShuffleReuses) {
4000 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4001 E->ReuseShuffleIndices, "shuffle");
4003 E->VectorizedValue = V;
4004 ++NumVectorInstructions;
4005 return V;
4007 case Instruction::GetElementPtr: {
4008 setInsertPointAfterBundle(E);
4010 Value *Op0 = vectorizeTree(E->getOperand(0));
4012 std::vector<Value *> OpVecs;
4013 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4014 ++j) {
4015 Value *OpVec = vectorizeTree(E->getOperand(j));
4016 OpVecs.push_back(OpVec);
4019 Value *V = Builder.CreateGEP(
4020 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4021 if (Instruction *I = dyn_cast<Instruction>(V))
4022 V = propagateMetadata(I, E->Scalars);
4024 if (NeedToShuffleReuses) {
4025 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4026 E->ReuseShuffleIndices, "shuffle");
4028 E->VectorizedValue = V;
4029 ++NumVectorInstructions;
4031 return V;
4033 case Instruction::Call: {
4034 CallInst *CI = cast<CallInst>(VL0);
4035 setInsertPointAfterBundle(E);
4037 Intrinsic::ID IID = Intrinsic::not_intrinsic;
4038 if (Function *FI = CI->getCalledFunction())
4039 IID = FI->getIntrinsicID();
4041 Value *ScalarArg = nullptr;
4042 std::vector<Value *> OpVecs;
4043 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4044 ValueList OpVL;
4045 // Some intrinsics have scalar arguments. This argument should not be
4046 // vectorized.
4047 if (hasVectorInstrinsicScalarOpd(IID, j)) {
4048 CallInst *CEI = cast<CallInst>(VL0);
4049 ScalarArg = CEI->getArgOperand(j);
4050 OpVecs.push_back(CEI->getArgOperand(j));
4051 continue;
4054 Value *OpVec = vectorizeTree(E->getOperand(j));
4055 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4056 OpVecs.push_back(OpVec);
4059 Module *M = F->getParent();
4060 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4061 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4062 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4063 SmallVector<OperandBundleDef, 1> OpBundles;
4064 CI->getOperandBundlesAsDefs(OpBundles);
4065 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4067 // The scalar argument uses an in-tree scalar so we add the new vectorized
4068 // call to ExternalUses list to make sure that an extract will be
4069 // generated in the future.
4070 if (ScalarArg && getTreeEntry(ScalarArg))
4071 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4073 propagateIRFlags(V, E->Scalars, VL0);
4074 if (NeedToShuffleReuses) {
4075 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4076 E->ReuseShuffleIndices, "shuffle");
4078 E->VectorizedValue = V;
4079 ++NumVectorInstructions;
4080 return V;
4082 case Instruction::ShuffleVector: {
4083 assert(E->isAltShuffle() &&
4084 ((Instruction::isBinaryOp(E->getOpcode()) &&
4085 Instruction::isBinaryOp(E->getAltOpcode())) ||
4086 (Instruction::isCast(E->getOpcode()) &&
4087 Instruction::isCast(E->getAltOpcode()))) &&
4088 "Invalid Shuffle Vector Operand");
4090 Value *LHS = nullptr, *RHS = nullptr;
4091 if (Instruction::isBinaryOp(E->getOpcode())) {
4092 setInsertPointAfterBundle(E);
4093 LHS = vectorizeTree(E->getOperand(0));
4094 RHS = vectorizeTree(E->getOperand(1));
4095 } else {
4096 setInsertPointAfterBundle(E);
4097 LHS = vectorizeTree(E->getOperand(0));
4100 if (E->VectorizedValue) {
4101 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4102 return E->VectorizedValue;
4105 Value *V0, *V1;
4106 if (Instruction::isBinaryOp(E->getOpcode())) {
4107 V0 = Builder.CreateBinOp(
4108 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4109 V1 = Builder.CreateBinOp(
4110 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4111 } else {
4112 V0 = Builder.CreateCast(
4113 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4114 V1 = Builder.CreateCast(
4115 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4118 // Create shuffle to take alternate operations from the vector.
4119 // Also, gather up main and alt scalar ops to propagate IR flags to
4120 // each vector operation.
4121 ValueList OpScalars, AltScalars;
4122 unsigned e = E->Scalars.size();
4123 SmallVector<Constant *, 8> Mask(e);
4124 for (unsigned i = 0; i < e; ++i) {
4125 auto *OpInst = cast<Instruction>(E->Scalars[i]);
4126 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4127 if (OpInst->getOpcode() == E->getAltOpcode()) {
4128 Mask[i] = Builder.getInt32(e + i);
4129 AltScalars.push_back(E->Scalars[i]);
4130 } else {
4131 Mask[i] = Builder.getInt32(i);
4132 OpScalars.push_back(E->Scalars[i]);
4136 Value *ShuffleMask = ConstantVector::get(Mask);
4137 propagateIRFlags(V0, OpScalars);
4138 propagateIRFlags(V1, AltScalars);
4140 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
4141 if (Instruction *I = dyn_cast<Instruction>(V))
4142 V = propagateMetadata(I, E->Scalars);
4143 if (NeedToShuffleReuses) {
4144 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4145 E->ReuseShuffleIndices, "shuffle");
4147 E->VectorizedValue = V;
4148 ++NumVectorInstructions;
4150 return V;
4152 default:
4153 llvm_unreachable("unknown inst");
4155 return nullptr;
4158 Value *BoUpSLP::vectorizeTree() {
4159 ExtraValueToDebugLocsMap ExternallyUsedValues;
4160 return vectorizeTree(ExternallyUsedValues);
4163 Value *
4164 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4165 // All blocks must be scheduled before any instructions are inserted.
4166 for (auto &BSIter : BlocksSchedules) {
4167 scheduleBlock(BSIter.second.get());
4170 Builder.SetInsertPoint(&F->getEntryBlock().front());
4171 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4173 // If the vectorized tree can be rewritten in a smaller type, we truncate the
4174 // vectorized root. InstCombine will then rewrite the entire expression. We
4175 // sign extend the extracted values below.
4176 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4177 if (MinBWs.count(ScalarRoot)) {
4178 if (auto *I = dyn_cast<Instruction>(VectorRoot))
4179 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4180 auto BundleWidth = VectorizableTree[0]->Scalars.size();
4181 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4182 auto *VecTy = VectorType::get(MinTy, BundleWidth);
4183 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4184 VectorizableTree[0]->VectorizedValue = Trunc;
4187 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4188 << " values .\n");
4190 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4191 // specified by ScalarType.
4192 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4193 if (!MinBWs.count(ScalarRoot))
4194 return Ex;
4195 if (MinBWs[ScalarRoot].second)
4196 return Builder.CreateSExt(Ex, ScalarType);
4197 return Builder.CreateZExt(Ex, ScalarType);
4200 // Extract all of the elements with the external uses.
4201 for (const auto &ExternalUse : ExternalUses) {
4202 Value *Scalar = ExternalUse.Scalar;
4203 llvm::User *User = ExternalUse.User;
4205 // Skip users that we already RAUW. This happens when one instruction
4206 // has multiple uses of the same value.
4207 if (User && !is_contained(Scalar->users(), User))
4208 continue;
4209 TreeEntry *E = getTreeEntry(Scalar);
4210 assert(E && "Invalid scalar");
4211 assert(!E->NeedToGather && "Extracting from a gather list");
4213 Value *Vec = E->VectorizedValue;
4214 assert(Vec && "Can't find vectorizable value");
4216 Value *Lane = Builder.getInt32(ExternalUse.Lane);
4217 // If User == nullptr, the Scalar is used as extra arg. Generate
4218 // ExtractElement instruction and update the record for this scalar in
4219 // ExternallyUsedValues.
4220 if (!User) {
4221 assert(ExternallyUsedValues.count(Scalar) &&
4222 "Scalar with nullptr as an external user must be registered in "
4223 "ExternallyUsedValues map");
4224 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4225 Builder.SetInsertPoint(VecI->getParent(),
4226 std::next(VecI->getIterator()));
4227 } else {
4228 Builder.SetInsertPoint(&F->getEntryBlock().front());
4230 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4231 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4232 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4233 auto &Locs = ExternallyUsedValues[Scalar];
4234 ExternallyUsedValues.insert({Ex, Locs});
4235 ExternallyUsedValues.erase(Scalar);
4236 // Required to update internally referenced instructions.
4237 Scalar->replaceAllUsesWith(Ex);
4238 continue;
4241 // Generate extracts for out-of-tree users.
4242 // Find the insertion point for the extractelement lane.
4243 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4244 if (PHINode *PH = dyn_cast<PHINode>(User)) {
4245 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4246 if (PH->getIncomingValue(i) == Scalar) {
4247 Instruction *IncomingTerminator =
4248 PH->getIncomingBlock(i)->getTerminator();
4249 if (isa<CatchSwitchInst>(IncomingTerminator)) {
4250 Builder.SetInsertPoint(VecI->getParent(),
4251 std::next(VecI->getIterator()));
4252 } else {
4253 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4255 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4256 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4257 CSEBlocks.insert(PH->getIncomingBlock(i));
4258 PH->setOperand(i, Ex);
4261 } else {
4262 Builder.SetInsertPoint(cast<Instruction>(User));
4263 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4264 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4265 CSEBlocks.insert(cast<Instruction>(User)->getParent());
4266 User->replaceUsesOfWith(Scalar, Ex);
4268 } else {
4269 Builder.SetInsertPoint(&F->getEntryBlock().front());
4270 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4271 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4272 CSEBlocks.insert(&F->getEntryBlock());
4273 User->replaceUsesOfWith(Scalar, Ex);
4276 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4279 // For each vectorized value:
4280 for (auto &TEPtr : VectorizableTree) {
4281 TreeEntry *Entry = TEPtr.get();
4283 // No need to handle users of gathered values.
4284 if (Entry->NeedToGather)
4285 continue;
4287 assert(Entry->VectorizedValue && "Can't find vectorizable value");
4289 // For each lane:
4290 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4291 Value *Scalar = Entry->Scalars[Lane];
4293 Type *Ty = Scalar->getType();
4294 if (!Ty->isVoidTy()) {
4295 #ifndef NDEBUG
4296 for (User *U : Scalar->users()) {
4297 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4299 // It is legal to replace users in the ignorelist by undef.
4300 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4301 "Replacing out-of-tree value with undef");
4303 #endif
4304 Value *Undef = UndefValue::get(Ty);
4305 Scalar->replaceAllUsesWith(Undef);
4307 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4308 eraseInstruction(cast<Instruction>(Scalar));
4312 Builder.ClearInsertionPoint();
4314 return VectorizableTree[0]->VectorizedValue;
4317 void BoUpSLP::optimizeGatherSequence() {
4318 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4319 << " gather sequences instructions.\n");
4320 // LICM InsertElementInst sequences.
4321 for (Instruction *I : GatherSeq) {
4322 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
4323 continue;
4325 // Check if this block is inside a loop.
4326 Loop *L = LI->getLoopFor(I->getParent());
4327 if (!L)
4328 continue;
4330 // Check if it has a preheader.
4331 BasicBlock *PreHeader = L->getLoopPreheader();
4332 if (!PreHeader)
4333 continue;
4335 // If the vector or the element that we insert into it are
4336 // instructions that are defined in this basic block then we can't
4337 // hoist this instruction.
4338 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4339 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4340 if (Op0 && L->contains(Op0))
4341 continue;
4342 if (Op1 && L->contains(Op1))
4343 continue;
4345 // We can hoist this instruction. Move it to the pre-header.
4346 I->moveBefore(PreHeader->getTerminator());
4349 // Make a list of all reachable blocks in our CSE queue.
4350 SmallVector<const DomTreeNode *, 8> CSEWorkList;
4351 CSEWorkList.reserve(CSEBlocks.size());
4352 for (BasicBlock *BB : CSEBlocks)
4353 if (DomTreeNode *N = DT->getNode(BB)) {
4354 assert(DT->isReachableFromEntry(N));
4355 CSEWorkList.push_back(N);
4358 // Sort blocks by domination. This ensures we visit a block after all blocks
4359 // dominating it are visited.
4360 llvm::stable_sort(CSEWorkList,
4361 [this](const DomTreeNode *A, const DomTreeNode *B) {
4362 return DT->properlyDominates(A, B);
4365 // Perform O(N^2) search over the gather sequences and merge identical
4366 // instructions. TODO: We can further optimize this scan if we split the
4367 // instructions into different buckets based on the insert lane.
4368 SmallVector<Instruction *, 16> Visited;
4369 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4370 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4371 "Worklist not sorted properly!");
4372 BasicBlock *BB = (*I)->getBlock();
4373 // For all instructions in blocks containing gather sequences:
4374 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4375 Instruction *In = &*it++;
4376 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4377 continue;
4379 // Check if we can replace this instruction with any of the
4380 // visited instructions.
4381 for (Instruction *v : Visited) {
4382 if (In->isIdenticalTo(v) &&
4383 DT->dominates(v->getParent(), In->getParent())) {
4384 In->replaceAllUsesWith(v);
4385 eraseInstruction(In);
4386 In = nullptr;
4387 break;
4390 if (In) {
4391 assert(!is_contained(Visited, In));
4392 Visited.push_back(In);
4396 CSEBlocks.clear();
4397 GatherSeq.clear();
4400 // Groups the instructions to a bundle (which is then a single scheduling entity)
4401 // and schedules instructions until the bundle gets ready.
4402 Optional<BoUpSLP::ScheduleData *>
4403 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4404 const InstructionsState &S) {
4405 if (isa<PHINode>(S.OpValue))
4406 return nullptr;
4408 // Initialize the instruction bundle.
4409 Instruction *OldScheduleEnd = ScheduleEnd;
4410 ScheduleData *PrevInBundle = nullptr;
4411 ScheduleData *Bundle = nullptr;
4412 bool ReSchedule = false;
4413 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
4415 // Make sure that the scheduling region contains all
4416 // instructions of the bundle.
4417 for (Value *V : VL) {
4418 if (!extendSchedulingRegion(V, S))
4419 return None;
4422 for (Value *V : VL) {
4423 ScheduleData *BundleMember = getScheduleData(V);
4424 assert(BundleMember &&
4425 "no ScheduleData for bundle member (maybe not in same basic block)");
4426 if (BundleMember->IsScheduled) {
4427 // A bundle member was scheduled as single instruction before and now
4428 // needs to be scheduled as part of the bundle. We just get rid of the
4429 // existing schedule.
4430 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
4431 << " was already scheduled\n");
4432 ReSchedule = true;
4434 assert(BundleMember->isSchedulingEntity() &&
4435 "bundle member already part of other bundle");
4436 if (PrevInBundle) {
4437 PrevInBundle->NextInBundle = BundleMember;
4438 } else {
4439 Bundle = BundleMember;
4441 BundleMember->UnscheduledDepsInBundle = 0;
4442 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4444 // Group the instructions to a bundle.
4445 BundleMember->FirstInBundle = Bundle;
4446 PrevInBundle = BundleMember;
4448 if (ScheduleEnd != OldScheduleEnd) {
4449 // The scheduling region got new instructions at the lower end (or it is a
4450 // new region for the first bundle). This makes it necessary to
4451 // recalculate all dependencies.
4452 // It is seldom that this needs to be done a second time after adding the
4453 // initial bundle to the region.
4454 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4455 doForAllOpcodes(I, [](ScheduleData *SD) {
4456 SD->clearDependencies();
4459 ReSchedule = true;
4461 if (ReSchedule) {
4462 resetSchedule();
4463 initialFillReadyList(ReadyInsts);
4465 assert(Bundle && "Failed to find schedule bundle");
4467 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4468 << BB->getName() << "\n");
4470 calculateDependencies(Bundle, true, SLP);
4472 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4473 // means that there are no cyclic dependencies and we can schedule it.
4474 // Note that's important that we don't "schedule" the bundle yet (see
4475 // cancelScheduling).
4476 while (!Bundle->isReady() && !ReadyInsts.empty()) {
4478 ScheduleData *pickedSD = ReadyInsts.back();
4479 ReadyInsts.pop_back();
4481 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4482 schedule(pickedSD, ReadyInsts);
4485 if (!Bundle->isReady()) {
4486 cancelScheduling(VL, S.OpValue);
4487 return None;
4489 return Bundle;
4492 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4493 Value *OpValue) {
4494 if (isa<PHINode>(OpValue))
4495 return;
4497 ScheduleData *Bundle = getScheduleData(OpValue);
4498 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
4499 assert(!Bundle->IsScheduled &&
4500 "Can't cancel bundle which is already scheduled");
4501 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4502 "tried to unbundle something which is not a bundle");
4504 // Un-bundle: make single instructions out of the bundle.
4505 ScheduleData *BundleMember = Bundle;
4506 while (BundleMember) {
4507 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4508 BundleMember->FirstInBundle = BundleMember;
4509 ScheduleData *Next = BundleMember->NextInBundle;
4510 BundleMember->NextInBundle = nullptr;
4511 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4512 if (BundleMember->UnscheduledDepsInBundle == 0) {
4513 ReadyInsts.insert(BundleMember);
4515 BundleMember = Next;
4519 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4520 // Allocate a new ScheduleData for the instruction.
4521 if (ChunkPos >= ChunkSize) {
4522 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
4523 ChunkPos = 0;
4525 return &(ScheduleDataChunks.back()[ChunkPos++]);
4528 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4529 const InstructionsState &S) {
4530 if (getScheduleData(V, isOneOf(S, V)))
4531 return true;
4532 Instruction *I = dyn_cast<Instruction>(V);
4533 assert(I && "bundle member must be an instruction");
4534 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4535 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4536 ScheduleData *ISD = getScheduleData(I);
4537 if (!ISD)
4538 return false;
4539 assert(isInSchedulingRegion(ISD) &&
4540 "ScheduleData not in scheduling region");
4541 ScheduleData *SD = allocateScheduleDataChunks();
4542 SD->Inst = I;
4543 SD->init(SchedulingRegionID, S.OpValue);
4544 ExtraScheduleDataMap[I][S.OpValue] = SD;
4545 return true;
4547 if (CheckSheduleForI(I))
4548 return true;
4549 if (!ScheduleStart) {
4550 // It's the first instruction in the new region.
4551 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4552 ScheduleStart = I;
4553 ScheduleEnd = I->getNextNode();
4554 if (isOneOf(S, I) != I)
4555 CheckSheduleForI(I);
4556 assert(ScheduleEnd && "tried to vectorize a terminator?");
4557 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
4558 return true;
4560 // Search up and down at the same time, because we don't know if the new
4561 // instruction is above or below the existing scheduling region.
4562 BasicBlock::reverse_iterator UpIter =
4563 ++ScheduleStart->getIterator().getReverse();
4564 BasicBlock::reverse_iterator UpperEnd = BB->rend();
4565 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4566 BasicBlock::iterator LowerEnd = BB->end();
4567 while (true) {
4568 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4569 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
4570 return false;
4573 if (UpIter != UpperEnd) {
4574 if (&*UpIter == I) {
4575 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4576 ScheduleStart = I;
4577 if (isOneOf(S, I) != I)
4578 CheckSheduleForI(I);
4579 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
4580 << "\n");
4581 return true;
4583 ++UpIter;
4585 if (DownIter != LowerEnd) {
4586 if (&*DownIter == I) {
4587 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
4588 nullptr);
4589 ScheduleEnd = I->getNextNode();
4590 if (isOneOf(S, I) != I)
4591 CheckSheduleForI(I);
4592 assert(ScheduleEnd && "tried to vectorize a terminator?");
4593 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
4594 << "\n");
4595 return true;
4597 ++DownIter;
4599 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
4600 "instruction not found in block");
4602 return true;
4605 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
4606 Instruction *ToI,
4607 ScheduleData *PrevLoadStore,
4608 ScheduleData *NextLoadStore) {
4609 ScheduleData *CurrentLoadStore = PrevLoadStore;
4610 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
4611 ScheduleData *SD = ScheduleDataMap[I];
4612 if (!SD) {
4613 SD = allocateScheduleDataChunks();
4614 ScheduleDataMap[I] = SD;
4615 SD->Inst = I;
4617 assert(!isInSchedulingRegion(SD) &&
4618 "new ScheduleData already in scheduling region");
4619 SD->init(SchedulingRegionID, I);
4621 if (I->mayReadOrWriteMemory() &&
4622 (!isa<IntrinsicInst>(I) ||
4623 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
4624 // Update the linked list of memory accessing instructions.
4625 if (CurrentLoadStore) {
4626 CurrentLoadStore->NextLoadStore = SD;
4627 } else {
4628 FirstLoadStoreInRegion = SD;
4630 CurrentLoadStore = SD;
4633 if (NextLoadStore) {
4634 if (CurrentLoadStore)
4635 CurrentLoadStore->NextLoadStore = NextLoadStore;
4636 } else {
4637 LastLoadStoreInRegion = CurrentLoadStore;
4641 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
4642 bool InsertInReadyList,
4643 BoUpSLP *SLP) {
4644 assert(SD->isSchedulingEntity());
4646 SmallVector<ScheduleData *, 10> WorkList;
4647 WorkList.push_back(SD);
4649 while (!WorkList.empty()) {
4650 ScheduleData *SD = WorkList.back();
4651 WorkList.pop_back();
4653 ScheduleData *BundleMember = SD;
4654 while (BundleMember) {
4655 assert(isInSchedulingRegion(BundleMember));
4656 if (!BundleMember->hasValidDependencies()) {
4658 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
4659 << "\n");
4660 BundleMember->Dependencies = 0;
4661 BundleMember->resetUnscheduledDeps();
4663 // Handle def-use chain dependencies.
4664 if (BundleMember->OpValue != BundleMember->Inst) {
4665 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
4666 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4667 BundleMember->Dependencies++;
4668 ScheduleData *DestBundle = UseSD->FirstInBundle;
4669 if (!DestBundle->IsScheduled)
4670 BundleMember->incrementUnscheduledDeps(1);
4671 if (!DestBundle->hasValidDependencies())
4672 WorkList.push_back(DestBundle);
4674 } else {
4675 for (User *U : BundleMember->Inst->users()) {
4676 if (isa<Instruction>(U)) {
4677 ScheduleData *UseSD = getScheduleData(U);
4678 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4679 BundleMember->Dependencies++;
4680 ScheduleData *DestBundle = UseSD->FirstInBundle;
4681 if (!DestBundle->IsScheduled)
4682 BundleMember->incrementUnscheduledDeps(1);
4683 if (!DestBundle->hasValidDependencies())
4684 WorkList.push_back(DestBundle);
4686 } else {
4687 // I'm not sure if this can ever happen. But we need to be safe.
4688 // This lets the instruction/bundle never be scheduled and
4689 // eventually disable vectorization.
4690 BundleMember->Dependencies++;
4691 BundleMember->incrementUnscheduledDeps(1);
4696 // Handle the memory dependencies.
4697 ScheduleData *DepDest = BundleMember->NextLoadStore;
4698 if (DepDest) {
4699 Instruction *SrcInst = BundleMember->Inst;
4700 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
4701 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
4702 unsigned numAliased = 0;
4703 unsigned DistToSrc = 1;
4705 while (DepDest) {
4706 assert(isInSchedulingRegion(DepDest));
4708 // We have two limits to reduce the complexity:
4709 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4710 // SLP->isAliased (which is the expensive part in this loop).
4711 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4712 // the whole loop (even if the loop is fast, it's quadratic).
4713 // It's important for the loop break condition (see below) to
4714 // check this limit even between two read-only instructions.
4715 if (DistToSrc >= MaxMemDepDistance ||
4716 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
4717 (numAliased >= AliasedCheckLimit ||
4718 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
4720 // We increment the counter only if the locations are aliased
4721 // (instead of counting all alias checks). This gives a better
4722 // balance between reduced runtime and accurate dependencies.
4723 numAliased++;
4725 DepDest->MemoryDependencies.push_back(BundleMember);
4726 BundleMember->Dependencies++;
4727 ScheduleData *DestBundle = DepDest->FirstInBundle;
4728 if (!DestBundle->IsScheduled) {
4729 BundleMember->incrementUnscheduledDeps(1);
4731 if (!DestBundle->hasValidDependencies()) {
4732 WorkList.push_back(DestBundle);
4735 DepDest = DepDest->NextLoadStore;
4737 // Example, explaining the loop break condition: Let's assume our
4738 // starting instruction is i0 and MaxMemDepDistance = 3.
4740 // +--------v--v--v
4741 // i0,i1,i2,i3,i4,i5,i6,i7,i8
4742 // +--------^--^--^
4744 // MaxMemDepDistance let us stop alias-checking at i3 and we add
4745 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4746 // Previously we already added dependencies from i3 to i6,i7,i8
4747 // (because of MaxMemDepDistance). As we added a dependency from
4748 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4749 // and we can abort this loop at i6.
4750 if (DistToSrc >= 2 * MaxMemDepDistance)
4751 break;
4752 DistToSrc++;
4756 BundleMember = BundleMember->NextInBundle;
4758 if (InsertInReadyList && SD->isReady()) {
4759 ReadyInsts.push_back(SD);
4760 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
4761 << "\n");
4766 void BoUpSLP::BlockScheduling::resetSchedule() {
4767 assert(ScheduleStart &&
4768 "tried to reset schedule on block which has not been scheduled");
4769 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4770 doForAllOpcodes(I, [&](ScheduleData *SD) {
4771 assert(isInSchedulingRegion(SD) &&
4772 "ScheduleData not in scheduling region");
4773 SD->IsScheduled = false;
4774 SD->resetUnscheduledDeps();
4777 ReadyInsts.clear();
4780 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4781 if (!BS->ScheduleStart)
4782 return;
4784 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
4786 BS->resetSchedule();
4788 // For the real scheduling we use a more sophisticated ready-list: it is
4789 // sorted by the original instruction location. This lets the final schedule
4790 // be as close as possible to the original instruction order.
4791 struct ScheduleDataCompare {
4792 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4793 return SD2->SchedulingPriority < SD1->SchedulingPriority;
4796 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4798 // Ensure that all dependency data is updated and fill the ready-list with
4799 // initial instructions.
4800 int Idx = 0;
4801 int NumToSchedule = 0;
4802 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4803 I = I->getNextNode()) {
4804 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4805 assert(SD->isPartOfBundle() ==
4806 (getTreeEntry(SD->Inst) != nullptr) &&
4807 "scheduler and vectorizer bundle mismatch");
4808 SD->FirstInBundle->SchedulingPriority = Idx++;
4809 if (SD->isSchedulingEntity()) {
4810 BS->calculateDependencies(SD, false, this);
4811 NumToSchedule++;
4815 BS->initialFillReadyList(ReadyInsts);
4817 Instruction *LastScheduledInst = BS->ScheduleEnd;
4819 // Do the "real" scheduling.
4820 while (!ReadyInsts.empty()) {
4821 ScheduleData *picked = *ReadyInsts.begin();
4822 ReadyInsts.erase(ReadyInsts.begin());
4824 // Move the scheduled instruction(s) to their dedicated places, if not
4825 // there yet.
4826 ScheduleData *BundleMember = picked;
4827 while (BundleMember) {
4828 Instruction *pickedInst = BundleMember->Inst;
4829 if (LastScheduledInst->getNextNode() != pickedInst) {
4830 BS->BB->getInstList().remove(pickedInst);
4831 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4832 pickedInst);
4834 LastScheduledInst = pickedInst;
4835 BundleMember = BundleMember->NextInBundle;
4838 BS->schedule(picked, ReadyInsts);
4839 NumToSchedule--;
4841 assert(NumToSchedule == 0 && "could not schedule all instructions");
4843 // Avoid duplicate scheduling of the block.
4844 BS->ScheduleStart = nullptr;
4847 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
4848 // If V is a store, just return the width of the stored value without
4849 // traversing the expression tree. This is the common case.
4850 if (auto *Store = dyn_cast<StoreInst>(V))
4851 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4853 // If V is not a store, we can traverse the expression tree to find loads
4854 // that feed it. The type of the loaded value may indicate a more suitable
4855 // width than V's type. We want to base the vector element size on the width
4856 // of memory operations where possible.
4857 SmallVector<Instruction *, 16> Worklist;
4858 SmallPtrSet<Instruction *, 16> Visited;
4859 if (auto *I = dyn_cast<Instruction>(V))
4860 Worklist.push_back(I);
4862 // Traverse the expression tree in bottom-up order looking for loads. If we
4863 // encounter an instruction we don't yet handle, we give up.
4864 auto MaxWidth = 0u;
4865 auto FoundUnknownInst = false;
4866 while (!Worklist.empty() && !FoundUnknownInst) {
4867 auto *I = Worklist.pop_back_val();
4868 Visited.insert(I);
4870 // We should only be looking at scalar instructions here. If the current
4871 // instruction has a vector type, give up.
4872 auto *Ty = I->getType();
4873 if (isa<VectorType>(Ty))
4874 FoundUnknownInst = true;
4876 // If the current instruction is a load, update MaxWidth to reflect the
4877 // width of the loaded value.
4878 else if (isa<LoadInst>(I))
4879 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4881 // Otherwise, we need to visit the operands of the instruction. We only
4882 // handle the interesting cases from buildTree here. If an operand is an
4883 // instruction we haven't yet visited, we add it to the worklist.
4884 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4885 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4886 for (Use &U : I->operands())
4887 if (auto *J = dyn_cast<Instruction>(U.get()))
4888 if (!Visited.count(J))
4889 Worklist.push_back(J);
4892 // If we don't yet handle the instruction, give up.
4893 else
4894 FoundUnknownInst = true;
4897 // If we didn't encounter a memory access in the expression tree, or if we
4898 // gave up for some reason, just return the width of V.
4899 if (!MaxWidth || FoundUnknownInst)
4900 return DL->getTypeSizeInBits(V->getType());
4902 // Otherwise, return the maximum width we found.
4903 return MaxWidth;
4906 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4907 // smaller type with a truncation. We collect the values that will be demoted
4908 // in ToDemote and additional roots that require investigating in Roots.
4909 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4910 SmallVectorImpl<Value *> &ToDemote,
4911 SmallVectorImpl<Value *> &Roots) {
4912 // We can always demote constants.
4913 if (isa<Constant>(V)) {
4914 ToDemote.push_back(V);
4915 return true;
4918 // If the value is not an instruction in the expression with only one use, it
4919 // cannot be demoted.
4920 auto *I = dyn_cast<Instruction>(V);
4921 if (!I || !I->hasOneUse() || !Expr.count(I))
4922 return false;
4924 switch (I->getOpcode()) {
4926 // We can always demote truncations and extensions. Since truncations can
4927 // seed additional demotion, we save the truncated value.
4928 case Instruction::Trunc:
4929 Roots.push_back(I->getOperand(0));
4930 break;
4931 case Instruction::ZExt:
4932 case Instruction::SExt:
4933 break;
4935 // We can demote certain binary operations if we can demote both of their
4936 // operands.
4937 case Instruction::Add:
4938 case Instruction::Sub:
4939 case Instruction::Mul:
4940 case Instruction::And:
4941 case Instruction::Or:
4942 case Instruction::Xor:
4943 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
4944 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
4945 return false;
4946 break;
4948 // We can demote selects if we can demote their true and false values.
4949 case Instruction::Select: {
4950 SelectInst *SI = cast<SelectInst>(I);
4951 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
4952 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
4953 return false;
4954 break;
4957 // We can demote phis if we can demote all their incoming operands. Note that
4958 // we don't need to worry about cycles since we ensure single use above.
4959 case Instruction::PHI: {
4960 PHINode *PN = cast<PHINode>(I);
4961 for (Value *IncValue : PN->incoming_values())
4962 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
4963 return false;
4964 break;
4967 // Otherwise, conservatively give up.
4968 default:
4969 return false;
4972 // Record the value that we can demote.
4973 ToDemote.push_back(V);
4974 return true;
4977 void BoUpSLP::computeMinimumValueSizes() {
4978 // If there are no external uses, the expression tree must be rooted by a
4979 // store. We can't demote in-memory values, so there is nothing to do here.
4980 if (ExternalUses.empty())
4981 return;
4983 // We only attempt to truncate integer expressions.
4984 auto &TreeRoot = VectorizableTree[0]->Scalars;
4985 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
4986 if (!TreeRootIT)
4987 return;
4989 // If the expression is not rooted by a store, these roots should have
4990 // external uses. We will rely on InstCombine to rewrite the expression in
4991 // the narrower type. However, InstCombine only rewrites single-use values.
4992 // This means that if a tree entry other than a root is used externally, it
4993 // must have multiple uses and InstCombine will not rewrite it. The code
4994 // below ensures that only the roots are used externally.
4995 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
4996 for (auto &EU : ExternalUses)
4997 if (!Expr.erase(EU.Scalar))
4998 return;
4999 if (!Expr.empty())
5000 return;
5002 // Collect the scalar values of the vectorizable expression. We will use this
5003 // context to determine which values can be demoted. If we see a truncation,
5004 // we mark it as seeding another demotion.
5005 for (auto &EntryPtr : VectorizableTree)
5006 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5008 // Ensure the roots of the vectorizable tree don't form a cycle. They must
5009 // have a single external user that is not in the vectorizable tree.
5010 for (auto *Root : TreeRoot)
5011 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5012 return;
5014 // Conservatively determine if we can actually truncate the roots of the
5015 // expression. Collect the values that can be demoted in ToDemote and
5016 // additional roots that require investigating in Roots.
5017 SmallVector<Value *, 32> ToDemote;
5018 SmallVector<Value *, 4> Roots;
5019 for (auto *Root : TreeRoot)
5020 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5021 return;
5023 // The maximum bit width required to represent all the values that can be
5024 // demoted without loss of precision. It would be safe to truncate the roots
5025 // of the expression to this width.
5026 auto MaxBitWidth = 8u;
5028 // We first check if all the bits of the roots are demanded. If they're not,
5029 // we can truncate the roots to this narrower type.
5030 for (auto *Root : TreeRoot) {
5031 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5032 MaxBitWidth = std::max<unsigned>(
5033 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5036 // True if the roots can be zero-extended back to their original type, rather
5037 // than sign-extended. We know that if the leading bits are not demanded, we
5038 // can safely zero-extend. So we initialize IsKnownPositive to True.
5039 bool IsKnownPositive = true;
5041 // If all the bits of the roots are demanded, we can try a little harder to
5042 // compute a narrower type. This can happen, for example, if the roots are
5043 // getelementptr indices. InstCombine promotes these indices to the pointer
5044 // width. Thus, all their bits are technically demanded even though the
5045 // address computation might be vectorized in a smaller type.
5047 // We start by looking at each entry that can be demoted. We compute the
5048 // maximum bit width required to store the scalar by using ValueTracking to
5049 // compute the number of high-order bits we can truncate.
5050 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5051 llvm::all_of(TreeRoot, [](Value *R) {
5052 assert(R->hasOneUse() && "Root should have only one use!");
5053 return isa<GetElementPtrInst>(R->user_back());
5054 })) {
5055 MaxBitWidth = 8u;
5057 // Determine if the sign bit of all the roots is known to be zero. If not,
5058 // IsKnownPositive is set to False.
5059 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5060 KnownBits Known = computeKnownBits(R, *DL);
5061 return Known.isNonNegative();
5064 // Determine the maximum number of bits required to store the scalar
5065 // values.
5066 for (auto *Scalar : ToDemote) {
5067 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5068 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5069 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5072 // If we can't prove that the sign bit is zero, we must add one to the
5073 // maximum bit width to account for the unknown sign bit. This preserves
5074 // the existing sign bit so we can safely sign-extend the root back to the
5075 // original type. Otherwise, if we know the sign bit is zero, we will
5076 // zero-extend the root instead.
5078 // FIXME: This is somewhat suboptimal, as there will be cases where adding
5079 // one to the maximum bit width will yield a larger-than-necessary
5080 // type. In general, we need to add an extra bit only if we can't
5081 // prove that the upper bit of the original type is equal to the
5082 // upper bit of the proposed smaller type. If these two bits are the
5083 // same (either zero or one) we know that sign-extending from the
5084 // smaller type will result in the same value. Here, since we can't
5085 // yet prove this, we are just making the proposed smaller type
5086 // larger to ensure correctness.
5087 if (!IsKnownPositive)
5088 ++MaxBitWidth;
5091 // Round MaxBitWidth up to the next power-of-two.
5092 if (!isPowerOf2_64(MaxBitWidth))
5093 MaxBitWidth = NextPowerOf2(MaxBitWidth);
5095 // If the maximum bit width we compute is less than the with of the roots'
5096 // type, we can proceed with the narrowing. Otherwise, do nothing.
5097 if (MaxBitWidth >= TreeRootIT->getBitWidth())
5098 return;
5100 // If we can truncate the root, we must collect additional values that might
5101 // be demoted as a result. That is, those seeded by truncations we will
5102 // modify.
5103 while (!Roots.empty())
5104 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5106 // Finally, map the values we can demote to the maximum bit with we computed.
5107 for (auto *Scalar : ToDemote)
5108 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5111 namespace {
5113 /// The SLPVectorizer Pass.
5114 struct SLPVectorizer : public FunctionPass {
5115 SLPVectorizerPass Impl;
5117 /// Pass identification, replacement for typeid
5118 static char ID;
5120 explicit SLPVectorizer() : FunctionPass(ID) {
5121 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5124 bool doInitialization(Module &M) override {
5125 return false;
5128 bool runOnFunction(Function &F) override {
5129 if (skipFunction(F))
5130 return false;
5132 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5133 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5134 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5135 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5136 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5137 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5138 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5139 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5140 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5141 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5143 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5146 void getAnalysisUsage(AnalysisUsage &AU) const override {
5147 FunctionPass::getAnalysisUsage(AU);
5148 AU.addRequired<AssumptionCacheTracker>();
5149 AU.addRequired<ScalarEvolutionWrapperPass>();
5150 AU.addRequired<AAResultsWrapperPass>();
5151 AU.addRequired<TargetTransformInfoWrapperPass>();
5152 AU.addRequired<LoopInfoWrapperPass>();
5153 AU.addRequired<DominatorTreeWrapperPass>();
5154 AU.addRequired<DemandedBitsWrapperPass>();
5155 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5156 AU.addPreserved<LoopInfoWrapperPass>();
5157 AU.addPreserved<DominatorTreeWrapperPass>();
5158 AU.addPreserved<AAResultsWrapperPass>();
5159 AU.addPreserved<GlobalsAAWrapperPass>();
5160 AU.setPreservesCFG();
5164 } // end anonymous namespace
5166 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5167 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5168 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5169 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5170 auto *AA = &AM.getResult<AAManager>(F);
5171 auto *LI = &AM.getResult<LoopAnalysis>(F);
5172 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5173 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5174 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5175 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5177 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5178 if (!Changed)
5179 return PreservedAnalyses::all();
5181 PreservedAnalyses PA;
5182 PA.preserveSet<CFGAnalyses>();
5183 PA.preserve<AAManager>();
5184 PA.preserve<GlobalsAA>();
5185 return PA;
5188 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5189 TargetTransformInfo *TTI_,
5190 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5191 LoopInfo *LI_, DominatorTree *DT_,
5192 AssumptionCache *AC_, DemandedBits *DB_,
5193 OptimizationRemarkEmitter *ORE_) {
5194 SE = SE_;
5195 TTI = TTI_;
5196 TLI = TLI_;
5197 AA = AA_;
5198 LI = LI_;
5199 DT = DT_;
5200 AC = AC_;
5201 DB = DB_;
5202 DL = &F.getParent()->getDataLayout();
5204 Stores.clear();
5205 GEPs.clear();
5206 bool Changed = false;
5208 // If the target claims to have no vector registers don't attempt
5209 // vectorization.
5210 if (!TTI->getNumberOfRegisters(true))
5211 return false;
5213 // Don't vectorize when the attribute NoImplicitFloat is used.
5214 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5215 return false;
5217 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5219 // Use the bottom up slp vectorizer to construct chains that start with
5220 // store instructions.
5221 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5223 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5224 // delete instructions.
5226 // Scan the blocks in the function in post order.
5227 for (auto BB : post_order(&F.getEntryBlock())) {
5228 collectSeedInstructions(BB);
5230 // Vectorize trees that end at stores.
5231 if (!Stores.empty()) {
5232 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5233 << " underlying objects.\n");
5234 Changed |= vectorizeStoreChains(R);
5237 // Vectorize trees that end at reductions.
5238 Changed |= vectorizeChainsInBlock(BB, R);
5240 // Vectorize the index computations of getelementptr instructions. This
5241 // is primarily intended to catch gather-like idioms ending at
5242 // non-consecutive loads.
5243 if (!GEPs.empty()) {
5244 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5245 << " underlying objects.\n");
5246 Changed |= vectorizeGEPIndices(BB, R);
5250 if (Changed) {
5251 R.optimizeGatherSequence();
5252 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5253 LLVM_DEBUG(verifyFunction(F));
5255 return Changed;
5258 /// Check that the Values in the slice in VL array are still existent in
5259 /// the WeakTrackingVH array.
5260 /// Vectorization of part of the VL array may cause later values in the VL array
5261 /// to become invalid. We track when this has happened in the WeakTrackingVH
5262 /// array.
5263 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
5264 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
5265 unsigned SliceSize) {
5266 VL = VL.slice(SliceBegin, SliceSize);
5267 VH = VH.slice(SliceBegin, SliceSize);
5268 return !std::equal(VL.begin(), VL.end(), VH.begin());
5271 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5272 unsigned VecRegSize) {
5273 const unsigned ChainLen = Chain.size();
5274 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
5275 << "\n");
5276 const unsigned Sz = R.getVectorElementSize(Chain[0]);
5277 const unsigned VF = VecRegSize / Sz;
5279 if (!isPowerOf2_32(Sz) || VF < 2)
5280 return false;
5282 // Keep track of values that were deleted by vectorizing in the loop below.
5283 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
5285 bool Changed = false;
5286 // Look for profitable vectorizable trees at all offsets, starting at zero.
5287 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
5289 // Check that a previous iteration of this loop did not delete the Value.
5290 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
5291 continue;
5293 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
5294 << "\n");
5295 ArrayRef<Value *> Operands = Chain.slice(i, VF);
5297 R.buildTree(Operands);
5298 if (R.isTreeTinyAndNotFullyVectorizable())
5299 continue;
5301 R.computeMinimumValueSizes();
5303 int Cost = R.getTreeCost();
5305 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
5306 << "\n");
5307 if (Cost < -SLPCostThreshold) {
5308 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5310 using namespace ore;
5312 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5313 cast<StoreInst>(Chain[i]))
5314 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5315 << " and with tree size "
5316 << NV("TreeSize", R.getTreeSize()));
5318 R.vectorizeTree();
5320 // Move to the next bundle.
5321 i += VF - 1;
5322 Changed = true;
5326 return Changed;
5329 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5330 BoUpSLP &R) {
5331 SetVector<StoreInst *> Heads;
5332 SmallDenseSet<StoreInst *> Tails;
5333 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
5335 // We may run into multiple chains that merge into a single chain. We mark the
5336 // stores that we vectorized so that we don't visit the same store twice.
5337 BoUpSLP::ValueSet VectorizedStores;
5338 bool Changed = false;
5340 auto &&FindConsecutiveAccess =
5341 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
5342 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5343 return false;
5345 Tails.insert(Stores[Idx]);
5346 Heads.insert(Stores[K]);
5347 ConsecutiveChain[Stores[K]] = Stores[Idx];
5348 return true;
5351 // Do a quadratic search on all of the given stores in reverse order and find
5352 // all of the pairs of stores that follow each other.
5353 int E = Stores.size();
5354 for (int Idx = E - 1; Idx >= 0; --Idx) {
5355 // If a store has multiple consecutive store candidates, search according
5356 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5357 // This is because usually pairing with immediate succeeding or preceding
5358 // candidate create the best chance to find slp vectorization opportunity.
5359 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
5360 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5361 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5362 break;
5365 // For stores that start but don't end a link in the chain:
5366 for (auto *SI : llvm::reverse(Heads)) {
5367 if (Tails.count(SI))
5368 continue;
5370 // We found a store instr that starts a chain. Now follow the chain and try
5371 // to vectorize it.
5372 BoUpSLP::ValueList Operands;
5373 StoreInst *I = SI;
5374 // Collect the chain into a list.
5375 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
5376 Operands.push_back(I);
5377 // Move to the next value in the chain.
5378 I = ConsecutiveChain[I];
5381 // FIXME: Is division-by-2 the correct step? Should we assert that the
5382 // register size is a power-of-2?
5383 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
5384 Size /= 2) {
5385 if (vectorizeStoreChain(Operands, R, Size)) {
5386 // Mark the vectorized stores so that we don't vectorize them again.
5387 VectorizedStores.insert(Operands.begin(), Operands.end());
5388 Changed = true;
5389 break;
5394 return Changed;
5397 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5398 // Initialize the collections. We will make a single pass over the block.
5399 Stores.clear();
5400 GEPs.clear();
5402 // Visit the store and getelementptr instructions in BB and organize them in
5403 // Stores and GEPs according to the underlying objects of their pointer
5404 // operands.
5405 for (Instruction &I : *BB) {
5406 // Ignore store instructions that are volatile or have a pointer operand
5407 // that doesn't point to a scalar type.
5408 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5409 if (!SI->isSimple())
5410 continue;
5411 if (!isValidElementType(SI->getValueOperand()->getType()))
5412 continue;
5413 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5416 // Ignore getelementptr instructions that have more than one index, a
5417 // constant index, or a pointer operand that doesn't point to a scalar
5418 // type.
5419 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5420 auto Idx = GEP->idx_begin()->get();
5421 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5422 continue;
5423 if (!isValidElementType(Idx->getType()))
5424 continue;
5425 if (GEP->getType()->isVectorTy())
5426 continue;
5427 GEPs[GEP->getPointerOperand()].push_back(GEP);
5432 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5433 if (!A || !B)
5434 return false;
5435 Value *VL[] = { A, B };
5436 return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5439 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5440 int UserCost, bool AllowReorder) {
5441 if (VL.size() < 2)
5442 return false;
5444 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5445 << VL.size() << ".\n");
5447 // Check that all of the parts are scalar instructions of the same type,
5448 // we permit an alternate opcode via InstructionsState.
5449 InstructionsState S = getSameOpcode(VL);
5450 if (!S.getOpcode())
5451 return false;
5453 Instruction *I0 = cast<Instruction>(S.OpValue);
5454 unsigned Sz = R.getVectorElementSize(I0);
5455 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5456 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5457 if (MaxVF < 2) {
5458 R.getORE()->emit([&]() {
5459 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5460 << "Cannot SLP vectorize list: vectorization factor "
5461 << "less than 2 is not supported";
5463 return false;
5466 for (Value *V : VL) {
5467 Type *Ty = V->getType();
5468 if (!isValidElementType(Ty)) {
5469 // NOTE: the following will give user internal llvm type name, which may
5470 // not be useful.
5471 R.getORE()->emit([&]() {
5472 std::string type_str;
5473 llvm::raw_string_ostream rso(type_str);
5474 Ty->print(rso);
5475 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5476 << "Cannot SLP vectorize list: type "
5477 << rso.str() + " is unsupported by vectorizer";
5479 return false;
5483 bool Changed = false;
5484 bool CandidateFound = false;
5485 int MinCost = SLPCostThreshold;
5487 // Keep track of values that were deleted by vectorizing in the loop below.
5488 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
5490 unsigned NextInst = 0, MaxInst = VL.size();
5491 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5492 // No actual vectorization should happen, if number of parts is the same as
5493 // provided vectorization factor (i.e. the scalar type is used for vector
5494 // code during codegen).
5495 auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5496 if (TTI->getNumberOfParts(VecTy) == VF)
5497 continue;
5498 for (unsigned I = NextInst; I < MaxInst; ++I) {
5499 unsigned OpsWidth = 0;
5501 if (I + VF > MaxInst)
5502 OpsWidth = MaxInst - I;
5503 else
5504 OpsWidth = VF;
5506 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5507 break;
5509 // Check that a previous iteration of this loop did not delete the Value.
5510 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
5511 continue;
5513 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5514 << "\n");
5515 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5517 R.buildTree(Ops);
5518 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5519 // TODO: check if we can allow reordering for more cases.
5520 if (AllowReorder && Order) {
5521 // TODO: reorder tree nodes without tree rebuilding.
5522 // Conceptually, there is nothing actually preventing us from trying to
5523 // reorder a larger list. In fact, we do exactly this when vectorizing
5524 // reductions. However, at this point, we only expect to get here when
5525 // there are exactly two operations.
5526 assert(Ops.size() == 2);
5527 Value *ReorderedOps[] = {Ops[1], Ops[0]};
5528 R.buildTree(ReorderedOps, None);
5530 if (R.isTreeTinyAndNotFullyVectorizable())
5531 continue;
5533 R.computeMinimumValueSizes();
5534 int Cost = R.getTreeCost() - UserCost;
5535 CandidateFound = true;
5536 MinCost = std::min(MinCost, Cost);
5538 if (Cost < -SLPCostThreshold) {
5539 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5540 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5541 cast<Instruction>(Ops[0]))
5542 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5543 << " and with tree size "
5544 << ore::NV("TreeSize", R.getTreeSize()));
5546 R.vectorizeTree();
5547 // Move to the next bundle.
5548 I += VF - 1;
5549 NextInst = I + 1;
5550 Changed = true;
5555 if (!Changed && CandidateFound) {
5556 R.getORE()->emit([&]() {
5557 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
5558 << "List vectorization was possible but not beneficial with cost "
5559 << ore::NV("Cost", MinCost) << " >= "
5560 << ore::NV("Treshold", -SLPCostThreshold);
5562 } else if (!Changed) {
5563 R.getORE()->emit([&]() {
5564 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
5565 << "Cannot SLP vectorize list: vectorization was impossible"
5566 << " with available vectorization factors";
5569 return Changed;
5572 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5573 if (!I)
5574 return false;
5576 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
5577 return false;
5579 Value *P = I->getParent();
5581 // Vectorize in current basic block only.
5582 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5583 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5584 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
5585 return false;
5587 // Try to vectorize V.
5588 if (tryToVectorizePair(Op0, Op1, R))
5589 return true;
5591 auto *A = dyn_cast<BinaryOperator>(Op0);
5592 auto *B = dyn_cast<BinaryOperator>(Op1);
5593 // Try to skip B.
5594 if (B && B->hasOneUse()) {
5595 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
5596 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
5597 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
5598 return true;
5599 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
5600 return true;
5603 // Try to skip A.
5604 if (A && A->hasOneUse()) {
5605 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
5606 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
5607 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
5608 return true;
5609 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
5610 return true;
5612 return false;
5615 /// Generate a shuffle mask to be used in a reduction tree.
5617 /// \param VecLen The length of the vector to be reduced.
5618 /// \param NumEltsToRdx The number of elements that should be reduced in the
5619 /// vector.
5620 /// \param IsPairwise Whether the reduction is a pairwise or splitting
5621 /// reduction. A pairwise reduction will generate a mask of
5622 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
5623 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5624 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
5625 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
5626 bool IsPairwise, bool IsLeft,
5627 IRBuilder<> &Builder) {
5628 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
5630 SmallVector<Constant *, 32> ShuffleMask(
5631 VecLen, UndefValue::get(Builder.getInt32Ty()));
5633 if (IsPairwise)
5634 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5635 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5636 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
5637 else
5638 // Move the upper half of the vector to the lower half.
5639 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5640 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
5642 return ConstantVector::get(ShuffleMask);
5645 namespace {
5647 /// Model horizontal reductions.
5649 /// A horizontal reduction is a tree of reduction operations (currently add and
5650 /// fadd) that has operations that can be put into a vector as its leaf.
5651 /// For example, this tree:
5653 /// mul mul mul mul
5654 /// \ / \ /
5655 /// + +
5656 /// \ /
5657 /// +
5658 /// This tree has "mul" as its reduced values and "+" as its reduction
5659 /// operations. A reduction might be feeding into a store or a binary operation
5660 /// feeding a phi.
5661 /// ...
5662 /// \ /
5663 /// +
5664 /// |
5665 /// phi +=
5667 /// Or:
5668 /// ...
5669 /// \ /
5670 /// +
5671 /// |
5672 /// *p =
5674 class HorizontalReduction {
5675 using ReductionOpsType = SmallVector<Value *, 16>;
5676 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
5677 ReductionOpsListType ReductionOps;
5678 SmallVector<Value *, 32> ReducedVals;
5679 // Use map vector to make stable output.
5680 MapVector<Instruction *, Value *> ExtraArgs;
5682 /// Kind of the reduction data.
5683 enum ReductionKind {
5684 RK_None, /// Not a reduction.
5685 RK_Arithmetic, /// Binary reduction data.
5686 RK_Min, /// Minimum reduction data.
5687 RK_UMin, /// Unsigned minimum reduction data.
5688 RK_Max, /// Maximum reduction data.
5689 RK_UMax, /// Unsigned maximum reduction data.
5692 /// Contains info about operation, like its opcode, left and right operands.
5693 class OperationData {
5694 /// Opcode of the instruction.
5695 unsigned Opcode = 0;
5697 /// Left operand of the reduction operation.
5698 Value *LHS = nullptr;
5700 /// Right operand of the reduction operation.
5701 Value *RHS = nullptr;
5703 /// Kind of the reduction operation.
5704 ReductionKind Kind = RK_None;
5706 /// True if float point min/max reduction has no NaNs.
5707 bool NoNaN = false;
5709 /// Checks if the reduction operation can be vectorized.
5710 bool isVectorizable() const {
5711 return LHS && RHS &&
5712 // We currently only support add/mul/logical && min/max reductions.
5713 ((Kind == RK_Arithmetic &&
5714 (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
5715 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
5716 Opcode == Instruction::And || Opcode == Instruction::Or ||
5717 Opcode == Instruction::Xor)) ||
5718 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5719 (Kind == RK_Min || Kind == RK_Max)) ||
5720 (Opcode == Instruction::ICmp &&
5721 (Kind == RK_UMin || Kind == RK_UMax)));
5724 /// Creates reduction operation with the current opcode.
5725 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5726 assert(isVectorizable() &&
5727 "Expected add|fadd or min/max reduction operation.");
5728 Value *Cmp = nullptr;
5729 switch (Kind) {
5730 case RK_Arithmetic:
5731 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5732 Name);
5733 case RK_Min:
5734 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5735 : Builder.CreateFCmpOLT(LHS, RHS);
5736 break;
5737 case RK_Max:
5738 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5739 : Builder.CreateFCmpOGT(LHS, RHS);
5740 break;
5741 case RK_UMin:
5742 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5743 Cmp = Builder.CreateICmpULT(LHS, RHS);
5744 break;
5745 case RK_UMax:
5746 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5747 Cmp = Builder.CreateICmpUGT(LHS, RHS);
5748 break;
5749 case RK_None:
5750 llvm_unreachable("Unknown reduction operation.");
5752 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5755 public:
5756 explicit OperationData() = default;
5758 /// Construction for reduced values. They are identified by opcode only and
5759 /// don't have associated LHS/RHS values.
5760 explicit OperationData(Value *V) {
5761 if (auto *I = dyn_cast<Instruction>(V))
5762 Opcode = I->getOpcode();
5765 /// Constructor for reduction operations with opcode and its left and
5766 /// right operands.
5767 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5768 bool NoNaN = false)
5769 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5770 assert(Kind != RK_None && "One of the reduction operations is expected.");
5773 explicit operator bool() const { return Opcode; }
5775 /// Get the index of the first operand.
5776 unsigned getFirstOperandIndex() const {
5777 assert(!!*this && "The opcode is not set.");
5778 switch (Kind) {
5779 case RK_Min:
5780 case RK_UMin:
5781 case RK_Max:
5782 case RK_UMax:
5783 return 1;
5784 case RK_Arithmetic:
5785 case RK_None:
5786 break;
5788 return 0;
5791 /// Total number of operands in the reduction operation.
5792 unsigned getNumberOfOperands() const {
5793 assert(Kind != RK_None && !!*this && LHS && RHS &&
5794 "Expected reduction operation.");
5795 switch (Kind) {
5796 case RK_Arithmetic:
5797 return 2;
5798 case RK_Min:
5799 case RK_UMin:
5800 case RK_Max:
5801 case RK_UMax:
5802 return 3;
5803 case RK_None:
5804 break;
5806 llvm_unreachable("Reduction kind is not set");
5809 /// Checks if the operation has the same parent as \p P.
5810 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5811 assert(Kind != RK_None && !!*this && LHS && RHS &&
5812 "Expected reduction operation.");
5813 if (!IsRedOp)
5814 return I->getParent() == P;
5815 switch (Kind) {
5816 case RK_Arithmetic:
5817 // Arithmetic reduction operation must be used once only.
5818 return I->getParent() == P;
5819 case RK_Min:
5820 case RK_UMin:
5821 case RK_Max:
5822 case RK_UMax: {
5823 // SelectInst must be used twice while the condition op must have single
5824 // use only.
5825 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5826 return I->getParent() == P && Cmp && Cmp->getParent() == P;
5828 case RK_None:
5829 break;
5831 llvm_unreachable("Reduction kind is not set");
5833 /// Expected number of uses for reduction operations/reduced values.
5834 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5835 assert(Kind != RK_None && !!*this && LHS && RHS &&
5836 "Expected reduction operation.");
5837 switch (Kind) {
5838 case RK_Arithmetic:
5839 return I->hasOneUse();
5840 case RK_Min:
5841 case RK_UMin:
5842 case RK_Max:
5843 case RK_UMax:
5844 return I->hasNUses(2) &&
5845 (!IsReductionOp ||
5846 cast<SelectInst>(I)->getCondition()->hasOneUse());
5847 case RK_None:
5848 break;
5850 llvm_unreachable("Reduction kind is not set");
5853 /// Initializes the list of reduction operations.
5854 void initReductionOps(ReductionOpsListType &ReductionOps) {
5855 assert(Kind != RK_None && !!*this && LHS && RHS &&
5856 "Expected reduction operation.");
5857 switch (Kind) {
5858 case RK_Arithmetic:
5859 ReductionOps.assign(1, ReductionOpsType());
5860 break;
5861 case RK_Min:
5862 case RK_UMin:
5863 case RK_Max:
5864 case RK_UMax:
5865 ReductionOps.assign(2, ReductionOpsType());
5866 break;
5867 case RK_None:
5868 llvm_unreachable("Reduction kind is not set");
5871 /// Add all reduction operations for the reduction instruction \p I.
5872 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5873 assert(Kind != RK_None && !!*this && LHS && RHS &&
5874 "Expected reduction operation.");
5875 switch (Kind) {
5876 case RK_Arithmetic:
5877 ReductionOps[0].emplace_back(I);
5878 break;
5879 case RK_Min:
5880 case RK_UMin:
5881 case RK_Max:
5882 case RK_UMax:
5883 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5884 ReductionOps[1].emplace_back(I);
5885 break;
5886 case RK_None:
5887 llvm_unreachable("Reduction kind is not set");
5891 /// Checks if instruction is associative and can be vectorized.
5892 bool isAssociative(Instruction *I) const {
5893 assert(Kind != RK_None && *this && LHS && RHS &&
5894 "Expected reduction operation.");
5895 switch (Kind) {
5896 case RK_Arithmetic:
5897 return I->isAssociative();
5898 case RK_Min:
5899 case RK_Max:
5900 return Opcode == Instruction::ICmp ||
5901 cast<Instruction>(I->getOperand(0))->isFast();
5902 case RK_UMin:
5903 case RK_UMax:
5904 assert(Opcode == Instruction::ICmp &&
5905 "Only integer compare operation is expected.");
5906 return true;
5907 case RK_None:
5908 break;
5910 llvm_unreachable("Reduction kind is not set");
5913 /// Checks if the reduction operation can be vectorized.
5914 bool isVectorizable(Instruction *I) const {
5915 return isVectorizable() && isAssociative(I);
5918 /// Checks if two operation data are both a reduction op or both a reduced
5919 /// value.
5920 bool operator==(const OperationData &OD) {
5921 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
5922 "One of the comparing operations is incorrect.");
5923 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5925 bool operator!=(const OperationData &OD) { return !(*this == OD); }
5926 void clear() {
5927 Opcode = 0;
5928 LHS = nullptr;
5929 RHS = nullptr;
5930 Kind = RK_None;
5931 NoNaN = false;
5934 /// Get the opcode of the reduction operation.
5935 unsigned getOpcode() const {
5936 assert(isVectorizable() && "Expected vectorizable operation.");
5937 return Opcode;
5940 /// Get kind of reduction data.
5941 ReductionKind getKind() const { return Kind; }
5942 Value *getLHS() const { return LHS; }
5943 Value *getRHS() const { return RHS; }
5944 Type *getConditionType() const {
5945 switch (Kind) {
5946 case RK_Arithmetic:
5947 return nullptr;
5948 case RK_Min:
5949 case RK_Max:
5950 case RK_UMin:
5951 case RK_UMax:
5952 return CmpInst::makeCmpResultType(LHS->getType());
5953 case RK_None:
5954 break;
5956 llvm_unreachable("Reduction kind is not set");
5959 /// Creates reduction operation with the current opcode with the IR flags
5960 /// from \p ReductionOps.
5961 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5962 const ReductionOpsListType &ReductionOps) const {
5963 assert(isVectorizable() &&
5964 "Expected add|fadd or min/max reduction operation.");
5965 auto *Op = createOp(Builder, Name);
5966 switch (Kind) {
5967 case RK_Arithmetic:
5968 propagateIRFlags(Op, ReductionOps[0]);
5969 return Op;
5970 case RK_Min:
5971 case RK_Max:
5972 case RK_UMin:
5973 case RK_UMax:
5974 if (auto *SI = dyn_cast<SelectInst>(Op))
5975 propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5976 propagateIRFlags(Op, ReductionOps[1]);
5977 return Op;
5978 case RK_None:
5979 break;
5981 llvm_unreachable("Unknown reduction operation.");
5983 /// Creates reduction operation with the current opcode with the IR flags
5984 /// from \p I.
5985 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5986 Instruction *I) const {
5987 assert(isVectorizable() &&
5988 "Expected add|fadd or min/max reduction operation.");
5989 auto *Op = createOp(Builder, Name);
5990 switch (Kind) {
5991 case RK_Arithmetic:
5992 propagateIRFlags(Op, I);
5993 return Op;
5994 case RK_Min:
5995 case RK_Max:
5996 case RK_UMin:
5997 case RK_UMax:
5998 if (auto *SI = dyn_cast<SelectInst>(Op)) {
5999 propagateIRFlags(SI->getCondition(),
6000 cast<SelectInst>(I)->getCondition());
6002 propagateIRFlags(Op, I);
6003 return Op;
6004 case RK_None:
6005 break;
6007 llvm_unreachable("Unknown reduction operation.");
6010 TargetTransformInfo::ReductionFlags getFlags() const {
6011 TargetTransformInfo::ReductionFlags Flags;
6012 Flags.NoNaN = NoNaN;
6013 switch (Kind) {
6014 case RK_Arithmetic:
6015 break;
6016 case RK_Min:
6017 Flags.IsSigned = Opcode == Instruction::ICmp;
6018 Flags.IsMaxOp = false;
6019 break;
6020 case RK_Max:
6021 Flags.IsSigned = Opcode == Instruction::ICmp;
6022 Flags.IsMaxOp = true;
6023 break;
6024 case RK_UMin:
6025 Flags.IsSigned = false;
6026 Flags.IsMaxOp = false;
6027 break;
6028 case RK_UMax:
6029 Flags.IsSigned = false;
6030 Flags.IsMaxOp = true;
6031 break;
6032 case RK_None:
6033 llvm_unreachable("Reduction kind is not set");
6035 return Flags;
6039 WeakTrackingVH ReductionRoot;
6041 /// The operation data of the reduction operation.
6042 OperationData ReductionData;
6044 /// The operation data of the values we perform a reduction on.
6045 OperationData ReducedValueData;
6047 /// Should we model this reduction as a pairwise reduction tree or a tree that
6048 /// splits the vector in halves and adds those halves.
6049 bool IsPairwiseReduction = false;
6051 /// Checks if the ParentStackElem.first should be marked as a reduction
6052 /// operation with an extra argument or as extra argument itself.
6053 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6054 Value *ExtraArg) {
6055 if (ExtraArgs.count(ParentStackElem.first)) {
6056 ExtraArgs[ParentStackElem.first] = nullptr;
6057 // We ran into something like:
6058 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6059 // The whole ParentStackElem.first should be considered as an extra value
6060 // in this case.
6061 // Do not perform analysis of remaining operands of ParentStackElem.first
6062 // instruction, this whole instruction is an extra argument.
6063 ParentStackElem.second = ParentStackElem.first->getNumOperands();
6064 } else {
6065 // We ran into something like:
6066 // ParentStackElem.first += ... + ExtraArg + ...
6067 ExtraArgs[ParentStackElem.first] = ExtraArg;
6071 static OperationData getOperationData(Value *V) {
6072 if (!V)
6073 return OperationData();
6075 Value *LHS;
6076 Value *RHS;
6077 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6078 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6079 RK_Arithmetic);
6081 if (auto *Select = dyn_cast<SelectInst>(V)) {
6082 // Look for a min/max pattern.
6083 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6084 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6085 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6086 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6087 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6088 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6089 return OperationData(
6090 Instruction::FCmp, LHS, RHS, RK_Min,
6091 cast<Instruction>(Select->getCondition())->hasNoNaNs());
6092 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6093 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6094 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6095 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6096 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6097 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6098 return OperationData(
6099 Instruction::FCmp, LHS, RHS, RK_Max,
6100 cast<Instruction>(Select->getCondition())->hasNoNaNs());
6101 } else {
6102 // Try harder: look for min/max pattern based on instructions producing
6103 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6104 // During the intermediate stages of SLP, it's very common to have
6105 // pattern like this (since optimizeGatherSequence is run only once
6106 // at the end):
6107 // %1 = extractelement <2 x i32> %a, i32 0
6108 // %2 = extractelement <2 x i32> %a, i32 1
6109 // %cond = icmp sgt i32 %1, %2
6110 // %3 = extractelement <2 x i32> %a, i32 0
6111 // %4 = extractelement <2 x i32> %a, i32 1
6112 // %select = select i1 %cond, i32 %3, i32 %4
6113 CmpInst::Predicate Pred;
6114 Instruction *L1;
6115 Instruction *L2;
6117 LHS = Select->getTrueValue();
6118 RHS = Select->getFalseValue();
6119 Value *Cond = Select->getCondition();
6121 // TODO: Support inverse predicates.
6122 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6123 if (!isa<ExtractElementInst>(RHS) ||
6124 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6125 return OperationData(V);
6126 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6127 if (!isa<ExtractElementInst>(LHS) ||
6128 !L1->isIdenticalTo(cast<Instruction>(LHS)))
6129 return OperationData(V);
6130 } else {
6131 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6132 return OperationData(V);
6133 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6134 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6135 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6136 return OperationData(V);
6138 switch (Pred) {
6139 default:
6140 return OperationData(V);
6142 case CmpInst::ICMP_ULT:
6143 case CmpInst::ICMP_ULE:
6144 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6146 case CmpInst::ICMP_SLT:
6147 case CmpInst::ICMP_SLE:
6148 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6150 case CmpInst::FCMP_OLT:
6151 case CmpInst::FCMP_OLE:
6152 case CmpInst::FCMP_ULT:
6153 case CmpInst::FCMP_ULE:
6154 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6155 cast<Instruction>(Cond)->hasNoNaNs());
6157 case CmpInst::ICMP_UGT:
6158 case CmpInst::ICMP_UGE:
6159 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6161 case CmpInst::ICMP_SGT:
6162 case CmpInst::ICMP_SGE:
6163 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6165 case CmpInst::FCMP_OGT:
6166 case CmpInst::FCMP_OGE:
6167 case CmpInst::FCMP_UGT:
6168 case CmpInst::FCMP_UGE:
6169 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6170 cast<Instruction>(Cond)->hasNoNaNs());
6174 return OperationData(V);
6177 public:
6178 HorizontalReduction() = default;
6180 /// Try to find a reduction tree.
6181 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6182 assert((!Phi || is_contained(Phi->operands(), B)) &&
6183 "Thi phi needs to use the binary operator");
6185 ReductionData = getOperationData(B);
6187 // We could have a initial reductions that is not an add.
6188 // r *= v1 + v2 + v3 + v4
6189 // In such a case start looking for a tree rooted in the first '+'.
6190 if (Phi) {
6191 if (ReductionData.getLHS() == Phi) {
6192 Phi = nullptr;
6193 B = dyn_cast<Instruction>(ReductionData.getRHS());
6194 ReductionData = getOperationData(B);
6195 } else if (ReductionData.getRHS() == Phi) {
6196 Phi = nullptr;
6197 B = dyn_cast<Instruction>(ReductionData.getLHS());
6198 ReductionData = getOperationData(B);
6202 if (!ReductionData.isVectorizable(B))
6203 return false;
6205 Type *Ty = B->getType();
6206 if (!isValidElementType(Ty))
6207 return false;
6208 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6209 return false;
6211 ReducedValueData.clear();
6212 ReductionRoot = B;
6214 // Post order traverse the reduction tree starting at B. We only handle true
6215 // trees containing only binary operators.
6216 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6217 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6218 ReductionData.initReductionOps(ReductionOps);
6219 while (!Stack.empty()) {
6220 Instruction *TreeN = Stack.back().first;
6221 unsigned EdgeToVist = Stack.back().second++;
6222 OperationData OpData = getOperationData(TreeN);
6223 bool IsReducedValue = OpData != ReductionData;
6225 // Postorder vist.
6226 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6227 if (IsReducedValue)
6228 ReducedVals.push_back(TreeN);
6229 else {
6230 auto I = ExtraArgs.find(TreeN);
6231 if (I != ExtraArgs.end() && !I->second) {
6232 // Check if TreeN is an extra argument of its parent operation.
6233 if (Stack.size() <= 1) {
6234 // TreeN can't be an extra argument as it is a root reduction
6235 // operation.
6236 return false;
6238 // Yes, TreeN is an extra argument, do not add it to a list of
6239 // reduction operations.
6240 // Stack[Stack.size() - 2] always points to the parent operation.
6241 markExtraArg(Stack[Stack.size() - 2], TreeN);
6242 ExtraArgs.erase(TreeN);
6243 } else
6244 ReductionData.addReductionOps(TreeN, ReductionOps);
6246 // Retract.
6247 Stack.pop_back();
6248 continue;
6251 // Visit left or right.
6252 Value *NextV = TreeN->getOperand(EdgeToVist);
6253 if (NextV != Phi) {
6254 auto *I = dyn_cast<Instruction>(NextV);
6255 OpData = getOperationData(I);
6256 // Continue analysis if the next operand is a reduction operation or
6257 // (possibly) a reduced value. If the reduced value opcode is not set,
6258 // the first met operation != reduction operation is considered as the
6259 // reduced value class.
6260 if (I && (!ReducedValueData || OpData == ReducedValueData ||
6261 OpData == ReductionData)) {
6262 const bool IsReductionOperation = OpData == ReductionData;
6263 // Only handle trees in the current basic block.
6264 if (!ReductionData.hasSameParent(I, B->getParent(),
6265 IsReductionOperation)) {
6266 // I is an extra argument for TreeN (its parent operation).
6267 markExtraArg(Stack.back(), I);
6268 continue;
6271 // Each tree node needs to have minimal number of users except for the
6272 // ultimate reduction.
6273 if (!ReductionData.hasRequiredNumberOfUses(I,
6274 OpData == ReductionData) &&
6275 I != B) {
6276 // I is an extra argument for TreeN (its parent operation).
6277 markExtraArg(Stack.back(), I);
6278 continue;
6281 if (IsReductionOperation) {
6282 // We need to be able to reassociate the reduction operations.
6283 if (!OpData.isAssociative(I)) {
6284 // I is an extra argument for TreeN (its parent operation).
6285 markExtraArg(Stack.back(), I);
6286 continue;
6288 } else if (ReducedValueData &&
6289 ReducedValueData != OpData) {
6290 // Make sure that the opcodes of the operations that we are going to
6291 // reduce match.
6292 // I is an extra argument for TreeN (its parent operation).
6293 markExtraArg(Stack.back(), I);
6294 continue;
6295 } else if (!ReducedValueData)
6296 ReducedValueData = OpData;
6298 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6299 continue;
6302 // NextV is an extra argument for TreeN (its parent operation).
6303 markExtraArg(Stack.back(), NextV);
6305 return true;
6308 /// Attempt to vectorize the tree found by
6309 /// matchAssociativeReduction.
6310 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6311 if (ReducedVals.empty())
6312 return false;
6314 // If there is a sufficient number of reduction values, reduce
6315 // to a nearby power-of-2. Can safely generate oversized
6316 // vectors and rely on the backend to split them to legal sizes.
6317 unsigned NumReducedVals = ReducedVals.size();
6318 if (NumReducedVals < 4)
6319 return false;
6321 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6323 Value *VectorizedTree = nullptr;
6325 // FIXME: Fast-math-flags should be set based on the instructions in the
6326 // reduction (not all of 'fast' are required).
6327 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6328 FastMathFlags Unsafe;
6329 Unsafe.setFast();
6330 Builder.setFastMathFlags(Unsafe);
6331 unsigned i = 0;
6333 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6334 // The same extra argument may be used several time, so log each attempt
6335 // to use it.
6336 for (auto &Pair : ExtraArgs) {
6337 assert(Pair.first && "DebugLoc must be set.");
6338 ExternallyUsedValues[Pair.second].push_back(Pair.first);
6340 // The reduction root is used as the insertion point for new instructions,
6341 // so set it as externally used to prevent it from being deleted.
6342 ExternallyUsedValues[ReductionRoot];
6343 SmallVector<Value *, 16> IgnoreList;
6344 for (auto &V : ReductionOps)
6345 IgnoreList.append(V.begin(), V.end());
6346 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6347 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6348 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6349 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6350 // TODO: Handle orders of size less than number of elements in the vector.
6351 if (Order && Order->size() == VL.size()) {
6352 // TODO: reorder tree nodes without tree rebuilding.
6353 SmallVector<Value *, 4> ReorderedOps(VL.size());
6354 llvm::transform(*Order, ReorderedOps.begin(),
6355 [VL](const unsigned Idx) { return VL[Idx]; });
6356 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6358 if (V.isTreeTinyAndNotFullyVectorizable())
6359 break;
6361 V.computeMinimumValueSizes();
6363 // Estimate cost.
6364 int TreeCost = V.getTreeCost();
6365 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6366 int Cost = TreeCost + ReductionCost;
6367 if (Cost >= -SLPCostThreshold) {
6368 V.getORE()->emit([&]() {
6369 return OptimizationRemarkMissed(
6370 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6371 << "Vectorizing horizontal reduction is possible"
6372 << "but not beneficial with cost "
6373 << ore::NV("Cost", Cost) << " and threshold "
6374 << ore::NV("Threshold", -SLPCostThreshold);
6376 break;
6379 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6380 << Cost << ". (HorRdx)\n");
6381 V.getORE()->emit([&]() {
6382 return OptimizationRemark(
6383 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6384 << "Vectorized horizontal reduction with cost "
6385 << ore::NV("Cost", Cost) << " and with tree size "
6386 << ore::NV("TreeSize", V.getTreeSize());
6389 // Vectorize a tree.
6390 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6391 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6393 // Emit a reduction.
6394 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
6395 Value *ReducedSubTree =
6396 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6397 if (VectorizedTree) {
6398 Builder.SetCurrentDebugLocation(Loc);
6399 OperationData VectReductionData(ReductionData.getOpcode(),
6400 VectorizedTree, ReducedSubTree,
6401 ReductionData.getKind());
6402 VectorizedTree =
6403 VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6404 } else
6405 VectorizedTree = ReducedSubTree;
6406 i += ReduxWidth;
6407 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6410 if (VectorizedTree) {
6411 // Finish the reduction.
6412 for (; i < NumReducedVals; ++i) {
6413 auto *I = cast<Instruction>(ReducedVals[i]);
6414 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6415 OperationData VectReductionData(ReductionData.getOpcode(),
6416 VectorizedTree, I,
6417 ReductionData.getKind());
6418 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6420 for (auto &Pair : ExternallyUsedValues) {
6421 // Add each externally used value to the final reduction.
6422 for (auto *I : Pair.second) {
6423 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6424 OperationData VectReductionData(ReductionData.getOpcode(),
6425 VectorizedTree, Pair.first,
6426 ReductionData.getKind());
6427 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6430 // Update users.
6431 ReductionRoot->replaceAllUsesWith(VectorizedTree);
6433 return VectorizedTree != nullptr;
6436 unsigned numReductionValues() const {
6437 return ReducedVals.size();
6440 private:
6441 /// Calculate the cost of a reduction.
6442 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6443 unsigned ReduxWidth) {
6444 Type *ScalarTy = FirstReducedVal->getType();
6445 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6447 int PairwiseRdxCost;
6448 int SplittingRdxCost;
6449 switch (ReductionData.getKind()) {
6450 case RK_Arithmetic:
6451 PairwiseRdxCost =
6452 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6453 /*IsPairwiseForm=*/true);
6454 SplittingRdxCost =
6455 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6456 /*IsPairwiseForm=*/false);
6457 break;
6458 case RK_Min:
6459 case RK_Max:
6460 case RK_UMin:
6461 case RK_UMax: {
6462 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6463 bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6464 ReductionData.getKind() == RK_UMax;
6465 PairwiseRdxCost =
6466 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6467 /*IsPairwiseForm=*/true, IsUnsigned);
6468 SplittingRdxCost =
6469 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6470 /*IsPairwiseForm=*/false, IsUnsigned);
6471 break;
6473 case RK_None:
6474 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6477 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6478 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6480 int ScalarReduxCost = 0;
6481 switch (ReductionData.getKind()) {
6482 case RK_Arithmetic:
6483 ScalarReduxCost =
6484 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6485 break;
6486 case RK_Min:
6487 case RK_Max:
6488 case RK_UMin:
6489 case RK_UMax:
6490 ScalarReduxCost =
6491 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6492 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6493 CmpInst::makeCmpResultType(ScalarTy));
6494 break;
6495 case RK_None:
6496 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6498 ScalarReduxCost *= (ReduxWidth - 1);
6500 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6501 << " for reduction that starts with " << *FirstReducedVal
6502 << " (It is a "
6503 << (IsPairwiseReduction ? "pairwise" : "splitting")
6504 << " reduction)\n");
6506 return VecReduxCost - ScalarReduxCost;
6509 /// Emit a horizontal reduction of the vectorized value.
6510 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6511 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6512 assert(VectorizedValue && "Need to have a vectorized tree node");
6513 assert(isPowerOf2_32(ReduxWidth) &&
6514 "We only handle power-of-two reductions for now");
6516 if (!IsPairwiseReduction) {
6517 // FIXME: The builder should use an FMF guard. It should not be hard-coded
6518 // to 'fast'.
6519 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6520 return createSimpleTargetReduction(
6521 Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6522 ReductionData.getFlags(), ReductionOps.back());
6525 Value *TmpVec = VectorizedValue;
6526 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6527 Value *LeftMask =
6528 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6529 Value *RightMask =
6530 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6532 Value *LeftShuf = Builder.CreateShuffleVector(
6533 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6534 Value *RightShuf = Builder.CreateShuffleVector(
6535 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6536 "rdx.shuf.r");
6537 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6538 RightShuf, ReductionData.getKind());
6539 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6542 // The result is in the first element of the vector.
6543 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6547 } // end anonymous namespace
6549 /// Recognize construction of vectors like
6550 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
6551 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
6552 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
6553 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
6554 /// starting from the last insertelement instruction.
6556 /// Returns true if it matches
6557 static bool findBuildVector(InsertElementInst *LastInsertElem,
6558 TargetTransformInfo *TTI,
6559 SmallVectorImpl<Value *> &BuildVectorOpds,
6560 int &UserCost) {
6561 UserCost = 0;
6562 Value *V = nullptr;
6563 do {
6564 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
6565 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6566 LastInsertElem->getType(),
6567 CI->getZExtValue());
6569 BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
6570 V = LastInsertElem->getOperand(0);
6571 if (isa<UndefValue>(V))
6572 break;
6573 LastInsertElem = dyn_cast<InsertElementInst>(V);
6574 if (!LastInsertElem || !LastInsertElem->hasOneUse())
6575 return false;
6576 } while (true);
6577 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6578 return true;
6581 /// Like findBuildVector, but looks for construction of aggregate.
6583 /// \return true if it matches.
6584 static bool findBuildAggregate(InsertValueInst *IV,
6585 SmallVectorImpl<Value *> &BuildVectorOpds) {
6586 do {
6587 BuildVectorOpds.push_back(IV->getInsertedValueOperand());
6588 Value *V = IV->getAggregateOperand();
6589 if (isa<UndefValue>(V))
6590 break;
6591 IV = dyn_cast<InsertValueInst>(V);
6592 if (!IV || !IV->hasOneUse())
6593 return false;
6594 } while (true);
6595 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6596 return true;
6599 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
6600 return V->getType() < V2->getType();
6603 /// Try and get a reduction value from a phi node.
6605 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6606 /// if they come from either \p ParentBB or a containing loop latch.
6608 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
6609 /// if not possible.
6610 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
6611 BasicBlock *ParentBB, LoopInfo *LI) {
6612 // There are situations where the reduction value is not dominated by the
6613 // reduction phi. Vectorizing such cases has been reported to cause
6614 // miscompiles. See PR25787.
6615 auto DominatedReduxValue = [&](Value *R) {
6616 return isa<Instruction>(R) &&
6617 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
6620 Value *Rdx = nullptr;
6622 // Return the incoming value if it comes from the same BB as the phi node.
6623 if (P->getIncomingBlock(0) == ParentBB) {
6624 Rdx = P->getIncomingValue(0);
6625 } else if (P->getIncomingBlock(1) == ParentBB) {
6626 Rdx = P->getIncomingValue(1);
6629 if (Rdx && DominatedReduxValue(Rdx))
6630 return Rdx;
6632 // Otherwise, check whether we have a loop latch to look at.
6633 Loop *BBL = LI->getLoopFor(ParentBB);
6634 if (!BBL)
6635 return nullptr;
6636 BasicBlock *BBLatch = BBL->getLoopLatch();
6637 if (!BBLatch)
6638 return nullptr;
6640 // There is a loop latch, return the incoming value if it comes from
6641 // that. This reduction pattern occasionally turns up.
6642 if (P->getIncomingBlock(0) == BBLatch) {
6643 Rdx = P->getIncomingValue(0);
6644 } else if (P->getIncomingBlock(1) == BBLatch) {
6645 Rdx = P->getIncomingValue(1);
6648 if (Rdx && DominatedReduxValue(Rdx))
6649 return Rdx;
6651 return nullptr;
6654 /// Attempt to reduce a horizontal reduction.
6655 /// If it is legal to match a horizontal reduction feeding the phi node \a P
6656 /// with reduction operators \a Root (or one of its operands) in a basic block
6657 /// \a BB, then check if it can be done. If horizontal reduction is not found
6658 /// and root instruction is a binary operation, vectorization of the operands is
6659 /// attempted.
6660 /// \returns true if a horizontal reduction was matched and reduced or operands
6661 /// of one of the binary instruction were vectorized.
6662 /// \returns false if a horizontal reduction was not matched (or not possible)
6663 /// or no vectorization of any binary operation feeding \a Root instruction was
6664 /// performed.
6665 static bool tryToVectorizeHorReductionOrInstOperands(
6666 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
6667 TargetTransformInfo *TTI,
6668 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
6669 if (!ShouldVectorizeHor)
6670 return false;
6672 if (!Root)
6673 return false;
6675 if (Root->getParent() != BB || isa<PHINode>(Root))
6676 return false;
6677 // Start analysis starting from Root instruction. If horizontal reduction is
6678 // found, try to vectorize it. If it is not a horizontal reduction or
6679 // vectorization is not possible or not effective, and currently analyzed
6680 // instruction is a binary operation, try to vectorize the operands, using
6681 // pre-order DFS traversal order. If the operands were not vectorized, repeat
6682 // the same procedure considering each operand as a possible root of the
6683 // horizontal reduction.
6684 // Interrupt the process if the Root instruction itself was vectorized or all
6685 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6686 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
6687 SmallPtrSet<Value *, 8> VisitedInstrs;
6688 bool Res = false;
6689 while (!Stack.empty()) {
6690 Value *V;
6691 unsigned Level;
6692 std::tie(V, Level) = Stack.pop_back_val();
6693 if (!V)
6694 continue;
6695 auto *Inst = dyn_cast<Instruction>(V);
6696 if (!Inst)
6697 continue;
6698 auto *BI = dyn_cast<BinaryOperator>(Inst);
6699 auto *SI = dyn_cast<SelectInst>(Inst);
6700 if (BI || SI) {
6701 HorizontalReduction HorRdx;
6702 if (HorRdx.matchAssociativeReduction(P, Inst)) {
6703 if (HorRdx.tryToReduce(R, TTI)) {
6704 Res = true;
6705 // Set P to nullptr to avoid re-analysis of phi node in
6706 // matchAssociativeReduction function unless this is the root node.
6707 P = nullptr;
6708 continue;
6711 if (P && BI) {
6712 Inst = dyn_cast<Instruction>(BI->getOperand(0));
6713 if (Inst == P)
6714 Inst = dyn_cast<Instruction>(BI->getOperand(1));
6715 if (!Inst) {
6716 // Set P to nullptr to avoid re-analysis of phi node in
6717 // matchAssociativeReduction function unless this is the root node.
6718 P = nullptr;
6719 continue;
6723 // Set P to nullptr to avoid re-analysis of phi node in
6724 // matchAssociativeReduction function unless this is the root node.
6725 P = nullptr;
6726 if (Vectorize(Inst, R)) {
6727 Res = true;
6728 continue;
6731 // Try to vectorize operands.
6732 // Continue analysis for the instruction from the same basic block only to
6733 // save compile time.
6734 if (++Level < RecursionMaxDepth)
6735 for (auto *Op : Inst->operand_values())
6736 if (VisitedInstrs.insert(Op).second)
6737 if (auto *I = dyn_cast<Instruction>(Op))
6738 if (!isa<PHINode>(I) && I->getParent() == BB)
6739 Stack.emplace_back(Op, Level);
6741 return Res;
6744 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
6745 BasicBlock *BB, BoUpSLP &R,
6746 TargetTransformInfo *TTI) {
6747 if (!V)
6748 return false;
6749 auto *I = dyn_cast<Instruction>(V);
6750 if (!I)
6751 return false;
6753 if (!isa<BinaryOperator>(I))
6754 P = nullptr;
6755 // Try to match and vectorize a horizontal reduction.
6756 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
6757 return tryToVectorize(I, R);
6759 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
6760 ExtraVectorization);
6763 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
6764 BasicBlock *BB, BoUpSLP &R) {
6765 const DataLayout &DL = BB->getModule()->getDataLayout();
6766 if (!R.canMapToVector(IVI->getType(), DL))
6767 return false;
6769 SmallVector<Value *, 16> BuildVectorOpds;
6770 if (!findBuildAggregate(IVI, BuildVectorOpds))
6771 return false;
6773 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
6774 // Aggregate value is unlikely to be processed in vector register, we need to
6775 // extract scalars into scalar registers, so NeedExtraction is set true.
6776 return tryToVectorizeList(BuildVectorOpds, R);
6779 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
6780 BasicBlock *BB, BoUpSLP &R) {
6781 int UserCost;
6782 SmallVector<Value *, 16> BuildVectorOpds;
6783 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
6784 (llvm::all_of(BuildVectorOpds,
6785 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
6786 isShuffle(BuildVectorOpds)))
6787 return false;
6789 // Vectorize starting with the build vector operands ignoring the BuildVector
6790 // instructions for the purpose of scheduling and user extraction.
6791 return tryToVectorizeList(BuildVectorOpds, R, UserCost);
6794 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
6795 BoUpSLP &R) {
6796 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
6797 return true;
6799 bool OpsChanged = false;
6800 for (int Idx = 0; Idx < 2; ++Idx) {
6801 OpsChanged |=
6802 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
6804 return OpsChanged;
6807 bool SLPVectorizerPass::vectorizeSimpleInstructions(
6808 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
6809 bool OpsChanged = false;
6810 for (auto &VH : reverse(Instructions)) {
6811 auto *I = dyn_cast_or_null<Instruction>(VH);
6812 if (!I)
6813 continue;
6814 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
6815 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
6816 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6817 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6818 else if (auto *CI = dyn_cast<CmpInst>(I))
6819 OpsChanged |= vectorizeCmpInst(CI, BB, R);
6821 Instructions.clear();
6822 return OpsChanged;
6825 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6826 bool Changed = false;
6827 SmallVector<Value *, 4> Incoming;
6828 SmallPtrSet<Value *, 16> VisitedInstrs;
6830 bool HaveVectorizedPhiNodes = true;
6831 while (HaveVectorizedPhiNodes) {
6832 HaveVectorizedPhiNodes = false;
6834 // Collect the incoming values from the PHIs.
6835 Incoming.clear();
6836 for (Instruction &I : *BB) {
6837 PHINode *P = dyn_cast<PHINode>(&I);
6838 if (!P)
6839 break;
6841 if (!VisitedInstrs.count(P))
6842 Incoming.push_back(P);
6845 // Sort by type.
6846 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
6848 // Try to vectorize elements base on their type.
6849 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6850 E = Incoming.end();
6851 IncIt != E;) {
6853 // Look for the next elements with the same type.
6854 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6855 while (SameTypeIt != E &&
6856 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6857 VisitedInstrs.insert(*SameTypeIt);
6858 ++SameTypeIt;
6861 // Try to vectorize them.
6862 unsigned NumElts = (SameTypeIt - IncIt);
6863 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
6864 << NumElts << ")\n");
6865 // The order in which the phi nodes appear in the program does not matter.
6866 // So allow tryToVectorizeList to reorder them if it is beneficial. This
6867 // is done when there are exactly two elements since tryToVectorizeList
6868 // asserts that there are only two values when AllowReorder is true.
6869 bool AllowReorder = NumElts == 2;
6870 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
6871 /*UserCost=*/0, AllowReorder)) {
6872 // Success start over because instructions might have been changed.
6873 HaveVectorizedPhiNodes = true;
6874 Changed = true;
6875 break;
6878 // Start over at the next instruction of a different type (or the end).
6879 IncIt = SameTypeIt;
6883 VisitedInstrs.clear();
6885 SmallVector<WeakVH, 8> PostProcessInstructions;
6886 SmallDenseSet<Instruction *, 4> KeyNodes;
6887 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
6888 // We may go through BB multiple times so skip the one we have checked.
6889 if (!VisitedInstrs.insert(&*it).second) {
6890 if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6891 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6892 // We would like to start over since some instructions are deleted
6893 // and the iterator may become invalid value.
6894 Changed = true;
6895 it = BB->begin();
6896 e = BB->end();
6898 continue;
6901 if (isa<DbgInfoIntrinsic>(it))
6902 continue;
6904 // Try to vectorize reductions that use PHINodes.
6905 if (PHINode *P = dyn_cast<PHINode>(it)) {
6906 // Check that the PHI is a reduction PHI.
6907 if (P->getNumIncomingValues() != 2)
6908 return Changed;
6910 // Try to match and vectorize a horizontal reduction.
6911 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6912 TTI)) {
6913 Changed = true;
6914 it = BB->begin();
6915 e = BB->end();
6916 continue;
6918 continue;
6921 // Ran into an instruction without users, like terminator, or function call
6922 // with ignored return value, store. Ignore unused instructions (basing on
6923 // instruction type, except for CallInst and InvokeInst).
6924 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6925 isa<InvokeInst>(it))) {
6926 KeyNodes.insert(&*it);
6927 bool OpsChanged = false;
6928 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6929 for (auto *V : it->operand_values()) {
6930 // Try to match and vectorize a horizontal reduction.
6931 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6934 // Start vectorization of post-process list of instructions from the
6935 // top-tree instructions to try to vectorize as many instructions as
6936 // possible.
6937 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
6938 if (OpsChanged) {
6939 // We would like to start over since some instructions are deleted
6940 // and the iterator may become invalid value.
6941 Changed = true;
6942 it = BB->begin();
6943 e = BB->end();
6944 continue;
6948 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
6949 isa<InsertValueInst>(it))
6950 PostProcessInstructions.push_back(&*it);
6953 return Changed;
6956 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
6957 auto Changed = false;
6958 for (auto &Entry : GEPs) {
6959 // If the getelementptr list has fewer than two elements, there's nothing
6960 // to do.
6961 if (Entry.second.size() < 2)
6962 continue;
6964 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
6965 << Entry.second.size() << ".\n");
6967 // We process the getelementptr list in chunks of 16 (like we do for
6968 // stores) to minimize compile-time.
6969 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
6970 auto Len = std::min<unsigned>(BE - BI, 16);
6971 auto GEPList = makeArrayRef(&Entry.second[BI], Len);
6973 // Initialize a set a candidate getelementptrs. Note that we use a
6974 // SetVector here to preserve program order. If the index computations
6975 // are vectorizable and begin with loads, we want to minimize the chance
6976 // of having to reorder them later.
6977 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
6979 // Some of the candidates may have already been vectorized after we
6980 // initially collected them. If so, the WeakTrackingVHs will have
6981 // nullified the
6982 // values, so remove them from the set of candidates.
6983 Candidates.remove(nullptr);
6985 // Remove from the set of candidates all pairs of getelementptrs with
6986 // constant differences. Such getelementptrs are likely not good
6987 // candidates for vectorization in a bottom-up phase since one can be
6988 // computed from the other. We also ensure all candidate getelementptr
6989 // indices are unique.
6990 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
6991 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
6992 if (!Candidates.count(GEPI))
6993 continue;
6994 auto *SCEVI = SE->getSCEV(GEPList[I]);
6995 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
6996 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
6997 auto *SCEVJ = SE->getSCEV(GEPList[J]);
6998 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
6999 Candidates.remove(GEPList[I]);
7000 Candidates.remove(GEPList[J]);
7001 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7002 Candidates.remove(GEPList[J]);
7007 // We break out of the above computation as soon as we know there are
7008 // fewer than two candidates remaining.
7009 if (Candidates.size() < 2)
7010 continue;
7012 // Add the single, non-constant index of each candidate to the bundle. We
7013 // ensured the indices met these constraints when we originally collected
7014 // the getelementptrs.
7015 SmallVector<Value *, 16> Bundle(Candidates.size());
7016 auto BundleIndex = 0u;
7017 for (auto *V : Candidates) {
7018 auto *GEP = cast<GetElementPtrInst>(V);
7019 auto *GEPIdx = GEP->idx_begin()->get();
7020 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7021 Bundle[BundleIndex++] = GEPIdx;
7024 // Try and vectorize the indices. We are currently only interested in
7025 // gather-like cases of the form:
7027 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7029 // where the loads of "a", the loads of "b", and the subtractions can be
7030 // performed in parallel. It's likely that detecting this pattern in a
7031 // bottom-up phase will be simpler and less costly than building a
7032 // full-blown top-down phase beginning at the consecutive loads.
7033 Changed |= tryToVectorizeList(Bundle, R);
7036 return Changed;
7039 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7040 bool Changed = false;
7041 // Attempt to sort and vectorize each of the store-groups.
7042 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7043 ++it) {
7044 if (it->second.size() < 2)
7045 continue;
7047 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7048 << it->second.size() << ".\n");
7050 // Process the stores in chunks of 16.
7051 // TODO: The limit of 16 inhibits greater vectorization factors.
7052 // For example, AVX2 supports v32i8. Increasing this limit, however,
7053 // may cause a significant compile-time increase.
7054 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
7055 unsigned Len = std::min<unsigned>(CE - CI, 16);
7056 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
7059 return Changed;
7062 char SLPVectorizer::ID = 0;
7064 static const char lv_name[] = "SLP Vectorizer";
7066 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7067 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7068 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7069 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7070 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7071 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7072 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7073 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7074 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7076 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }