1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "ARMFeatures.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCParser/MCAsmLexer.h"
34 #include "llvm/MC/MCParser/MCAsmParser.h"
35 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
36 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
38 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSubtargetInfo.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/SubtargetFeature.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/SMLoc.h"
53 #include "llvm/Support/TargetParser.h"
54 #include "llvm/Support/TargetRegistry.h"
55 #include "llvm/Support/raw_ostream.h"
67 #define DEBUG_TYPE "asm-parser"
73 enum class ImplicitItModeTy
{ Always
, Never
, ARMOnly
, ThumbOnly
};
75 static cl::opt
<ImplicitItModeTy
> ImplicitItMode(
76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly
),
77 cl::desc("Allow conditional instructions outdside of an IT block"),
78 cl::values(clEnumValN(ImplicitItModeTy::Always
, "always",
79 "Accept in both ISAs, emit implicit ITs in Thumb"),
80 clEnumValN(ImplicitItModeTy::Never
, "never",
81 "Warn in ARM, reject in Thumb"),
82 clEnumValN(ImplicitItModeTy::ARMOnly
, "arm",
83 "Accept in ARM, reject in Thumb"),
84 clEnumValN(ImplicitItModeTy::ThumbOnly
, "thumb",
85 "Warn in ARM, emit implicit ITs in Thumb")));
87 static cl::opt
<bool> AddBuildAttributes("arm-add-build-attributes",
90 enum VectorLaneTy
{ NoLanes
, AllLanes
, IndexedLane
};
93 using Locs
= SmallVector
<SMLoc
, 4>;
99 Locs PersonalityIndexLocs
;
100 Locs HandlerDataLocs
;
104 UnwindContext(MCAsmParser
&P
) : Parser(P
), FPReg(ARM::SP
) {}
106 bool hasFnStart() const { return !FnStartLocs
.empty(); }
107 bool cantUnwind() const { return !CantUnwindLocs
.empty(); }
108 bool hasHandlerData() const { return !HandlerDataLocs
.empty(); }
110 bool hasPersonality() const {
111 return !(PersonalityLocs
.empty() && PersonalityIndexLocs
.empty());
114 void recordFnStart(SMLoc L
) { FnStartLocs
.push_back(L
); }
115 void recordCantUnwind(SMLoc L
) { CantUnwindLocs
.push_back(L
); }
116 void recordPersonality(SMLoc L
) { PersonalityLocs
.push_back(L
); }
117 void recordHandlerData(SMLoc L
) { HandlerDataLocs
.push_back(L
); }
118 void recordPersonalityIndex(SMLoc L
) { PersonalityIndexLocs
.push_back(L
); }
120 void saveFPReg(int Reg
) { FPReg
= Reg
; }
121 int getFPReg() const { return FPReg
; }
123 void emitFnStartLocNotes() const {
124 for (Locs::const_iterator FI
= FnStartLocs
.begin(), FE
= FnStartLocs
.end();
126 Parser
.Note(*FI
, ".fnstart was specified here");
129 void emitCantUnwindLocNotes() const {
130 for (Locs::const_iterator UI
= CantUnwindLocs
.begin(),
131 UE
= CantUnwindLocs
.end(); UI
!= UE
; ++UI
)
132 Parser
.Note(*UI
, ".cantunwind was specified here");
135 void emitHandlerDataLocNotes() const {
136 for (Locs::const_iterator HI
= HandlerDataLocs
.begin(),
137 HE
= HandlerDataLocs
.end(); HI
!= HE
; ++HI
)
138 Parser
.Note(*HI
, ".handlerdata was specified here");
141 void emitPersonalityLocNotes() const {
142 for (Locs::const_iterator PI
= PersonalityLocs
.begin(),
143 PE
= PersonalityLocs
.end(),
144 PII
= PersonalityIndexLocs
.begin(),
145 PIE
= PersonalityIndexLocs
.end();
146 PI
!= PE
|| PII
!= PIE
;) {
147 if (PI
!= PE
&& (PII
== PIE
|| PI
->getPointer() < PII
->getPointer()))
148 Parser
.Note(*PI
++, ".personality was specified here");
149 else if (PII
!= PIE
&& (PI
== PE
|| PII
->getPointer() < PI
->getPointer()))
150 Parser
.Note(*PII
++, ".personalityindex was specified here");
152 llvm_unreachable(".personality and .personalityindex cannot be "
153 "at the same location");
158 FnStartLocs
= Locs();
159 CantUnwindLocs
= Locs();
160 PersonalityLocs
= Locs();
161 HandlerDataLocs
= Locs();
162 PersonalityIndexLocs
= Locs();
167 class ARMAsmParser
: public MCTargetAsmParser
{
168 const MCRegisterInfo
*MRI
;
171 ARMTargetStreamer
&getTargetStreamer() {
172 assert(getParser().getStreamer().getTargetStreamer() &&
173 "do not have a target streamer");
174 MCTargetStreamer
&TS
= *getParser().getStreamer().getTargetStreamer();
175 return static_cast<ARMTargetStreamer
&>(TS
);
178 // Map of register aliases registers via the .req directive.
179 StringMap
<unsigned> RegisterReqs
;
181 bool NextSymbolIsThumb
;
183 bool useImplicitITThumb() const {
184 return ImplicitItMode
== ImplicitItModeTy::Always
||
185 ImplicitItMode
== ImplicitItModeTy::ThumbOnly
;
188 bool useImplicitITARM() const {
189 return ImplicitItMode
== ImplicitItModeTy::Always
||
190 ImplicitItMode
== ImplicitItModeTy::ARMOnly
;
194 ARMCC::CondCodes Cond
; // Condition for IT block.
195 unsigned Mask
:4; // Condition mask for instructions.
196 // Starting at first 1 (from lsb).
197 // '1' condition as indicated in IT.
198 // '0' inverse of condition (else).
199 // Count of instructions in IT block is
200 // 4 - trailingzeroes(mask)
201 // Note that this does not have the same encoding
202 // as in the IT instruction, which also depends
203 // on the low bit of the condition code.
205 unsigned CurPosition
; // Current position in parsing of IT
206 // block. In range [0,4], with 0 being the IT
207 // instruction itself. Initialized according to
208 // count of instructions in block. ~0U if no
211 bool IsExplicit
; // true - The IT instruction was present in the
212 // input, we should not modify it.
213 // false - The IT instruction was added
214 // implicitly, we can extend it if that
218 SmallVector
<MCInst
, 4> PendingConditionalInsts
;
220 void flushPendingInstructions(MCStreamer
&Out
) override
{
221 if (!inImplicitITBlock()) {
222 assert(PendingConditionalInsts
.size() == 0);
226 // Emit the IT instruction
227 unsigned Mask
= getITMaskEncoding();
229 ITInst
.setOpcode(ARM::t2IT
);
230 ITInst
.addOperand(MCOperand::createImm(ITState
.Cond
));
231 ITInst
.addOperand(MCOperand::createImm(Mask
));
232 Out
.EmitInstruction(ITInst
, getSTI());
234 // Emit the conditonal instructions
235 assert(PendingConditionalInsts
.size() <= 4);
236 for (const MCInst
&Inst
: PendingConditionalInsts
) {
237 Out
.EmitInstruction(Inst
, getSTI());
239 PendingConditionalInsts
.clear();
241 // Clear the IT state
243 ITState
.CurPosition
= ~0U;
246 bool inITBlock() { return ITState
.CurPosition
!= ~0U; }
247 bool inExplicitITBlock() { return inITBlock() && ITState
.IsExplicit
; }
248 bool inImplicitITBlock() { return inITBlock() && !ITState
.IsExplicit
; }
250 bool lastInITBlock() {
251 return ITState
.CurPosition
== 4 - countTrailingZeros(ITState
.Mask
);
254 void forwardITPosition() {
255 if (!inITBlock()) return;
256 // Move to the next instruction in the IT block, if there is one. If not,
257 // mark the block as done, except for implicit IT blocks, which we leave
258 // open until we find an instruction that can't be added to it.
259 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
260 if (++ITState
.CurPosition
== 5 - TZ
&& ITState
.IsExplicit
)
261 ITState
.CurPosition
= ~0U; // Done with the IT block after this.
264 // Rewind the state of the current IT block, removing the last slot from it.
265 void rewindImplicitITPosition() {
266 assert(inImplicitITBlock());
267 assert(ITState
.CurPosition
> 1);
268 ITState
.CurPosition
--;
269 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
270 unsigned NewMask
= 0;
271 NewMask
|= ITState
.Mask
& (0xC << TZ
);
272 NewMask
|= 0x2 << TZ
;
273 ITState
.Mask
= NewMask
;
276 // Rewind the state of the current IT block, removing the last slot from it.
277 // If we were at the first slot, this closes the IT block.
278 void discardImplicitITBlock() {
279 assert(inImplicitITBlock());
280 assert(ITState
.CurPosition
== 1);
281 ITState
.CurPosition
= ~0U;
284 // Return the low-subreg of a given Q register.
285 unsigned getDRegFromQReg(unsigned QReg
) const {
286 return MRI
->getSubReg(QReg
, ARM::dsub_0
);
289 // Get the encoding of the IT mask, as it will appear in an IT instruction.
290 unsigned getITMaskEncoding() {
292 unsigned Mask
= ITState
.Mask
;
293 unsigned TZ
= countTrailingZeros(Mask
);
294 if ((ITState
.Cond
& 1) == 0) {
295 assert(Mask
&& TZ
<= 3 && "illegal IT mask value!");
296 Mask
^= (0xE << TZ
) & 0xF;
301 // Get the condition code corresponding to the current IT block slot.
302 ARMCC::CondCodes
currentITCond() {
304 if (ITState
.CurPosition
== 1)
307 MaskBit
= (ITState
.Mask
>> (5 - ITState
.CurPosition
)) & 1;
309 return MaskBit
? ITState
.Cond
: ARMCC::getOppositeCondition(ITState
.Cond
);
312 // Invert the condition of the current IT block slot without changing any
313 // other slots in the same block.
314 void invertCurrentITCondition() {
315 if (ITState
.CurPosition
== 1) {
316 ITState
.Cond
= ARMCC::getOppositeCondition(ITState
.Cond
);
318 ITState
.Mask
^= 1 << (5 - ITState
.CurPosition
);
322 // Returns true if the current IT block is full (all 4 slots used).
323 bool isITBlockFull() {
324 return inITBlock() && (ITState
.Mask
& 1);
327 // Extend the current implicit IT block to have one more slot with the given
329 void extendImplicitITBlock(ARMCC::CondCodes Cond
) {
330 assert(inImplicitITBlock());
331 assert(!isITBlockFull());
332 assert(Cond
== ITState
.Cond
||
333 Cond
== ARMCC::getOppositeCondition(ITState
.Cond
));
334 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
335 unsigned NewMask
= 0;
336 // Keep any existing condition bits.
337 NewMask
|= ITState
.Mask
& (0xE << TZ
);
338 // Insert the new condition bit.
339 NewMask
|= (Cond
== ITState
.Cond
) << TZ
;
340 // Move the trailing 1 down one bit.
341 NewMask
|= 1 << (TZ
- 1);
342 ITState
.Mask
= NewMask
;
345 // Create a new implicit IT block with a dummy condition code.
346 void startImplicitITBlock() {
347 assert(!inITBlock());
348 ITState
.Cond
= ARMCC::AL
;
350 ITState
.CurPosition
= 1;
351 ITState
.IsExplicit
= false;
354 // Create a new explicit IT block with the given condition and mask. The mask
355 // should be in the parsed format, with a 1 implying 't', regardless of the
356 // low bit of the condition.
357 void startExplicitITBlock(ARMCC::CondCodes Cond
, unsigned Mask
) {
358 assert(!inITBlock());
361 ITState
.CurPosition
= 0;
362 ITState
.IsExplicit
= true;
365 void Note(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
366 return getParser().Note(L
, Msg
, Range
);
369 bool Warning(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
370 return getParser().Warning(L
, Msg
, Range
);
373 bool Error(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
374 return getParser().Error(L
, Msg
, Range
);
377 bool validatetLDMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
378 unsigned ListNo
, bool IsARPop
= false);
379 bool validatetSTMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
382 int tryParseRegister();
383 bool tryParseRegisterWithWriteBack(OperandVector
&);
384 int tryParseShiftRegister(OperandVector
&);
385 bool parseRegisterList(OperandVector
&);
386 bool parseMemory(OperandVector
&);
387 bool parseOperand(OperandVector
&, StringRef Mnemonic
);
388 bool parsePrefix(ARMMCExpr::VariantKind
&RefKind
);
389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc
&ShiftType
,
390 unsigned &ShiftAmount
);
391 bool parseLiteralValues(unsigned Size
, SMLoc L
);
392 bool parseDirectiveThumb(SMLoc L
);
393 bool parseDirectiveARM(SMLoc L
);
394 bool parseDirectiveThumbFunc(SMLoc L
);
395 bool parseDirectiveCode(SMLoc L
);
396 bool parseDirectiveSyntax(SMLoc L
);
397 bool parseDirectiveReq(StringRef Name
, SMLoc L
);
398 bool parseDirectiveUnreq(SMLoc L
);
399 bool parseDirectiveArch(SMLoc L
);
400 bool parseDirectiveEabiAttr(SMLoc L
);
401 bool parseDirectiveCPU(SMLoc L
);
402 bool parseDirectiveFPU(SMLoc L
);
403 bool parseDirectiveFnStart(SMLoc L
);
404 bool parseDirectiveFnEnd(SMLoc L
);
405 bool parseDirectiveCantUnwind(SMLoc L
);
406 bool parseDirectivePersonality(SMLoc L
);
407 bool parseDirectiveHandlerData(SMLoc L
);
408 bool parseDirectiveSetFP(SMLoc L
);
409 bool parseDirectivePad(SMLoc L
);
410 bool parseDirectiveRegSave(SMLoc L
, bool IsVector
);
411 bool parseDirectiveInst(SMLoc L
, char Suffix
= '\0');
412 bool parseDirectiveLtorg(SMLoc L
);
413 bool parseDirectiveEven(SMLoc L
);
414 bool parseDirectivePersonalityIndex(SMLoc L
);
415 bool parseDirectiveUnwindRaw(SMLoc L
);
416 bool parseDirectiveTLSDescSeq(SMLoc L
);
417 bool parseDirectiveMovSP(SMLoc L
);
418 bool parseDirectiveObjectArch(SMLoc L
);
419 bool parseDirectiveArchExtension(SMLoc L
);
420 bool parseDirectiveAlign(SMLoc L
);
421 bool parseDirectiveThumbSet(SMLoc L
);
423 StringRef
splitMnemonic(StringRef Mnemonic
, unsigned &PredicationCode
,
424 bool &CarrySetting
, unsigned &ProcessorIMod
,
426 void getMnemonicAcceptInfo(StringRef Mnemonic
, StringRef FullInst
,
427 bool &CanAcceptCarrySet
,
428 bool &CanAcceptPredicationCode
);
430 void tryConvertingToTwoOperandForm(StringRef Mnemonic
, bool CarrySetting
,
431 OperandVector
&Operands
);
432 bool isThumb() const {
433 // FIXME: Can tablegen auto-generate this?
434 return getSTI().getFeatureBits()[ARM::ModeThumb
];
437 bool isThumbOne() const {
438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2
];
441 bool isThumbTwo() const {
442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2
];
445 bool hasThumb() const {
446 return getSTI().getFeatureBits()[ARM::HasV4TOps
];
449 bool hasThumb2() const {
450 return getSTI().getFeatureBits()[ARM::FeatureThumb2
];
453 bool hasV6Ops() const {
454 return getSTI().getFeatureBits()[ARM::HasV6Ops
];
457 bool hasV6T2Ops() const {
458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops
];
461 bool hasV6MOps() const {
462 return getSTI().getFeatureBits()[ARM::HasV6MOps
];
465 bool hasV7Ops() const {
466 return getSTI().getFeatureBits()[ARM::HasV7Ops
];
469 bool hasV8Ops() const {
470 return getSTI().getFeatureBits()[ARM::HasV8Ops
];
473 bool hasV8MBaseline() const {
474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps
];
477 bool hasV8MMainline() const {
478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps
];
481 bool has8MSecExt() const {
482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt
];
485 bool hasARM() const {
486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM
];
489 bool hasDSP() const {
490 return getSTI().getFeatureBits()[ARM::FeatureDSP
];
493 bool hasD16() const {
494 return getSTI().getFeatureBits()[ARM::FeatureD16
];
497 bool hasV8_1aOps() const {
498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps
];
501 bool hasRAS() const {
502 return getSTI().getFeatureBits()[ARM::FeatureRAS
];
506 MCSubtargetInfo
&STI
= copySTI();
507 uint64_t FB
= ComputeAvailableFeatures(STI
.ToggleFeature(ARM::ModeThumb
));
508 setAvailableFeatures(FB
);
511 void FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
);
513 bool isMClass() const {
514 return getSTI().getFeatureBits()[ARM::FeatureMClass
];
517 /// @name Auto-generated Match Functions
520 #define GET_ASSEMBLER_HEADER
521 #include "ARMGenAsmMatcher.inc"
525 OperandMatchResultTy
parseITCondCode(OperandVector
&);
526 OperandMatchResultTy
parseCoprocNumOperand(OperandVector
&);
527 OperandMatchResultTy
parseCoprocRegOperand(OperandVector
&);
528 OperandMatchResultTy
parseCoprocOptionOperand(OperandVector
&);
529 OperandMatchResultTy
parseMemBarrierOptOperand(OperandVector
&);
530 OperandMatchResultTy
parseTraceSyncBarrierOptOperand(OperandVector
&);
531 OperandMatchResultTy
parseInstSyncBarrierOptOperand(OperandVector
&);
532 OperandMatchResultTy
parseProcIFlagsOperand(OperandVector
&);
533 OperandMatchResultTy
parseMSRMaskOperand(OperandVector
&);
534 OperandMatchResultTy
parseBankedRegOperand(OperandVector
&);
535 OperandMatchResultTy
parsePKHImm(OperandVector
&O
, StringRef Op
, int Low
,
537 OperandMatchResultTy
parsePKHLSLImm(OperandVector
&O
) {
538 return parsePKHImm(O
, "lsl", 0, 31);
540 OperandMatchResultTy
parsePKHASRImm(OperandVector
&O
) {
541 return parsePKHImm(O
, "asr", 1, 32);
543 OperandMatchResultTy
parseSetEndImm(OperandVector
&);
544 OperandMatchResultTy
parseShifterImm(OperandVector
&);
545 OperandMatchResultTy
parseRotImm(OperandVector
&);
546 OperandMatchResultTy
parseModImm(OperandVector
&);
547 OperandMatchResultTy
parseBitfield(OperandVector
&);
548 OperandMatchResultTy
parsePostIdxReg(OperandVector
&);
549 OperandMatchResultTy
parseAM3Offset(OperandVector
&);
550 OperandMatchResultTy
parseFPImm(OperandVector
&);
551 OperandMatchResultTy
parseVectorList(OperandVector
&);
552 OperandMatchResultTy
parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
,
555 // Asm Match Converter Methods
556 void cvtThumbMultiply(MCInst
&Inst
, const OperandVector
&);
557 void cvtThumbBranches(MCInst
&Inst
, const OperandVector
&);
559 bool validateInstruction(MCInst
&Inst
, const OperandVector
&Ops
);
560 bool processInstruction(MCInst
&Inst
, const OperandVector
&Ops
, MCStreamer
&Out
);
561 bool shouldOmitCCOutOperand(StringRef Mnemonic
, OperandVector
&Operands
);
562 bool shouldOmitPredicateOperand(StringRef Mnemonic
, OperandVector
&Operands
);
563 bool isITBlockTerminator(MCInst
&Inst
) const;
564 void fixupGNULDRDAlias(StringRef Mnemonic
, OperandVector
&Operands
);
565 bool validateLDRDSTRD(MCInst
&Inst
, const OperandVector
&Operands
,
566 bool Load
, bool ARMMode
, bool Writeback
);
569 enum ARMMatchResultTy
{
570 Match_RequiresITBlock
= FIRST_TARGET_MATCH_RESULT_TY
,
571 Match_RequiresNotITBlock
,
573 Match_RequiresThumb2
,
575 Match_RequiresFlagSetting
,
576 #define GET_OPERAND_DIAGNOSTIC_TYPES
577 #include "ARMGenAsmMatcher.inc"
581 ARMAsmParser(const MCSubtargetInfo
&STI
, MCAsmParser
&Parser
,
582 const MCInstrInfo
&MII
, const MCTargetOptions
&Options
)
583 : MCTargetAsmParser(Options
, STI
, MII
), UC(Parser
) {
584 MCAsmParserExtension::Initialize(Parser
);
586 // Cache the MCRegisterInfo.
587 MRI
= getContext().getRegisterInfo();
589 // Initialize the set of available features.
590 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
592 // Add build attributes based on the selected target.
593 if (AddBuildAttributes
)
594 getTargetStreamer().emitTargetAttributes(STI
);
596 // Not in an ITBlock to start with.
597 ITState
.CurPosition
= ~0U;
599 NextSymbolIsThumb
= false;
602 // Implementation of the MCTargetAsmParser interface:
603 bool ParseRegister(unsigned &RegNo
, SMLoc
&StartLoc
, SMLoc
&EndLoc
) override
;
604 bool ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
605 SMLoc NameLoc
, OperandVector
&Operands
) override
;
606 bool ParseDirective(AsmToken DirectiveID
) override
;
608 unsigned validateTargetOperandClass(MCParsedAsmOperand
&Op
,
609 unsigned Kind
) override
;
610 unsigned checkTargetMatchPredicate(MCInst
&Inst
) override
;
612 bool MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
613 OperandVector
&Operands
, MCStreamer
&Out
,
615 bool MatchingInlineAsm
) override
;
616 unsigned MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
617 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
618 bool MatchingInlineAsm
, bool &EmitInITBlock
,
621 struct NearMissMessage
{
623 SmallString
<128> Message
;
626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError
);
628 void FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
629 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
630 SMLoc IDLoc
, OperandVector
&Operands
);
631 void ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
, SMLoc IDLoc
,
632 OperandVector
&Operands
);
634 void onLabelParsed(MCSymbol
*Symbol
) override
;
637 /// ARMOperand - Instances of this class represent a parsed ARM machine
639 class ARMOperand
: public MCParsedAsmOperand
{
649 k_InstSyncBarrierOpt
,
650 k_TraceSyncBarrierOpt
,
662 k_VectorListAllLanes
,
669 k_ConstantPoolImmediate
,
670 k_BitfieldDescriptor
,
674 SMLoc StartLoc
, EndLoc
, AlignmentLoc
;
675 SmallVector
<unsigned, 8> Registers
;
678 ARMCC::CondCodes Val
;
685 struct CoprocOptionOp
{
698 ARM_ISB::InstSyncBOpt Val
;
702 ARM_TSB::TraceSyncBOpt Val
;
706 ARM_PROC::IFlags Val
;
726 // A vector register list is a sequential list of 1 to 4 registers.
727 struct VectorListOp
{
734 struct VectorIndexOp
{
742 /// Combined record for all forms of ARM address expressions.
745 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
747 const MCConstantExpr
*OffsetImm
; // Offset immediate value
748 unsigned OffsetRegNum
; // Offset register num, when OffsetImm == NULL
749 ARM_AM::ShiftOpc ShiftType
; // Shift type for OffsetReg
750 unsigned ShiftImm
; // shift for OffsetReg.
751 unsigned Alignment
; // 0 = no alignment specified
752 // n = alignment in bytes (2, 4, 8, 16, or 32)
753 unsigned isNegative
: 1; // Negated OffsetReg? (~'U' bit)
756 struct PostIdxRegOp
{
759 ARM_AM::ShiftOpc ShiftTy
;
763 struct ShifterImmOp
{
768 struct RegShiftedRegOp
{
769 ARM_AM::ShiftOpc ShiftTy
;
775 struct RegShiftedImmOp
{
776 ARM_AM::ShiftOpc ShiftTy
;
798 struct CoprocOptionOp CoprocOption
;
799 struct MBOptOp MBOpt
;
800 struct ISBOptOp ISBOpt
;
801 struct TSBOptOp TSBOpt
;
802 struct ITMaskOp ITMask
;
803 struct IFlagsOp IFlags
;
804 struct MMaskOp MMask
;
805 struct BankedRegOp BankedReg
;
808 struct VectorListOp VectorList
;
809 struct VectorIndexOp VectorIndex
;
811 struct MemoryOp Memory
;
812 struct PostIdxRegOp PostIdxReg
;
813 struct ShifterImmOp ShifterImm
;
814 struct RegShiftedRegOp RegShiftedReg
;
815 struct RegShiftedImmOp RegShiftedImm
;
816 struct RotImmOp RotImm
;
817 struct ModImmOp ModImm
;
818 struct BitfieldOp Bitfield
;
822 ARMOperand(KindTy K
) : MCParsedAsmOperand(), Kind(K
) {}
824 /// getStartLoc - Get the location of the first token of this operand.
825 SMLoc
getStartLoc() const override
{ return StartLoc
; }
827 /// getEndLoc - Get the location of the last token of this operand.
828 SMLoc
getEndLoc() const override
{ return EndLoc
; }
830 /// getLocRange - Get the range between the first and last token of this
832 SMRange
getLocRange() const { return SMRange(StartLoc
, EndLoc
); }
834 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
835 SMLoc
getAlignmentLoc() const {
836 assert(Kind
== k_Memory
&& "Invalid access!");
840 ARMCC::CondCodes
getCondCode() const {
841 assert(Kind
== k_CondCode
&& "Invalid access!");
845 unsigned getCoproc() const {
846 assert((Kind
== k_CoprocNum
|| Kind
== k_CoprocReg
) && "Invalid access!");
850 StringRef
getToken() const {
851 assert(Kind
== k_Token
&& "Invalid access!");
852 return StringRef(Tok
.Data
, Tok
.Length
);
855 unsigned getReg() const override
{
856 assert((Kind
== k_Register
|| Kind
== k_CCOut
) && "Invalid access!");
860 const SmallVectorImpl
<unsigned> &getRegList() const {
861 assert((Kind
== k_RegisterList
|| Kind
== k_DPRRegisterList
||
862 Kind
== k_SPRRegisterList
) && "Invalid access!");
866 const MCExpr
*getImm() const {
867 assert(isImm() && "Invalid access!");
871 const MCExpr
*getConstantPoolImm() const {
872 assert(isConstantPoolImm() && "Invalid access!");
876 unsigned getVectorIndex() const {
877 assert(Kind
== k_VectorIndex
&& "Invalid access!");
878 return VectorIndex
.Val
;
881 ARM_MB::MemBOpt
getMemBarrierOpt() const {
882 assert(Kind
== k_MemBarrierOpt
&& "Invalid access!");
886 ARM_ISB::InstSyncBOpt
getInstSyncBarrierOpt() const {
887 assert(Kind
== k_InstSyncBarrierOpt
&& "Invalid access!");
891 ARM_TSB::TraceSyncBOpt
getTraceSyncBarrierOpt() const {
892 assert(Kind
== k_TraceSyncBarrierOpt
&& "Invalid access!");
896 ARM_PROC::IFlags
getProcIFlags() const {
897 assert(Kind
== k_ProcIFlags
&& "Invalid access!");
901 unsigned getMSRMask() const {
902 assert(Kind
== k_MSRMask
&& "Invalid access!");
906 unsigned getBankedReg() const {
907 assert(Kind
== k_BankedReg
&& "Invalid access!");
908 return BankedReg
.Val
;
911 bool isCoprocNum() const { return Kind
== k_CoprocNum
; }
912 bool isCoprocReg() const { return Kind
== k_CoprocReg
; }
913 bool isCoprocOption() const { return Kind
== k_CoprocOption
; }
914 bool isCondCode() const { return Kind
== k_CondCode
; }
915 bool isCCOut() const { return Kind
== k_CCOut
; }
916 bool isITMask() const { return Kind
== k_ITCondMask
; }
917 bool isITCondCode() const { return Kind
== k_CondCode
; }
918 bool isImm() const override
{
919 return Kind
== k_Immediate
;
922 bool isARMBranchTarget() const {
923 if (!isImm()) return false;
925 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
926 return CE
->getValue() % 4 == 0;
931 bool isThumbBranchTarget() const {
932 if (!isImm()) return false;
934 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
935 return CE
->getValue() % 2 == 0;
939 // checks whether this operand is an unsigned offset which fits is a field
940 // of specified width and scaled by a specific number of bits
941 template<unsigned width
, unsigned scale
>
942 bool isUnsignedOffset() const {
943 if (!isImm()) return false;
944 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
945 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
946 int64_t Val
= CE
->getValue();
947 int64_t Align
= 1LL << scale
;
948 int64_t Max
= Align
* ((1LL << width
) - 1);
949 return ((Val
% Align
) == 0) && (Val
>= 0) && (Val
<= Max
);
954 // checks whether this operand is an signed offset which fits is a field
955 // of specified width and scaled by a specific number of bits
956 template<unsigned width
, unsigned scale
>
957 bool isSignedOffset() const {
958 if (!isImm()) return false;
959 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
960 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
961 int64_t Val
= CE
->getValue();
962 int64_t Align
= 1LL << scale
;
963 int64_t Max
= Align
* ((1LL << (width
-1)) - 1);
964 int64_t Min
= -Align
* (1LL << (width
-1));
965 return ((Val
% Align
) == 0) && (Val
>= Min
) && (Val
<= Max
);
970 // checks whether this operand is a memory operand computed as an offset
971 // applied to PC. the offset may have 8 bits of magnitude and is represented
972 // with two bits of shift. textually it may be either [pc, #imm], #imm or
973 // relocable expression...
974 bool isThumbMemPC() const {
977 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
978 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
);
979 if (!CE
) return false;
980 Val
= CE
->getValue();
983 if(!Memory
.OffsetImm
|| Memory
.OffsetRegNum
) return false;
984 if(Memory
.BaseRegNum
!= ARM::PC
) return false;
985 Val
= Memory
.OffsetImm
->getValue();
988 return ((Val
% 4) == 0) && (Val
>= 0) && (Val
<= 1020);
991 bool isFPImm() const {
992 if (!isImm()) return false;
993 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
994 if (!CE
) return false;
995 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
999 template<int64_t N
, int64_t M
>
1000 bool isImmediate() const {
1001 if (!isImm()) return false;
1002 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1003 if (!CE
) return false;
1004 int64_t Value
= CE
->getValue();
1005 return Value
>= N
&& Value
<= M
;
1008 template<int64_t N
, int64_t M
>
1009 bool isImmediateS4() const {
1010 if (!isImm()) return false;
1011 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1012 if (!CE
) return false;
1013 int64_t Value
= CE
->getValue();
1014 return ((Value
& 3) == 0) && Value
>= N
&& Value
<= M
;
1017 bool isFBits16() const {
1018 return isImmediate
<0, 17>();
1020 bool isFBits32() const {
1021 return isImmediate
<1, 33>();
1023 bool isImm8s4() const {
1024 return isImmediateS4
<-1020, 1020>();
1026 bool isImm0_1020s4() const {
1027 return isImmediateS4
<0, 1020>();
1029 bool isImm0_508s4() const {
1030 return isImmediateS4
<0, 508>();
1032 bool isImm0_508s4Neg() const {
1033 if (!isImm()) return false;
1034 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1035 if (!CE
) return false;
1036 int64_t Value
= -CE
->getValue();
1037 // explicitly exclude zero. we want that to use the normal 0_508 version.
1038 return ((Value
& 3) == 0) && Value
> 0 && Value
<= 508;
1041 bool isImm0_4095Neg() const {
1042 if (!isImm()) return false;
1043 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1044 if (!CE
) return false;
1045 // isImm0_4095Neg is used with 32-bit immediates only.
1046 // 32-bit immediates are zero extended to 64-bit when parsed,
1047 // thus simple -CE->getValue() results in a big negative number,
1048 // not a small positive number as intended
1049 if ((CE
->getValue() >> 32) > 0) return false;
1050 uint32_t Value
= -static_cast<uint32_t>(CE
->getValue());
1051 return Value
> 0 && Value
< 4096;
1054 bool isImm0_7() const {
1055 return isImmediate
<0, 7>();
1058 bool isImm1_16() const {
1059 return isImmediate
<1, 16>();
1062 bool isImm1_32() const {
1063 return isImmediate
<1, 32>();
1066 bool isImm8_255() const {
1067 return isImmediate
<8, 255>();
1070 bool isImm256_65535Expr() const {
1071 if (!isImm()) return false;
1072 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1073 // If it's not a constant expression, it'll generate a fixup and be
1075 if (!CE
) return true;
1076 int64_t Value
= CE
->getValue();
1077 return Value
>= 256 && Value
< 65536;
1080 bool isImm0_65535Expr() const {
1081 if (!isImm()) return false;
1082 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1083 // If it's not a constant expression, it'll generate a fixup and be
1085 if (!CE
) return true;
1086 int64_t Value
= CE
->getValue();
1087 return Value
>= 0 && Value
< 65536;
1090 bool isImm24bit() const {
1091 return isImmediate
<0, 0xffffff + 1>();
1094 bool isImmThumbSR() const {
1095 return isImmediate
<1, 33>();
1098 bool isPKHLSLImm() const {
1099 return isImmediate
<0, 32>();
1102 bool isPKHASRImm() const {
1103 return isImmediate
<0, 33>();
1106 bool isAdrLabel() const {
1107 // If we have an immediate that's not a constant, treat it as a label
1108 // reference needing a fixup.
1109 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1112 // If it is a constant, it must fit into a modified immediate encoding.
1113 if (!isImm()) return false;
1114 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1115 if (!CE
) return false;
1116 int64_t Value
= CE
->getValue();
1117 return (ARM_AM::getSOImmVal(Value
) != -1 ||
1118 ARM_AM::getSOImmVal(-Value
) != -1);
1121 bool isT2SOImm() const {
1122 // If we have an immediate that's not a constant, treat it as an expression
1124 if (isImm() && !isa
<MCConstantExpr
>(getImm())) {
1125 // We want to avoid matching :upper16: and :lower16: as we want these
1126 // expressions to match in isImm0_65535Expr()
1127 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(getImm());
1128 return (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
1129 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
));
1131 if (!isImm()) return false;
1132 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1133 if (!CE
) return false;
1134 int64_t Value
= CE
->getValue();
1135 return ARM_AM::getT2SOImmVal(Value
) != -1;
1138 bool isT2SOImmNot() const {
1139 if (!isImm()) return false;
1140 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1141 if (!CE
) return false;
1142 int64_t Value
= CE
->getValue();
1143 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1144 ARM_AM::getT2SOImmVal(~Value
) != -1;
1147 bool isT2SOImmNeg() const {
1148 if (!isImm()) return false;
1149 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1150 if (!CE
) return false;
1151 int64_t Value
= CE
->getValue();
1152 // Only use this when not representable as a plain so_imm.
1153 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1154 ARM_AM::getT2SOImmVal(-Value
) != -1;
1157 bool isSetEndImm() const {
1158 if (!isImm()) return false;
1159 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1160 if (!CE
) return false;
1161 int64_t Value
= CE
->getValue();
1162 return Value
== 1 || Value
== 0;
1165 bool isReg() const override
{ return Kind
== k_Register
; }
1166 bool isRegList() const { return Kind
== k_RegisterList
; }
1167 bool isDPRRegList() const { return Kind
== k_DPRRegisterList
; }
1168 bool isSPRRegList() const { return Kind
== k_SPRRegisterList
; }
1169 bool isToken() const override
{ return Kind
== k_Token
; }
1170 bool isMemBarrierOpt() const { return Kind
== k_MemBarrierOpt
; }
1171 bool isInstSyncBarrierOpt() const { return Kind
== k_InstSyncBarrierOpt
; }
1172 bool isTraceSyncBarrierOpt() const { return Kind
== k_TraceSyncBarrierOpt
; }
1173 bool isMem() const override
{
1174 if (Kind
!= k_Memory
)
1176 if (Memory
.BaseRegNum
&&
1177 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.BaseRegNum
))
1179 if (Memory
.OffsetRegNum
&&
1180 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.OffsetRegNum
))
1184 bool isShifterImm() const { return Kind
== k_ShifterImmediate
; }
1185 bool isRegShiftedReg() const {
1186 return Kind
== k_ShiftedRegister
&&
1187 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1188 RegShiftedReg
.SrcReg
) &&
1189 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1190 RegShiftedReg
.ShiftReg
);
1192 bool isRegShiftedImm() const {
1193 return Kind
== k_ShiftedImmediate
&&
1194 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1195 RegShiftedImm
.SrcReg
);
1197 bool isRotImm() const { return Kind
== k_RotateImmediate
; }
1198 bool isModImm() const { return Kind
== k_ModifiedImmediate
; }
1200 bool isModImmNot() const {
1201 if (!isImm()) return false;
1202 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1203 if (!CE
) return false;
1204 int64_t Value
= CE
->getValue();
1205 return ARM_AM::getSOImmVal(~Value
) != -1;
1208 bool isModImmNeg() const {
1209 if (!isImm()) return false;
1210 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1211 if (!CE
) return false;
1212 int64_t Value
= CE
->getValue();
1213 return ARM_AM::getSOImmVal(Value
) == -1 &&
1214 ARM_AM::getSOImmVal(-Value
) != -1;
1217 bool isThumbModImmNeg1_7() const {
1218 if (!isImm()) return false;
1219 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1220 if (!CE
) return false;
1221 int32_t Value
= -(int32_t)CE
->getValue();
1222 return 0 < Value
&& Value
< 8;
1225 bool isThumbModImmNeg8_255() const {
1226 if (!isImm()) return false;
1227 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1228 if (!CE
) return false;
1229 int32_t Value
= -(int32_t)CE
->getValue();
1230 return 7 < Value
&& Value
< 256;
1233 bool isConstantPoolImm() const { return Kind
== k_ConstantPoolImmediate
; }
1234 bool isBitfield() const { return Kind
== k_BitfieldDescriptor
; }
1235 bool isPostIdxRegShifted() const {
1236 return Kind
== k_PostIndexRegister
&&
1237 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(PostIdxReg
.RegNum
);
1239 bool isPostIdxReg() const {
1240 return isPostIdxRegShifted() && PostIdxReg
.ShiftTy
== ARM_AM::no_shift
;
1242 bool isMemNoOffset(bool alignOK
= false, unsigned Alignment
= 0) const {
1245 // No offset of any kind.
1246 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1247 (alignOK
|| Memory
.Alignment
== Alignment
);
1249 bool isMemPCRelImm12() const {
1250 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1252 // Base register must be PC.
1253 if (Memory
.BaseRegNum
!= ARM::PC
)
1255 // Immediate offset in range [-4095, 4095].
1256 if (!Memory
.OffsetImm
) return true;
1257 int64_t Val
= Memory
.OffsetImm
->getValue();
1258 return (Val
> -4096 && Val
< 4096) ||
1259 (Val
== std::numeric_limits
<int32_t>::min());
1262 bool isAlignedMemory() const {
1263 return isMemNoOffset(true);
1266 bool isAlignedMemoryNone() const {
1267 return isMemNoOffset(false, 0);
1270 bool isDupAlignedMemoryNone() const {
1271 return isMemNoOffset(false, 0);
1274 bool isAlignedMemory16() const {
1275 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1277 return isMemNoOffset(false, 0);
1280 bool isDupAlignedMemory16() const {
1281 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1283 return isMemNoOffset(false, 0);
1286 bool isAlignedMemory32() const {
1287 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1289 return isMemNoOffset(false, 0);
1292 bool isDupAlignedMemory32() const {
1293 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1295 return isMemNoOffset(false, 0);
1298 bool isAlignedMemory64() const {
1299 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1301 return isMemNoOffset(false, 0);
1304 bool isDupAlignedMemory64() const {
1305 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1307 return isMemNoOffset(false, 0);
1310 bool isAlignedMemory64or128() const {
1311 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1313 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1315 return isMemNoOffset(false, 0);
1318 bool isDupAlignedMemory64or128() const {
1319 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1321 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1323 return isMemNoOffset(false, 0);
1326 bool isAlignedMemory64or128or256() const {
1327 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1329 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1331 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1333 return isMemNoOffset(false, 0);
1336 bool isAddrMode2() const {
1337 if (!isMem() || Memory
.Alignment
!= 0) return false;
1338 // Check for register offset.
1339 if (Memory
.OffsetRegNum
) return true;
1340 // Immediate offset in range [-4095, 4095].
1341 if (!Memory
.OffsetImm
) return true;
1342 int64_t Val
= Memory
.OffsetImm
->getValue();
1343 return Val
> -4096 && Val
< 4096;
1346 bool isAM2OffsetImm() const {
1347 if (!isImm()) return false;
1348 // Immediate offset in range [-4095, 4095].
1349 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1350 if (!CE
) return false;
1351 int64_t Val
= CE
->getValue();
1352 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1353 (Val
> -4096 && Val
< 4096);
1356 bool isAddrMode3() const {
1357 // If we have an immediate that's not a constant, treat it as a label
1358 // reference needing a fixup. If it is a constant, it's something else
1359 // and we reject it.
1360 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1362 if (!isMem() || Memory
.Alignment
!= 0) return false;
1363 // No shifts are legal for AM3.
1364 if (Memory
.ShiftType
!= ARM_AM::no_shift
) return false;
1365 // Check for register offset.
1366 if (Memory
.OffsetRegNum
) return true;
1367 // Immediate offset in range [-255, 255].
1368 if (!Memory
.OffsetImm
) return true;
1369 int64_t Val
= Memory
.OffsetImm
->getValue();
1370 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1371 // have to check for this too.
1372 return (Val
> -256 && Val
< 256) ||
1373 Val
== std::numeric_limits
<int32_t>::min();
1376 bool isAM3Offset() const {
1381 // Immediate offset in range [-255, 255].
1382 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1383 if (!CE
) return false;
1384 int64_t Val
= CE
->getValue();
1385 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1386 return (Val
> -256 && Val
< 256) ||
1387 Val
== std::numeric_limits
<int32_t>::min();
1390 bool isAddrMode5() const {
1391 // If we have an immediate that's not a constant, treat it as a label
1392 // reference needing a fixup. If it is a constant, it's something else
1393 // and we reject it.
1394 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1396 if (!isMem() || Memory
.Alignment
!= 0) return false;
1397 // Check for register offset.
1398 if (Memory
.OffsetRegNum
) return false;
1399 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1400 if (!Memory
.OffsetImm
) return true;
1401 int64_t Val
= Memory
.OffsetImm
->getValue();
1402 return (Val
>= -1020 && Val
<= 1020 && ((Val
& 3) == 0)) ||
1403 Val
== std::numeric_limits
<int32_t>::min();
1406 bool isAddrMode5FP16() const {
1407 // If we have an immediate that's not a constant, treat it as a label
1408 // reference needing a fixup. If it is a constant, it's something else
1409 // and we reject it.
1410 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1412 if (!isMem() || Memory
.Alignment
!= 0) return false;
1413 // Check for register offset.
1414 if (Memory
.OffsetRegNum
) return false;
1415 // Immediate offset in range [-510, 510] and a multiple of 2.
1416 if (!Memory
.OffsetImm
) return true;
1417 int64_t Val
= Memory
.OffsetImm
->getValue();
1418 return (Val
>= -510 && Val
<= 510 && ((Val
& 1) == 0)) ||
1419 Val
== std::numeric_limits
<int32_t>::min();
1422 bool isMemTBB() const {
1423 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1424 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1429 bool isMemTBH() const {
1430 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1431 Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
!= 1 ||
1432 Memory
.Alignment
!= 0 )
1437 bool isMemRegOffset() const {
1438 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.Alignment
!= 0)
1443 bool isT2MemRegOffset() const {
1444 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1445 Memory
.Alignment
!= 0 || Memory
.BaseRegNum
== ARM::PC
)
1447 // Only lsl #{0, 1, 2, 3} allowed.
1448 if (Memory
.ShiftType
== ARM_AM::no_shift
)
1450 if (Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
> 3)
1455 bool isMemThumbRR() const {
1456 // Thumb reg+reg addressing is simple. Just two registers, a base and
1457 // an offset. No shifts, negations or any other complicating factors.
1458 if (!isMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1459 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1461 return isARMLowRegister(Memory
.BaseRegNum
) &&
1462 (!Memory
.OffsetRegNum
|| isARMLowRegister(Memory
.OffsetRegNum
));
1465 bool isMemThumbRIs4() const {
1466 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1467 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1469 // Immediate offset, multiple of 4 in range [0, 124].
1470 if (!Memory
.OffsetImm
) return true;
1471 int64_t Val
= Memory
.OffsetImm
->getValue();
1472 return Val
>= 0 && Val
<= 124 && (Val
% 4) == 0;
1475 bool isMemThumbRIs2() const {
1476 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1477 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1479 // Immediate offset, multiple of 4 in range [0, 62].
1480 if (!Memory
.OffsetImm
) return true;
1481 int64_t Val
= Memory
.OffsetImm
->getValue();
1482 return Val
>= 0 && Val
<= 62 && (Val
% 2) == 0;
1485 bool isMemThumbRIs1() const {
1486 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1487 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1489 // Immediate offset in range [0, 31].
1490 if (!Memory
.OffsetImm
) return true;
1491 int64_t Val
= Memory
.OffsetImm
->getValue();
1492 return Val
>= 0 && Val
<= 31;
1495 bool isMemThumbSPI() const {
1496 if (!isMem() || Memory
.OffsetRegNum
!= 0 ||
1497 Memory
.BaseRegNum
!= ARM::SP
|| Memory
.Alignment
!= 0)
1499 // Immediate offset, multiple of 4 in range [0, 1020].
1500 if (!Memory
.OffsetImm
) return true;
1501 int64_t Val
= Memory
.OffsetImm
->getValue();
1502 return Val
>= 0 && Val
<= 1020 && (Val
% 4) == 0;
1505 bool isMemImm8s4Offset() const {
1506 // If we have an immediate that's not a constant, treat it as a label
1507 // reference needing a fixup. If it is a constant, it's something else
1508 // and we reject it.
1509 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1511 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1513 // Immediate offset a multiple of 4 in range [-1020, 1020].
1514 if (!Memory
.OffsetImm
) return true;
1515 int64_t Val
= Memory
.OffsetImm
->getValue();
1516 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1517 return (Val
>= -1020 && Val
<= 1020 && (Val
& 3) == 0) ||
1518 Val
== std::numeric_limits
<int32_t>::min();
1521 bool isMemImm0_1020s4Offset() const {
1522 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1524 // Immediate offset a multiple of 4 in range [0, 1020].
1525 if (!Memory
.OffsetImm
) return true;
1526 int64_t Val
= Memory
.OffsetImm
->getValue();
1527 return Val
>= 0 && Val
<= 1020 && (Val
& 3) == 0;
1530 bool isMemImm8Offset() const {
1531 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1533 // Base reg of PC isn't allowed for these encodings.
1534 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1535 // Immediate offset in range [-255, 255].
1536 if (!Memory
.OffsetImm
) return true;
1537 int64_t Val
= Memory
.OffsetImm
->getValue();
1538 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1539 (Val
> -256 && Val
< 256);
1542 bool isMemPosImm8Offset() const {
1543 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1545 // Immediate offset in range [0, 255].
1546 if (!Memory
.OffsetImm
) return true;
1547 int64_t Val
= Memory
.OffsetImm
->getValue();
1548 return Val
>= 0 && Val
< 256;
1551 bool isMemNegImm8Offset() const {
1552 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1554 // Base reg of PC isn't allowed for these encodings.
1555 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1556 // Immediate offset in range [-255, -1].
1557 if (!Memory
.OffsetImm
) return false;
1558 int64_t Val
= Memory
.OffsetImm
->getValue();
1559 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1560 (Val
> -256 && Val
< 0);
1563 bool isMemUImm12Offset() const {
1564 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1566 // Immediate offset in range [0, 4095].
1567 if (!Memory
.OffsetImm
) return true;
1568 int64_t Val
= Memory
.OffsetImm
->getValue();
1569 return (Val
>= 0 && Val
< 4096);
1572 bool isMemImm12Offset() const {
1573 // If we have an immediate that's not a constant, treat it as a label
1574 // reference needing a fixup. If it is a constant, it's something else
1575 // and we reject it.
1577 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1580 if (!isMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1582 // Immediate offset in range [-4095, 4095].
1583 if (!Memory
.OffsetImm
) return true;
1584 int64_t Val
= Memory
.OffsetImm
->getValue();
1585 return (Val
> -4096 && Val
< 4096) ||
1586 (Val
== std::numeric_limits
<int32_t>::min());
1589 bool isConstPoolAsmImm() const {
1590 // Delay processing of Constant Pool Immediate, this will turn into
1591 // a constant. Match no other operand
1592 return (isConstantPoolImm());
1595 bool isPostIdxImm8() const {
1596 if (!isImm()) return false;
1597 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1598 if (!CE
) return false;
1599 int64_t Val
= CE
->getValue();
1600 return (Val
> -256 && Val
< 256) ||
1601 (Val
== std::numeric_limits
<int32_t>::min());
1604 bool isPostIdxImm8s4() const {
1605 if (!isImm()) return false;
1606 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1607 if (!CE
) return false;
1608 int64_t Val
= CE
->getValue();
1609 return ((Val
& 3) == 0 && Val
>= -1020 && Val
<= 1020) ||
1610 (Val
== std::numeric_limits
<int32_t>::min());
1613 bool isMSRMask() const { return Kind
== k_MSRMask
; }
1614 bool isBankedReg() const { return Kind
== k_BankedReg
; }
1615 bool isProcIFlags() const { return Kind
== k_ProcIFlags
; }
1618 bool isSingleSpacedVectorList() const {
1619 return Kind
== k_VectorList
&& !VectorList
.isDoubleSpaced
;
1622 bool isDoubleSpacedVectorList() const {
1623 return Kind
== k_VectorList
&& VectorList
.isDoubleSpaced
;
1626 bool isVecListOneD() const {
1627 if (!isSingleSpacedVectorList()) return false;
1628 return VectorList
.Count
== 1;
1631 bool isVecListDPair() const {
1632 if (!isSingleSpacedVectorList()) return false;
1633 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
1634 .contains(VectorList
.RegNum
));
1637 bool isVecListThreeD() const {
1638 if (!isSingleSpacedVectorList()) return false;
1639 return VectorList
.Count
== 3;
1642 bool isVecListFourD() const {
1643 if (!isSingleSpacedVectorList()) return false;
1644 return VectorList
.Count
== 4;
1647 bool isVecListDPairSpaced() const {
1648 if (Kind
!= k_VectorList
) return false;
1649 if (isSingleSpacedVectorList()) return false;
1650 return (ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
]
1651 .contains(VectorList
.RegNum
));
1654 bool isVecListThreeQ() const {
1655 if (!isDoubleSpacedVectorList()) return false;
1656 return VectorList
.Count
== 3;
1659 bool isVecListFourQ() const {
1660 if (!isDoubleSpacedVectorList()) return false;
1661 return VectorList
.Count
== 4;
1664 bool isSingleSpacedVectorAllLanes() const {
1665 return Kind
== k_VectorListAllLanes
&& !VectorList
.isDoubleSpaced
;
1668 bool isDoubleSpacedVectorAllLanes() const {
1669 return Kind
== k_VectorListAllLanes
&& VectorList
.isDoubleSpaced
;
1672 bool isVecListOneDAllLanes() const {
1673 if (!isSingleSpacedVectorAllLanes()) return false;
1674 return VectorList
.Count
== 1;
1677 bool isVecListDPairAllLanes() const {
1678 if (!isSingleSpacedVectorAllLanes()) return false;
1679 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
1680 .contains(VectorList
.RegNum
));
1683 bool isVecListDPairSpacedAllLanes() const {
1684 if (!isDoubleSpacedVectorAllLanes()) return false;
1685 return VectorList
.Count
== 2;
1688 bool isVecListThreeDAllLanes() const {
1689 if (!isSingleSpacedVectorAllLanes()) return false;
1690 return VectorList
.Count
== 3;
1693 bool isVecListThreeQAllLanes() const {
1694 if (!isDoubleSpacedVectorAllLanes()) return false;
1695 return VectorList
.Count
== 3;
1698 bool isVecListFourDAllLanes() const {
1699 if (!isSingleSpacedVectorAllLanes()) return false;
1700 return VectorList
.Count
== 4;
1703 bool isVecListFourQAllLanes() const {
1704 if (!isDoubleSpacedVectorAllLanes()) return false;
1705 return VectorList
.Count
== 4;
1708 bool isSingleSpacedVectorIndexed() const {
1709 return Kind
== k_VectorListIndexed
&& !VectorList
.isDoubleSpaced
;
1712 bool isDoubleSpacedVectorIndexed() const {
1713 return Kind
== k_VectorListIndexed
&& VectorList
.isDoubleSpaced
;
1716 bool isVecListOneDByteIndexed() const {
1717 if (!isSingleSpacedVectorIndexed()) return false;
1718 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 7;
1721 bool isVecListOneDHWordIndexed() const {
1722 if (!isSingleSpacedVectorIndexed()) return false;
1723 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 3;
1726 bool isVecListOneDWordIndexed() const {
1727 if (!isSingleSpacedVectorIndexed()) return false;
1728 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 1;
1731 bool isVecListTwoDByteIndexed() const {
1732 if (!isSingleSpacedVectorIndexed()) return false;
1733 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 7;
1736 bool isVecListTwoDHWordIndexed() const {
1737 if (!isSingleSpacedVectorIndexed()) return false;
1738 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
1741 bool isVecListTwoQWordIndexed() const {
1742 if (!isDoubleSpacedVectorIndexed()) return false;
1743 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
1746 bool isVecListTwoQHWordIndexed() const {
1747 if (!isDoubleSpacedVectorIndexed()) return false;
1748 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
1751 bool isVecListTwoDWordIndexed() const {
1752 if (!isSingleSpacedVectorIndexed()) return false;
1753 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
1756 bool isVecListThreeDByteIndexed() const {
1757 if (!isSingleSpacedVectorIndexed()) return false;
1758 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 7;
1761 bool isVecListThreeDHWordIndexed() const {
1762 if (!isSingleSpacedVectorIndexed()) return false;
1763 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
1766 bool isVecListThreeQWordIndexed() const {
1767 if (!isDoubleSpacedVectorIndexed()) return false;
1768 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
1771 bool isVecListThreeQHWordIndexed() const {
1772 if (!isDoubleSpacedVectorIndexed()) return false;
1773 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
1776 bool isVecListThreeDWordIndexed() const {
1777 if (!isSingleSpacedVectorIndexed()) return false;
1778 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
1781 bool isVecListFourDByteIndexed() const {
1782 if (!isSingleSpacedVectorIndexed()) return false;
1783 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 7;
1786 bool isVecListFourDHWordIndexed() const {
1787 if (!isSingleSpacedVectorIndexed()) return false;
1788 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
1791 bool isVecListFourQWordIndexed() const {
1792 if (!isDoubleSpacedVectorIndexed()) return false;
1793 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
1796 bool isVecListFourQHWordIndexed() const {
1797 if (!isDoubleSpacedVectorIndexed()) return false;
1798 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
1801 bool isVecListFourDWordIndexed() const {
1802 if (!isSingleSpacedVectorIndexed()) return false;
1803 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
1806 bool isVectorIndex8() const {
1807 if (Kind
!= k_VectorIndex
) return false;
1808 return VectorIndex
.Val
< 8;
1811 bool isVectorIndex16() const {
1812 if (Kind
!= k_VectorIndex
) return false;
1813 return VectorIndex
.Val
< 4;
1816 bool isVectorIndex32() const {
1817 if (Kind
!= k_VectorIndex
) return false;
1818 return VectorIndex
.Val
< 2;
1820 bool isVectorIndex64() const {
1821 if (Kind
!= k_VectorIndex
) return false;
1822 return VectorIndex
.Val
< 1;
1825 bool isNEONi8splat() const {
1826 if (!isImm()) return false;
1827 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1828 // Must be a constant.
1829 if (!CE
) return false;
1830 int64_t Value
= CE
->getValue();
1831 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1833 return Value
>= 0 && Value
< 256;
1836 bool isNEONi16splat() const {
1837 if (isNEONByteReplicate(2))
1838 return false; // Leave that for bytes replication and forbid by default.
1841 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1842 // Must be a constant.
1843 if (!CE
) return false;
1844 unsigned Value
= CE
->getValue();
1845 return ARM_AM::isNEONi16splat(Value
);
1848 bool isNEONi16splatNot() const {
1851 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1852 // Must be a constant.
1853 if (!CE
) return false;
1854 unsigned Value
= CE
->getValue();
1855 return ARM_AM::isNEONi16splat(~Value
& 0xffff);
1858 bool isNEONi32splat() const {
1859 if (isNEONByteReplicate(4))
1860 return false; // Leave that for bytes replication and forbid by default.
1863 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1864 // Must be a constant.
1865 if (!CE
) return false;
1866 unsigned Value
= CE
->getValue();
1867 return ARM_AM::isNEONi32splat(Value
);
1870 bool isNEONi32splatNot() const {
1873 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1874 // Must be a constant.
1875 if (!CE
) return false;
1876 unsigned Value
= CE
->getValue();
1877 return ARM_AM::isNEONi32splat(~Value
);
1880 static bool isValidNEONi32vmovImm(int64_t Value
) {
1881 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1882 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1883 return ((Value
& 0xffffffffffffff00) == 0) ||
1884 ((Value
& 0xffffffffffff00ff) == 0) ||
1885 ((Value
& 0xffffffffff00ffff) == 0) ||
1886 ((Value
& 0xffffffff00ffffff) == 0) ||
1887 ((Value
& 0xffffffffffff00ff) == 0xff) ||
1888 ((Value
& 0xffffffffff00ffff) == 0xffff);
1891 bool isNEONReplicate(unsigned Width
, unsigned NumElems
, bool Inv
) const {
1892 assert((Width
== 8 || Width
== 16 || Width
== 32) &&
1893 "Invalid element width");
1894 assert(NumElems
* Width
<= 64 && "Invalid result width");
1898 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1899 // Must be a constant.
1902 int64_t Value
= CE
->getValue();
1904 return false; // Don't bother with zero.
1908 uint64_t Mask
= (1ull << Width
) - 1;
1909 uint64_t Elem
= Value
& Mask
;
1910 if (Width
== 16 && (Elem
& 0x00ff) != 0 && (Elem
& 0xff00) != 0)
1912 if (Width
== 32 && !isValidNEONi32vmovImm(Elem
))
1915 for (unsigned i
= 1; i
< NumElems
; ++i
) {
1917 if ((Value
& Mask
) != Elem
)
1923 bool isNEONByteReplicate(unsigned NumBytes
) const {
1924 return isNEONReplicate(8, NumBytes
, false);
1927 static void checkNeonReplicateArgs(unsigned FromW
, unsigned ToW
) {
1928 assert((FromW
== 8 || FromW
== 16 || FromW
== 32) &&
1929 "Invalid source width");
1930 assert((ToW
== 16 || ToW
== 32 || ToW
== 64) &&
1931 "Invalid destination width");
1932 assert(FromW
< ToW
&& "ToW is not less than FromW");
1935 template<unsigned FromW
, unsigned ToW
>
1936 bool isNEONmovReplicate() const {
1937 checkNeonReplicateArgs(FromW
, ToW
);
1938 if (ToW
== 64 && isNEONi64splat())
1940 return isNEONReplicate(FromW
, ToW
/ FromW
, false);
1943 template<unsigned FromW
, unsigned ToW
>
1944 bool isNEONinvReplicate() const {
1945 checkNeonReplicateArgs(FromW
, ToW
);
1946 return isNEONReplicate(FromW
, ToW
/ FromW
, true);
1949 bool isNEONi32vmov() const {
1950 if (isNEONByteReplicate(4))
1951 return false; // Let it to be classified as byte-replicate case.
1954 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1955 // Must be a constant.
1958 return isValidNEONi32vmovImm(CE
->getValue());
1961 bool isNEONi32vmovNeg() const {
1962 if (!isImm()) return false;
1963 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1964 // Must be a constant.
1965 if (!CE
) return false;
1966 return isValidNEONi32vmovImm(~CE
->getValue());
1969 bool isNEONi64splat() const {
1970 if (!isImm()) return false;
1971 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1972 // Must be a constant.
1973 if (!CE
) return false;
1974 uint64_t Value
= CE
->getValue();
1975 // i64 value with each byte being either 0 or 0xff.
1976 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8)
1977 if ((Value
& 0xff) != 0 && (Value
& 0xff) != 0xff) return false;
1981 template<int64_t Angle
, int64_t Remainder
>
1982 bool isComplexRotation() const {
1983 if (!isImm()) return false;
1985 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1986 if (!CE
) return false;
1987 uint64_t Value
= CE
->getValue();
1989 return (Value
% Angle
== Remainder
&& Value
<= 270);
1992 void addExpr(MCInst
&Inst
, const MCExpr
*Expr
) const {
1993 // Add as immediates when possible. Null MCExpr = 0.
1995 Inst
.addOperand(MCOperand::createImm(0));
1996 else if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
))
1997 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
1999 Inst
.addOperand(MCOperand::createExpr(Expr
));
2002 void addARMBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2003 assert(N
== 1 && "Invalid number of operands!");
2004 addExpr(Inst
, getImm());
2007 void addThumbBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2008 assert(N
== 1 && "Invalid number of operands!");
2009 addExpr(Inst
, getImm());
2012 void addCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2013 assert(N
== 2 && "Invalid number of operands!");
2014 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2015 unsigned RegNum
= getCondCode() == ARMCC::AL
? 0: ARM::CPSR
;
2016 Inst
.addOperand(MCOperand::createReg(RegNum
));
2019 void addCoprocNumOperands(MCInst
&Inst
, unsigned N
) const {
2020 assert(N
== 1 && "Invalid number of operands!");
2021 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2024 void addCoprocRegOperands(MCInst
&Inst
, unsigned N
) const {
2025 assert(N
== 1 && "Invalid number of operands!");
2026 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2029 void addCoprocOptionOperands(MCInst
&Inst
, unsigned N
) const {
2030 assert(N
== 1 && "Invalid number of operands!");
2031 Inst
.addOperand(MCOperand::createImm(CoprocOption
.Val
));
2034 void addITMaskOperands(MCInst
&Inst
, unsigned N
) const {
2035 assert(N
== 1 && "Invalid number of operands!");
2036 Inst
.addOperand(MCOperand::createImm(ITMask
.Mask
));
2039 void addITCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2040 assert(N
== 1 && "Invalid number of operands!");
2041 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2044 void addCCOutOperands(MCInst
&Inst
, unsigned N
) const {
2045 assert(N
== 1 && "Invalid number of operands!");
2046 Inst
.addOperand(MCOperand::createReg(getReg()));
2049 void addRegOperands(MCInst
&Inst
, unsigned N
) const {
2050 assert(N
== 1 && "Invalid number of operands!");
2051 Inst
.addOperand(MCOperand::createReg(getReg()));
2054 void addRegShiftedRegOperands(MCInst
&Inst
, unsigned N
) const {
2055 assert(N
== 3 && "Invalid number of operands!");
2056 assert(isRegShiftedReg() &&
2057 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2058 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.SrcReg
));
2059 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.ShiftReg
));
2060 Inst
.addOperand(MCOperand::createImm(
2061 ARM_AM::getSORegOpc(RegShiftedReg
.ShiftTy
, RegShiftedReg
.ShiftImm
)));
2064 void addRegShiftedImmOperands(MCInst
&Inst
, unsigned N
) const {
2065 assert(N
== 2 && "Invalid number of operands!");
2066 assert(isRegShiftedImm() &&
2067 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2068 Inst
.addOperand(MCOperand::createReg(RegShiftedImm
.SrcReg
));
2069 // Shift of #32 is encoded as 0 where permitted
2070 unsigned Imm
= (RegShiftedImm
.ShiftImm
== 32 ? 0 : RegShiftedImm
.ShiftImm
);
2071 Inst
.addOperand(MCOperand::createImm(
2072 ARM_AM::getSORegOpc(RegShiftedImm
.ShiftTy
, Imm
)));
2075 void addShifterImmOperands(MCInst
&Inst
, unsigned N
) const {
2076 assert(N
== 1 && "Invalid number of operands!");
2077 Inst
.addOperand(MCOperand::createImm((ShifterImm
.isASR
<< 5) |
2081 void addRegListOperands(MCInst
&Inst
, unsigned N
) const {
2082 assert(N
== 1 && "Invalid number of operands!");
2083 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
2084 for (SmallVectorImpl
<unsigned>::const_iterator
2085 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ++I
)
2086 Inst
.addOperand(MCOperand::createReg(*I
));
2089 void addDPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2090 addRegListOperands(Inst
, N
);
2093 void addSPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2094 addRegListOperands(Inst
, N
);
2097 void addRotImmOperands(MCInst
&Inst
, unsigned N
) const {
2098 assert(N
== 1 && "Invalid number of operands!");
2099 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2100 Inst
.addOperand(MCOperand::createImm(RotImm
.Imm
>> 3));
2103 void addModImmOperands(MCInst
&Inst
, unsigned N
) const {
2104 assert(N
== 1 && "Invalid number of operands!");
2106 // Support for fixups (MCFixup)
2108 return addImmOperands(Inst
, N
);
2110 Inst
.addOperand(MCOperand::createImm(ModImm
.Bits
| (ModImm
.Rot
<< 7)));
2113 void addModImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2114 assert(N
== 1 && "Invalid number of operands!");
2115 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2116 uint32_t Enc
= ARM_AM::getSOImmVal(~CE
->getValue());
2117 Inst
.addOperand(MCOperand::createImm(Enc
));
2120 void addModImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2121 assert(N
== 1 && "Invalid number of operands!");
2122 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2123 uint32_t Enc
= ARM_AM::getSOImmVal(-CE
->getValue());
2124 Inst
.addOperand(MCOperand::createImm(Enc
));
2127 void addThumbModImmNeg8_255Operands(MCInst
&Inst
, unsigned N
) const {
2128 assert(N
== 1 && "Invalid number of operands!");
2129 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2130 uint32_t Val
= -CE
->getValue();
2131 Inst
.addOperand(MCOperand::createImm(Val
));
2134 void addThumbModImmNeg1_7Operands(MCInst
&Inst
, unsigned N
) const {
2135 assert(N
== 1 && "Invalid number of operands!");
2136 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2137 uint32_t Val
= -CE
->getValue();
2138 Inst
.addOperand(MCOperand::createImm(Val
));
2141 void addBitfieldOperands(MCInst
&Inst
, unsigned N
) const {
2142 assert(N
== 1 && "Invalid number of operands!");
2143 // Munge the lsb/width into a bitfield mask.
2144 unsigned lsb
= Bitfield
.LSB
;
2145 unsigned width
= Bitfield
.Width
;
2146 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2147 uint32_t Mask
= ~(((uint32_t)0xffffffff >> lsb
) << (32 - width
) >>
2148 (32 - (lsb
+ width
)));
2149 Inst
.addOperand(MCOperand::createImm(Mask
));
2152 void addImmOperands(MCInst
&Inst
, unsigned N
) const {
2153 assert(N
== 1 && "Invalid number of operands!");
2154 addExpr(Inst
, getImm());
2157 void addFBits16Operands(MCInst
&Inst
, unsigned N
) const {
2158 assert(N
== 1 && "Invalid number of operands!");
2159 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2160 Inst
.addOperand(MCOperand::createImm(16 - CE
->getValue()));
2163 void addFBits32Operands(MCInst
&Inst
, unsigned N
) const {
2164 assert(N
== 1 && "Invalid number of operands!");
2165 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2166 Inst
.addOperand(MCOperand::createImm(32 - CE
->getValue()));
2169 void addFPImmOperands(MCInst
&Inst
, unsigned N
) const {
2170 assert(N
== 1 && "Invalid number of operands!");
2171 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2172 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
2173 Inst
.addOperand(MCOperand::createImm(Val
));
2176 void addImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
2177 assert(N
== 1 && "Invalid number of operands!");
2178 // FIXME: We really want to scale the value here, but the LDRD/STRD
2179 // instruction don't encode operands that way yet.
2180 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2181 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2184 void addImm0_1020s4Operands(MCInst
&Inst
, unsigned N
) const {
2185 assert(N
== 1 && "Invalid number of operands!");
2186 // The immediate is scaled by four in the encoding and is stored
2187 // in the MCInst as such. Lop off the low two bits here.
2188 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2189 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2192 void addImm0_508s4NegOperands(MCInst
&Inst
, unsigned N
) const {
2193 assert(N
== 1 && "Invalid number of operands!");
2194 // The immediate is scaled by four in the encoding and is stored
2195 // in the MCInst as such. Lop off the low two bits here.
2196 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2197 Inst
.addOperand(MCOperand::createImm(-(CE
->getValue() / 4)));
2200 void addImm0_508s4Operands(MCInst
&Inst
, unsigned N
) const {
2201 assert(N
== 1 && "Invalid number of operands!");
2202 // The immediate is scaled by four in the encoding and is stored
2203 // in the MCInst as such. Lop off the low two bits here.
2204 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2205 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2208 void addImm1_16Operands(MCInst
&Inst
, unsigned N
) const {
2209 assert(N
== 1 && "Invalid number of operands!");
2210 // The constant encodes as the immediate-1, and we store in the instruction
2211 // the bits as encoded, so subtract off one here.
2212 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2213 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2216 void addImm1_32Operands(MCInst
&Inst
, unsigned N
) const {
2217 assert(N
== 1 && "Invalid number of operands!");
2218 // The constant encodes as the immediate-1, and we store in the instruction
2219 // the bits as encoded, so subtract off one here.
2220 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2221 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2224 void addImmThumbSROperands(MCInst
&Inst
, unsigned N
) const {
2225 assert(N
== 1 && "Invalid number of operands!");
2226 // The constant encodes as the immediate, except for 32, which encodes as
2228 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2229 unsigned Imm
= CE
->getValue();
2230 Inst
.addOperand(MCOperand::createImm((Imm
== 32 ? 0 : Imm
)));
2233 void addPKHASRImmOperands(MCInst
&Inst
, unsigned N
) const {
2234 assert(N
== 1 && "Invalid number of operands!");
2235 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2236 // the instruction as well.
2237 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2238 int Val
= CE
->getValue();
2239 Inst
.addOperand(MCOperand::createImm(Val
== 32 ? 0 : Val
));
2242 void addT2SOImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2243 assert(N
== 1 && "Invalid number of operands!");
2244 // The operand is actually a t2_so_imm, but we have its bitwise
2245 // negation in the assembly source, so twiddle it here.
2246 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2247 Inst
.addOperand(MCOperand::createImm(~(uint32_t)CE
->getValue()));
2250 void addT2SOImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2251 assert(N
== 1 && "Invalid number of operands!");
2252 // The operand is actually a t2_so_imm, but we have its
2253 // negation in the assembly source, so twiddle it here.
2254 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2255 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2258 void addImm0_4095NegOperands(MCInst
&Inst
, unsigned N
) const {
2259 assert(N
== 1 && "Invalid number of operands!");
2260 // The operand is actually an imm0_4095, but we have its
2261 // negation in the assembly source, so twiddle it here.
2262 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2263 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2266 void addUnsignedOffset_b8s2Operands(MCInst
&Inst
, unsigned N
) const {
2267 if(const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm())) {
2268 Inst
.addOperand(MCOperand::createImm(CE
->getValue() >> 2));
2272 const MCSymbolRefExpr
*SR
= dyn_cast
<MCSymbolRefExpr
>(Imm
.Val
);
2273 assert(SR
&& "Unknown value type!");
2274 Inst
.addOperand(MCOperand::createExpr(SR
));
2277 void addThumbMemPCOperands(MCInst
&Inst
, unsigned N
) const {
2278 assert(N
== 1 && "Invalid number of operands!");
2280 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2282 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2286 const MCSymbolRefExpr
*SR
= dyn_cast
<MCSymbolRefExpr
>(Imm
.Val
);
2288 assert(SR
&& "Unknown value type!");
2289 Inst
.addOperand(MCOperand::createExpr(SR
));
2293 assert(isMem() && "Unknown value type!");
2294 assert(isa
<MCConstantExpr
>(Memory
.OffsetImm
) && "Unknown value type!");
2295 Inst
.addOperand(MCOperand::createImm(Memory
.OffsetImm
->getValue()));
2298 void addMemBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2299 assert(N
== 1 && "Invalid number of operands!");
2300 Inst
.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2303 void addInstSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2304 assert(N
== 1 && "Invalid number of operands!");
2305 Inst
.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2308 void addTraceSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2309 assert(N
== 1 && "Invalid number of operands!");
2310 Inst
.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2313 void addMemNoOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2314 assert(N
== 1 && "Invalid number of operands!");
2315 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2318 void addMemPCRelImm12Operands(MCInst
&Inst
, unsigned N
) const {
2319 assert(N
== 1 && "Invalid number of operands!");
2320 int32_t Imm
= Memory
.OffsetImm
->getValue();
2321 Inst
.addOperand(MCOperand::createImm(Imm
));
2324 void addAdrLabelOperands(MCInst
&Inst
, unsigned N
) const {
2325 assert(N
== 1 && "Invalid number of operands!");
2326 assert(isImm() && "Not an immediate!");
2328 // If we have an immediate that's not a constant, treat it as a label
2329 // reference needing a fixup.
2330 if (!isa
<MCConstantExpr
>(getImm())) {
2331 Inst
.addOperand(MCOperand::createExpr(getImm()));
2335 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2336 int Val
= CE
->getValue();
2337 Inst
.addOperand(MCOperand::createImm(Val
));
2340 void addAlignedMemoryOperands(MCInst
&Inst
, unsigned N
) const {
2341 assert(N
== 2 && "Invalid number of operands!");
2342 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2343 Inst
.addOperand(MCOperand::createImm(Memory
.Alignment
));
2346 void addDupAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2347 addAlignedMemoryOperands(Inst
, N
);
2350 void addAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2351 addAlignedMemoryOperands(Inst
, N
);
2354 void addAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2355 addAlignedMemoryOperands(Inst
, N
);
2358 void addDupAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2359 addAlignedMemoryOperands(Inst
, N
);
2362 void addAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2363 addAlignedMemoryOperands(Inst
, N
);
2366 void addDupAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2367 addAlignedMemoryOperands(Inst
, N
);
2370 void addAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2371 addAlignedMemoryOperands(Inst
, N
);
2374 void addDupAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2375 addAlignedMemoryOperands(Inst
, N
);
2378 void addAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2379 addAlignedMemoryOperands(Inst
, N
);
2382 void addDupAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2383 addAlignedMemoryOperands(Inst
, N
);
2386 void addAlignedMemory64or128or256Operands(MCInst
&Inst
, unsigned N
) const {
2387 addAlignedMemoryOperands(Inst
, N
);
2390 void addAddrMode2Operands(MCInst
&Inst
, unsigned N
) const {
2391 assert(N
== 3 && "Invalid number of operands!");
2392 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2393 if (!Memory
.OffsetRegNum
) {
2394 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2395 // Special case for #-0
2396 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2397 if (Val
< 0) Val
= -Val
;
2398 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2400 // For register offset, we encode the shift type and negation flag
2402 Val
= ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
2403 Memory
.ShiftImm
, Memory
.ShiftType
);
2405 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2406 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2407 Inst
.addOperand(MCOperand::createImm(Val
));
2410 void addAM2OffsetImmOperands(MCInst
&Inst
, unsigned N
) const {
2411 assert(N
== 2 && "Invalid number of operands!");
2412 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2413 assert(CE
&& "non-constant AM2OffsetImm operand!");
2414 int32_t Val
= CE
->getValue();
2415 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2416 // Special case for #-0
2417 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2418 if (Val
< 0) Val
= -Val
;
2419 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2420 Inst
.addOperand(MCOperand::createReg(0));
2421 Inst
.addOperand(MCOperand::createImm(Val
));
2424 void addAddrMode3Operands(MCInst
&Inst
, unsigned N
) const {
2425 assert(N
== 3 && "Invalid number of operands!");
2426 // If we have an immediate that's not a constant, treat it as a label
2427 // reference needing a fixup. If it is a constant, it's something else
2428 // and we reject it.
2430 Inst
.addOperand(MCOperand::createExpr(getImm()));
2431 Inst
.addOperand(MCOperand::createReg(0));
2432 Inst
.addOperand(MCOperand::createImm(0));
2436 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2437 if (!Memory
.OffsetRegNum
) {
2438 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2439 // Special case for #-0
2440 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2441 if (Val
< 0) Val
= -Val
;
2442 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
2444 // For register offset, we encode the shift type and negation flag
2446 Val
= ARM_AM::getAM3Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
, 0);
2448 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2449 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2450 Inst
.addOperand(MCOperand::createImm(Val
));
2453 void addAM3OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2454 assert(N
== 2 && "Invalid number of operands!");
2455 if (Kind
== k_PostIndexRegister
) {
2457 ARM_AM::getAM3Opc(PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
, 0);
2458 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2459 Inst
.addOperand(MCOperand::createImm(Val
));
2464 const MCConstantExpr
*CE
= static_cast<const MCConstantExpr
*>(getImm());
2465 int32_t Val
= CE
->getValue();
2466 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2467 // Special case for #-0
2468 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2469 if (Val
< 0) Val
= -Val
;
2470 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
2471 Inst
.addOperand(MCOperand::createReg(0));
2472 Inst
.addOperand(MCOperand::createImm(Val
));
2475 void addAddrMode5Operands(MCInst
&Inst
, unsigned N
) const {
2476 assert(N
== 2 && "Invalid number of operands!");
2477 // If we have an immediate that's not a constant, treat it as a label
2478 // reference needing a fixup. If it is a constant, it's something else
2479 // and we reject it.
2481 Inst
.addOperand(MCOperand::createExpr(getImm()));
2482 Inst
.addOperand(MCOperand::createImm(0));
2486 // The lower two bits are always zero and as such are not encoded.
2487 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 4 : 0;
2488 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2489 // Special case for #-0
2490 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2491 if (Val
< 0) Val
= -Val
;
2492 Val
= ARM_AM::getAM5Opc(AddSub
, Val
);
2493 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2494 Inst
.addOperand(MCOperand::createImm(Val
));
2497 void addAddrMode5FP16Operands(MCInst
&Inst
, unsigned N
) const {
2498 assert(N
== 2 && "Invalid number of operands!");
2499 // If we have an immediate that's not a constant, treat it as a label
2500 // reference needing a fixup. If it is a constant, it's something else
2501 // and we reject it.
2503 Inst
.addOperand(MCOperand::createExpr(getImm()));
2504 Inst
.addOperand(MCOperand::createImm(0));
2508 // The lower bit is always zero and as such is not encoded.
2509 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 2 : 0;
2510 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2511 // Special case for #-0
2512 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2513 if (Val
< 0) Val
= -Val
;
2514 Val
= ARM_AM::getAM5FP16Opc(AddSub
, Val
);
2515 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2516 Inst
.addOperand(MCOperand::createImm(Val
));
2519 void addMemImm8s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2520 assert(N
== 2 && "Invalid number of operands!");
2521 // If we have an immediate that's not a constant, treat it as a label
2522 // reference needing a fixup. If it is a constant, it's something else
2523 // and we reject it.
2525 Inst
.addOperand(MCOperand::createExpr(getImm()));
2526 Inst
.addOperand(MCOperand::createImm(0));
2530 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2531 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2532 Inst
.addOperand(MCOperand::createImm(Val
));
2535 void addMemImm0_1020s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2536 assert(N
== 2 && "Invalid number of operands!");
2537 // The lower two bits are always zero and as such are not encoded.
2538 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 4 : 0;
2539 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2540 Inst
.addOperand(MCOperand::createImm(Val
));
2543 void addMemImm8OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2544 assert(N
== 2 && "Invalid number of operands!");
2545 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2546 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2547 Inst
.addOperand(MCOperand::createImm(Val
));
2550 void addMemPosImm8OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2551 addMemImm8OffsetOperands(Inst
, N
);
2554 void addMemNegImm8OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2555 addMemImm8OffsetOperands(Inst
, N
);
2558 void addMemUImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2559 assert(N
== 2 && "Invalid number of operands!");
2560 // If this is an immediate, it's a label reference.
2562 addExpr(Inst
, getImm());
2563 Inst
.addOperand(MCOperand::createImm(0));
2567 // Otherwise, it's a normal memory reg+offset.
2568 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2569 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2570 Inst
.addOperand(MCOperand::createImm(Val
));
2573 void addMemImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2574 assert(N
== 2 && "Invalid number of operands!");
2575 // If this is an immediate, it's a label reference.
2577 addExpr(Inst
, getImm());
2578 Inst
.addOperand(MCOperand::createImm(0));
2582 // Otherwise, it's a normal memory reg+offset.
2583 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2584 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2585 Inst
.addOperand(MCOperand::createImm(Val
));
2588 void addConstPoolAsmImmOperands(MCInst
&Inst
, unsigned N
) const {
2589 assert(N
== 1 && "Invalid number of operands!");
2590 // This is container for the immediate that we will create the constant
2592 addExpr(Inst
, getConstantPoolImm());
2596 void addMemTBBOperands(MCInst
&Inst
, unsigned N
) const {
2597 assert(N
== 2 && "Invalid number of operands!");
2598 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2599 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2602 void addMemTBHOperands(MCInst
&Inst
, unsigned N
) const {
2603 assert(N
== 2 && "Invalid number of operands!");
2604 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2605 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2608 void addMemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2609 assert(N
== 3 && "Invalid number of operands!");
2611 ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
2612 Memory
.ShiftImm
, Memory
.ShiftType
);
2613 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2614 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2615 Inst
.addOperand(MCOperand::createImm(Val
));
2618 void addT2MemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2619 assert(N
== 3 && "Invalid number of operands!");
2620 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2621 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2622 Inst
.addOperand(MCOperand::createImm(Memory
.ShiftImm
));
2625 void addMemThumbRROperands(MCInst
&Inst
, unsigned N
) const {
2626 assert(N
== 2 && "Invalid number of operands!");
2627 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2628 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2631 void addMemThumbRIs4Operands(MCInst
&Inst
, unsigned N
) const {
2632 assert(N
== 2 && "Invalid number of operands!");
2633 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 4) : 0;
2634 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2635 Inst
.addOperand(MCOperand::createImm(Val
));
2638 void addMemThumbRIs2Operands(MCInst
&Inst
, unsigned N
) const {
2639 assert(N
== 2 && "Invalid number of operands!");
2640 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 2) : 0;
2641 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2642 Inst
.addOperand(MCOperand::createImm(Val
));
2645 void addMemThumbRIs1Operands(MCInst
&Inst
, unsigned N
) const {
2646 assert(N
== 2 && "Invalid number of operands!");
2647 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue()) : 0;
2648 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2649 Inst
.addOperand(MCOperand::createImm(Val
));
2652 void addMemThumbSPIOperands(MCInst
&Inst
, unsigned N
) const {
2653 assert(N
== 2 && "Invalid number of operands!");
2654 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 4) : 0;
2655 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2656 Inst
.addOperand(MCOperand::createImm(Val
));
2659 void addPostIdxImm8Operands(MCInst
&Inst
, unsigned N
) const {
2660 assert(N
== 1 && "Invalid number of operands!");
2661 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2662 assert(CE
&& "non-constant post-idx-imm8 operand!");
2663 int Imm
= CE
->getValue();
2664 bool isAdd
= Imm
>= 0;
2665 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
2666 Imm
= (Imm
< 0 ? -Imm
: Imm
) | (int)isAdd
<< 8;
2667 Inst
.addOperand(MCOperand::createImm(Imm
));
2670 void addPostIdxImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
2671 assert(N
== 1 && "Invalid number of operands!");
2672 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2673 assert(CE
&& "non-constant post-idx-imm8s4 operand!");
2674 int Imm
= CE
->getValue();
2675 bool isAdd
= Imm
>= 0;
2676 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
2677 // Immediate is scaled by 4.
2678 Imm
= ((Imm
< 0 ? -Imm
: Imm
) / 4) | (int)isAdd
<< 8;
2679 Inst
.addOperand(MCOperand::createImm(Imm
));
2682 void addPostIdxRegOperands(MCInst
&Inst
, unsigned N
) const {
2683 assert(N
== 2 && "Invalid number of operands!");
2684 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2685 Inst
.addOperand(MCOperand::createImm(PostIdxReg
.isAdd
));
2688 void addPostIdxRegShiftedOperands(MCInst
&Inst
, unsigned N
) const {
2689 assert(N
== 2 && "Invalid number of operands!");
2690 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2691 // The sign, shift type, and shift amount are encoded in a single operand
2692 // using the AM2 encoding helpers.
2693 ARM_AM::AddrOpc opc
= PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
;
2694 unsigned Imm
= ARM_AM::getAM2Opc(opc
, PostIdxReg
.ShiftImm
,
2695 PostIdxReg
.ShiftTy
);
2696 Inst
.addOperand(MCOperand::createImm(Imm
));
2699 void addMSRMaskOperands(MCInst
&Inst
, unsigned N
) const {
2700 assert(N
== 1 && "Invalid number of operands!");
2701 Inst
.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2704 void addBankedRegOperands(MCInst
&Inst
, unsigned N
) const {
2705 assert(N
== 1 && "Invalid number of operands!");
2706 Inst
.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2709 void addProcIFlagsOperands(MCInst
&Inst
, unsigned N
) const {
2710 assert(N
== 1 && "Invalid number of operands!");
2711 Inst
.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2714 void addVecListOperands(MCInst
&Inst
, unsigned N
) const {
2715 assert(N
== 1 && "Invalid number of operands!");
2716 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
2719 void addVecListIndexedOperands(MCInst
&Inst
, unsigned N
) const {
2720 assert(N
== 2 && "Invalid number of operands!");
2721 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
2722 Inst
.addOperand(MCOperand::createImm(VectorList
.LaneIndex
));
2725 void addVectorIndex8Operands(MCInst
&Inst
, unsigned N
) const {
2726 assert(N
== 1 && "Invalid number of operands!");
2727 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2730 void addVectorIndex16Operands(MCInst
&Inst
, unsigned N
) const {
2731 assert(N
== 1 && "Invalid number of operands!");
2732 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2735 void addVectorIndex32Operands(MCInst
&Inst
, unsigned N
) const {
2736 assert(N
== 1 && "Invalid number of operands!");
2737 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2740 void addVectorIndex64Operands(MCInst
&Inst
, unsigned N
) const {
2741 assert(N
== 1 && "Invalid number of operands!");
2742 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
2745 void addNEONi8splatOperands(MCInst
&Inst
, unsigned N
) const {
2746 assert(N
== 1 && "Invalid number of operands!");
2747 // The immediate encodes the type of constant as well as the value.
2748 // Mask in that this is an i8 splat.
2749 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2750 Inst
.addOperand(MCOperand::createImm(CE
->getValue() | 0xe00));
2753 void addNEONi16splatOperands(MCInst
&Inst
, unsigned N
) const {
2754 assert(N
== 1 && "Invalid number of operands!");
2755 // The immediate encodes the type of constant as well as the value.
2756 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2757 unsigned Value
= CE
->getValue();
2758 Value
= ARM_AM::encodeNEONi16splat(Value
);
2759 Inst
.addOperand(MCOperand::createImm(Value
));
2762 void addNEONi16splatNotOperands(MCInst
&Inst
, unsigned N
) const {
2763 assert(N
== 1 && "Invalid number of operands!");
2764 // The immediate encodes the type of constant as well as the value.
2765 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2766 unsigned Value
= CE
->getValue();
2767 Value
= ARM_AM::encodeNEONi16splat(~Value
& 0xffff);
2768 Inst
.addOperand(MCOperand::createImm(Value
));
2771 void addNEONi32splatOperands(MCInst
&Inst
, unsigned N
) const {
2772 assert(N
== 1 && "Invalid number of operands!");
2773 // The immediate encodes the type of constant as well as the value.
2774 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2775 unsigned Value
= CE
->getValue();
2776 Value
= ARM_AM::encodeNEONi32splat(Value
);
2777 Inst
.addOperand(MCOperand::createImm(Value
));
2780 void addNEONi32splatNotOperands(MCInst
&Inst
, unsigned N
) const {
2781 assert(N
== 1 && "Invalid number of operands!");
2782 // The immediate encodes the type of constant as well as the value.
2783 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2784 unsigned Value
= CE
->getValue();
2785 Value
= ARM_AM::encodeNEONi32splat(~Value
);
2786 Inst
.addOperand(MCOperand::createImm(Value
));
2789 void addNEONi8ReplicateOperands(MCInst
&Inst
, bool Inv
) const {
2790 // The immediate encodes the type of constant as well as the value.
2791 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2792 assert((Inst
.getOpcode() == ARM::VMOVv8i8
||
2793 Inst
.getOpcode() == ARM::VMOVv16i8
) &&
2794 "All instructions that wants to replicate non-zero byte "
2795 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2796 unsigned Value
= CE
->getValue();
2799 unsigned B
= Value
& 0xff;
2800 B
|= 0xe00; // cmode = 0b1110
2801 Inst
.addOperand(MCOperand::createImm(B
));
2804 void addNEONinvi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2805 assert(N
== 1 && "Invalid number of operands!");
2806 addNEONi8ReplicateOperands(Inst
, true);
2809 static unsigned encodeNeonVMOVImmediate(unsigned Value
) {
2810 if (Value
>= 256 && Value
<= 0xffff)
2811 Value
= (Value
>> 8) | ((Value
& 0xff) ? 0xc00 : 0x200);
2812 else if (Value
> 0xffff && Value
<= 0xffffff)
2813 Value
= (Value
>> 16) | ((Value
& 0xff) ? 0xd00 : 0x400);
2814 else if (Value
> 0xffffff)
2815 Value
= (Value
>> 24) | 0x600;
2819 void addNEONi32vmovOperands(MCInst
&Inst
, unsigned N
) const {
2820 assert(N
== 1 && "Invalid number of operands!");
2821 // The immediate encodes the type of constant as well as the value.
2822 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2823 unsigned Value
= encodeNeonVMOVImmediate(CE
->getValue());
2824 Inst
.addOperand(MCOperand::createImm(Value
));
2827 void addNEONvmovi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2828 assert(N
== 1 && "Invalid number of operands!");
2829 addNEONi8ReplicateOperands(Inst
, false);
2832 void addNEONvmovi16ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2833 assert(N
== 1 && "Invalid number of operands!");
2834 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2835 assert((Inst
.getOpcode() == ARM::VMOVv4i16
||
2836 Inst
.getOpcode() == ARM::VMOVv8i16
||
2837 Inst
.getOpcode() == ARM::VMVNv4i16
||
2838 Inst
.getOpcode() == ARM::VMVNv8i16
) &&
2839 "All instructions that want to replicate non-zero half-word "
2840 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2841 uint64_t Value
= CE
->getValue();
2842 unsigned Elem
= Value
& 0xffff;
2844 Elem
= (Elem
>> 8) | 0x200;
2845 Inst
.addOperand(MCOperand::createImm(Elem
));
2848 void addNEONi32vmovNegOperands(MCInst
&Inst
, unsigned N
) const {
2849 assert(N
== 1 && "Invalid number of operands!");
2850 // The immediate encodes the type of constant as well as the value.
2851 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2852 unsigned Value
= encodeNeonVMOVImmediate(~CE
->getValue());
2853 Inst
.addOperand(MCOperand::createImm(Value
));
2856 void addNEONvmovi32ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
2857 assert(N
== 1 && "Invalid number of operands!");
2858 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2859 assert((Inst
.getOpcode() == ARM::VMOVv2i32
||
2860 Inst
.getOpcode() == ARM::VMOVv4i32
||
2861 Inst
.getOpcode() == ARM::VMVNv2i32
||
2862 Inst
.getOpcode() == ARM::VMVNv4i32
) &&
2863 "All instructions that want to replicate non-zero word "
2864 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2865 uint64_t Value
= CE
->getValue();
2866 unsigned Elem
= encodeNeonVMOVImmediate(Value
& 0xffffffff);
2867 Inst
.addOperand(MCOperand::createImm(Elem
));
2870 void addNEONi64splatOperands(MCInst
&Inst
, unsigned N
) const {
2871 assert(N
== 1 && "Invalid number of operands!");
2872 // The immediate encodes the type of constant as well as the value.
2873 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2874 uint64_t Value
= CE
->getValue();
2876 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8) {
2877 Imm
|= (Value
& 1) << i
;
2879 Inst
.addOperand(MCOperand::createImm(Imm
| 0x1e00));
2882 void addComplexRotationEvenOperands(MCInst
&Inst
, unsigned N
) const {
2883 assert(N
== 1 && "Invalid number of operands!");
2884 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2885 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 90));
2888 void addComplexRotationOddOperands(MCInst
&Inst
, unsigned N
) const {
2889 assert(N
== 1 && "Invalid number of operands!");
2890 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2891 Inst
.addOperand(MCOperand::createImm((CE
->getValue() - 90) / 180));
2894 void print(raw_ostream
&OS
) const override
;
2896 static std::unique_ptr
<ARMOperand
> CreateITMask(unsigned Mask
, SMLoc S
) {
2897 auto Op
= make_unique
<ARMOperand
>(k_ITCondMask
);
2898 Op
->ITMask
.Mask
= Mask
;
2904 static std::unique_ptr
<ARMOperand
> CreateCondCode(ARMCC::CondCodes CC
,
2906 auto Op
= make_unique
<ARMOperand
>(k_CondCode
);
2913 static std::unique_ptr
<ARMOperand
> CreateCoprocNum(unsigned CopVal
, SMLoc S
) {
2914 auto Op
= make_unique
<ARMOperand
>(k_CoprocNum
);
2915 Op
->Cop
.Val
= CopVal
;
2921 static std::unique_ptr
<ARMOperand
> CreateCoprocReg(unsigned CopVal
, SMLoc S
) {
2922 auto Op
= make_unique
<ARMOperand
>(k_CoprocReg
);
2923 Op
->Cop
.Val
= CopVal
;
2929 static std::unique_ptr
<ARMOperand
> CreateCoprocOption(unsigned Val
, SMLoc S
,
2931 auto Op
= make_unique
<ARMOperand
>(k_CoprocOption
);
2938 static std::unique_ptr
<ARMOperand
> CreateCCOut(unsigned RegNum
, SMLoc S
) {
2939 auto Op
= make_unique
<ARMOperand
>(k_CCOut
);
2940 Op
->Reg
.RegNum
= RegNum
;
2946 static std::unique_ptr
<ARMOperand
> CreateToken(StringRef Str
, SMLoc S
) {
2947 auto Op
= make_unique
<ARMOperand
>(k_Token
);
2948 Op
->Tok
.Data
= Str
.data();
2949 Op
->Tok
.Length
= Str
.size();
2955 static std::unique_ptr
<ARMOperand
> CreateReg(unsigned RegNum
, SMLoc S
,
2957 auto Op
= make_unique
<ARMOperand
>(k_Register
);
2958 Op
->Reg
.RegNum
= RegNum
;
2964 static std::unique_ptr
<ARMOperand
>
2965 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
2966 unsigned ShiftReg
, unsigned ShiftImm
, SMLoc S
,
2968 auto Op
= make_unique
<ARMOperand
>(k_ShiftedRegister
);
2969 Op
->RegShiftedReg
.ShiftTy
= ShTy
;
2970 Op
->RegShiftedReg
.SrcReg
= SrcReg
;
2971 Op
->RegShiftedReg
.ShiftReg
= ShiftReg
;
2972 Op
->RegShiftedReg
.ShiftImm
= ShiftImm
;
2978 static std::unique_ptr
<ARMOperand
>
2979 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
2980 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
2981 auto Op
= make_unique
<ARMOperand
>(k_ShiftedImmediate
);
2982 Op
->RegShiftedImm
.ShiftTy
= ShTy
;
2983 Op
->RegShiftedImm
.SrcReg
= SrcReg
;
2984 Op
->RegShiftedImm
.ShiftImm
= ShiftImm
;
2990 static std::unique_ptr
<ARMOperand
> CreateShifterImm(bool isASR
, unsigned Imm
,
2992 auto Op
= make_unique
<ARMOperand
>(k_ShifterImmediate
);
2993 Op
->ShifterImm
.isASR
= isASR
;
2994 Op
->ShifterImm
.Imm
= Imm
;
3000 static std::unique_ptr
<ARMOperand
> CreateRotImm(unsigned Imm
, SMLoc S
,
3002 auto Op
= make_unique
<ARMOperand
>(k_RotateImmediate
);
3003 Op
->RotImm
.Imm
= Imm
;
3009 static std::unique_ptr
<ARMOperand
> CreateModImm(unsigned Bits
, unsigned Rot
,
3011 auto Op
= make_unique
<ARMOperand
>(k_ModifiedImmediate
);
3012 Op
->ModImm
.Bits
= Bits
;
3013 Op
->ModImm
.Rot
= Rot
;
3019 static std::unique_ptr
<ARMOperand
>
3020 CreateConstantPoolImm(const MCExpr
*Val
, SMLoc S
, SMLoc E
) {
3021 auto Op
= make_unique
<ARMOperand
>(k_ConstantPoolImmediate
);
3028 static std::unique_ptr
<ARMOperand
>
3029 CreateBitfield(unsigned LSB
, unsigned Width
, SMLoc S
, SMLoc E
) {
3030 auto Op
= make_unique
<ARMOperand
>(k_BitfieldDescriptor
);
3031 Op
->Bitfield
.LSB
= LSB
;
3032 Op
->Bitfield
.Width
= Width
;
3038 static std::unique_ptr
<ARMOperand
>
3039 CreateRegList(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
3040 SMLoc StartLoc
, SMLoc EndLoc
) {
3041 assert(Regs
.size() > 0 && "RegList contains no registers?");
3042 KindTy Kind
= k_RegisterList
;
3044 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Regs
.front().second
))
3045 Kind
= k_DPRRegisterList
;
3046 else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].
3047 contains(Regs
.front().second
))
3048 Kind
= k_SPRRegisterList
;
3050 // Sort based on the register encoding values.
3051 array_pod_sort(Regs
.begin(), Regs
.end());
3053 auto Op
= make_unique
<ARMOperand
>(Kind
);
3054 for (SmallVectorImpl
<std::pair
<unsigned, unsigned>>::const_iterator
3055 I
= Regs
.begin(), E
= Regs
.end(); I
!= E
; ++I
)
3056 Op
->Registers
.push_back(I
->second
);
3057 Op
->StartLoc
= StartLoc
;
3058 Op
->EndLoc
= EndLoc
;
3062 static std::unique_ptr
<ARMOperand
> CreateVectorList(unsigned RegNum
,
3064 bool isDoubleSpaced
,
3066 auto Op
= make_unique
<ARMOperand
>(k_VectorList
);
3067 Op
->VectorList
.RegNum
= RegNum
;
3068 Op
->VectorList
.Count
= Count
;
3069 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3075 static std::unique_ptr
<ARMOperand
>
3076 CreateVectorListAllLanes(unsigned RegNum
, unsigned Count
, bool isDoubleSpaced
,
3078 auto Op
= make_unique
<ARMOperand
>(k_VectorListAllLanes
);
3079 Op
->VectorList
.RegNum
= RegNum
;
3080 Op
->VectorList
.Count
= Count
;
3081 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3087 static std::unique_ptr
<ARMOperand
>
3088 CreateVectorListIndexed(unsigned RegNum
, unsigned Count
, unsigned Index
,
3089 bool isDoubleSpaced
, SMLoc S
, SMLoc E
) {
3090 auto Op
= make_unique
<ARMOperand
>(k_VectorListIndexed
);
3091 Op
->VectorList
.RegNum
= RegNum
;
3092 Op
->VectorList
.Count
= Count
;
3093 Op
->VectorList
.LaneIndex
= Index
;
3094 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3100 static std::unique_ptr
<ARMOperand
>
3101 CreateVectorIndex(unsigned Idx
, SMLoc S
, SMLoc E
, MCContext
&Ctx
) {
3102 auto Op
= make_unique
<ARMOperand
>(k_VectorIndex
);
3103 Op
->VectorIndex
.Val
= Idx
;
3109 static std::unique_ptr
<ARMOperand
> CreateImm(const MCExpr
*Val
, SMLoc S
,
3111 auto Op
= make_unique
<ARMOperand
>(k_Immediate
);
3118 static std::unique_ptr
<ARMOperand
>
3119 CreateMem(unsigned BaseRegNum
, const MCConstantExpr
*OffsetImm
,
3120 unsigned OffsetRegNum
, ARM_AM::ShiftOpc ShiftType
,
3121 unsigned ShiftImm
, unsigned Alignment
, bool isNegative
, SMLoc S
,
3122 SMLoc E
, SMLoc AlignmentLoc
= SMLoc()) {
3123 auto Op
= make_unique
<ARMOperand
>(k_Memory
);
3124 Op
->Memory
.BaseRegNum
= BaseRegNum
;
3125 Op
->Memory
.OffsetImm
= OffsetImm
;
3126 Op
->Memory
.OffsetRegNum
= OffsetRegNum
;
3127 Op
->Memory
.ShiftType
= ShiftType
;
3128 Op
->Memory
.ShiftImm
= ShiftImm
;
3129 Op
->Memory
.Alignment
= Alignment
;
3130 Op
->Memory
.isNegative
= isNegative
;
3133 Op
->AlignmentLoc
= AlignmentLoc
;
3137 static std::unique_ptr
<ARMOperand
>
3138 CreatePostIdxReg(unsigned RegNum
, bool isAdd
, ARM_AM::ShiftOpc ShiftTy
,
3139 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
3140 auto Op
= make_unique
<ARMOperand
>(k_PostIndexRegister
);
3141 Op
->PostIdxReg
.RegNum
= RegNum
;
3142 Op
->PostIdxReg
.isAdd
= isAdd
;
3143 Op
->PostIdxReg
.ShiftTy
= ShiftTy
;
3144 Op
->PostIdxReg
.ShiftImm
= ShiftImm
;
3150 static std::unique_ptr
<ARMOperand
> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt
,
3152 auto Op
= make_unique
<ARMOperand
>(k_MemBarrierOpt
);
3153 Op
->MBOpt
.Val
= Opt
;
3159 static std::unique_ptr
<ARMOperand
>
3160 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt
, SMLoc S
) {
3161 auto Op
= make_unique
<ARMOperand
>(k_InstSyncBarrierOpt
);
3162 Op
->ISBOpt
.Val
= Opt
;
3168 static std::unique_ptr
<ARMOperand
>
3169 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt
, SMLoc S
) {
3170 auto Op
= make_unique
<ARMOperand
>(k_TraceSyncBarrierOpt
);
3171 Op
->TSBOpt
.Val
= Opt
;
3177 static std::unique_ptr
<ARMOperand
> CreateProcIFlags(ARM_PROC::IFlags IFlags
,
3179 auto Op
= make_unique
<ARMOperand
>(k_ProcIFlags
);
3180 Op
->IFlags
.Val
= IFlags
;
3186 static std::unique_ptr
<ARMOperand
> CreateMSRMask(unsigned MMask
, SMLoc S
) {
3187 auto Op
= make_unique
<ARMOperand
>(k_MSRMask
);
3188 Op
->MMask
.Val
= MMask
;
3194 static std::unique_ptr
<ARMOperand
> CreateBankedReg(unsigned Reg
, SMLoc S
) {
3195 auto Op
= make_unique
<ARMOperand
>(k_BankedReg
);
3196 Op
->BankedReg
.Val
= Reg
;
3203 } // end anonymous namespace.
3205 void ARMOperand::print(raw_ostream
&OS
) const {
3208 OS
<< "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3211 OS
<< "<ccout " << getReg() << ">";
3213 case k_ITCondMask
: {
3214 static const char *const MaskStr
[] = {
3215 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
3216 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
3218 assert((ITMask
.Mask
& 0xf) == ITMask
.Mask
);
3219 OS
<< "<it-mask " << MaskStr
[ITMask
.Mask
] << ">";
3223 OS
<< "<coprocessor number: " << getCoproc() << ">";
3226 OS
<< "<coprocessor register: " << getCoproc() << ">";
3228 case k_CoprocOption
:
3229 OS
<< "<coprocessor option: " << CoprocOption
.Val
<< ">";
3232 OS
<< "<mask: " << getMSRMask() << ">";
3235 OS
<< "<banked reg: " << getBankedReg() << ">";
3240 case k_MemBarrierOpt
:
3241 OS
<< "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3243 case k_InstSyncBarrierOpt
:
3244 OS
<< "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3246 case k_TraceSyncBarrierOpt
:
3247 OS
<< "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3251 << " base:" << Memory
.BaseRegNum
;
3254 case k_PostIndexRegister
:
3255 OS
<< "post-idx register " << (PostIdxReg
.isAdd
? "" : "-")
3256 << PostIdxReg
.RegNum
;
3257 if (PostIdxReg
.ShiftTy
!= ARM_AM::no_shift
)
3258 OS
<< ARM_AM::getShiftOpcStr(PostIdxReg
.ShiftTy
) << " "
3259 << PostIdxReg
.ShiftImm
;
3262 case k_ProcIFlags
: {
3263 OS
<< "<ARM_PROC::";
3264 unsigned IFlags
= getProcIFlags();
3265 for (int i
=2; i
>= 0; --i
)
3266 if (IFlags
& (1 << i
))
3267 OS
<< ARM_PROC::IFlagsToString(1 << i
);
3272 OS
<< "<register " << getReg() << ">";
3274 case k_ShifterImmediate
:
3275 OS
<< "<shift " << (ShifterImm
.isASR
? "asr" : "lsl")
3276 << " #" << ShifterImm
.Imm
<< ">";
3278 case k_ShiftedRegister
:
3279 OS
<< "<so_reg_reg "
3280 << RegShiftedReg
.SrcReg
<< " "
3281 << ARM_AM::getShiftOpcStr(RegShiftedReg
.ShiftTy
)
3282 << " " << RegShiftedReg
.ShiftReg
<< ">";
3284 case k_ShiftedImmediate
:
3285 OS
<< "<so_reg_imm "
3286 << RegShiftedImm
.SrcReg
<< " "
3287 << ARM_AM::getShiftOpcStr(RegShiftedImm
.ShiftTy
)
3288 << " #" << RegShiftedImm
.ShiftImm
<< ">";
3290 case k_RotateImmediate
:
3291 OS
<< "<ror " << " #" << (RotImm
.Imm
* 8) << ">";
3293 case k_ModifiedImmediate
:
3294 OS
<< "<mod_imm #" << ModImm
.Bits
<< ", #"
3295 << ModImm
.Rot
<< ")>";
3297 case k_ConstantPoolImmediate
:
3298 OS
<< "<constant_pool_imm #" << *getConstantPoolImm();
3300 case k_BitfieldDescriptor
:
3301 OS
<< "<bitfield " << "lsb: " << Bitfield
.LSB
3302 << ", width: " << Bitfield
.Width
<< ">";
3304 case k_RegisterList
:
3305 case k_DPRRegisterList
:
3306 case k_SPRRegisterList
: {
3307 OS
<< "<register_list ";
3309 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
3310 for (SmallVectorImpl
<unsigned>::const_iterator
3311 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ) {
3313 if (++I
< E
) OS
<< ", ";
3320 OS
<< "<vector_list " << VectorList
.Count
<< " * "
3321 << VectorList
.RegNum
<< ">";
3323 case k_VectorListAllLanes
:
3324 OS
<< "<vector_list(all lanes) " << VectorList
.Count
<< " * "
3325 << VectorList
.RegNum
<< ">";
3327 case k_VectorListIndexed
:
3328 OS
<< "<vector_list(lane " << VectorList
.LaneIndex
<< ") "
3329 << VectorList
.Count
<< " * " << VectorList
.RegNum
<< ">";
3332 OS
<< "'" << getToken() << "'";
3335 OS
<< "<vectorindex " << getVectorIndex() << ">";
3340 /// @name Auto-generated Match Functions
3343 static unsigned MatchRegisterName(StringRef Name
);
3347 bool ARMAsmParser::ParseRegister(unsigned &RegNo
,
3348 SMLoc
&StartLoc
, SMLoc
&EndLoc
) {
3349 const AsmToken
&Tok
= getParser().getTok();
3350 StartLoc
= Tok
.getLoc();
3351 EndLoc
= Tok
.getEndLoc();
3352 RegNo
= tryParseRegister();
3354 return (RegNo
== (unsigned)-1);
3357 /// Try to parse a register name. The token must be an Identifier when called,
3358 /// and if it is a register name the token is eaten and the register number is
3359 /// returned. Otherwise return -1.
3360 int ARMAsmParser::tryParseRegister() {
3361 MCAsmParser
&Parser
= getParser();
3362 const AsmToken
&Tok
= Parser
.getTok();
3363 if (Tok
.isNot(AsmToken::Identifier
)) return -1;
3365 std::string lowerCase
= Tok
.getString().lower();
3366 unsigned RegNum
= MatchRegisterName(lowerCase
);
3368 RegNum
= StringSwitch
<unsigned>(lowerCase
)
3369 .Case("r13", ARM::SP
)
3370 .Case("r14", ARM::LR
)
3371 .Case("r15", ARM::PC
)
3372 .Case("ip", ARM::R12
)
3373 // Additional register name aliases for 'gas' compatibility.
3374 .Case("a1", ARM::R0
)
3375 .Case("a2", ARM::R1
)
3376 .Case("a3", ARM::R2
)
3377 .Case("a4", ARM::R3
)
3378 .Case("v1", ARM::R4
)
3379 .Case("v2", ARM::R5
)
3380 .Case("v3", ARM::R6
)
3381 .Case("v4", ARM::R7
)
3382 .Case("v5", ARM::R8
)
3383 .Case("v6", ARM::R9
)
3384 .Case("v7", ARM::R10
)
3385 .Case("v8", ARM::R11
)
3386 .Case("sb", ARM::R9
)
3387 .Case("sl", ARM::R10
)
3388 .Case("fp", ARM::R11
)
3392 // Check for aliases registered via .req. Canonicalize to lower case.
3393 // That's more consistent since register names are case insensitive, and
3394 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3395 StringMap
<unsigned>::const_iterator Entry
= RegisterReqs
.find(lowerCase
);
3396 // If no match, return failure.
3397 if (Entry
== RegisterReqs
.end())
3399 Parser
.Lex(); // Eat identifier token.
3400 return Entry
->getValue();
3403 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3404 if (hasD16() && RegNum
>= ARM::D16
&& RegNum
<= ARM::D31
)
3407 Parser
.Lex(); // Eat identifier token.
3412 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3413 // If a recoverable error occurs, return 1. If an irrecoverable error
3414 // occurs, return -1. An irrecoverable error is one where tokens have been
3415 // consumed in the process of trying to parse the shifter (i.e., when it is
3416 // indeed a shifter operand, but malformed).
3417 int ARMAsmParser::tryParseShiftRegister(OperandVector
&Operands
) {
3418 MCAsmParser
&Parser
= getParser();
3419 SMLoc S
= Parser
.getTok().getLoc();
3420 const AsmToken
&Tok
= Parser
.getTok();
3421 if (Tok
.isNot(AsmToken::Identifier
))
3424 std::string lowerCase
= Tok
.getString().lower();
3425 ARM_AM::ShiftOpc ShiftTy
= StringSwitch
<ARM_AM::ShiftOpc
>(lowerCase
)
3426 .Case("asl", ARM_AM::lsl
)
3427 .Case("lsl", ARM_AM::lsl
)
3428 .Case("lsr", ARM_AM::lsr
)
3429 .Case("asr", ARM_AM::asr
)
3430 .Case("ror", ARM_AM::ror
)
3431 .Case("rrx", ARM_AM::rrx
)
3432 .Default(ARM_AM::no_shift
);
3434 if (ShiftTy
== ARM_AM::no_shift
)
3437 Parser
.Lex(); // Eat the operator.
3439 // The source register for the shift has already been added to the
3440 // operand list, so we need to pop it off and combine it into the shifted
3441 // register operand instead.
3442 std::unique_ptr
<ARMOperand
> PrevOp(
3443 (ARMOperand
*)Operands
.pop_back_val().release());
3444 if (!PrevOp
->isReg())
3445 return Error(PrevOp
->getStartLoc(), "shift must be of a register");
3446 int SrcReg
= PrevOp
->getReg();
3451 if (ShiftTy
== ARM_AM::rrx
) {
3452 // RRX Doesn't have an explicit shift amount. The encoder expects
3453 // the shift register to be the same as the source register. Seems odd,
3457 // Figure out if this is shifted by a constant or a register (for non-RRX).
3458 if (Parser
.getTok().is(AsmToken::Hash
) ||
3459 Parser
.getTok().is(AsmToken::Dollar
)) {
3460 Parser
.Lex(); // Eat hash.
3461 SMLoc ImmLoc
= Parser
.getTok().getLoc();
3462 const MCExpr
*ShiftExpr
= nullptr;
3463 if (getParser().parseExpression(ShiftExpr
, EndLoc
)) {
3464 Error(ImmLoc
, "invalid immediate shift value");
3467 // The expression must be evaluatable as an immediate.
3468 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftExpr
);
3470 Error(ImmLoc
, "invalid immediate shift value");
3473 // Range check the immediate.
3474 // lsl, ror: 0 <= imm <= 31
3475 // lsr, asr: 0 <= imm <= 32
3476 Imm
= CE
->getValue();
3478 ((ShiftTy
== ARM_AM::lsl
|| ShiftTy
== ARM_AM::ror
) && Imm
> 31) ||
3479 ((ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
) && Imm
> 32)) {
3480 Error(ImmLoc
, "immediate shift value out of range");
3483 // shift by zero is a nop. Always send it through as lsl.
3484 // ('as' compatibility)
3486 ShiftTy
= ARM_AM::lsl
;
3487 } else if (Parser
.getTok().is(AsmToken::Identifier
)) {
3488 SMLoc L
= Parser
.getTok().getLoc();
3489 EndLoc
= Parser
.getTok().getEndLoc();
3490 ShiftReg
= tryParseRegister();
3491 if (ShiftReg
== -1) {
3492 Error(L
, "expected immediate or register in shift operand");
3496 Error(Parser
.getTok().getLoc(),
3497 "expected immediate or register in shift operand");
3502 if (ShiftReg
&& ShiftTy
!= ARM_AM::rrx
)
3503 Operands
.push_back(ARMOperand::CreateShiftedRegister(ShiftTy
, SrcReg
,
3507 Operands
.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy
, SrcReg
, Imm
,
3513 /// Try to parse a register name. The token must be an Identifier when called.
3514 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3515 /// if there is a "writeback". 'true' if it's not a register.
3517 /// TODO this is likely to change to allow different register types and or to
3518 /// parse for a specific register type.
3519 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector
&Operands
) {
3520 MCAsmParser
&Parser
= getParser();
3521 SMLoc RegStartLoc
= Parser
.getTok().getLoc();
3522 SMLoc RegEndLoc
= Parser
.getTok().getEndLoc();
3523 int RegNo
= tryParseRegister();
3527 Operands
.push_back(ARMOperand::CreateReg(RegNo
, RegStartLoc
, RegEndLoc
));
3529 const AsmToken
&ExclaimTok
= Parser
.getTok();
3530 if (ExclaimTok
.is(AsmToken::Exclaim
)) {
3531 Operands
.push_back(ARMOperand::CreateToken(ExclaimTok
.getString(),
3532 ExclaimTok
.getLoc()));
3533 Parser
.Lex(); // Eat exclaim token
3537 // Also check for an index operand. This is only legal for vector registers,
3538 // but that'll get caught OK in operand matching, so we don't need to
3539 // explicitly filter everything else out here.
3540 if (Parser
.getTok().is(AsmToken::LBrac
)) {
3541 SMLoc SIdx
= Parser
.getTok().getLoc();
3542 Parser
.Lex(); // Eat left bracket token.
3544 const MCExpr
*ImmVal
;
3545 if (getParser().parseExpression(ImmVal
))
3547 const MCConstantExpr
*MCE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
3549 return TokError("immediate value expected for vector index");
3551 if (Parser
.getTok().isNot(AsmToken::RBrac
))
3552 return Error(Parser
.getTok().getLoc(), "']' expected");
3554 SMLoc E
= Parser
.getTok().getEndLoc();
3555 Parser
.Lex(); // Eat right bracket token.
3557 Operands
.push_back(ARMOperand::CreateVectorIndex(MCE
->getValue(),
3565 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3566 /// instruction with a symbolic operand name.
3567 /// We accept "crN" syntax for GAS compatibility.
3568 /// <operand-name> ::= <prefix><number>
3569 /// If CoprocOp is 'c', then:
3570 /// <prefix> ::= c | cr
3571 /// If CoprocOp is 'p', then :
3573 /// <number> ::= integer in range [0, 15]
3574 static int MatchCoprocessorOperandName(StringRef Name
, char CoprocOp
) {
3575 // Use the same layout as the tablegen'erated register name matcher. Ugly,
3577 if (Name
.size() < 2 || Name
[0] != CoprocOp
)
3579 Name
= (Name
[1] == 'r') ? Name
.drop_front(2) : Name
.drop_front();
3581 switch (Name
.size()) {
3602 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3603 // However, old cores (v5/v6) did use them in that way.
3604 case '0': return 10;
3605 case '1': return 11;
3606 case '2': return 12;
3607 case '3': return 13;
3608 case '4': return 14;
3609 case '5': return 15;
3614 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3615 OperandMatchResultTy
3616 ARMAsmParser::parseITCondCode(OperandVector
&Operands
) {
3617 MCAsmParser
&Parser
= getParser();
3618 SMLoc S
= Parser
.getTok().getLoc();
3619 const AsmToken
&Tok
= Parser
.getTok();
3620 if (!Tok
.is(AsmToken::Identifier
))
3621 return MatchOperand_NoMatch
;
3622 unsigned CC
= ARMCondCodeFromString(Tok
.getString());
3624 return MatchOperand_NoMatch
;
3625 Parser
.Lex(); // Eat the token.
3627 Operands
.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC
), S
));
3629 return MatchOperand_Success
;
3632 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3633 /// token must be an Identifier when called, and if it is a coprocessor
3634 /// number, the token is eaten and the operand is added to the operand list.
3635 OperandMatchResultTy
3636 ARMAsmParser::parseCoprocNumOperand(OperandVector
&Operands
) {
3637 MCAsmParser
&Parser
= getParser();
3638 SMLoc S
= Parser
.getTok().getLoc();
3639 const AsmToken
&Tok
= Parser
.getTok();
3640 if (Tok
.isNot(AsmToken::Identifier
))
3641 return MatchOperand_NoMatch
;
3643 int Num
= MatchCoprocessorOperandName(Tok
.getString(), 'p');
3645 return MatchOperand_NoMatch
;
3646 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3647 if ((hasV7Ops() || hasV8Ops()) && (Num
== 10 || Num
== 11))
3648 return MatchOperand_NoMatch
;
3650 Parser
.Lex(); // Eat identifier token.
3651 Operands
.push_back(ARMOperand::CreateCoprocNum(Num
, S
));
3652 return MatchOperand_Success
;
3655 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3656 /// token must be an Identifier when called, and if it is a coprocessor
3657 /// number, the token is eaten and the operand is added to the operand list.
3658 OperandMatchResultTy
3659 ARMAsmParser::parseCoprocRegOperand(OperandVector
&Operands
) {
3660 MCAsmParser
&Parser
= getParser();
3661 SMLoc S
= Parser
.getTok().getLoc();
3662 const AsmToken
&Tok
= Parser
.getTok();
3663 if (Tok
.isNot(AsmToken::Identifier
))
3664 return MatchOperand_NoMatch
;
3666 int Reg
= MatchCoprocessorOperandName(Tok
.getString(), 'c');
3668 return MatchOperand_NoMatch
;
3670 Parser
.Lex(); // Eat identifier token.
3671 Operands
.push_back(ARMOperand::CreateCoprocReg(Reg
, S
));
3672 return MatchOperand_Success
;
3675 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3676 /// coproc_option : '{' imm0_255 '}'
3677 OperandMatchResultTy
3678 ARMAsmParser::parseCoprocOptionOperand(OperandVector
&Operands
) {
3679 MCAsmParser
&Parser
= getParser();
3680 SMLoc S
= Parser
.getTok().getLoc();
3682 // If this isn't a '{', this isn't a coprocessor immediate operand.
3683 if (Parser
.getTok().isNot(AsmToken::LCurly
))
3684 return MatchOperand_NoMatch
;
3685 Parser
.Lex(); // Eat the '{'
3688 SMLoc Loc
= Parser
.getTok().getLoc();
3689 if (getParser().parseExpression(Expr
)) {
3690 Error(Loc
, "illegal expression");
3691 return MatchOperand_ParseFail
;
3693 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
3694 if (!CE
|| CE
->getValue() < 0 || CE
->getValue() > 255) {
3695 Error(Loc
, "coprocessor option must be an immediate in range [0, 255]");
3696 return MatchOperand_ParseFail
;
3698 int Val
= CE
->getValue();
3700 // Check for and consume the closing '}'
3701 if (Parser
.getTok().isNot(AsmToken::RCurly
))
3702 return MatchOperand_ParseFail
;
3703 SMLoc E
= Parser
.getTok().getEndLoc();
3704 Parser
.Lex(); // Eat the '}'
3706 Operands
.push_back(ARMOperand::CreateCoprocOption(Val
, S
, E
));
3707 return MatchOperand_Success
;
3710 // For register list parsing, we need to map from raw GPR register numbering
3711 // to the enumeration values. The enumeration values aren't sorted by
3712 // register number due to our using "sp", "lr" and "pc" as canonical names.
3713 static unsigned getNextRegister(unsigned Reg
) {
3714 // If this is a GPR, we need to do it manually, otherwise we can rely
3715 // on the sort ordering of the enumeration since the other reg-classes
3717 if (!ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
3720 default: llvm_unreachable("Invalid GPR number!");
3721 case ARM::R0
: return ARM::R1
; case ARM::R1
: return ARM::R2
;
3722 case ARM::R2
: return ARM::R3
; case ARM::R3
: return ARM::R4
;
3723 case ARM::R4
: return ARM::R5
; case ARM::R5
: return ARM::R6
;
3724 case ARM::R6
: return ARM::R7
; case ARM::R7
: return ARM::R8
;
3725 case ARM::R8
: return ARM::R9
; case ARM::R9
: return ARM::R10
;
3726 case ARM::R10
: return ARM::R11
; case ARM::R11
: return ARM::R12
;
3727 case ARM::R12
: return ARM::SP
; case ARM::SP
: return ARM::LR
;
3728 case ARM::LR
: return ARM::PC
; case ARM::PC
: return ARM::R0
;
3732 /// Parse a register list.
3733 bool ARMAsmParser::parseRegisterList(OperandVector
&Operands
) {
3734 MCAsmParser
&Parser
= getParser();
3735 if (Parser
.getTok().isNot(AsmToken::LCurly
))
3736 return TokError("Token is not a Left Curly Brace");
3737 SMLoc S
= Parser
.getTok().getLoc();
3738 Parser
.Lex(); // Eat '{' token.
3739 SMLoc RegLoc
= Parser
.getTok().getLoc();
3741 // Check the first register in the list to see what register class
3742 // this is a list of.
3743 int Reg
= tryParseRegister();
3745 return Error(RegLoc
, "register expected");
3747 // The reglist instructions have at most 16 registers, so reserve
3748 // space for that many.
3750 SmallVector
<std::pair
<unsigned, unsigned>, 16> Registers
;
3752 // Allow Q regs and just interpret them as the two D sub-registers.
3753 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3754 Reg
= getDRegFromQReg(Reg
);
3755 EReg
= MRI
->getEncodingValue(Reg
);
3756 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3759 const MCRegisterClass
*RC
;
3760 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
3761 RC
= &ARMMCRegisterClasses
[ARM::GPRRegClassID
];
3762 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
))
3763 RC
= &ARMMCRegisterClasses
[ARM::DPRRegClassID
];
3764 else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(Reg
))
3765 RC
= &ARMMCRegisterClasses
[ARM::SPRRegClassID
];
3767 return Error(RegLoc
, "invalid register in register list");
3769 // Store the register.
3770 EReg
= MRI
->getEncodingValue(Reg
);
3771 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3773 // This starts immediately after the first register token in the list,
3774 // so we can see either a comma or a minus (range separator) as a legal
3776 while (Parser
.getTok().is(AsmToken::Comma
) ||
3777 Parser
.getTok().is(AsmToken::Minus
)) {
3778 if (Parser
.getTok().is(AsmToken::Minus
)) {
3779 Parser
.Lex(); // Eat the minus.
3780 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
3781 int EndReg
= tryParseRegister();
3783 return Error(AfterMinusLoc
, "register expected");
3784 // Allow Q regs and just interpret them as the two D sub-registers.
3785 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
3786 EndReg
= getDRegFromQReg(EndReg
) + 1;
3787 // If the register is the same as the start reg, there's nothing
3791 // The register must be in the same register class as the first.
3792 if (!RC
->contains(EndReg
))
3793 return Error(AfterMinusLoc
, "invalid register in register list");
3794 // Ranges must go from low to high.
3795 if (MRI
->getEncodingValue(Reg
) > MRI
->getEncodingValue(EndReg
))
3796 return Error(AfterMinusLoc
, "bad range in register list");
3798 // Add all the registers in the range to the register list.
3799 while (Reg
!= EndReg
) {
3800 Reg
= getNextRegister(Reg
);
3801 EReg
= MRI
->getEncodingValue(Reg
);
3802 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3806 Parser
.Lex(); // Eat the comma.
3807 RegLoc
= Parser
.getTok().getLoc();
3809 const AsmToken RegTok
= Parser
.getTok();
3810 Reg
= tryParseRegister();
3812 return Error(RegLoc
, "register expected");
3813 // Allow Q regs and just interpret them as the two D sub-registers.
3814 bool isQReg
= false;
3815 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3816 Reg
= getDRegFromQReg(Reg
);
3819 // The register must be in the same register class as the first.
3820 if (!RC
->contains(Reg
))
3821 return Error(RegLoc
, "invalid register in register list");
3822 // List must be monotonically increasing.
3823 if (MRI
->getEncodingValue(Reg
) < MRI
->getEncodingValue(OldReg
)) {
3824 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
3825 Warning(RegLoc
, "register list not in ascending order");
3827 return Error(RegLoc
, "register list not in ascending order");
3829 if (MRI
->getEncodingValue(Reg
) == MRI
->getEncodingValue(OldReg
)) {
3830 Warning(RegLoc
, "duplicated register (" + RegTok
.getString() +
3831 ") in register list");
3834 // VFP register lists must also be contiguous.
3835 if (RC
!= &ARMMCRegisterClasses
[ARM::GPRRegClassID
] &&
3837 return Error(RegLoc
, "non-contiguous register range");
3838 EReg
= MRI
->getEncodingValue(Reg
);
3839 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3841 EReg
= MRI
->getEncodingValue(++Reg
);
3842 Registers
.push_back(std::pair
<unsigned, unsigned>(EReg
, Reg
));
3846 if (Parser
.getTok().isNot(AsmToken::RCurly
))
3847 return Error(Parser
.getTok().getLoc(), "'}' expected");
3848 SMLoc E
= Parser
.getTok().getEndLoc();
3849 Parser
.Lex(); // Eat '}' token.
3851 // Push the register list operand.
3852 Operands
.push_back(ARMOperand::CreateRegList(Registers
, S
, E
));
3854 // The ARM system instruction variants for LDM/STM have a '^' token here.
3855 if (Parser
.getTok().is(AsmToken::Caret
)) {
3856 Operands
.push_back(ARMOperand::CreateToken("^",Parser
.getTok().getLoc()));
3857 Parser
.Lex(); // Eat '^' token.
3863 // Helper function to parse the lane index for vector lists.
3864 OperandMatchResultTy
ARMAsmParser::
3865 parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
, SMLoc
&EndLoc
) {
3866 MCAsmParser
&Parser
= getParser();
3867 Index
= 0; // Always return a defined index value.
3868 if (Parser
.getTok().is(AsmToken::LBrac
)) {
3869 Parser
.Lex(); // Eat the '['.
3870 if (Parser
.getTok().is(AsmToken::RBrac
)) {
3871 // "Dn[]" is the 'all lanes' syntax.
3872 LaneKind
= AllLanes
;
3873 EndLoc
= Parser
.getTok().getEndLoc();
3874 Parser
.Lex(); // Eat the ']'.
3875 return MatchOperand_Success
;
3878 // There's an optional '#' token here. Normally there wouldn't be, but
3879 // inline assemble puts one in, and it's friendly to accept that.
3880 if (Parser
.getTok().is(AsmToken::Hash
))
3881 Parser
.Lex(); // Eat '#' or '$'.
3883 const MCExpr
*LaneIndex
;
3884 SMLoc Loc
= Parser
.getTok().getLoc();
3885 if (getParser().parseExpression(LaneIndex
)) {
3886 Error(Loc
, "illegal expression");
3887 return MatchOperand_ParseFail
;
3889 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LaneIndex
);
3891 Error(Loc
, "lane index must be empty or an integer");
3892 return MatchOperand_ParseFail
;
3894 if (Parser
.getTok().isNot(AsmToken::RBrac
)) {
3895 Error(Parser
.getTok().getLoc(), "']' expected");
3896 return MatchOperand_ParseFail
;
3898 EndLoc
= Parser
.getTok().getEndLoc();
3899 Parser
.Lex(); // Eat the ']'.
3900 int64_t Val
= CE
->getValue();
3902 // FIXME: Make this range check context sensitive for .8, .16, .32.
3903 if (Val
< 0 || Val
> 7) {
3904 Error(Parser
.getTok().getLoc(), "lane index out of range");
3905 return MatchOperand_ParseFail
;
3908 LaneKind
= IndexedLane
;
3909 return MatchOperand_Success
;
3912 return MatchOperand_Success
;
3915 // parse a vector register list
3916 OperandMatchResultTy
3917 ARMAsmParser::parseVectorList(OperandVector
&Operands
) {
3918 MCAsmParser
&Parser
= getParser();
3919 VectorLaneTy LaneKind
;
3921 SMLoc S
= Parser
.getTok().getLoc();
3922 // As an extension (to match gas), support a plain D register or Q register
3923 // (without encosing curly braces) as a single or double entry list,
3925 if (Parser
.getTok().is(AsmToken::Identifier
)) {
3926 SMLoc E
= Parser
.getTok().getEndLoc();
3927 int Reg
= tryParseRegister();
3929 return MatchOperand_NoMatch
;
3930 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
3931 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
3932 if (Res
!= MatchOperand_Success
)
3936 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 1, false, S
, E
));
3939 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 1, false,
3943 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 1,
3948 return MatchOperand_Success
;
3950 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3951 Reg
= getDRegFromQReg(Reg
);
3952 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
3953 if (Res
!= MatchOperand_Success
)
3957 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
3958 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
3959 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 2, false, S
, E
));
3962 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
3963 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
3964 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 2, false,
3968 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 2,
3973 return MatchOperand_Success
;
3975 Error(S
, "vector register expected");
3976 return MatchOperand_ParseFail
;
3979 if (Parser
.getTok().isNot(AsmToken::LCurly
))
3980 return MatchOperand_NoMatch
;
3982 Parser
.Lex(); // Eat '{' token.
3983 SMLoc RegLoc
= Parser
.getTok().getLoc();
3985 int Reg
= tryParseRegister();
3987 Error(RegLoc
, "register expected");
3988 return MatchOperand_ParseFail
;
3992 unsigned FirstReg
= Reg
;
3993 // The list is of D registers, but we also allow Q regs and just interpret
3994 // them as the two D sub-registers.
3995 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
3996 FirstReg
= Reg
= getDRegFromQReg(Reg
);
3997 Spacing
= 1; // double-spacing requires explicit D registers, otherwise
3998 // it's ambiguous with four-register single spaced.
4004 if (parseVectorLane(LaneKind
, LaneIndex
, E
) != MatchOperand_Success
)
4005 return MatchOperand_ParseFail
;
4007 while (Parser
.getTok().is(AsmToken::Comma
) ||
4008 Parser
.getTok().is(AsmToken::Minus
)) {
4009 if (Parser
.getTok().is(AsmToken::Minus
)) {
4011 Spacing
= 1; // Register range implies a single spaced list.
4012 else if (Spacing
== 2) {
4013 Error(Parser
.getTok().getLoc(),
4014 "sequential registers in double spaced list");
4015 return MatchOperand_ParseFail
;
4017 Parser
.Lex(); // Eat the minus.
4018 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
4019 int EndReg
= tryParseRegister();
4021 Error(AfterMinusLoc
, "register expected");
4022 return MatchOperand_ParseFail
;
4024 // Allow Q regs and just interpret them as the two D sub-registers.
4025 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
4026 EndReg
= getDRegFromQReg(EndReg
) + 1;
4027 // If the register is the same as the start reg, there's nothing
4031 // The register must be in the same register class as the first.
4032 if (!ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(EndReg
)) {
4033 Error(AfterMinusLoc
, "invalid register in register list");
4034 return MatchOperand_ParseFail
;
4036 // Ranges must go from low to high.
4038 Error(AfterMinusLoc
, "bad range in register list");
4039 return MatchOperand_ParseFail
;
4041 // Parse the lane specifier if present.
4042 VectorLaneTy NextLaneKind
;
4043 unsigned NextLaneIndex
;
4044 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4045 MatchOperand_Success
)
4046 return MatchOperand_ParseFail
;
4047 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4048 Error(AfterMinusLoc
, "mismatched lane index in register list");
4049 return MatchOperand_ParseFail
;
4052 // Add all the registers in the range to the register list.
4053 Count
+= EndReg
- Reg
;
4057 Parser
.Lex(); // Eat the comma.
4058 RegLoc
= Parser
.getTok().getLoc();
4060 Reg
= tryParseRegister();
4062 Error(RegLoc
, "register expected");
4063 return MatchOperand_ParseFail
;
4065 // vector register lists must be contiguous.
4066 // It's OK to use the enumeration values directly here rather, as the
4067 // VFP register classes have the enum sorted properly.
4069 // The list is of D registers, but we also allow Q regs and just interpret
4070 // them as the two D sub-registers.
4071 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4073 Spacing
= 1; // Register range implies a single spaced list.
4074 else if (Spacing
== 2) {
4076 "invalid register in double-spaced list (must be 'D' register')");
4077 return MatchOperand_ParseFail
;
4079 Reg
= getDRegFromQReg(Reg
);
4080 if (Reg
!= OldReg
+ 1) {
4081 Error(RegLoc
, "non-contiguous register range");
4082 return MatchOperand_ParseFail
;
4086 // Parse the lane specifier if present.
4087 VectorLaneTy NextLaneKind
;
4088 unsigned NextLaneIndex
;
4089 SMLoc LaneLoc
= Parser
.getTok().getLoc();
4090 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4091 MatchOperand_Success
)
4092 return MatchOperand_ParseFail
;
4093 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4094 Error(LaneLoc
, "mismatched lane index in register list");
4095 return MatchOperand_ParseFail
;
4099 // Normal D register.
4100 // Figure out the register spacing (single or double) of the list if
4101 // we don't know it already.
4103 Spacing
= 1 + (Reg
== OldReg
+ 2);
4105 // Just check that it's contiguous and keep going.
4106 if (Reg
!= OldReg
+ Spacing
) {
4107 Error(RegLoc
, "non-contiguous register range");
4108 return MatchOperand_ParseFail
;
4111 // Parse the lane specifier if present.
4112 VectorLaneTy NextLaneKind
;
4113 unsigned NextLaneIndex
;
4114 SMLoc EndLoc
= Parser
.getTok().getLoc();
4115 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) != MatchOperand_Success
)
4116 return MatchOperand_ParseFail
;
4117 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4118 Error(EndLoc
, "mismatched lane index in register list");
4119 return MatchOperand_ParseFail
;
4123 if (Parser
.getTok().isNot(AsmToken::RCurly
)) {
4124 Error(Parser
.getTok().getLoc(), "'}' expected");
4125 return MatchOperand_ParseFail
;
4127 E
= Parser
.getTok().getEndLoc();
4128 Parser
.Lex(); // Eat '}' token.
4132 // Two-register operands have been converted to the
4133 // composite register classes.
4135 const MCRegisterClass
*RC
= (Spacing
== 1) ?
4136 &ARMMCRegisterClasses
[ARM::DPairRegClassID
] :
4137 &ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
];
4138 FirstReg
= MRI
->getMatchingSuperReg(FirstReg
, ARM::dsub_0
, RC
);
4140 Operands
.push_back(ARMOperand::CreateVectorList(FirstReg
, Count
,
4141 (Spacing
== 2), S
, E
));
4144 // Two-register operands have been converted to the
4145 // composite register classes.
4147 const MCRegisterClass
*RC
= (Spacing
== 1) ?
4148 &ARMMCRegisterClasses
[ARM::DPairRegClassID
] :
4149 &ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
];
4150 FirstReg
= MRI
->getMatchingSuperReg(FirstReg
, ARM::dsub_0
, RC
);
4152 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg
, Count
,
4157 Operands
.push_back(ARMOperand::CreateVectorListIndexed(FirstReg
, Count
,
4163 return MatchOperand_Success
;
4166 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4167 OperandMatchResultTy
4168 ARMAsmParser::parseMemBarrierOptOperand(OperandVector
&Operands
) {
4169 MCAsmParser
&Parser
= getParser();
4170 SMLoc S
= Parser
.getTok().getLoc();
4171 const AsmToken
&Tok
= Parser
.getTok();
4174 if (Tok
.is(AsmToken::Identifier
)) {
4175 StringRef OptStr
= Tok
.getString();
4177 Opt
= StringSwitch
<unsigned>(OptStr
.slice(0, OptStr
.size()).lower())
4178 .Case("sy", ARM_MB::SY
)
4179 .Case("st", ARM_MB::ST
)
4180 .Case("ld", ARM_MB::LD
)
4181 .Case("sh", ARM_MB::ISH
)
4182 .Case("ish", ARM_MB::ISH
)
4183 .Case("shst", ARM_MB::ISHST
)
4184 .Case("ishst", ARM_MB::ISHST
)
4185 .Case("ishld", ARM_MB::ISHLD
)
4186 .Case("nsh", ARM_MB::NSH
)
4187 .Case("un", ARM_MB::NSH
)
4188 .Case("nshst", ARM_MB::NSHST
)
4189 .Case("nshld", ARM_MB::NSHLD
)
4190 .Case("unst", ARM_MB::NSHST
)
4191 .Case("osh", ARM_MB::OSH
)
4192 .Case("oshst", ARM_MB::OSHST
)
4193 .Case("oshld", ARM_MB::OSHLD
)
4196 // ishld, oshld, nshld and ld are only available from ARMv8.
4197 if (!hasV8Ops() && (Opt
== ARM_MB::ISHLD
|| Opt
== ARM_MB::OSHLD
||
4198 Opt
== ARM_MB::NSHLD
|| Opt
== ARM_MB::LD
))
4202 return MatchOperand_NoMatch
;
4204 Parser
.Lex(); // Eat identifier token.
4205 } else if (Tok
.is(AsmToken::Hash
) ||
4206 Tok
.is(AsmToken::Dollar
) ||
4207 Tok
.is(AsmToken::Integer
)) {
4208 if (Parser
.getTok().isNot(AsmToken::Integer
))
4209 Parser
.Lex(); // Eat '#' or '$'.
4210 SMLoc Loc
= Parser
.getTok().getLoc();
4212 const MCExpr
*MemBarrierID
;
4213 if (getParser().parseExpression(MemBarrierID
)) {
4214 Error(Loc
, "illegal expression");
4215 return MatchOperand_ParseFail
;
4218 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(MemBarrierID
);
4220 Error(Loc
, "constant expression expected");
4221 return MatchOperand_ParseFail
;
4224 int Val
= CE
->getValue();
4226 Error(Loc
, "immediate value out of range");
4227 return MatchOperand_ParseFail
;
4230 Opt
= ARM_MB::RESERVED_0
+ Val
;
4232 return MatchOperand_ParseFail
;
4234 Operands
.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt
)Opt
, S
));
4235 return MatchOperand_Success
;
4238 OperandMatchResultTy
4239 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector
&Operands
) {
4240 MCAsmParser
&Parser
= getParser();
4241 SMLoc S
= Parser
.getTok().getLoc();
4242 const AsmToken
&Tok
= Parser
.getTok();
4244 if (Tok
.isNot(AsmToken::Identifier
))
4245 return MatchOperand_NoMatch
;
4247 if (!Tok
.getString().equals_lower("csync"))
4248 return MatchOperand_NoMatch
;
4250 Parser
.Lex(); // Eat identifier token.
4252 Operands
.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC
, S
));
4253 return MatchOperand_Success
;
4256 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4257 OperandMatchResultTy
4258 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector
&Operands
) {
4259 MCAsmParser
&Parser
= getParser();
4260 SMLoc S
= Parser
.getTok().getLoc();
4261 const AsmToken
&Tok
= Parser
.getTok();
4264 if (Tok
.is(AsmToken::Identifier
)) {
4265 StringRef OptStr
= Tok
.getString();
4267 if (OptStr
.equals_lower("sy"))
4270 return MatchOperand_NoMatch
;
4272 Parser
.Lex(); // Eat identifier token.
4273 } else if (Tok
.is(AsmToken::Hash
) ||
4274 Tok
.is(AsmToken::Dollar
) ||
4275 Tok
.is(AsmToken::Integer
)) {
4276 if (Parser
.getTok().isNot(AsmToken::Integer
))
4277 Parser
.Lex(); // Eat '#' or '$'.
4278 SMLoc Loc
= Parser
.getTok().getLoc();
4280 const MCExpr
*ISBarrierID
;
4281 if (getParser().parseExpression(ISBarrierID
)) {
4282 Error(Loc
, "illegal expression");
4283 return MatchOperand_ParseFail
;
4286 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ISBarrierID
);
4288 Error(Loc
, "constant expression expected");
4289 return MatchOperand_ParseFail
;
4292 int Val
= CE
->getValue();
4294 Error(Loc
, "immediate value out of range");
4295 return MatchOperand_ParseFail
;
4298 Opt
= ARM_ISB::RESERVED_0
+ Val
;
4300 return MatchOperand_ParseFail
;
4302 Operands
.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4303 (ARM_ISB::InstSyncBOpt
)Opt
, S
));
4304 return MatchOperand_Success
;
4308 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4309 OperandMatchResultTy
4310 ARMAsmParser::parseProcIFlagsOperand(OperandVector
&Operands
) {
4311 MCAsmParser
&Parser
= getParser();
4312 SMLoc S
= Parser
.getTok().getLoc();
4313 const AsmToken
&Tok
= Parser
.getTok();
4314 if (!Tok
.is(AsmToken::Identifier
))
4315 return MatchOperand_NoMatch
;
4316 StringRef IFlagsStr
= Tok
.getString();
4318 // An iflags string of "none" is interpreted to mean that none of the AIF
4319 // bits are set. Not a terribly useful instruction, but a valid encoding.
4320 unsigned IFlags
= 0;
4321 if (IFlagsStr
!= "none") {
4322 for (int i
= 0, e
= IFlagsStr
.size(); i
!= e
; ++i
) {
4323 unsigned Flag
= StringSwitch
<unsigned>(IFlagsStr
.substr(i
, 1).lower())
4324 .Case("a", ARM_PROC::A
)
4325 .Case("i", ARM_PROC::I
)
4326 .Case("f", ARM_PROC::F
)
4329 // If some specific iflag is already set, it means that some letter is
4330 // present more than once, this is not acceptable.
4331 if (Flag
== ~0U || (IFlags
& Flag
))
4332 return MatchOperand_NoMatch
;
4338 Parser
.Lex(); // Eat identifier token.
4339 Operands
.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags
)IFlags
, S
));
4340 return MatchOperand_Success
;
4343 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4344 OperandMatchResultTy
4345 ARMAsmParser::parseMSRMaskOperand(OperandVector
&Operands
) {
4346 MCAsmParser
&Parser
= getParser();
4347 SMLoc S
= Parser
.getTok().getLoc();
4348 const AsmToken
&Tok
= Parser
.getTok();
4350 if (Tok
.is(AsmToken::Integer
)) {
4351 int64_t Val
= Tok
.getIntVal();
4352 if (Val
> 255 || Val
< 0) {
4353 return MatchOperand_NoMatch
;
4355 unsigned SYSmvalue
= Val
& 0xFF;
4357 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
4358 return MatchOperand_Success
;
4361 if (!Tok
.is(AsmToken::Identifier
))
4362 return MatchOperand_NoMatch
;
4363 StringRef Mask
= Tok
.getString();
4366 auto TheReg
= ARMSysReg::lookupMClassSysRegByName(Mask
.lower());
4367 if (!TheReg
|| !TheReg
->hasRequiredFeatures(getSTI().getFeatureBits()))
4368 return MatchOperand_NoMatch
;
4370 unsigned SYSmvalue
= TheReg
->Encoding
& 0xFFF;
4372 Parser
.Lex(); // Eat identifier token.
4373 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
4374 return MatchOperand_Success
;
4377 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4378 size_t Start
= 0, Next
= Mask
.find('_');
4379 StringRef Flags
= "";
4380 std::string SpecReg
= Mask
.slice(Start
, Next
).lower();
4381 if (Next
!= StringRef::npos
)
4382 Flags
= Mask
.slice(Next
+1, Mask
.size());
4384 // FlagsVal contains the complete mask:
4386 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4387 unsigned FlagsVal
= 0;
4389 if (SpecReg
== "apsr") {
4390 FlagsVal
= StringSwitch
<unsigned>(Flags
)
4391 .Case("nzcvq", 0x8) // same as CPSR_f
4392 .Case("g", 0x4) // same as CPSR_s
4393 .Case("nzcvqg", 0xc) // same as CPSR_fs
4396 if (FlagsVal
== ~0U) {
4398 return MatchOperand_NoMatch
;
4400 FlagsVal
= 8; // No flag
4402 } else if (SpecReg
== "cpsr" || SpecReg
== "spsr") {
4403 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4404 if (Flags
== "all" || Flags
== "")
4406 for (int i
= 0, e
= Flags
.size(); i
!= e
; ++i
) {
4407 unsigned Flag
= StringSwitch
<unsigned>(Flags
.substr(i
, 1))
4414 // If some specific flag is already set, it means that some letter is
4415 // present more than once, this is not acceptable.
4416 if (Flag
== ~0U || (FlagsVal
& Flag
))
4417 return MatchOperand_NoMatch
;
4420 } else // No match for special register.
4421 return MatchOperand_NoMatch
;
4423 // Special register without flags is NOT equivalent to "fc" flags.
4424 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4425 // two lines would enable gas compatibility at the expense of breaking
4431 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4432 if (SpecReg
== "spsr")
4435 Parser
.Lex(); // Eat identifier token.
4436 Operands
.push_back(ARMOperand::CreateMSRMask(FlagsVal
, S
));
4437 return MatchOperand_Success
;
4440 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4441 /// use in the MRS/MSR instructions added to support virtualization.
4442 OperandMatchResultTy
4443 ARMAsmParser::parseBankedRegOperand(OperandVector
&Operands
) {
4444 MCAsmParser
&Parser
= getParser();
4445 SMLoc S
= Parser
.getTok().getLoc();
4446 const AsmToken
&Tok
= Parser
.getTok();
4447 if (!Tok
.is(AsmToken::Identifier
))
4448 return MatchOperand_NoMatch
;
4449 StringRef RegName
= Tok
.getString();
4451 auto TheReg
= ARMBankedReg::lookupBankedRegByName(RegName
.lower());
4453 return MatchOperand_NoMatch
;
4454 unsigned Encoding
= TheReg
->Encoding
;
4456 Parser
.Lex(); // Eat identifier token.
4457 Operands
.push_back(ARMOperand::CreateBankedReg(Encoding
, S
));
4458 return MatchOperand_Success
;
4461 OperandMatchResultTy
4462 ARMAsmParser::parsePKHImm(OperandVector
&Operands
, StringRef Op
, int Low
,
4464 MCAsmParser
&Parser
= getParser();
4465 const AsmToken
&Tok
= Parser
.getTok();
4466 if (Tok
.isNot(AsmToken::Identifier
)) {
4467 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
4468 return MatchOperand_ParseFail
;
4470 StringRef ShiftName
= Tok
.getString();
4471 std::string LowerOp
= Op
.lower();
4472 std::string UpperOp
= Op
.upper();
4473 if (ShiftName
!= LowerOp
&& ShiftName
!= UpperOp
) {
4474 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
4475 return MatchOperand_ParseFail
;
4477 Parser
.Lex(); // Eat shift type token.
4479 // There must be a '#' and a shift amount.
4480 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4481 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4482 Error(Parser
.getTok().getLoc(), "'#' expected");
4483 return MatchOperand_ParseFail
;
4485 Parser
.Lex(); // Eat hash token.
4487 const MCExpr
*ShiftAmount
;
4488 SMLoc Loc
= Parser
.getTok().getLoc();
4490 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
4491 Error(Loc
, "illegal expression");
4492 return MatchOperand_ParseFail
;
4494 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
4496 Error(Loc
, "constant expression expected");
4497 return MatchOperand_ParseFail
;
4499 int Val
= CE
->getValue();
4500 if (Val
< Low
|| Val
> High
) {
4501 Error(Loc
, "immediate value out of range");
4502 return MatchOperand_ParseFail
;
4505 Operands
.push_back(ARMOperand::CreateImm(CE
, Loc
, EndLoc
));
4507 return MatchOperand_Success
;
4510 OperandMatchResultTy
4511 ARMAsmParser::parseSetEndImm(OperandVector
&Operands
) {
4512 MCAsmParser
&Parser
= getParser();
4513 const AsmToken
&Tok
= Parser
.getTok();
4514 SMLoc S
= Tok
.getLoc();
4515 if (Tok
.isNot(AsmToken::Identifier
)) {
4516 Error(S
, "'be' or 'le' operand expected");
4517 return MatchOperand_ParseFail
;
4519 int Val
= StringSwitch
<int>(Tok
.getString().lower())
4523 Parser
.Lex(); // Eat the token.
4526 Error(S
, "'be' or 'le' operand expected");
4527 return MatchOperand_ParseFail
;
4529 Operands
.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val
,
4531 S
, Tok
.getEndLoc()));
4532 return MatchOperand_Success
;
4535 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4536 /// instructions. Legal values are:
4537 /// lsl #n 'n' in [0,31]
4538 /// asr #n 'n' in [1,32]
4539 /// n == 32 encoded as n == 0.
4540 OperandMatchResultTy
4541 ARMAsmParser::parseShifterImm(OperandVector
&Operands
) {
4542 MCAsmParser
&Parser
= getParser();
4543 const AsmToken
&Tok
= Parser
.getTok();
4544 SMLoc S
= Tok
.getLoc();
4545 if (Tok
.isNot(AsmToken::Identifier
)) {
4546 Error(S
, "shift operator 'asr' or 'lsl' expected");
4547 return MatchOperand_ParseFail
;
4549 StringRef ShiftName
= Tok
.getString();
4551 if (ShiftName
== "lsl" || ShiftName
== "LSL")
4553 else if (ShiftName
== "asr" || ShiftName
== "ASR")
4556 Error(S
, "shift operator 'asr' or 'lsl' expected");
4557 return MatchOperand_ParseFail
;
4559 Parser
.Lex(); // Eat the operator.
4561 // A '#' and a shift amount.
4562 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4563 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4564 Error(Parser
.getTok().getLoc(), "'#' expected");
4565 return MatchOperand_ParseFail
;
4567 Parser
.Lex(); // Eat hash token.
4568 SMLoc ExLoc
= Parser
.getTok().getLoc();
4570 const MCExpr
*ShiftAmount
;
4572 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
4573 Error(ExLoc
, "malformed shift expression");
4574 return MatchOperand_ParseFail
;
4576 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
4578 Error(ExLoc
, "shift amount must be an immediate");
4579 return MatchOperand_ParseFail
;
4582 int64_t Val
= CE
->getValue();
4584 // Shift amount must be in [1,32]
4585 if (Val
< 1 || Val
> 32) {
4586 Error(ExLoc
, "'asr' shift amount must be in range [1,32]");
4587 return MatchOperand_ParseFail
;
4589 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4590 if (isThumb() && Val
== 32) {
4591 Error(ExLoc
, "'asr #32' shift amount not allowed in Thumb mode");
4592 return MatchOperand_ParseFail
;
4594 if (Val
== 32) Val
= 0;
4596 // Shift amount must be in [1,32]
4597 if (Val
< 0 || Val
> 31) {
4598 Error(ExLoc
, "'lsr' shift amount must be in range [0,31]");
4599 return MatchOperand_ParseFail
;
4603 Operands
.push_back(ARMOperand::CreateShifterImm(isASR
, Val
, S
, EndLoc
));
4605 return MatchOperand_Success
;
4608 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4609 /// of instructions. Legal values are:
4610 /// ror #n 'n' in {0, 8, 16, 24}
4611 OperandMatchResultTy
4612 ARMAsmParser::parseRotImm(OperandVector
&Operands
) {
4613 MCAsmParser
&Parser
= getParser();
4614 const AsmToken
&Tok
= Parser
.getTok();
4615 SMLoc S
= Tok
.getLoc();
4616 if (Tok
.isNot(AsmToken::Identifier
))
4617 return MatchOperand_NoMatch
;
4618 StringRef ShiftName
= Tok
.getString();
4619 if (ShiftName
!= "ror" && ShiftName
!= "ROR")
4620 return MatchOperand_NoMatch
;
4621 Parser
.Lex(); // Eat the operator.
4623 // A '#' and a rotate amount.
4624 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4625 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4626 Error(Parser
.getTok().getLoc(), "'#' expected");
4627 return MatchOperand_ParseFail
;
4629 Parser
.Lex(); // Eat hash token.
4630 SMLoc ExLoc
= Parser
.getTok().getLoc();
4632 const MCExpr
*ShiftAmount
;
4634 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
4635 Error(ExLoc
, "malformed rotate expression");
4636 return MatchOperand_ParseFail
;
4638 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
4640 Error(ExLoc
, "rotate amount must be an immediate");
4641 return MatchOperand_ParseFail
;
4644 int64_t Val
= CE
->getValue();
4645 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4646 // normally, zero is represented in asm by omitting the rotate operand
4648 if (Val
!= 8 && Val
!= 16 && Val
!= 24 && Val
!= 0) {
4649 Error(ExLoc
, "'ror' rotate amount must be 8, 16, or 24");
4650 return MatchOperand_ParseFail
;
4653 Operands
.push_back(ARMOperand::CreateRotImm(Val
, S
, EndLoc
));
4655 return MatchOperand_Success
;
4658 OperandMatchResultTy
4659 ARMAsmParser::parseModImm(OperandVector
&Operands
) {
4660 MCAsmParser
&Parser
= getParser();
4661 MCAsmLexer
&Lexer
= getLexer();
4664 SMLoc S
= Parser
.getTok().getLoc();
4666 // 1) A mod_imm operand can appear in the place of a register name:
4668 // add r0, r0, #mod_imm
4669 // to correctly handle the latter, we bail out as soon as we see an
4672 // 2) Similarly, we do not want to parse into complex operands:
4674 // mov r0, :lower16:(_foo)
4675 if (Parser
.getTok().is(AsmToken::Identifier
) ||
4676 Parser
.getTok().is(AsmToken::Colon
))
4677 return MatchOperand_NoMatch
;
4679 // Hash (dollar) is optional as per the ARMARM
4680 if (Parser
.getTok().is(AsmToken::Hash
) ||
4681 Parser
.getTok().is(AsmToken::Dollar
)) {
4682 // Avoid parsing into complex operands (#:)
4683 if (Lexer
.peekTok().is(AsmToken::Colon
))
4684 return MatchOperand_NoMatch
;
4686 // Eat the hash (dollar)
4691 Sx1
= Parser
.getTok().getLoc();
4692 const MCExpr
*Imm1Exp
;
4693 if (getParser().parseExpression(Imm1Exp
, Ex1
)) {
4694 Error(Sx1
, "malformed expression");
4695 return MatchOperand_ParseFail
;
4698 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm1Exp
);
4701 // Immediate must fit within 32-bits
4702 Imm1
= CE
->getValue();
4703 int Enc
= ARM_AM::getSOImmVal(Imm1
);
4704 if (Enc
!= -1 && Parser
.getTok().is(AsmToken::EndOfStatement
)) {
4706 Operands
.push_back(ARMOperand::CreateModImm((Enc
& 0xFF),
4709 return MatchOperand_Success
;
4712 // We have parsed an immediate which is not for us, fallback to a plain
4713 // immediate. This can happen for instruction aliases. For an example,
4714 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4715 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4716 // instruction with a mod_imm operand. The alias is defined such that the
4717 // parser method is shared, that's why we have to do this here.
4718 if (Parser
.getTok().is(AsmToken::EndOfStatement
)) {
4719 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
4720 return MatchOperand_Success
;
4723 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4724 // MCFixup). Fallback to a plain immediate.
4725 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
4726 return MatchOperand_Success
;
4729 // From this point onward, we expect the input to be a (#bits, #rot) pair
4730 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
4731 Error(Sx1
, "expected modified immediate operand: #[0, 255], #even[0-30]");
4732 return MatchOperand_ParseFail
;
4736 Error(Sx1
, "immediate operand must a number in the range [0, 255]");
4737 return MatchOperand_ParseFail
;
4745 Sx2
= Parser
.getTok().getLoc();
4747 // Eat the optional hash (dollar)
4748 if (Parser
.getTok().is(AsmToken::Hash
) ||
4749 Parser
.getTok().is(AsmToken::Dollar
))
4752 const MCExpr
*Imm2Exp
;
4753 if (getParser().parseExpression(Imm2Exp
, Ex2
)) {
4754 Error(Sx2
, "malformed expression");
4755 return MatchOperand_ParseFail
;
4758 CE
= dyn_cast
<MCConstantExpr
>(Imm2Exp
);
4761 Imm2
= CE
->getValue();
4762 if (!(Imm2
& ~0x1E)) {
4764 Operands
.push_back(ARMOperand::CreateModImm(Imm1
, Imm2
, S
, Ex2
));
4765 return MatchOperand_Success
;
4767 Error(Sx2
, "immediate operand must an even number in the range [0, 30]");
4768 return MatchOperand_ParseFail
;
4770 Error(Sx2
, "constant expression expected");
4771 return MatchOperand_ParseFail
;
4775 OperandMatchResultTy
4776 ARMAsmParser::parseBitfield(OperandVector
&Operands
) {
4777 MCAsmParser
&Parser
= getParser();
4778 SMLoc S
= Parser
.getTok().getLoc();
4779 // The bitfield descriptor is really two operands, the LSB and the width.
4780 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4781 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4782 Error(Parser
.getTok().getLoc(), "'#' expected");
4783 return MatchOperand_ParseFail
;
4785 Parser
.Lex(); // Eat hash token.
4787 const MCExpr
*LSBExpr
;
4788 SMLoc E
= Parser
.getTok().getLoc();
4789 if (getParser().parseExpression(LSBExpr
)) {
4790 Error(E
, "malformed immediate expression");
4791 return MatchOperand_ParseFail
;
4793 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LSBExpr
);
4795 Error(E
, "'lsb' operand must be an immediate");
4796 return MatchOperand_ParseFail
;
4799 int64_t LSB
= CE
->getValue();
4800 // The LSB must be in the range [0,31]
4801 if (LSB
< 0 || LSB
> 31) {
4802 Error(E
, "'lsb' operand must be in the range [0,31]");
4803 return MatchOperand_ParseFail
;
4805 E
= Parser
.getTok().getLoc();
4807 // Expect another immediate operand.
4808 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
4809 Error(Parser
.getTok().getLoc(), "too few operands");
4810 return MatchOperand_ParseFail
;
4812 Parser
.Lex(); // Eat hash token.
4813 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
4814 Parser
.getTok().isNot(AsmToken::Dollar
)) {
4815 Error(Parser
.getTok().getLoc(), "'#' expected");
4816 return MatchOperand_ParseFail
;
4818 Parser
.Lex(); // Eat hash token.
4820 const MCExpr
*WidthExpr
;
4822 if (getParser().parseExpression(WidthExpr
, EndLoc
)) {
4823 Error(E
, "malformed immediate expression");
4824 return MatchOperand_ParseFail
;
4826 CE
= dyn_cast
<MCConstantExpr
>(WidthExpr
);
4828 Error(E
, "'width' operand must be an immediate");
4829 return MatchOperand_ParseFail
;
4832 int64_t Width
= CE
->getValue();
4833 // The LSB must be in the range [1,32-lsb]
4834 if (Width
< 1 || Width
> 32 - LSB
) {
4835 Error(E
, "'width' operand must be in the range [1,32-lsb]");
4836 return MatchOperand_ParseFail
;
4839 Operands
.push_back(ARMOperand::CreateBitfield(LSB
, Width
, S
, EndLoc
));
4841 return MatchOperand_Success
;
4844 OperandMatchResultTy
4845 ARMAsmParser::parsePostIdxReg(OperandVector
&Operands
) {
4846 // Check for a post-index addressing register operand. Specifically:
4847 // postidx_reg := '+' register {, shift}
4848 // | '-' register {, shift}
4849 // | register {, shift}
4851 // This method must return MatchOperand_NoMatch without consuming any tokens
4852 // in the case where there is no match, as other alternatives take other
4854 MCAsmParser
&Parser
= getParser();
4855 AsmToken Tok
= Parser
.getTok();
4856 SMLoc S
= Tok
.getLoc();
4857 bool haveEaten
= false;
4859 if (Tok
.is(AsmToken::Plus
)) {
4860 Parser
.Lex(); // Eat the '+' token.
4862 } else if (Tok
.is(AsmToken::Minus
)) {
4863 Parser
.Lex(); // Eat the '-' token.
4868 SMLoc E
= Parser
.getTok().getEndLoc();
4869 int Reg
= tryParseRegister();
4872 return MatchOperand_NoMatch
;
4873 Error(Parser
.getTok().getLoc(), "register expected");
4874 return MatchOperand_ParseFail
;
4877 ARM_AM::ShiftOpc ShiftTy
= ARM_AM::no_shift
;
4878 unsigned ShiftImm
= 0;
4879 if (Parser
.getTok().is(AsmToken::Comma
)) {
4880 Parser
.Lex(); // Eat the ','.
4881 if (parseMemRegOffsetShift(ShiftTy
, ShiftImm
))
4882 return MatchOperand_ParseFail
;
4884 // FIXME: Only approximates end...may include intervening whitespace.
4885 E
= Parser
.getTok().getLoc();
4888 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ShiftTy
,
4891 return MatchOperand_Success
;
4894 OperandMatchResultTy
4895 ARMAsmParser::parseAM3Offset(OperandVector
&Operands
) {
4896 // Check for a post-index addressing register operand. Specifically:
4897 // am3offset := '+' register
4904 // This method must return MatchOperand_NoMatch without consuming any tokens
4905 // in the case where there is no match, as other alternatives take other
4907 MCAsmParser
&Parser
= getParser();
4908 AsmToken Tok
= Parser
.getTok();
4909 SMLoc S
= Tok
.getLoc();
4911 // Do immediates first, as we always parse those if we have a '#'.
4912 if (Parser
.getTok().is(AsmToken::Hash
) ||
4913 Parser
.getTok().is(AsmToken::Dollar
)) {
4914 Parser
.Lex(); // Eat '#' or '$'.
4915 // Explicitly look for a '-', as we need to encode negative zero
4917 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
4918 const MCExpr
*Offset
;
4920 if (getParser().parseExpression(Offset
, E
))
4921 return MatchOperand_ParseFail
;
4922 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
4924 Error(S
, "constant expression expected");
4925 return MatchOperand_ParseFail
;
4927 // Negative zero is encoded as the flag value
4928 // std::numeric_limits<int32_t>::min().
4929 int32_t Val
= CE
->getValue();
4930 if (isNegative
&& Val
== 0)
4931 Val
= std::numeric_limits
<int32_t>::min();
4934 ARMOperand::CreateImm(MCConstantExpr::create(Val
, getContext()), S
, E
));
4936 return MatchOperand_Success
;
4939 bool haveEaten
= false;
4941 if (Tok
.is(AsmToken::Plus
)) {
4942 Parser
.Lex(); // Eat the '+' token.
4944 } else if (Tok
.is(AsmToken::Minus
)) {
4945 Parser
.Lex(); // Eat the '-' token.
4950 Tok
= Parser
.getTok();
4951 int Reg
= tryParseRegister();
4954 return MatchOperand_NoMatch
;
4955 Error(Tok
.getLoc(), "register expected");
4956 return MatchOperand_ParseFail
;
4959 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ARM_AM::no_shift
,
4960 0, S
, Tok
.getEndLoc()));
4962 return MatchOperand_Success
;
4965 /// Convert parsed operands to MCInst. Needed here because this instruction
4966 /// only has two register operands, but multiplication is commutative so
4967 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4968 void ARMAsmParser::cvtThumbMultiply(MCInst
&Inst
,
4969 const OperandVector
&Operands
) {
4970 ((ARMOperand
&)*Operands
[3]).addRegOperands(Inst
, 1);
4971 ((ARMOperand
&)*Operands
[1]).addCCOutOperands(Inst
, 1);
4972 // If we have a three-operand form, make sure to set Rn to be the operand
4973 // that isn't the same as Rd.
4975 if (Operands
.size() == 6 &&
4976 ((ARMOperand
&)*Operands
[4]).getReg() ==
4977 ((ARMOperand
&)*Operands
[3]).getReg())
4979 ((ARMOperand
&)*Operands
[RegOp
]).addRegOperands(Inst
, 1);
4980 Inst
.addOperand(Inst
.getOperand(0));
4981 ((ARMOperand
&)*Operands
[2]).addCondCodeOperands(Inst
, 2);
4984 void ARMAsmParser::cvtThumbBranches(MCInst
&Inst
,
4985 const OperandVector
&Operands
) {
4986 int CondOp
= -1, ImmOp
= -1;
4987 switch(Inst
.getOpcode()) {
4989 case ARM::tBcc
: CondOp
= 1; ImmOp
= 2; break;
4992 case ARM::t2Bcc
: CondOp
= 1; ImmOp
= 3; break;
4994 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4996 // first decide whether or not the branch should be conditional
4997 // by looking at it's location relative to an IT block
4999 // inside an IT block we cannot have any conditional branches. any
5000 // such instructions needs to be converted to unconditional form
5001 switch(Inst
.getOpcode()) {
5002 case ARM::tBcc
: Inst
.setOpcode(ARM::tB
); break;
5003 case ARM::t2Bcc
: Inst
.setOpcode(ARM::t2B
); break;
5006 // outside IT blocks we can only have unconditional branches with AL
5007 // condition code or conditional branches with non-AL condition code
5008 unsigned Cond
= static_cast<ARMOperand
&>(*Operands
[CondOp
]).getCondCode();
5009 switch(Inst
.getOpcode()) {
5012 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::tB
: ARM::tBcc
);
5016 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::t2B
: ARM::t2Bcc
);
5021 // now decide on encoding size based on branch target range
5022 switch(Inst
.getOpcode()) {
5023 // classify tB as either t2B or t1B based on range of immediate operand
5025 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5026 if (!op
.isSignedOffset
<11, 1>() && isThumb() && hasV8MBaseline())
5027 Inst
.setOpcode(ARM::t2B
);
5030 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5032 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5033 if (!op
.isSignedOffset
<8, 1>() && isThumb() && hasV8MBaseline())
5034 Inst
.setOpcode(ARM::t2Bcc
);
5038 ((ARMOperand
&)*Operands
[ImmOp
]).addImmOperands(Inst
, 1);
5039 ((ARMOperand
&)*Operands
[CondOp
]).addCondCodeOperands(Inst
, 2);
5042 /// Parse an ARM memory expression, return false if successful else return true
5043 /// or an error. The first token must be a '[' when called.
5044 bool ARMAsmParser::parseMemory(OperandVector
&Operands
) {
5045 MCAsmParser
&Parser
= getParser();
5047 if (Parser
.getTok().isNot(AsmToken::LBrac
))
5048 return TokError("Token is not a Left Bracket");
5049 S
= Parser
.getTok().getLoc();
5050 Parser
.Lex(); // Eat left bracket token.
5052 const AsmToken
&BaseRegTok
= Parser
.getTok();
5053 int BaseRegNum
= tryParseRegister();
5054 if (BaseRegNum
== -1)
5055 return Error(BaseRegTok
.getLoc(), "register expected");
5057 // The next token must either be a comma, a colon or a closing bracket.
5058 const AsmToken
&Tok
= Parser
.getTok();
5059 if (!Tok
.is(AsmToken::Colon
) && !Tok
.is(AsmToken::Comma
) &&
5060 !Tok
.is(AsmToken::RBrac
))
5061 return Error(Tok
.getLoc(), "malformed memory operand");
5063 if (Tok
.is(AsmToken::RBrac
)) {
5064 E
= Tok
.getEndLoc();
5065 Parser
.Lex(); // Eat right bracket token.
5067 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5068 ARM_AM::no_shift
, 0, 0, false,
5071 // If there's a pre-indexing writeback marker, '!', just add it as a token
5072 // operand. It's rather odd, but syntactically valid.
5073 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5074 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5075 Parser
.Lex(); // Eat the '!'.
5081 assert((Tok
.is(AsmToken::Colon
) || Tok
.is(AsmToken::Comma
)) &&
5082 "Lost colon or comma in memory operand?!");
5083 if (Tok
.is(AsmToken::Comma
)) {
5084 Parser
.Lex(); // Eat the comma.
5087 // If we have a ':', it's an alignment specifier.
5088 if (Parser
.getTok().is(AsmToken::Colon
)) {
5089 Parser
.Lex(); // Eat the ':'.
5090 E
= Parser
.getTok().getLoc();
5091 SMLoc AlignmentLoc
= Tok
.getLoc();
5094 if (getParser().parseExpression(Expr
))
5097 // The expression has to be a constant. Memory references with relocations
5098 // don't come through here, as they use the <label> forms of the relevant
5100 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5102 return Error (E
, "constant expression expected");
5105 switch (CE
->getValue()) {
5108 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5109 case 16: Align
= 2; break;
5110 case 32: Align
= 4; break;
5111 case 64: Align
= 8; break;
5112 case 128: Align
= 16; break;
5113 case 256: Align
= 32; break;
5116 // Now we should have the closing ']'
5117 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5118 return Error(Parser
.getTok().getLoc(), "']' expected");
5119 E
= Parser
.getTok().getEndLoc();
5120 Parser
.Lex(); // Eat right bracket token.
5122 // Don't worry about range checking the value here. That's handled by
5123 // the is*() predicates.
5124 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5125 ARM_AM::no_shift
, 0, Align
,
5126 false, S
, E
, AlignmentLoc
));
5128 // If there's a pre-indexing writeback marker, '!', just add it as a token
5130 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5131 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5132 Parser
.Lex(); // Eat the '!'.
5138 // If we have a '#', it's an immediate offset, else assume it's a register
5139 // offset. Be friendly and also accept a plain integer (without a leading
5140 // hash) for gas compatibility.
5141 if (Parser
.getTok().is(AsmToken::Hash
) ||
5142 Parser
.getTok().is(AsmToken::Dollar
) ||
5143 Parser
.getTok().is(AsmToken::Integer
)) {
5144 if (Parser
.getTok().isNot(AsmToken::Integer
))
5145 Parser
.Lex(); // Eat '#' or '$'.
5146 E
= Parser
.getTok().getLoc();
5148 bool isNegative
= getParser().getTok().is(AsmToken::Minus
);
5149 const MCExpr
*Offset
;
5150 if (getParser().parseExpression(Offset
))
5153 // The expression has to be a constant. Memory references with relocations
5154 // don't come through here, as they use the <label> forms of the relevant
5156 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
5158 return Error (E
, "constant expression expected");
5160 // If the constant was #-0, represent it as
5161 // std::numeric_limits<int32_t>::min().
5162 int32_t Val
= CE
->getValue();
5163 if (isNegative
&& Val
== 0)
5164 CE
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
5167 // Now we should have the closing ']'
5168 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5169 return Error(Parser
.getTok().getLoc(), "']' expected");
5170 E
= Parser
.getTok().getEndLoc();
5171 Parser
.Lex(); // Eat right bracket token.
5173 // Don't worry about range checking the value here. That's handled by
5174 // the is*() predicates.
5175 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, CE
, 0,
5176 ARM_AM::no_shift
, 0, 0,
5179 // If there's a pre-indexing writeback marker, '!', just add it as a token
5181 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5182 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5183 Parser
.Lex(); // Eat the '!'.
5189 // The register offset is optionally preceded by a '+' or '-'
5190 bool isNegative
= false;
5191 if (Parser
.getTok().is(AsmToken::Minus
)) {
5193 Parser
.Lex(); // Eat the '-'.
5194 } else if (Parser
.getTok().is(AsmToken::Plus
)) {
5196 Parser
.Lex(); // Eat the '+'.
5199 E
= Parser
.getTok().getLoc();
5200 int OffsetRegNum
= tryParseRegister();
5201 if (OffsetRegNum
== -1)
5202 return Error(E
, "register expected");
5204 // If there's a shift operator, handle it.
5205 ARM_AM::ShiftOpc ShiftType
= ARM_AM::no_shift
;
5206 unsigned ShiftImm
= 0;
5207 if (Parser
.getTok().is(AsmToken::Comma
)) {
5208 Parser
.Lex(); // Eat the ','.
5209 if (parseMemRegOffsetShift(ShiftType
, ShiftImm
))
5213 // Now we should have the closing ']'
5214 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5215 return Error(Parser
.getTok().getLoc(), "']' expected");
5216 E
= Parser
.getTok().getEndLoc();
5217 Parser
.Lex(); // Eat right bracket token.
5219 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, OffsetRegNum
,
5220 ShiftType
, ShiftImm
, 0, isNegative
,
5223 // If there's a pre-indexing writeback marker, '!', just add it as a token
5225 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5226 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5227 Parser
.Lex(); // Eat the '!'.
5233 /// parseMemRegOffsetShift - one of these two:
5234 /// ( lsl | lsr | asr | ror ) , # shift_amount
5236 /// return true if it parses a shift otherwise it returns false.
5237 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc
&St
,
5239 MCAsmParser
&Parser
= getParser();
5240 SMLoc Loc
= Parser
.getTok().getLoc();
5241 const AsmToken
&Tok
= Parser
.getTok();
5242 if (Tok
.isNot(AsmToken::Identifier
))
5243 return Error(Loc
, "illegal shift operator");
5244 StringRef ShiftName
= Tok
.getString();
5245 if (ShiftName
== "lsl" || ShiftName
== "LSL" ||
5246 ShiftName
== "asl" || ShiftName
== "ASL")
5248 else if (ShiftName
== "lsr" || ShiftName
== "LSR")
5250 else if (ShiftName
== "asr" || ShiftName
== "ASR")
5252 else if (ShiftName
== "ror" || ShiftName
== "ROR")
5254 else if (ShiftName
== "rrx" || ShiftName
== "RRX")
5257 return Error(Loc
, "illegal shift operator");
5258 Parser
.Lex(); // Eat shift type token.
5260 // rrx stands alone.
5262 if (St
!= ARM_AM::rrx
) {
5263 Loc
= Parser
.getTok().getLoc();
5264 // A '#' and a shift amount.
5265 const AsmToken
&HashTok
= Parser
.getTok();
5266 if (HashTok
.isNot(AsmToken::Hash
) &&
5267 HashTok
.isNot(AsmToken::Dollar
))
5268 return Error(HashTok
.getLoc(), "'#' expected");
5269 Parser
.Lex(); // Eat hash token.
5272 if (getParser().parseExpression(Expr
))
5274 // Range check the immediate.
5275 // lsl, ror: 0 <= imm <= 31
5276 // lsr, asr: 0 <= imm <= 32
5277 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5279 return Error(Loc
, "shift amount must be an immediate");
5280 int64_t Imm
= CE
->getValue();
5282 ((St
== ARM_AM::lsl
|| St
== ARM_AM::ror
) && Imm
> 31) ||
5283 ((St
== ARM_AM::lsr
|| St
== ARM_AM::asr
) && Imm
> 32))
5284 return Error(Loc
, "immediate shift value out of range");
5285 // If <ShiftTy> #0, turn it into a no_shift.
5288 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5297 /// parseFPImm - A floating point immediate expression operand.
5298 OperandMatchResultTy
5299 ARMAsmParser::parseFPImm(OperandVector
&Operands
) {
5300 MCAsmParser
&Parser
= getParser();
5301 // Anything that can accept a floating point constant as an operand
5302 // needs to go through here, as the regular parseExpression is
5305 // This routine still creates a generic Immediate operand, containing
5306 // a bitcast of the 64-bit floating point value. The various operands
5307 // that accept floats can check whether the value is valid for them
5308 // via the standard is*() predicates.
5310 SMLoc S
= Parser
.getTok().getLoc();
5312 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5313 Parser
.getTok().isNot(AsmToken::Dollar
))
5314 return MatchOperand_NoMatch
;
5316 // Disambiguate the VMOV forms that can accept an FP immediate.
5317 // vmov.f32 <sreg>, #imm
5318 // vmov.f64 <dreg>, #imm
5319 // vmov.f32 <dreg>, #imm @ vector f32x2
5320 // vmov.f32 <qreg>, #imm @ vector f32x4
5322 // There are also the NEON VMOV instructions which expect an
5323 // integer constant. Make sure we don't try to parse an FPImm
5325 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5326 ARMOperand
&TyOp
= static_cast<ARMOperand
&>(*Operands
[2]);
5327 bool isVmovf
= TyOp
.isToken() &&
5328 (TyOp
.getToken() == ".f32" || TyOp
.getToken() == ".f64" ||
5329 TyOp
.getToken() == ".f16");
5330 ARMOperand
&Mnemonic
= static_cast<ARMOperand
&>(*Operands
[0]);
5331 bool isFconst
= Mnemonic
.isToken() && (Mnemonic
.getToken() == "fconstd" ||
5332 Mnemonic
.getToken() == "fconsts");
5333 if (!(isVmovf
|| isFconst
))
5334 return MatchOperand_NoMatch
;
5336 Parser
.Lex(); // Eat '#' or '$'.
5338 // Handle negation, as that still comes through as a separate token.
5339 bool isNegative
= false;
5340 if (Parser
.getTok().is(AsmToken::Minus
)) {
5344 const AsmToken
&Tok
= Parser
.getTok();
5345 SMLoc Loc
= Tok
.getLoc();
5346 if (Tok
.is(AsmToken::Real
) && isVmovf
) {
5347 APFloat
RealVal(APFloat::IEEEsingle(), Tok
.getString());
5348 uint64_t IntVal
= RealVal
.bitcastToAPInt().getZExtValue();
5349 // If we had a '-' in front, toggle the sign bit.
5350 IntVal
^= (uint64_t)isNegative
<< 31;
5351 Parser
.Lex(); // Eat the token.
5352 Operands
.push_back(ARMOperand::CreateImm(
5353 MCConstantExpr::create(IntVal
, getContext()),
5354 S
, Parser
.getTok().getLoc()));
5355 return MatchOperand_Success
;
5357 // Also handle plain integers. Instructions which allow floating point
5358 // immediates also allow a raw encoded 8-bit value.
5359 if (Tok
.is(AsmToken::Integer
) && isFconst
) {
5360 int64_t Val
= Tok
.getIntVal();
5361 Parser
.Lex(); // Eat the token.
5362 if (Val
> 255 || Val
< 0) {
5363 Error(Loc
, "encoded floating point value out of range");
5364 return MatchOperand_ParseFail
;
5366 float RealVal
= ARM_AM::getFPImmFloat(Val
);
5367 Val
= APFloat(RealVal
).bitcastToAPInt().getZExtValue();
5369 Operands
.push_back(ARMOperand::CreateImm(
5370 MCConstantExpr::create(Val
, getContext()), S
,
5371 Parser
.getTok().getLoc()));
5372 return MatchOperand_Success
;
5375 Error(Loc
, "invalid floating point immediate");
5376 return MatchOperand_ParseFail
;
5379 /// Parse a arm instruction operand. For now this parses the operand regardless
5380 /// of the mnemonic.
5381 bool ARMAsmParser::parseOperand(OperandVector
&Operands
, StringRef Mnemonic
) {
5382 MCAsmParser
&Parser
= getParser();
5385 // Check if the current operand has a custom associated parser, if so, try to
5386 // custom parse the operand, or fallback to the general approach.
5387 OperandMatchResultTy ResTy
= MatchOperandParserImpl(Operands
, Mnemonic
);
5388 if (ResTy
== MatchOperand_Success
)
5390 // If there wasn't a custom match, try the generic matcher below. Otherwise,
5391 // there was a match, but an error occurred, in which case, just return that
5392 // the operand parsing failed.
5393 if (ResTy
== MatchOperand_ParseFail
)
5396 switch (getLexer().getKind()) {
5398 Error(Parser
.getTok().getLoc(), "unexpected token in operand");
5400 case AsmToken::Identifier
: {
5401 // If we've seen a branch mnemonic, the next operand must be a label. This
5402 // is true even if the label is a register name. So "br r1" means branch to
5404 bool ExpectLabel
= Mnemonic
== "b" || Mnemonic
== "bl";
5406 if (!tryParseRegisterWithWriteBack(Operands
))
5408 int Res
= tryParseShiftRegister(Operands
);
5409 if (Res
== 0) // success
5411 else if (Res
== -1) // irrecoverable error
5413 // If this is VMRS, check for the apsr_nzcv operand.
5414 if (Mnemonic
== "vmrs" &&
5415 Parser
.getTok().getString().equals_lower("apsr_nzcv")) {
5416 S
= Parser
.getTok().getLoc();
5418 Operands
.push_back(ARMOperand::CreateToken("APSR_nzcv", S
));
5423 // Fall though for the Identifier case that is not a register or a
5427 case AsmToken::LParen
: // parenthesized expressions like (_strcmp-4)
5428 case AsmToken::Integer
: // things like 1f and 2b as a branch targets
5429 case AsmToken::String
: // quoted label names.
5430 case AsmToken::Dot
: { // . as a branch target
5431 // This was not a register so parse other operands that start with an
5432 // identifier (like labels) as expressions and create them as immediates.
5433 const MCExpr
*IdVal
;
5434 S
= Parser
.getTok().getLoc();
5435 if (getParser().parseExpression(IdVal
))
5437 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5438 Operands
.push_back(ARMOperand::CreateImm(IdVal
, S
, E
));
5441 case AsmToken::LBrac
:
5442 return parseMemory(Operands
);
5443 case AsmToken::LCurly
:
5444 return parseRegisterList(Operands
);
5445 case AsmToken::Dollar
:
5446 case AsmToken::Hash
:
5447 // #42 -> immediate.
5448 S
= Parser
.getTok().getLoc();
5451 if (Parser
.getTok().isNot(AsmToken::Colon
)) {
5452 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
5453 const MCExpr
*ImmVal
;
5454 if (getParser().parseExpression(ImmVal
))
5456 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
5458 int32_t Val
= CE
->getValue();
5459 if (isNegative
&& Val
== 0)
5460 ImmVal
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
5463 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5464 Operands
.push_back(ARMOperand::CreateImm(ImmVal
, S
, E
));
5466 // There can be a trailing '!' on operands that we want as a separate
5467 // '!' Token operand. Handle that here. For example, the compatibility
5468 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5469 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5470 Operands
.push_back(ARMOperand::CreateToken(Parser
.getTok().getString(),
5471 Parser
.getTok().getLoc()));
5472 Parser
.Lex(); // Eat exclaim token
5476 // w/ a ':' after the '#', it's just like a plain ':'.
5479 case AsmToken::Colon
: {
5480 S
= Parser
.getTok().getLoc();
5481 // ":lower16:" and ":upper16:" expression prefixes
5482 // FIXME: Check it's an expression prefix,
5483 // e.g. (FOO - :lower16:BAR) isn't legal.
5484 ARMMCExpr::VariantKind RefKind
;
5485 if (parsePrefix(RefKind
))
5488 const MCExpr
*SubExprVal
;
5489 if (getParser().parseExpression(SubExprVal
))
5492 const MCExpr
*ExprVal
= ARMMCExpr::create(RefKind
, SubExprVal
,
5494 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5495 Operands
.push_back(ARMOperand::CreateImm(ExprVal
, S
, E
));
5498 case AsmToken::Equal
: {
5499 S
= Parser
.getTok().getLoc();
5500 if (Mnemonic
!= "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5501 return Error(S
, "unexpected token in operand");
5502 Parser
.Lex(); // Eat '='
5503 const MCExpr
*SubExprVal
;
5504 if (getParser().parseExpression(SubExprVal
))
5506 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
5508 // execute-only: we assume that assembly programmers know what they are
5509 // doing and allow literal pool creation here
5510 Operands
.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal
, S
, E
));
5516 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5517 // :lower16: and :upper16:.
5518 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind
&RefKind
) {
5519 MCAsmParser
&Parser
= getParser();
5520 RefKind
= ARMMCExpr::VK_ARM_None
;
5522 // consume an optional '#' (GNU compatibility)
5523 if (getLexer().is(AsmToken::Hash
))
5526 // :lower16: and :upper16: modifiers
5527 assert(getLexer().is(AsmToken::Colon
) && "expected a :");
5528 Parser
.Lex(); // Eat ':'
5530 if (getLexer().isNot(AsmToken::Identifier
)) {
5531 Error(Parser
.getTok().getLoc(), "expected prefix identifier in operand");
5536 COFF
= (1 << MCObjectFileInfo::IsCOFF
),
5537 ELF
= (1 << MCObjectFileInfo::IsELF
),
5538 MACHO
= (1 << MCObjectFileInfo::IsMachO
),
5539 WASM
= (1 << MCObjectFileInfo::IsWasm
),
5541 static const struct PrefixEntry
{
5542 const char *Spelling
;
5543 ARMMCExpr::VariantKind VariantKind
;
5544 uint8_t SupportedFormats
;
5545 } PrefixEntries
[] = {
5546 { "lower16", ARMMCExpr::VK_ARM_LO16
, COFF
| ELF
| MACHO
},
5547 { "upper16", ARMMCExpr::VK_ARM_HI16
, COFF
| ELF
| MACHO
},
5550 StringRef IDVal
= Parser
.getTok().getIdentifier();
5552 const auto &Prefix
=
5553 std::find_if(std::begin(PrefixEntries
), std::end(PrefixEntries
),
5554 [&IDVal
](const PrefixEntry
&PE
) {
5555 return PE
.Spelling
== IDVal
;
5557 if (Prefix
== std::end(PrefixEntries
)) {
5558 Error(Parser
.getTok().getLoc(), "unexpected prefix in operand");
5562 uint8_t CurrentFormat
;
5563 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5564 case MCObjectFileInfo::IsMachO
:
5565 CurrentFormat
= MACHO
;
5567 case MCObjectFileInfo::IsELF
:
5568 CurrentFormat
= ELF
;
5570 case MCObjectFileInfo::IsCOFF
:
5571 CurrentFormat
= COFF
;
5573 case MCObjectFileInfo::IsWasm
:
5574 CurrentFormat
= WASM
;
5578 if (~Prefix
->SupportedFormats
& CurrentFormat
) {
5579 Error(Parser
.getTok().getLoc(),
5580 "cannot represent relocation in the current file format");
5584 RefKind
= Prefix
->VariantKind
;
5587 if (getLexer().isNot(AsmToken::Colon
)) {
5588 Error(Parser
.getTok().getLoc(), "unexpected token after prefix");
5591 Parser
.Lex(); // Eat the last ':'
5596 /// Given a mnemonic, split out possible predication code and carry
5597 /// setting letters to form a canonical mnemonic and flags.
5599 // FIXME: Would be nice to autogen this.
5600 // FIXME: This is a bit of a maze of special cases.
5601 StringRef
ARMAsmParser::splitMnemonic(StringRef Mnemonic
,
5602 unsigned &PredicationCode
,
5604 unsigned &ProcessorIMod
,
5605 StringRef
&ITMask
) {
5606 PredicationCode
= ARMCC::AL
;
5607 CarrySetting
= false;
5610 // Ignore some mnemonics we know aren't predicated forms.
5612 // FIXME: Would be nice to autogen this.
5613 if ((Mnemonic
== "movs" && isThumb()) ||
5614 Mnemonic
== "teq" || Mnemonic
== "vceq" || Mnemonic
== "svc" ||
5615 Mnemonic
== "mls" || Mnemonic
== "smmls" || Mnemonic
== "vcls" ||
5616 Mnemonic
== "vmls" || Mnemonic
== "vnmls" || Mnemonic
== "vacge" ||
5617 Mnemonic
== "vcge" || Mnemonic
== "vclt" || Mnemonic
== "vacgt" ||
5618 Mnemonic
== "vaclt" || Mnemonic
== "vacle" || Mnemonic
== "hlt" ||
5619 Mnemonic
== "vcgt" || Mnemonic
== "vcle" || Mnemonic
== "smlal" ||
5620 Mnemonic
== "umaal" || Mnemonic
== "umlal" || Mnemonic
== "vabal" ||
5621 Mnemonic
== "vmlal" || Mnemonic
== "vpadal" || Mnemonic
== "vqdmlal" ||
5622 Mnemonic
== "fmuls" || Mnemonic
== "vmaxnm" || Mnemonic
== "vminnm" ||
5623 Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" || Mnemonic
== "vcvtp" ||
5624 Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" || Mnemonic
== "vrintn" ||
5625 Mnemonic
== "vrintp" || Mnemonic
== "vrintm" || Mnemonic
== "hvc" ||
5626 Mnemonic
.startswith("vsel") || Mnemonic
== "vins" || Mnemonic
== "vmovx" ||
5627 Mnemonic
== "bxns" || Mnemonic
== "blxns" ||
5628 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
5629 Mnemonic
== "vcmla" || Mnemonic
== "vcadd")
5632 // First, split out any predication code. Ignore mnemonics we know aren't
5633 // predicated but do have a carry-set and so weren't caught above.
5634 if (Mnemonic
!= "adcs" && Mnemonic
!= "bics" && Mnemonic
!= "movs" &&
5635 Mnemonic
!= "muls" && Mnemonic
!= "smlals" && Mnemonic
!= "smulls" &&
5636 Mnemonic
!= "umlals" && Mnemonic
!= "umulls" && Mnemonic
!= "lsls" &&
5637 Mnemonic
!= "sbcs" && Mnemonic
!= "rscs") {
5638 unsigned CC
= ARMCondCodeFromString(Mnemonic
.substr(Mnemonic
.size()-2));
5640 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 2);
5641 PredicationCode
= CC
;
5645 // Next, determine if we have a carry setting bit. We explicitly ignore all
5646 // the instructions we know end in 's'.
5647 if (Mnemonic
.endswith("s") &&
5648 !(Mnemonic
== "cps" || Mnemonic
== "mls" ||
5649 Mnemonic
== "mrs" || Mnemonic
== "smmls" || Mnemonic
== "vabs" ||
5650 Mnemonic
== "vcls" || Mnemonic
== "vmls" || Mnemonic
== "vmrs" ||
5651 Mnemonic
== "vnmls" || Mnemonic
== "vqabs" || Mnemonic
== "vrecps" ||
5652 Mnemonic
== "vrsqrts" || Mnemonic
== "srs" || Mnemonic
== "flds" ||
5653 Mnemonic
== "fmrs" || Mnemonic
== "fsqrts" || Mnemonic
== "fsubs" ||
5654 Mnemonic
== "fsts" || Mnemonic
== "fcpys" || Mnemonic
== "fdivs" ||
5655 Mnemonic
== "fmuls" || Mnemonic
== "fcmps" || Mnemonic
== "fcmpzs" ||
5656 Mnemonic
== "vfms" || Mnemonic
== "vfnms" || Mnemonic
== "fconsts" ||
5657 Mnemonic
== "bxns" || Mnemonic
== "blxns" ||
5658 (Mnemonic
== "movs" && isThumb()))) {
5659 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 1);
5660 CarrySetting
= true;
5663 // The "cps" instruction can have a interrupt mode operand which is glued into
5664 // the mnemonic. Check if this is the case, split it and parse the imod op
5665 if (Mnemonic
.startswith("cps")) {
5666 // Split out any imod code.
5668 StringSwitch
<unsigned>(Mnemonic
.substr(Mnemonic
.size()-2, 2))
5669 .Case("ie", ARM_PROC::IE
)
5670 .Case("id", ARM_PROC::ID
)
5673 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size()-2);
5674 ProcessorIMod
= IMod
;
5678 // The "it" instruction has the condition mask on the end of the mnemonic.
5679 if (Mnemonic
.startswith("it")) {
5680 ITMask
= Mnemonic
.slice(2, Mnemonic
.size());
5681 Mnemonic
= Mnemonic
.slice(0, 2);
5687 /// Given a canonical mnemonic, determine if the instruction ever allows
5688 /// inclusion of carry set or predication code operands.
5690 // FIXME: It would be nice to autogen this.
5691 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic
, StringRef FullInst
,
5692 bool &CanAcceptCarrySet
,
5693 bool &CanAcceptPredicationCode
) {
5695 Mnemonic
== "and" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
5696 Mnemonic
== "rrx" || Mnemonic
== "ror" || Mnemonic
== "sub" ||
5697 Mnemonic
== "add" || Mnemonic
== "adc" || Mnemonic
== "mul" ||
5698 Mnemonic
== "bic" || Mnemonic
== "asr" || Mnemonic
== "orr" ||
5699 Mnemonic
== "mvn" || Mnemonic
== "rsb" || Mnemonic
== "rsc" ||
5700 Mnemonic
== "orn" || Mnemonic
== "sbc" || Mnemonic
== "eor" ||
5701 Mnemonic
== "neg" || Mnemonic
== "vfm" || Mnemonic
== "vfnm" ||
5703 (Mnemonic
== "smull" || Mnemonic
== "mov" || Mnemonic
== "mla" ||
5704 Mnemonic
== "smlal" || Mnemonic
== "umlal" || Mnemonic
== "umull"));
5706 if (Mnemonic
== "bkpt" || Mnemonic
== "cbnz" || Mnemonic
== "setend" ||
5707 Mnemonic
== "cps" || Mnemonic
== "it" || Mnemonic
== "cbz" ||
5708 Mnemonic
== "trap" || Mnemonic
== "hlt" || Mnemonic
== "udf" ||
5709 Mnemonic
.startswith("crc32") || Mnemonic
.startswith("cps") ||
5710 Mnemonic
.startswith("vsel") || Mnemonic
== "vmaxnm" ||
5711 Mnemonic
== "vminnm" || Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" ||
5712 Mnemonic
== "vcvtp" || Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" ||
5713 Mnemonic
== "vrintn" || Mnemonic
== "vrintp" || Mnemonic
== "vrintm" ||
5714 Mnemonic
.startswith("aes") || Mnemonic
== "hvc" || Mnemonic
== "setpan" ||
5715 Mnemonic
.startswith("sha1") || Mnemonic
.startswith("sha256") ||
5716 (FullInst
.startswith("vmull") && FullInst
.endswith(".p64")) ||
5717 Mnemonic
== "vmovx" || Mnemonic
== "vins" ||
5718 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
5719 Mnemonic
== "vcmla" || Mnemonic
== "vcadd") {
5720 // These mnemonics are never predicable
5721 CanAcceptPredicationCode
= false;
5722 } else if (!isThumb()) {
5723 // Some instructions are only predicable in Thumb mode
5724 CanAcceptPredicationCode
=
5725 Mnemonic
!= "cdp2" && Mnemonic
!= "clrex" && Mnemonic
!= "mcr2" &&
5726 Mnemonic
!= "mcrr2" && Mnemonic
!= "mrc2" && Mnemonic
!= "mrrc2" &&
5727 Mnemonic
!= "dmb" && Mnemonic
!= "dfb" && Mnemonic
!= "dsb" &&
5728 Mnemonic
!= "isb" && Mnemonic
!= "pld" && Mnemonic
!= "pli" &&
5729 Mnemonic
!= "pldw" && Mnemonic
!= "ldc2" && Mnemonic
!= "ldc2l" &&
5730 Mnemonic
!= "stc2" && Mnemonic
!= "stc2l" &&
5731 Mnemonic
!= "tsb" &&
5732 !Mnemonic
.startswith("rfe") && !Mnemonic
.startswith("srs");
5733 } else if (isThumbOne()) {
5735 CanAcceptPredicationCode
= Mnemonic
!= "movs";
5737 CanAcceptPredicationCode
= Mnemonic
!= "nop" && Mnemonic
!= "movs";
5739 CanAcceptPredicationCode
= true;
5742 // Some Thumb instructions have two operand forms that are not
5743 // available as three operand, convert to two operand form if possible.
5745 // FIXME: We would really like to be able to tablegen'erate this.
5746 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic
,
5748 OperandVector
&Operands
) {
5749 if (Operands
.size() != 6)
5752 const auto &Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
5753 auto &Op4
= static_cast<ARMOperand
&>(*Operands
[4]);
5754 if (!Op3
.isReg() || !Op4
.isReg())
5757 auto Op3Reg
= Op3
.getReg();
5758 auto Op4Reg
= Op4
.getReg();
5760 // For most Thumb2 cases we just generate the 3 operand form and reduce
5761 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5762 // won't accept SP or PC so we do the transformation here taking care
5763 // with immediate range in the 'add sp, sp #imm' case.
5764 auto &Op5
= static_cast<ARMOperand
&>(*Operands
[5]);
5766 if (Mnemonic
!= "add")
5768 bool TryTransform
= Op3Reg
== ARM::PC
|| Op4Reg
== ARM::PC
||
5769 (Op5
.isReg() && Op5
.getReg() == ARM::PC
);
5770 if (!TryTransform
) {
5771 TryTransform
= (Op3Reg
== ARM::SP
|| Op4Reg
== ARM::SP
||
5772 (Op5
.isReg() && Op5
.getReg() == ARM::SP
)) &&
5773 !(Op3Reg
== ARM::SP
&& Op4Reg
== ARM::SP
&&
5774 Op5
.isImm() && !Op5
.isImm0_508s4());
5778 } else if (!isThumbOne())
5781 if (!(Mnemonic
== "add" || Mnemonic
== "sub" || Mnemonic
== "and" ||
5782 Mnemonic
== "eor" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
5783 Mnemonic
== "asr" || Mnemonic
== "adc" || Mnemonic
== "sbc" ||
5784 Mnemonic
== "ror" || Mnemonic
== "orr" || Mnemonic
== "bic"))
5787 // If first 2 operands of a 3 operand instruction are the same
5788 // then transform to 2 operand version of the same instruction
5789 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5790 bool Transform
= Op3Reg
== Op4Reg
;
5792 // For communtative operations, we might be able to transform if we swap
5793 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5795 const ARMOperand
*LastOp
= &Op5
;
5797 if (!Transform
&& Op5
.isReg() && Op3Reg
== Op5
.getReg() &&
5798 ((Mnemonic
== "add" && Op4Reg
!= ARM::SP
) ||
5799 Mnemonic
== "and" || Mnemonic
== "eor" ||
5800 Mnemonic
== "adc" || Mnemonic
== "orr")) {
5806 // If both registers are the same then remove one of them from
5807 // the operand list, with certain exceptions.
5809 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5810 // 2 operand forms don't exist.
5811 if (((Mnemonic
== "add" && CarrySetting
) || Mnemonic
== "sub") &&
5815 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5816 // 3-bits because the ARMARM says not to.
5817 if ((Mnemonic
== "add" || Mnemonic
== "sub") && LastOp
->isImm0_7())
5823 std::swap(Op4
, Op5
);
5824 Operands
.erase(Operands
.begin() + 3);
5828 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic
,
5829 OperandVector
&Operands
) {
5830 // FIXME: This is all horribly hacky. We really need a better way to deal
5831 // with optional operands like this in the matcher table.
5833 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5834 // another does not. Specifically, the MOVW instruction does not. So we
5835 // special case it here and remove the defaulted (non-setting) cc_out
5836 // operand if that's the instruction we're trying to match.
5838 // We do this as post-processing of the explicit operands rather than just
5839 // conditionally adding the cc_out in the first place because we need
5840 // to check the type of the parsed immediate operand.
5841 if (Mnemonic
== "mov" && Operands
.size() > 4 && !isThumb() &&
5842 !static_cast<ARMOperand
&>(*Operands
[4]).isModImm() &&
5843 static_cast<ARMOperand
&>(*Operands
[4]).isImm0_65535Expr() &&
5844 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
5847 // Register-register 'add' for thumb does not have a cc_out operand
5848 // when there are only two register operands.
5849 if (isThumb() && Mnemonic
== "add" && Operands
.size() == 5 &&
5850 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5851 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5852 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
5854 // Register-register 'add' for thumb does not have a cc_out operand
5855 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5856 // have to check the immediate range here since Thumb2 has a variant
5857 // that can handle a different range and has a cc_out operand.
5858 if (((isThumb() && Mnemonic
== "add") ||
5859 (isThumbTwo() && Mnemonic
== "sub")) &&
5860 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5861 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5862 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::SP
&&
5863 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5864 ((Mnemonic
== "add" && static_cast<ARMOperand
&>(*Operands
[5]).isReg()) ||
5865 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_1020s4()))
5867 // For Thumb2, add/sub immediate does not have a cc_out operand for the
5868 // imm0_4095 variant. That's the least-preferred variant when
5869 // selecting via the generic "add" mnemonic, so to know that we
5870 // should remove the cc_out operand, we have to explicitly check that
5871 // it's not one of the other variants. Ugh.
5872 if (isThumbTwo() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
5873 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5874 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5875 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
5876 // Nest conditions rather than one big 'if' statement for readability.
5878 // If both registers are low, we're in an IT block, and the immediate is
5879 // in range, we should use encoding T1 instead, which has a cc_out.
5881 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) &&
5882 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) &&
5883 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_7())
5885 // Check against T3. If the second register is the PC, this is an
5886 // alternate form of ADR, which uses encoding T4, so check for that too.
5887 if (static_cast<ARMOperand
&>(*Operands
[4]).getReg() != ARM::PC
&&
5888 static_cast<ARMOperand
&>(*Operands
[5]).isT2SOImm())
5891 // Otherwise, we use encoding T4, which does not have a cc_out
5896 // The thumb2 multiply instruction doesn't have a CCOut register, so
5897 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5898 // use the 16-bit encoding or not.
5899 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 6 &&
5900 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5901 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5902 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5903 static_cast<ARMOperand
&>(*Operands
[5]).isReg() &&
5904 // If the registers aren't low regs, the destination reg isn't the
5905 // same as one of the source regs, or the cc_out operand is zero
5906 // outside of an IT block, we have to use the 32-bit encoding, so
5907 // remove the cc_out operand.
5908 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
5909 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
5910 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[5]).getReg()) ||
5911 !inITBlock() || (static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
5912 static_cast<ARMOperand
&>(*Operands
[5]).getReg() &&
5913 static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
5914 static_cast<ARMOperand
&>(*Operands
[4]).getReg())))
5917 // Also check the 'mul' syntax variant that doesn't specify an explicit
5918 // destination register.
5919 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 5 &&
5920 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5921 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5922 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
5923 // If the registers aren't low regs or the cc_out operand is zero
5924 // outside of an IT block, we have to use the 32-bit encoding, so
5925 // remove the cc_out operand.
5926 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
5927 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
5931 // Register-register 'add/sub' for thumb does not have a cc_out operand
5932 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5933 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5934 // right, this will result in better diagnostics (which operand is off)
5936 if (isThumb() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
5937 (Operands
.size() == 5 || Operands
.size() == 6) &&
5938 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
5939 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::SP
&&
5940 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
5941 (static_cast<ARMOperand
&>(*Operands
[4]).isImm() ||
5942 (Operands
.size() == 6 &&
5943 static_cast<ARMOperand
&>(*Operands
[5]).isImm())))
5949 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic
,
5950 OperandVector
&Operands
) {
5951 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5952 unsigned RegIdx
= 3;
5953 if ((Mnemonic
== "vrintz" || Mnemonic
== "vrintx") &&
5954 (static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f32" ||
5955 static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f16")) {
5956 if (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
5957 (static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f32" ||
5958 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f16"))
5961 if (static_cast<ARMOperand
&>(*Operands
[RegIdx
]).isReg() &&
5962 (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
5963 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg()) ||
5964 ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(
5965 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg())))
5971 static bool isDataTypeToken(StringRef Tok
) {
5972 return Tok
== ".8" || Tok
== ".16" || Tok
== ".32" || Tok
== ".64" ||
5973 Tok
== ".i8" || Tok
== ".i16" || Tok
== ".i32" || Tok
== ".i64" ||
5974 Tok
== ".u8" || Tok
== ".u16" || Tok
== ".u32" || Tok
== ".u64" ||
5975 Tok
== ".s8" || Tok
== ".s16" || Tok
== ".s32" || Tok
== ".s64" ||
5976 Tok
== ".p8" || Tok
== ".p16" || Tok
== ".f32" || Tok
== ".f64" ||
5977 Tok
== ".f" || Tok
== ".d";
5980 // FIXME: This bit should probably be handled via an explicit match class
5981 // in the .td files that matches the suffix instead of having it be
5982 // a literal string token the way it is now.
5983 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic
, StringRef DT
) {
5984 return Mnemonic
.startswith("vldm") || Mnemonic
.startswith("vstm");
5987 static void applyMnemonicAliases(StringRef
&Mnemonic
, uint64_t Features
,
5988 unsigned VariantID
);
5990 // The GNU assembler has aliases of ldrd and strd with the second register
5991 // omitted. We don't have a way to do that in tablegen, so fix it up here.
5993 // We have to be careful to not emit an invalid Rt2 here, because the rest of
5994 // the assmebly parser could then generate confusing diagnostics refering to
5995 // it. If we do find anything that prevents us from doing the transformation we
5996 // bail out, and let the assembly parser report an error on the instruction as
5998 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic
,
5999 OperandVector
&Operands
) {
6000 if (Mnemonic
!= "ldrd" && Mnemonic
!= "strd")
6002 if (Operands
.size() < 4)
6005 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[2]);
6006 ARMOperand
&Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
6013 const MCRegisterClass
&GPR
= MRI
->getRegClass(ARM::GPRRegClassID
);
6014 if (!GPR
.contains(Op2
.getReg()))
6017 unsigned RtEncoding
= MRI
->getEncodingValue(Op2
.getReg());
6018 if (!isThumb() && (RtEncoding
& 1)) {
6019 // In ARM mode, the registers must be from an aligned pair, this
6020 // restriction does not apply in Thumb mode.
6023 if (Op2
.getReg() == ARM::PC
)
6025 unsigned PairedReg
= GPR
.getRegister(RtEncoding
+ 1);
6026 if (!PairedReg
|| PairedReg
== ARM::PC
||
6027 (PairedReg
== ARM::SP
&& !hasV8Ops()))
6031 Operands
.begin() + 3,
6032 ARMOperand::CreateReg(PairedReg
, Op2
.getStartLoc(), Op2
.getEndLoc()));
6035 /// Parse an arm instruction mnemonic followed by its operands.
6036 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
6037 SMLoc NameLoc
, OperandVector
&Operands
) {
6038 MCAsmParser
&Parser
= getParser();
6040 // Apply mnemonic aliases before doing anything else, as the destination
6041 // mnemonic may include suffices and we want to handle them normally.
6042 // The generic tblgen'erated code does this later, at the start of
6043 // MatchInstructionImpl(), but that's too late for aliases that include
6044 // any sort of suffix.
6045 uint64_t AvailableFeatures
= getAvailableFeatures();
6046 unsigned AssemblerDialect
= getParser().getAssemblerDialect();
6047 applyMnemonicAliases(Name
, AvailableFeatures
, AssemblerDialect
);
6049 // First check for the ARM-specific .req directive.
6050 if (Parser
.getTok().is(AsmToken::Identifier
) &&
6051 Parser
.getTok().getIdentifier() == ".req") {
6052 parseDirectiveReq(Name
, NameLoc
);
6053 // We always return 'error' for this, as we're done with this
6054 // statement and don't need to match the 'instruction."
6058 // Create the leading tokens for the mnemonic, split by '.' characters.
6059 size_t Start
= 0, Next
= Name
.find('.');
6060 StringRef Mnemonic
= Name
.slice(Start
, Next
);
6062 // Split out the predication code and carry setting flag from the mnemonic.
6063 unsigned PredicationCode
;
6064 unsigned ProcessorIMod
;
6067 Mnemonic
= splitMnemonic(Mnemonic
, PredicationCode
, CarrySetting
,
6068 ProcessorIMod
, ITMask
);
6070 // In Thumb1, only the branch (B) instruction can be predicated.
6071 if (isThumbOne() && PredicationCode
!= ARMCC::AL
&& Mnemonic
!= "b") {
6072 return Error(NameLoc
, "conditional execution not supported in Thumb1");
6075 Operands
.push_back(ARMOperand::CreateToken(Mnemonic
, NameLoc
));
6077 // Handle the IT instruction ITMask. Convert it to a bitmask. This
6078 // is the mask as it will be for the IT encoding if the conditional
6079 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6080 // where the conditional bit0 is zero, the instruction post-processing
6081 // will adjust the mask accordingly.
6082 if (Mnemonic
== "it") {
6083 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + 2);
6084 if (ITMask
.size() > 3) {
6085 return Error(Loc
, "too many conditions on IT instruction");
6088 for (unsigned i
= ITMask
.size(); i
!= 0; --i
) {
6089 char pos
= ITMask
[i
- 1];
6090 if (pos
!= 't' && pos
!= 'e') {
6091 return Error(Loc
, "illegal IT block condition mask '" + ITMask
+ "'");
6094 if (ITMask
[i
- 1] == 't')
6097 Operands
.push_back(ARMOperand::CreateITMask(Mask
, Loc
));
6100 // FIXME: This is all a pretty gross hack. We should automatically handle
6101 // optional operands like this via tblgen.
6103 // Next, add the CCOut and ConditionCode operands, if needed.
6105 // For mnemonics which can ever incorporate a carry setting bit or predication
6106 // code, our matching model involves us always generating CCOut and
6107 // ConditionCode operands to match the mnemonic "as written" and then we let
6108 // the matcher deal with finding the right instruction or generating an
6109 // appropriate error.
6110 bool CanAcceptCarrySet
, CanAcceptPredicationCode
;
6111 getMnemonicAcceptInfo(Mnemonic
, Name
, CanAcceptCarrySet
, CanAcceptPredicationCode
);
6113 // If we had a carry-set on an instruction that can't do that, issue an
6115 if (!CanAcceptCarrySet
&& CarrySetting
) {
6116 return Error(NameLoc
, "instruction '" + Mnemonic
+
6117 "' can not set flags, but 's' suffix specified");
6119 // If we had a predication code on an instruction that can't do that, issue an
6121 if (!CanAcceptPredicationCode
&& PredicationCode
!= ARMCC::AL
) {
6122 return Error(NameLoc
, "instruction '" + Mnemonic
+
6123 "' is not predicable, but condition code specified");
6126 // Add the carry setting operand, if necessary.
6127 if (CanAcceptCarrySet
) {
6128 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size());
6129 Operands
.push_back(ARMOperand::CreateCCOut(CarrySetting
? ARM::CPSR
: 0,
6133 // Add the predication code operand, if necessary.
6134 if (CanAcceptPredicationCode
) {
6135 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size() +
6137 Operands
.push_back(ARMOperand::CreateCondCode(
6138 ARMCC::CondCodes(PredicationCode
), Loc
));
6141 // Add the processor imod operand, if necessary.
6142 if (ProcessorIMod
) {
6143 Operands
.push_back(ARMOperand::CreateImm(
6144 MCConstantExpr::create(ProcessorIMod
, getContext()),
6146 } else if (Mnemonic
== "cps" && isMClass()) {
6147 return Error(NameLoc
, "instruction 'cps' requires effect for M-class");
6150 // Add the remaining tokens in the mnemonic.
6151 while (Next
!= StringRef::npos
) {
6153 Next
= Name
.find('.', Start
+ 1);
6154 StringRef ExtraToken
= Name
.slice(Start
, Next
);
6156 // Some NEON instructions have an optional datatype suffix that is
6157 // completely ignored. Check for that.
6158 if (isDataTypeToken(ExtraToken
) &&
6159 doesIgnoreDataTypeSuffix(Mnemonic
, ExtraToken
))
6162 // For for ARM mode generate an error if the .n qualifier is used.
6163 if (ExtraToken
== ".n" && !isThumb()) {
6164 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
6165 return Error(Loc
, "instruction with .n (narrow) qualifier not allowed in "
6169 // The .n qualifier is always discarded as that is what the tables
6170 // and matcher expect. In ARM mode the .w qualifier has no effect,
6171 // so discard it to avoid errors that can be caused by the matcher.
6172 if (ExtraToken
!= ".n" && (isThumb() || ExtraToken
!= ".w")) {
6173 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
6174 Operands
.push_back(ARMOperand::CreateToken(ExtraToken
, Loc
));
6178 // Read the remaining operands.
6179 if (getLexer().isNot(AsmToken::EndOfStatement
)) {
6180 // Read the first operand.
6181 if (parseOperand(Operands
, Mnemonic
)) {
6185 while (parseOptionalToken(AsmToken::Comma
)) {
6186 // Parse and remember the operand.
6187 if (parseOperand(Operands
, Mnemonic
)) {
6193 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in argument list"))
6196 tryConvertingToTwoOperandForm(Mnemonic
, CarrySetting
, Operands
);
6198 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6199 // do and don't have a cc_out optional-def operand. With some spot-checks
6200 // of the operand list, we can figure out which variant we're trying to
6201 // parse and adjust accordingly before actually matching. We shouldn't ever
6202 // try to remove a cc_out operand that was explicitly set on the
6203 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6204 // table driven matcher doesn't fit well with the ARM instruction set.
6205 if (!CarrySetting
&& shouldOmitCCOutOperand(Mnemonic
, Operands
))
6206 Operands
.erase(Operands
.begin() + 1);
6208 // Some instructions have the same mnemonic, but don't always
6209 // have a predicate. Distinguish them here and delete the
6210 // predicate if needed.
6211 if (PredicationCode
== ARMCC::AL
&&
6212 shouldOmitPredicateOperand(Mnemonic
, Operands
))
6213 Operands
.erase(Operands
.begin() + 1);
6215 // ARM mode 'blx' need special handling, as the register operand version
6216 // is predicable, but the label operand version is not. So, we can't rely
6217 // on the Mnemonic based checking to correctly figure out when to put
6218 // a k_CondCode operand in the list. If we're trying to match the label
6219 // version, remove the k_CondCode operand here.
6220 if (!isThumb() && Mnemonic
== "blx" && Operands
.size() == 3 &&
6221 static_cast<ARMOperand
&>(*Operands
[2]).isImm())
6222 Operands
.erase(Operands
.begin() + 1);
6224 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6225 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6226 // a single GPRPair reg operand is used in the .td file to replace the two
6227 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6228 // expressed as a GPRPair, so we have to manually merge them.
6229 // FIXME: We would really like to be able to tablegen'erate this.
6230 if (!isThumb() && Operands
.size() > 4 &&
6231 (Mnemonic
== "ldrexd" || Mnemonic
== "strexd" || Mnemonic
== "ldaexd" ||
6232 Mnemonic
== "stlexd")) {
6233 bool isLoad
= (Mnemonic
== "ldrexd" || Mnemonic
== "ldaexd");
6234 unsigned Idx
= isLoad
? 2 : 3;
6235 ARMOperand
&Op1
= static_cast<ARMOperand
&>(*Operands
[Idx
]);
6236 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[Idx
+ 1]);
6238 const MCRegisterClass
& MRC
= MRI
->getRegClass(ARM::GPRRegClassID
);
6239 // Adjust only if Op1 and Op2 are GPRs.
6240 if (Op1
.isReg() && Op2
.isReg() && MRC
.contains(Op1
.getReg()) &&
6241 MRC
.contains(Op2
.getReg())) {
6242 unsigned Reg1
= Op1
.getReg();
6243 unsigned Reg2
= Op2
.getReg();
6244 unsigned Rt
= MRI
->getEncodingValue(Reg1
);
6245 unsigned Rt2
= MRI
->getEncodingValue(Reg2
);
6247 // Rt2 must be Rt + 1 and Rt must be even.
6248 if (Rt
+ 1 != Rt2
|| (Rt
& 1)) {
6249 return Error(Op2
.getStartLoc(),
6250 isLoad
? "destination operands must be sequential"
6251 : "source operands must be sequential");
6253 unsigned NewReg
= MRI
->getMatchingSuperReg(Reg1
, ARM::gsub_0
,
6254 &(MRI
->getRegClass(ARM::GPRPairRegClassID
)));
6256 ARMOperand::CreateReg(NewReg
, Op1
.getStartLoc(), Op2
.getEndLoc());
6257 Operands
.erase(Operands
.begin() + Idx
+ 1);
6261 // GNU Assembler extension (compatibility).
6262 fixupGNULDRDAlias(Mnemonic
, Operands
);
6264 // FIXME: As said above, this is all a pretty gross hack. This instruction
6265 // does not fit with other "subs" and tblgen.
6266 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6267 // so the Mnemonic is the original name "subs" and delete the predicate
6268 // operand so it will match the table entry.
6269 if (isThumbTwo() && Mnemonic
== "sub" && Operands
.size() == 6 &&
6270 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6271 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::PC
&&
6272 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6273 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::LR
&&
6274 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
6275 Operands
.front() = ARMOperand::CreateToken(Name
, NameLoc
);
6276 Operands
.erase(Operands
.begin() + 1);
6281 // Validate context-sensitive operand constraints.
6283 // return 'true' if register list contains non-low GPR registers,
6284 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6285 // 'containsReg' to true.
6286 static bool checkLowRegisterList(const MCInst
&Inst
, unsigned OpNo
,
6287 unsigned Reg
, unsigned HiReg
,
6288 bool &containsReg
) {
6289 containsReg
= false;
6290 for (unsigned i
= OpNo
; i
< Inst
.getNumOperands(); ++i
) {
6291 unsigned OpReg
= Inst
.getOperand(i
).getReg();
6294 // Anything other than a low register isn't legal here.
6295 if (!isARMLowRegister(OpReg
) && (!HiReg
|| OpReg
!= HiReg
))
6301 // Check if the specified regisgter is in the register list of the inst,
6302 // starting at the indicated operand number.
6303 static bool listContainsReg(const MCInst
&Inst
, unsigned OpNo
, unsigned Reg
) {
6304 for (unsigned i
= OpNo
, e
= Inst
.getNumOperands(); i
< e
; ++i
) {
6305 unsigned OpReg
= Inst
.getOperand(i
).getReg();
6312 // Return true if instruction has the interesting property of being
6313 // allowed in IT blocks, but not being predicable.
6314 static bool instIsBreakpoint(const MCInst
&Inst
) {
6315 return Inst
.getOpcode() == ARM::tBKPT
||
6316 Inst
.getOpcode() == ARM::BKPT
||
6317 Inst
.getOpcode() == ARM::tHLT
||
6318 Inst
.getOpcode() == ARM::HLT
;
6321 bool ARMAsmParser::validatetLDMRegList(const MCInst
&Inst
,
6322 const OperandVector
&Operands
,
6323 unsigned ListNo
, bool IsARPop
) {
6324 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
6325 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
6327 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
6328 bool ListContainsLR
= listContainsReg(Inst
, ListNo
, ARM::LR
);
6329 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
6331 if (!IsARPop
&& ListContainsSP
)
6332 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6333 "SP may not be in the register list");
6334 else if (ListContainsPC
&& ListContainsLR
)
6335 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6336 "PC and LR may not be in the register list simultaneously");
6340 bool ARMAsmParser::validatetSTMRegList(const MCInst
&Inst
,
6341 const OperandVector
&Operands
,
6343 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
6344 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
6346 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
6347 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
6349 if (ListContainsSP
&& ListContainsPC
)
6350 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6351 "SP and PC may not be in the register list");
6352 else if (ListContainsSP
)
6353 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6354 "SP may not be in the register list");
6355 else if (ListContainsPC
)
6356 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
6357 "PC may not be in the register list");
6361 bool ARMAsmParser::validateLDRDSTRD(MCInst
&Inst
,
6362 const OperandVector
&Operands
,
6363 bool Load
, bool ARMMode
, bool Writeback
) {
6364 unsigned RtIndex
= Load
|| !Writeback
? 0 : 1;
6365 unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
).getReg());
6366 unsigned Rt2
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
+ 1).getReg());
6371 return Error(Operands
[3]->getStartLoc(),
6374 // Rt must be even-numbered.
6376 return Error(Operands
[3]->getStartLoc(),
6377 "Rt must be even-numbered");
6379 // Rt2 must be Rt + 1.
6380 if (Rt2
!= Rt
+ 1) {
6382 return Error(Operands
[3]->getStartLoc(),
6383 "destination operands must be sequential");
6385 return Error(Operands
[3]->getStartLoc(),
6386 "source operands must be sequential");
6389 // FIXME: Diagnose m == 15
6390 // FIXME: Diagnose ldrd with m == t || m == t2.
6393 if (!ARMMode
&& Load
) {
6395 return Error(Operands
[3]->getStartLoc(),
6396 "destination operands can't be identical");
6400 unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
6402 if (Rn
== Rt
|| Rn
== Rt2
) {
6404 return Error(Operands
[3]->getStartLoc(),
6405 "base register needs to be different from destination "
6408 return Error(Operands
[3]->getStartLoc(),
6409 "source register and base register can't be identical");
6412 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6413 // (Except the immediate form of ldrd?)
6420 // FIXME: We would really like to be able to tablegen'erate this.
6421 bool ARMAsmParser::validateInstruction(MCInst
&Inst
,
6422 const OperandVector
&Operands
) {
6423 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
6424 SMLoc Loc
= Operands
[0]->getStartLoc();
6426 // Check the IT block state first.
6427 // NOTE: BKPT and HLT instructions have the interesting property of being
6428 // allowed in IT blocks, but not being predicable. They just always execute.
6429 if (inITBlock() && !instIsBreakpoint(Inst
)) {
6430 // The instruction must be predicable.
6431 if (!MCID
.isPredicable())
6432 return Error(Loc
, "instructions in IT block must be predicable");
6433 ARMCC::CondCodes Cond
= ARMCC::CondCodes(
6434 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm());
6435 if (Cond
!= currentITCond()) {
6436 // Find the condition code Operand to get its SMLoc information.
6438 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
6439 if (static_cast<ARMOperand
&>(*Operands
[I
]).isCondCode())
6440 CondLoc
= Operands
[I
]->getStartLoc();
6441 return Error(CondLoc
, "incorrect condition in IT block; got '" +
6442 StringRef(ARMCondCodeToString(Cond
)) +
6443 "', but expected '" +
6444 ARMCondCodeToString(currentITCond()) + "'");
6446 // Check for non-'al' condition codes outside of the IT block.
6447 } else if (isThumbTwo() && MCID
.isPredicable() &&
6448 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
6449 ARMCC::AL
&& Inst
.getOpcode() != ARM::tBcc
&&
6450 Inst
.getOpcode() != ARM::t2Bcc
) {
6451 return Error(Loc
, "predicated instructions must be in IT block");
6452 } else if (!isThumb() && !useImplicitITARM() && MCID
.isPredicable() &&
6453 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
6455 return Warning(Loc
, "predicated instructions should be in IT block");
6458 // PC-setting instructions in an IT block, but not the last instruction of
6459 // the block, are UNPREDICTABLE.
6460 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst
)) {
6461 return Error(Loc
, "instruction must be outside of IT block or the last instruction in an IT block");
6464 const unsigned Opcode
= Inst
.getOpcode();
6467 // Encoding is unpredictable if it ever results in a notional 'NV'
6468 // predicate. Since we don't parse 'NV' directly this means an 'AL'
6469 // predicate with an "else" mask bit.
6470 unsigned Cond
= Inst
.getOperand(0).getImm();
6471 unsigned Mask
= Inst
.getOperand(1).getImm();
6473 // Mask hasn't been modified to the IT instruction encoding yet so
6474 // conditions only allowing a 't' are a block of 1s starting at bit 3
6475 // followed by all 0s. Easiest way is to just list the 4 possibilities.
6476 if (Cond
== ARMCC::AL
&& Mask
!= 8 && Mask
!= 12 && Mask
!= 14 &&
6478 return Error(Loc
, "unpredictable IT predicate sequence");
6482 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
6483 /*Writeback*/false))
6487 case ARM::LDRD_POST
:
6488 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
6493 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
6494 /*Writeback*/false))
6497 case ARM::t2LDRD_PRE
:
6498 case ARM::t2LDRD_POST
:
6499 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
6504 const unsigned RmReg
= Inst
.getOperand(0).getReg();
6505 // Rm = SP is no longer unpredictable in v8-A
6506 if (RmReg
== ARM::SP
&& !hasV8Ops())
6507 return Error(Operands
[2]->getStartLoc(),
6508 "r13 (SP) is an unpredictable operand to BXJ");
6512 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
6513 /*Writeback*/false))
6517 case ARM::STRD_POST
:
6518 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
6522 case ARM::t2STRD_PRE
:
6523 case ARM::t2STRD_POST
:
6524 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/false,
6528 case ARM::STR_PRE_IMM
:
6529 case ARM::STR_PRE_REG
:
6530 case ARM::t2STR_PRE
:
6531 case ARM::STR_POST_IMM
:
6532 case ARM::STR_POST_REG
:
6533 case ARM::t2STR_POST
:
6535 case ARM::t2STRH_PRE
:
6536 case ARM::STRH_POST
:
6537 case ARM::t2STRH_POST
:
6538 case ARM::STRB_PRE_IMM
:
6539 case ARM::STRB_PRE_REG
:
6540 case ARM::t2STRB_PRE
:
6541 case ARM::STRB_POST_IMM
:
6542 case ARM::STRB_POST_REG
:
6543 case ARM::t2STRB_POST
: {
6544 // Rt must be different from Rn.
6545 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
6546 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
6549 return Error(Operands
[3]->getStartLoc(),
6550 "source register and base register can't be identical");
6553 case ARM::LDR_PRE_IMM
:
6554 case ARM::LDR_PRE_REG
:
6555 case ARM::t2LDR_PRE
:
6556 case ARM::LDR_POST_IMM
:
6557 case ARM::LDR_POST_REG
:
6558 case ARM::t2LDR_POST
:
6560 case ARM::t2LDRH_PRE
:
6561 case ARM::LDRH_POST
:
6562 case ARM::t2LDRH_POST
:
6563 case ARM::LDRSH_PRE
:
6564 case ARM::t2LDRSH_PRE
:
6565 case ARM::LDRSH_POST
:
6566 case ARM::t2LDRSH_POST
:
6567 case ARM::LDRB_PRE_IMM
:
6568 case ARM::LDRB_PRE_REG
:
6569 case ARM::t2LDRB_PRE
:
6570 case ARM::LDRB_POST_IMM
:
6571 case ARM::LDRB_POST_REG
:
6572 case ARM::t2LDRB_POST
:
6573 case ARM::LDRSB_PRE
:
6574 case ARM::t2LDRSB_PRE
:
6575 case ARM::LDRSB_POST
:
6576 case ARM::t2LDRSB_POST
: {
6577 // Rt must be different from Rn.
6578 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
6579 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
6582 return Error(Operands
[3]->getStartLoc(),
6583 "destination register and base register can't be identical");
6590 // Width must be in range [1, 32-lsb].
6591 unsigned LSB
= Inst
.getOperand(2).getImm();
6592 unsigned Widthm1
= Inst
.getOperand(3).getImm();
6593 if (Widthm1
>= 32 - LSB
)
6594 return Error(Operands
[5]->getStartLoc(),
6595 "bitfield width must be in range [1,32-lsb]");
6598 // Notionally handles ARM::tLDMIA_UPD too.
6600 // If we're parsing Thumb2, the .w variant is available and handles
6601 // most cases that are normally illegal for a Thumb1 LDM instruction.
6602 // We'll make the transformation in processInstruction() if necessary.
6604 // Thumb LDM instructions are writeback iff the base register is not
6605 // in the register list.
6606 unsigned Rn
= Inst
.getOperand(0).getReg();
6607 bool HasWritebackToken
=
6608 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
6609 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
6610 bool ListContainsBase
;
6611 if (checkLowRegisterList(Inst
, 3, Rn
, 0, ListContainsBase
) && !isThumbTwo())
6612 return Error(Operands
[3 + HasWritebackToken
]->getStartLoc(),
6613 "registers must be in range r0-r7");
6614 // If we should have writeback, then there should be a '!' token.
6615 if (!ListContainsBase
&& !HasWritebackToken
&& !isThumbTwo())
6616 return Error(Operands
[2]->getStartLoc(),
6617 "writeback operator '!' expected");
6618 // If we should not have writeback, there must not be a '!'. This is
6619 // true even for the 32-bit wide encodings.
6620 if (ListContainsBase
&& HasWritebackToken
)
6621 return Error(Operands
[3]->getStartLoc(),
6622 "writeback operator '!' not allowed when base register "
6623 "in register list");
6625 if (validatetLDMRegList(Inst
, Operands
, 3))
6629 case ARM::LDMIA_UPD
:
6630 case ARM::LDMDB_UPD
:
6631 case ARM::LDMIB_UPD
:
6632 case ARM::LDMDA_UPD
:
6633 // ARM variants loading and updating the same register are only officially
6634 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6637 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
6638 return Error(Operands
.back()->getStartLoc(),
6639 "writeback register not allowed in register list");
6643 if (validatetLDMRegList(Inst
, Operands
, 3))
6648 if (validatetSTMRegList(Inst
, Operands
, 3))
6651 case ARM::t2LDMIA_UPD
:
6652 case ARM::t2LDMDB_UPD
:
6653 case ARM::t2STMIA_UPD
:
6654 case ARM::t2STMDB_UPD
:
6655 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
6656 return Error(Operands
.back()->getStartLoc(),
6657 "writeback register not allowed in register list");
6659 if (Opcode
== ARM::t2LDMIA_UPD
|| Opcode
== ARM::t2LDMDB_UPD
) {
6660 if (validatetLDMRegList(Inst
, Operands
, 3))
6663 if (validatetSTMRegList(Inst
, Operands
, 3))
6668 case ARM::sysLDMIA_UPD
:
6669 case ARM::sysLDMDA_UPD
:
6670 case ARM::sysLDMDB_UPD
:
6671 case ARM::sysLDMIB_UPD
:
6672 if (!listContainsReg(Inst
, 3, ARM::PC
))
6673 return Error(Operands
[4]->getStartLoc(),
6674 "writeback register only allowed on system LDM "
6675 "if PC in register-list");
6677 case ARM::sysSTMIA_UPD
:
6678 case ARM::sysSTMDA_UPD
:
6679 case ARM::sysSTMDB_UPD
:
6680 case ARM::sysSTMIB_UPD
:
6681 return Error(Operands
[2]->getStartLoc(),
6682 "system STM cannot have writeback register");
6684 // The second source operand must be the same register as the destination
6687 // In this case, we must directly check the parsed operands because the
6688 // cvtThumbMultiply() function is written in such a way that it guarantees
6689 // this first statement is always true for the new Inst. Essentially, the
6690 // destination is unconditionally copied into the second source operand
6691 // without checking to see if it matches what we actually parsed.
6692 if (Operands
.size() == 6 && (((ARMOperand
&)*Operands
[3]).getReg() !=
6693 ((ARMOperand
&)*Operands
[5]).getReg()) &&
6694 (((ARMOperand
&)*Operands
[3]).getReg() !=
6695 ((ARMOperand
&)*Operands
[4]).getReg())) {
6696 return Error(Operands
[3]->getStartLoc(),
6697 "destination register must match source register");
6701 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6702 // so only issue a diagnostic for thumb1. The instructions will be
6703 // switched to the t2 encodings in processInstruction() if necessary.
6705 bool ListContainsBase
;
6706 if (checkLowRegisterList(Inst
, 2, 0, ARM::PC
, ListContainsBase
) &&
6708 return Error(Operands
[2]->getStartLoc(),
6709 "registers must be in range r0-r7 or pc");
6710 if (validatetLDMRegList(Inst
, Operands
, 2, !isMClass()))
6715 bool ListContainsBase
;
6716 if (checkLowRegisterList(Inst
, 2, 0, ARM::LR
, ListContainsBase
) &&
6718 return Error(Operands
[2]->getStartLoc(),
6719 "registers must be in range r0-r7 or lr");
6720 if (validatetSTMRegList(Inst
, Operands
, 2))
6724 case ARM::tSTMIA_UPD
: {
6725 bool ListContainsBase
, InvalidLowList
;
6726 InvalidLowList
= checkLowRegisterList(Inst
, 4, Inst
.getOperand(0).getReg(),
6727 0, ListContainsBase
);
6728 if (InvalidLowList
&& !isThumbTwo())
6729 return Error(Operands
[4]->getStartLoc(),
6730 "registers must be in range r0-r7");
6732 // This would be converted to a 32-bit stm, but that's not valid if the
6733 // writeback register is in the list.
6734 if (InvalidLowList
&& ListContainsBase
)
6735 return Error(Operands
[4]->getStartLoc(),
6736 "writeback operator '!' not allowed when base register "
6737 "in register list");
6739 if (validatetSTMRegList(Inst
, Operands
, 4))
6744 // If the non-SP source operand and the destination operand are not the
6745 // same, we need thumb2 (for the wide encoding), or we have an error.
6746 if (!isThumbTwo() &&
6747 Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
6748 return Error(Operands
[4]->getStartLoc(),
6749 "source register must be the same as destination");
6753 // Final range checking for Thumb unconditional branch instructions.
6755 if (!(static_cast<ARMOperand
&>(*Operands
[2])).isSignedOffset
<11, 1>())
6756 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
6759 int op
= (Operands
[2]->isImm()) ? 2 : 3;
6760 if (!static_cast<ARMOperand
&>(*Operands
[op
]).isSignedOffset
<24, 1>())
6761 return Error(Operands
[op
]->getStartLoc(), "branch target out of range");
6764 // Final range checking for Thumb conditional branch instructions.
6766 if (!static_cast<ARMOperand
&>(*Operands
[2]).isSignedOffset
<8, 1>())
6767 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
6770 int Op
= (Operands
[2]->isImm()) ? 2 : 3;
6771 if (!static_cast<ARMOperand
&>(*Operands
[Op
]).isSignedOffset
<20, 1>())
6772 return Error(Operands
[Op
]->getStartLoc(), "branch target out of range");
6777 if (!static_cast<ARMOperand
&>(*Operands
[2]).isUnsignedOffset
<6, 1>())
6778 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
6784 case ARM::t2MOVTi16
:
6786 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6787 // especially when we turn it into a movw and the expression <symbol> does
6788 // not have a :lower16: or :upper16 as part of the expression. We don't
6789 // want the behavior of silently truncating, which can be unexpected and
6790 // lead to bugs that are difficult to find since this is an easy mistake
6792 int i
= (Operands
[3]->isImm()) ? 3 : 4;
6793 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[i
]);
6794 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm());
6796 const MCExpr
*E
= dyn_cast
<MCExpr
>(Op
.getImm());
6798 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(E
);
6799 if (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
6800 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
))
6803 "immediate expression for mov requires :lower16: or :upper16");
6808 unsigned Imm8
= Inst
.getOperand(0).getImm();
6809 unsigned Pred
= Inst
.getOperand(1).getImm();
6810 // ESB is not predicable (pred must be AL). Without the RAS extension, this
6811 // behaves as any other unallocated hint.
6812 if (Imm8
== 0x10 && Pred
!= ARMCC::AL
&& hasRAS())
6813 return Error(Operands
[1]->getStartLoc(), "instruction 'esb' is not "
6814 "predicable, but condition "
6816 if (Imm8
== 0x14 && Pred
!= ARMCC::AL
)
6817 return Error(Operands
[1]->getStartLoc(), "instruction 'csdb' is not "
6818 "predicable, but condition "
6822 case ARM::VMOVRRS
: {
6823 // Source registers must be sequential.
6824 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
6825 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
6827 return Error(Operands
[5]->getStartLoc(),
6828 "source operands must be sequential");
6831 case ARM::VMOVSRR
: {
6832 // Destination registers must be sequential.
6833 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
6834 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
6836 return Error(Operands
[3]->getStartLoc(),
6837 "destination operands must be sequential");
6845 static unsigned getRealVSTOpcode(unsigned Opc
, unsigned &Spacing
) {
6847 default: llvm_unreachable("unexpected opcode!");
6849 case ARM::VST1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
6850 case ARM::VST1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
6851 case ARM::VST1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
6852 case ARM::VST1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
6853 case ARM::VST1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
6854 case ARM::VST1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
6855 case ARM::VST1LNdAsm_8
: Spacing
= 1; return ARM::VST1LNd8
;
6856 case ARM::VST1LNdAsm_16
: Spacing
= 1; return ARM::VST1LNd16
;
6857 case ARM::VST1LNdAsm_32
: Spacing
= 1; return ARM::VST1LNd32
;
6860 case ARM::VST2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
6861 case ARM::VST2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
6862 case ARM::VST2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
6863 case ARM::VST2LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
6864 case ARM::VST2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
6866 case ARM::VST2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
6867 case ARM::VST2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
6868 case ARM::VST2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
6869 case ARM::VST2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
6870 case ARM::VST2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
6872 case ARM::VST2LNdAsm_8
: Spacing
= 1; return ARM::VST2LNd8
;
6873 case ARM::VST2LNdAsm_16
: Spacing
= 1; return ARM::VST2LNd16
;
6874 case ARM::VST2LNdAsm_32
: Spacing
= 1; return ARM::VST2LNd32
;
6875 case ARM::VST2LNqAsm_16
: Spacing
= 2; return ARM::VST2LNq16
;
6876 case ARM::VST2LNqAsm_32
: Spacing
= 2; return ARM::VST2LNq32
;
6879 case ARM::VST3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
6880 case ARM::VST3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
6881 case ARM::VST3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
6882 case ARM::VST3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNq16_UPD
;
6883 case ARM::VST3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
6884 case ARM::VST3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
6885 case ARM::VST3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
6886 case ARM::VST3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
6887 case ARM::VST3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST3LNq16_UPD
;
6888 case ARM::VST3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
6889 case ARM::VST3LNdAsm_8
: Spacing
= 1; return ARM::VST3LNd8
;
6890 case ARM::VST3LNdAsm_16
: Spacing
= 1; return ARM::VST3LNd16
;
6891 case ARM::VST3LNdAsm_32
: Spacing
= 1; return ARM::VST3LNd32
;
6892 case ARM::VST3LNqAsm_16
: Spacing
= 2; return ARM::VST3LNq16
;
6893 case ARM::VST3LNqAsm_32
: Spacing
= 2; return ARM::VST3LNq32
;
6896 case ARM::VST3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
6897 case ARM::VST3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
6898 case ARM::VST3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
6899 case ARM::VST3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
6900 case ARM::VST3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
6901 case ARM::VST3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
6902 case ARM::VST3dWB_register_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
6903 case ARM::VST3dWB_register_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
6904 case ARM::VST3dWB_register_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
6905 case ARM::VST3qWB_register_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
6906 case ARM::VST3qWB_register_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
6907 case ARM::VST3qWB_register_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
6908 case ARM::VST3dAsm_8
: Spacing
= 1; return ARM::VST3d8
;
6909 case ARM::VST3dAsm_16
: Spacing
= 1; return ARM::VST3d16
;
6910 case ARM::VST3dAsm_32
: Spacing
= 1; return ARM::VST3d32
;
6911 case ARM::VST3qAsm_8
: Spacing
= 2; return ARM::VST3q8
;
6912 case ARM::VST3qAsm_16
: Spacing
= 2; return ARM::VST3q16
;
6913 case ARM::VST3qAsm_32
: Spacing
= 2; return ARM::VST3q32
;
6916 case ARM::VST4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
6917 case ARM::VST4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
6918 case ARM::VST4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
6919 case ARM::VST4LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNq16_UPD
;
6920 case ARM::VST4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
6921 case ARM::VST4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
6922 case ARM::VST4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
6923 case ARM::VST4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
6924 case ARM::VST4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST4LNq16_UPD
;
6925 case ARM::VST4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
6926 case ARM::VST4LNdAsm_8
: Spacing
= 1; return ARM::VST4LNd8
;
6927 case ARM::VST4LNdAsm_16
: Spacing
= 1; return ARM::VST4LNd16
;
6928 case ARM::VST4LNdAsm_32
: Spacing
= 1; return ARM::VST4LNd32
;
6929 case ARM::VST4LNqAsm_16
: Spacing
= 2; return ARM::VST4LNq16
;
6930 case ARM::VST4LNqAsm_32
: Spacing
= 2; return ARM::VST4LNq32
;
6933 case ARM::VST4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
6934 case ARM::VST4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
6935 case ARM::VST4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
6936 case ARM::VST4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
6937 case ARM::VST4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
6938 case ARM::VST4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
6939 case ARM::VST4dWB_register_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
6940 case ARM::VST4dWB_register_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
6941 case ARM::VST4dWB_register_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
6942 case ARM::VST4qWB_register_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
6943 case ARM::VST4qWB_register_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
6944 case ARM::VST4qWB_register_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
6945 case ARM::VST4dAsm_8
: Spacing
= 1; return ARM::VST4d8
;
6946 case ARM::VST4dAsm_16
: Spacing
= 1; return ARM::VST4d16
;
6947 case ARM::VST4dAsm_32
: Spacing
= 1; return ARM::VST4d32
;
6948 case ARM::VST4qAsm_8
: Spacing
= 2; return ARM::VST4q8
;
6949 case ARM::VST4qAsm_16
: Spacing
= 2; return ARM::VST4q16
;
6950 case ARM::VST4qAsm_32
: Spacing
= 2; return ARM::VST4q32
;
6954 static unsigned getRealVLDOpcode(unsigned Opc
, unsigned &Spacing
) {
6956 default: llvm_unreachable("unexpected opcode!");
6958 case ARM::VLD1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
6959 case ARM::VLD1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
6960 case ARM::VLD1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
6961 case ARM::VLD1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
6962 case ARM::VLD1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
6963 case ARM::VLD1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
6964 case ARM::VLD1LNdAsm_8
: Spacing
= 1; return ARM::VLD1LNd8
;
6965 case ARM::VLD1LNdAsm_16
: Spacing
= 1; return ARM::VLD1LNd16
;
6966 case ARM::VLD1LNdAsm_32
: Spacing
= 1; return ARM::VLD1LNd32
;
6969 case ARM::VLD2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
6970 case ARM::VLD2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
6971 case ARM::VLD2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
6972 case ARM::VLD2LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNq16_UPD
;
6973 case ARM::VLD2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
6974 case ARM::VLD2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
6975 case ARM::VLD2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
6976 case ARM::VLD2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
6977 case ARM::VLD2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD2LNq16_UPD
;
6978 case ARM::VLD2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
6979 case ARM::VLD2LNdAsm_8
: Spacing
= 1; return ARM::VLD2LNd8
;
6980 case ARM::VLD2LNdAsm_16
: Spacing
= 1; return ARM::VLD2LNd16
;
6981 case ARM::VLD2LNdAsm_32
: Spacing
= 1; return ARM::VLD2LNd32
;
6982 case ARM::VLD2LNqAsm_16
: Spacing
= 2; return ARM::VLD2LNq16
;
6983 case ARM::VLD2LNqAsm_32
: Spacing
= 2; return ARM::VLD2LNq32
;
6986 case ARM::VLD3DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
6987 case ARM::VLD3DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
6988 case ARM::VLD3DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
6989 case ARM::VLD3DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPq8_UPD
;
6990 case ARM::VLD3DUPqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
6991 case ARM::VLD3DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
6992 case ARM::VLD3DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
6993 case ARM::VLD3DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
6994 case ARM::VLD3DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
6995 case ARM::VLD3DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3DUPq8_UPD
;
6996 case ARM::VLD3DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
6997 case ARM::VLD3DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
6998 case ARM::VLD3DUPdAsm_8
: Spacing
= 1; return ARM::VLD3DUPd8
;
6999 case ARM::VLD3DUPdAsm_16
: Spacing
= 1; return ARM::VLD3DUPd16
;
7000 case ARM::VLD3DUPdAsm_32
: Spacing
= 1; return ARM::VLD3DUPd32
;
7001 case ARM::VLD3DUPqAsm_8
: Spacing
= 2; return ARM::VLD3DUPq8
;
7002 case ARM::VLD3DUPqAsm_16
: Spacing
= 2; return ARM::VLD3DUPq16
;
7003 case ARM::VLD3DUPqAsm_32
: Spacing
= 2; return ARM::VLD3DUPq32
;
7006 case ARM::VLD3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
7007 case ARM::VLD3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
7008 case ARM::VLD3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
7009 case ARM::VLD3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNq16_UPD
;
7010 case ARM::VLD3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
7011 case ARM::VLD3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
7012 case ARM::VLD3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
7013 case ARM::VLD3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
7014 case ARM::VLD3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3LNq16_UPD
;
7015 case ARM::VLD3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
7016 case ARM::VLD3LNdAsm_8
: Spacing
= 1; return ARM::VLD3LNd8
;
7017 case ARM::VLD3LNdAsm_16
: Spacing
= 1; return ARM::VLD3LNd16
;
7018 case ARM::VLD3LNdAsm_32
: Spacing
= 1; return ARM::VLD3LNd32
;
7019 case ARM::VLD3LNqAsm_16
: Spacing
= 2; return ARM::VLD3LNq16
;
7020 case ARM::VLD3LNqAsm_32
: Spacing
= 2; return ARM::VLD3LNq32
;
7023 case ARM::VLD3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
7024 case ARM::VLD3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
7025 case ARM::VLD3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
7026 case ARM::VLD3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
7027 case ARM::VLD3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
7028 case ARM::VLD3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
7029 case ARM::VLD3dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
7030 case ARM::VLD3dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
7031 case ARM::VLD3dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
7032 case ARM::VLD3qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
7033 case ARM::VLD3qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
7034 case ARM::VLD3qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
7035 case ARM::VLD3dAsm_8
: Spacing
= 1; return ARM::VLD3d8
;
7036 case ARM::VLD3dAsm_16
: Spacing
= 1; return ARM::VLD3d16
;
7037 case ARM::VLD3dAsm_32
: Spacing
= 1; return ARM::VLD3d32
;
7038 case ARM::VLD3qAsm_8
: Spacing
= 2; return ARM::VLD3q8
;
7039 case ARM::VLD3qAsm_16
: Spacing
= 2; return ARM::VLD3q16
;
7040 case ARM::VLD3qAsm_32
: Spacing
= 2; return ARM::VLD3q32
;
7043 case ARM::VLD4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
7044 case ARM::VLD4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
7045 case ARM::VLD4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
7046 case ARM::VLD4LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
7047 case ARM::VLD4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
7048 case ARM::VLD4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
7049 case ARM::VLD4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
7050 case ARM::VLD4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
7051 case ARM::VLD4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
7052 case ARM::VLD4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
7053 case ARM::VLD4LNdAsm_8
: Spacing
= 1; return ARM::VLD4LNd8
;
7054 case ARM::VLD4LNdAsm_16
: Spacing
= 1; return ARM::VLD4LNd16
;
7055 case ARM::VLD4LNdAsm_32
: Spacing
= 1; return ARM::VLD4LNd32
;
7056 case ARM::VLD4LNqAsm_16
: Spacing
= 2; return ARM::VLD4LNq16
;
7057 case ARM::VLD4LNqAsm_32
: Spacing
= 2; return ARM::VLD4LNq32
;
7060 case ARM::VLD4DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
7061 case ARM::VLD4DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
7062 case ARM::VLD4DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
7063 case ARM::VLD4DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPq8_UPD
;
7064 case ARM::VLD4DUPqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPq16_UPD
;
7065 case ARM::VLD4DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
7066 case ARM::VLD4DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
7067 case ARM::VLD4DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
7068 case ARM::VLD4DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
7069 case ARM::VLD4DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4DUPq8_UPD
;
7070 case ARM::VLD4DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4DUPq16_UPD
;
7071 case ARM::VLD4DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
7072 case ARM::VLD4DUPdAsm_8
: Spacing
= 1; return ARM::VLD4DUPd8
;
7073 case ARM::VLD4DUPdAsm_16
: Spacing
= 1; return ARM::VLD4DUPd16
;
7074 case ARM::VLD4DUPdAsm_32
: Spacing
= 1; return ARM::VLD4DUPd32
;
7075 case ARM::VLD4DUPqAsm_8
: Spacing
= 2; return ARM::VLD4DUPq8
;
7076 case ARM::VLD4DUPqAsm_16
: Spacing
= 2; return ARM::VLD4DUPq16
;
7077 case ARM::VLD4DUPqAsm_32
: Spacing
= 2; return ARM::VLD4DUPq32
;
7080 case ARM::VLD4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
7081 case ARM::VLD4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
7082 case ARM::VLD4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
7083 case ARM::VLD4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
7084 case ARM::VLD4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
7085 case ARM::VLD4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
7086 case ARM::VLD4dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
7087 case ARM::VLD4dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
7088 case ARM::VLD4dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
7089 case ARM::VLD4qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
7090 case ARM::VLD4qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
7091 case ARM::VLD4qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
7092 case ARM::VLD4dAsm_8
: Spacing
= 1; return ARM::VLD4d8
;
7093 case ARM::VLD4dAsm_16
: Spacing
= 1; return ARM::VLD4d16
;
7094 case ARM::VLD4dAsm_32
: Spacing
= 1; return ARM::VLD4d32
;
7095 case ARM::VLD4qAsm_8
: Spacing
= 2; return ARM::VLD4q8
;
7096 case ARM::VLD4qAsm_16
: Spacing
= 2; return ARM::VLD4q16
;
7097 case ARM::VLD4qAsm_32
: Spacing
= 2; return ARM::VLD4q32
;
7101 bool ARMAsmParser::processInstruction(MCInst
&Inst
,
7102 const OperandVector
&Operands
,
7104 // Check if we have the wide qualifier, because if it's present we
7105 // must avoid selecting a 16-bit thumb instruction.
7106 bool HasWideQualifier
= false;
7107 for (auto &Op
: Operands
) {
7108 ARMOperand
&ARMOp
= static_cast<ARMOperand
&>(*Op
);
7109 if (ARMOp
.isToken() && ARMOp
.getToken() == ".w") {
7110 HasWideQualifier
= true;
7115 switch (Inst
.getOpcode()) {
7116 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7117 case ARM::LDRT_POST
:
7118 case ARM::LDRBT_POST
: {
7119 const unsigned Opcode
=
7120 (Inst
.getOpcode() == ARM::LDRT_POST
) ? ARM::LDRT_POST_IMM
7121 : ARM::LDRBT_POST_IMM
;
7123 TmpInst
.setOpcode(Opcode
);
7124 TmpInst
.addOperand(Inst
.getOperand(0));
7125 TmpInst
.addOperand(Inst
.getOperand(1));
7126 TmpInst
.addOperand(Inst
.getOperand(1));
7127 TmpInst
.addOperand(MCOperand::createReg(0));
7128 TmpInst
.addOperand(MCOperand::createImm(0));
7129 TmpInst
.addOperand(Inst
.getOperand(2));
7130 TmpInst
.addOperand(Inst
.getOperand(3));
7134 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7135 case ARM::STRT_POST
:
7136 case ARM::STRBT_POST
: {
7137 const unsigned Opcode
=
7138 (Inst
.getOpcode() == ARM::STRT_POST
) ? ARM::STRT_POST_IMM
7139 : ARM::STRBT_POST_IMM
;
7141 TmpInst
.setOpcode(Opcode
);
7142 TmpInst
.addOperand(Inst
.getOperand(1));
7143 TmpInst
.addOperand(Inst
.getOperand(0));
7144 TmpInst
.addOperand(Inst
.getOperand(1));
7145 TmpInst
.addOperand(MCOperand::createReg(0));
7146 TmpInst
.addOperand(MCOperand::createImm(0));
7147 TmpInst
.addOperand(Inst
.getOperand(2));
7148 TmpInst
.addOperand(Inst
.getOperand(3));
7152 // Alias for alternate form of 'ADR Rd, #imm' instruction.
7154 if (Inst
.getOperand(1).getReg() != ARM::PC
||
7155 Inst
.getOperand(5).getReg() != 0 ||
7156 !(Inst
.getOperand(2).isExpr() || Inst
.getOperand(2).isImm()))
7159 TmpInst
.setOpcode(ARM::ADR
);
7160 TmpInst
.addOperand(Inst
.getOperand(0));
7161 if (Inst
.getOperand(2).isImm()) {
7162 // Immediate (mod_imm) will be in its encoded form, we must unencode it
7163 // before passing it to the ADR instruction.
7164 unsigned Enc
= Inst
.getOperand(2).getImm();
7165 TmpInst
.addOperand(MCOperand::createImm(
7166 ARM_AM::rotr32(Enc
& 0xFF, (Enc
& 0xF00) >> 7)));
7168 // Turn PC-relative expression into absolute expression.
7169 // Reading PC provides the start of the current instruction + 8 and
7170 // the transform to adr is biased by that.
7171 MCSymbol
*Dot
= getContext().createTempSymbol();
7173 const MCExpr
*OpExpr
= Inst
.getOperand(2).getExpr();
7174 const MCExpr
*InstPC
= MCSymbolRefExpr::create(Dot
,
7175 MCSymbolRefExpr::VK_None
,
7177 const MCExpr
*Const8
= MCConstantExpr::create(8, getContext());
7178 const MCExpr
*ReadPC
= MCBinaryExpr::createAdd(InstPC
, Const8
,
7180 const MCExpr
*FixupAddr
= MCBinaryExpr::createAdd(ReadPC
, OpExpr
,
7182 TmpInst
.addOperand(MCOperand::createExpr(FixupAddr
));
7184 TmpInst
.addOperand(Inst
.getOperand(3));
7185 TmpInst
.addOperand(Inst
.getOperand(4));
7189 // Aliases for alternate PC+imm syntax of LDR instructions.
7190 case ARM::t2LDRpcrel
:
7191 // Select the narrow version if the immediate will fit.
7192 if (Inst
.getOperand(1).getImm() > 0 &&
7193 Inst
.getOperand(1).getImm() <= 0xff &&
7195 Inst
.setOpcode(ARM::tLDRpci
);
7197 Inst
.setOpcode(ARM::t2LDRpci
);
7199 case ARM::t2LDRBpcrel
:
7200 Inst
.setOpcode(ARM::t2LDRBpci
);
7202 case ARM::t2LDRHpcrel
:
7203 Inst
.setOpcode(ARM::t2LDRHpci
);
7205 case ARM::t2LDRSBpcrel
:
7206 Inst
.setOpcode(ARM::t2LDRSBpci
);
7208 case ARM::t2LDRSHpcrel
:
7209 Inst
.setOpcode(ARM::t2LDRSHpci
);
7211 case ARM::LDRConstPool
:
7212 case ARM::tLDRConstPool
:
7213 case ARM::t2LDRConstPool
: {
7214 // Pseudo instruction ldr rt, =immediate is converted to a
7215 // MOV rt, immediate if immediate is known and representable
7216 // otherwise we create a constant pool entry that we load from.
7218 if (Inst
.getOpcode() == ARM::LDRConstPool
)
7219 TmpInst
.setOpcode(ARM::LDRi12
);
7220 else if (Inst
.getOpcode() == ARM::tLDRConstPool
)
7221 TmpInst
.setOpcode(ARM::tLDRpci
);
7222 else if (Inst
.getOpcode() == ARM::t2LDRConstPool
)
7223 TmpInst
.setOpcode(ARM::t2LDRpci
);
7224 const ARMOperand
&PoolOperand
=
7226 static_cast<ARMOperand
&>(*Operands
[4]) :
7227 static_cast<ARMOperand
&>(*Operands
[3]));
7228 const MCExpr
*SubExprVal
= PoolOperand
.getConstantPoolImm();
7229 // If SubExprVal is a constant we may be able to use a MOV
7230 if (isa
<MCConstantExpr
>(SubExprVal
) &&
7231 Inst
.getOperand(0).getReg() != ARM::PC
&&
7232 Inst
.getOperand(0).getReg() != ARM::SP
) {
7234 (int64_t) (cast
<MCConstantExpr
>(SubExprVal
))->getValue();
7236 bool MovHasS
= true;
7237 if (Inst
.getOpcode() == ARM::LDRConstPool
) {
7239 if (ARM_AM::getSOImmVal(Value
) != -1) {
7240 Value
= ARM_AM::getSOImmVal(Value
);
7241 TmpInst
.setOpcode(ARM::MOVi
);
7243 else if (ARM_AM::getSOImmVal(~Value
) != -1) {
7244 Value
= ARM_AM::getSOImmVal(~Value
);
7245 TmpInst
.setOpcode(ARM::MVNi
);
7247 else if (hasV6T2Ops() &&
7248 Value
>=0 && Value
< 65536) {
7249 TmpInst
.setOpcode(ARM::MOVi16
);
7256 // Thumb/Thumb2 Constant
7258 ARM_AM::getT2SOImmVal(Value
) != -1)
7259 TmpInst
.setOpcode(ARM::t2MOVi
);
7260 else if (hasThumb2() &&
7261 ARM_AM::getT2SOImmVal(~Value
) != -1) {
7262 TmpInst
.setOpcode(ARM::t2MVNi
);
7265 else if (hasV8MBaseline() &&
7266 Value
>=0 && Value
< 65536) {
7267 TmpInst
.setOpcode(ARM::t2MOVi16
);
7274 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
7275 TmpInst
.addOperand(MCOperand::createImm(Value
)); // Immediate
7276 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
7277 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7279 TmpInst
.addOperand(MCOperand::createReg(0)); // S
7284 // No opportunity to use MOV/MVN create constant pool
7285 const MCExpr
*CPLoc
=
7286 getTargetStreamer().addConstantPoolEntry(SubExprVal
,
7287 PoolOperand
.getStartLoc());
7288 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
7289 TmpInst
.addOperand(MCOperand::createExpr(CPLoc
)); // offset to constpool
7290 if (TmpInst
.getOpcode() == ARM::LDRi12
)
7291 TmpInst
.addOperand(MCOperand::createImm(0)); // unused offset
7292 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
7293 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7297 // Handle NEON VST complex aliases.
7298 case ARM::VST1LNdWB_register_Asm_8
:
7299 case ARM::VST1LNdWB_register_Asm_16
:
7300 case ARM::VST1LNdWB_register_Asm_32
: {
7302 // Shuffle the operands around so the lane index operand is in the
7305 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7306 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7307 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7308 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7309 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7310 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7311 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7312 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7313 TmpInst
.addOperand(Inst
.getOperand(6));
7318 case ARM::VST2LNdWB_register_Asm_8
:
7319 case ARM::VST2LNdWB_register_Asm_16
:
7320 case ARM::VST2LNdWB_register_Asm_32
:
7321 case ARM::VST2LNqWB_register_Asm_16
:
7322 case ARM::VST2LNqWB_register_Asm_32
: {
7324 // Shuffle the operands around so the lane index operand is in the
7327 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7328 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7329 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7330 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7331 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7332 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7333 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7335 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7336 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7337 TmpInst
.addOperand(Inst
.getOperand(6));
7342 case ARM::VST3LNdWB_register_Asm_8
:
7343 case ARM::VST3LNdWB_register_Asm_16
:
7344 case ARM::VST3LNdWB_register_Asm_32
:
7345 case ARM::VST3LNqWB_register_Asm_16
:
7346 case ARM::VST3LNqWB_register_Asm_32
: {
7348 // Shuffle the operands around so the lane index operand is in the
7351 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7352 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7353 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7354 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7355 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7356 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7357 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7359 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7361 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7362 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7363 TmpInst
.addOperand(Inst
.getOperand(6));
7368 case ARM::VST4LNdWB_register_Asm_8
:
7369 case ARM::VST4LNdWB_register_Asm_16
:
7370 case ARM::VST4LNdWB_register_Asm_32
:
7371 case ARM::VST4LNqWB_register_Asm_16
:
7372 case ARM::VST4LNqWB_register_Asm_32
: {
7374 // Shuffle the operands around so the lane index operand is in the
7377 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7378 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7379 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7380 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7381 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7382 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7383 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7385 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7387 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7389 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7390 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7391 TmpInst
.addOperand(Inst
.getOperand(6));
7396 case ARM::VST1LNdWB_fixed_Asm_8
:
7397 case ARM::VST1LNdWB_fixed_Asm_16
:
7398 case ARM::VST1LNdWB_fixed_Asm_32
: {
7400 // Shuffle the operands around so the lane index operand is in the
7403 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7404 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7405 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7406 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7407 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7408 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7409 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7410 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7411 TmpInst
.addOperand(Inst
.getOperand(5));
7416 case ARM::VST2LNdWB_fixed_Asm_8
:
7417 case ARM::VST2LNdWB_fixed_Asm_16
:
7418 case ARM::VST2LNdWB_fixed_Asm_32
:
7419 case ARM::VST2LNqWB_fixed_Asm_16
:
7420 case ARM::VST2LNqWB_fixed_Asm_32
: {
7422 // Shuffle the operands around so the lane index operand is in the
7425 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7426 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7427 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7428 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7429 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7430 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7431 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7433 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7434 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7435 TmpInst
.addOperand(Inst
.getOperand(5));
7440 case ARM::VST3LNdWB_fixed_Asm_8
:
7441 case ARM::VST3LNdWB_fixed_Asm_16
:
7442 case ARM::VST3LNdWB_fixed_Asm_32
:
7443 case ARM::VST3LNqWB_fixed_Asm_16
:
7444 case ARM::VST3LNqWB_fixed_Asm_32
: {
7446 // Shuffle the operands around so the lane index operand is in the
7449 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7450 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7451 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7452 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7453 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7454 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7455 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7457 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7459 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7460 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7461 TmpInst
.addOperand(Inst
.getOperand(5));
7466 case ARM::VST4LNdWB_fixed_Asm_8
:
7467 case ARM::VST4LNdWB_fixed_Asm_16
:
7468 case ARM::VST4LNdWB_fixed_Asm_32
:
7469 case ARM::VST4LNqWB_fixed_Asm_16
:
7470 case ARM::VST4LNqWB_fixed_Asm_32
: {
7472 // Shuffle the operands around so the lane index operand is in the
7475 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7476 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7477 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7478 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7479 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7480 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7481 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7483 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7485 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7487 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7488 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7489 TmpInst
.addOperand(Inst
.getOperand(5));
7494 case ARM::VST1LNdAsm_8
:
7495 case ARM::VST1LNdAsm_16
:
7496 case ARM::VST1LNdAsm_32
: {
7498 // Shuffle the operands around so the lane index operand is in the
7501 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7502 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7503 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7504 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7505 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7506 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7507 TmpInst
.addOperand(Inst
.getOperand(5));
7512 case ARM::VST2LNdAsm_8
:
7513 case ARM::VST2LNdAsm_16
:
7514 case ARM::VST2LNdAsm_32
:
7515 case ARM::VST2LNqAsm_16
:
7516 case ARM::VST2LNqAsm_32
: {
7518 // Shuffle the operands around so the lane index operand is in the
7521 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7522 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7523 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7524 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7525 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7527 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7528 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7529 TmpInst
.addOperand(Inst
.getOperand(5));
7534 case ARM::VST3LNdAsm_8
:
7535 case ARM::VST3LNdAsm_16
:
7536 case ARM::VST3LNdAsm_32
:
7537 case ARM::VST3LNqAsm_16
:
7538 case ARM::VST3LNqAsm_32
: {
7540 // Shuffle the operands around so the lane index operand is in the
7543 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7544 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7545 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7546 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7547 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7549 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7551 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7552 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7553 TmpInst
.addOperand(Inst
.getOperand(5));
7558 case ARM::VST4LNdAsm_8
:
7559 case ARM::VST4LNdAsm_16
:
7560 case ARM::VST4LNdAsm_32
:
7561 case ARM::VST4LNqAsm_16
:
7562 case ARM::VST4LNqAsm_32
: {
7564 // Shuffle the operands around so the lane index operand is in the
7567 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
7568 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7569 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7570 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7571 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7573 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7575 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7577 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7578 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7579 TmpInst
.addOperand(Inst
.getOperand(5));
7584 // Handle NEON VLD complex aliases.
7585 case ARM::VLD1LNdWB_register_Asm_8
:
7586 case ARM::VLD1LNdWB_register_Asm_16
:
7587 case ARM::VLD1LNdWB_register_Asm_32
: {
7589 // Shuffle the operands around so the lane index operand is in the
7592 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7593 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7594 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7595 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7596 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7597 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7598 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7599 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7600 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7601 TmpInst
.addOperand(Inst
.getOperand(6));
7606 case ARM::VLD2LNdWB_register_Asm_8
:
7607 case ARM::VLD2LNdWB_register_Asm_16
:
7608 case ARM::VLD2LNdWB_register_Asm_32
:
7609 case ARM::VLD2LNqWB_register_Asm_16
:
7610 case ARM::VLD2LNqWB_register_Asm_32
: {
7612 // Shuffle the operands around so the lane index operand is in the
7615 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7616 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7617 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7619 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7620 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7621 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7622 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7623 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7624 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7626 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7627 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7628 TmpInst
.addOperand(Inst
.getOperand(6));
7633 case ARM::VLD3LNdWB_register_Asm_8
:
7634 case ARM::VLD3LNdWB_register_Asm_16
:
7635 case ARM::VLD3LNdWB_register_Asm_32
:
7636 case ARM::VLD3LNqWB_register_Asm_16
:
7637 case ARM::VLD3LNqWB_register_Asm_32
: {
7639 // Shuffle the operands around so the lane index operand is in the
7642 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7643 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7644 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7646 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7648 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7649 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7650 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7651 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7652 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7653 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7655 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7657 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7658 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7659 TmpInst
.addOperand(Inst
.getOperand(6));
7664 case ARM::VLD4LNdWB_register_Asm_8
:
7665 case ARM::VLD4LNdWB_register_Asm_16
:
7666 case ARM::VLD4LNdWB_register_Asm_32
:
7667 case ARM::VLD4LNqWB_register_Asm_16
:
7668 case ARM::VLD4LNqWB_register_Asm_32
: {
7670 // Shuffle the operands around so the lane index operand is in the
7673 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7674 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7675 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7677 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7679 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7681 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7682 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7683 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7684 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
7685 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7686 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7688 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7690 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7692 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7693 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
7694 TmpInst
.addOperand(Inst
.getOperand(6));
7699 case ARM::VLD1LNdWB_fixed_Asm_8
:
7700 case ARM::VLD1LNdWB_fixed_Asm_16
:
7701 case ARM::VLD1LNdWB_fixed_Asm_32
: {
7703 // Shuffle the operands around so the lane index operand is in the
7706 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7707 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7708 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7709 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7710 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7711 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7712 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7713 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7714 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7715 TmpInst
.addOperand(Inst
.getOperand(5));
7720 case ARM::VLD2LNdWB_fixed_Asm_8
:
7721 case ARM::VLD2LNdWB_fixed_Asm_16
:
7722 case ARM::VLD2LNdWB_fixed_Asm_32
:
7723 case ARM::VLD2LNqWB_fixed_Asm_16
:
7724 case ARM::VLD2LNqWB_fixed_Asm_32
: {
7726 // Shuffle the operands around so the lane index operand is in the
7729 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7730 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7731 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7733 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7734 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7735 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7736 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7737 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7738 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7740 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7741 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7742 TmpInst
.addOperand(Inst
.getOperand(5));
7747 case ARM::VLD3LNdWB_fixed_Asm_8
:
7748 case ARM::VLD3LNdWB_fixed_Asm_16
:
7749 case ARM::VLD3LNdWB_fixed_Asm_32
:
7750 case ARM::VLD3LNqWB_fixed_Asm_16
:
7751 case ARM::VLD3LNqWB_fixed_Asm_32
: {
7753 // Shuffle the operands around so the lane index operand is in the
7756 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7757 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7758 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7760 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7762 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7763 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7764 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7765 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7766 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7767 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7769 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7771 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7772 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7773 TmpInst
.addOperand(Inst
.getOperand(5));
7778 case ARM::VLD4LNdWB_fixed_Asm_8
:
7779 case ARM::VLD4LNdWB_fixed_Asm_16
:
7780 case ARM::VLD4LNdWB_fixed_Asm_32
:
7781 case ARM::VLD4LNqWB_fixed_Asm_16
:
7782 case ARM::VLD4LNqWB_fixed_Asm_32
: {
7784 // Shuffle the operands around so the lane index operand is in the
7787 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7788 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7789 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7791 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7793 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7795 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
7796 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7797 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7798 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7799 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7800 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7802 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7804 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7806 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7807 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7808 TmpInst
.addOperand(Inst
.getOperand(5));
7813 case ARM::VLD1LNdAsm_8
:
7814 case ARM::VLD1LNdAsm_16
:
7815 case ARM::VLD1LNdAsm_32
: {
7817 // Shuffle the operands around so the lane index operand is in the
7820 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7821 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7822 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7823 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7824 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7825 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7826 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7827 TmpInst
.addOperand(Inst
.getOperand(5));
7832 case ARM::VLD2LNdAsm_8
:
7833 case ARM::VLD2LNdAsm_16
:
7834 case ARM::VLD2LNdAsm_32
:
7835 case ARM::VLD2LNqAsm_16
:
7836 case ARM::VLD2LNqAsm_32
: {
7838 // Shuffle the operands around so the lane index operand is in the
7841 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7842 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7843 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7845 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7846 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7847 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7848 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7850 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7851 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7852 TmpInst
.addOperand(Inst
.getOperand(5));
7857 case ARM::VLD3LNdAsm_8
:
7858 case ARM::VLD3LNdAsm_16
:
7859 case ARM::VLD3LNdAsm_32
:
7860 case ARM::VLD3LNqAsm_16
:
7861 case ARM::VLD3LNqAsm_32
: {
7863 // Shuffle the operands around so the lane index operand is in the
7866 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7867 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7868 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7870 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7872 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7873 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7874 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7875 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7877 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7879 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7880 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7881 TmpInst
.addOperand(Inst
.getOperand(5));
7886 case ARM::VLD4LNdAsm_8
:
7887 case ARM::VLD4LNdAsm_16
:
7888 case ARM::VLD4LNdAsm_32
:
7889 case ARM::VLD4LNqAsm_16
:
7890 case ARM::VLD4LNqAsm_32
: {
7892 // Shuffle the operands around so the lane index operand is in the
7895 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7896 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7897 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7899 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7901 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7903 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
7904 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
7905 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
7906 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7908 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7910 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7912 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
7913 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7914 TmpInst
.addOperand(Inst
.getOperand(5));
7919 // VLD3DUP single 3-element structure to all lanes instructions.
7920 case ARM::VLD3DUPdAsm_8
:
7921 case ARM::VLD3DUPdAsm_16
:
7922 case ARM::VLD3DUPdAsm_32
:
7923 case ARM::VLD3DUPqAsm_8
:
7924 case ARM::VLD3DUPqAsm_16
:
7925 case ARM::VLD3DUPqAsm_32
: {
7928 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7929 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7930 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7932 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7934 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
7935 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
7936 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7937 TmpInst
.addOperand(Inst
.getOperand(4));
7942 case ARM::VLD3DUPdWB_fixed_Asm_8
:
7943 case ARM::VLD3DUPdWB_fixed_Asm_16
:
7944 case ARM::VLD3DUPdWB_fixed_Asm_32
:
7945 case ARM::VLD3DUPqWB_fixed_Asm_8
:
7946 case ARM::VLD3DUPqWB_fixed_Asm_16
:
7947 case ARM::VLD3DUPqWB_fixed_Asm_32
: {
7950 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7951 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7952 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7954 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7956 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
7957 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
7958 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
7959 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
7960 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
7961 TmpInst
.addOperand(Inst
.getOperand(4));
7966 case ARM::VLD3DUPdWB_register_Asm_8
:
7967 case ARM::VLD3DUPdWB_register_Asm_16
:
7968 case ARM::VLD3DUPdWB_register_Asm_32
:
7969 case ARM::VLD3DUPqWB_register_Asm_8
:
7970 case ARM::VLD3DUPqWB_register_Asm_16
:
7971 case ARM::VLD3DUPqWB_register_Asm_32
: {
7974 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
7975 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
7976 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7978 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
7980 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
7981 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
7982 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
7983 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
7984 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
7985 TmpInst
.addOperand(Inst
.getOperand(5));
7990 // VLD3 multiple 3-element structure instructions.
7991 case ARM::VLD3dAsm_8
:
7992 case ARM::VLD3dAsm_16
:
7993 case ARM::VLD3dAsm_32
:
7994 case ARM::VLD3qAsm_8
:
7995 case ARM::VLD3qAsm_16
:
7996 case ARM::VLD3qAsm_32
: {
7999 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8000 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8001 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8003 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8005 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8006 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8007 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8008 TmpInst
.addOperand(Inst
.getOperand(4));
8013 case ARM::VLD3dWB_fixed_Asm_8
:
8014 case ARM::VLD3dWB_fixed_Asm_16
:
8015 case ARM::VLD3dWB_fixed_Asm_32
:
8016 case ARM::VLD3qWB_fixed_Asm_8
:
8017 case ARM::VLD3qWB_fixed_Asm_16
:
8018 case ARM::VLD3qWB_fixed_Asm_32
: {
8021 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8022 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8023 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8025 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8027 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8028 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8029 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8030 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8031 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8032 TmpInst
.addOperand(Inst
.getOperand(4));
8037 case ARM::VLD3dWB_register_Asm_8
:
8038 case ARM::VLD3dWB_register_Asm_16
:
8039 case ARM::VLD3dWB_register_Asm_32
:
8040 case ARM::VLD3qWB_register_Asm_8
:
8041 case ARM::VLD3qWB_register_Asm_16
:
8042 case ARM::VLD3qWB_register_Asm_32
: {
8045 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8046 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8047 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8049 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8051 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8052 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8053 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8054 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8055 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8056 TmpInst
.addOperand(Inst
.getOperand(5));
8061 // VLD4DUP single 3-element structure to all lanes instructions.
8062 case ARM::VLD4DUPdAsm_8
:
8063 case ARM::VLD4DUPdAsm_16
:
8064 case ARM::VLD4DUPdAsm_32
:
8065 case ARM::VLD4DUPqAsm_8
:
8066 case ARM::VLD4DUPqAsm_16
:
8067 case ARM::VLD4DUPqAsm_32
: {
8070 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8071 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8072 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8074 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8076 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8078 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8079 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8080 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8081 TmpInst
.addOperand(Inst
.getOperand(4));
8086 case ARM::VLD4DUPdWB_fixed_Asm_8
:
8087 case ARM::VLD4DUPdWB_fixed_Asm_16
:
8088 case ARM::VLD4DUPdWB_fixed_Asm_32
:
8089 case ARM::VLD4DUPqWB_fixed_Asm_8
:
8090 case ARM::VLD4DUPqWB_fixed_Asm_16
:
8091 case ARM::VLD4DUPqWB_fixed_Asm_32
: {
8094 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8095 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8096 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8098 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8100 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8102 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8103 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8104 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8105 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8106 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8107 TmpInst
.addOperand(Inst
.getOperand(4));
8112 case ARM::VLD4DUPdWB_register_Asm_8
:
8113 case ARM::VLD4DUPdWB_register_Asm_16
:
8114 case ARM::VLD4DUPdWB_register_Asm_32
:
8115 case ARM::VLD4DUPqWB_register_Asm_8
:
8116 case ARM::VLD4DUPqWB_register_Asm_16
:
8117 case ARM::VLD4DUPqWB_register_Asm_32
: {
8120 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8121 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8122 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8124 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8126 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8128 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8129 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8130 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8131 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8132 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8133 TmpInst
.addOperand(Inst
.getOperand(5));
8138 // VLD4 multiple 4-element structure instructions.
8139 case ARM::VLD4dAsm_8
:
8140 case ARM::VLD4dAsm_16
:
8141 case ARM::VLD4dAsm_32
:
8142 case ARM::VLD4qAsm_8
:
8143 case ARM::VLD4qAsm_16
:
8144 case ARM::VLD4qAsm_32
: {
8147 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8148 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8149 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8151 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8153 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8155 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8156 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8157 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8158 TmpInst
.addOperand(Inst
.getOperand(4));
8163 case ARM::VLD4dWB_fixed_Asm_8
:
8164 case ARM::VLD4dWB_fixed_Asm_16
:
8165 case ARM::VLD4dWB_fixed_Asm_32
:
8166 case ARM::VLD4qWB_fixed_Asm_8
:
8167 case ARM::VLD4qWB_fixed_Asm_16
:
8168 case ARM::VLD4qWB_fixed_Asm_32
: {
8171 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8172 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8173 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8175 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8177 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8179 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8180 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8181 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8182 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8183 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8184 TmpInst
.addOperand(Inst
.getOperand(4));
8189 case ARM::VLD4dWB_register_Asm_8
:
8190 case ARM::VLD4dWB_register_Asm_16
:
8191 case ARM::VLD4dWB_register_Asm_32
:
8192 case ARM::VLD4qWB_register_Asm_8
:
8193 case ARM::VLD4qWB_register_Asm_16
:
8194 case ARM::VLD4qWB_register_Asm_32
: {
8197 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8198 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8199 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8201 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8203 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8205 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8206 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8207 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8208 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8209 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8210 TmpInst
.addOperand(Inst
.getOperand(5));
8215 // VST3 multiple 3-element structure instructions.
8216 case ARM::VST3dAsm_8
:
8217 case ARM::VST3dAsm_16
:
8218 case ARM::VST3dAsm_32
:
8219 case ARM::VST3qAsm_8
:
8220 case ARM::VST3qAsm_16
:
8221 case ARM::VST3qAsm_32
: {
8224 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8225 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8226 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8227 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8228 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8230 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8232 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8233 TmpInst
.addOperand(Inst
.getOperand(4));
8238 case ARM::VST3dWB_fixed_Asm_8
:
8239 case ARM::VST3dWB_fixed_Asm_16
:
8240 case ARM::VST3dWB_fixed_Asm_32
:
8241 case ARM::VST3qWB_fixed_Asm_8
:
8242 case ARM::VST3qWB_fixed_Asm_16
:
8243 case ARM::VST3qWB_fixed_Asm_32
: {
8246 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8247 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8248 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8249 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8250 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8251 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8252 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8254 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8256 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8257 TmpInst
.addOperand(Inst
.getOperand(4));
8262 case ARM::VST3dWB_register_Asm_8
:
8263 case ARM::VST3dWB_register_Asm_16
:
8264 case ARM::VST3dWB_register_Asm_32
:
8265 case ARM::VST3qWB_register_Asm_8
:
8266 case ARM::VST3qWB_register_Asm_16
:
8267 case ARM::VST3qWB_register_Asm_32
: {
8270 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8271 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8272 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8273 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8274 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8275 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8276 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8278 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8280 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8281 TmpInst
.addOperand(Inst
.getOperand(5));
8286 // VST4 multiple 3-element structure instructions.
8287 case ARM::VST4dAsm_8
:
8288 case ARM::VST4dAsm_16
:
8289 case ARM::VST4dAsm_32
:
8290 case ARM::VST4qAsm_8
:
8291 case ARM::VST4qAsm_16
:
8292 case ARM::VST4qAsm_32
: {
8295 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8296 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8297 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8298 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8299 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8301 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8303 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8305 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8306 TmpInst
.addOperand(Inst
.getOperand(4));
8311 case ARM::VST4dWB_fixed_Asm_8
:
8312 case ARM::VST4dWB_fixed_Asm_16
:
8313 case ARM::VST4dWB_fixed_Asm_32
:
8314 case ARM::VST4qWB_fixed_Asm_8
:
8315 case ARM::VST4qWB_fixed_Asm_16
:
8316 case ARM::VST4qWB_fixed_Asm_32
: {
8319 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8320 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8321 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8322 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8323 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8324 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8325 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8327 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8329 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8331 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8332 TmpInst
.addOperand(Inst
.getOperand(4));
8337 case ARM::VST4dWB_register_Asm_8
:
8338 case ARM::VST4dWB_register_Asm_16
:
8339 case ARM::VST4dWB_register_Asm_32
:
8340 case ARM::VST4qWB_register_Asm_8
:
8341 case ARM::VST4qWB_register_Asm_16
:
8342 case ARM::VST4qWB_register_Asm_32
: {
8345 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8346 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8347 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
8348 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
8349 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
8350 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8351 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8353 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8355 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8357 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8358 TmpInst
.addOperand(Inst
.getOperand(5));
8363 // Handle encoding choice for the shift-immediate instructions.
8367 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8368 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8369 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
8370 !HasWideQualifier
) {
8372 switch (Inst
.getOpcode()) {
8373 default: llvm_unreachable("unexpected opcode");
8374 case ARM::t2LSLri
: NewOpc
= ARM::tLSLri
; break;
8375 case ARM::t2LSRri
: NewOpc
= ARM::tLSRri
; break;
8376 case ARM::t2ASRri
: NewOpc
= ARM::tASRri
; break;
8378 // The Thumb1 operands aren't in the same order. Awesome, eh?
8380 TmpInst
.setOpcode(NewOpc
);
8381 TmpInst
.addOperand(Inst
.getOperand(0));
8382 TmpInst
.addOperand(Inst
.getOperand(5));
8383 TmpInst
.addOperand(Inst
.getOperand(1));
8384 TmpInst
.addOperand(Inst
.getOperand(2));
8385 TmpInst
.addOperand(Inst
.getOperand(3));
8386 TmpInst
.addOperand(Inst
.getOperand(4));
8392 // Handle the Thumb2 mode MOV complex aliases.
8394 case ARM::t2MOVSsr
: {
8395 // Which instruction to expand to depends on the CCOut operand and
8396 // whether we're in an IT block if the register operands are low
8398 bool isNarrow
= false;
8399 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8400 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8401 isARMLowRegister(Inst
.getOperand(2).getReg()) &&
8402 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
8403 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsr
) &&
8408 switch(ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm())) {
8409 default: llvm_unreachable("unexpected opcode!");
8410 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRrr
: ARM::t2ASRrr
; break;
8411 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRrr
: ARM::t2LSRrr
; break;
8412 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLrr
: ARM::t2LSLrr
; break;
8413 case ARM_AM::ror
: newOpc
= isNarrow
? ARM::tROR
: ARM::t2RORrr
; break;
8415 TmpInst
.setOpcode(newOpc
);
8416 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8418 TmpInst
.addOperand(MCOperand::createReg(
8419 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
8420 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8421 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
8422 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8423 TmpInst
.addOperand(Inst
.getOperand(5));
8425 TmpInst
.addOperand(MCOperand::createReg(
8426 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
8431 case ARM::t2MOVSsi
: {
8432 // Which instruction to expand to depends on the CCOut operand and
8433 // whether we're in an IT block if the register operands are low
8435 bool isNarrow
= false;
8436 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8437 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8438 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsi
) &&
8443 unsigned Shift
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
8444 unsigned Amount
= ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm());
8446 // MOV rd, rm, LSL #0 is actually a MOV instruction
8447 if (Shift
== ARM_AM::lsl
&& Amount
== 0) {
8449 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8450 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8451 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8456 newOpc
= isNarrow
? ARM::tMOVSr
: ARM::t2MOVr
;
8459 default: llvm_unreachable("unexpected opcode!");
8460 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRri
: ARM::t2ASRri
; break;
8461 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRri
: ARM::t2LSRri
; break;
8462 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLri
: ARM::t2LSLri
; break;
8463 case ARM_AM::ror
: newOpc
= ARM::t2RORri
; isNarrow
= false; break;
8464 case ARM_AM::rrx
: isNarrow
= false; newOpc
= ARM::t2RRX
; break;
8467 if (Amount
== 32) Amount
= 0;
8468 TmpInst
.setOpcode(newOpc
);
8469 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8470 if (isNarrow
&& !isMov
)
8471 TmpInst
.addOperand(MCOperand::createReg(
8472 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
8473 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8474 if (newOpc
!= ARM::t2RRX
&& !isMov
)
8475 TmpInst
.addOperand(MCOperand::createImm(Amount
));
8476 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8477 TmpInst
.addOperand(Inst
.getOperand(4));
8479 TmpInst
.addOperand(MCOperand::createReg(
8480 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
8484 // Handle the ARM mode MOV complex aliases.
8489 ARM_AM::ShiftOpc ShiftTy
;
8490 switch(Inst
.getOpcode()) {
8491 default: llvm_unreachable("unexpected opcode!");
8492 case ARM::ASRr
: ShiftTy
= ARM_AM::asr
; break;
8493 case ARM::LSRr
: ShiftTy
= ARM_AM::lsr
; break;
8494 case ARM::LSLr
: ShiftTy
= ARM_AM::lsl
; break;
8495 case ARM::RORr
: ShiftTy
= ARM_AM::ror
; break;
8497 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, 0);
8499 TmpInst
.setOpcode(ARM::MOVsr
);
8500 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8501 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8502 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
8503 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
8504 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8505 TmpInst
.addOperand(Inst
.getOperand(4));
8506 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
8514 ARM_AM::ShiftOpc ShiftTy
;
8515 switch(Inst
.getOpcode()) {
8516 default: llvm_unreachable("unexpected opcode!");
8517 case ARM::ASRi
: ShiftTy
= ARM_AM::asr
; break;
8518 case ARM::LSRi
: ShiftTy
= ARM_AM::lsr
; break;
8519 case ARM::LSLi
: ShiftTy
= ARM_AM::lsl
; break;
8520 case ARM::RORi
: ShiftTy
= ARM_AM::ror
; break;
8522 // A shift by zero is a plain MOVr, not a MOVsi.
8523 unsigned Amt
= Inst
.getOperand(2).getImm();
8524 unsigned Opc
= Amt
== 0 ? ARM::MOVr
: ARM::MOVsi
;
8525 // A shift by 32 should be encoded as 0 when permitted
8526 if (Amt
== 32 && (ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
))
8528 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, Amt
);
8530 TmpInst
.setOpcode(Opc
);
8531 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8532 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8533 if (Opc
== ARM::MOVsi
)
8534 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
8535 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8536 TmpInst
.addOperand(Inst
.getOperand(4));
8537 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
8542 unsigned Shifter
= ARM_AM::getSORegOpc(ARM_AM::rrx
, 0);
8544 TmpInst
.setOpcode(ARM::MOVsi
);
8545 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
8546 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8547 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
8548 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8549 TmpInst
.addOperand(Inst
.getOperand(3));
8550 TmpInst
.addOperand(Inst
.getOperand(4)); // cc_out
8554 case ARM::t2LDMIA_UPD
: {
8555 // If this is a load of a single register, then we should use
8556 // a post-indexed LDR instruction instead, per the ARM ARM.
8557 if (Inst
.getNumOperands() != 5)
8560 TmpInst
.setOpcode(ARM::t2LDR_POST
);
8561 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8562 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8563 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8564 TmpInst
.addOperand(MCOperand::createImm(4));
8565 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8566 TmpInst
.addOperand(Inst
.getOperand(3));
8570 case ARM::t2STMDB_UPD
: {
8571 // If this is a store of a single register, then we should use
8572 // a pre-indexed STR instruction instead, per the ARM ARM.
8573 if (Inst
.getNumOperands() != 5)
8576 TmpInst
.setOpcode(ARM::t2STR_PRE
);
8577 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8578 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8579 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8580 TmpInst
.addOperand(MCOperand::createImm(-4));
8581 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8582 TmpInst
.addOperand(Inst
.getOperand(3));
8586 case ARM::LDMIA_UPD
:
8587 // If this is a load of a single register via a 'pop', then we should use
8588 // a post-indexed LDR instruction instead, per the ARM ARM.
8589 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "pop" &&
8590 Inst
.getNumOperands() == 5) {
8592 TmpInst
.setOpcode(ARM::LDR_POST_IMM
);
8593 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8594 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8595 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
8596 TmpInst
.addOperand(MCOperand::createReg(0)); // am2offset
8597 TmpInst
.addOperand(MCOperand::createImm(4));
8598 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8599 TmpInst
.addOperand(Inst
.getOperand(3));
8604 case ARM::STMDB_UPD
:
8605 // If this is a store of a single register via a 'push', then we should use
8606 // a pre-indexed STR instruction instead, per the ARM ARM.
8607 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "push" &&
8608 Inst
.getNumOperands() == 5) {
8610 TmpInst
.setOpcode(ARM::STR_PRE_IMM
);
8611 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
8612 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
8613 TmpInst
.addOperand(Inst
.getOperand(1)); // addrmode_imm12
8614 TmpInst
.addOperand(MCOperand::createImm(-4));
8615 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8616 TmpInst
.addOperand(Inst
.getOperand(3));
8620 case ARM::t2ADDri12
:
8621 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8622 // mnemonic was used (not "addw"), encoding T3 is preferred.
8623 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() != "add" ||
8624 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
8626 Inst
.setOpcode(ARM::t2ADDri
);
8627 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
8629 case ARM::t2SUBri12
:
8630 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8631 // mnemonic was used (not "subw"), encoding T3 is preferred.
8632 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() != "sub" ||
8633 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
8635 Inst
.setOpcode(ARM::t2SUBri
);
8636 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
8639 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8640 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8641 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8642 // to encoding T1 if <Rd> is omitted."
8643 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
8644 Inst
.setOpcode(ARM::tADDi3
);
8649 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8650 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8651 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8652 // to encoding T1 if <Rd> is omitted."
8653 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
8654 Inst
.setOpcode(ARM::tSUBi3
);
8659 case ARM::t2SUBri
: {
8660 // If the destination and first source operand are the same, and
8661 // the flags are compatible with the current IT status, use encoding T2
8662 // instead of T3. For compatibility with the system 'as'. Make sure the
8663 // wide encoding wasn't explicit.
8664 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(1).getReg() ||
8665 !isARMLowRegister(Inst
.getOperand(0).getReg()) ||
8666 (Inst
.getOperand(2).isImm() &&
8667 (unsigned)Inst
.getOperand(2).getImm() > 255) ||
8668 Inst
.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR
) ||
8672 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2ADDri
?
8673 ARM::tADDi8
: ARM::tSUBi8
);
8674 TmpInst
.addOperand(Inst
.getOperand(0));
8675 TmpInst
.addOperand(Inst
.getOperand(5));
8676 TmpInst
.addOperand(Inst
.getOperand(0));
8677 TmpInst
.addOperand(Inst
.getOperand(2));
8678 TmpInst
.addOperand(Inst
.getOperand(3));
8679 TmpInst
.addOperand(Inst
.getOperand(4));
8683 case ARM::t2ADDrr
: {
8684 // If the destination and first source operand are the same, and
8685 // there's no setting of the flags, use encoding T2 instead of T3.
8686 // Note that this is only for ADD, not SUB. This mirrors the system
8687 // 'as' behaviour. Also take advantage of ADD being commutative.
8688 // Make sure the wide encoding wasn't explicit.
8690 auto DestReg
= Inst
.getOperand(0).getReg();
8691 bool Transform
= DestReg
== Inst
.getOperand(1).getReg();
8692 if (!Transform
&& DestReg
== Inst
.getOperand(2).getReg()) {
8697 Inst
.getOperand(5).getReg() != 0 ||
8701 TmpInst
.setOpcode(ARM::tADDhirr
);
8702 TmpInst
.addOperand(Inst
.getOperand(0));
8703 TmpInst
.addOperand(Inst
.getOperand(0));
8704 TmpInst
.addOperand(Inst
.getOperand(Swap
? 1 : 2));
8705 TmpInst
.addOperand(Inst
.getOperand(3));
8706 TmpInst
.addOperand(Inst
.getOperand(4));
8711 // If the non-SP source operand and the destination operand are not the
8712 // same, we need to use the 32-bit encoding if it's available.
8713 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
8714 Inst
.setOpcode(ARM::t2ADDrr
);
8715 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
8720 // A Thumb conditional branch outside of an IT block is a tBcc.
8721 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()) {
8722 Inst
.setOpcode(ARM::tBcc
);
8727 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8728 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()){
8729 Inst
.setOpcode(ARM::t2Bcc
);
8734 // If the conditional is AL or we're in an IT block, we really want t2B.
8735 if (Inst
.getOperand(1).getImm() == ARMCC::AL
|| inITBlock()) {
8736 Inst
.setOpcode(ARM::t2B
);
8741 // If the conditional is AL, we really want tB.
8742 if (Inst
.getOperand(1).getImm() == ARMCC::AL
) {
8743 Inst
.setOpcode(ARM::tB
);
8748 // If the register list contains any high registers, or if the writeback
8749 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8750 // instead if we're in Thumb2. Otherwise, this should have generated
8751 // an error in validateInstruction().
8752 unsigned Rn
= Inst
.getOperand(0).getReg();
8753 bool hasWritebackToken
=
8754 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
8755 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
8756 bool listContainsBase
;
8757 if (checkLowRegisterList(Inst
, 3, Rn
, 0, listContainsBase
) ||
8758 (!listContainsBase
&& !hasWritebackToken
) ||
8759 (listContainsBase
&& hasWritebackToken
)) {
8760 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8761 assert(isThumbTwo());
8762 Inst
.setOpcode(hasWritebackToken
? ARM::t2LDMIA_UPD
: ARM::t2LDMIA
);
8763 // If we're switching to the updating version, we need to insert
8764 // the writeback tied operand.
8765 if (hasWritebackToken
)
8766 Inst
.insert(Inst
.begin(),
8767 MCOperand::createReg(Inst
.getOperand(0).getReg()));
8772 case ARM::tSTMIA_UPD
: {
8773 // If the register list contains any high registers, we need to use
8774 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8775 // should have generated an error in validateInstruction().
8776 unsigned Rn
= Inst
.getOperand(0).getReg();
8777 bool listContainsBase
;
8778 if (checkLowRegisterList(Inst
, 4, Rn
, 0, listContainsBase
)) {
8779 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8780 assert(isThumbTwo());
8781 Inst
.setOpcode(ARM::t2STMIA_UPD
);
8787 bool listContainsBase
;
8788 // If the register list contains any high registers, we need to use
8789 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8790 // should have generated an error in validateInstruction().
8791 if (!checkLowRegisterList(Inst
, 2, 0, ARM::PC
, listContainsBase
))
8793 assert(isThumbTwo());
8794 Inst
.setOpcode(ARM::t2LDMIA_UPD
);
8795 // Add the base register and writeback operands.
8796 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8797 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8801 bool listContainsBase
;
8802 if (!checkLowRegisterList(Inst
, 2, 0, ARM::LR
, listContainsBase
))
8804 assert(isThumbTwo());
8805 Inst
.setOpcode(ARM::t2STMDB_UPD
);
8806 // Add the base register and writeback operands.
8807 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8808 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
8812 // If we can use the 16-bit encoding and the user didn't explicitly
8813 // request the 32-bit variant, transform it here.
8814 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8815 (Inst
.getOperand(1).isImm() &&
8816 (unsigned)Inst
.getOperand(1).getImm() <= 255) &&
8817 Inst
.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
8818 !HasWideQualifier
) {
8819 // The operands aren't in the same order for tMOVi8...
8821 TmpInst
.setOpcode(ARM::tMOVi8
);
8822 TmpInst
.addOperand(Inst
.getOperand(0));
8823 TmpInst
.addOperand(Inst
.getOperand(4));
8824 TmpInst
.addOperand(Inst
.getOperand(1));
8825 TmpInst
.addOperand(Inst
.getOperand(2));
8826 TmpInst
.addOperand(Inst
.getOperand(3));
8833 // If we can use the 16-bit encoding and the user didn't explicitly
8834 // request the 32-bit variant, transform it here.
8835 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8836 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8837 Inst
.getOperand(2).getImm() == ARMCC::AL
&&
8838 Inst
.getOperand(4).getReg() == ARM::CPSR
&&
8839 !HasWideQualifier
) {
8840 // The operands aren't the same for tMOV[S]r... (no cc_out)
8842 TmpInst
.setOpcode(Inst
.getOperand(4).getReg() ? ARM::tMOVSr
: ARM::tMOVr
);
8843 TmpInst
.addOperand(Inst
.getOperand(0));
8844 TmpInst
.addOperand(Inst
.getOperand(1));
8845 TmpInst
.addOperand(Inst
.getOperand(2));
8846 TmpInst
.addOperand(Inst
.getOperand(3));
8856 // If we can use the 16-bit encoding and the user didn't explicitly
8857 // request the 32-bit variant, transform it here.
8858 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
8859 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8860 Inst
.getOperand(2).getImm() == 0 &&
8861 !HasWideQualifier
) {
8863 switch (Inst
.getOpcode()) {
8864 default: llvm_unreachable("Illegal opcode!");
8865 case ARM::t2SXTH
: NewOpc
= ARM::tSXTH
; break;
8866 case ARM::t2SXTB
: NewOpc
= ARM::tSXTB
; break;
8867 case ARM::t2UXTH
: NewOpc
= ARM::tUXTH
; break;
8868 case ARM::t2UXTB
: NewOpc
= ARM::tUXTB
; break;
8870 // The operands aren't the same for thumb1 (no rotate operand).
8872 TmpInst
.setOpcode(NewOpc
);
8873 TmpInst
.addOperand(Inst
.getOperand(0));
8874 TmpInst
.addOperand(Inst
.getOperand(1));
8875 TmpInst
.addOperand(Inst
.getOperand(3));
8876 TmpInst
.addOperand(Inst
.getOperand(4));
8883 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
8884 // rrx shifts and asr/lsr of #32 is encoded as 0
8885 if (SOpc
== ARM_AM::rrx
|| SOpc
== ARM_AM::asr
|| SOpc
== ARM_AM::lsr
)
8887 if (ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm()) == 0) {
8888 // Shifting by zero is accepted as a vanilla 'MOVr'
8890 TmpInst
.setOpcode(ARM::MOVr
);
8891 TmpInst
.addOperand(Inst
.getOperand(0));
8892 TmpInst
.addOperand(Inst
.getOperand(1));
8893 TmpInst
.addOperand(Inst
.getOperand(3));
8894 TmpInst
.addOperand(Inst
.getOperand(4));
8895 TmpInst
.addOperand(Inst
.getOperand(5));
8908 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm());
8909 if (SOpc
== ARM_AM::rrx
) return false;
8910 switch (Inst
.getOpcode()) {
8911 default: llvm_unreachable("unexpected opcode!");
8912 case ARM::ANDrsi
: newOpc
= ARM::ANDrr
; break;
8913 case ARM::ORRrsi
: newOpc
= ARM::ORRrr
; break;
8914 case ARM::EORrsi
: newOpc
= ARM::EORrr
; break;
8915 case ARM::BICrsi
: newOpc
= ARM::BICrr
; break;
8916 case ARM::SUBrsi
: newOpc
= ARM::SUBrr
; break;
8917 case ARM::ADDrsi
: newOpc
= ARM::ADDrr
; break;
8919 // If the shift is by zero, use the non-shifted instruction definition.
8920 // The exception is for right shifts, where 0 == 32
8921 if (ARM_AM::getSORegOffset(Inst
.getOperand(3).getImm()) == 0 &&
8922 !(SOpc
== ARM_AM::lsr
|| SOpc
== ARM_AM::asr
)) {
8924 TmpInst
.setOpcode(newOpc
);
8925 TmpInst
.addOperand(Inst
.getOperand(0));
8926 TmpInst
.addOperand(Inst
.getOperand(1));
8927 TmpInst
.addOperand(Inst
.getOperand(2));
8928 TmpInst
.addOperand(Inst
.getOperand(4));
8929 TmpInst
.addOperand(Inst
.getOperand(5));
8930 TmpInst
.addOperand(Inst
.getOperand(6));
8938 MCOperand
&MO
= Inst
.getOperand(1);
8939 unsigned Mask
= MO
.getImm();
8940 ARMCC::CondCodes Cond
= ARMCC::CondCodes(Inst
.getOperand(0).getImm());
8942 // Set up the IT block state according to the IT instruction we just
8944 assert(!inITBlock() && "nested IT blocks?!");
8945 startExplicitITBlock(Cond
, Mask
);
8946 MO
.setImm(getITMaskEncoding());
8955 // Assemblers should use the narrow encodings of these instructions when permissible.
8956 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8957 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
8958 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
8959 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
8960 !HasWideQualifier
) {
8962 switch (Inst
.getOpcode()) {
8963 default: llvm_unreachable("unexpected opcode");
8964 case ARM::t2LSLrr
: NewOpc
= ARM::tLSLrr
; break;
8965 case ARM::t2LSRrr
: NewOpc
= ARM::tLSRrr
; break;
8966 case ARM::t2ASRrr
: NewOpc
= ARM::tASRrr
; break;
8967 case ARM::t2SBCrr
: NewOpc
= ARM::tSBC
; break;
8968 case ARM::t2RORrr
: NewOpc
= ARM::tROR
; break;
8969 case ARM::t2BICrr
: NewOpc
= ARM::tBIC
; break;
8972 TmpInst
.setOpcode(NewOpc
);
8973 TmpInst
.addOperand(Inst
.getOperand(0));
8974 TmpInst
.addOperand(Inst
.getOperand(5));
8975 TmpInst
.addOperand(Inst
.getOperand(1));
8976 TmpInst
.addOperand(Inst
.getOperand(2));
8977 TmpInst
.addOperand(Inst
.getOperand(3));
8978 TmpInst
.addOperand(Inst
.getOperand(4));
8988 // Assemblers should use the narrow encodings of these instructions when permissible.
8989 // These instructions are special in that they are commutable, so shorter encodings
8990 // are available more often.
8991 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
8992 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
8993 (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() ||
8994 Inst
.getOperand(0).getReg() == Inst
.getOperand(2).getReg()) &&
8995 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
8996 !HasWideQualifier
) {
8998 switch (Inst
.getOpcode()) {
8999 default: llvm_unreachable("unexpected opcode");
9000 case ARM::t2ADCrr
: NewOpc
= ARM::tADC
; break;
9001 case ARM::t2ANDrr
: NewOpc
= ARM::tAND
; break;
9002 case ARM::t2EORrr
: NewOpc
= ARM::tEOR
; break;
9003 case ARM::t2ORRrr
: NewOpc
= ARM::tORR
; break;
9006 TmpInst
.setOpcode(NewOpc
);
9007 TmpInst
.addOperand(Inst
.getOperand(0));
9008 TmpInst
.addOperand(Inst
.getOperand(5));
9009 if (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg()) {
9010 TmpInst
.addOperand(Inst
.getOperand(1));
9011 TmpInst
.addOperand(Inst
.getOperand(2));
9013 TmpInst
.addOperand(Inst
.getOperand(2));
9014 TmpInst
.addOperand(Inst
.getOperand(1));
9016 TmpInst
.addOperand(Inst
.getOperand(3));
9017 TmpInst
.addOperand(Inst
.getOperand(4));
9026 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst
&Inst
) {
9027 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9028 // suffix depending on whether they're in an IT block or not.
9029 unsigned Opc
= Inst
.getOpcode();
9030 const MCInstrDesc
&MCID
= MII
.get(Opc
);
9031 if (MCID
.TSFlags
& ARMII::ThumbArithFlagSetting
) {
9032 assert(MCID
.hasOptionalDef() &&
9033 "optionally flag setting instruction missing optional def operand");
9034 assert(MCID
.NumOperands
== Inst
.getNumOperands() &&
9035 "operand count mismatch!");
9036 // Find the optional-def operand (cc_out).
9039 !MCID
.OpInfo
[OpNo
].isOptionalDef() && OpNo
< MCID
.NumOperands
;
9042 // If we're parsing Thumb1, reject it completely.
9043 if (isThumbOne() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
)
9044 return Match_RequiresFlagSetting
;
9045 // If we're parsing Thumb2, which form is legal depends on whether we're
9047 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
&&
9049 return Match_RequiresITBlock
;
9050 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() == ARM::CPSR
&&
9052 return Match_RequiresNotITBlock
;
9053 // LSL with zero immediate is not allowed in an IT block
9054 if (Opc
== ARM::tLSLri
&& Inst
.getOperand(3).getImm() == 0 && inITBlock())
9055 return Match_RequiresNotITBlock
;
9056 } else if (isThumbOne()) {
9057 // Some high-register supporting Thumb1 encodings only allow both registers
9058 // to be from r0-r7 when in Thumb2.
9059 if (Opc
== ARM::tADDhirr
&& !hasV6MOps() &&
9060 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9061 isARMLowRegister(Inst
.getOperand(2).getReg()))
9062 return Match_RequiresThumb2
;
9063 // Others only require ARMv6 or later.
9064 else if (Opc
== ARM::tMOVr
&& !hasV6Ops() &&
9065 isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9066 isARMLowRegister(Inst
.getOperand(1).getReg()))
9067 return Match_RequiresV6
;
9070 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9071 // than the loop below can handle, so it uses the GPRnopc register class and
9072 // we do SP handling here.
9073 if (Opc
== ARM::t2MOVr
&& !hasV8Ops())
9075 // SP as both source and destination is not allowed
9076 if (Inst
.getOperand(0).getReg() == ARM::SP
&&
9077 Inst
.getOperand(1).getReg() == ARM::SP
)
9078 return Match_RequiresV8
;
9079 // When flags-setting SP as either source or destination is not allowed
9080 if (Inst
.getOperand(4).getReg() == ARM::CPSR
&&
9081 (Inst
.getOperand(0).getReg() == ARM::SP
||
9082 Inst
.getOperand(1).getReg() == ARM::SP
))
9083 return Match_RequiresV8
;
9086 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9088 if ((Inst
.getOpcode() == ARM::VMRS
|| Inst
.getOpcode() == ARM::VMSR
) &&
9089 Inst
.getOperand(0).getReg() == ARM::SP
&& (isThumb() && !hasV8Ops()))
9090 return Match_InvalidOperand
;
9092 for (unsigned I
= 0; I
< MCID
.NumOperands
; ++I
)
9093 if (MCID
.OpInfo
[I
].RegClass
== ARM::rGPRRegClassID
) {
9094 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9095 if ((Inst
.getOperand(I
).getReg() == ARM::SP
) && !hasV8Ops())
9096 return Match_RequiresV8
;
9097 else if (Inst
.getOperand(I
).getReg() == ARM::PC
)
9098 return Match_InvalidOperand
;
9101 return Match_Success
;
9106 template <> inline bool IsCPSRDead
<MCInst
>(const MCInst
*Instr
) {
9107 return true; // In an assembly source, no need to second-guess
9110 } // end namespace llvm
9112 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9113 // the last instruction in the block.
9114 bool ARMAsmParser::isITBlockTerminator(MCInst
&Inst
) const {
9115 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9117 // All branch & call instructions terminate IT blocks with the exception of
9119 if (MCID
.isTerminator() || (MCID
.isCall() && Inst
.getOpcode() != ARM::tSVC
) ||
9120 MCID
.isReturn() || MCID
.isBranch() || MCID
.isIndirectBranch())
9123 // Any arithmetic instruction which writes to the PC also terminates the IT
9125 for (unsigned OpIdx
= 0; OpIdx
< MCID
.getNumDefs(); ++OpIdx
) {
9126 MCOperand
&Op
= Inst
.getOperand(OpIdx
);
9127 if (Op
.isReg() && Op
.getReg() == ARM::PC
)
9131 if (MCID
.hasImplicitDefOfPhysReg(ARM::PC
, MRI
))
9134 // Instructions with variable operand lists, which write to the variable
9135 // operands. We only care about Thumb instructions here, as ARM instructions
9136 // obviously can't be in an IT block.
9137 switch (Inst
.getOpcode()) {
9140 case ARM::t2LDMIA_UPD
:
9142 case ARM::t2LDMDB_UPD
:
9143 if (listContainsReg(Inst
, 3, ARM::PC
))
9147 if (listContainsReg(Inst
, 2, ARM::PC
))
9155 unsigned ARMAsmParser::MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
9156 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
9157 bool MatchingInlineAsm
,
9158 bool &EmitInITBlock
,
9160 // If we can't use an implicit IT block here, just match as normal.
9161 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9162 return MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
9164 // Try to match the instruction in an extension of the current IT block (if
9166 if (inImplicitITBlock()) {
9167 extendImplicitITBlock(ITState
.Cond
);
9168 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
9170 // The match succeded, but we still have to check that the instruction is
9171 // valid in this implicit IT block.
9172 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9173 if (MCID
.isPredicable()) {
9174 ARMCC::CondCodes InstCond
=
9175 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
9177 ARMCC::CondCodes ITCond
= currentITCond();
9178 if (InstCond
== ITCond
) {
9179 EmitInITBlock
= true;
9180 return Match_Success
;
9181 } else if (InstCond
== ARMCC::getOppositeCondition(ITCond
)) {
9182 invertCurrentITCondition();
9183 EmitInITBlock
= true;
9184 return Match_Success
;
9188 rewindImplicitITPosition();
9191 // Finish the current IT block, and try to match outside any IT block.
9192 flushPendingInstructions(Out
);
9193 unsigned PlainMatchResult
=
9194 MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
9195 if (PlainMatchResult
== Match_Success
) {
9196 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9197 if (MCID
.isPredicable()) {
9198 ARMCC::CondCodes InstCond
=
9199 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
9201 // Some forms of the branch instruction have their own condition code
9202 // fields, so can be conditionally executed without an IT block.
9203 if (Inst
.getOpcode() == ARM::tBcc
|| Inst
.getOpcode() == ARM::t2Bcc
) {
9204 EmitInITBlock
= false;
9205 return Match_Success
;
9207 if (InstCond
== ARMCC::AL
) {
9208 EmitInITBlock
= false;
9209 return Match_Success
;
9212 EmitInITBlock
= false;
9213 return Match_Success
;
9217 // Try to match in a new IT block. The matcher doesn't check the actual
9218 // condition, so we create an IT block with a dummy condition, and fix it up
9219 // once we know the actual condition.
9220 startImplicitITBlock();
9221 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
9223 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
9224 if (MCID
.isPredicable()) {
9226 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
9228 EmitInITBlock
= true;
9229 return Match_Success
;
9232 discardImplicitITBlock();
9234 // If none of these succeed, return the error we got when trying to match
9235 // outside any IT blocks.
9236 EmitInITBlock
= false;
9237 return PlainMatchResult
;
9240 static std::string
ARMMnemonicSpellCheck(StringRef S
, uint64_t FBS
,
9241 unsigned VariantID
= 0);
9243 static const char *getSubtargetFeatureName(uint64_t Val
);
9244 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
9245 OperandVector
&Operands
,
9246 MCStreamer
&Out
, uint64_t &ErrorInfo
,
9247 bool MatchingInlineAsm
) {
9249 unsigned MatchResult
;
9250 bool PendConditionalInstruction
= false;
9252 SmallVector
<NearMissInfo
, 4> NearMisses
;
9253 MatchResult
= MatchInstruction(Operands
, Inst
, NearMisses
, MatchingInlineAsm
,
9254 PendConditionalInstruction
, Out
);
9256 switch (MatchResult
) {
9258 // Context sensitive operand constraints aren't handled by the matcher,
9259 // so check them here.
9260 if (validateInstruction(Inst
, Operands
)) {
9261 // Still progress the IT block, otherwise one wrong condition causes
9262 // nasty cascading errors.
9263 forwardITPosition();
9267 { // processInstruction() updates inITBlock state, we need to save it away
9268 bool wasInITBlock
= inITBlock();
9270 // Some instructions need post-processing to, for example, tweak which
9271 // encoding is selected. Loop on it while changes happen so the
9272 // individual transformations can chain off each other. E.g.,
9273 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9274 while (processInstruction(Inst
, Operands
, Out
))
9277 // Only after the instruction is fully processed, we can validate it
9278 if (wasInITBlock
&& hasV8Ops() && isThumb() &&
9279 !isV8EligibleForIT(&Inst
)) {
9280 Warning(IDLoc
, "deprecated instruction in IT block");
9284 // Only move forward at the very end so that everything in validate
9285 // and process gets a consistent answer about whether we're in an IT
9287 forwardITPosition();
9289 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9290 // doesn't actually encode.
9291 if (Inst
.getOpcode() == ARM::ITasm
)
9295 if (PendConditionalInstruction
) {
9296 PendingConditionalInsts
.push_back(Inst
);
9297 if (isITBlockFull() || isITBlockTerminator(Inst
))
9298 flushPendingInstructions(Out
);
9300 Out
.EmitInstruction(Inst
, getSTI());
9303 case Match_NearMisses
:
9304 ReportNearMisses(NearMisses
, IDLoc
, Operands
);
9306 case Match_MnemonicFail
: {
9307 uint64_t FBS
= ComputeAvailableFeatures(getSTI().getFeatureBits());
9308 std::string Suggestion
= ARMMnemonicSpellCheck(
9309 ((ARMOperand
&)*Operands
[0]).getToken(), FBS
);
9310 return Error(IDLoc
, "invalid instruction" + Suggestion
,
9311 ((ARMOperand
&)*Operands
[0]).getLocRange());
9315 llvm_unreachable("Implement any new match types added!");
9318 /// parseDirective parses the arm specific directives
9319 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID
) {
9320 const MCObjectFileInfo::Environment Format
=
9321 getContext().getObjectFileInfo()->getObjectFileType();
9322 bool IsMachO
= Format
== MCObjectFileInfo::IsMachO
;
9323 bool IsCOFF
= Format
== MCObjectFileInfo::IsCOFF
;
9325 StringRef IDVal
= DirectiveID
.getIdentifier();
9326 if (IDVal
== ".word")
9327 parseLiteralValues(4, DirectiveID
.getLoc());
9328 else if (IDVal
== ".short" || IDVal
== ".hword")
9329 parseLiteralValues(2, DirectiveID
.getLoc());
9330 else if (IDVal
== ".thumb")
9331 parseDirectiveThumb(DirectiveID
.getLoc());
9332 else if (IDVal
== ".arm")
9333 parseDirectiveARM(DirectiveID
.getLoc());
9334 else if (IDVal
== ".thumb_func")
9335 parseDirectiveThumbFunc(DirectiveID
.getLoc());
9336 else if (IDVal
== ".code")
9337 parseDirectiveCode(DirectiveID
.getLoc());
9338 else if (IDVal
== ".syntax")
9339 parseDirectiveSyntax(DirectiveID
.getLoc());
9340 else if (IDVal
== ".unreq")
9341 parseDirectiveUnreq(DirectiveID
.getLoc());
9342 else if (IDVal
== ".fnend")
9343 parseDirectiveFnEnd(DirectiveID
.getLoc());
9344 else if (IDVal
== ".cantunwind")
9345 parseDirectiveCantUnwind(DirectiveID
.getLoc());
9346 else if (IDVal
== ".personality")
9347 parseDirectivePersonality(DirectiveID
.getLoc());
9348 else if (IDVal
== ".handlerdata")
9349 parseDirectiveHandlerData(DirectiveID
.getLoc());
9350 else if (IDVal
== ".setfp")
9351 parseDirectiveSetFP(DirectiveID
.getLoc());
9352 else if (IDVal
== ".pad")
9353 parseDirectivePad(DirectiveID
.getLoc());
9354 else if (IDVal
== ".save")
9355 parseDirectiveRegSave(DirectiveID
.getLoc(), false);
9356 else if (IDVal
== ".vsave")
9357 parseDirectiveRegSave(DirectiveID
.getLoc(), true);
9358 else if (IDVal
== ".ltorg" || IDVal
== ".pool")
9359 parseDirectiveLtorg(DirectiveID
.getLoc());
9360 else if (IDVal
== ".even")
9361 parseDirectiveEven(DirectiveID
.getLoc());
9362 else if (IDVal
== ".personalityindex")
9363 parseDirectivePersonalityIndex(DirectiveID
.getLoc());
9364 else if (IDVal
== ".unwind_raw")
9365 parseDirectiveUnwindRaw(DirectiveID
.getLoc());
9366 else if (IDVal
== ".movsp")
9367 parseDirectiveMovSP(DirectiveID
.getLoc());
9368 else if (IDVal
== ".arch_extension")
9369 parseDirectiveArchExtension(DirectiveID
.getLoc());
9370 else if (IDVal
== ".align")
9371 return parseDirectiveAlign(DirectiveID
.getLoc()); // Use Generic on failure.
9372 else if (IDVal
== ".thumb_set")
9373 parseDirectiveThumbSet(DirectiveID
.getLoc());
9374 else if (IDVal
== ".inst")
9375 parseDirectiveInst(DirectiveID
.getLoc());
9376 else if (IDVal
== ".inst.n")
9377 parseDirectiveInst(DirectiveID
.getLoc(), 'n');
9378 else if (IDVal
== ".inst.w")
9379 parseDirectiveInst(DirectiveID
.getLoc(), 'w');
9380 else if (!IsMachO
&& !IsCOFF
) {
9381 if (IDVal
== ".arch")
9382 parseDirectiveArch(DirectiveID
.getLoc());
9383 else if (IDVal
== ".cpu")
9384 parseDirectiveCPU(DirectiveID
.getLoc());
9385 else if (IDVal
== ".eabi_attribute")
9386 parseDirectiveEabiAttr(DirectiveID
.getLoc());
9387 else if (IDVal
== ".fpu")
9388 parseDirectiveFPU(DirectiveID
.getLoc());
9389 else if (IDVal
== ".fnstart")
9390 parseDirectiveFnStart(DirectiveID
.getLoc());
9391 else if (IDVal
== ".object_arch")
9392 parseDirectiveObjectArch(DirectiveID
.getLoc());
9393 else if (IDVal
== ".tlsdescseq")
9394 parseDirectiveTLSDescSeq(DirectiveID
.getLoc());
9402 /// parseLiteralValues
9403 /// ::= .hword expression [, expression]*
9404 /// ::= .short expression [, expression]*
9405 /// ::= .word expression [, expression]*
9406 bool ARMAsmParser::parseLiteralValues(unsigned Size
, SMLoc L
) {
9407 auto parseOne
= [&]() -> bool {
9408 const MCExpr
*Value
;
9409 if (getParser().parseExpression(Value
))
9411 getParser().getStreamer().EmitValue(Value
, Size
, L
);
9414 return (parseMany(parseOne
));
9417 /// parseDirectiveThumb
9419 bool ARMAsmParser::parseDirectiveThumb(SMLoc L
) {
9420 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
9421 check(!hasThumb(), L
, "target does not support Thumb mode"))
9427 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16
);
9431 /// parseDirectiveARM
9433 bool ARMAsmParser::parseDirectiveARM(SMLoc L
) {
9434 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
9435 check(!hasARM(), L
, "target does not support ARM mode"))
9440 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32
);
9444 void ARMAsmParser::onLabelParsed(MCSymbol
*Symbol
) {
9445 // We need to flush the current implicit IT block on a label, because it is
9446 // not legal to branch into an IT block.
9447 flushPendingInstructions(getStreamer());
9448 if (NextSymbolIsThumb
) {
9449 getParser().getStreamer().EmitThumbFunc(Symbol
);
9450 NextSymbolIsThumb
= false;
9454 /// parseDirectiveThumbFunc
9455 /// ::= .thumbfunc symbol_name
9456 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L
) {
9457 MCAsmParser
&Parser
= getParser();
9458 const auto Format
= getContext().getObjectFileInfo()->getObjectFileType();
9459 bool IsMachO
= Format
== MCObjectFileInfo::IsMachO
;
9461 // Darwin asm has (optionally) function name after .thumb_func direction
9465 if (Parser
.getTok().is(AsmToken::Identifier
) ||
9466 Parser
.getTok().is(AsmToken::String
)) {
9467 MCSymbol
*Func
= getParser().getContext().getOrCreateSymbol(
9468 Parser
.getTok().getIdentifier());
9469 getParser().getStreamer().EmitThumbFunc(Func
);
9471 if (parseToken(AsmToken::EndOfStatement
,
9472 "unexpected token in '.thumb_func' directive"))
9478 if (parseToken(AsmToken::EndOfStatement
,
9479 "unexpected token in '.thumb_func' directive"))
9482 NextSymbolIsThumb
= true;
9486 /// parseDirectiveSyntax
9487 /// ::= .syntax unified | divided
9488 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L
) {
9489 MCAsmParser
&Parser
= getParser();
9490 const AsmToken
&Tok
= Parser
.getTok();
9491 if (Tok
.isNot(AsmToken::Identifier
)) {
9492 Error(L
, "unexpected token in .syntax directive");
9496 StringRef Mode
= Tok
.getString();
9498 if (check(Mode
== "divided" || Mode
== "DIVIDED", L
,
9499 "'.syntax divided' arm assembly not supported") ||
9500 check(Mode
!= "unified" && Mode
!= "UNIFIED", L
,
9501 "unrecognized syntax mode in .syntax directive") ||
9502 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
9505 // TODO tell the MC streamer the mode
9506 // getParser().getStreamer().Emit???();
9510 /// parseDirectiveCode
9511 /// ::= .code 16 | 32
9512 bool ARMAsmParser::parseDirectiveCode(SMLoc L
) {
9513 MCAsmParser
&Parser
= getParser();
9514 const AsmToken
&Tok
= Parser
.getTok();
9515 if (Tok
.isNot(AsmToken::Integer
))
9516 return Error(L
, "unexpected token in .code directive");
9517 int64_t Val
= Parser
.getTok().getIntVal();
9518 if (Val
!= 16 && Val
!= 32) {
9519 Error(L
, "invalid operand to .code directive");
9524 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
9529 return Error(L
, "target does not support Thumb mode");
9533 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16
);
9536 return Error(L
, "target does not support ARM mode");
9540 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32
);
9546 /// parseDirectiveReq
9547 /// ::= name .req registername
9548 bool ARMAsmParser::parseDirectiveReq(StringRef Name
, SMLoc L
) {
9549 MCAsmParser
&Parser
= getParser();
9550 Parser
.Lex(); // Eat the '.req' token.
9552 SMLoc SRegLoc
, ERegLoc
;
9553 if (check(ParseRegister(Reg
, SRegLoc
, ERegLoc
), SRegLoc
,
9554 "register name expected") ||
9555 parseToken(AsmToken::EndOfStatement
,
9556 "unexpected input in .req directive."))
9559 if (RegisterReqs
.insert(std::make_pair(Name
, Reg
)).first
->second
!= Reg
)
9560 return Error(SRegLoc
,
9561 "redefinition of '" + Name
+ "' does not match original.");
9566 /// parseDirectiveUneq
9567 /// ::= .unreq registername
9568 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L
) {
9569 MCAsmParser
&Parser
= getParser();
9570 if (Parser
.getTok().isNot(AsmToken::Identifier
))
9571 return Error(L
, "unexpected input in .unreq directive.");
9572 RegisterReqs
.erase(Parser
.getTok().getIdentifier().lower());
9573 Parser
.Lex(); // Eat the identifier.
9574 if (parseToken(AsmToken::EndOfStatement
,
9575 "unexpected input in '.unreq' directive"))
9580 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9581 // before, if supported by the new target, or emit mapping symbols for the mode
9583 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
) {
9584 if (WasThumb
!= isThumb()) {
9585 if (WasThumb
&& hasThumb()) {
9586 // Stay in Thumb mode
9588 } else if (!WasThumb
&& hasARM()) {
9592 // Mode switch forced, because the new arch doesn't support the old mode.
9593 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9595 // Warn about the implcit mode switch. GAS does not switch modes here,
9596 // but instead stays in the old mode, reporting an error on any following
9597 // instructions as the mode does not exist on the target.
9598 Warning(Loc
, Twine("new target does not support ") +
9599 (WasThumb
? "thumb" : "arm") + " mode, switching to " +
9600 (!WasThumb
? "thumb" : "arm") + " mode");
9605 /// parseDirectiveArch
9607 bool ARMAsmParser::parseDirectiveArch(SMLoc L
) {
9608 StringRef Arch
= getParser().parseStringToEndOfStatement().trim();
9609 ARM::ArchKind ID
= ARM::parseArch(Arch
);
9611 if (ID
== ARM::ArchKind::INVALID
)
9612 return Error(L
, "Unknown arch name");
9614 bool WasThumb
= isThumb();
9616 MCSubtargetInfo
&STI
= copySTI();
9617 STI
.setDefaultFeatures("", ("+" + ARM::getArchName(ID
)).str());
9618 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
9619 FixModeAfterArchChange(WasThumb
, L
);
9621 getTargetStreamer().emitArch(ID
);
9625 /// parseDirectiveEabiAttr
9626 /// ::= .eabi_attribute int, int [, "str"]
9627 /// ::= .eabi_attribute Tag_name, int [, "str"]
9628 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L
) {
9629 MCAsmParser
&Parser
= getParser();
9632 TagLoc
= Parser
.getTok().getLoc();
9633 if (Parser
.getTok().is(AsmToken::Identifier
)) {
9634 StringRef Name
= Parser
.getTok().getIdentifier();
9635 Tag
= ARMBuildAttrs::AttrTypeFromString(Name
);
9637 Error(TagLoc
, "attribute name not recognised: " + Name
);
9642 const MCExpr
*AttrExpr
;
9644 TagLoc
= Parser
.getTok().getLoc();
9645 if (Parser
.parseExpression(AttrExpr
))
9648 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(AttrExpr
);
9649 if (check(!CE
, TagLoc
, "expected numeric constant"))
9652 Tag
= CE
->getValue();
9655 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
9658 StringRef StringValue
= "";
9659 bool IsStringValue
= false;
9661 int64_t IntegerValue
= 0;
9662 bool IsIntegerValue
= false;
9664 if (Tag
== ARMBuildAttrs::CPU_raw_name
|| Tag
== ARMBuildAttrs::CPU_name
)
9665 IsStringValue
= true;
9666 else if (Tag
== ARMBuildAttrs::compatibility
) {
9667 IsStringValue
= true;
9668 IsIntegerValue
= true;
9669 } else if (Tag
< 32 || Tag
% 2 == 0)
9670 IsIntegerValue
= true;
9671 else if (Tag
% 2 == 1)
9672 IsStringValue
= true;
9674 llvm_unreachable("invalid tag type");
9676 if (IsIntegerValue
) {
9677 const MCExpr
*ValueExpr
;
9678 SMLoc ValueExprLoc
= Parser
.getTok().getLoc();
9679 if (Parser
.parseExpression(ValueExpr
))
9682 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ValueExpr
);
9684 return Error(ValueExprLoc
, "expected numeric constant");
9685 IntegerValue
= CE
->getValue();
9688 if (Tag
== ARMBuildAttrs::compatibility
) {
9689 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
9693 if (IsStringValue
) {
9694 if (Parser
.getTok().isNot(AsmToken::String
))
9695 return Error(Parser
.getTok().getLoc(), "bad string constant");
9697 StringValue
= Parser
.getTok().getStringContents();
9701 if (Parser
.parseToken(AsmToken::EndOfStatement
,
9702 "unexpected token in '.eabi_attribute' directive"))
9705 if (IsIntegerValue
&& IsStringValue
) {
9706 assert(Tag
== ARMBuildAttrs::compatibility
);
9707 getTargetStreamer().emitIntTextAttribute(Tag
, IntegerValue
, StringValue
);
9708 } else if (IsIntegerValue
)
9709 getTargetStreamer().emitAttribute(Tag
, IntegerValue
);
9710 else if (IsStringValue
)
9711 getTargetStreamer().emitTextAttribute(Tag
, StringValue
);
9715 /// parseDirectiveCPU
9717 bool ARMAsmParser::parseDirectiveCPU(SMLoc L
) {
9718 StringRef CPU
= getParser().parseStringToEndOfStatement().trim();
9719 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name
, CPU
);
9721 // FIXME: This is using table-gen data, but should be moved to
9722 // ARMTargetParser once that is table-gen'd.
9723 if (!getSTI().isCPUStringValid(CPU
))
9724 return Error(L
, "Unknown CPU name");
9726 bool WasThumb
= isThumb();
9727 MCSubtargetInfo
&STI
= copySTI();
9728 STI
.setDefaultFeatures(CPU
, "");
9729 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
9730 FixModeAfterArchChange(WasThumb
, L
);
9735 /// parseDirectiveFPU
9737 bool ARMAsmParser::parseDirectiveFPU(SMLoc L
) {
9738 SMLoc FPUNameLoc
= getTok().getLoc();
9739 StringRef FPU
= getParser().parseStringToEndOfStatement().trim();
9741 unsigned ID
= ARM::parseFPU(FPU
);
9742 std::vector
<StringRef
> Features
;
9743 if (!ARM::getFPUFeatures(ID
, Features
))
9744 return Error(FPUNameLoc
, "Unknown FPU name");
9746 MCSubtargetInfo
&STI
= copySTI();
9747 for (auto Feature
: Features
)
9748 STI
.ApplyFeatureFlag(Feature
);
9749 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
9751 getTargetStreamer().emitFPU(ID
);
9755 /// parseDirectiveFnStart
9757 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L
) {
9758 if (parseToken(AsmToken::EndOfStatement
,
9759 "unexpected token in '.fnstart' directive"))
9762 if (UC
.hasFnStart()) {
9763 Error(L
, ".fnstart starts before the end of previous one");
9764 UC
.emitFnStartLocNotes();
9768 // Reset the unwind directives parser state
9771 getTargetStreamer().emitFnStart();
9773 UC
.recordFnStart(L
);
9777 /// parseDirectiveFnEnd
9779 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L
) {
9780 if (parseToken(AsmToken::EndOfStatement
,
9781 "unexpected token in '.fnend' directive"))
9783 // Check the ordering of unwind directives
9784 if (!UC
.hasFnStart())
9785 return Error(L
, ".fnstart must precede .fnend directive");
9787 // Reset the unwind directives parser state
9788 getTargetStreamer().emitFnEnd();
9794 /// parseDirectiveCantUnwind
9796 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L
) {
9797 if (parseToken(AsmToken::EndOfStatement
,
9798 "unexpected token in '.cantunwind' directive"))
9801 UC
.recordCantUnwind(L
);
9802 // Check the ordering of unwind directives
9803 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .cantunwind directive"))
9806 if (UC
.hasHandlerData()) {
9807 Error(L
, ".cantunwind can't be used with .handlerdata directive");
9808 UC
.emitHandlerDataLocNotes();
9811 if (UC
.hasPersonality()) {
9812 Error(L
, ".cantunwind can't be used with .personality directive");
9813 UC
.emitPersonalityLocNotes();
9817 getTargetStreamer().emitCantUnwind();
9821 /// parseDirectivePersonality
9822 /// ::= .personality name
9823 bool ARMAsmParser::parseDirectivePersonality(SMLoc L
) {
9824 MCAsmParser
&Parser
= getParser();
9825 bool HasExistingPersonality
= UC
.hasPersonality();
9827 // Parse the name of the personality routine
9828 if (Parser
.getTok().isNot(AsmToken::Identifier
))
9829 return Error(L
, "unexpected input in .personality directive.");
9830 StringRef
Name(Parser
.getTok().getIdentifier());
9833 if (parseToken(AsmToken::EndOfStatement
,
9834 "unexpected token in '.personality' directive"))
9837 UC
.recordPersonality(L
);
9839 // Check the ordering of unwind directives
9840 if (!UC
.hasFnStart())
9841 return Error(L
, ".fnstart must precede .personality directive");
9842 if (UC
.cantUnwind()) {
9843 Error(L
, ".personality can't be used with .cantunwind directive");
9844 UC
.emitCantUnwindLocNotes();
9847 if (UC
.hasHandlerData()) {
9848 Error(L
, ".personality must precede .handlerdata directive");
9849 UC
.emitHandlerDataLocNotes();
9852 if (HasExistingPersonality
) {
9853 Error(L
, "multiple personality directives");
9854 UC
.emitPersonalityLocNotes();
9858 MCSymbol
*PR
= getParser().getContext().getOrCreateSymbol(Name
);
9859 getTargetStreamer().emitPersonality(PR
);
9863 /// parseDirectiveHandlerData
9864 /// ::= .handlerdata
9865 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L
) {
9866 if (parseToken(AsmToken::EndOfStatement
,
9867 "unexpected token in '.handlerdata' directive"))
9870 UC
.recordHandlerData(L
);
9871 // Check the ordering of unwind directives
9872 if (!UC
.hasFnStart())
9873 return Error(L
, ".fnstart must precede .personality directive");
9874 if (UC
.cantUnwind()) {
9875 Error(L
, ".handlerdata can't be used with .cantunwind directive");
9876 UC
.emitCantUnwindLocNotes();
9880 getTargetStreamer().emitHandlerData();
9884 /// parseDirectiveSetFP
9885 /// ::= .setfp fpreg, spreg [, offset]
9886 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L
) {
9887 MCAsmParser
&Parser
= getParser();
9888 // Check the ordering of unwind directives
9889 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .setfp directive") ||
9890 check(UC
.hasHandlerData(), L
,
9891 ".setfp must precede .handlerdata directive"))
9895 SMLoc FPRegLoc
= Parser
.getTok().getLoc();
9896 int FPReg
= tryParseRegister();
9898 if (check(FPReg
== -1, FPRegLoc
, "frame pointer register expected") ||
9899 Parser
.parseToken(AsmToken::Comma
, "comma expected"))
9903 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
9904 int SPReg
= tryParseRegister();
9905 if (check(SPReg
== -1, SPRegLoc
, "stack pointer register expected") ||
9906 check(SPReg
!= ARM::SP
&& SPReg
!= UC
.getFPReg(), SPRegLoc
,
9907 "register should be either $sp or the latest fp register"))
9910 // Update the frame pointer register
9911 UC
.saveFPReg(FPReg
);
9915 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
9916 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
9917 Parser
.getTok().isNot(AsmToken::Dollar
))
9918 return Error(Parser
.getTok().getLoc(), "'#' expected");
9919 Parser
.Lex(); // skip hash token.
9921 const MCExpr
*OffsetExpr
;
9922 SMLoc ExLoc
= Parser
.getTok().getLoc();
9924 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
9925 return Error(ExLoc
, "malformed setfp offset");
9926 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
9927 if (check(!CE
, ExLoc
, "setfp offset must be an immediate"))
9929 Offset
= CE
->getValue();
9932 if (Parser
.parseToken(AsmToken::EndOfStatement
))
9935 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg
),
9936 static_cast<unsigned>(SPReg
), Offset
);
9942 bool ARMAsmParser::parseDirectivePad(SMLoc L
) {
9943 MCAsmParser
&Parser
= getParser();
9944 // Check the ordering of unwind directives
9945 if (!UC
.hasFnStart())
9946 return Error(L
, ".fnstart must precede .pad directive");
9947 if (UC
.hasHandlerData())
9948 return Error(L
, ".pad must precede .handlerdata directive");
9951 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
9952 Parser
.getTok().isNot(AsmToken::Dollar
))
9953 return Error(Parser
.getTok().getLoc(), "'#' expected");
9954 Parser
.Lex(); // skip hash token.
9956 const MCExpr
*OffsetExpr
;
9957 SMLoc ExLoc
= Parser
.getTok().getLoc();
9959 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
9960 return Error(ExLoc
, "malformed pad offset");
9961 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
9963 return Error(ExLoc
, "pad offset must be an immediate");
9965 if (parseToken(AsmToken::EndOfStatement
,
9966 "unexpected token in '.pad' directive"))
9969 getTargetStreamer().emitPad(CE
->getValue());
9973 /// parseDirectiveRegSave
9974 /// ::= .save { registers }
9975 /// ::= .vsave { registers }
9976 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L
, bool IsVector
) {
9977 // Check the ordering of unwind directives
9978 if (!UC
.hasFnStart())
9979 return Error(L
, ".fnstart must precede .save or .vsave directives");
9980 if (UC
.hasHandlerData())
9981 return Error(L
, ".save or .vsave must precede .handlerdata directive");
9983 // RAII object to make sure parsed operands are deleted.
9984 SmallVector
<std::unique_ptr
<MCParsedAsmOperand
>, 1> Operands
;
9986 // Parse the register list
9987 if (parseRegisterList(Operands
) ||
9988 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
9990 ARMOperand
&Op
= (ARMOperand
&)*Operands
[0];
9991 if (!IsVector
&& !Op
.isRegList())
9992 return Error(L
, ".save expects GPR registers");
9993 if (IsVector
&& !Op
.isDPRRegList())
9994 return Error(L
, ".vsave expects DPR registers");
9996 getTargetStreamer().emitRegSave(Op
.getRegList(), IsVector
);
10000 /// parseDirectiveInst
10001 /// ::= .inst opcode [, ...]
10002 /// ::= .inst.n opcode [, ...]
10003 /// ::= .inst.w opcode [, ...]
10004 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc
, char Suffix
) {
10015 return Error(Loc
, "cannot determine Thumb instruction size, "
10016 "use inst.n/inst.w instead");
10020 return Error(Loc
, "width suffixes are invalid in ARM mode");
10023 auto parseOne
= [&]() -> bool {
10024 const MCExpr
*Expr
;
10025 if (getParser().parseExpression(Expr
))
10027 const MCConstantExpr
*Value
= dyn_cast_or_null
<MCConstantExpr
>(Expr
);
10029 return Error(Loc
, "expected constant expression");
10034 if (Value
->getValue() > 0xffff)
10035 return Error(Loc
, "inst.n operand is too big, use inst.w instead");
10038 if (Value
->getValue() > 0xffffffff)
10039 return Error(Loc
, StringRef(Suffix
? "inst.w" : "inst") +
10040 " operand is too big");
10043 llvm_unreachable("only supported widths are 2 and 4");
10046 getTargetStreamer().emitInst(Value
->getValue(), Suffix
);
10050 if (parseOptionalToken(AsmToken::EndOfStatement
))
10051 return Error(Loc
, "expected expression following directive");
10052 if (parseMany(parseOne
))
10057 /// parseDirectiveLtorg
10058 /// ::= .ltorg | .pool
10059 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L
) {
10060 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10062 getTargetStreamer().emitCurrentConstantPool();
10066 bool ARMAsmParser::parseDirectiveEven(SMLoc L
) {
10067 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
10069 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10073 getStreamer().InitSections(false);
10074 Section
= getStreamer().getCurrentSectionOnly();
10077 assert(Section
&& "must have section to emit alignment");
10078 if (Section
->UseCodeAlign())
10079 getStreamer().EmitCodeAlignment(2);
10081 getStreamer().EmitValueToAlignment(2);
10086 /// parseDirectivePersonalityIndex
10087 /// ::= .personalityindex index
10088 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L
) {
10089 MCAsmParser
&Parser
= getParser();
10090 bool HasExistingPersonality
= UC
.hasPersonality();
10092 const MCExpr
*IndexExpression
;
10093 SMLoc IndexLoc
= Parser
.getTok().getLoc();
10094 if (Parser
.parseExpression(IndexExpression
) ||
10095 parseToken(AsmToken::EndOfStatement
,
10096 "unexpected token in '.personalityindex' directive")) {
10100 UC
.recordPersonalityIndex(L
);
10102 if (!UC
.hasFnStart()) {
10103 return Error(L
, ".fnstart must precede .personalityindex directive");
10105 if (UC
.cantUnwind()) {
10106 Error(L
, ".personalityindex cannot be used with .cantunwind");
10107 UC
.emitCantUnwindLocNotes();
10110 if (UC
.hasHandlerData()) {
10111 Error(L
, ".personalityindex must precede .handlerdata directive");
10112 UC
.emitHandlerDataLocNotes();
10115 if (HasExistingPersonality
) {
10116 Error(L
, "multiple personality directives");
10117 UC
.emitPersonalityLocNotes();
10121 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(IndexExpression
);
10123 return Error(IndexLoc
, "index must be a constant number");
10124 if (CE
->getValue() < 0 || CE
->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX
)
10125 return Error(IndexLoc
,
10126 "personality routine index should be in range [0-3]");
10128 getTargetStreamer().emitPersonalityIndex(CE
->getValue());
10132 /// parseDirectiveUnwindRaw
10133 /// ::= .unwind_raw offset, opcode [, opcode...]
10134 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L
) {
10135 MCAsmParser
&Parser
= getParser();
10136 int64_t StackOffset
;
10137 const MCExpr
*OffsetExpr
;
10138 SMLoc OffsetLoc
= getLexer().getLoc();
10140 if (!UC
.hasFnStart())
10141 return Error(L
, ".fnstart must precede .unwind_raw directives");
10142 if (getParser().parseExpression(OffsetExpr
))
10143 return Error(OffsetLoc
, "expected expression");
10145 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
10147 return Error(OffsetLoc
, "offset must be a constant");
10149 StackOffset
= CE
->getValue();
10151 if (Parser
.parseToken(AsmToken::Comma
, "expected comma"))
10154 SmallVector
<uint8_t, 16> Opcodes
;
10156 auto parseOne
= [&]() -> bool {
10158 SMLoc OpcodeLoc
= getLexer().getLoc();
10159 if (check(getLexer().is(AsmToken::EndOfStatement
) ||
10160 Parser
.parseExpression(OE
),
10161 OpcodeLoc
, "expected opcode expression"))
10163 const MCConstantExpr
*OC
= dyn_cast
<MCConstantExpr
>(OE
);
10165 return Error(OpcodeLoc
, "opcode value must be a constant");
10166 const int64_t Opcode
= OC
->getValue();
10167 if (Opcode
& ~0xff)
10168 return Error(OpcodeLoc
, "invalid opcode");
10169 Opcodes
.push_back(uint8_t(Opcode
));
10173 // Must have at least 1 element
10174 SMLoc OpcodeLoc
= getLexer().getLoc();
10175 if (parseOptionalToken(AsmToken::EndOfStatement
))
10176 return Error(OpcodeLoc
, "expected opcode expression");
10177 if (parseMany(parseOne
))
10180 getTargetStreamer().emitUnwindRaw(StackOffset
, Opcodes
);
10184 /// parseDirectiveTLSDescSeq
10185 /// ::= .tlsdescseq tls-variable
10186 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L
) {
10187 MCAsmParser
&Parser
= getParser();
10189 if (getLexer().isNot(AsmToken::Identifier
))
10190 return TokError("expected variable after '.tlsdescseq' directive");
10192 const MCSymbolRefExpr
*SRE
=
10193 MCSymbolRefExpr::create(Parser
.getTok().getIdentifier(),
10194 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ
, getContext());
10197 if (parseToken(AsmToken::EndOfStatement
,
10198 "unexpected token in '.tlsdescseq' directive"))
10201 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE
);
10205 /// parseDirectiveMovSP
10206 /// ::= .movsp reg [, #offset]
10207 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L
) {
10208 MCAsmParser
&Parser
= getParser();
10209 if (!UC
.hasFnStart())
10210 return Error(L
, ".fnstart must precede .movsp directives");
10211 if (UC
.getFPReg() != ARM::SP
)
10212 return Error(L
, "unexpected .movsp directive");
10214 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
10215 int SPReg
= tryParseRegister();
10217 return Error(SPRegLoc
, "register expected");
10218 if (SPReg
== ARM::SP
|| SPReg
== ARM::PC
)
10219 return Error(SPRegLoc
, "sp and pc are not permitted in .movsp directive");
10221 int64_t Offset
= 0;
10222 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
10223 if (Parser
.parseToken(AsmToken::Hash
, "expected #constant"))
10226 const MCExpr
*OffsetExpr
;
10227 SMLoc OffsetLoc
= Parser
.getTok().getLoc();
10229 if (Parser
.parseExpression(OffsetExpr
))
10230 return Error(OffsetLoc
, "malformed offset expression");
10232 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
10234 return Error(OffsetLoc
, "offset must be an immediate constant");
10236 Offset
= CE
->getValue();
10239 if (parseToken(AsmToken::EndOfStatement
,
10240 "unexpected token in '.movsp' directive"))
10243 getTargetStreamer().emitMovSP(SPReg
, Offset
);
10244 UC
.saveFPReg(SPReg
);
10249 /// parseDirectiveObjectArch
10250 /// ::= .object_arch name
10251 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L
) {
10252 MCAsmParser
&Parser
= getParser();
10253 if (getLexer().isNot(AsmToken::Identifier
))
10254 return Error(getLexer().getLoc(), "unexpected token");
10256 StringRef Arch
= Parser
.getTok().getString();
10257 SMLoc ArchLoc
= Parser
.getTok().getLoc();
10260 ARM::ArchKind ID
= ARM::parseArch(Arch
);
10262 if (ID
== ARM::ArchKind::INVALID
)
10263 return Error(ArchLoc
, "unknown architecture '" + Arch
+ "'");
10264 if (parseToken(AsmToken::EndOfStatement
))
10267 getTargetStreamer().emitObjectArch(ID
);
10271 /// parseDirectiveAlign
10273 bool ARMAsmParser::parseDirectiveAlign(SMLoc L
) {
10274 // NOTE: if this is not the end of the statement, fall back to the target
10275 // agnostic handling for this directive which will correctly handle this.
10276 if (parseOptionalToken(AsmToken::EndOfStatement
)) {
10277 // '.align' is target specifically handled to mean 2**2 byte alignment.
10278 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
10279 assert(Section
&& "must have section to emit alignment");
10280 if (Section
->UseCodeAlign())
10281 getStreamer().EmitCodeAlignment(4, 0);
10283 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10289 /// parseDirectiveThumbSet
10290 /// ::= .thumb_set name, value
10291 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L
) {
10292 MCAsmParser
&Parser
= getParser();
10295 if (check(Parser
.parseIdentifier(Name
),
10296 "expected identifier after '.thumb_set'") ||
10297 parseToken(AsmToken::Comma
, "expected comma after name '" + Name
+ "'"))
10301 const MCExpr
*Value
;
10302 if (MCParserUtils::parseAssignmentExpression(Name
, /* allow_redef */ true,
10303 Parser
, Sym
, Value
))
10306 getTargetStreamer().emitThumbSet(Sym
, Value
);
10310 /// Force static initialization.
10311 extern "C" void LLVMInitializeARMAsmParser() {
10312 RegisterMCAsmParser
<ARMAsmParser
> X(getTheARMLETarget());
10313 RegisterMCAsmParser
<ARMAsmParser
> Y(getTheARMBETarget());
10314 RegisterMCAsmParser
<ARMAsmParser
> A(getTheThumbLETarget());
10315 RegisterMCAsmParser
<ARMAsmParser
> B(getTheThumbBETarget());
10318 #define GET_REGISTER_MATCHER
10319 #define GET_SUBTARGET_FEATURE_NAME
10320 #define GET_MATCHER_IMPLEMENTATION
10321 #define GET_MNEMONIC_SPELL_CHECKER
10322 #include "ARMGenAsmMatcher.inc"
10324 // Some diagnostics need to vary with subtarget features, so they are handled
10325 // here. For example, the DPR class has either 16 or 32 registers, depending
10326 // on the FPU available.
10328 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError
) {
10329 switch (MatchError
) {
10330 // rGPR contains sp starting with ARMv8.
10332 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10333 : "operand must be a register in range [r0, r12] or r14";
10334 // DPR contains 16 registers for some FPUs, and 32 for others.
10336 return hasD16() ? "operand must be a register in range [d0, d15]"
10337 : "operand must be a register in range [d0, d31]";
10338 case Match_DPR_RegList
:
10339 return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10340 : "operand must be a list of registers in range [d0, d31]";
10342 // For all other diags, use the static string from tablegen.
10344 return getMatchKindDiag(MatchError
);
10348 // Process the list of near-misses, throwing away ones we don't want to report
10349 // to the user, and converting the rest to a source location and string that
10350 // should be reported.
10352 ARMAsmParser::FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
10353 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
10354 SMLoc IDLoc
, OperandVector
&Operands
) {
10355 // TODO: If operand didn't match, sub in a dummy one and run target
10356 // predicate, so that we can avoid reporting near-misses that are invalid?
10357 // TODO: Many operand types dont have SuperClasses set, so we report
10359 // TODO: Some operands are superclasses of registers (e.g.
10360 // MCK_RegShiftedImm), we don't have any way to represent that currently.
10361 // TODO: This is not all ARM-specific, can some of it be factored out?
10363 // Record some information about near-misses that we have already seen, so
10364 // that we can avoid reporting redundant ones. For example, if there are
10365 // variants of an instruction that take 8- and 16-bit immediates, we want
10366 // to only report the widest one.
10367 std::multimap
<unsigned, unsigned> OperandMissesSeen
;
10368 SmallSet
<uint64_t, 4> FeatureMissesSeen
;
10369 bool ReportedTooFewOperands
= false;
10371 // Process the near-misses in reverse order, so that we see more general ones
10372 // first, and so can avoid emitting more specific ones.
10373 for (NearMissInfo
&I
: reverse(NearMissesIn
)) {
10374 switch (I
.getKind()) {
10375 case NearMissInfo::NearMissOperand
: {
10377 ((ARMOperand
&)*Operands
[I
.getOperandIndex()]).getStartLoc();
10378 const char *OperandDiag
=
10379 getCustomOperandDiag((ARMMatchResultTy
)I
.getOperandError());
10381 // If we have already emitted a message for a superclass, don't also report
10382 // the sub-class. We consider all operand classes that we don't have a
10383 // specialised diagnostic for to be equal for the propose of this check,
10384 // so that we don't report the generic error multiple times on the same
10386 unsigned DupCheckMatchClass
= OperandDiag
? I
.getOperandClass() : ~0U;
10387 auto PrevReports
= OperandMissesSeen
.equal_range(I
.getOperandIndex());
10388 if (std::any_of(PrevReports
.first
, PrevReports
.second
,
10389 [DupCheckMatchClass
](
10390 const std::pair
<unsigned, unsigned> Pair
) {
10391 if (DupCheckMatchClass
== ~0U || Pair
.second
== ~0U)
10392 return Pair
.second
== DupCheckMatchClass
;
10394 return isSubclass((MatchClassKind
)DupCheckMatchClass
,
10395 (MatchClassKind
)Pair
.second
);
10398 OperandMissesSeen
.insert(
10399 std::make_pair(I
.getOperandIndex(), DupCheckMatchClass
));
10401 NearMissMessage Message
;
10402 Message
.Loc
= OperandLoc
;
10404 Message
.Message
= OperandDiag
;
10405 } else if (I
.getOperandClass() == InvalidMatchClass
) {
10406 Message
.Message
= "too many operands for instruction";
10408 Message
.Message
= "invalid operand for instruction";
10410 dbgs() << "Missing diagnostic string for operand class "
10411 << getMatchClassName((MatchClassKind
)I
.getOperandClass())
10412 << I
.getOperandClass() << ", error " << I
.getOperandError()
10413 << ", opcode " << MII
.getName(I
.getOpcode()) << "\n");
10415 NearMissesOut
.emplace_back(Message
);
10418 case NearMissInfo::NearMissFeature
: {
10419 uint64_t MissingFeatures
= I
.getFeatures();
10420 // Don't report the same set of features twice.
10421 if (FeatureMissesSeen
.count(MissingFeatures
))
10423 FeatureMissesSeen
.insert(MissingFeatures
);
10425 // Special case: don't report a feature set which includes arm-mode for
10426 // targets that don't have ARM mode.
10427 if ((MissingFeatures
& Feature_IsARM
) && !hasARM())
10429 // Don't report any near-misses that both require switching instruction
10430 // set, and adding other subtarget features.
10431 if (isThumb() && (MissingFeatures
& Feature_IsARM
) &&
10432 (MissingFeatures
& ~Feature_IsARM
))
10434 if (!isThumb() && (MissingFeatures
& Feature_IsThumb
) &&
10435 (MissingFeatures
& ~Feature_IsThumb
))
10437 if (!isThumb() && (MissingFeatures
& Feature_IsThumb2
) &&
10438 (MissingFeatures
& ~(Feature_IsThumb2
| Feature_IsThumb
)))
10440 if (isMClass() && (MissingFeatures
& Feature_HasNEON
))
10443 NearMissMessage Message
;
10444 Message
.Loc
= IDLoc
;
10445 raw_svector_ostream
OS(Message
.Message
);
10447 OS
<< "instruction requires:";
10449 for (unsigned MaskPos
= 0; MaskPos
< (sizeof(MissingFeatures
) * 8 - 1);
10451 if (MissingFeatures
& Mask
) {
10452 OS
<< " " << getSubtargetFeatureName(MissingFeatures
& Mask
);
10456 NearMissesOut
.emplace_back(Message
);
10460 case NearMissInfo::NearMissPredicate
: {
10461 NearMissMessage Message
;
10462 Message
.Loc
= IDLoc
;
10463 switch (I
.getPredicateError()) {
10464 case Match_RequiresNotITBlock
:
10465 Message
.Message
= "flag setting instruction only valid outside IT block";
10467 case Match_RequiresITBlock
:
10468 Message
.Message
= "instruction only valid inside IT block";
10470 case Match_RequiresV6
:
10471 Message
.Message
= "instruction variant requires ARMv6 or later";
10473 case Match_RequiresThumb2
:
10474 Message
.Message
= "instruction variant requires Thumb2";
10476 case Match_RequiresV8
:
10477 Message
.Message
= "instruction variant requires ARMv8 or later";
10479 case Match_RequiresFlagSetting
:
10480 Message
.Message
= "no flag-preserving variant of this instruction available";
10482 case Match_InvalidOperand
:
10483 Message
.Message
= "invalid operand for instruction";
10486 llvm_unreachable("Unhandled target predicate error");
10489 NearMissesOut
.emplace_back(Message
);
10492 case NearMissInfo::NearMissTooFewOperands
: {
10493 if (!ReportedTooFewOperands
) {
10494 SMLoc EndLoc
= ((ARMOperand
&)*Operands
.back()).getEndLoc();
10495 NearMissesOut
.emplace_back(NearMissMessage
{
10496 EndLoc
, StringRef("too few operands for instruction")});
10497 ReportedTooFewOperands
= true;
10501 case NearMissInfo::NoNearMiss
:
10502 // This should never leave the matcher.
10503 llvm_unreachable("not a near-miss");
10509 void ARMAsmParser::ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
,
10510 SMLoc IDLoc
, OperandVector
&Operands
) {
10511 SmallVector
<NearMissMessage
, 4> Messages
;
10512 FilterNearMisses(NearMisses
, Messages
, IDLoc
, Operands
);
10514 if (Messages
.size() == 0) {
10515 // No near-misses were found, so the best we can do is "invalid
10517 Error(IDLoc
, "invalid instruction");
10518 } else if (Messages
.size() == 1) {
10519 // One near miss was found, report it as the sole error.
10520 Error(Messages
[0].Loc
, Messages
[0].Message
);
10522 // More than one near miss, so report a generic "invalid instruction"
10523 // error, followed by notes for each of the near-misses.
10524 Error(IDLoc
, "invalid instruction, any one of the following would fix this:");
10525 for (auto &M
: Messages
) {
10526 Note(M
.Loc
, M
.Message
);
10531 // FIXME: This structure should be moved inside ARMTargetParser
10532 // when we start to table-generate them, and we can use the ARM
10533 // flags below, that were generated by table-gen.
10534 static const struct {
10535 const unsigned Kind
;
10536 const uint64_t ArchCheck
;
10537 const FeatureBitset Features
;
10539 { ARM::AEK_CRC
, Feature_HasV8
, {ARM::FeatureCRC
} },
10540 { ARM::AEK_CRYPTO
, Feature_HasV8
,
10541 {ARM::FeatureCrypto
, ARM::FeatureNEON
, ARM::FeatureFPARMv8
} },
10542 { ARM::AEK_FP
, Feature_HasV8
, {ARM::FeatureFPARMv8
} },
10543 { (ARM::AEK_HWDIVTHUMB
| ARM::AEK_HWDIVARM
), Feature_HasV7
| Feature_IsNotMClass
,
10544 {ARM::FeatureHWDivThumb
, ARM::FeatureHWDivARM
} },
10545 { ARM::AEK_MP
, Feature_HasV7
| Feature_IsNotMClass
, {ARM::FeatureMP
} },
10546 { ARM::AEK_SIMD
, Feature_HasV8
, {ARM::FeatureNEON
, ARM::FeatureFPARMv8
} },
10547 { ARM::AEK_SEC
, Feature_HasV6K
, {ARM::FeatureTrustZone
} },
10548 // FIXME: Only available in A-class, isel not predicated
10549 { ARM::AEK_VIRT
, Feature_HasV7
, {ARM::FeatureVirtualization
} },
10550 { ARM::AEK_FP16
, Feature_HasV8_2a
, {ARM::FeatureFPARMv8
, ARM::FeatureFullFP16
} },
10551 { ARM::AEK_RAS
, Feature_HasV8
, {ARM::FeatureRAS
} },
10552 // FIXME: Unsupported extensions.
10553 { ARM::AEK_OS
, Feature_None
, {} },
10554 { ARM::AEK_IWMMXT
, Feature_None
, {} },
10555 { ARM::AEK_IWMMXT2
, Feature_None
, {} },
10556 { ARM::AEK_MAVERICK
, Feature_None
, {} },
10557 { ARM::AEK_XSCALE
, Feature_None
, {} },
10560 /// parseDirectiveArchExtension
10561 /// ::= .arch_extension [no]feature
10562 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L
) {
10563 MCAsmParser
&Parser
= getParser();
10565 if (getLexer().isNot(AsmToken::Identifier
))
10566 return Error(getLexer().getLoc(), "expected architecture extension name");
10568 StringRef Name
= Parser
.getTok().getString();
10569 SMLoc ExtLoc
= Parser
.getTok().getLoc();
10572 if (parseToken(AsmToken::EndOfStatement
,
10573 "unexpected token in '.arch_extension' directive"))
10576 bool EnableFeature
= true;
10577 if (Name
.startswith_lower("no")) {
10578 EnableFeature
= false;
10579 Name
= Name
.substr(2);
10581 unsigned FeatureKind
= ARM::parseArchExt(Name
);
10582 if (FeatureKind
== ARM::AEK_INVALID
)
10583 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
10585 for (const auto &Extension
: Extensions
) {
10586 if (Extension
.Kind
!= FeatureKind
)
10589 if (Extension
.Features
.none())
10590 return Error(ExtLoc
, "unsupported architectural extension: " + Name
);
10592 if ((getAvailableFeatures() & Extension
.ArchCheck
) != Extension
.ArchCheck
)
10593 return Error(ExtLoc
, "architectural extension '" + Name
+
10595 "allowed for the current base architecture");
10597 MCSubtargetInfo
&STI
= copySTI();
10598 FeatureBitset ToggleFeatures
= EnableFeature
10599 ? (~STI
.getFeatureBits() & Extension
.Features
)
10600 : ( STI
.getFeatureBits() & Extension
.Features
);
10602 uint64_t Features
=
10603 ComputeAvailableFeatures(STI
.ToggleFeature(ToggleFeatures
));
10604 setAvailableFeatures(Features
);
10608 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
10611 // Define this matcher function after the auto-generated include so we
10612 // have the match class enum definitions.
10613 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand
&AsmOp
,
10615 ARMOperand
&Op
= static_cast<ARMOperand
&>(AsmOp
);
10616 // If the kind is a token for a literal immediate, check if our asm
10617 // operand matches. This is for InstAliases which have a fixed-value
10618 // immediate in the syntax.
10623 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
10624 if (CE
->getValue() == 0)
10625 return Match_Success
;
10629 const MCExpr
*SOExpr
= Op
.getImm();
10631 if (!SOExpr
->evaluateAsAbsolute(Value
))
10632 return Match_Success
;
10633 assert((Value
>= std::numeric_limits
<int32_t>::min() &&
10634 Value
<= std::numeric_limits
<uint32_t>::max()) &&
10635 "expression value must be representable in 32 bits");
10639 if (hasV8Ops() && Op
.isReg() && Op
.getReg() == ARM::SP
)
10640 return Match_Success
;
10644 MRI
->getRegClass(ARM::GPRRegClassID
).contains(Op
.getReg()))
10645 return Match_Success
;
10648 return Match_InvalidOperand
;