1 #define MINIMAL_STDERR_OUTPUT
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/MCJIT.h"
6 #include "llvm/ExecutionEngine/ObjectCache.h"
7 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
8 #include "llvm/IR/DataLayout.h"
9 #include "llvm/IR/DerivedTypes.h"
10 #include "llvm/IR/IRBuilder.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/LegacyPassManager.h"
13 #include "llvm/IR/Module.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/IRReader/IRReader.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/FileSystem.h"
18 #include "llvm/Support/Path.h"
19 #include "llvm/Support/SourceMgr.h"
20 #include "llvm/Support/TargetSelect.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Transforms/Scalar.h"
30 //===----------------------------------------------------------------------===//
31 // Command-line options
32 //===----------------------------------------------------------------------===//
36 cl::desc("Specify the name of an IR file to load for function definitions"),
37 cl::value_desc("input IR file name"));
40 UseObjectCache("use-object-cache",
41 cl::desc("Enable use of the MCJIT object caching"),
44 //===----------------------------------------------------------------------===//
46 //===----------------------------------------------------------------------===//
48 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
49 // of these for known things.
54 tok_def
= -2, tok_extern
= -3,
57 tok_identifier
= -4, tok_number
= -5,
60 tok_if
= -6, tok_then
= -7, tok_else
= -8,
61 tok_for
= -9, tok_in
= -10,
64 tok_binary
= -11, tok_unary
= -12,
70 static std::string IdentifierStr
; // Filled in if tok_identifier
71 static double NumVal
; // Filled in if tok_number
73 /// gettok - Return the next token from standard input.
75 static int LastChar
= ' ';
77 // Skip any whitespace.
78 while (isspace(LastChar
))
81 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
82 IdentifierStr
= LastChar
;
83 while (isalnum((LastChar
= getchar())))
84 IdentifierStr
+= LastChar
;
86 if (IdentifierStr
== "def") return tok_def
;
87 if (IdentifierStr
== "extern") return tok_extern
;
88 if (IdentifierStr
== "if") return tok_if
;
89 if (IdentifierStr
== "then") return tok_then
;
90 if (IdentifierStr
== "else") return tok_else
;
91 if (IdentifierStr
== "for") return tok_for
;
92 if (IdentifierStr
== "in") return tok_in
;
93 if (IdentifierStr
== "binary") return tok_binary
;
94 if (IdentifierStr
== "unary") return tok_unary
;
95 if (IdentifierStr
== "var") return tok_var
;
96 return tok_identifier
;
99 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
103 LastChar
= getchar();
104 } while (isdigit(LastChar
) || LastChar
== '.');
106 NumVal
= strtod(NumStr
.c_str(), 0);
110 if (LastChar
== '#') {
111 // Comment until end of line.
112 do LastChar
= getchar();
113 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
119 // Check for end of file. Don't eat the EOF.
123 // Otherwise, just return the character as its ascii value.
124 int ThisChar
= LastChar
;
125 LastChar
= getchar();
129 //===----------------------------------------------------------------------===//
130 // Abstract Syntax Tree (aka Parse Tree)
131 //===----------------------------------------------------------------------===//
133 /// ExprAST - Base class for all expression nodes.
136 virtual ~ExprAST() {}
137 virtual Value
*Codegen() = 0;
140 /// NumberExprAST - Expression class for numeric literals like "1.0".
141 class NumberExprAST
: public ExprAST
{
144 NumberExprAST(double val
) : Val(val
) {}
145 virtual Value
*Codegen();
148 /// VariableExprAST - Expression class for referencing a variable, like "a".
149 class VariableExprAST
: public ExprAST
{
152 VariableExprAST(const std::string
&name
) : Name(name
) {}
153 const std::string
&getName() const { return Name
; }
154 virtual Value
*Codegen();
157 /// UnaryExprAST - Expression class for a unary operator.
158 class UnaryExprAST
: public ExprAST
{
162 UnaryExprAST(char opcode
, ExprAST
*operand
)
163 : Opcode(opcode
), Operand(operand
) {}
164 virtual Value
*Codegen();
167 /// BinaryExprAST - Expression class for a binary operator.
168 class BinaryExprAST
: public ExprAST
{
172 BinaryExprAST(char op
, ExprAST
*lhs
, ExprAST
*rhs
)
173 : Op(op
), LHS(lhs
), RHS(rhs
) {}
174 virtual Value
*Codegen();
177 /// CallExprAST - Expression class for function calls.
178 class CallExprAST
: public ExprAST
{
180 std::vector
<ExprAST
*> Args
;
182 CallExprAST(const std::string
&callee
, std::vector
<ExprAST
*> &args
)
183 : Callee(callee
), Args(args
) {}
184 virtual Value
*Codegen();
187 /// IfExprAST - Expression class for if/then/else.
188 class IfExprAST
: public ExprAST
{
189 ExprAST
*Cond
, *Then
, *Else
;
191 IfExprAST(ExprAST
*cond
, ExprAST
*then
, ExprAST
*_else
)
192 : Cond(cond
), Then(then
), Else(_else
) {}
193 virtual Value
*Codegen();
196 /// ForExprAST - Expression class for for/in.
197 class ForExprAST
: public ExprAST
{
199 ExprAST
*Start
, *End
, *Step
, *Body
;
201 ForExprAST(const std::string
&varname
, ExprAST
*start
, ExprAST
*end
,
202 ExprAST
*step
, ExprAST
*body
)
203 : VarName(varname
), Start(start
), End(end
), Step(step
), Body(body
) {}
204 virtual Value
*Codegen();
207 /// VarExprAST - Expression class for var/in
208 class VarExprAST
: public ExprAST
{
209 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
212 VarExprAST(const std::vector
<std::pair
<std::string
, ExprAST
*> > &varnames
,
214 : VarNames(varnames
), Body(body
) {}
216 virtual Value
*Codegen();
219 /// PrototypeAST - This class represents the "prototype" for a function,
220 /// which captures its argument names as well as if it is an operator.
223 std::vector
<std::string
> Args
;
225 unsigned Precedence
; // Precedence if a binary op.
227 PrototypeAST(const std::string
&name
, const std::vector
<std::string
> &args
,
228 bool isoperator
= false, unsigned prec
= 0)
229 : Name(name
), Args(args
), isOperator(isoperator
), Precedence(prec
) {}
231 bool isUnaryOp() const { return isOperator
&& Args
.size() == 1; }
232 bool isBinaryOp() const { return isOperator
&& Args
.size() == 2; }
234 char getOperatorName() const {
235 assert(isUnaryOp() || isBinaryOp());
236 return Name
[Name
.size()-1];
239 unsigned getBinaryPrecedence() const { return Precedence
; }
243 void CreateArgumentAllocas(Function
*F
);
246 /// FunctionAST - This class represents a function definition itself.
251 FunctionAST(PrototypeAST
*proto
, ExprAST
*body
)
252 : Proto(proto
), Body(body
) {}
257 //===----------------------------------------------------------------------===//
259 //===----------------------------------------------------------------------===//
261 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
262 /// token the parser is looking at. getNextToken reads another token from the
263 /// lexer and updates CurTok with its results.
265 static int getNextToken() {
266 return CurTok
= gettok();
269 /// BinopPrecedence - This holds the precedence for each binary operator that is
271 static std::map
<char, int> BinopPrecedence
;
273 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
274 static int GetTokPrecedence() {
275 if (!isascii(CurTok
))
278 // Make sure it's a declared binop.
279 int TokPrec
= BinopPrecedence
[CurTok
];
280 if (TokPrec
<= 0) return -1;
284 /// Error* - These are little helper functions for error handling.
285 ExprAST
*Error(const char *Str
) { fprintf(stderr
, "Error: %s\n", Str
);return 0;}
286 PrototypeAST
*ErrorP(const char *Str
) { Error(Str
); return 0; }
287 FunctionAST
*ErrorF(const char *Str
) { Error(Str
); return 0; }
289 static ExprAST
*ParseExpression();
293 /// ::= identifier '(' expression* ')'
294 static ExprAST
*ParseIdentifierExpr() {
295 std::string IdName
= IdentifierStr
;
297 getNextToken(); // eat identifier.
299 if (CurTok
!= '(') // Simple variable ref.
300 return new VariableExprAST(IdName
);
303 getNextToken(); // eat (
304 std::vector
<ExprAST
*> Args
;
307 ExprAST
*Arg
= ParseExpression();
311 if (CurTok
== ')') break;
314 return Error("Expected ')' or ',' in argument list");
322 return new CallExprAST(IdName
, Args
);
325 /// numberexpr ::= number
326 static ExprAST
*ParseNumberExpr() {
327 ExprAST
*Result
= new NumberExprAST(NumVal
);
328 getNextToken(); // consume the number
332 /// parenexpr ::= '(' expression ')'
333 static ExprAST
*ParseParenExpr() {
334 getNextToken(); // eat (.
335 ExprAST
*V
= ParseExpression();
339 return Error("expected ')'");
340 getNextToken(); // eat ).
344 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
345 static ExprAST
*ParseIfExpr() {
346 getNextToken(); // eat the if.
349 ExprAST
*Cond
= ParseExpression();
352 if (CurTok
!= tok_then
)
353 return Error("expected then");
354 getNextToken(); // eat the then
356 ExprAST
*Then
= ParseExpression();
357 if (Then
== 0) return 0;
359 if (CurTok
!= tok_else
)
360 return Error("expected else");
364 ExprAST
*Else
= ParseExpression();
367 return new IfExprAST(Cond
, Then
, Else
);
370 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
371 static ExprAST
*ParseForExpr() {
372 getNextToken(); // eat the for.
374 if (CurTok
!= tok_identifier
)
375 return Error("expected identifier after for");
377 std::string IdName
= IdentifierStr
;
378 getNextToken(); // eat identifier.
381 return Error("expected '=' after for");
382 getNextToken(); // eat '='.
385 ExprAST
*Start
= ParseExpression();
386 if (Start
== 0) return 0;
388 return Error("expected ',' after for start value");
391 ExprAST
*End
= ParseExpression();
392 if (End
== 0) return 0;
394 // The step value is optional.
398 Step
= ParseExpression();
399 if (Step
== 0) return 0;
402 if (CurTok
!= tok_in
)
403 return Error("expected 'in' after for");
404 getNextToken(); // eat 'in'.
406 ExprAST
*Body
= ParseExpression();
407 if (Body
== 0) return 0;
409 return new ForExprAST(IdName
, Start
, End
, Step
, Body
);
412 /// varexpr ::= 'var' identifier ('=' expression)?
413 // (',' identifier ('=' expression)?)* 'in' expression
414 static ExprAST
*ParseVarExpr() {
415 getNextToken(); // eat the var.
417 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
419 // At least one variable name is required.
420 if (CurTok
!= tok_identifier
)
421 return Error("expected identifier after var");
424 std::string Name
= IdentifierStr
;
425 getNextToken(); // eat identifier.
427 // Read the optional initializer.
430 getNextToken(); // eat the '='.
432 Init
= ParseExpression();
433 if (Init
== 0) return 0;
436 VarNames
.push_back(std::make_pair(Name
, Init
));
438 // End of var list, exit loop.
439 if (CurTok
!= ',') break;
440 getNextToken(); // eat the ','.
442 if (CurTok
!= tok_identifier
)
443 return Error("expected identifier list after var");
446 // At this point, we have to have 'in'.
447 if (CurTok
!= tok_in
)
448 return Error("expected 'in' keyword after 'var'");
449 getNextToken(); // eat 'in'.
451 ExprAST
*Body
= ParseExpression();
452 if (Body
== 0) return 0;
454 return new VarExprAST(VarNames
, Body
);
458 /// ::= identifierexpr
464 static ExprAST
*ParsePrimary() {
466 default: return Error("unknown token when expecting an expression");
467 case tok_identifier
: return ParseIdentifierExpr();
468 case tok_number
: return ParseNumberExpr();
469 case '(': return ParseParenExpr();
470 case tok_if
: return ParseIfExpr();
471 case tok_for
: return ParseForExpr();
472 case tok_var
: return ParseVarExpr();
479 static ExprAST
*ParseUnary() {
480 // If the current token is not an operator, it must be a primary expr.
481 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
482 return ParsePrimary();
484 // If this is a unary operator, read it.
487 if (ExprAST
*Operand
= ParseUnary())
488 return new UnaryExprAST(Opc
, Operand
);
494 static ExprAST
*ParseBinOpRHS(int ExprPrec
, ExprAST
*LHS
) {
495 // If this is a binop, find its precedence.
497 int TokPrec
= GetTokPrecedence();
499 // If this is a binop that binds at least as tightly as the current binop,
500 // consume it, otherwise we are done.
501 if (TokPrec
< ExprPrec
)
504 // Okay, we know this is a binop.
506 getNextToken(); // eat binop
508 // Parse the unary expression after the binary operator.
509 ExprAST
*RHS
= ParseUnary();
512 // If BinOp binds less tightly with RHS than the operator after RHS, let
513 // the pending operator take RHS as its LHS.
514 int NextPrec
= GetTokPrecedence();
515 if (TokPrec
< NextPrec
) {
516 RHS
= ParseBinOpRHS(TokPrec
+1, RHS
);
517 if (RHS
== 0) return 0;
521 LHS
= new BinaryExprAST(BinOp
, LHS
, RHS
);
526 /// ::= unary binoprhs
528 static ExprAST
*ParseExpression() {
529 ExprAST
*LHS
= ParseUnary();
532 return ParseBinOpRHS(0, LHS
);
536 /// ::= id '(' id* ')'
537 /// ::= binary LETTER number? (id, id)
538 /// ::= unary LETTER (id)
539 static PrototypeAST
*ParsePrototype() {
542 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
543 unsigned BinaryPrecedence
= 30;
547 return ErrorP("Expected function name in prototype");
549 FnName
= IdentifierStr
;
555 if (!isascii(CurTok
))
556 return ErrorP("Expected unary operator");
558 FnName
+= (char)CurTok
;
564 if (!isascii(CurTok
))
565 return ErrorP("Expected binary operator");
567 FnName
+= (char)CurTok
;
571 // Read the precedence if present.
572 if (CurTok
== tok_number
) {
573 if (NumVal
< 1 || NumVal
> 100)
574 return ErrorP("Invalid precedecnce: must be 1..100");
575 BinaryPrecedence
= (unsigned)NumVal
;
582 return ErrorP("Expected '(' in prototype");
584 std::vector
<std::string
> ArgNames
;
585 while (getNextToken() == tok_identifier
)
586 ArgNames
.push_back(IdentifierStr
);
588 return ErrorP("Expected ')' in prototype");
591 getNextToken(); // eat ')'.
593 // Verify right number of names for operator.
594 if (Kind
&& ArgNames
.size() != Kind
)
595 return ErrorP("Invalid number of operands for operator");
597 return new PrototypeAST(FnName
, ArgNames
, Kind
!= 0, BinaryPrecedence
);
600 /// definition ::= 'def' prototype expression
601 static FunctionAST
*ParseDefinition() {
602 getNextToken(); // eat def.
603 PrototypeAST
*Proto
= ParsePrototype();
604 if (Proto
== 0) return 0;
606 if (ExprAST
*E
= ParseExpression())
607 return new FunctionAST(Proto
, E
);
611 /// toplevelexpr ::= expression
612 static FunctionAST
*ParseTopLevelExpr() {
613 if (ExprAST
*E
= ParseExpression()) {
614 // Make an anonymous proto.
615 PrototypeAST
*Proto
= new PrototypeAST("", std::vector
<std::string
>());
616 return new FunctionAST(Proto
, E
);
621 /// external ::= 'extern' prototype
622 static PrototypeAST
*ParseExtern() {
623 getNextToken(); // eat extern.
624 return ParsePrototype();
627 //===----------------------------------------------------------------------===//
628 // Quick and dirty hack
629 //===----------------------------------------------------------------------===//
631 // FIXME: Obviously we can do better than this
632 std::string
GenerateUniqueName(const char *root
)
636 sprintf(s
, "%s%d", root
, i
++);
641 std::string
MakeLegalFunctionName(std::string Name
)
645 return GenerateUniqueName("anon_func_");
647 // Start with what we have
650 // Look for a numberic first character
651 if (NewName
.find_first_of("0123456789") == 0) {
652 NewName
.insert(0, 1, 'n');
655 // Replace illegal characters with their ASCII equivalent
656 std::string legal_elements
= "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
658 while ((pos
= NewName
.find_first_not_of(legal_elements
)) != std::string::npos
) {
659 char old_c
= NewName
.at(pos
);
661 sprintf(new_str
, "%d", (int)old_c
);
662 NewName
= NewName
.replace(pos
, 1, new_str
);
668 //===----------------------------------------------------------------------===//
669 // MCJIT object cache class
670 //===----------------------------------------------------------------------===//
672 class MCJITObjectCache
: public ObjectCache
{
675 // Set IR cache directory
676 sys::fs::current_path(CacheDir
);
677 sys::path::append(CacheDir
, "toy_object_cache");
680 virtual ~MCJITObjectCache() {
683 virtual void notifyObjectCompiled(const Module
*M
, const MemoryBuffer
*Obj
) {
685 const std::string ModuleID
= M
->getModuleIdentifier();
687 // If we've flagged this as an IR file, cache it
688 if (0 == ModuleID
.compare(0, 3, "IR:")) {
689 std::string IRFileName
= ModuleID
.substr(3);
690 SmallString
<128>IRCacheFile
= CacheDir
;
691 sys::path::append(IRCacheFile
, IRFileName
);
692 if (!sys::fs::exists(CacheDir
.str()) && sys::fs::create_directory(CacheDir
.str())) {
693 fprintf(stderr
, "Unable to create cache directory\n");
697 raw_fd_ostream
IRObjectFile(IRCacheFile
.c_str(), ErrStr
, raw_fd_ostream::F_Binary
);
698 IRObjectFile
<< Obj
->getBuffer();
702 // MCJIT will call this function before compiling any module
703 // MCJIT takes ownership of both the MemoryBuffer object and the memory
704 // to which it refers.
705 virtual MemoryBuffer
* getObject(const Module
* M
) {
707 const std::string ModuleID
= M
->getModuleIdentifier();
709 // If we've flagged this as an IR file, cache it
710 if (0 == ModuleID
.compare(0, 3, "IR:")) {
711 std::string IRFileName
= ModuleID
.substr(3);
712 SmallString
<128> IRCacheFile
= CacheDir
;
713 sys::path::append(IRCacheFile
, IRFileName
);
714 if (!sys::fs::exists(IRCacheFile
.str())) {
715 // This file isn't in our cache
718 std::unique_ptr
<MemoryBuffer
> IRObjectBuffer
;
719 MemoryBuffer::getFile(IRCacheFile
.c_str(), IRObjectBuffer
, -1, false);
720 // MCJIT will want to write into this buffer, and we don't want that
721 // because the file has probably just been mmapped. Instead we make
722 // a copy. The filed-based buffer will be released when it goes
724 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer
->getBuffer());
731 SmallString
<128> CacheDir
;
734 //===----------------------------------------------------------------------===//
735 // MCJIT helper class
736 //===----------------------------------------------------------------------===//
741 MCJITHelper(LLVMContext
& C
) : Context(C
), OpenModule(NULL
) {}
744 Function
*getFunction(const std::string FnName
);
745 Module
*getModuleForNewFunction();
746 void *getPointerToFunction(Function
* F
);
747 void *getPointerToNamedFunction(const std::string
&Name
);
748 ExecutionEngine
*compileModule(Module
*M
);
749 void closeCurrentModule();
750 void addModule(Module
*M
);
754 typedef std::vector
<Module
*> ModuleVector
;
756 LLVMContext
&Context
;
758 ModuleVector Modules
;
759 std::map
<Module
*, ExecutionEngine
*> EngineMap
;
760 MCJITObjectCache OurObjectCache
;
763 class HelpingMemoryManager
: public SectionMemoryManager
765 HelpingMemoryManager(const HelpingMemoryManager
&) = delete;
766 void operator=(const HelpingMemoryManager
&) = delete;
769 HelpingMemoryManager(MCJITHelper
*Helper
) : MasterHelper(Helper
) {}
770 virtual ~HelpingMemoryManager() {}
772 /// This method returns the address of the specified function.
773 /// Our implementation will attempt to find functions in other
774 /// modules associated with the MCJITHelper to cross link functions
775 /// from one generated module to another.
777 /// If \p AbortOnFailure is false and no function with the given name is
778 /// found, this function returns a null pointer. Otherwise, it prints a
779 /// message to stderr and aborts.
780 virtual void *getPointerToNamedFunction(const std::string
&Name
,
781 bool AbortOnFailure
= true);
783 MCJITHelper
*MasterHelper
;
786 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string
&Name
,
789 // Try the standard symbol resolution first, but ask it not to abort.
790 void *pfn
= SectionMemoryManager::getPointerToNamedFunction(Name
, false);
794 pfn
= MasterHelper
->getPointerToNamedFunction(Name
);
795 if (!pfn
&& AbortOnFailure
)
796 report_fatal_error("Program used external function '" + Name
+
797 "' which could not be resolved!");
801 MCJITHelper::~MCJITHelper()
803 // Walk the vector of modules.
804 ModuleVector::iterator it
, end
;
805 for (it
= Modules
.begin(), end
= Modules
.end();
807 // See if we have an execution engine for this module.
808 std::map
<Module
*, ExecutionEngine
*>::iterator mapIt
= EngineMap
.find(*it
);
809 // If we have an EE, the EE owns the module so just delete the EE.
810 if (mapIt
!= EngineMap
.end()) {
811 delete mapIt
->second
;
813 // Otherwise, we still own the module. Delete it now.
819 Function
*MCJITHelper::getFunction(const std::string FnName
) {
820 ModuleVector::iterator begin
= Modules
.begin();
821 ModuleVector::iterator end
= Modules
.end();
822 ModuleVector::iterator it
;
823 for (it
= begin
; it
!= end
; ++it
) {
824 Function
*F
= (*it
)->getFunction(FnName
);
826 if (*it
== OpenModule
)
829 assert(OpenModule
!= NULL
);
831 // This function is in a module that has already been JITed.
832 // We need to generate a new prototype for external linkage.
833 Function
*PF
= OpenModule
->getFunction(FnName
);
834 if (PF
&& !PF
->empty()) {
835 ErrorF("redefinition of function across modules");
839 // If we don't have a prototype yet, create one.
841 PF
= Function::Create(F
->getFunctionType(),
842 Function::ExternalLinkage
,
851 Module
*MCJITHelper::getModuleForNewFunction() {
852 // If we have a Module that hasn't been JITed, use that.
856 // Otherwise create a new Module.
857 std::string ModName
= GenerateUniqueName("mcjit_module_");
858 Module
*M
= new Module(ModName
, Context
);
859 Modules
.push_back(M
);
864 void *MCJITHelper::getPointerToFunction(Function
* F
) {
865 // Look for this function in an existing module
866 ModuleVector::iterator begin
= Modules
.begin();
867 ModuleVector::iterator end
= Modules
.end();
868 ModuleVector::iterator it
;
869 std::string FnName
= F
->getName();
870 for (it
= begin
; it
!= end
; ++it
) {
871 Function
*MF
= (*it
)->getFunction(FnName
);
873 std::map
<Module
*, ExecutionEngine
*>::iterator eeIt
= EngineMap
.find(*it
);
874 if (eeIt
!= EngineMap
.end()) {
875 void *P
= eeIt
->second
->getPointerToFunction(F
);
879 ExecutionEngine
*EE
= compileModule(*it
);
880 void *P
= EE
->getPointerToFunction(F
);
889 void MCJITHelper::closeCurrentModule() {
893 ExecutionEngine
*MCJITHelper::compileModule(Module
*M
) {
895 closeCurrentModule();
898 ExecutionEngine
*NewEngine
= EngineBuilder(M
)
899 .setErrorStr(&ErrStr
)
900 .setMCJITMemoryManager(new HelpingMemoryManager(this))
903 fprintf(stderr
, "Could not create ExecutionEngine: %s\n", ErrStr
.c_str());
908 NewEngine
->setObjectCache(&OurObjectCache
);
910 // Get the ModuleID so we can identify IR input files
911 const std::string ModuleID
= M
->getModuleIdentifier();
913 // If we've flagged this as an IR file, it doesn't need function passes run.
914 if (0 != ModuleID
.compare(0, 3, "IR:")) {
915 // Create a function pass manager for this engine
916 FunctionPassManager
*FPM
= new FunctionPassManager(M
);
918 // Set up the optimizer pipeline. Start with registering info about how the
919 // target lays out data structures.
920 FPM
->add(new DataLayout(*NewEngine
->getDataLayout()));
921 // Provide basic AliasAnalysis support for GVN.
922 FPM
->add(createBasicAliasAnalysisPass());
923 // Promote allocas to registers.
924 FPM
->add(createPromoteMemoryToRegisterPass());
925 // Do simple "peephole" optimizations and bit-twiddling optzns.
926 FPM
->add(createInstructionCombiningPass());
927 // Reassociate expressions.
928 FPM
->add(createReassociatePass());
929 // Eliminate Common SubExpressions.
930 FPM
->add(createGVNPass());
931 // Simplify the control flow graph (deleting unreachable blocks, etc).
932 FPM
->add(createCFGSimplificationPass());
933 FPM
->doInitialization();
935 // For each function in the module
937 Module::iterator end
= M
->end();
938 for (it
= M
->begin(); it
!= end
; ++it
) {
939 // Run the FPM on this function
943 // We don't need this anymore
948 EngineMap
[M
] = NewEngine
;
949 NewEngine
->finalizeObject();
954 void *MCJITHelper::getPointerToNamedFunction(const std::string
&Name
)
956 // Look for the functions in our modules, compiling only as necessary
957 ModuleVector::iterator begin
= Modules
.begin();
958 ModuleVector::iterator end
= Modules
.end();
959 ModuleVector::iterator it
;
960 for (it
= begin
; it
!= end
; ++it
) {
961 Function
*F
= (*it
)->getFunction(Name
);
962 if (F
&& !F
->empty()) {
963 std::map
<Module
*, ExecutionEngine
*>::iterator eeIt
= EngineMap
.find(*it
);
964 if (eeIt
!= EngineMap
.end()) {
965 void *P
= eeIt
->second
->getPointerToFunction(F
);
969 ExecutionEngine
*EE
= compileModule(*it
);
970 void *P
= EE
->getPointerToFunction(F
);
979 void MCJITHelper::addModule(Module
* M
) {
980 Modules
.push_back(M
);
983 void MCJITHelper::dump()
985 ModuleVector::iterator begin
= Modules
.begin();
986 ModuleVector::iterator end
= Modules
.end();
987 ModuleVector::iterator it
;
988 for (it
= begin
; it
!= end
; ++it
)
992 //===----------------------------------------------------------------------===//
994 //===----------------------------------------------------------------------===//
996 static MCJITHelper
*TheHelper
;
997 static LLVMContext TheContext
;
998 static IRBuilder
<> Builder(TheContext
);
999 static std::map
<std::string
, AllocaInst
*> NamedValues
;
1001 Value
*ErrorV(const char *Str
) { Error(Str
); return 0; }
1003 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1004 /// the function. This is used for mutable variables etc.
1005 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
1006 const std::string
&VarName
) {
1007 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
1008 TheFunction
->getEntryBlock().begin());
1009 return TmpB
.CreateAlloca(Type::getDoubleTy(TheContext
), 0, VarName
.c_str());
1012 Value
*NumberExprAST::Codegen() {
1013 return ConstantFP::get(TheContext
, APFloat(Val
));
1016 Value
*VariableExprAST::Codegen() {
1017 // Look this variable up in the function.
1018 Value
*V
= NamedValues
[Name
];
1020 sprintf(ErrStr
, "Unknown variable name %s", Name
.c_str());
1021 if (V
== 0) return ErrorV(ErrStr
);
1024 return Builder
.CreateLoad(V
, Name
.c_str());
1027 Value
*UnaryExprAST::Codegen() {
1028 Value
*OperandV
= Operand
->Codegen();
1029 if (OperandV
== 0) return 0;
1031 Function
*F
= TheHelper
->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode
));
1033 return ErrorV("Unknown unary operator");
1035 return Builder
.CreateCall(F
, OperandV
, "unop");
1038 Value
*BinaryExprAST::Codegen() {
1039 // Special case '=' because we don't want to emit the LHS as an expression.
1041 // Assignment requires the LHS to be an identifier.
1042 VariableExprAST
*LHSE
= static_cast<VariableExprAST
*>(LHS
);
1044 return ErrorV("destination of '=' must be a variable");
1046 Value
*Val
= RHS
->Codegen();
1047 if (Val
== 0) return 0;
1049 // Look up the name.
1050 Value
*Variable
= NamedValues
[LHSE
->getName()];
1051 if (Variable
== 0) return ErrorV("Unknown variable name");
1053 Builder
.CreateStore(Val
, Variable
);
1057 Value
*L
= LHS
->Codegen();
1058 Value
*R
= RHS
->Codegen();
1059 if (L
== 0 || R
== 0) return 0;
1062 case '+': return Builder
.CreateFAdd(L
, R
, "addtmp");
1063 case '-': return Builder
.CreateFSub(L
, R
, "subtmp");
1064 case '*': return Builder
.CreateFMul(L
, R
, "multmp");
1065 case '/': return Builder
.CreateFDiv(L
, R
, "divtmp");
1067 L
= Builder
.CreateFCmpULT(L
, R
, "cmptmp");
1068 // Convert bool 0/1 to double 0.0 or 1.0
1069 return Builder
.CreateUIToFP(L
, Type::getDoubleTy(TheContext
), "booltmp");
1073 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1075 Function
*F
= TheHelper
->getFunction(MakeLegalFunctionName(std::string("binary")+Op
));
1076 assert(F
&& "binary operator not found!");
1078 Value
*Ops
[] = { L
, R
};
1079 return Builder
.CreateCall(F
, Ops
, "binop");
1082 Value
*CallExprAST::Codegen() {
1083 // Look up the name in the global module table.
1084 Function
*CalleeF
= TheHelper
->getFunction(Callee
);
1086 return ErrorV("Unknown function referenced");
1088 // If argument mismatch error.
1089 if (CalleeF
->arg_size() != Args
.size())
1090 return ErrorV("Incorrect # arguments passed");
1092 std::vector
<Value
*> ArgsV
;
1093 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
1094 ArgsV
.push_back(Args
[i
]->Codegen());
1095 if (ArgsV
.back() == 0) return 0;
1098 return Builder
.CreateCall(CalleeF
, ArgsV
, "calltmp");
1101 Value
*IfExprAST::Codegen() {
1102 Value
*CondV
= Cond
->Codegen();
1103 if (CondV
== 0) return 0;
1105 // Convert condition to a bool by comparing equal to 0.0.
1106 CondV
= Builder
.CreateFCmpONE(
1107 CondV
, ConstantFP::get(TheContext
, APFloat(0.0)), "ifcond");
1109 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1111 // Create blocks for the then and else cases. Insert the 'then' block at the
1112 // end of the function.
1113 BasicBlock
*ThenBB
= BasicBlock::Create(TheContext
, "then", TheFunction
);
1114 BasicBlock
*ElseBB
= BasicBlock::Create(TheContext
, "else");
1115 BasicBlock
*MergeBB
= BasicBlock::Create(TheContext
, "ifcont");
1117 Builder
.CreateCondBr(CondV
, ThenBB
, ElseBB
);
1120 Builder
.SetInsertPoint(ThenBB
);
1122 Value
*ThenV
= Then
->Codegen();
1123 if (ThenV
== 0) return 0;
1125 Builder
.CreateBr(MergeBB
);
1126 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1127 ThenBB
= Builder
.GetInsertBlock();
1130 TheFunction
->getBasicBlockList().push_back(ElseBB
);
1131 Builder
.SetInsertPoint(ElseBB
);
1133 Value
*ElseV
= Else
->Codegen();
1134 if (ElseV
== 0) return 0;
1136 Builder
.CreateBr(MergeBB
);
1137 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1138 ElseBB
= Builder
.GetInsertBlock();
1140 // Emit merge block.
1141 TheFunction
->getBasicBlockList().push_back(MergeBB
);
1142 Builder
.SetInsertPoint(MergeBB
);
1143 PHINode
*PN
= Builder
.CreatePHI(Type::getDoubleTy(TheContext
), 2, "iftmp");
1145 PN
->addIncoming(ThenV
, ThenBB
);
1146 PN
->addIncoming(ElseV
, ElseBB
);
1150 Value
*ForExprAST::Codegen() {
1152 // var = alloca double
1154 // start = startexpr
1155 // store start -> var
1163 // endcond = endexpr
1165 // curvar = load var
1166 // nextvar = curvar + step
1167 // store nextvar -> var
1168 // br endcond, loop, endloop
1171 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1173 // Create an alloca for the variable in the entry block.
1174 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1176 // Emit the start code first, without 'variable' in scope.
1177 Value
*StartVal
= Start
->Codegen();
1178 if (StartVal
== 0) return 0;
1180 // Store the value into the alloca.
1181 Builder
.CreateStore(StartVal
, Alloca
);
1183 // Make the new basic block for the loop header, inserting after current
1185 BasicBlock
*LoopBB
= BasicBlock::Create(TheContext
, "loop", TheFunction
);
1187 // Insert an explicit fall through from the current block to the LoopBB.
1188 Builder
.CreateBr(LoopBB
);
1190 // Start insertion in LoopBB.
1191 Builder
.SetInsertPoint(LoopBB
);
1193 // Within the loop, the variable is defined equal to the PHI node. If it
1194 // shadows an existing variable, we have to restore it, so save it now.
1195 AllocaInst
*OldVal
= NamedValues
[VarName
];
1196 NamedValues
[VarName
] = Alloca
;
1198 // Emit the body of the loop. This, like any other expr, can change the
1199 // current BB. Note that we ignore the value computed by the body, but don't
1201 if (Body
->Codegen() == 0)
1204 // Emit the step value.
1207 StepVal
= Step
->Codegen();
1208 if (StepVal
== 0) return 0;
1210 // If not specified, use 1.0.
1211 StepVal
= ConstantFP::get(TheContext
, APFloat(1.0));
1214 // Compute the end condition.
1215 Value
*EndCond
= End
->Codegen();
1216 if (EndCond
== 0) return EndCond
;
1218 // Reload, increment, and restore the alloca. This handles the case where
1219 // the body of the loop mutates the variable.
1220 Value
*CurVar
= Builder
.CreateLoad(Alloca
, VarName
.c_str());
1221 Value
*NextVar
= Builder
.CreateFAdd(CurVar
, StepVal
, "nextvar");
1222 Builder
.CreateStore(NextVar
, Alloca
);
1224 // Convert condition to a bool by comparing equal to 0.0.
1225 EndCond
= Builder
.CreateFCmpONE(
1226 EndCond
, ConstantFP::get(TheContext
, APFloat(0.0)), "loopcond");
1228 // Create the "after loop" block and insert it.
1229 BasicBlock
*AfterBB
=
1230 BasicBlock::Create(TheContext
, "afterloop", TheFunction
);
1232 // Insert the conditional branch into the end of LoopEndBB.
1233 Builder
.CreateCondBr(EndCond
, LoopBB
, AfterBB
);
1235 // Any new code will be inserted in AfterBB.
1236 Builder
.SetInsertPoint(AfterBB
);
1238 // Restore the unshadowed variable.
1240 NamedValues
[VarName
] = OldVal
;
1242 NamedValues
.erase(VarName
);
1245 // for expr always returns 0.0.
1246 return Constant::getNullValue(Type::getDoubleTy(TheContext
));
1249 Value
*VarExprAST::Codegen() {
1250 std::vector
<AllocaInst
*> OldBindings
;
1252 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1254 // Register all variables and emit their initializer.
1255 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
1256 const std::string
&VarName
= VarNames
[i
].first
;
1257 ExprAST
*Init
= VarNames
[i
].second
;
1259 // Emit the initializer before adding the variable to scope, this prevents
1260 // the initializer from referencing the variable itself, and permits stuff
1263 // var a = a in ... # refers to outer 'a'.
1266 InitVal
= Init
->Codegen();
1267 if (InitVal
== 0) return 0;
1268 } else { // If not specified, use 0.0.
1269 InitVal
= ConstantFP::get(TheContext
, APFloat(0.0));
1272 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1273 Builder
.CreateStore(InitVal
, Alloca
);
1275 // Remember the old variable binding so that we can restore the binding when
1277 OldBindings
.push_back(NamedValues
[VarName
]);
1279 // Remember this binding.
1280 NamedValues
[VarName
] = Alloca
;
1283 // Codegen the body, now that all vars are in scope.
1284 Value
*BodyVal
= Body
->Codegen();
1285 if (BodyVal
== 0) return 0;
1287 // Pop all our variables from scope.
1288 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
1289 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
1291 // Return the body computation.
1295 Function
*PrototypeAST::Codegen() {
1296 // Make the function type: double(double,double) etc.
1297 std::vector
<Type
*> Doubles(Args
.size(), Type::getDoubleTy(TheContext
));
1299 FunctionType::get(Type::getDoubleTy(TheContext
), Doubles
, false);
1301 std::string FnName
= MakeLegalFunctionName(Name
);
1303 Module
* M
= TheHelper
->getModuleForNewFunction();
1305 Function
*F
= Function::Create(FT
, Function::ExternalLinkage
, FnName
, M
);
1307 // If F conflicted, there was already something named 'FnName'. If it has a
1308 // body, don't allow redefinition or reextern.
1309 if (F
->getName() != FnName
) {
1310 // Delete the one we just made and get the existing one.
1311 F
->eraseFromParent();
1312 F
= M
->getFunction(Name
);
1314 // If F already has a body, reject this.
1316 ErrorF("redefinition of function");
1320 // If F took a different number of args, reject.
1321 if (F
->arg_size() != Args
.size()) {
1322 ErrorF("redefinition of function with different # args");
1327 // Set names for all arguments.
1329 for (Function::arg_iterator AI
= F
->arg_begin(); Idx
!= Args
.size();
1331 AI
->setName(Args
[Idx
]);
1336 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1337 /// argument in the symbol table so that references to it will succeed.
1338 void PrototypeAST::CreateArgumentAllocas(Function
*F
) {
1339 Function::arg_iterator AI
= F
->arg_begin();
1340 for (unsigned Idx
= 0, e
= Args
.size(); Idx
!= e
; ++Idx
, ++AI
) {
1341 // Create an alloca for this variable.
1342 AllocaInst
*Alloca
= CreateEntryBlockAlloca(F
, Args
[Idx
]);
1344 // Store the initial value into the alloca.
1345 Builder
.CreateStore(AI
, Alloca
);
1347 // Add arguments to variable symbol table.
1348 NamedValues
[Args
[Idx
]] = Alloca
;
1352 Function
*FunctionAST::Codegen() {
1353 NamedValues
.clear();
1355 Function
*TheFunction
= Proto
->Codegen();
1356 if (TheFunction
== 0)
1359 // If this is an operator, install it.
1360 if (Proto
->isBinaryOp())
1361 BinopPrecedence
[Proto
->getOperatorName()] = Proto
->getBinaryPrecedence();
1363 // Create a new basic block to start insertion into.
1364 BasicBlock
*BB
= BasicBlock::Create(TheContext
, "entry", TheFunction
);
1365 Builder
.SetInsertPoint(BB
);
1367 // Add all arguments to the symbol table and create their allocas.
1368 Proto
->CreateArgumentAllocas(TheFunction
);
1370 if (Value
*RetVal
= Body
->Codegen()) {
1371 // Finish off the function.
1372 Builder
.CreateRet(RetVal
);
1374 // Validate the generated code, checking for consistency.
1375 verifyFunction(*TheFunction
);
1380 // Error reading body, remove function.
1381 TheFunction
->eraseFromParent();
1383 if (Proto
->isBinaryOp())
1384 BinopPrecedence
.erase(Proto
->getOperatorName());
1388 //===----------------------------------------------------------------------===//
1389 // Top-Level parsing and JIT Driver
1390 //===----------------------------------------------------------------------===//
1392 static void HandleDefinition() {
1393 if (FunctionAST
*F
= ParseDefinition()) {
1394 TheHelper
->closeCurrentModule();
1395 if (Function
*LF
= F
->Codegen()) {
1396 #ifndef MINIMAL_STDERR_OUTPUT
1397 fprintf(stderr
, "Read function definition:");
1399 fprintf(stderr
, "\n");
1403 // Skip token for error recovery.
1408 static void HandleExtern() {
1409 if (PrototypeAST
*P
= ParseExtern()) {
1410 if (Function
*F
= P
->Codegen()) {
1411 #ifndef MINIMAL_STDERR_OUTPUT
1412 fprintf(stderr
, "Read extern: ");
1414 fprintf(stderr
, "\n");
1418 // Skip token for error recovery.
1423 static void HandleTopLevelExpression() {
1424 // Evaluate a top-level expression into an anonymous function.
1425 if (FunctionAST
*F
= ParseTopLevelExpr()) {
1426 if (Function
*LF
= F
->Codegen()) {
1427 // JIT the function, returning a function pointer.
1428 void *FPtr
= TheHelper
->getPointerToFunction(LF
);
1430 // Cast it to the right type (takes no arguments, returns a double) so we
1431 // can call it as a native function.
1432 double (*FP
)() = (double (*)())(intptr_t)FPtr
;
1433 #ifdef MINIMAL_STDERR_OUTPUT
1436 fprintf(stderr
, "Evaluated to %f\n", FP());
1440 // Skip token for error recovery.
1445 /// top ::= definition | external | expression | ';'
1446 static void MainLoop() {
1448 #ifndef MINIMAL_STDERR_OUTPUT
1449 fprintf(stderr
, "ready> ");
1452 case tok_eof
: return;
1453 case ';': getNextToken(); break; // ignore top-level semicolons.
1454 case tok_def
: HandleDefinition(); break;
1455 case tok_extern
: HandleExtern(); break;
1456 default: HandleTopLevelExpression(); break;
1461 //===----------------------------------------------------------------------===//
1462 // "Library" functions that can be "extern'd" from user code.
1463 //===----------------------------------------------------------------------===//
1465 /// putchard - putchar that takes a double and returns 0.
1467 double putchard(double X
) {
1472 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1474 double printd(double X
) {
1485 //===----------------------------------------------------------------------===//
1486 // Command line input file handler
1487 //===----------------------------------------------------------------------===//
1489 Module
* parseInputIR(std::string InputFile
) {
1491 Module
*M
= ParseIRFile(InputFile
, Err
, TheContext
);
1493 Err
.print("IR parsing failed: ", errs());
1498 sprintf(ModID
, "IR:%s", InputFile
.c_str());
1499 M
->setModuleIdentifier(ModID
);
1501 TheHelper
->addModule(M
);
1505 //===----------------------------------------------------------------------===//
1506 // Main driver code.
1507 //===----------------------------------------------------------------------===//
1509 int main(int argc
, char **argv
) {
1510 InitializeNativeTarget();
1511 InitializeNativeTargetAsmPrinter();
1512 InitializeNativeTargetAsmParser();
1513 LLVMContext
&Context
= TheContext
;
1515 cl::ParseCommandLineOptions(argc
, argv
,
1516 "Kaleidoscope example program\n");
1518 // Install standard binary operators.
1519 // 1 is lowest precedence.
1520 BinopPrecedence
['='] = 2;
1521 BinopPrecedence
['<'] = 10;
1522 BinopPrecedence
['+'] = 20;
1523 BinopPrecedence
['-'] = 20;
1524 BinopPrecedence
['/'] = 40;
1525 BinopPrecedence
['*'] = 40; // highest.
1527 // Prime the first token.
1528 #ifndef MINIMAL_STDERR_OUTPUT
1529 fprintf(stderr
, "ready> ");
1533 // Make the helper, which holds all the code.
1534 TheHelper
= new MCJITHelper(Context
);
1536 if (!InputIR
.empty()) {
1537 parseInputIR(InputIR
);
1540 // Run the main "interpreter loop" now.
1543 #ifndef MINIMAL_STDERR_OUTPUT
1544 // Print out all of the generated code.
1545 TheHelper
->print(errs());