1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCost will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/SizeOpts.h"
73 using namespace consthoist
;
75 #define DEBUG_TYPE "consthoist"
77 STATISTIC(NumConstantsHoisted
, "Number of constants hoisted");
78 STATISTIC(NumConstantsRebased
, "Number of constants rebased");
80 static cl::opt
<bool> ConstHoistWithBlockFrequency(
81 "consthoist-with-block-frequency", cl::init(true), cl::Hidden
,
82 cl::desc("Enable the use of the block frequency analysis to reduce the "
83 "chance to execute const materialization more frequently than "
84 "without hoisting."));
86 static cl::opt
<bool> ConstHoistGEP(
87 "consthoist-gep", cl::init(false), cl::Hidden
,
88 cl::desc("Try hoisting constant gep expressions"));
90 static cl::opt
<unsigned>
91 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
92 cl::desc("Do not rebase if number of dependent constants of a Base is less "
94 cl::init(0), cl::Hidden
);
98 /// The constant hoisting pass.
99 class ConstantHoistingLegacyPass
: public FunctionPass
{
101 static char ID
; // Pass identification, replacement for typeid
103 ConstantHoistingLegacyPass() : FunctionPass(ID
) {
104 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
107 bool runOnFunction(Function
&Fn
) override
;
109 StringRef
getPassName() const override
{ return "Constant Hoisting"; }
111 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
112 AU
.setPreservesCFG();
113 if (ConstHoistWithBlockFrequency
)
114 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
115 AU
.addRequired
<DominatorTreeWrapperPass
>();
116 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
117 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
121 ConstantHoistingPass Impl
;
124 } // end anonymous namespace
126 char ConstantHoistingLegacyPass::ID
= 0;
128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass
, "consthoist",
129 "Constant Hoisting", false, false)
130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
132 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
134 INITIALIZE_PASS_END(ConstantHoistingLegacyPass
, "consthoist",
135 "Constant Hoisting", false, false)
137 FunctionPass
*llvm::createConstantHoistingPass() {
138 return new ConstantHoistingLegacyPass();
141 /// Perform the constant hoisting optimization for the given function.
142 bool ConstantHoistingLegacyPass::runOnFunction(Function
&Fn
) {
143 if (skipFunction(Fn
))
146 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
147 LLVM_DEBUG(dbgs() << "********** Function: " << Fn
.getName() << '\n');
150 Impl
.runImpl(Fn
, getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(Fn
),
151 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
152 ConstHoistWithBlockFrequency
153 ? &getAnalysis
<BlockFrequencyInfoWrapperPass
>().getBFI()
156 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI());
159 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
160 << Fn
.getName() << '\n');
161 LLVM_DEBUG(dbgs() << Fn
);
163 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
168 /// Find the constant materialization insertion point.
169 Instruction
*ConstantHoistingPass::findMatInsertPt(Instruction
*Inst
,
170 unsigned Idx
) const {
171 // If the operand is a cast instruction, then we have to materialize the
172 // constant before the cast instruction.
174 Value
*Opnd
= Inst
->getOperand(Idx
);
175 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
))
176 if (CastInst
->isCast())
180 // The simple and common case. This also includes constant expressions.
181 if (!isa
<PHINode
>(Inst
) && !Inst
->isEHPad())
184 // We can't insert directly before a phi node or an eh pad. Insert before
185 // the terminator of the incoming or dominating block.
186 assert(Entry
!= Inst
->getParent() && "PHI or landing pad in entry block!");
187 if (Idx
!= ~0U && isa
<PHINode
>(Inst
))
188 return cast
<PHINode
>(Inst
)->getIncomingBlock(Idx
)->getTerminator();
190 // This must be an EH pad. Iterate over immediate dominators until we find a
191 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
193 auto IDom
= DT
->getNode(Inst
->getParent())->getIDom();
194 while (IDom
->getBlock()->isEHPad()) {
195 assert(Entry
!= IDom
->getBlock() && "eh pad in entry block");
196 IDom
= IDom
->getIDom();
199 return IDom
->getBlock()->getTerminator();
202 /// Given \p BBs as input, find another set of BBs which collectively
203 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
204 /// set found in \p BBs.
205 static void findBestInsertionSet(DominatorTree
&DT
, BlockFrequencyInfo
&BFI
,
207 SetVector
<BasicBlock
*> &BBs
) {
208 assert(!BBs
.count(Entry
) && "Assume Entry is not in BBs");
209 // Nodes on the current path to the root.
210 SmallPtrSet
<BasicBlock
*, 8> Path
;
211 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
212 // dominated by any other blocks in set 'BBs', and all nodes in the path
213 // in the dominator tree from Entry to 'BB'.
214 SmallPtrSet
<BasicBlock
*, 16> Candidates
;
215 for (auto BB
: BBs
) {
216 // Ignore unreachable basic blocks.
217 if (!DT
.isReachableFromEntry(BB
))
220 // Walk up the dominator tree until Entry or another BB in BBs
221 // is reached. Insert the nodes on the way to the Path.
222 BasicBlock
*Node
= BB
;
223 // The "Path" is a candidate path to be added into Candidates set.
224 bool isCandidate
= false;
227 if (Node
== Entry
|| Candidates
.count(Node
)) {
231 assert(DT
.getNode(Node
)->getIDom() &&
232 "Entry doens't dominate current Node");
233 Node
= DT
.getNode(Node
)->getIDom()->getBlock();
234 } while (!BBs
.count(Node
));
236 // If isCandidate is false, Node is another Block in BBs dominating
237 // current 'BB'. Drop the nodes on the Path.
241 // Add nodes on the Path into Candidates.
242 Candidates
.insert(Path
.begin(), Path
.end());
245 // Sort the nodes in Candidates in top-down order and save the nodes
248 SmallVector
<BasicBlock
*, 16> Orders
;
249 Orders
.push_back(Entry
);
250 while (Idx
!= Orders
.size()) {
251 BasicBlock
*Node
= Orders
[Idx
++];
252 for (auto ChildDomNode
: DT
.getNode(Node
)->getChildren()) {
253 if (Candidates
.count(ChildDomNode
->getBlock()))
254 Orders
.push_back(ChildDomNode
->getBlock());
258 // Visit Orders in bottom-up order.
259 using InsertPtsCostPair
=
260 std::pair
<SetVector
<BasicBlock
*>, BlockFrequency
>;
262 // InsertPtsMap is a map from a BB to the best insertion points for the
263 // subtree of BB (subtree not including the BB itself).
264 DenseMap
<BasicBlock
*, InsertPtsCostPair
> InsertPtsMap
;
265 InsertPtsMap
.reserve(Orders
.size() + 1);
266 for (auto RIt
= Orders
.rbegin(); RIt
!= Orders
.rend(); RIt
++) {
267 BasicBlock
*Node
= *RIt
;
268 bool NodeInBBs
= BBs
.count(Node
);
269 auto &InsertPts
= InsertPtsMap
[Node
].first
;
270 BlockFrequency
&InsertPtsFreq
= InsertPtsMap
[Node
].second
;
272 // Return the optimal insert points in BBs.
275 if (InsertPtsFreq
> BFI
.getBlockFreq(Node
) ||
276 (InsertPtsFreq
== BFI
.getBlockFreq(Node
) && InsertPts
.size() > 1))
279 BBs
.insert(InsertPts
.begin(), InsertPts
.end());
283 BasicBlock
*Parent
= DT
.getNode(Node
)->getIDom()->getBlock();
284 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
285 // will update its parent's ParentInsertPts and ParentPtsFreq.
286 auto &ParentInsertPts
= InsertPtsMap
[Parent
].first
;
287 BlockFrequency
&ParentPtsFreq
= InsertPtsMap
[Parent
].second
;
288 // Choose to insert in Node or in subtree of Node.
289 // Don't hoist to EHPad because we may not find a proper place to insert
291 // If the total frequency of InsertPts is the same as the frequency of the
292 // target Node, and InsertPts contains more than one nodes, choose hoisting
293 // to reduce code size.
296 (InsertPtsFreq
> BFI
.getBlockFreq(Node
) ||
297 (InsertPtsFreq
== BFI
.getBlockFreq(Node
) && InsertPts
.size() > 1)))) {
298 ParentInsertPts
.insert(Node
);
299 ParentPtsFreq
+= BFI
.getBlockFreq(Node
);
301 ParentInsertPts
.insert(InsertPts
.begin(), InsertPts
.end());
302 ParentPtsFreq
+= InsertPtsFreq
;
307 /// Find an insertion point that dominates all uses.
308 SetVector
<Instruction
*> ConstantHoistingPass::findConstantInsertionPoint(
309 const ConstantInfo
&ConstInfo
) const {
310 assert(!ConstInfo
.RebasedConstants
.empty() && "Invalid constant info entry.");
311 // Collect all basic blocks.
312 SetVector
<BasicBlock
*> BBs
;
313 SetVector
<Instruction
*> InsertPts
;
314 for (auto const &RCI
: ConstInfo
.RebasedConstants
)
315 for (auto const &U
: RCI
.Uses
)
316 BBs
.insert(findMatInsertPt(U
.Inst
, U
.OpndIdx
)->getParent());
318 if (BBs
.count(Entry
)) {
319 InsertPts
.insert(&Entry
->front());
324 findBestInsertionSet(*DT
, *BFI
, Entry
, BBs
);
325 for (auto BB
: BBs
) {
326 BasicBlock::iterator InsertPt
= BB
->begin();
327 for (; isa
<PHINode
>(InsertPt
) || InsertPt
->isEHPad(); ++InsertPt
)
329 InsertPts
.insert(&*InsertPt
);
334 while (BBs
.size() >= 2) {
335 BasicBlock
*BB
, *BB1
, *BB2
;
336 BB1
= BBs
.pop_back_val();
337 BB2
= BBs
.pop_back_val();
338 BB
= DT
->findNearestCommonDominator(BB1
, BB2
);
340 InsertPts
.insert(&Entry
->front());
345 assert((BBs
.size() == 1) && "Expected only one element.");
346 Instruction
&FirstInst
= (*BBs
.begin())->front();
347 InsertPts
.insert(findMatInsertPt(&FirstInst
));
351 /// Record constant integer ConstInt for instruction Inst at operand
354 /// The operand at index Idx is not necessarily the constant integer itself. It
355 /// could also be a cast instruction or a constant expression that uses the
356 /// constant integer.
357 void ConstantHoistingPass::collectConstantCandidates(
358 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
,
359 ConstantInt
*ConstInt
) {
361 // Ask the target about the cost of materializing the constant for the given
362 // instruction and operand index.
363 if (auto IntrInst
= dyn_cast
<IntrinsicInst
>(Inst
))
364 Cost
= TTI
->getIntImmCost(IntrInst
->getIntrinsicID(), Idx
,
365 ConstInt
->getValue(), ConstInt
->getType());
367 Cost
= TTI
->getIntImmCost(Inst
->getOpcode(), Idx
, ConstInt
->getValue(),
368 ConstInt
->getType());
370 // Ignore cheap integer constants.
371 if (Cost
> TargetTransformInfo::TCC_Basic
) {
372 ConstCandMapType::iterator Itr
;
374 ConstPtrUnionType Cand
= ConstInt
;
375 std::tie(Itr
, Inserted
) = ConstCandMap
.insert(std::make_pair(Cand
, 0));
377 ConstIntCandVec
.push_back(ConstantCandidate(ConstInt
));
378 Itr
->second
= ConstIntCandVec
.size() - 1;
380 ConstIntCandVec
[Itr
->second
].addUser(Inst
, Idx
, Cost
);
381 LLVM_DEBUG(if (isa
<ConstantInt
>(Inst
->getOperand(Idx
))) dbgs()
382 << "Collect constant " << *ConstInt
<< " from " << *Inst
383 << " with cost " << Cost
<< '\n';
384 else dbgs() << "Collect constant " << *ConstInt
385 << " indirectly from " << *Inst
<< " via "
386 << *Inst
->getOperand(Idx
) << " with cost " << Cost
391 /// Record constant GEP expression for instruction Inst at operand index Idx.
392 void ConstantHoistingPass::collectConstantCandidates(
393 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
,
394 ConstantExpr
*ConstExpr
) {
395 // TODO: Handle vector GEPs
396 if (ConstExpr
->getType()->isVectorTy())
399 GlobalVariable
*BaseGV
= dyn_cast
<GlobalVariable
>(ConstExpr
->getOperand(0));
403 // Get offset from the base GV.
404 PointerType
*GVPtrTy
= cast
<PointerType
>(BaseGV
->getType());
405 IntegerType
*PtrIntTy
= DL
->getIntPtrType(*Ctx
, GVPtrTy
->getAddressSpace());
406 APInt
Offset(DL
->getTypeSizeInBits(PtrIntTy
), /*val*/0, /*isSigned*/true);
407 auto *GEPO
= cast
<GEPOperator
>(ConstExpr
);
408 if (!GEPO
->accumulateConstantOffset(*DL
, Offset
))
411 if (!Offset
.isIntN(32))
414 // A constant GEP expression that has a GlobalVariable as base pointer is
415 // usually lowered to a load from constant pool. Such operation is unlikely
416 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
417 // an ADD instruction or folded into Load/Store instruction.
418 int Cost
= TTI
->getIntImmCost(Instruction::Add
, 1, Offset
, PtrIntTy
);
419 ConstCandVecType
&ExprCandVec
= ConstGEPCandMap
[BaseGV
];
420 ConstCandMapType::iterator Itr
;
422 ConstPtrUnionType Cand
= ConstExpr
;
423 std::tie(Itr
, Inserted
) = ConstCandMap
.insert(std::make_pair(Cand
, 0));
425 ExprCandVec
.push_back(ConstantCandidate(
426 ConstantInt::get(Type::getInt32Ty(*Ctx
), Offset
.getLimitedValue()),
428 Itr
->second
= ExprCandVec
.size() - 1;
430 ExprCandVec
[Itr
->second
].addUser(Inst
, Idx
, Cost
);
433 /// Check the operand for instruction Inst at index Idx.
434 void ConstantHoistingPass::collectConstantCandidates(
435 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
) {
436 Value
*Opnd
= Inst
->getOperand(Idx
);
438 // Visit constant integers.
439 if (auto ConstInt
= dyn_cast
<ConstantInt
>(Opnd
)) {
440 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
444 // Visit cast instructions that have constant integers.
445 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
)) {
446 // Only visit cast instructions, which have been skipped. All other
447 // instructions should have already been visited.
448 if (!CastInst
->isCast())
451 if (auto *ConstInt
= dyn_cast
<ConstantInt
>(CastInst
->getOperand(0))) {
452 // Pretend the constant is directly used by the instruction and ignore
453 // the cast instruction.
454 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
459 // Visit constant expressions that have constant integers.
460 if (auto ConstExpr
= dyn_cast
<ConstantExpr
>(Opnd
)) {
461 // Handle constant gep expressions.
462 if (ConstHoistGEP
&& ConstExpr
->isGEPWithNoNotionalOverIndexing())
463 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstExpr
);
465 // Only visit constant cast expressions.
466 if (!ConstExpr
->isCast())
469 if (auto ConstInt
= dyn_cast
<ConstantInt
>(ConstExpr
->getOperand(0))) {
470 // Pretend the constant is directly used by the instruction and ignore
471 // the constant expression.
472 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
478 /// Scan the instruction for expensive integer constants and record them
479 /// in the constant candidate vector.
480 void ConstantHoistingPass::collectConstantCandidates(
481 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
) {
482 // Skip all cast instructions. They are visited indirectly later on.
486 // Scan all operands.
487 for (unsigned Idx
= 0, E
= Inst
->getNumOperands(); Idx
!= E
; ++Idx
) {
488 // The cost of materializing the constants (defined in
489 // `TargetTransformInfo::getIntImmCost`) for instructions which only take
490 // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
491 // it's safe for us to collect constant candidates from all IntrinsicInsts.
492 if (canReplaceOperandWithVariable(Inst
, Idx
) || isa
<IntrinsicInst
>(Inst
)) {
493 collectConstantCandidates(ConstCandMap
, Inst
, Idx
);
495 } // end of for all operands
498 /// Collect all integer constants in the function that cannot be folded
499 /// into an instruction itself.
500 void ConstantHoistingPass::collectConstantCandidates(Function
&Fn
) {
501 ConstCandMapType ConstCandMap
;
502 for (BasicBlock
&BB
: Fn
)
503 for (Instruction
&Inst
: BB
)
504 collectConstantCandidates(ConstCandMap
, &Inst
);
507 // This helper function is necessary to deal with values that have different
508 // bit widths (APInt Operator- does not like that). If the value cannot be
509 // represented in uint64 we return an "empty" APInt. This is then interpreted
510 // as the value is not in range.
511 static Optional
<APInt
> calculateOffsetDiff(const APInt
&V1
, const APInt
&V2
) {
512 Optional
<APInt
> Res
= None
;
513 unsigned BW
= V1
.getBitWidth() > V2
.getBitWidth() ?
514 V1
.getBitWidth() : V2
.getBitWidth();
515 uint64_t LimVal1
= V1
.getLimitedValue();
516 uint64_t LimVal2
= V2
.getLimitedValue();
518 if (LimVal1
== ~0ULL || LimVal2
== ~0ULL)
521 uint64_t Diff
= LimVal1
- LimVal2
;
522 return APInt(BW
, Diff
, true);
525 // From a list of constants, one needs to picked as the base and the other
526 // constants will be transformed into an offset from that base constant. The
527 // question is which we can pick best? For example, consider these constants
528 // and their number of uses:
530 // Constants| 2 | 4 | 12 | 42 |
531 // NumUses | 3 | 2 | 8 | 7 |
533 // Selecting constant 12 because it has the most uses will generate negative
534 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
535 // offsets lead to less optimal code generation, then there might be better
536 // solutions. Suppose immediates in the range of 0..35 are most optimally
537 // supported by the architecture, then selecting constant 2 is most optimal
538 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
539 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
540 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
541 // selecting the base constant the range of the offsets is a very important
542 // factor too that we take into account here. This algorithm calculates a total
543 // costs for selecting a constant as the base and substract the costs if
544 // immediates are out of range. It has quadratic complexity, so we call this
545 // function only when we're optimising for size and there are less than 100
546 // constants, we fall back to the straightforward algorithm otherwise
547 // which does not do all the offset calculations.
549 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S
,
550 ConstCandVecType::iterator E
,
551 ConstCandVecType::iterator
&MaxCostItr
) {
552 unsigned NumUses
= 0;
554 bool OptForSize
= Entry
->getParent()->hasOptSize() ||
555 llvm::shouldOptimizeForSize(Entry
->getParent(), PSI
, BFI
);
556 if (!OptForSize
|| std::distance(S
,E
) > 100) {
557 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
558 NumUses
+= ConstCand
->Uses
.size();
559 if (ConstCand
->CumulativeCost
> MaxCostItr
->CumulativeCost
)
560 MaxCostItr
= ConstCand
;
565 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
567 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
568 auto Value
= ConstCand
->ConstInt
->getValue();
569 Type
*Ty
= ConstCand
->ConstInt
->getType();
571 NumUses
+= ConstCand
->Uses
.size();
572 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand
->ConstInt
->getValue()
575 for (auto User
: ConstCand
->Uses
) {
576 unsigned Opcode
= User
.Inst
->getOpcode();
577 unsigned OpndIdx
= User
.OpndIdx
;
578 Cost
+= TTI
->getIntImmCost(Opcode
, OpndIdx
, Value
, Ty
);
579 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< "\n");
581 for (auto C2
= S
; C2
!= E
; ++C2
) {
582 Optional
<APInt
> Diff
= calculateOffsetDiff(
583 C2
->ConstInt
->getValue(),
584 ConstCand
->ConstInt
->getValue());
587 TTI
->getIntImmCodeSizeCost(Opcode
, OpndIdx
, Diff
.getValue(), Ty
);
589 LLVM_DEBUG(dbgs() << "Offset " << Diff
.getValue() << " "
590 << "has penalty: " << ImmCosts
<< "\n"
591 << "Adjusted cost: " << Cost
<< "\n");
595 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost
<< "\n");
596 if (Cost
> MaxCost
) {
598 MaxCostItr
= ConstCand
;
599 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr
->ConstInt
->getValue()
606 /// Find the base constant within the given range and rebase all other
607 /// constants with respect to the base constant.
608 void ConstantHoistingPass::findAndMakeBaseConstant(
609 ConstCandVecType::iterator S
, ConstCandVecType::iterator E
,
610 SmallVectorImpl
<consthoist::ConstantInfo
> &ConstInfoVec
) {
612 unsigned NumUses
= maximizeConstantsInRange(S
, E
, MaxCostItr
);
614 // Don't hoist constants that have only one use.
618 ConstantInt
*ConstInt
= MaxCostItr
->ConstInt
;
619 ConstantExpr
*ConstExpr
= MaxCostItr
->ConstExpr
;
620 ConstantInfo ConstInfo
;
621 ConstInfo
.BaseInt
= ConstInt
;
622 ConstInfo
.BaseExpr
= ConstExpr
;
623 Type
*Ty
= ConstInt
->getType();
625 // Rebase the constants with respect to the base constant.
626 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
627 APInt Diff
= ConstCand
->ConstInt
->getValue() - ConstInt
->getValue();
628 Constant
*Offset
= Diff
== 0 ? nullptr : ConstantInt::get(Ty
, Diff
);
630 ConstCand
->ConstExpr
? ConstCand
->ConstExpr
->getType() : nullptr;
631 ConstInfo
.RebasedConstants
.push_back(
632 RebasedConstantInfo(std::move(ConstCand
->Uses
), Offset
, ConstTy
));
634 ConstInfoVec
.push_back(std::move(ConstInfo
));
637 /// Finds and combines constant candidates that can be easily
638 /// rematerialized with an add from a common base constant.
639 void ConstantHoistingPass::findBaseConstants(GlobalVariable
*BaseGV
) {
640 // If BaseGV is nullptr, find base among candidate constant integers;
641 // Otherwise find base among constant GEPs that share the same BaseGV.
642 ConstCandVecType
&ConstCandVec
= BaseGV
?
643 ConstGEPCandMap
[BaseGV
] : ConstIntCandVec
;
644 ConstInfoVecType
&ConstInfoVec
= BaseGV
?
645 ConstGEPInfoMap
[BaseGV
] : ConstIntInfoVec
;
647 // Sort the constants by value and type. This invalidates the mapping!
648 llvm::stable_sort(ConstCandVec
, [](const ConstantCandidate
&LHS
,
649 const ConstantCandidate
&RHS
) {
650 if (LHS
.ConstInt
->getType() != RHS
.ConstInt
->getType())
651 return LHS
.ConstInt
->getType()->getBitWidth() <
652 RHS
.ConstInt
->getType()->getBitWidth();
653 return LHS
.ConstInt
->getValue().ult(RHS
.ConstInt
->getValue());
656 // Simple linear scan through the sorted constant candidate vector for viable
658 auto MinValItr
= ConstCandVec
.begin();
659 for (auto CC
= std::next(ConstCandVec
.begin()), E
= ConstCandVec
.end();
661 if (MinValItr
->ConstInt
->getType() == CC
->ConstInt
->getType()) {
662 Type
*MemUseValTy
= nullptr;
663 for (auto &U
: CC
->Uses
) {
665 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UI
)) {
666 MemUseValTy
= LI
->getType();
668 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
669 // Make sure the constant is used as pointer operand of the StoreInst.
670 if (SI
->getPointerOperand() == SI
->getOperand(U
.OpndIdx
)) {
671 MemUseValTy
= SI
->getValueOperand()->getType();
677 // Check if the constant is in range of an add with immediate.
678 APInt Diff
= CC
->ConstInt
->getValue() - MinValItr
->ConstInt
->getValue();
679 if ((Diff
.getBitWidth() <= 64) &&
680 TTI
->isLegalAddImmediate(Diff
.getSExtValue()) &&
681 // Check if Diff can be used as offset in addressing mode of the user
682 // memory instruction.
683 (!MemUseValTy
|| TTI
->isLegalAddressingMode(MemUseValTy
,
684 /*BaseGV*/nullptr, /*BaseOffset*/Diff
.getSExtValue(),
685 /*HasBaseReg*/true, /*Scale*/0)))
688 // We either have now a different constant type or the constant is not in
689 // range of an add with immediate anymore.
690 findAndMakeBaseConstant(MinValItr
, CC
, ConstInfoVec
);
691 // Start a new base constant search.
694 // Finalize the last base constant search.
695 findAndMakeBaseConstant(MinValItr
, ConstCandVec
.end(), ConstInfoVec
);
698 /// Updates the operand at Idx in instruction Inst with the result of
699 /// instruction Mat. If the instruction is a PHI node then special
700 /// handling for duplicate values form the same incoming basic block is
702 /// \return The update will always succeed, but the return value indicated if
703 /// Mat was used for the update or not.
704 static bool updateOperand(Instruction
*Inst
, unsigned Idx
, Instruction
*Mat
) {
705 if (auto PHI
= dyn_cast
<PHINode
>(Inst
)) {
706 // Check if any previous operand of the PHI node has the same incoming basic
707 // block. This is a very odd case that happens when the incoming basic block
708 // has a switch statement. In this case use the same value as the previous
709 // operand(s), otherwise we will fail verification due to different values.
710 // The values are actually the same, but the variable names are different
711 // and the verifier doesn't like that.
712 BasicBlock
*IncomingBB
= PHI
->getIncomingBlock(Idx
);
713 for (unsigned i
= 0; i
< Idx
; ++i
) {
714 if (PHI
->getIncomingBlock(i
) == IncomingBB
) {
715 Value
*IncomingVal
= PHI
->getIncomingValue(i
);
716 Inst
->setOperand(Idx
, IncomingVal
);
722 Inst
->setOperand(Idx
, Mat
);
726 /// Emit materialization code for all rebased constants and update their
728 void ConstantHoistingPass::emitBaseConstants(Instruction
*Base
,
731 const ConstantUser
&ConstUser
) {
732 Instruction
*Mat
= Base
;
734 // The same offset can be dereferenced to different types in nested struct.
735 if (!Offset
&& Ty
&& Ty
!= Base
->getType())
736 Offset
= ConstantInt::get(Type::getInt32Ty(*Ctx
), 0);
739 Instruction
*InsertionPt
= findMatInsertPt(ConstUser
.Inst
,
742 // Constant being rebased is a ConstantExpr.
743 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(*Ctx
,
744 cast
<PointerType
>(Ty
)->getAddressSpace());
745 Base
= new BitCastInst(Base
, Int8PtrTy
, "base_bitcast", InsertionPt
);
746 Mat
= GetElementPtrInst::Create(Int8PtrTy
->getElementType(), Base
,
747 Offset
, "mat_gep", InsertionPt
);
748 Mat
= new BitCastInst(Mat
, Ty
, "mat_bitcast", InsertionPt
);
750 // Constant being rebased is a ConstantInt.
751 Mat
= BinaryOperator::Create(Instruction::Add
, Base
, Offset
,
752 "const_mat", InsertionPt
);
754 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base
->getOperand(0)
755 << " + " << *Offset
<< ") in BB "
756 << Mat
->getParent()->getName() << '\n'
758 Mat
->setDebugLoc(ConstUser
.Inst
->getDebugLoc());
760 Value
*Opnd
= ConstUser
.Inst
->getOperand(ConstUser
.OpndIdx
);
762 // Visit constant integer.
763 if (isa
<ConstantInt
>(Opnd
)) {
764 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
765 if (!updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, Mat
) && Offset
)
766 Mat
->eraseFromParent();
767 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
771 // Visit cast instruction.
772 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
)) {
773 assert(CastInst
->isCast() && "Expected an cast instruction!");
774 // Check if we already have visited this cast instruction before to avoid
775 // unnecessary cloning.
776 Instruction
*&ClonedCastInst
= ClonedCastMap
[CastInst
];
777 if (!ClonedCastInst
) {
778 ClonedCastInst
= CastInst
->clone();
779 ClonedCastInst
->setOperand(0, Mat
);
780 ClonedCastInst
->insertAfter(CastInst
);
781 // Use the same debug location as the original cast instruction.
782 ClonedCastInst
->setDebugLoc(CastInst
->getDebugLoc());
783 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst
<< '\n'
784 << "To : " << *ClonedCastInst
<< '\n');
787 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
788 updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, ClonedCastInst
);
789 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
793 // Visit constant expression.
794 if (auto ConstExpr
= dyn_cast
<ConstantExpr
>(Opnd
)) {
795 if (ConstExpr
->isGEPWithNoNotionalOverIndexing()) {
796 // Operand is a ConstantGEP, replace it.
797 updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, Mat
);
801 // Aside from constant GEPs, only constant cast expressions are collected.
802 assert(ConstExpr
->isCast() && "ConstExpr should be a cast");
803 Instruction
*ConstExprInst
= ConstExpr
->getAsInstruction();
804 ConstExprInst
->setOperand(0, Mat
);
805 ConstExprInst
->insertBefore(findMatInsertPt(ConstUser
.Inst
,
808 // Use the same debug location as the instruction we are about to update.
809 ConstExprInst
->setDebugLoc(ConstUser
.Inst
->getDebugLoc());
811 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst
<< '\n'
812 << "From : " << *ConstExpr
<< '\n');
813 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
814 if (!updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, ConstExprInst
)) {
815 ConstExprInst
->eraseFromParent();
817 Mat
->eraseFromParent();
819 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
824 /// Hoist and hide the base constant behind a bitcast and emit
825 /// materialization code for derived constants.
826 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable
*BaseGV
) {
827 bool MadeChange
= false;
828 SmallVectorImpl
<consthoist::ConstantInfo
> &ConstInfoVec
=
829 BaseGV
? ConstGEPInfoMap
[BaseGV
] : ConstIntInfoVec
;
830 for (auto const &ConstInfo
: ConstInfoVec
) {
831 SetVector
<Instruction
*> IPSet
= findConstantInsertionPoint(ConstInfo
);
832 // We can have an empty set if the function contains unreachable blocks.
836 unsigned UsesNum
= 0;
837 unsigned ReBasesNum
= 0;
838 unsigned NotRebasedNum
= 0;
839 for (Instruction
*IP
: IPSet
) {
840 // First, collect constants depending on this IP of the base.
842 using RebasedUse
= std::tuple
<Constant
*, Type
*, ConstantUser
>;
843 SmallVector
<RebasedUse
, 4> ToBeRebased
;
844 for (auto const &RCI
: ConstInfo
.RebasedConstants
) {
845 for (auto const &U
: RCI
.Uses
) {
847 BasicBlock
*OrigMatInsertBB
=
848 findMatInsertPt(U
.Inst
, U
.OpndIdx
)->getParent();
849 // If Base constant is to be inserted in multiple places,
850 // generate rebase for U using the Base dominating U.
851 if (IPSet
.size() == 1 ||
852 DT
->dominates(IP
->getParent(), OrigMatInsertBB
))
853 ToBeRebased
.push_back(RebasedUse(RCI
.Offset
, RCI
.Ty
, U
));
858 // If only few constants depend on this IP of base, skip rebasing,
859 // assuming the base and the rebased have the same materialization cost.
860 if (ToBeRebased
.size() < MinNumOfDependentToRebase
) {
861 NotRebasedNum
+= ToBeRebased
.size();
865 // Emit an instance of the base at this IP.
866 Instruction
*Base
= nullptr;
867 // Hoist and hide the base constant behind a bitcast.
868 if (ConstInfo
.BaseExpr
) {
869 assert(BaseGV
&& "A base constant expression must have an base GV");
870 Type
*Ty
= ConstInfo
.BaseExpr
->getType();
871 Base
= new BitCastInst(ConstInfo
.BaseExpr
, Ty
, "const", IP
);
873 IntegerType
*Ty
= ConstInfo
.BaseInt
->getType();
874 Base
= new BitCastInst(ConstInfo
.BaseInt
, Ty
, "const", IP
);
877 Base
->setDebugLoc(IP
->getDebugLoc());
879 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo
.BaseInt
880 << ") to BB " << IP
->getParent()->getName() << '\n'
883 // Emit materialization code for rebased constants depending on this IP.
884 for (auto const &R
: ToBeRebased
) {
885 Constant
*Off
= std::get
<0>(R
);
886 Type
*Ty
= std::get
<1>(R
);
887 ConstantUser U
= std::get
<2>(R
);
888 emitBaseConstants(Base
, Off
, Ty
, U
);
890 // Use the same debug location as the last user of the constant.
891 Base
->setDebugLoc(DILocation::getMergedLocation(
892 Base
->getDebugLoc(), U
.Inst
->getDebugLoc()));
894 assert(!Base
->use_empty() && "The use list is empty!?");
895 assert(isa
<Instruction
>(Base
->user_back()) &&
896 "All uses should be instructions.");
901 // Expect all uses are rebased after rebase is done.
902 assert(UsesNum
== (ReBasesNum
+ NotRebasedNum
) &&
903 "Not all uses are rebased");
905 NumConstantsHoisted
++;
907 // Base constant is also included in ConstInfo.RebasedConstants, so
908 // deduct 1 from ConstInfo.RebasedConstants.size().
909 NumConstantsRebased
+= ConstInfo
.RebasedConstants
.size() - 1;
916 /// Check all cast instructions we made a copy of and remove them if they
917 /// have no more users.
918 void ConstantHoistingPass::deleteDeadCastInst() const {
919 for (auto const &I
: ClonedCastMap
)
920 if (I
.first
->use_empty())
921 I
.first
->eraseFromParent();
924 /// Optimize expensive integer constants in the given function.
925 bool ConstantHoistingPass::runImpl(Function
&Fn
, TargetTransformInfo
&TTI
,
926 DominatorTree
&DT
, BlockFrequencyInfo
*BFI
,
927 BasicBlock
&Entry
, ProfileSummaryInfo
*PSI
) {
931 this->DL
= &Fn
.getParent()->getDataLayout();
932 this->Ctx
= &Fn
.getContext();
933 this->Entry
= &Entry
;
935 // Collect all constant candidates.
936 collectConstantCandidates(Fn
);
938 // Combine constants that can be easily materialized with an add from a common
940 if (!ConstIntCandVec
.empty())
941 findBaseConstants(nullptr);
942 for (auto &MapEntry
: ConstGEPCandMap
)
943 if (!MapEntry
.second
.empty())
944 findBaseConstants(MapEntry
.first
);
946 // Finally hoist the base constant and emit materialization code for dependent
948 bool MadeChange
= false;
949 if (!ConstIntInfoVec
.empty())
950 MadeChange
= emitBaseConstants(nullptr);
951 for (auto MapEntry
: ConstGEPInfoMap
)
952 if (!MapEntry
.second
.empty())
953 MadeChange
|= emitBaseConstants(MapEntry
.first
);
956 // Cleanup dead instructions.
957 deleteDeadCastInst();
964 PreservedAnalyses
ConstantHoistingPass::run(Function
&F
,
965 FunctionAnalysisManager
&AM
) {
966 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
967 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
968 auto BFI
= ConstHoistWithBlockFrequency
969 ? &AM
.getResult
<BlockFrequencyAnalysis
>(F
)
971 auto &MAM
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
).getManager();
972 auto *PSI
= MAM
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
973 if (!runImpl(F
, TTI
, DT
, BFI
, F
.getEntryBlock(), PSI
))
974 return PreservedAnalyses::all();
976 PreservedAnalyses PA
;
977 PA
.preserveSet
<CFGAnalyses
>();