[ARM] Support the .inst directive for MachO and COFF targets
[llvm-complete.git] / lib / Target / ARM / AsmParser / ARMAsmParser.cpp
blobed706ab7a2938c5702b5190d41c301d2d7ca9eb7
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "ARMFeatures.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCParser/MCAsmLexer.h"
34 #include "llvm/MC/MCParser/MCAsmParser.h"
35 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
36 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
38 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSubtargetInfo.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/SubtargetFeature.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/SMLoc.h"
53 #include "llvm/Support/TargetParser.h"
54 #include "llvm/Support/TargetRegistry.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 #include <vector>
67 #define DEBUG_TYPE "asm-parser"
69 using namespace llvm;
71 namespace {
73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
75 static cl::opt<ImplicitItModeTy> ImplicitItMode(
76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
77 cl::desc("Allow conditional instructions outdside of an IT block"),
78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
79 "Accept in both ISAs, emit implicit ITs in Thumb"),
80 clEnumValN(ImplicitItModeTy::Never, "never",
81 "Warn in ARM, reject in Thumb"),
82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
83 "Accept in ARM, reject in Thumb"),
84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
85 "Warn in ARM, emit implicit ITs in Thumb")));
87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
88 cl::init(false));
90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
92 class UnwindContext {
93 using Locs = SmallVector<SMLoc, 4>;
95 MCAsmParser &Parser;
96 Locs FnStartLocs;
97 Locs CantUnwindLocs;
98 Locs PersonalityLocs;
99 Locs PersonalityIndexLocs;
100 Locs HandlerDataLocs;
101 int FPReg;
103 public:
104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
106 bool hasFnStart() const { return !FnStartLocs.empty(); }
107 bool cantUnwind() const { return !CantUnwindLocs.empty(); }
108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
110 bool hasPersonality() const {
111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
120 void saveFPReg(int Reg) { FPReg = Reg; }
121 int getFPReg() const { return FPReg; }
123 void emitFnStartLocNotes() const {
124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
125 FI != FE; ++FI)
126 Parser.Note(*FI, ".fnstart was specified here");
129 void emitCantUnwindLocNotes() const {
130 for (Locs::const_iterator UI = CantUnwindLocs.begin(),
131 UE = CantUnwindLocs.end(); UI != UE; ++UI)
132 Parser.Note(*UI, ".cantunwind was specified here");
135 void emitHandlerDataLocNotes() const {
136 for (Locs::const_iterator HI = HandlerDataLocs.begin(),
137 HE = HandlerDataLocs.end(); HI != HE; ++HI)
138 Parser.Note(*HI, ".handlerdata was specified here");
141 void emitPersonalityLocNotes() const {
142 for (Locs::const_iterator PI = PersonalityLocs.begin(),
143 PE = PersonalityLocs.end(),
144 PII = PersonalityIndexLocs.begin(),
145 PIE = PersonalityIndexLocs.end();
146 PI != PE || PII != PIE;) {
147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
148 Parser.Note(*PI++, ".personality was specified here");
149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
150 Parser.Note(*PII++, ".personalityindex was specified here");
151 else
152 llvm_unreachable(".personality and .personalityindex cannot be "
153 "at the same location");
157 void reset() {
158 FnStartLocs = Locs();
159 CantUnwindLocs = Locs();
160 PersonalityLocs = Locs();
161 HandlerDataLocs = Locs();
162 PersonalityIndexLocs = Locs();
163 FPReg = ARM::SP;
167 class ARMAsmParser : public MCTargetAsmParser {
168 const MCRegisterInfo *MRI;
169 UnwindContext UC;
171 ARMTargetStreamer &getTargetStreamer() {
172 assert(getParser().getStreamer().getTargetStreamer() &&
173 "do not have a target streamer");
174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
175 return static_cast<ARMTargetStreamer &>(TS);
178 // Map of register aliases registers via the .req directive.
179 StringMap<unsigned> RegisterReqs;
181 bool NextSymbolIsThumb;
183 bool useImplicitITThumb() const {
184 return ImplicitItMode == ImplicitItModeTy::Always ||
185 ImplicitItMode == ImplicitItModeTy::ThumbOnly;
188 bool useImplicitITARM() const {
189 return ImplicitItMode == ImplicitItModeTy::Always ||
190 ImplicitItMode == ImplicitItModeTy::ARMOnly;
193 struct {
194 ARMCC::CondCodes Cond; // Condition for IT block.
195 unsigned Mask:4; // Condition mask for instructions.
196 // Starting at first 1 (from lsb).
197 // '1' condition as indicated in IT.
198 // '0' inverse of condition (else).
199 // Count of instructions in IT block is
200 // 4 - trailingzeroes(mask)
201 // Note that this does not have the same encoding
202 // as in the IT instruction, which also depends
203 // on the low bit of the condition code.
205 unsigned CurPosition; // Current position in parsing of IT
206 // block. In range [0,4], with 0 being the IT
207 // instruction itself. Initialized according to
208 // count of instructions in block. ~0U if no
209 // active IT block.
211 bool IsExplicit; // true - The IT instruction was present in the
212 // input, we should not modify it.
213 // false - The IT instruction was added
214 // implicitly, we can extend it if that
215 // would be legal.
216 } ITState;
218 SmallVector<MCInst, 4> PendingConditionalInsts;
220 void flushPendingInstructions(MCStreamer &Out) override {
221 if (!inImplicitITBlock()) {
222 assert(PendingConditionalInsts.size() == 0);
223 return;
226 // Emit the IT instruction
227 unsigned Mask = getITMaskEncoding();
228 MCInst ITInst;
229 ITInst.setOpcode(ARM::t2IT);
230 ITInst.addOperand(MCOperand::createImm(ITState.Cond));
231 ITInst.addOperand(MCOperand::createImm(Mask));
232 Out.EmitInstruction(ITInst, getSTI());
234 // Emit the conditonal instructions
235 assert(PendingConditionalInsts.size() <= 4);
236 for (const MCInst &Inst : PendingConditionalInsts) {
237 Out.EmitInstruction(Inst, getSTI());
239 PendingConditionalInsts.clear();
241 // Clear the IT state
242 ITState.Mask = 0;
243 ITState.CurPosition = ~0U;
246 bool inITBlock() { return ITState.CurPosition != ~0U; }
247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
250 bool lastInITBlock() {
251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
254 void forwardITPosition() {
255 if (!inITBlock()) return;
256 // Move to the next instruction in the IT block, if there is one. If not,
257 // mark the block as done, except for implicit IT blocks, which we leave
258 // open until we find an instruction that can't be added to it.
259 unsigned TZ = countTrailingZeros(ITState.Mask);
260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
261 ITState.CurPosition = ~0U; // Done with the IT block after this.
264 // Rewind the state of the current IT block, removing the last slot from it.
265 void rewindImplicitITPosition() {
266 assert(inImplicitITBlock());
267 assert(ITState.CurPosition > 1);
268 ITState.CurPosition--;
269 unsigned TZ = countTrailingZeros(ITState.Mask);
270 unsigned NewMask = 0;
271 NewMask |= ITState.Mask & (0xC << TZ);
272 NewMask |= 0x2 << TZ;
273 ITState.Mask = NewMask;
276 // Rewind the state of the current IT block, removing the last slot from it.
277 // If we were at the first slot, this closes the IT block.
278 void discardImplicitITBlock() {
279 assert(inImplicitITBlock());
280 assert(ITState.CurPosition == 1);
281 ITState.CurPosition = ~0U;
284 // Return the low-subreg of a given Q register.
285 unsigned getDRegFromQReg(unsigned QReg) const {
286 return MRI->getSubReg(QReg, ARM::dsub_0);
289 // Get the encoding of the IT mask, as it will appear in an IT instruction.
290 unsigned getITMaskEncoding() {
291 assert(inITBlock());
292 unsigned Mask = ITState.Mask;
293 unsigned TZ = countTrailingZeros(Mask);
294 if ((ITState.Cond & 1) == 0) {
295 assert(Mask && TZ <= 3 && "illegal IT mask value!");
296 Mask ^= (0xE << TZ) & 0xF;
298 return Mask;
301 // Get the condition code corresponding to the current IT block slot.
302 ARMCC::CondCodes currentITCond() {
303 unsigned MaskBit;
304 if (ITState.CurPosition == 1)
305 MaskBit = 1;
306 else
307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond);
312 // Invert the condition of the current IT block slot without changing any
313 // other slots in the same block.
314 void invertCurrentITCondition() {
315 if (ITState.CurPosition == 1) {
316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
317 } else {
318 ITState.Mask ^= 1 << (5 - ITState.CurPosition);
322 // Returns true if the current IT block is full (all 4 slots used).
323 bool isITBlockFull() {
324 return inITBlock() && (ITState.Mask & 1);
327 // Extend the current implicit IT block to have one more slot with the given
328 // condition code.
329 void extendImplicitITBlock(ARMCC::CondCodes Cond) {
330 assert(inImplicitITBlock());
331 assert(!isITBlockFull());
332 assert(Cond == ITState.Cond ||
333 Cond == ARMCC::getOppositeCondition(ITState.Cond));
334 unsigned TZ = countTrailingZeros(ITState.Mask);
335 unsigned NewMask = 0;
336 // Keep any existing condition bits.
337 NewMask |= ITState.Mask & (0xE << TZ);
338 // Insert the new condition bit.
339 NewMask |= (Cond == ITState.Cond) << TZ;
340 // Move the trailing 1 down one bit.
341 NewMask |= 1 << (TZ - 1);
342 ITState.Mask = NewMask;
345 // Create a new implicit IT block with a dummy condition code.
346 void startImplicitITBlock() {
347 assert(!inITBlock());
348 ITState.Cond = ARMCC::AL;
349 ITState.Mask = 8;
350 ITState.CurPosition = 1;
351 ITState.IsExplicit = false;
354 // Create a new explicit IT block with the given condition and mask. The mask
355 // should be in the parsed format, with a 1 implying 't', regardless of the
356 // low bit of the condition.
357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358 assert(!inITBlock());
359 ITState.Cond = Cond;
360 ITState.Mask = Mask;
361 ITState.CurPosition = 0;
362 ITState.IsExplicit = true;
365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
366 return getParser().Note(L, Msg, Range);
369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
370 return getParser().Warning(L, Msg, Range);
373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
374 return getParser().Error(L, Msg, Range);
377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
378 unsigned ListNo, bool IsARPop = false);
379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
380 unsigned ListNo);
382 int tryParseRegister();
383 bool tryParseRegisterWithWriteBack(OperandVector &);
384 int tryParseShiftRegister(OperandVector &);
385 bool parseRegisterList(OperandVector &);
386 bool parseMemory(OperandVector &);
387 bool parseOperand(OperandVector &, StringRef Mnemonic);
388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
390 unsigned &ShiftAmount);
391 bool parseLiteralValues(unsigned Size, SMLoc L);
392 bool parseDirectiveThumb(SMLoc L);
393 bool parseDirectiveARM(SMLoc L);
394 bool parseDirectiveThumbFunc(SMLoc L);
395 bool parseDirectiveCode(SMLoc L);
396 bool parseDirectiveSyntax(SMLoc L);
397 bool parseDirectiveReq(StringRef Name, SMLoc L);
398 bool parseDirectiveUnreq(SMLoc L);
399 bool parseDirectiveArch(SMLoc L);
400 bool parseDirectiveEabiAttr(SMLoc L);
401 bool parseDirectiveCPU(SMLoc L);
402 bool parseDirectiveFPU(SMLoc L);
403 bool parseDirectiveFnStart(SMLoc L);
404 bool parseDirectiveFnEnd(SMLoc L);
405 bool parseDirectiveCantUnwind(SMLoc L);
406 bool parseDirectivePersonality(SMLoc L);
407 bool parseDirectiveHandlerData(SMLoc L);
408 bool parseDirectiveSetFP(SMLoc L);
409 bool parseDirectivePad(SMLoc L);
410 bool parseDirectiveRegSave(SMLoc L, bool IsVector);
411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
412 bool parseDirectiveLtorg(SMLoc L);
413 bool parseDirectiveEven(SMLoc L);
414 bool parseDirectivePersonalityIndex(SMLoc L);
415 bool parseDirectiveUnwindRaw(SMLoc L);
416 bool parseDirectiveTLSDescSeq(SMLoc L);
417 bool parseDirectiveMovSP(SMLoc L);
418 bool parseDirectiveObjectArch(SMLoc L);
419 bool parseDirectiveArchExtension(SMLoc L);
420 bool parseDirectiveAlign(SMLoc L);
421 bool parseDirectiveThumbSet(SMLoc L);
423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
424 bool &CarrySetting, unsigned &ProcessorIMod,
425 StringRef &ITMask);
426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
427 bool &CanAcceptCarrySet,
428 bool &CanAcceptPredicationCode);
430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
431 OperandVector &Operands);
432 bool isThumb() const {
433 // FIXME: Can tablegen auto-generate this?
434 return getSTI().getFeatureBits()[ARM::ModeThumb];
437 bool isThumbOne() const {
438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
441 bool isThumbTwo() const {
442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
445 bool hasThumb() const {
446 return getSTI().getFeatureBits()[ARM::HasV4TOps];
449 bool hasThumb2() const {
450 return getSTI().getFeatureBits()[ARM::FeatureThumb2];
453 bool hasV6Ops() const {
454 return getSTI().getFeatureBits()[ARM::HasV6Ops];
457 bool hasV6T2Ops() const {
458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
461 bool hasV6MOps() const {
462 return getSTI().getFeatureBits()[ARM::HasV6MOps];
465 bool hasV7Ops() const {
466 return getSTI().getFeatureBits()[ARM::HasV7Ops];
469 bool hasV8Ops() const {
470 return getSTI().getFeatureBits()[ARM::HasV8Ops];
473 bool hasV8MBaseline() const {
474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
477 bool hasV8MMainline() const {
478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
481 bool has8MSecExt() const {
482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
485 bool hasARM() const {
486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
489 bool hasDSP() const {
490 return getSTI().getFeatureBits()[ARM::FeatureDSP];
493 bool hasD16() const {
494 return getSTI().getFeatureBits()[ARM::FeatureD16];
497 bool hasV8_1aOps() const {
498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
501 bool hasRAS() const {
502 return getSTI().getFeatureBits()[ARM::FeatureRAS];
505 void SwitchMode() {
506 MCSubtargetInfo &STI = copySTI();
507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
508 setAvailableFeatures(FB);
511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
513 bool isMClass() const {
514 return getSTI().getFeatureBits()[ARM::FeatureMClass];
517 /// @name Auto-generated Match Functions
518 /// {
520 #define GET_ASSEMBLER_HEADER
521 #include "ARMGenAsmMatcher.inc"
523 /// }
525 OperandMatchResultTy parseITCondCode(OperandVector &);
526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
530 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
531 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
532 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
533 OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
534 OperandMatchResultTy parseBankedRegOperand(OperandVector &);
535 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
536 int High);
537 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
538 return parsePKHImm(O, "lsl", 0, 31);
540 OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
541 return parsePKHImm(O, "asr", 1, 32);
543 OperandMatchResultTy parseSetEndImm(OperandVector &);
544 OperandMatchResultTy parseShifterImm(OperandVector &);
545 OperandMatchResultTy parseRotImm(OperandVector &);
546 OperandMatchResultTy parseModImm(OperandVector &);
547 OperandMatchResultTy parseBitfield(OperandVector &);
548 OperandMatchResultTy parsePostIdxReg(OperandVector &);
549 OperandMatchResultTy parseAM3Offset(OperandVector &);
550 OperandMatchResultTy parseFPImm(OperandVector &);
551 OperandMatchResultTy parseVectorList(OperandVector &);
552 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
553 SMLoc &EndLoc);
555 // Asm Match Converter Methods
556 void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
557 void cvtThumbBranches(MCInst &Inst, const OperandVector &);
559 bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
560 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
561 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
562 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
563 bool isITBlockTerminator(MCInst &Inst) const;
564 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
565 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
566 bool Load, bool ARMMode, bool Writeback);
568 public:
569 enum ARMMatchResultTy {
570 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
571 Match_RequiresNotITBlock,
572 Match_RequiresV6,
573 Match_RequiresThumb2,
574 Match_RequiresV8,
575 Match_RequiresFlagSetting,
576 #define GET_OPERAND_DIAGNOSTIC_TYPES
577 #include "ARMGenAsmMatcher.inc"
581 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
582 const MCInstrInfo &MII, const MCTargetOptions &Options)
583 : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
584 MCAsmParserExtension::Initialize(Parser);
586 // Cache the MCRegisterInfo.
587 MRI = getContext().getRegisterInfo();
589 // Initialize the set of available features.
590 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
592 // Add build attributes based on the selected target.
593 if (AddBuildAttributes)
594 getTargetStreamer().emitTargetAttributes(STI);
596 // Not in an ITBlock to start with.
597 ITState.CurPosition = ~0U;
599 NextSymbolIsThumb = false;
602 // Implementation of the MCTargetAsmParser interface:
603 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
604 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
605 SMLoc NameLoc, OperandVector &Operands) override;
606 bool ParseDirective(AsmToken DirectiveID) override;
608 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
609 unsigned Kind) override;
610 unsigned checkTargetMatchPredicate(MCInst &Inst) override;
612 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
613 OperandVector &Operands, MCStreamer &Out,
614 uint64_t &ErrorInfo,
615 bool MatchingInlineAsm) override;
616 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
617 SmallVectorImpl<NearMissInfo> &NearMisses,
618 bool MatchingInlineAsm, bool &EmitInITBlock,
619 MCStreamer &Out);
621 struct NearMissMessage {
622 SMLoc Loc;
623 SmallString<128> Message;
626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
628 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
629 SmallVectorImpl<NearMissMessage> &NearMissesOut,
630 SMLoc IDLoc, OperandVector &Operands);
631 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
632 OperandVector &Operands);
634 void onLabelParsed(MCSymbol *Symbol) override;
637 /// ARMOperand - Instances of this class represent a parsed ARM machine
638 /// operand.
639 class ARMOperand : public MCParsedAsmOperand {
640 enum KindTy {
641 k_CondCode,
642 k_CCOut,
643 k_ITCondMask,
644 k_CoprocNum,
645 k_CoprocReg,
646 k_CoprocOption,
647 k_Immediate,
648 k_MemBarrierOpt,
649 k_InstSyncBarrierOpt,
650 k_TraceSyncBarrierOpt,
651 k_Memory,
652 k_PostIndexRegister,
653 k_MSRMask,
654 k_BankedReg,
655 k_ProcIFlags,
656 k_VectorIndex,
657 k_Register,
658 k_RegisterList,
659 k_DPRRegisterList,
660 k_SPRRegisterList,
661 k_VectorList,
662 k_VectorListAllLanes,
663 k_VectorListIndexed,
664 k_ShiftedRegister,
665 k_ShiftedImmediate,
666 k_ShifterImmediate,
667 k_RotateImmediate,
668 k_ModifiedImmediate,
669 k_ConstantPoolImmediate,
670 k_BitfieldDescriptor,
671 k_Token,
672 } Kind;
674 SMLoc StartLoc, EndLoc, AlignmentLoc;
675 SmallVector<unsigned, 8> Registers;
677 struct CCOp {
678 ARMCC::CondCodes Val;
681 struct CopOp {
682 unsigned Val;
685 struct CoprocOptionOp {
686 unsigned Val;
689 struct ITMaskOp {
690 unsigned Mask:4;
693 struct MBOptOp {
694 ARM_MB::MemBOpt Val;
697 struct ISBOptOp {
698 ARM_ISB::InstSyncBOpt Val;
701 struct TSBOptOp {
702 ARM_TSB::TraceSyncBOpt Val;
705 struct IFlagsOp {
706 ARM_PROC::IFlags Val;
709 struct MMaskOp {
710 unsigned Val;
713 struct BankedRegOp {
714 unsigned Val;
717 struct TokOp {
718 const char *Data;
719 unsigned Length;
722 struct RegOp {
723 unsigned RegNum;
726 // A vector register list is a sequential list of 1 to 4 registers.
727 struct VectorListOp {
728 unsigned RegNum;
729 unsigned Count;
730 unsigned LaneIndex;
731 bool isDoubleSpaced;
734 struct VectorIndexOp {
735 unsigned Val;
738 struct ImmOp {
739 const MCExpr *Val;
742 /// Combined record for all forms of ARM address expressions.
743 struct MemoryOp {
744 unsigned BaseRegNum;
745 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
746 // was specified.
747 const MCConstantExpr *OffsetImm; // Offset immediate value
748 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
749 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
750 unsigned ShiftImm; // shift for OffsetReg.
751 unsigned Alignment; // 0 = no alignment specified
752 // n = alignment in bytes (2, 4, 8, 16, or 32)
753 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
756 struct PostIdxRegOp {
757 unsigned RegNum;
758 bool isAdd;
759 ARM_AM::ShiftOpc ShiftTy;
760 unsigned ShiftImm;
763 struct ShifterImmOp {
764 bool isASR;
765 unsigned Imm;
768 struct RegShiftedRegOp {
769 ARM_AM::ShiftOpc ShiftTy;
770 unsigned SrcReg;
771 unsigned ShiftReg;
772 unsigned ShiftImm;
775 struct RegShiftedImmOp {
776 ARM_AM::ShiftOpc ShiftTy;
777 unsigned SrcReg;
778 unsigned ShiftImm;
781 struct RotImmOp {
782 unsigned Imm;
785 struct ModImmOp {
786 unsigned Bits;
787 unsigned Rot;
790 struct BitfieldOp {
791 unsigned LSB;
792 unsigned Width;
795 union {
796 struct CCOp CC;
797 struct CopOp Cop;
798 struct CoprocOptionOp CoprocOption;
799 struct MBOptOp MBOpt;
800 struct ISBOptOp ISBOpt;
801 struct TSBOptOp TSBOpt;
802 struct ITMaskOp ITMask;
803 struct IFlagsOp IFlags;
804 struct MMaskOp MMask;
805 struct BankedRegOp BankedReg;
806 struct TokOp Tok;
807 struct RegOp Reg;
808 struct VectorListOp VectorList;
809 struct VectorIndexOp VectorIndex;
810 struct ImmOp Imm;
811 struct MemoryOp Memory;
812 struct PostIdxRegOp PostIdxReg;
813 struct ShifterImmOp ShifterImm;
814 struct RegShiftedRegOp RegShiftedReg;
815 struct RegShiftedImmOp RegShiftedImm;
816 struct RotImmOp RotImm;
817 struct ModImmOp ModImm;
818 struct BitfieldOp Bitfield;
821 public:
822 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
824 /// getStartLoc - Get the location of the first token of this operand.
825 SMLoc getStartLoc() const override { return StartLoc; }
827 /// getEndLoc - Get the location of the last token of this operand.
828 SMLoc getEndLoc() const override { return EndLoc; }
830 /// getLocRange - Get the range between the first and last token of this
831 /// operand.
832 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
834 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
835 SMLoc getAlignmentLoc() const {
836 assert(Kind == k_Memory && "Invalid access!");
837 return AlignmentLoc;
840 ARMCC::CondCodes getCondCode() const {
841 assert(Kind == k_CondCode && "Invalid access!");
842 return CC.Val;
845 unsigned getCoproc() const {
846 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
847 return Cop.Val;
850 StringRef getToken() const {
851 assert(Kind == k_Token && "Invalid access!");
852 return StringRef(Tok.Data, Tok.Length);
855 unsigned getReg() const override {
856 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
857 return Reg.RegNum;
860 const SmallVectorImpl<unsigned> &getRegList() const {
861 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
862 Kind == k_SPRRegisterList) && "Invalid access!");
863 return Registers;
866 const MCExpr *getImm() const {
867 assert(isImm() && "Invalid access!");
868 return Imm.Val;
871 const MCExpr *getConstantPoolImm() const {
872 assert(isConstantPoolImm() && "Invalid access!");
873 return Imm.Val;
876 unsigned getVectorIndex() const {
877 assert(Kind == k_VectorIndex && "Invalid access!");
878 return VectorIndex.Val;
881 ARM_MB::MemBOpt getMemBarrierOpt() const {
882 assert(Kind == k_MemBarrierOpt && "Invalid access!");
883 return MBOpt.Val;
886 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
887 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
888 return ISBOpt.Val;
891 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
892 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
893 return TSBOpt.Val;
896 ARM_PROC::IFlags getProcIFlags() const {
897 assert(Kind == k_ProcIFlags && "Invalid access!");
898 return IFlags.Val;
901 unsigned getMSRMask() const {
902 assert(Kind == k_MSRMask && "Invalid access!");
903 return MMask.Val;
906 unsigned getBankedReg() const {
907 assert(Kind == k_BankedReg && "Invalid access!");
908 return BankedReg.Val;
911 bool isCoprocNum() const { return Kind == k_CoprocNum; }
912 bool isCoprocReg() const { return Kind == k_CoprocReg; }
913 bool isCoprocOption() const { return Kind == k_CoprocOption; }
914 bool isCondCode() const { return Kind == k_CondCode; }
915 bool isCCOut() const { return Kind == k_CCOut; }
916 bool isITMask() const { return Kind == k_ITCondMask; }
917 bool isITCondCode() const { return Kind == k_CondCode; }
918 bool isImm() const override {
919 return Kind == k_Immediate;
922 bool isARMBranchTarget() const {
923 if (!isImm()) return false;
925 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
926 return CE->getValue() % 4 == 0;
927 return true;
931 bool isThumbBranchTarget() const {
932 if (!isImm()) return false;
934 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
935 return CE->getValue() % 2 == 0;
936 return true;
939 // checks whether this operand is an unsigned offset which fits is a field
940 // of specified width and scaled by a specific number of bits
941 template<unsigned width, unsigned scale>
942 bool isUnsignedOffset() const {
943 if (!isImm()) return false;
944 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
945 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
946 int64_t Val = CE->getValue();
947 int64_t Align = 1LL << scale;
948 int64_t Max = Align * ((1LL << width) - 1);
949 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
951 return false;
954 // checks whether this operand is an signed offset which fits is a field
955 // of specified width and scaled by a specific number of bits
956 template<unsigned width, unsigned scale>
957 bool isSignedOffset() const {
958 if (!isImm()) return false;
959 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
960 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
961 int64_t Val = CE->getValue();
962 int64_t Align = 1LL << scale;
963 int64_t Max = Align * ((1LL << (width-1)) - 1);
964 int64_t Min = -Align * (1LL << (width-1));
965 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
967 return false;
970 // checks whether this operand is a memory operand computed as an offset
971 // applied to PC. the offset may have 8 bits of magnitude and is represented
972 // with two bits of shift. textually it may be either [pc, #imm], #imm or
973 // relocable expression...
974 bool isThumbMemPC() const {
975 int64_t Val = 0;
976 if (isImm()) {
977 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
978 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
979 if (!CE) return false;
980 Val = CE->getValue();
982 else if (isMem()) {
983 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
984 if(Memory.BaseRegNum != ARM::PC) return false;
985 Val = Memory.OffsetImm->getValue();
987 else return false;
988 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
991 bool isFPImm() const {
992 if (!isImm()) return false;
993 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
994 if (!CE) return false;
995 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
996 return Val != -1;
999 template<int64_t N, int64_t M>
1000 bool isImmediate() const {
1001 if (!isImm()) return false;
1002 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1003 if (!CE) return false;
1004 int64_t Value = CE->getValue();
1005 return Value >= N && Value <= M;
1008 template<int64_t N, int64_t M>
1009 bool isImmediateS4() const {
1010 if (!isImm()) return false;
1011 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1012 if (!CE) return false;
1013 int64_t Value = CE->getValue();
1014 return ((Value & 3) == 0) && Value >= N && Value <= M;
1017 bool isFBits16() const {
1018 return isImmediate<0, 17>();
1020 bool isFBits32() const {
1021 return isImmediate<1, 33>();
1023 bool isImm8s4() const {
1024 return isImmediateS4<-1020, 1020>();
1026 bool isImm0_1020s4() const {
1027 return isImmediateS4<0, 1020>();
1029 bool isImm0_508s4() const {
1030 return isImmediateS4<0, 508>();
1032 bool isImm0_508s4Neg() const {
1033 if (!isImm()) return false;
1034 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1035 if (!CE) return false;
1036 int64_t Value = -CE->getValue();
1037 // explicitly exclude zero. we want that to use the normal 0_508 version.
1038 return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1041 bool isImm0_4095Neg() const {
1042 if (!isImm()) return false;
1043 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1044 if (!CE) return false;
1045 // isImm0_4095Neg is used with 32-bit immediates only.
1046 // 32-bit immediates are zero extended to 64-bit when parsed,
1047 // thus simple -CE->getValue() results in a big negative number,
1048 // not a small positive number as intended
1049 if ((CE->getValue() >> 32) > 0) return false;
1050 uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1051 return Value > 0 && Value < 4096;
1054 bool isImm0_7() const {
1055 return isImmediate<0, 7>();
1058 bool isImm1_16() const {
1059 return isImmediate<1, 16>();
1062 bool isImm1_32() const {
1063 return isImmediate<1, 32>();
1066 bool isImm8_255() const {
1067 return isImmediate<8, 255>();
1070 bool isImm256_65535Expr() const {
1071 if (!isImm()) return false;
1072 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1073 // If it's not a constant expression, it'll generate a fixup and be
1074 // handled later.
1075 if (!CE) return true;
1076 int64_t Value = CE->getValue();
1077 return Value >= 256 && Value < 65536;
1080 bool isImm0_65535Expr() const {
1081 if (!isImm()) return false;
1082 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1083 // If it's not a constant expression, it'll generate a fixup and be
1084 // handled later.
1085 if (!CE) return true;
1086 int64_t Value = CE->getValue();
1087 return Value >= 0 && Value < 65536;
1090 bool isImm24bit() const {
1091 return isImmediate<0, 0xffffff + 1>();
1094 bool isImmThumbSR() const {
1095 return isImmediate<1, 33>();
1098 bool isPKHLSLImm() const {
1099 return isImmediate<0, 32>();
1102 bool isPKHASRImm() const {
1103 return isImmediate<0, 33>();
1106 bool isAdrLabel() const {
1107 // If we have an immediate that's not a constant, treat it as a label
1108 // reference needing a fixup.
1109 if (isImm() && !isa<MCConstantExpr>(getImm()))
1110 return true;
1112 // If it is a constant, it must fit into a modified immediate encoding.
1113 if (!isImm()) return false;
1114 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1115 if (!CE) return false;
1116 int64_t Value = CE->getValue();
1117 return (ARM_AM::getSOImmVal(Value) != -1 ||
1118 ARM_AM::getSOImmVal(-Value) != -1);
1121 bool isT2SOImm() const {
1122 // If we have an immediate that's not a constant, treat it as an expression
1123 // needing a fixup.
1124 if (isImm() && !isa<MCConstantExpr>(getImm())) {
1125 // We want to avoid matching :upper16: and :lower16: as we want these
1126 // expressions to match in isImm0_65535Expr()
1127 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1128 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1129 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1131 if (!isImm()) return false;
1132 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1133 if (!CE) return false;
1134 int64_t Value = CE->getValue();
1135 return ARM_AM::getT2SOImmVal(Value) != -1;
1138 bool isT2SOImmNot() const {
1139 if (!isImm()) return false;
1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1141 if (!CE) return false;
1142 int64_t Value = CE->getValue();
1143 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1144 ARM_AM::getT2SOImmVal(~Value) != -1;
1147 bool isT2SOImmNeg() const {
1148 if (!isImm()) return false;
1149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1150 if (!CE) return false;
1151 int64_t Value = CE->getValue();
1152 // Only use this when not representable as a plain so_imm.
1153 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1154 ARM_AM::getT2SOImmVal(-Value) != -1;
1157 bool isSetEndImm() const {
1158 if (!isImm()) return false;
1159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1160 if (!CE) return false;
1161 int64_t Value = CE->getValue();
1162 return Value == 1 || Value == 0;
1165 bool isReg() const override { return Kind == k_Register; }
1166 bool isRegList() const { return Kind == k_RegisterList; }
1167 bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1168 bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1169 bool isToken() const override { return Kind == k_Token; }
1170 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1171 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1172 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1173 bool isMem() const override {
1174 if (Kind != k_Memory)
1175 return false;
1176 if (Memory.BaseRegNum &&
1177 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1178 return false;
1179 if (Memory.OffsetRegNum &&
1180 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1181 return false;
1182 return true;
1184 bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1185 bool isRegShiftedReg() const {
1186 return Kind == k_ShiftedRegister &&
1187 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1188 RegShiftedReg.SrcReg) &&
1189 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1190 RegShiftedReg.ShiftReg);
1192 bool isRegShiftedImm() const {
1193 return Kind == k_ShiftedImmediate &&
1194 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1195 RegShiftedImm.SrcReg);
1197 bool isRotImm() const { return Kind == k_RotateImmediate; }
1198 bool isModImm() const { return Kind == k_ModifiedImmediate; }
1200 bool isModImmNot() const {
1201 if (!isImm()) return false;
1202 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1203 if (!CE) return false;
1204 int64_t Value = CE->getValue();
1205 return ARM_AM::getSOImmVal(~Value) != -1;
1208 bool isModImmNeg() const {
1209 if (!isImm()) return false;
1210 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1211 if (!CE) return false;
1212 int64_t Value = CE->getValue();
1213 return ARM_AM::getSOImmVal(Value) == -1 &&
1214 ARM_AM::getSOImmVal(-Value) != -1;
1217 bool isThumbModImmNeg1_7() const {
1218 if (!isImm()) return false;
1219 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1220 if (!CE) return false;
1221 int32_t Value = -(int32_t)CE->getValue();
1222 return 0 < Value && Value < 8;
1225 bool isThumbModImmNeg8_255() const {
1226 if (!isImm()) return false;
1227 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1228 if (!CE) return false;
1229 int32_t Value = -(int32_t)CE->getValue();
1230 return 7 < Value && Value < 256;
1233 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1234 bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1235 bool isPostIdxRegShifted() const {
1236 return Kind == k_PostIndexRegister &&
1237 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1239 bool isPostIdxReg() const {
1240 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1242 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1243 if (!isMem())
1244 return false;
1245 // No offset of any kind.
1246 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1247 (alignOK || Memory.Alignment == Alignment);
1249 bool isMemPCRelImm12() const {
1250 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1251 return false;
1252 // Base register must be PC.
1253 if (Memory.BaseRegNum != ARM::PC)
1254 return false;
1255 // Immediate offset in range [-4095, 4095].
1256 if (!Memory.OffsetImm) return true;
1257 int64_t Val = Memory.OffsetImm->getValue();
1258 return (Val > -4096 && Val < 4096) ||
1259 (Val == std::numeric_limits<int32_t>::min());
1262 bool isAlignedMemory() const {
1263 return isMemNoOffset(true);
1266 bool isAlignedMemoryNone() const {
1267 return isMemNoOffset(false, 0);
1270 bool isDupAlignedMemoryNone() const {
1271 return isMemNoOffset(false, 0);
1274 bool isAlignedMemory16() const {
1275 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1276 return true;
1277 return isMemNoOffset(false, 0);
1280 bool isDupAlignedMemory16() const {
1281 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1282 return true;
1283 return isMemNoOffset(false, 0);
1286 bool isAlignedMemory32() const {
1287 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1288 return true;
1289 return isMemNoOffset(false, 0);
1292 bool isDupAlignedMemory32() const {
1293 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1294 return true;
1295 return isMemNoOffset(false, 0);
1298 bool isAlignedMemory64() const {
1299 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1300 return true;
1301 return isMemNoOffset(false, 0);
1304 bool isDupAlignedMemory64() const {
1305 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1306 return true;
1307 return isMemNoOffset(false, 0);
1310 bool isAlignedMemory64or128() const {
1311 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1312 return true;
1313 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1314 return true;
1315 return isMemNoOffset(false, 0);
1318 bool isDupAlignedMemory64or128() const {
1319 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1320 return true;
1321 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1322 return true;
1323 return isMemNoOffset(false, 0);
1326 bool isAlignedMemory64or128or256() const {
1327 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1328 return true;
1329 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1330 return true;
1331 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1332 return true;
1333 return isMemNoOffset(false, 0);
1336 bool isAddrMode2() const {
1337 if (!isMem() || Memory.Alignment != 0) return false;
1338 // Check for register offset.
1339 if (Memory.OffsetRegNum) return true;
1340 // Immediate offset in range [-4095, 4095].
1341 if (!Memory.OffsetImm) return true;
1342 int64_t Val = Memory.OffsetImm->getValue();
1343 return Val > -4096 && Val < 4096;
1346 bool isAM2OffsetImm() const {
1347 if (!isImm()) return false;
1348 // Immediate offset in range [-4095, 4095].
1349 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1350 if (!CE) return false;
1351 int64_t Val = CE->getValue();
1352 return (Val == std::numeric_limits<int32_t>::min()) ||
1353 (Val > -4096 && Val < 4096);
1356 bool isAddrMode3() const {
1357 // If we have an immediate that's not a constant, treat it as a label
1358 // reference needing a fixup. If it is a constant, it's something else
1359 // and we reject it.
1360 if (isImm() && !isa<MCConstantExpr>(getImm()))
1361 return true;
1362 if (!isMem() || Memory.Alignment != 0) return false;
1363 // No shifts are legal for AM3.
1364 if (Memory.ShiftType != ARM_AM::no_shift) return false;
1365 // Check for register offset.
1366 if (Memory.OffsetRegNum) return true;
1367 // Immediate offset in range [-255, 255].
1368 if (!Memory.OffsetImm) return true;
1369 int64_t Val = Memory.OffsetImm->getValue();
1370 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1371 // have to check for this too.
1372 return (Val > -256 && Val < 256) ||
1373 Val == std::numeric_limits<int32_t>::min();
1376 bool isAM3Offset() const {
1377 if (isPostIdxReg())
1378 return true;
1379 if (!isImm())
1380 return false;
1381 // Immediate offset in range [-255, 255].
1382 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1383 if (!CE) return false;
1384 int64_t Val = CE->getValue();
1385 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1386 return (Val > -256 && Val < 256) ||
1387 Val == std::numeric_limits<int32_t>::min();
1390 bool isAddrMode5() const {
1391 // If we have an immediate that's not a constant, treat it as a label
1392 // reference needing a fixup. If it is a constant, it's something else
1393 // and we reject it.
1394 if (isImm() && !isa<MCConstantExpr>(getImm()))
1395 return true;
1396 if (!isMem() || Memory.Alignment != 0) return false;
1397 // Check for register offset.
1398 if (Memory.OffsetRegNum) return false;
1399 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1400 if (!Memory.OffsetImm) return true;
1401 int64_t Val = Memory.OffsetImm->getValue();
1402 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1403 Val == std::numeric_limits<int32_t>::min();
1406 bool isAddrMode5FP16() const {
1407 // If we have an immediate that's not a constant, treat it as a label
1408 // reference needing a fixup. If it is a constant, it's something else
1409 // and we reject it.
1410 if (isImm() && !isa<MCConstantExpr>(getImm()))
1411 return true;
1412 if (!isMem() || Memory.Alignment != 0) return false;
1413 // Check for register offset.
1414 if (Memory.OffsetRegNum) return false;
1415 // Immediate offset in range [-510, 510] and a multiple of 2.
1416 if (!Memory.OffsetImm) return true;
1417 int64_t Val = Memory.OffsetImm->getValue();
1418 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1419 Val == std::numeric_limits<int32_t>::min();
1422 bool isMemTBB() const {
1423 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1424 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1425 return false;
1426 return true;
1429 bool isMemTBH() const {
1430 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1431 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1432 Memory.Alignment != 0 )
1433 return false;
1434 return true;
1437 bool isMemRegOffset() const {
1438 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1439 return false;
1440 return true;
1443 bool isT2MemRegOffset() const {
1444 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1445 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1446 return false;
1447 // Only lsl #{0, 1, 2, 3} allowed.
1448 if (Memory.ShiftType == ARM_AM::no_shift)
1449 return true;
1450 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1451 return false;
1452 return true;
1455 bool isMemThumbRR() const {
1456 // Thumb reg+reg addressing is simple. Just two registers, a base and
1457 // an offset. No shifts, negations or any other complicating factors.
1458 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1459 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1460 return false;
1461 return isARMLowRegister(Memory.BaseRegNum) &&
1462 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1465 bool isMemThumbRIs4() const {
1466 if (!isMem() || Memory.OffsetRegNum != 0 ||
1467 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1468 return false;
1469 // Immediate offset, multiple of 4 in range [0, 124].
1470 if (!Memory.OffsetImm) return true;
1471 int64_t Val = Memory.OffsetImm->getValue();
1472 return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1475 bool isMemThumbRIs2() const {
1476 if (!isMem() || Memory.OffsetRegNum != 0 ||
1477 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1478 return false;
1479 // Immediate offset, multiple of 4 in range [0, 62].
1480 if (!Memory.OffsetImm) return true;
1481 int64_t Val = Memory.OffsetImm->getValue();
1482 return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1485 bool isMemThumbRIs1() const {
1486 if (!isMem() || Memory.OffsetRegNum != 0 ||
1487 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1488 return false;
1489 // Immediate offset in range [0, 31].
1490 if (!Memory.OffsetImm) return true;
1491 int64_t Val = Memory.OffsetImm->getValue();
1492 return Val >= 0 && Val <= 31;
1495 bool isMemThumbSPI() const {
1496 if (!isMem() || Memory.OffsetRegNum != 0 ||
1497 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1498 return false;
1499 // Immediate offset, multiple of 4 in range [0, 1020].
1500 if (!Memory.OffsetImm) return true;
1501 int64_t Val = Memory.OffsetImm->getValue();
1502 return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1505 bool isMemImm8s4Offset() const {
1506 // If we have an immediate that's not a constant, treat it as a label
1507 // reference needing a fixup. If it is a constant, it's something else
1508 // and we reject it.
1509 if (isImm() && !isa<MCConstantExpr>(getImm()))
1510 return true;
1511 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1512 return false;
1513 // Immediate offset a multiple of 4 in range [-1020, 1020].
1514 if (!Memory.OffsetImm) return true;
1515 int64_t Val = Memory.OffsetImm->getValue();
1516 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1517 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1518 Val == std::numeric_limits<int32_t>::min();
1521 bool isMemImm0_1020s4Offset() const {
1522 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1523 return false;
1524 // Immediate offset a multiple of 4 in range [0, 1020].
1525 if (!Memory.OffsetImm) return true;
1526 int64_t Val = Memory.OffsetImm->getValue();
1527 return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1530 bool isMemImm8Offset() const {
1531 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1532 return false;
1533 // Base reg of PC isn't allowed for these encodings.
1534 if (Memory.BaseRegNum == ARM::PC) return false;
1535 // Immediate offset in range [-255, 255].
1536 if (!Memory.OffsetImm) return true;
1537 int64_t Val = Memory.OffsetImm->getValue();
1538 return (Val == std::numeric_limits<int32_t>::min()) ||
1539 (Val > -256 && Val < 256);
1542 bool isMemPosImm8Offset() const {
1543 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1544 return false;
1545 // Immediate offset in range [0, 255].
1546 if (!Memory.OffsetImm) return true;
1547 int64_t Val = Memory.OffsetImm->getValue();
1548 return Val >= 0 && Val < 256;
1551 bool isMemNegImm8Offset() const {
1552 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1553 return false;
1554 // Base reg of PC isn't allowed for these encodings.
1555 if (Memory.BaseRegNum == ARM::PC) return false;
1556 // Immediate offset in range [-255, -1].
1557 if (!Memory.OffsetImm) return false;
1558 int64_t Val = Memory.OffsetImm->getValue();
1559 return (Val == std::numeric_limits<int32_t>::min()) ||
1560 (Val > -256 && Val < 0);
1563 bool isMemUImm12Offset() const {
1564 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1565 return false;
1566 // Immediate offset in range [0, 4095].
1567 if (!Memory.OffsetImm) return true;
1568 int64_t Val = Memory.OffsetImm->getValue();
1569 return (Val >= 0 && Val < 4096);
1572 bool isMemImm12Offset() const {
1573 // If we have an immediate that's not a constant, treat it as a label
1574 // reference needing a fixup. If it is a constant, it's something else
1575 // and we reject it.
1577 if (isImm() && !isa<MCConstantExpr>(getImm()))
1578 return true;
1580 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1581 return false;
1582 // Immediate offset in range [-4095, 4095].
1583 if (!Memory.OffsetImm) return true;
1584 int64_t Val = Memory.OffsetImm->getValue();
1585 return (Val > -4096 && Val < 4096) ||
1586 (Val == std::numeric_limits<int32_t>::min());
1589 bool isConstPoolAsmImm() const {
1590 // Delay processing of Constant Pool Immediate, this will turn into
1591 // a constant. Match no other operand
1592 return (isConstantPoolImm());
1595 bool isPostIdxImm8() const {
1596 if (!isImm()) return false;
1597 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1598 if (!CE) return false;
1599 int64_t Val = CE->getValue();
1600 return (Val > -256 && Val < 256) ||
1601 (Val == std::numeric_limits<int32_t>::min());
1604 bool isPostIdxImm8s4() const {
1605 if (!isImm()) return false;
1606 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1607 if (!CE) return false;
1608 int64_t Val = CE->getValue();
1609 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1610 (Val == std::numeric_limits<int32_t>::min());
1613 bool isMSRMask() const { return Kind == k_MSRMask; }
1614 bool isBankedReg() const { return Kind == k_BankedReg; }
1615 bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1617 // NEON operands.
1618 bool isSingleSpacedVectorList() const {
1619 return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1622 bool isDoubleSpacedVectorList() const {
1623 return Kind == k_VectorList && VectorList.isDoubleSpaced;
1626 bool isVecListOneD() const {
1627 if (!isSingleSpacedVectorList()) return false;
1628 return VectorList.Count == 1;
1631 bool isVecListDPair() const {
1632 if (!isSingleSpacedVectorList()) return false;
1633 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1634 .contains(VectorList.RegNum));
1637 bool isVecListThreeD() const {
1638 if (!isSingleSpacedVectorList()) return false;
1639 return VectorList.Count == 3;
1642 bool isVecListFourD() const {
1643 if (!isSingleSpacedVectorList()) return false;
1644 return VectorList.Count == 4;
1647 bool isVecListDPairSpaced() const {
1648 if (Kind != k_VectorList) return false;
1649 if (isSingleSpacedVectorList()) return false;
1650 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1651 .contains(VectorList.RegNum));
1654 bool isVecListThreeQ() const {
1655 if (!isDoubleSpacedVectorList()) return false;
1656 return VectorList.Count == 3;
1659 bool isVecListFourQ() const {
1660 if (!isDoubleSpacedVectorList()) return false;
1661 return VectorList.Count == 4;
1664 bool isSingleSpacedVectorAllLanes() const {
1665 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1668 bool isDoubleSpacedVectorAllLanes() const {
1669 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1672 bool isVecListOneDAllLanes() const {
1673 if (!isSingleSpacedVectorAllLanes()) return false;
1674 return VectorList.Count == 1;
1677 bool isVecListDPairAllLanes() const {
1678 if (!isSingleSpacedVectorAllLanes()) return false;
1679 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1680 .contains(VectorList.RegNum));
1683 bool isVecListDPairSpacedAllLanes() const {
1684 if (!isDoubleSpacedVectorAllLanes()) return false;
1685 return VectorList.Count == 2;
1688 bool isVecListThreeDAllLanes() const {
1689 if (!isSingleSpacedVectorAllLanes()) return false;
1690 return VectorList.Count == 3;
1693 bool isVecListThreeQAllLanes() const {
1694 if (!isDoubleSpacedVectorAllLanes()) return false;
1695 return VectorList.Count == 3;
1698 bool isVecListFourDAllLanes() const {
1699 if (!isSingleSpacedVectorAllLanes()) return false;
1700 return VectorList.Count == 4;
1703 bool isVecListFourQAllLanes() const {
1704 if (!isDoubleSpacedVectorAllLanes()) return false;
1705 return VectorList.Count == 4;
1708 bool isSingleSpacedVectorIndexed() const {
1709 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1712 bool isDoubleSpacedVectorIndexed() const {
1713 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1716 bool isVecListOneDByteIndexed() const {
1717 if (!isSingleSpacedVectorIndexed()) return false;
1718 return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1721 bool isVecListOneDHWordIndexed() const {
1722 if (!isSingleSpacedVectorIndexed()) return false;
1723 return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1726 bool isVecListOneDWordIndexed() const {
1727 if (!isSingleSpacedVectorIndexed()) return false;
1728 return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1731 bool isVecListTwoDByteIndexed() const {
1732 if (!isSingleSpacedVectorIndexed()) return false;
1733 return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1736 bool isVecListTwoDHWordIndexed() const {
1737 if (!isSingleSpacedVectorIndexed()) return false;
1738 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1741 bool isVecListTwoQWordIndexed() const {
1742 if (!isDoubleSpacedVectorIndexed()) return false;
1743 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1746 bool isVecListTwoQHWordIndexed() const {
1747 if (!isDoubleSpacedVectorIndexed()) return false;
1748 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1751 bool isVecListTwoDWordIndexed() const {
1752 if (!isSingleSpacedVectorIndexed()) return false;
1753 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1756 bool isVecListThreeDByteIndexed() const {
1757 if (!isSingleSpacedVectorIndexed()) return false;
1758 return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1761 bool isVecListThreeDHWordIndexed() const {
1762 if (!isSingleSpacedVectorIndexed()) return false;
1763 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1766 bool isVecListThreeQWordIndexed() const {
1767 if (!isDoubleSpacedVectorIndexed()) return false;
1768 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1771 bool isVecListThreeQHWordIndexed() const {
1772 if (!isDoubleSpacedVectorIndexed()) return false;
1773 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1776 bool isVecListThreeDWordIndexed() const {
1777 if (!isSingleSpacedVectorIndexed()) return false;
1778 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1781 bool isVecListFourDByteIndexed() const {
1782 if (!isSingleSpacedVectorIndexed()) return false;
1783 return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1786 bool isVecListFourDHWordIndexed() const {
1787 if (!isSingleSpacedVectorIndexed()) return false;
1788 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1791 bool isVecListFourQWordIndexed() const {
1792 if (!isDoubleSpacedVectorIndexed()) return false;
1793 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1796 bool isVecListFourQHWordIndexed() const {
1797 if (!isDoubleSpacedVectorIndexed()) return false;
1798 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1801 bool isVecListFourDWordIndexed() const {
1802 if (!isSingleSpacedVectorIndexed()) return false;
1803 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1806 bool isVectorIndex8() const {
1807 if (Kind != k_VectorIndex) return false;
1808 return VectorIndex.Val < 8;
1811 bool isVectorIndex16() const {
1812 if (Kind != k_VectorIndex) return false;
1813 return VectorIndex.Val < 4;
1816 bool isVectorIndex32() const {
1817 if (Kind != k_VectorIndex) return false;
1818 return VectorIndex.Val < 2;
1820 bool isVectorIndex64() const {
1821 if (Kind != k_VectorIndex) return false;
1822 return VectorIndex.Val < 1;
1825 bool isNEONi8splat() const {
1826 if (!isImm()) return false;
1827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1828 // Must be a constant.
1829 if (!CE) return false;
1830 int64_t Value = CE->getValue();
1831 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1832 // value.
1833 return Value >= 0 && Value < 256;
1836 bool isNEONi16splat() const {
1837 if (isNEONByteReplicate(2))
1838 return false; // Leave that for bytes replication and forbid by default.
1839 if (!isImm())
1840 return false;
1841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1842 // Must be a constant.
1843 if (!CE) return false;
1844 unsigned Value = CE->getValue();
1845 return ARM_AM::isNEONi16splat(Value);
1848 bool isNEONi16splatNot() const {
1849 if (!isImm())
1850 return false;
1851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1852 // Must be a constant.
1853 if (!CE) return false;
1854 unsigned Value = CE->getValue();
1855 return ARM_AM::isNEONi16splat(~Value & 0xffff);
1858 bool isNEONi32splat() const {
1859 if (isNEONByteReplicate(4))
1860 return false; // Leave that for bytes replication and forbid by default.
1861 if (!isImm())
1862 return false;
1863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1864 // Must be a constant.
1865 if (!CE) return false;
1866 unsigned Value = CE->getValue();
1867 return ARM_AM::isNEONi32splat(Value);
1870 bool isNEONi32splatNot() const {
1871 if (!isImm())
1872 return false;
1873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1874 // Must be a constant.
1875 if (!CE) return false;
1876 unsigned Value = CE->getValue();
1877 return ARM_AM::isNEONi32splat(~Value);
1880 static bool isValidNEONi32vmovImm(int64_t Value) {
1881 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1882 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1883 return ((Value & 0xffffffffffffff00) == 0) ||
1884 ((Value & 0xffffffffffff00ff) == 0) ||
1885 ((Value & 0xffffffffff00ffff) == 0) ||
1886 ((Value & 0xffffffff00ffffff) == 0) ||
1887 ((Value & 0xffffffffffff00ff) == 0xff) ||
1888 ((Value & 0xffffffffff00ffff) == 0xffff);
1891 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
1892 assert((Width == 8 || Width == 16 || Width == 32) &&
1893 "Invalid element width");
1894 assert(NumElems * Width <= 64 && "Invalid result width");
1896 if (!isImm())
1897 return false;
1898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1899 // Must be a constant.
1900 if (!CE)
1901 return false;
1902 int64_t Value = CE->getValue();
1903 if (!Value)
1904 return false; // Don't bother with zero.
1905 if (Inv)
1906 Value = ~Value;
1908 uint64_t Mask = (1ull << Width) - 1;
1909 uint64_t Elem = Value & Mask;
1910 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
1911 return false;
1912 if (Width == 32 && !isValidNEONi32vmovImm(Elem))
1913 return false;
1915 for (unsigned i = 1; i < NumElems; ++i) {
1916 Value >>= Width;
1917 if ((Value & Mask) != Elem)
1918 return false;
1920 return true;
1923 bool isNEONByteReplicate(unsigned NumBytes) const {
1924 return isNEONReplicate(8, NumBytes, false);
1927 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
1928 assert((FromW == 8 || FromW == 16 || FromW == 32) &&
1929 "Invalid source width");
1930 assert((ToW == 16 || ToW == 32 || ToW == 64) &&
1931 "Invalid destination width");
1932 assert(FromW < ToW && "ToW is not less than FromW");
1935 template<unsigned FromW, unsigned ToW>
1936 bool isNEONmovReplicate() const {
1937 checkNeonReplicateArgs(FromW, ToW);
1938 if (ToW == 64 && isNEONi64splat())
1939 return false;
1940 return isNEONReplicate(FromW, ToW / FromW, false);
1943 template<unsigned FromW, unsigned ToW>
1944 bool isNEONinvReplicate() const {
1945 checkNeonReplicateArgs(FromW, ToW);
1946 return isNEONReplicate(FromW, ToW / FromW, true);
1949 bool isNEONi32vmov() const {
1950 if (isNEONByteReplicate(4))
1951 return false; // Let it to be classified as byte-replicate case.
1952 if (!isImm())
1953 return false;
1954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1955 // Must be a constant.
1956 if (!CE)
1957 return false;
1958 return isValidNEONi32vmovImm(CE->getValue());
1961 bool isNEONi32vmovNeg() const {
1962 if (!isImm()) return false;
1963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1964 // Must be a constant.
1965 if (!CE) return false;
1966 return isValidNEONi32vmovImm(~CE->getValue());
1969 bool isNEONi64splat() const {
1970 if (!isImm()) return false;
1971 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1972 // Must be a constant.
1973 if (!CE) return false;
1974 uint64_t Value = CE->getValue();
1975 // i64 value with each byte being either 0 or 0xff.
1976 for (unsigned i = 0; i < 8; ++i, Value >>= 8)
1977 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1978 return true;
1981 template<int64_t Angle, int64_t Remainder>
1982 bool isComplexRotation() const {
1983 if (!isImm()) return false;
1985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1986 if (!CE) return false;
1987 uint64_t Value = CE->getValue();
1989 return (Value % Angle == Remainder && Value <= 270);
1992 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1993 // Add as immediates when possible. Null MCExpr = 0.
1994 if (!Expr)
1995 Inst.addOperand(MCOperand::createImm(0));
1996 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1997 Inst.addOperand(MCOperand::createImm(CE->getValue()));
1998 else
1999 Inst.addOperand(MCOperand::createExpr(Expr));
2002 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2003 assert(N == 1 && "Invalid number of operands!");
2004 addExpr(Inst, getImm());
2007 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2008 assert(N == 1 && "Invalid number of operands!");
2009 addExpr(Inst, getImm());
2012 void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2013 assert(N == 2 && "Invalid number of operands!");
2014 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2015 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2016 Inst.addOperand(MCOperand::createReg(RegNum));
2019 void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2020 assert(N == 1 && "Invalid number of operands!");
2021 Inst.addOperand(MCOperand::createImm(getCoproc()));
2024 void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2025 assert(N == 1 && "Invalid number of operands!");
2026 Inst.addOperand(MCOperand::createImm(getCoproc()));
2029 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2030 assert(N == 1 && "Invalid number of operands!");
2031 Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2034 void addITMaskOperands(MCInst &Inst, unsigned N) const {
2035 assert(N == 1 && "Invalid number of operands!");
2036 Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2039 void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2040 assert(N == 1 && "Invalid number of operands!");
2041 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2044 void addCCOutOperands(MCInst &Inst, unsigned N) const {
2045 assert(N == 1 && "Invalid number of operands!");
2046 Inst.addOperand(MCOperand::createReg(getReg()));
2049 void addRegOperands(MCInst &Inst, unsigned N) const {
2050 assert(N == 1 && "Invalid number of operands!");
2051 Inst.addOperand(MCOperand::createReg(getReg()));
2054 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2055 assert(N == 3 && "Invalid number of operands!");
2056 assert(isRegShiftedReg() &&
2057 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2058 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2059 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2060 Inst.addOperand(MCOperand::createImm(
2061 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2064 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2065 assert(N == 2 && "Invalid number of operands!");
2066 assert(isRegShiftedImm() &&
2067 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2068 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2069 // Shift of #32 is encoded as 0 where permitted
2070 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2071 Inst.addOperand(MCOperand::createImm(
2072 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2075 void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2076 assert(N == 1 && "Invalid number of operands!");
2077 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2078 ShifterImm.Imm));
2081 void addRegListOperands(MCInst &Inst, unsigned N) const {
2082 assert(N == 1 && "Invalid number of operands!");
2083 const SmallVectorImpl<unsigned> &RegList = getRegList();
2084 for (SmallVectorImpl<unsigned>::const_iterator
2085 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2086 Inst.addOperand(MCOperand::createReg(*I));
2089 void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2090 addRegListOperands(Inst, N);
2093 void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2094 addRegListOperands(Inst, N);
2097 void addRotImmOperands(MCInst &Inst, unsigned N) const {
2098 assert(N == 1 && "Invalid number of operands!");
2099 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2100 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2103 void addModImmOperands(MCInst &Inst, unsigned N) const {
2104 assert(N == 1 && "Invalid number of operands!");
2106 // Support for fixups (MCFixup)
2107 if (isImm())
2108 return addImmOperands(Inst, N);
2110 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2113 void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2114 assert(N == 1 && "Invalid number of operands!");
2115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2116 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2117 Inst.addOperand(MCOperand::createImm(Enc));
2120 void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2121 assert(N == 1 && "Invalid number of operands!");
2122 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2123 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2124 Inst.addOperand(MCOperand::createImm(Enc));
2127 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2128 assert(N == 1 && "Invalid number of operands!");
2129 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2130 uint32_t Val = -CE->getValue();
2131 Inst.addOperand(MCOperand::createImm(Val));
2134 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2135 assert(N == 1 && "Invalid number of operands!");
2136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2137 uint32_t Val = -CE->getValue();
2138 Inst.addOperand(MCOperand::createImm(Val));
2141 void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2142 assert(N == 1 && "Invalid number of operands!");
2143 // Munge the lsb/width into a bitfield mask.
2144 unsigned lsb = Bitfield.LSB;
2145 unsigned width = Bitfield.Width;
2146 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2147 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2148 (32 - (lsb + width)));
2149 Inst.addOperand(MCOperand::createImm(Mask));
2152 void addImmOperands(MCInst &Inst, unsigned N) const {
2153 assert(N == 1 && "Invalid number of operands!");
2154 addExpr(Inst, getImm());
2157 void addFBits16Operands(MCInst &Inst, unsigned N) const {
2158 assert(N == 1 && "Invalid number of operands!");
2159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2160 Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2163 void addFBits32Operands(MCInst &Inst, unsigned N) const {
2164 assert(N == 1 && "Invalid number of operands!");
2165 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2166 Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2169 void addFPImmOperands(MCInst &Inst, unsigned N) const {
2170 assert(N == 1 && "Invalid number of operands!");
2171 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2172 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2173 Inst.addOperand(MCOperand::createImm(Val));
2176 void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2177 assert(N == 1 && "Invalid number of operands!");
2178 // FIXME: We really want to scale the value here, but the LDRD/STRD
2179 // instruction don't encode operands that way yet.
2180 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2181 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2184 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2185 assert(N == 1 && "Invalid number of operands!");
2186 // The immediate is scaled by four in the encoding and is stored
2187 // in the MCInst as such. Lop off the low two bits here.
2188 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2189 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2192 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2193 assert(N == 1 && "Invalid number of operands!");
2194 // The immediate is scaled by four in the encoding and is stored
2195 // in the MCInst as such. Lop off the low two bits here.
2196 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2197 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2200 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2201 assert(N == 1 && "Invalid number of operands!");
2202 // The immediate is scaled by four in the encoding and is stored
2203 // in the MCInst as such. Lop off the low two bits here.
2204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2205 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2208 void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2209 assert(N == 1 && "Invalid number of operands!");
2210 // The constant encodes as the immediate-1, and we store in the instruction
2211 // the bits as encoded, so subtract off one here.
2212 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2213 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2216 void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2217 assert(N == 1 && "Invalid number of operands!");
2218 // The constant encodes as the immediate-1, and we store in the instruction
2219 // the bits as encoded, so subtract off one here.
2220 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2221 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2224 void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2225 assert(N == 1 && "Invalid number of operands!");
2226 // The constant encodes as the immediate, except for 32, which encodes as
2227 // zero.
2228 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2229 unsigned Imm = CE->getValue();
2230 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2233 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2234 assert(N == 1 && "Invalid number of operands!");
2235 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2236 // the instruction as well.
2237 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2238 int Val = CE->getValue();
2239 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2242 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2243 assert(N == 1 && "Invalid number of operands!");
2244 // The operand is actually a t2_so_imm, but we have its bitwise
2245 // negation in the assembly source, so twiddle it here.
2246 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2247 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2250 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2251 assert(N == 1 && "Invalid number of operands!");
2252 // The operand is actually a t2_so_imm, but we have its
2253 // negation in the assembly source, so twiddle it here.
2254 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2255 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2258 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2259 assert(N == 1 && "Invalid number of operands!");
2260 // The operand is actually an imm0_4095, but we have its
2261 // negation in the assembly source, so twiddle it here.
2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2263 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2266 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2267 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2268 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2269 return;
2272 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2273 assert(SR && "Unknown value type!");
2274 Inst.addOperand(MCOperand::createExpr(SR));
2277 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2278 assert(N == 1 && "Invalid number of operands!");
2279 if (isImm()) {
2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2281 if (CE) {
2282 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2283 return;
2286 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2288 assert(SR && "Unknown value type!");
2289 Inst.addOperand(MCOperand::createExpr(SR));
2290 return;
2293 assert(isMem() && "Unknown value type!");
2294 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2295 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2298 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2299 assert(N == 1 && "Invalid number of operands!");
2300 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2303 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2304 assert(N == 1 && "Invalid number of operands!");
2305 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2308 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2309 assert(N == 1 && "Invalid number of operands!");
2310 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2313 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2314 assert(N == 1 && "Invalid number of operands!");
2315 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2318 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2319 assert(N == 1 && "Invalid number of operands!");
2320 int32_t Imm = Memory.OffsetImm->getValue();
2321 Inst.addOperand(MCOperand::createImm(Imm));
2324 void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2325 assert(N == 1 && "Invalid number of operands!");
2326 assert(isImm() && "Not an immediate!");
2328 // If we have an immediate that's not a constant, treat it as a label
2329 // reference needing a fixup.
2330 if (!isa<MCConstantExpr>(getImm())) {
2331 Inst.addOperand(MCOperand::createExpr(getImm()));
2332 return;
2335 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2336 int Val = CE->getValue();
2337 Inst.addOperand(MCOperand::createImm(Val));
2340 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2341 assert(N == 2 && "Invalid number of operands!");
2342 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2343 Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2346 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2347 addAlignedMemoryOperands(Inst, N);
2350 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2351 addAlignedMemoryOperands(Inst, N);
2354 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2355 addAlignedMemoryOperands(Inst, N);
2358 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2359 addAlignedMemoryOperands(Inst, N);
2362 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2363 addAlignedMemoryOperands(Inst, N);
2366 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2367 addAlignedMemoryOperands(Inst, N);
2370 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2371 addAlignedMemoryOperands(Inst, N);
2374 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2375 addAlignedMemoryOperands(Inst, N);
2378 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2379 addAlignedMemoryOperands(Inst, N);
2382 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2383 addAlignedMemoryOperands(Inst, N);
2386 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2387 addAlignedMemoryOperands(Inst, N);
2390 void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2391 assert(N == 3 && "Invalid number of operands!");
2392 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2393 if (!Memory.OffsetRegNum) {
2394 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2395 // Special case for #-0
2396 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2397 if (Val < 0) Val = -Val;
2398 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2399 } else {
2400 // For register offset, we encode the shift type and negation flag
2401 // here.
2402 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2403 Memory.ShiftImm, Memory.ShiftType);
2405 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2406 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2407 Inst.addOperand(MCOperand::createImm(Val));
2410 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2411 assert(N == 2 && "Invalid number of operands!");
2412 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2413 assert(CE && "non-constant AM2OffsetImm operand!");
2414 int32_t Val = CE->getValue();
2415 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2416 // Special case for #-0
2417 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2418 if (Val < 0) Val = -Val;
2419 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2420 Inst.addOperand(MCOperand::createReg(0));
2421 Inst.addOperand(MCOperand::createImm(Val));
2424 void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2425 assert(N == 3 && "Invalid number of operands!");
2426 // If we have an immediate that's not a constant, treat it as a label
2427 // reference needing a fixup. If it is a constant, it's something else
2428 // and we reject it.
2429 if (isImm()) {
2430 Inst.addOperand(MCOperand::createExpr(getImm()));
2431 Inst.addOperand(MCOperand::createReg(0));
2432 Inst.addOperand(MCOperand::createImm(0));
2433 return;
2436 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2437 if (!Memory.OffsetRegNum) {
2438 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2439 // Special case for #-0
2440 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2441 if (Val < 0) Val = -Val;
2442 Val = ARM_AM::getAM3Opc(AddSub, Val);
2443 } else {
2444 // For register offset, we encode the shift type and negation flag
2445 // here.
2446 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2448 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2449 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2450 Inst.addOperand(MCOperand::createImm(Val));
2453 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2454 assert(N == 2 && "Invalid number of operands!");
2455 if (Kind == k_PostIndexRegister) {
2456 int32_t Val =
2457 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2458 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2459 Inst.addOperand(MCOperand::createImm(Val));
2460 return;
2463 // Constant offset.
2464 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2465 int32_t Val = CE->getValue();
2466 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2467 // Special case for #-0
2468 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2469 if (Val < 0) Val = -Val;
2470 Val = ARM_AM::getAM3Opc(AddSub, Val);
2471 Inst.addOperand(MCOperand::createReg(0));
2472 Inst.addOperand(MCOperand::createImm(Val));
2475 void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2476 assert(N == 2 && "Invalid number of operands!");
2477 // If we have an immediate that's not a constant, treat it as a label
2478 // reference needing a fixup. If it is a constant, it's something else
2479 // and we reject it.
2480 if (isImm()) {
2481 Inst.addOperand(MCOperand::createExpr(getImm()));
2482 Inst.addOperand(MCOperand::createImm(0));
2483 return;
2486 // The lower two bits are always zero and as such are not encoded.
2487 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2488 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2489 // Special case for #-0
2490 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2491 if (Val < 0) Val = -Val;
2492 Val = ARM_AM::getAM5Opc(AddSub, Val);
2493 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2494 Inst.addOperand(MCOperand::createImm(Val));
2497 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2498 assert(N == 2 && "Invalid number of operands!");
2499 // If we have an immediate that's not a constant, treat it as a label
2500 // reference needing a fixup. If it is a constant, it's something else
2501 // and we reject it.
2502 if (isImm()) {
2503 Inst.addOperand(MCOperand::createExpr(getImm()));
2504 Inst.addOperand(MCOperand::createImm(0));
2505 return;
2508 // The lower bit is always zero and as such is not encoded.
2509 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2510 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2511 // Special case for #-0
2512 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2513 if (Val < 0) Val = -Val;
2514 Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2515 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2516 Inst.addOperand(MCOperand::createImm(Val));
2519 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2520 assert(N == 2 && "Invalid number of operands!");
2521 // If we have an immediate that's not a constant, treat it as a label
2522 // reference needing a fixup. If it is a constant, it's something else
2523 // and we reject it.
2524 if (isImm()) {
2525 Inst.addOperand(MCOperand::createExpr(getImm()));
2526 Inst.addOperand(MCOperand::createImm(0));
2527 return;
2530 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2531 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2532 Inst.addOperand(MCOperand::createImm(Val));
2535 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2536 assert(N == 2 && "Invalid number of operands!");
2537 // The lower two bits are always zero and as such are not encoded.
2538 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2539 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2540 Inst.addOperand(MCOperand::createImm(Val));
2543 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2544 assert(N == 2 && "Invalid number of operands!");
2545 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2546 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2547 Inst.addOperand(MCOperand::createImm(Val));
2550 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2551 addMemImm8OffsetOperands(Inst, N);
2554 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2555 addMemImm8OffsetOperands(Inst, N);
2558 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2559 assert(N == 2 && "Invalid number of operands!");
2560 // If this is an immediate, it's a label reference.
2561 if (isImm()) {
2562 addExpr(Inst, getImm());
2563 Inst.addOperand(MCOperand::createImm(0));
2564 return;
2567 // Otherwise, it's a normal memory reg+offset.
2568 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2569 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2570 Inst.addOperand(MCOperand::createImm(Val));
2573 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2574 assert(N == 2 && "Invalid number of operands!");
2575 // If this is an immediate, it's a label reference.
2576 if (isImm()) {
2577 addExpr(Inst, getImm());
2578 Inst.addOperand(MCOperand::createImm(0));
2579 return;
2582 // Otherwise, it's a normal memory reg+offset.
2583 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2584 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2585 Inst.addOperand(MCOperand::createImm(Val));
2588 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
2589 assert(N == 1 && "Invalid number of operands!");
2590 // This is container for the immediate that we will create the constant
2591 // pool from
2592 addExpr(Inst, getConstantPoolImm());
2593 return;
2596 void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2597 assert(N == 2 && "Invalid number of operands!");
2598 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2599 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2602 void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2603 assert(N == 2 && "Invalid number of operands!");
2604 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2605 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2608 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2609 assert(N == 3 && "Invalid number of operands!");
2610 unsigned Val =
2611 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2612 Memory.ShiftImm, Memory.ShiftType);
2613 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2614 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2615 Inst.addOperand(MCOperand::createImm(Val));
2618 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2619 assert(N == 3 && "Invalid number of operands!");
2620 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2621 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2622 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
2625 void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2626 assert(N == 2 && "Invalid number of operands!");
2627 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2628 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2631 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2632 assert(N == 2 && "Invalid number of operands!");
2633 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2634 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2635 Inst.addOperand(MCOperand::createImm(Val));
2638 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2639 assert(N == 2 && "Invalid number of operands!");
2640 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2641 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2642 Inst.addOperand(MCOperand::createImm(Val));
2645 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2646 assert(N == 2 && "Invalid number of operands!");
2647 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2648 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2649 Inst.addOperand(MCOperand::createImm(Val));
2652 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2653 assert(N == 2 && "Invalid number of operands!");
2654 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2655 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2656 Inst.addOperand(MCOperand::createImm(Val));
2659 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2660 assert(N == 1 && "Invalid number of operands!");
2661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2662 assert(CE && "non-constant post-idx-imm8 operand!");
2663 int Imm = CE->getValue();
2664 bool isAdd = Imm >= 0;
2665 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2666 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2667 Inst.addOperand(MCOperand::createImm(Imm));
2670 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2671 assert(N == 1 && "Invalid number of operands!");
2672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2673 assert(CE && "non-constant post-idx-imm8s4 operand!");
2674 int Imm = CE->getValue();
2675 bool isAdd = Imm >= 0;
2676 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2677 // Immediate is scaled by 4.
2678 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2679 Inst.addOperand(MCOperand::createImm(Imm));
2682 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2683 assert(N == 2 && "Invalid number of operands!");
2684 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2685 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
2688 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2689 assert(N == 2 && "Invalid number of operands!");
2690 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2691 // The sign, shift type, and shift amount are encoded in a single operand
2692 // using the AM2 encoding helpers.
2693 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2694 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2695 PostIdxReg.ShiftTy);
2696 Inst.addOperand(MCOperand::createImm(Imm));
2699 void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2700 assert(N == 1 && "Invalid number of operands!");
2701 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2704 void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2705 assert(N == 1 && "Invalid number of operands!");
2706 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2709 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2710 assert(N == 1 && "Invalid number of operands!");
2711 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2714 void addVecListOperands(MCInst &Inst, unsigned N) const {
2715 assert(N == 1 && "Invalid number of operands!");
2716 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2719 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2720 assert(N == 2 && "Invalid number of operands!");
2721 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2722 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
2725 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2726 assert(N == 1 && "Invalid number of operands!");
2727 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2730 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2731 assert(N == 1 && "Invalid number of operands!");
2732 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2735 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2736 assert(N == 1 && "Invalid number of operands!");
2737 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2740 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
2741 assert(N == 1 && "Invalid number of operands!");
2742 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2745 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2746 assert(N == 1 && "Invalid number of operands!");
2747 // The immediate encodes the type of constant as well as the value.
2748 // Mask in that this is an i8 splat.
2749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2750 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
2753 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2754 assert(N == 1 && "Invalid number of operands!");
2755 // The immediate encodes the type of constant as well as the value.
2756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2757 unsigned Value = CE->getValue();
2758 Value = ARM_AM::encodeNEONi16splat(Value);
2759 Inst.addOperand(MCOperand::createImm(Value));
2762 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2763 assert(N == 1 && "Invalid number of operands!");
2764 // The immediate encodes the type of constant as well as the value.
2765 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2766 unsigned Value = CE->getValue();
2767 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2768 Inst.addOperand(MCOperand::createImm(Value));
2771 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2772 assert(N == 1 && "Invalid number of operands!");
2773 // The immediate encodes the type of constant as well as the value.
2774 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2775 unsigned Value = CE->getValue();
2776 Value = ARM_AM::encodeNEONi32splat(Value);
2777 Inst.addOperand(MCOperand::createImm(Value));
2780 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2781 assert(N == 1 && "Invalid number of operands!");
2782 // The immediate encodes the type of constant as well as the value.
2783 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2784 unsigned Value = CE->getValue();
2785 Value = ARM_AM::encodeNEONi32splat(~Value);
2786 Inst.addOperand(MCOperand::createImm(Value));
2789 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
2790 // The immediate encodes the type of constant as well as the value.
2791 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2792 assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2793 Inst.getOpcode() == ARM::VMOVv16i8) &&
2794 "All instructions that wants to replicate non-zero byte "
2795 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2796 unsigned Value = CE->getValue();
2797 if (Inv)
2798 Value = ~Value;
2799 unsigned B = Value & 0xff;
2800 B |= 0xe00; // cmode = 0b1110
2801 Inst.addOperand(MCOperand::createImm(B));
2804 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2805 assert(N == 1 && "Invalid number of operands!");
2806 addNEONi8ReplicateOperands(Inst, true);
2809 static unsigned encodeNeonVMOVImmediate(unsigned Value) {
2810 if (Value >= 256 && Value <= 0xffff)
2811 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2812 else if (Value > 0xffff && Value <= 0xffffff)
2813 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2814 else if (Value > 0xffffff)
2815 Value = (Value >> 24) | 0x600;
2816 return Value;
2819 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2820 assert(N == 1 && "Invalid number of operands!");
2821 // The immediate encodes the type of constant as well as the value.
2822 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2823 unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
2824 Inst.addOperand(MCOperand::createImm(Value));
2827 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2828 assert(N == 1 && "Invalid number of operands!");
2829 addNEONi8ReplicateOperands(Inst, false);
2832 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
2833 assert(N == 1 && "Invalid number of operands!");
2834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2835 assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
2836 Inst.getOpcode() == ARM::VMOVv8i16 ||
2837 Inst.getOpcode() == ARM::VMVNv4i16 ||
2838 Inst.getOpcode() == ARM::VMVNv8i16) &&
2839 "All instructions that want to replicate non-zero half-word "
2840 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2841 uint64_t Value = CE->getValue();
2842 unsigned Elem = Value & 0xffff;
2843 if (Elem >= 256)
2844 Elem = (Elem >> 8) | 0x200;
2845 Inst.addOperand(MCOperand::createImm(Elem));
2848 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2849 assert(N == 1 && "Invalid number of operands!");
2850 // The immediate encodes the type of constant as well as the value.
2851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2852 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
2853 Inst.addOperand(MCOperand::createImm(Value));
2856 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
2857 assert(N == 1 && "Invalid number of operands!");
2858 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2859 assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
2860 Inst.getOpcode() == ARM::VMOVv4i32 ||
2861 Inst.getOpcode() == ARM::VMVNv2i32 ||
2862 Inst.getOpcode() == ARM::VMVNv4i32) &&
2863 "All instructions that want to replicate non-zero word "
2864 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2865 uint64_t Value = CE->getValue();
2866 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
2867 Inst.addOperand(MCOperand::createImm(Elem));
2870 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2871 assert(N == 1 && "Invalid number of operands!");
2872 // The immediate encodes the type of constant as well as the value.
2873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2874 uint64_t Value = CE->getValue();
2875 unsigned Imm = 0;
2876 for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2877 Imm |= (Value & 1) << i;
2879 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
2882 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
2883 assert(N == 1 && "Invalid number of operands!");
2884 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2885 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
2888 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
2889 assert(N == 1 && "Invalid number of operands!");
2890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2891 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
2894 void print(raw_ostream &OS) const override;
2896 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2897 auto Op = make_unique<ARMOperand>(k_ITCondMask);
2898 Op->ITMask.Mask = Mask;
2899 Op->StartLoc = S;
2900 Op->EndLoc = S;
2901 return Op;
2904 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2905 SMLoc S) {
2906 auto Op = make_unique<ARMOperand>(k_CondCode);
2907 Op->CC.Val = CC;
2908 Op->StartLoc = S;
2909 Op->EndLoc = S;
2910 return Op;
2913 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2914 auto Op = make_unique<ARMOperand>(k_CoprocNum);
2915 Op->Cop.Val = CopVal;
2916 Op->StartLoc = S;
2917 Op->EndLoc = S;
2918 return Op;
2921 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2922 auto Op = make_unique<ARMOperand>(k_CoprocReg);
2923 Op->Cop.Val = CopVal;
2924 Op->StartLoc = S;
2925 Op->EndLoc = S;
2926 return Op;
2929 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2930 SMLoc E) {
2931 auto Op = make_unique<ARMOperand>(k_CoprocOption);
2932 Op->Cop.Val = Val;
2933 Op->StartLoc = S;
2934 Op->EndLoc = E;
2935 return Op;
2938 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2939 auto Op = make_unique<ARMOperand>(k_CCOut);
2940 Op->Reg.RegNum = RegNum;
2941 Op->StartLoc = S;
2942 Op->EndLoc = S;
2943 return Op;
2946 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2947 auto Op = make_unique<ARMOperand>(k_Token);
2948 Op->Tok.Data = Str.data();
2949 Op->Tok.Length = Str.size();
2950 Op->StartLoc = S;
2951 Op->EndLoc = S;
2952 return Op;
2955 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2956 SMLoc E) {
2957 auto Op = make_unique<ARMOperand>(k_Register);
2958 Op->Reg.RegNum = RegNum;
2959 Op->StartLoc = S;
2960 Op->EndLoc = E;
2961 return Op;
2964 static std::unique_ptr<ARMOperand>
2965 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2966 unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2967 SMLoc E) {
2968 auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2969 Op->RegShiftedReg.ShiftTy = ShTy;
2970 Op->RegShiftedReg.SrcReg = SrcReg;
2971 Op->RegShiftedReg.ShiftReg = ShiftReg;
2972 Op->RegShiftedReg.ShiftImm = ShiftImm;
2973 Op->StartLoc = S;
2974 Op->EndLoc = E;
2975 return Op;
2978 static std::unique_ptr<ARMOperand>
2979 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2980 unsigned ShiftImm, SMLoc S, SMLoc E) {
2981 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2982 Op->RegShiftedImm.ShiftTy = ShTy;
2983 Op->RegShiftedImm.SrcReg = SrcReg;
2984 Op->RegShiftedImm.ShiftImm = ShiftImm;
2985 Op->StartLoc = S;
2986 Op->EndLoc = E;
2987 return Op;
2990 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2991 SMLoc S, SMLoc E) {
2992 auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2993 Op->ShifterImm.isASR = isASR;
2994 Op->ShifterImm.Imm = Imm;
2995 Op->StartLoc = S;
2996 Op->EndLoc = E;
2997 return Op;
3000 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3001 SMLoc E) {
3002 auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3003 Op->RotImm.Imm = Imm;
3004 Op->StartLoc = S;
3005 Op->EndLoc = E;
3006 return Op;
3009 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3010 SMLoc S, SMLoc E) {
3011 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3012 Op->ModImm.Bits = Bits;
3013 Op->ModImm.Rot = Rot;
3014 Op->StartLoc = S;
3015 Op->EndLoc = E;
3016 return Op;
3019 static std::unique_ptr<ARMOperand>
3020 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3021 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3022 Op->Imm.Val = Val;
3023 Op->StartLoc = S;
3024 Op->EndLoc = E;
3025 return Op;
3028 static std::unique_ptr<ARMOperand>
3029 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3030 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3031 Op->Bitfield.LSB = LSB;
3032 Op->Bitfield.Width = Width;
3033 Op->StartLoc = S;
3034 Op->EndLoc = E;
3035 return Op;
3038 static std::unique_ptr<ARMOperand>
3039 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3040 SMLoc StartLoc, SMLoc EndLoc) {
3041 assert(Regs.size() > 0 && "RegList contains no registers?");
3042 KindTy Kind = k_RegisterList;
3044 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
3045 Kind = k_DPRRegisterList;
3046 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
3047 contains(Regs.front().second))
3048 Kind = k_SPRRegisterList;
3050 // Sort based on the register encoding values.
3051 array_pod_sort(Regs.begin(), Regs.end());
3053 auto Op = make_unique<ARMOperand>(Kind);
3054 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator
3055 I = Regs.begin(), E = Regs.end(); I != E; ++I)
3056 Op->Registers.push_back(I->second);
3057 Op->StartLoc = StartLoc;
3058 Op->EndLoc = EndLoc;
3059 return Op;
3062 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3063 unsigned Count,
3064 bool isDoubleSpaced,
3065 SMLoc S, SMLoc E) {
3066 auto Op = make_unique<ARMOperand>(k_VectorList);
3067 Op->VectorList.RegNum = RegNum;
3068 Op->VectorList.Count = Count;
3069 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3070 Op->StartLoc = S;
3071 Op->EndLoc = E;
3072 return Op;
3075 static std::unique_ptr<ARMOperand>
3076 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3077 SMLoc S, SMLoc E) {
3078 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3079 Op->VectorList.RegNum = RegNum;
3080 Op->VectorList.Count = Count;
3081 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3082 Op->StartLoc = S;
3083 Op->EndLoc = E;
3084 return Op;
3087 static std::unique_ptr<ARMOperand>
3088 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3089 bool isDoubleSpaced, SMLoc S, SMLoc E) {
3090 auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3091 Op->VectorList.RegNum = RegNum;
3092 Op->VectorList.Count = Count;
3093 Op->VectorList.LaneIndex = Index;
3094 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3095 Op->StartLoc = S;
3096 Op->EndLoc = E;
3097 return Op;
3100 static std::unique_ptr<ARMOperand>
3101 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3102 auto Op = make_unique<ARMOperand>(k_VectorIndex);
3103 Op->VectorIndex.Val = Idx;
3104 Op->StartLoc = S;
3105 Op->EndLoc = E;
3106 return Op;
3109 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3110 SMLoc E) {
3111 auto Op = make_unique<ARMOperand>(k_Immediate);
3112 Op->Imm.Val = Val;
3113 Op->StartLoc = S;
3114 Op->EndLoc = E;
3115 return Op;
3118 static std::unique_ptr<ARMOperand>
3119 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3120 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3121 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3122 SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3123 auto Op = make_unique<ARMOperand>(k_Memory);
3124 Op->Memory.BaseRegNum = BaseRegNum;
3125 Op->Memory.OffsetImm = OffsetImm;
3126 Op->Memory.OffsetRegNum = OffsetRegNum;
3127 Op->Memory.ShiftType = ShiftType;
3128 Op->Memory.ShiftImm = ShiftImm;
3129 Op->Memory.Alignment = Alignment;
3130 Op->Memory.isNegative = isNegative;
3131 Op->StartLoc = S;
3132 Op->EndLoc = E;
3133 Op->AlignmentLoc = AlignmentLoc;
3134 return Op;
3137 static std::unique_ptr<ARMOperand>
3138 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3139 unsigned ShiftImm, SMLoc S, SMLoc E) {
3140 auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3141 Op->PostIdxReg.RegNum = RegNum;
3142 Op->PostIdxReg.isAdd = isAdd;
3143 Op->PostIdxReg.ShiftTy = ShiftTy;
3144 Op->PostIdxReg.ShiftImm = ShiftImm;
3145 Op->StartLoc = S;
3146 Op->EndLoc = E;
3147 return Op;
3150 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3151 SMLoc S) {
3152 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3153 Op->MBOpt.Val = Opt;
3154 Op->StartLoc = S;
3155 Op->EndLoc = S;
3156 return Op;
3159 static std::unique_ptr<ARMOperand>
3160 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3161 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3162 Op->ISBOpt.Val = Opt;
3163 Op->StartLoc = S;
3164 Op->EndLoc = S;
3165 return Op;
3168 static std::unique_ptr<ARMOperand>
3169 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3170 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3171 Op->TSBOpt.Val = Opt;
3172 Op->StartLoc = S;
3173 Op->EndLoc = S;
3174 return Op;
3177 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3178 SMLoc S) {
3179 auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3180 Op->IFlags.Val = IFlags;
3181 Op->StartLoc = S;
3182 Op->EndLoc = S;
3183 return Op;
3186 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3187 auto Op = make_unique<ARMOperand>(k_MSRMask);
3188 Op->MMask.Val = MMask;
3189 Op->StartLoc = S;
3190 Op->EndLoc = S;
3191 return Op;
3194 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3195 auto Op = make_unique<ARMOperand>(k_BankedReg);
3196 Op->BankedReg.Val = Reg;
3197 Op->StartLoc = S;
3198 Op->EndLoc = S;
3199 return Op;
3203 } // end anonymous namespace.
3205 void ARMOperand::print(raw_ostream &OS) const {
3206 switch (Kind) {
3207 case k_CondCode:
3208 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3209 break;
3210 case k_CCOut:
3211 OS << "<ccout " << getReg() << ">";
3212 break;
3213 case k_ITCondMask: {
3214 static const char *const MaskStr[] = {
3215 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
3216 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
3218 assert((ITMask.Mask & 0xf) == ITMask.Mask);
3219 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3220 break;
3222 case k_CoprocNum:
3223 OS << "<coprocessor number: " << getCoproc() << ">";
3224 break;
3225 case k_CoprocReg:
3226 OS << "<coprocessor register: " << getCoproc() << ">";
3227 break;
3228 case k_CoprocOption:
3229 OS << "<coprocessor option: " << CoprocOption.Val << ">";
3230 break;
3231 case k_MSRMask:
3232 OS << "<mask: " << getMSRMask() << ">";
3233 break;
3234 case k_BankedReg:
3235 OS << "<banked reg: " << getBankedReg() << ">";
3236 break;
3237 case k_Immediate:
3238 OS << *getImm();
3239 break;
3240 case k_MemBarrierOpt:
3241 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3242 break;
3243 case k_InstSyncBarrierOpt:
3244 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3245 break;
3246 case k_TraceSyncBarrierOpt:
3247 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3248 break;
3249 case k_Memory:
3250 OS << "<memory "
3251 << " base:" << Memory.BaseRegNum;
3252 OS << ">";
3253 break;
3254 case k_PostIndexRegister:
3255 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3256 << PostIdxReg.RegNum;
3257 if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3258 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3259 << PostIdxReg.ShiftImm;
3260 OS << ">";
3261 break;
3262 case k_ProcIFlags: {
3263 OS << "<ARM_PROC::";
3264 unsigned IFlags = getProcIFlags();
3265 for (int i=2; i >= 0; --i)
3266 if (IFlags & (1 << i))
3267 OS << ARM_PROC::IFlagsToString(1 << i);
3268 OS << ">";
3269 break;
3271 case k_Register:
3272 OS << "<register " << getReg() << ">";
3273 break;
3274 case k_ShifterImmediate:
3275 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3276 << " #" << ShifterImm.Imm << ">";
3277 break;
3278 case k_ShiftedRegister:
3279 OS << "<so_reg_reg "
3280 << RegShiftedReg.SrcReg << " "
3281 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
3282 << " " << RegShiftedReg.ShiftReg << ">";
3283 break;
3284 case k_ShiftedImmediate:
3285 OS << "<so_reg_imm "
3286 << RegShiftedImm.SrcReg << " "
3287 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
3288 << " #" << RegShiftedImm.ShiftImm << ">";
3289 break;
3290 case k_RotateImmediate:
3291 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3292 break;
3293 case k_ModifiedImmediate:
3294 OS << "<mod_imm #" << ModImm.Bits << ", #"
3295 << ModImm.Rot << ")>";
3296 break;
3297 case k_ConstantPoolImmediate:
3298 OS << "<constant_pool_imm #" << *getConstantPoolImm();
3299 break;
3300 case k_BitfieldDescriptor:
3301 OS << "<bitfield " << "lsb: " << Bitfield.LSB
3302 << ", width: " << Bitfield.Width << ">";
3303 break;
3304 case k_RegisterList:
3305 case k_DPRRegisterList:
3306 case k_SPRRegisterList: {
3307 OS << "<register_list ";
3309 const SmallVectorImpl<unsigned> &RegList = getRegList();
3310 for (SmallVectorImpl<unsigned>::const_iterator
3311 I = RegList.begin(), E = RegList.end(); I != E; ) {
3312 OS << *I;
3313 if (++I < E) OS << ", ";
3316 OS << ">";
3317 break;
3319 case k_VectorList:
3320 OS << "<vector_list " << VectorList.Count << " * "
3321 << VectorList.RegNum << ">";
3322 break;
3323 case k_VectorListAllLanes:
3324 OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3325 << VectorList.RegNum << ">";
3326 break;
3327 case k_VectorListIndexed:
3328 OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3329 << VectorList.Count << " * " << VectorList.RegNum << ">";
3330 break;
3331 case k_Token:
3332 OS << "'" << getToken() << "'";
3333 break;
3334 case k_VectorIndex:
3335 OS << "<vectorindex " << getVectorIndex() << ">";
3336 break;
3340 /// @name Auto-generated Match Functions
3341 /// {
3343 static unsigned MatchRegisterName(StringRef Name);
3345 /// }
3347 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3348 SMLoc &StartLoc, SMLoc &EndLoc) {
3349 const AsmToken &Tok = getParser().getTok();
3350 StartLoc = Tok.getLoc();
3351 EndLoc = Tok.getEndLoc();
3352 RegNo = tryParseRegister();
3354 return (RegNo == (unsigned)-1);
3357 /// Try to parse a register name. The token must be an Identifier when called,
3358 /// and if it is a register name the token is eaten and the register number is
3359 /// returned. Otherwise return -1.
3360 int ARMAsmParser::tryParseRegister() {
3361 MCAsmParser &Parser = getParser();
3362 const AsmToken &Tok = Parser.getTok();
3363 if (Tok.isNot(AsmToken::Identifier)) return -1;
3365 std::string lowerCase = Tok.getString().lower();
3366 unsigned RegNum = MatchRegisterName(lowerCase);
3367 if (!RegNum) {
3368 RegNum = StringSwitch<unsigned>(lowerCase)
3369 .Case("r13", ARM::SP)
3370 .Case("r14", ARM::LR)
3371 .Case("r15", ARM::PC)
3372 .Case("ip", ARM::R12)
3373 // Additional register name aliases for 'gas' compatibility.
3374 .Case("a1", ARM::R0)
3375 .Case("a2", ARM::R1)
3376 .Case("a3", ARM::R2)
3377 .Case("a4", ARM::R3)
3378 .Case("v1", ARM::R4)
3379 .Case("v2", ARM::R5)
3380 .Case("v3", ARM::R6)
3381 .Case("v4", ARM::R7)
3382 .Case("v5", ARM::R8)
3383 .Case("v6", ARM::R9)
3384 .Case("v7", ARM::R10)
3385 .Case("v8", ARM::R11)
3386 .Case("sb", ARM::R9)
3387 .Case("sl", ARM::R10)
3388 .Case("fp", ARM::R11)
3389 .Default(0);
3391 if (!RegNum) {
3392 // Check for aliases registered via .req. Canonicalize to lower case.
3393 // That's more consistent since register names are case insensitive, and
3394 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3395 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3396 // If no match, return failure.
3397 if (Entry == RegisterReqs.end())
3398 return -1;
3399 Parser.Lex(); // Eat identifier token.
3400 return Entry->getValue();
3403 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3404 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3405 return -1;
3407 Parser.Lex(); // Eat identifier token.
3409 return RegNum;
3412 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3413 // If a recoverable error occurs, return 1. If an irrecoverable error
3414 // occurs, return -1. An irrecoverable error is one where tokens have been
3415 // consumed in the process of trying to parse the shifter (i.e., when it is
3416 // indeed a shifter operand, but malformed).
3417 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3418 MCAsmParser &Parser = getParser();
3419 SMLoc S = Parser.getTok().getLoc();
3420 const AsmToken &Tok = Parser.getTok();
3421 if (Tok.isNot(AsmToken::Identifier))
3422 return -1;
3424 std::string lowerCase = Tok.getString().lower();
3425 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3426 .Case("asl", ARM_AM::lsl)
3427 .Case("lsl", ARM_AM::lsl)
3428 .Case("lsr", ARM_AM::lsr)
3429 .Case("asr", ARM_AM::asr)
3430 .Case("ror", ARM_AM::ror)
3431 .Case("rrx", ARM_AM::rrx)
3432 .Default(ARM_AM::no_shift);
3434 if (ShiftTy == ARM_AM::no_shift)
3435 return 1;
3437 Parser.Lex(); // Eat the operator.
3439 // The source register for the shift has already been added to the
3440 // operand list, so we need to pop it off and combine it into the shifted
3441 // register operand instead.
3442 std::unique_ptr<ARMOperand> PrevOp(
3443 (ARMOperand *)Operands.pop_back_val().release());
3444 if (!PrevOp->isReg())
3445 return Error(PrevOp->getStartLoc(), "shift must be of a register");
3446 int SrcReg = PrevOp->getReg();
3448 SMLoc EndLoc;
3449 int64_t Imm = 0;
3450 int ShiftReg = 0;
3451 if (ShiftTy == ARM_AM::rrx) {
3452 // RRX Doesn't have an explicit shift amount. The encoder expects
3453 // the shift register to be the same as the source register. Seems odd,
3454 // but OK.
3455 ShiftReg = SrcReg;
3456 } else {
3457 // Figure out if this is shifted by a constant or a register (for non-RRX).
3458 if (Parser.getTok().is(AsmToken::Hash) ||
3459 Parser.getTok().is(AsmToken::Dollar)) {
3460 Parser.Lex(); // Eat hash.
3461 SMLoc ImmLoc = Parser.getTok().getLoc();
3462 const MCExpr *ShiftExpr = nullptr;
3463 if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3464 Error(ImmLoc, "invalid immediate shift value");
3465 return -1;
3467 // The expression must be evaluatable as an immediate.
3468 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3469 if (!CE) {
3470 Error(ImmLoc, "invalid immediate shift value");
3471 return -1;
3473 // Range check the immediate.
3474 // lsl, ror: 0 <= imm <= 31
3475 // lsr, asr: 0 <= imm <= 32
3476 Imm = CE->getValue();
3477 if (Imm < 0 ||
3478 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3479 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3480 Error(ImmLoc, "immediate shift value out of range");
3481 return -1;
3483 // shift by zero is a nop. Always send it through as lsl.
3484 // ('as' compatibility)
3485 if (Imm == 0)
3486 ShiftTy = ARM_AM::lsl;
3487 } else if (Parser.getTok().is(AsmToken::Identifier)) {
3488 SMLoc L = Parser.getTok().getLoc();
3489 EndLoc = Parser.getTok().getEndLoc();
3490 ShiftReg = tryParseRegister();
3491 if (ShiftReg == -1) {
3492 Error(L, "expected immediate or register in shift operand");
3493 return -1;
3495 } else {
3496 Error(Parser.getTok().getLoc(),
3497 "expected immediate or register in shift operand");
3498 return -1;
3502 if (ShiftReg && ShiftTy != ARM_AM::rrx)
3503 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3504 ShiftReg, Imm,
3505 S, EndLoc));
3506 else
3507 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3508 S, EndLoc));
3510 return 0;
3513 /// Try to parse a register name. The token must be an Identifier when called.
3514 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3515 /// if there is a "writeback". 'true' if it's not a register.
3517 /// TODO this is likely to change to allow different register types and or to
3518 /// parse for a specific register type.
3519 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3520 MCAsmParser &Parser = getParser();
3521 SMLoc RegStartLoc = Parser.getTok().getLoc();
3522 SMLoc RegEndLoc = Parser.getTok().getEndLoc();
3523 int RegNo = tryParseRegister();
3524 if (RegNo == -1)
3525 return true;
3527 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
3529 const AsmToken &ExclaimTok = Parser.getTok();
3530 if (ExclaimTok.is(AsmToken::Exclaim)) {
3531 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3532 ExclaimTok.getLoc()));
3533 Parser.Lex(); // Eat exclaim token
3534 return false;
3537 // Also check for an index operand. This is only legal for vector registers,
3538 // but that'll get caught OK in operand matching, so we don't need to
3539 // explicitly filter everything else out here.
3540 if (Parser.getTok().is(AsmToken::LBrac)) {
3541 SMLoc SIdx = Parser.getTok().getLoc();
3542 Parser.Lex(); // Eat left bracket token.
3544 const MCExpr *ImmVal;
3545 if (getParser().parseExpression(ImmVal))
3546 return true;
3547 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3548 if (!MCE)
3549 return TokError("immediate value expected for vector index");
3551 if (Parser.getTok().isNot(AsmToken::RBrac))
3552 return Error(Parser.getTok().getLoc(), "']' expected");
3554 SMLoc E = Parser.getTok().getEndLoc();
3555 Parser.Lex(); // Eat right bracket token.
3557 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3558 SIdx, E,
3559 getContext()));
3562 return false;
3565 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3566 /// instruction with a symbolic operand name.
3567 /// We accept "crN" syntax for GAS compatibility.
3568 /// <operand-name> ::= <prefix><number>
3569 /// If CoprocOp is 'c', then:
3570 /// <prefix> ::= c | cr
3571 /// If CoprocOp is 'p', then :
3572 /// <prefix> ::= p
3573 /// <number> ::= integer in range [0, 15]
3574 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3575 // Use the same layout as the tablegen'erated register name matcher. Ugly,
3576 // but efficient.
3577 if (Name.size() < 2 || Name[0] != CoprocOp)
3578 return -1;
3579 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3581 switch (Name.size()) {
3582 default: return -1;
3583 case 1:
3584 switch (Name[0]) {
3585 default: return -1;
3586 case '0': return 0;
3587 case '1': return 1;
3588 case '2': return 2;
3589 case '3': return 3;
3590 case '4': return 4;
3591 case '5': return 5;
3592 case '6': return 6;
3593 case '7': return 7;
3594 case '8': return 8;
3595 case '9': return 9;
3597 case 2:
3598 if (Name[0] != '1')
3599 return -1;
3600 switch (Name[1]) {
3601 default: return -1;
3602 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3603 // However, old cores (v5/v6) did use them in that way.
3604 case '0': return 10;
3605 case '1': return 11;
3606 case '2': return 12;
3607 case '3': return 13;
3608 case '4': return 14;
3609 case '5': return 15;
3614 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3615 OperandMatchResultTy
3616 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3617 MCAsmParser &Parser = getParser();
3618 SMLoc S = Parser.getTok().getLoc();
3619 const AsmToken &Tok = Parser.getTok();
3620 if (!Tok.is(AsmToken::Identifier))
3621 return MatchOperand_NoMatch;
3622 unsigned CC = ARMCondCodeFromString(Tok.getString());
3623 if (CC == ~0U)
3624 return MatchOperand_NoMatch;
3625 Parser.Lex(); // Eat the token.
3627 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3629 return MatchOperand_Success;
3632 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3633 /// token must be an Identifier when called, and if it is a coprocessor
3634 /// number, the token is eaten and the operand is added to the operand list.
3635 OperandMatchResultTy
3636 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3637 MCAsmParser &Parser = getParser();
3638 SMLoc S = Parser.getTok().getLoc();
3639 const AsmToken &Tok = Parser.getTok();
3640 if (Tok.isNot(AsmToken::Identifier))
3641 return MatchOperand_NoMatch;
3643 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3644 if (Num == -1)
3645 return MatchOperand_NoMatch;
3646 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3647 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3648 return MatchOperand_NoMatch;
3650 Parser.Lex(); // Eat identifier token.
3651 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3652 return MatchOperand_Success;
3655 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3656 /// token must be an Identifier when called, and if it is a coprocessor
3657 /// number, the token is eaten and the operand is added to the operand list.
3658 OperandMatchResultTy
3659 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3660 MCAsmParser &Parser = getParser();
3661 SMLoc S = Parser.getTok().getLoc();
3662 const AsmToken &Tok = Parser.getTok();
3663 if (Tok.isNot(AsmToken::Identifier))
3664 return MatchOperand_NoMatch;
3666 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3667 if (Reg == -1)
3668 return MatchOperand_NoMatch;
3670 Parser.Lex(); // Eat identifier token.
3671 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3672 return MatchOperand_Success;
3675 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3676 /// coproc_option : '{' imm0_255 '}'
3677 OperandMatchResultTy
3678 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3679 MCAsmParser &Parser = getParser();
3680 SMLoc S = Parser.getTok().getLoc();
3682 // If this isn't a '{', this isn't a coprocessor immediate operand.
3683 if (Parser.getTok().isNot(AsmToken::LCurly))
3684 return MatchOperand_NoMatch;
3685 Parser.Lex(); // Eat the '{'
3687 const MCExpr *Expr;
3688 SMLoc Loc = Parser.getTok().getLoc();
3689 if (getParser().parseExpression(Expr)) {
3690 Error(Loc, "illegal expression");
3691 return MatchOperand_ParseFail;
3693 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3694 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3695 Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3696 return MatchOperand_ParseFail;
3698 int Val = CE->getValue();
3700 // Check for and consume the closing '}'
3701 if (Parser.getTok().isNot(AsmToken::RCurly))
3702 return MatchOperand_ParseFail;
3703 SMLoc E = Parser.getTok().getEndLoc();
3704 Parser.Lex(); // Eat the '}'
3706 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3707 return MatchOperand_Success;
3710 // For register list parsing, we need to map from raw GPR register numbering
3711 // to the enumeration values. The enumeration values aren't sorted by
3712 // register number due to our using "sp", "lr" and "pc" as canonical names.
3713 static unsigned getNextRegister(unsigned Reg) {
3714 // If this is a GPR, we need to do it manually, otherwise we can rely
3715 // on the sort ordering of the enumeration since the other reg-classes
3716 // are sane.
3717 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3718 return Reg + 1;
3719 switch(Reg) {
3720 default: llvm_unreachable("Invalid GPR number!");
3721 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
3722 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
3723 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
3724 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
3725 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
3726 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3727 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
3728 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
3732 /// Parse a register list.
3733 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3734 MCAsmParser &Parser = getParser();
3735 if (Parser.getTok().isNot(AsmToken::LCurly))
3736 return TokError("Token is not a Left Curly Brace");
3737 SMLoc S = Parser.getTok().getLoc();
3738 Parser.Lex(); // Eat '{' token.
3739 SMLoc RegLoc = Parser.getTok().getLoc();
3741 // Check the first register in the list to see what register class
3742 // this is a list of.
3743 int Reg = tryParseRegister();
3744 if (Reg == -1)
3745 return Error(RegLoc, "register expected");
3747 // The reglist instructions have at most 16 registers, so reserve
3748 // space for that many.
3749 int EReg = 0;
3750 SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3752 // Allow Q regs and just interpret them as the two D sub-registers.
3753 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3754 Reg = getDRegFromQReg(Reg);
3755 EReg = MRI->getEncodingValue(Reg);
3756 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3757 ++Reg;
3759 const MCRegisterClass *RC;
3760 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3761 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3762 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3763 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3764 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3765 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3766 else
3767 return Error(RegLoc, "invalid register in register list");
3769 // Store the register.
3770 EReg = MRI->getEncodingValue(Reg);
3771 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3773 // This starts immediately after the first register token in the list,
3774 // so we can see either a comma or a minus (range separator) as a legal
3775 // next token.
3776 while (Parser.getTok().is(AsmToken::Comma) ||
3777 Parser.getTok().is(AsmToken::Minus)) {
3778 if (Parser.getTok().is(AsmToken::Minus)) {
3779 Parser.Lex(); // Eat the minus.
3780 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3781 int EndReg = tryParseRegister();
3782 if (EndReg == -1)
3783 return Error(AfterMinusLoc, "register expected");
3784 // Allow Q regs and just interpret them as the two D sub-registers.
3785 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3786 EndReg = getDRegFromQReg(EndReg) + 1;
3787 // If the register is the same as the start reg, there's nothing
3788 // more to do.
3789 if (Reg == EndReg)
3790 continue;
3791 // The register must be in the same register class as the first.
3792 if (!RC->contains(EndReg))
3793 return Error(AfterMinusLoc, "invalid register in register list");
3794 // Ranges must go from low to high.
3795 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3796 return Error(AfterMinusLoc, "bad range in register list");
3798 // Add all the registers in the range to the register list.
3799 while (Reg != EndReg) {
3800 Reg = getNextRegister(Reg);
3801 EReg = MRI->getEncodingValue(Reg);
3802 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3804 continue;
3806 Parser.Lex(); // Eat the comma.
3807 RegLoc = Parser.getTok().getLoc();
3808 int OldReg = Reg;
3809 const AsmToken RegTok = Parser.getTok();
3810 Reg = tryParseRegister();
3811 if (Reg == -1)
3812 return Error(RegLoc, "register expected");
3813 // Allow Q regs and just interpret them as the two D sub-registers.
3814 bool isQReg = false;
3815 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3816 Reg = getDRegFromQReg(Reg);
3817 isQReg = true;
3819 // The register must be in the same register class as the first.
3820 if (!RC->contains(Reg))
3821 return Error(RegLoc, "invalid register in register list");
3822 // List must be monotonically increasing.
3823 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3824 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3825 Warning(RegLoc, "register list not in ascending order");
3826 else
3827 return Error(RegLoc, "register list not in ascending order");
3829 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3830 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3831 ") in register list");
3832 continue;
3834 // VFP register lists must also be contiguous.
3835 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3836 Reg != OldReg + 1)
3837 return Error(RegLoc, "non-contiguous register range");
3838 EReg = MRI->getEncodingValue(Reg);
3839 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3840 if (isQReg) {
3841 EReg = MRI->getEncodingValue(++Reg);
3842 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3846 if (Parser.getTok().isNot(AsmToken::RCurly))
3847 return Error(Parser.getTok().getLoc(), "'}' expected");
3848 SMLoc E = Parser.getTok().getEndLoc();
3849 Parser.Lex(); // Eat '}' token.
3851 // Push the register list operand.
3852 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3854 // The ARM system instruction variants for LDM/STM have a '^' token here.
3855 if (Parser.getTok().is(AsmToken::Caret)) {
3856 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3857 Parser.Lex(); // Eat '^' token.
3860 return false;
3863 // Helper function to parse the lane index for vector lists.
3864 OperandMatchResultTy ARMAsmParser::
3865 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3866 MCAsmParser &Parser = getParser();
3867 Index = 0; // Always return a defined index value.
3868 if (Parser.getTok().is(AsmToken::LBrac)) {
3869 Parser.Lex(); // Eat the '['.
3870 if (Parser.getTok().is(AsmToken::RBrac)) {
3871 // "Dn[]" is the 'all lanes' syntax.
3872 LaneKind = AllLanes;
3873 EndLoc = Parser.getTok().getEndLoc();
3874 Parser.Lex(); // Eat the ']'.
3875 return MatchOperand_Success;
3878 // There's an optional '#' token here. Normally there wouldn't be, but
3879 // inline assemble puts one in, and it's friendly to accept that.
3880 if (Parser.getTok().is(AsmToken::Hash))
3881 Parser.Lex(); // Eat '#' or '$'.
3883 const MCExpr *LaneIndex;
3884 SMLoc Loc = Parser.getTok().getLoc();
3885 if (getParser().parseExpression(LaneIndex)) {
3886 Error(Loc, "illegal expression");
3887 return MatchOperand_ParseFail;
3889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3890 if (!CE) {
3891 Error(Loc, "lane index must be empty or an integer");
3892 return MatchOperand_ParseFail;
3894 if (Parser.getTok().isNot(AsmToken::RBrac)) {
3895 Error(Parser.getTok().getLoc(), "']' expected");
3896 return MatchOperand_ParseFail;
3898 EndLoc = Parser.getTok().getEndLoc();
3899 Parser.Lex(); // Eat the ']'.
3900 int64_t Val = CE->getValue();
3902 // FIXME: Make this range check context sensitive for .8, .16, .32.
3903 if (Val < 0 || Val > 7) {
3904 Error(Parser.getTok().getLoc(), "lane index out of range");
3905 return MatchOperand_ParseFail;
3907 Index = Val;
3908 LaneKind = IndexedLane;
3909 return MatchOperand_Success;
3911 LaneKind = NoLanes;
3912 return MatchOperand_Success;
3915 // parse a vector register list
3916 OperandMatchResultTy
3917 ARMAsmParser::parseVectorList(OperandVector &Operands) {
3918 MCAsmParser &Parser = getParser();
3919 VectorLaneTy LaneKind;
3920 unsigned LaneIndex;
3921 SMLoc S = Parser.getTok().getLoc();
3922 // As an extension (to match gas), support a plain D register or Q register
3923 // (without encosing curly braces) as a single or double entry list,
3924 // respectively.
3925 if (Parser.getTok().is(AsmToken::Identifier)) {
3926 SMLoc E = Parser.getTok().getEndLoc();
3927 int Reg = tryParseRegister();
3928 if (Reg == -1)
3929 return MatchOperand_NoMatch;
3930 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3931 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3932 if (Res != MatchOperand_Success)
3933 return Res;
3934 switch (LaneKind) {
3935 case NoLanes:
3936 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3937 break;
3938 case AllLanes:
3939 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3940 S, E));
3941 break;
3942 case IndexedLane:
3943 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3944 LaneIndex,
3945 false, S, E));
3946 break;
3948 return MatchOperand_Success;
3950 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3951 Reg = getDRegFromQReg(Reg);
3952 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3953 if (Res != MatchOperand_Success)
3954 return Res;
3955 switch (LaneKind) {
3956 case NoLanes:
3957 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3958 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3959 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3960 break;
3961 case AllLanes:
3962 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3963 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3964 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3965 S, E));
3966 break;
3967 case IndexedLane:
3968 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3969 LaneIndex,
3970 false, S, E));
3971 break;
3973 return MatchOperand_Success;
3975 Error(S, "vector register expected");
3976 return MatchOperand_ParseFail;
3979 if (Parser.getTok().isNot(AsmToken::LCurly))
3980 return MatchOperand_NoMatch;
3982 Parser.Lex(); // Eat '{' token.
3983 SMLoc RegLoc = Parser.getTok().getLoc();
3985 int Reg = tryParseRegister();
3986 if (Reg == -1) {
3987 Error(RegLoc, "register expected");
3988 return MatchOperand_ParseFail;
3990 unsigned Count = 1;
3991 int Spacing = 0;
3992 unsigned FirstReg = Reg;
3993 // The list is of D registers, but we also allow Q regs and just interpret
3994 // them as the two D sub-registers.
3995 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3996 FirstReg = Reg = getDRegFromQReg(Reg);
3997 Spacing = 1; // double-spacing requires explicit D registers, otherwise
3998 // it's ambiguous with four-register single spaced.
3999 ++Reg;
4000 ++Count;
4003 SMLoc E;
4004 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4005 return MatchOperand_ParseFail;
4007 while (Parser.getTok().is(AsmToken::Comma) ||
4008 Parser.getTok().is(AsmToken::Minus)) {
4009 if (Parser.getTok().is(AsmToken::Minus)) {
4010 if (!Spacing)
4011 Spacing = 1; // Register range implies a single spaced list.
4012 else if (Spacing == 2) {
4013 Error(Parser.getTok().getLoc(),
4014 "sequential registers in double spaced list");
4015 return MatchOperand_ParseFail;
4017 Parser.Lex(); // Eat the minus.
4018 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4019 int EndReg = tryParseRegister();
4020 if (EndReg == -1) {
4021 Error(AfterMinusLoc, "register expected");
4022 return MatchOperand_ParseFail;
4024 // Allow Q regs and just interpret them as the two D sub-registers.
4025 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4026 EndReg = getDRegFromQReg(EndReg) + 1;
4027 // If the register is the same as the start reg, there's nothing
4028 // more to do.
4029 if (Reg == EndReg)
4030 continue;
4031 // The register must be in the same register class as the first.
4032 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
4033 Error(AfterMinusLoc, "invalid register in register list");
4034 return MatchOperand_ParseFail;
4036 // Ranges must go from low to high.
4037 if (Reg > EndReg) {
4038 Error(AfterMinusLoc, "bad range in register list");
4039 return MatchOperand_ParseFail;
4041 // Parse the lane specifier if present.
4042 VectorLaneTy NextLaneKind;
4043 unsigned NextLaneIndex;
4044 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4045 MatchOperand_Success)
4046 return MatchOperand_ParseFail;
4047 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4048 Error(AfterMinusLoc, "mismatched lane index in register list");
4049 return MatchOperand_ParseFail;
4052 // Add all the registers in the range to the register list.
4053 Count += EndReg - Reg;
4054 Reg = EndReg;
4055 continue;
4057 Parser.Lex(); // Eat the comma.
4058 RegLoc = Parser.getTok().getLoc();
4059 int OldReg = Reg;
4060 Reg = tryParseRegister();
4061 if (Reg == -1) {
4062 Error(RegLoc, "register expected");
4063 return MatchOperand_ParseFail;
4065 // vector register lists must be contiguous.
4066 // It's OK to use the enumeration values directly here rather, as the
4067 // VFP register classes have the enum sorted properly.
4069 // The list is of D registers, but we also allow Q regs and just interpret
4070 // them as the two D sub-registers.
4071 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4072 if (!Spacing)
4073 Spacing = 1; // Register range implies a single spaced list.
4074 else if (Spacing == 2) {
4075 Error(RegLoc,
4076 "invalid register in double-spaced list (must be 'D' register')");
4077 return MatchOperand_ParseFail;
4079 Reg = getDRegFromQReg(Reg);
4080 if (Reg != OldReg + 1) {
4081 Error(RegLoc, "non-contiguous register range");
4082 return MatchOperand_ParseFail;
4084 ++Reg;
4085 Count += 2;
4086 // Parse the lane specifier if present.
4087 VectorLaneTy NextLaneKind;
4088 unsigned NextLaneIndex;
4089 SMLoc LaneLoc = Parser.getTok().getLoc();
4090 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4091 MatchOperand_Success)
4092 return MatchOperand_ParseFail;
4093 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4094 Error(LaneLoc, "mismatched lane index in register list");
4095 return MatchOperand_ParseFail;
4097 continue;
4099 // Normal D register.
4100 // Figure out the register spacing (single or double) of the list if
4101 // we don't know it already.
4102 if (!Spacing)
4103 Spacing = 1 + (Reg == OldReg + 2);
4105 // Just check that it's contiguous and keep going.
4106 if (Reg != OldReg + Spacing) {
4107 Error(RegLoc, "non-contiguous register range");
4108 return MatchOperand_ParseFail;
4110 ++Count;
4111 // Parse the lane specifier if present.
4112 VectorLaneTy NextLaneKind;
4113 unsigned NextLaneIndex;
4114 SMLoc EndLoc = Parser.getTok().getLoc();
4115 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4116 return MatchOperand_ParseFail;
4117 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4118 Error(EndLoc, "mismatched lane index in register list");
4119 return MatchOperand_ParseFail;
4123 if (Parser.getTok().isNot(AsmToken::RCurly)) {
4124 Error(Parser.getTok().getLoc(), "'}' expected");
4125 return MatchOperand_ParseFail;
4127 E = Parser.getTok().getEndLoc();
4128 Parser.Lex(); // Eat '}' token.
4130 switch (LaneKind) {
4131 case NoLanes:
4132 // Two-register operands have been converted to the
4133 // composite register classes.
4134 if (Count == 2) {
4135 const MCRegisterClass *RC = (Spacing == 1) ?
4136 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4137 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4138 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4140 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
4141 (Spacing == 2), S, E));
4142 break;
4143 case AllLanes:
4144 // Two-register operands have been converted to the
4145 // composite register classes.
4146 if (Count == 2) {
4147 const MCRegisterClass *RC = (Spacing == 1) ?
4148 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4149 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4150 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4152 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
4153 (Spacing == 2),
4154 S, E));
4155 break;
4156 case IndexedLane:
4157 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4158 LaneIndex,
4159 (Spacing == 2),
4160 S, E));
4161 break;
4163 return MatchOperand_Success;
4166 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4167 OperandMatchResultTy
4168 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4169 MCAsmParser &Parser = getParser();
4170 SMLoc S = Parser.getTok().getLoc();
4171 const AsmToken &Tok = Parser.getTok();
4172 unsigned Opt;
4174 if (Tok.is(AsmToken::Identifier)) {
4175 StringRef OptStr = Tok.getString();
4177 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4178 .Case("sy", ARM_MB::SY)
4179 .Case("st", ARM_MB::ST)
4180 .Case("ld", ARM_MB::LD)
4181 .Case("sh", ARM_MB::ISH)
4182 .Case("ish", ARM_MB::ISH)
4183 .Case("shst", ARM_MB::ISHST)
4184 .Case("ishst", ARM_MB::ISHST)
4185 .Case("ishld", ARM_MB::ISHLD)
4186 .Case("nsh", ARM_MB::NSH)
4187 .Case("un", ARM_MB::NSH)
4188 .Case("nshst", ARM_MB::NSHST)
4189 .Case("nshld", ARM_MB::NSHLD)
4190 .Case("unst", ARM_MB::NSHST)
4191 .Case("osh", ARM_MB::OSH)
4192 .Case("oshst", ARM_MB::OSHST)
4193 .Case("oshld", ARM_MB::OSHLD)
4194 .Default(~0U);
4196 // ishld, oshld, nshld and ld are only available from ARMv8.
4197 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4198 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4199 Opt = ~0U;
4201 if (Opt == ~0U)
4202 return MatchOperand_NoMatch;
4204 Parser.Lex(); // Eat identifier token.
4205 } else if (Tok.is(AsmToken::Hash) ||
4206 Tok.is(AsmToken::Dollar) ||
4207 Tok.is(AsmToken::Integer)) {
4208 if (Parser.getTok().isNot(AsmToken::Integer))
4209 Parser.Lex(); // Eat '#' or '$'.
4210 SMLoc Loc = Parser.getTok().getLoc();
4212 const MCExpr *MemBarrierID;
4213 if (getParser().parseExpression(MemBarrierID)) {
4214 Error(Loc, "illegal expression");
4215 return MatchOperand_ParseFail;
4218 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4219 if (!CE) {
4220 Error(Loc, "constant expression expected");
4221 return MatchOperand_ParseFail;
4224 int Val = CE->getValue();
4225 if (Val & ~0xf) {
4226 Error(Loc, "immediate value out of range");
4227 return MatchOperand_ParseFail;
4230 Opt = ARM_MB::RESERVED_0 + Val;
4231 } else
4232 return MatchOperand_ParseFail;
4234 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4235 return MatchOperand_Success;
4238 OperandMatchResultTy
4239 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4240 MCAsmParser &Parser = getParser();
4241 SMLoc S = Parser.getTok().getLoc();
4242 const AsmToken &Tok = Parser.getTok();
4244 if (Tok.isNot(AsmToken::Identifier))
4245 return MatchOperand_NoMatch;
4247 if (!Tok.getString().equals_lower("csync"))
4248 return MatchOperand_NoMatch;
4250 Parser.Lex(); // Eat identifier token.
4252 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4253 return MatchOperand_Success;
4256 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4257 OperandMatchResultTy
4258 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4259 MCAsmParser &Parser = getParser();
4260 SMLoc S = Parser.getTok().getLoc();
4261 const AsmToken &Tok = Parser.getTok();
4262 unsigned Opt;
4264 if (Tok.is(AsmToken::Identifier)) {
4265 StringRef OptStr = Tok.getString();
4267 if (OptStr.equals_lower("sy"))
4268 Opt = ARM_ISB::SY;
4269 else
4270 return MatchOperand_NoMatch;
4272 Parser.Lex(); // Eat identifier token.
4273 } else if (Tok.is(AsmToken::Hash) ||
4274 Tok.is(AsmToken::Dollar) ||
4275 Tok.is(AsmToken::Integer)) {
4276 if (Parser.getTok().isNot(AsmToken::Integer))
4277 Parser.Lex(); // Eat '#' or '$'.
4278 SMLoc Loc = Parser.getTok().getLoc();
4280 const MCExpr *ISBarrierID;
4281 if (getParser().parseExpression(ISBarrierID)) {
4282 Error(Loc, "illegal expression");
4283 return MatchOperand_ParseFail;
4286 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4287 if (!CE) {
4288 Error(Loc, "constant expression expected");
4289 return MatchOperand_ParseFail;
4292 int Val = CE->getValue();
4293 if (Val & ~0xf) {
4294 Error(Loc, "immediate value out of range");
4295 return MatchOperand_ParseFail;
4298 Opt = ARM_ISB::RESERVED_0 + Val;
4299 } else
4300 return MatchOperand_ParseFail;
4302 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4303 (ARM_ISB::InstSyncBOpt)Opt, S));
4304 return MatchOperand_Success;
4308 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4309 OperandMatchResultTy
4310 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4311 MCAsmParser &Parser = getParser();
4312 SMLoc S = Parser.getTok().getLoc();
4313 const AsmToken &Tok = Parser.getTok();
4314 if (!Tok.is(AsmToken::Identifier))
4315 return MatchOperand_NoMatch;
4316 StringRef IFlagsStr = Tok.getString();
4318 // An iflags string of "none" is interpreted to mean that none of the AIF
4319 // bits are set. Not a terribly useful instruction, but a valid encoding.
4320 unsigned IFlags = 0;
4321 if (IFlagsStr != "none") {
4322 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4323 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4324 .Case("a", ARM_PROC::A)
4325 .Case("i", ARM_PROC::I)
4326 .Case("f", ARM_PROC::F)
4327 .Default(~0U);
4329 // If some specific iflag is already set, it means that some letter is
4330 // present more than once, this is not acceptable.
4331 if (Flag == ~0U || (IFlags & Flag))
4332 return MatchOperand_NoMatch;
4334 IFlags |= Flag;
4338 Parser.Lex(); // Eat identifier token.
4339 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4340 return MatchOperand_Success;
4343 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4344 OperandMatchResultTy
4345 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4346 MCAsmParser &Parser = getParser();
4347 SMLoc S = Parser.getTok().getLoc();
4348 const AsmToken &Tok = Parser.getTok();
4350 if (Tok.is(AsmToken::Integer)) {
4351 int64_t Val = Tok.getIntVal();
4352 if (Val > 255 || Val < 0) {
4353 return MatchOperand_NoMatch;
4355 unsigned SYSmvalue = Val & 0xFF;
4356 Parser.Lex();
4357 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4358 return MatchOperand_Success;
4361 if (!Tok.is(AsmToken::Identifier))
4362 return MatchOperand_NoMatch;
4363 StringRef Mask = Tok.getString();
4365 if (isMClass()) {
4366 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4367 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4368 return MatchOperand_NoMatch;
4370 unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4372 Parser.Lex(); // Eat identifier token.
4373 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4374 return MatchOperand_Success;
4377 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4378 size_t Start = 0, Next = Mask.find('_');
4379 StringRef Flags = "";
4380 std::string SpecReg = Mask.slice(Start, Next).lower();
4381 if (Next != StringRef::npos)
4382 Flags = Mask.slice(Next+1, Mask.size());
4384 // FlagsVal contains the complete mask:
4385 // 3-0: Mask
4386 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4387 unsigned FlagsVal = 0;
4389 if (SpecReg == "apsr") {
4390 FlagsVal = StringSwitch<unsigned>(Flags)
4391 .Case("nzcvq", 0x8) // same as CPSR_f
4392 .Case("g", 0x4) // same as CPSR_s
4393 .Case("nzcvqg", 0xc) // same as CPSR_fs
4394 .Default(~0U);
4396 if (FlagsVal == ~0U) {
4397 if (!Flags.empty())
4398 return MatchOperand_NoMatch;
4399 else
4400 FlagsVal = 8; // No flag
4402 } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4403 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4404 if (Flags == "all" || Flags == "")
4405 Flags = "fc";
4406 for (int i = 0, e = Flags.size(); i != e; ++i) {
4407 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4408 .Case("c", 1)
4409 .Case("x", 2)
4410 .Case("s", 4)
4411 .Case("f", 8)
4412 .Default(~0U);
4414 // If some specific flag is already set, it means that some letter is
4415 // present more than once, this is not acceptable.
4416 if (Flag == ~0U || (FlagsVal & Flag))
4417 return MatchOperand_NoMatch;
4418 FlagsVal |= Flag;
4420 } else // No match for special register.
4421 return MatchOperand_NoMatch;
4423 // Special register without flags is NOT equivalent to "fc" flags.
4424 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4425 // two lines would enable gas compatibility at the expense of breaking
4426 // round-tripping.
4428 // if (!FlagsVal)
4429 // FlagsVal = 0x9;
4431 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4432 if (SpecReg == "spsr")
4433 FlagsVal |= 16;
4435 Parser.Lex(); // Eat identifier token.
4436 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4437 return MatchOperand_Success;
4440 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4441 /// use in the MRS/MSR instructions added to support virtualization.
4442 OperandMatchResultTy
4443 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4444 MCAsmParser &Parser = getParser();
4445 SMLoc S = Parser.getTok().getLoc();
4446 const AsmToken &Tok = Parser.getTok();
4447 if (!Tok.is(AsmToken::Identifier))
4448 return MatchOperand_NoMatch;
4449 StringRef RegName = Tok.getString();
4451 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
4452 if (!TheReg)
4453 return MatchOperand_NoMatch;
4454 unsigned Encoding = TheReg->Encoding;
4456 Parser.Lex(); // Eat identifier token.
4457 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4458 return MatchOperand_Success;
4461 OperandMatchResultTy
4462 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4463 int High) {
4464 MCAsmParser &Parser = getParser();
4465 const AsmToken &Tok = Parser.getTok();
4466 if (Tok.isNot(AsmToken::Identifier)) {
4467 Error(Parser.getTok().getLoc(), Op + " operand expected.");
4468 return MatchOperand_ParseFail;
4470 StringRef ShiftName = Tok.getString();
4471 std::string LowerOp = Op.lower();
4472 std::string UpperOp = Op.upper();
4473 if (ShiftName != LowerOp && ShiftName != UpperOp) {
4474 Error(Parser.getTok().getLoc(), Op + " operand expected.");
4475 return MatchOperand_ParseFail;
4477 Parser.Lex(); // Eat shift type token.
4479 // There must be a '#' and a shift amount.
4480 if (Parser.getTok().isNot(AsmToken::Hash) &&
4481 Parser.getTok().isNot(AsmToken::Dollar)) {
4482 Error(Parser.getTok().getLoc(), "'#' expected");
4483 return MatchOperand_ParseFail;
4485 Parser.Lex(); // Eat hash token.
4487 const MCExpr *ShiftAmount;
4488 SMLoc Loc = Parser.getTok().getLoc();
4489 SMLoc EndLoc;
4490 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4491 Error(Loc, "illegal expression");
4492 return MatchOperand_ParseFail;
4494 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4495 if (!CE) {
4496 Error(Loc, "constant expression expected");
4497 return MatchOperand_ParseFail;
4499 int Val = CE->getValue();
4500 if (Val < Low || Val > High) {
4501 Error(Loc, "immediate value out of range");
4502 return MatchOperand_ParseFail;
4505 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4507 return MatchOperand_Success;
4510 OperandMatchResultTy
4511 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4512 MCAsmParser &Parser = getParser();
4513 const AsmToken &Tok = Parser.getTok();
4514 SMLoc S = Tok.getLoc();
4515 if (Tok.isNot(AsmToken::Identifier)) {
4516 Error(S, "'be' or 'le' operand expected");
4517 return MatchOperand_ParseFail;
4519 int Val = StringSwitch<int>(Tok.getString().lower())
4520 .Case("be", 1)
4521 .Case("le", 0)
4522 .Default(-1);
4523 Parser.Lex(); // Eat the token.
4525 if (Val == -1) {
4526 Error(S, "'be' or 'le' operand expected");
4527 return MatchOperand_ParseFail;
4529 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
4530 getContext()),
4531 S, Tok.getEndLoc()));
4532 return MatchOperand_Success;
4535 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4536 /// instructions. Legal values are:
4537 /// lsl #n 'n' in [0,31]
4538 /// asr #n 'n' in [1,32]
4539 /// n == 32 encoded as n == 0.
4540 OperandMatchResultTy
4541 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4542 MCAsmParser &Parser = getParser();
4543 const AsmToken &Tok = Parser.getTok();
4544 SMLoc S = Tok.getLoc();
4545 if (Tok.isNot(AsmToken::Identifier)) {
4546 Error(S, "shift operator 'asr' or 'lsl' expected");
4547 return MatchOperand_ParseFail;
4549 StringRef ShiftName = Tok.getString();
4550 bool isASR;
4551 if (ShiftName == "lsl" || ShiftName == "LSL")
4552 isASR = false;
4553 else if (ShiftName == "asr" || ShiftName == "ASR")
4554 isASR = true;
4555 else {
4556 Error(S, "shift operator 'asr' or 'lsl' expected");
4557 return MatchOperand_ParseFail;
4559 Parser.Lex(); // Eat the operator.
4561 // A '#' and a shift amount.
4562 if (Parser.getTok().isNot(AsmToken::Hash) &&
4563 Parser.getTok().isNot(AsmToken::Dollar)) {
4564 Error(Parser.getTok().getLoc(), "'#' expected");
4565 return MatchOperand_ParseFail;
4567 Parser.Lex(); // Eat hash token.
4568 SMLoc ExLoc = Parser.getTok().getLoc();
4570 const MCExpr *ShiftAmount;
4571 SMLoc EndLoc;
4572 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4573 Error(ExLoc, "malformed shift expression");
4574 return MatchOperand_ParseFail;
4576 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4577 if (!CE) {
4578 Error(ExLoc, "shift amount must be an immediate");
4579 return MatchOperand_ParseFail;
4582 int64_t Val = CE->getValue();
4583 if (isASR) {
4584 // Shift amount must be in [1,32]
4585 if (Val < 1 || Val > 32) {
4586 Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4587 return MatchOperand_ParseFail;
4589 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4590 if (isThumb() && Val == 32) {
4591 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4592 return MatchOperand_ParseFail;
4594 if (Val == 32) Val = 0;
4595 } else {
4596 // Shift amount must be in [1,32]
4597 if (Val < 0 || Val > 31) {
4598 Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4599 return MatchOperand_ParseFail;
4603 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4605 return MatchOperand_Success;
4608 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4609 /// of instructions. Legal values are:
4610 /// ror #n 'n' in {0, 8, 16, 24}
4611 OperandMatchResultTy
4612 ARMAsmParser::parseRotImm(OperandVector &Operands) {
4613 MCAsmParser &Parser = getParser();
4614 const AsmToken &Tok = Parser.getTok();
4615 SMLoc S = Tok.getLoc();
4616 if (Tok.isNot(AsmToken::Identifier))
4617 return MatchOperand_NoMatch;
4618 StringRef ShiftName = Tok.getString();
4619 if (ShiftName != "ror" && ShiftName != "ROR")
4620 return MatchOperand_NoMatch;
4621 Parser.Lex(); // Eat the operator.
4623 // A '#' and a rotate amount.
4624 if (Parser.getTok().isNot(AsmToken::Hash) &&
4625 Parser.getTok().isNot(AsmToken::Dollar)) {
4626 Error(Parser.getTok().getLoc(), "'#' expected");
4627 return MatchOperand_ParseFail;
4629 Parser.Lex(); // Eat hash token.
4630 SMLoc ExLoc = Parser.getTok().getLoc();
4632 const MCExpr *ShiftAmount;
4633 SMLoc EndLoc;
4634 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4635 Error(ExLoc, "malformed rotate expression");
4636 return MatchOperand_ParseFail;
4638 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4639 if (!CE) {
4640 Error(ExLoc, "rotate amount must be an immediate");
4641 return MatchOperand_ParseFail;
4644 int64_t Val = CE->getValue();
4645 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4646 // normally, zero is represented in asm by omitting the rotate operand
4647 // entirely.
4648 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4649 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4650 return MatchOperand_ParseFail;
4653 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4655 return MatchOperand_Success;
4658 OperandMatchResultTy
4659 ARMAsmParser::parseModImm(OperandVector &Operands) {
4660 MCAsmParser &Parser = getParser();
4661 MCAsmLexer &Lexer = getLexer();
4662 int64_t Imm1, Imm2;
4664 SMLoc S = Parser.getTok().getLoc();
4666 // 1) A mod_imm operand can appear in the place of a register name:
4667 // add r0, #mod_imm
4668 // add r0, r0, #mod_imm
4669 // to correctly handle the latter, we bail out as soon as we see an
4670 // identifier.
4672 // 2) Similarly, we do not want to parse into complex operands:
4673 // mov r0, #mod_imm
4674 // mov r0, :lower16:(_foo)
4675 if (Parser.getTok().is(AsmToken::Identifier) ||
4676 Parser.getTok().is(AsmToken::Colon))
4677 return MatchOperand_NoMatch;
4679 // Hash (dollar) is optional as per the ARMARM
4680 if (Parser.getTok().is(AsmToken::Hash) ||
4681 Parser.getTok().is(AsmToken::Dollar)) {
4682 // Avoid parsing into complex operands (#:)
4683 if (Lexer.peekTok().is(AsmToken::Colon))
4684 return MatchOperand_NoMatch;
4686 // Eat the hash (dollar)
4687 Parser.Lex();
4690 SMLoc Sx1, Ex1;
4691 Sx1 = Parser.getTok().getLoc();
4692 const MCExpr *Imm1Exp;
4693 if (getParser().parseExpression(Imm1Exp, Ex1)) {
4694 Error(Sx1, "malformed expression");
4695 return MatchOperand_ParseFail;
4698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4700 if (CE) {
4701 // Immediate must fit within 32-bits
4702 Imm1 = CE->getValue();
4703 int Enc = ARM_AM::getSOImmVal(Imm1);
4704 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4705 // We have a match!
4706 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4707 (Enc & 0xF00) >> 7,
4708 Sx1, Ex1));
4709 return MatchOperand_Success;
4712 // We have parsed an immediate which is not for us, fallback to a plain
4713 // immediate. This can happen for instruction aliases. For an example,
4714 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4715 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4716 // instruction with a mod_imm operand. The alias is defined such that the
4717 // parser method is shared, that's why we have to do this here.
4718 if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4719 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4720 return MatchOperand_Success;
4722 } else {
4723 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4724 // MCFixup). Fallback to a plain immediate.
4725 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4726 return MatchOperand_Success;
4729 // From this point onward, we expect the input to be a (#bits, #rot) pair
4730 if (Parser.getTok().isNot(AsmToken::Comma)) {
4731 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4732 return MatchOperand_ParseFail;
4735 if (Imm1 & ~0xFF) {
4736 Error(Sx1, "immediate operand must a number in the range [0, 255]");
4737 return MatchOperand_ParseFail;
4740 // Eat the comma
4741 Parser.Lex();
4743 // Repeat for #rot
4744 SMLoc Sx2, Ex2;
4745 Sx2 = Parser.getTok().getLoc();
4747 // Eat the optional hash (dollar)
4748 if (Parser.getTok().is(AsmToken::Hash) ||
4749 Parser.getTok().is(AsmToken::Dollar))
4750 Parser.Lex();
4752 const MCExpr *Imm2Exp;
4753 if (getParser().parseExpression(Imm2Exp, Ex2)) {
4754 Error(Sx2, "malformed expression");
4755 return MatchOperand_ParseFail;
4758 CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4760 if (CE) {
4761 Imm2 = CE->getValue();
4762 if (!(Imm2 & ~0x1E)) {
4763 // We have a match!
4764 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4765 return MatchOperand_Success;
4767 Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4768 return MatchOperand_ParseFail;
4769 } else {
4770 Error(Sx2, "constant expression expected");
4771 return MatchOperand_ParseFail;
4775 OperandMatchResultTy
4776 ARMAsmParser::parseBitfield(OperandVector &Operands) {
4777 MCAsmParser &Parser = getParser();
4778 SMLoc S = Parser.getTok().getLoc();
4779 // The bitfield descriptor is really two operands, the LSB and the width.
4780 if (Parser.getTok().isNot(AsmToken::Hash) &&
4781 Parser.getTok().isNot(AsmToken::Dollar)) {
4782 Error(Parser.getTok().getLoc(), "'#' expected");
4783 return MatchOperand_ParseFail;
4785 Parser.Lex(); // Eat hash token.
4787 const MCExpr *LSBExpr;
4788 SMLoc E = Parser.getTok().getLoc();
4789 if (getParser().parseExpression(LSBExpr)) {
4790 Error(E, "malformed immediate expression");
4791 return MatchOperand_ParseFail;
4793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4794 if (!CE) {
4795 Error(E, "'lsb' operand must be an immediate");
4796 return MatchOperand_ParseFail;
4799 int64_t LSB = CE->getValue();
4800 // The LSB must be in the range [0,31]
4801 if (LSB < 0 || LSB > 31) {
4802 Error(E, "'lsb' operand must be in the range [0,31]");
4803 return MatchOperand_ParseFail;
4805 E = Parser.getTok().getLoc();
4807 // Expect another immediate operand.
4808 if (Parser.getTok().isNot(AsmToken::Comma)) {
4809 Error(Parser.getTok().getLoc(), "too few operands");
4810 return MatchOperand_ParseFail;
4812 Parser.Lex(); // Eat hash token.
4813 if (Parser.getTok().isNot(AsmToken::Hash) &&
4814 Parser.getTok().isNot(AsmToken::Dollar)) {
4815 Error(Parser.getTok().getLoc(), "'#' expected");
4816 return MatchOperand_ParseFail;
4818 Parser.Lex(); // Eat hash token.
4820 const MCExpr *WidthExpr;
4821 SMLoc EndLoc;
4822 if (getParser().parseExpression(WidthExpr, EndLoc)) {
4823 Error(E, "malformed immediate expression");
4824 return MatchOperand_ParseFail;
4826 CE = dyn_cast<MCConstantExpr>(WidthExpr);
4827 if (!CE) {
4828 Error(E, "'width' operand must be an immediate");
4829 return MatchOperand_ParseFail;
4832 int64_t Width = CE->getValue();
4833 // The LSB must be in the range [1,32-lsb]
4834 if (Width < 1 || Width > 32 - LSB) {
4835 Error(E, "'width' operand must be in the range [1,32-lsb]");
4836 return MatchOperand_ParseFail;
4839 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4841 return MatchOperand_Success;
4844 OperandMatchResultTy
4845 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4846 // Check for a post-index addressing register operand. Specifically:
4847 // postidx_reg := '+' register {, shift}
4848 // | '-' register {, shift}
4849 // | register {, shift}
4851 // This method must return MatchOperand_NoMatch without consuming any tokens
4852 // in the case where there is no match, as other alternatives take other
4853 // parse methods.
4854 MCAsmParser &Parser = getParser();
4855 AsmToken Tok = Parser.getTok();
4856 SMLoc S = Tok.getLoc();
4857 bool haveEaten = false;
4858 bool isAdd = true;
4859 if (Tok.is(AsmToken::Plus)) {
4860 Parser.Lex(); // Eat the '+' token.
4861 haveEaten = true;
4862 } else if (Tok.is(AsmToken::Minus)) {
4863 Parser.Lex(); // Eat the '-' token.
4864 isAdd = false;
4865 haveEaten = true;
4868 SMLoc E = Parser.getTok().getEndLoc();
4869 int Reg = tryParseRegister();
4870 if (Reg == -1) {
4871 if (!haveEaten)
4872 return MatchOperand_NoMatch;
4873 Error(Parser.getTok().getLoc(), "register expected");
4874 return MatchOperand_ParseFail;
4877 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4878 unsigned ShiftImm = 0;
4879 if (Parser.getTok().is(AsmToken::Comma)) {
4880 Parser.Lex(); // Eat the ','.
4881 if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4882 return MatchOperand_ParseFail;
4884 // FIXME: Only approximates end...may include intervening whitespace.
4885 E = Parser.getTok().getLoc();
4888 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4889 ShiftImm, S, E));
4891 return MatchOperand_Success;
4894 OperandMatchResultTy
4895 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4896 // Check for a post-index addressing register operand. Specifically:
4897 // am3offset := '+' register
4898 // | '-' register
4899 // | register
4900 // | # imm
4901 // | # + imm
4902 // | # - imm
4904 // This method must return MatchOperand_NoMatch without consuming any tokens
4905 // in the case where there is no match, as other alternatives take other
4906 // parse methods.
4907 MCAsmParser &Parser = getParser();
4908 AsmToken Tok = Parser.getTok();
4909 SMLoc S = Tok.getLoc();
4911 // Do immediates first, as we always parse those if we have a '#'.
4912 if (Parser.getTok().is(AsmToken::Hash) ||
4913 Parser.getTok().is(AsmToken::Dollar)) {
4914 Parser.Lex(); // Eat '#' or '$'.
4915 // Explicitly look for a '-', as we need to encode negative zero
4916 // differently.
4917 bool isNegative = Parser.getTok().is(AsmToken::Minus);
4918 const MCExpr *Offset;
4919 SMLoc E;
4920 if (getParser().parseExpression(Offset, E))
4921 return MatchOperand_ParseFail;
4922 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4923 if (!CE) {
4924 Error(S, "constant expression expected");
4925 return MatchOperand_ParseFail;
4927 // Negative zero is encoded as the flag value
4928 // std::numeric_limits<int32_t>::min().
4929 int32_t Val = CE->getValue();
4930 if (isNegative && Val == 0)
4931 Val = std::numeric_limits<int32_t>::min();
4933 Operands.push_back(
4934 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
4936 return MatchOperand_Success;
4939 bool haveEaten = false;
4940 bool isAdd = true;
4941 if (Tok.is(AsmToken::Plus)) {
4942 Parser.Lex(); // Eat the '+' token.
4943 haveEaten = true;
4944 } else if (Tok.is(AsmToken::Minus)) {
4945 Parser.Lex(); // Eat the '-' token.
4946 isAdd = false;
4947 haveEaten = true;
4950 Tok = Parser.getTok();
4951 int Reg = tryParseRegister();
4952 if (Reg == -1) {
4953 if (!haveEaten)
4954 return MatchOperand_NoMatch;
4955 Error(Tok.getLoc(), "register expected");
4956 return MatchOperand_ParseFail;
4959 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4960 0, S, Tok.getEndLoc()));
4962 return MatchOperand_Success;
4965 /// Convert parsed operands to MCInst. Needed here because this instruction
4966 /// only has two register operands, but multiplication is commutative so
4967 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4968 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4969 const OperandVector &Operands) {
4970 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4971 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4972 // If we have a three-operand form, make sure to set Rn to be the operand
4973 // that isn't the same as Rd.
4974 unsigned RegOp = 4;
4975 if (Operands.size() == 6 &&
4976 ((ARMOperand &)*Operands[4]).getReg() ==
4977 ((ARMOperand &)*Operands[3]).getReg())
4978 RegOp = 5;
4979 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
4980 Inst.addOperand(Inst.getOperand(0));
4981 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
4984 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
4985 const OperandVector &Operands) {
4986 int CondOp = -1, ImmOp = -1;
4987 switch(Inst.getOpcode()) {
4988 case ARM::tB:
4989 case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
4991 case ARM::t2B:
4992 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4994 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4996 // first decide whether or not the branch should be conditional
4997 // by looking at it's location relative to an IT block
4998 if(inITBlock()) {
4999 // inside an IT block we cannot have any conditional branches. any
5000 // such instructions needs to be converted to unconditional form
5001 switch(Inst.getOpcode()) {
5002 case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5003 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5005 } else {
5006 // outside IT blocks we can only have unconditional branches with AL
5007 // condition code or conditional branches with non-AL condition code
5008 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5009 switch(Inst.getOpcode()) {
5010 case ARM::tB:
5011 case ARM::tBcc:
5012 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5013 break;
5014 case ARM::t2B:
5015 case ARM::t2Bcc:
5016 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5017 break;
5021 // now decide on encoding size based on branch target range
5022 switch(Inst.getOpcode()) {
5023 // classify tB as either t2B or t1B based on range of immediate operand
5024 case ARM::tB: {
5025 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5026 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5027 Inst.setOpcode(ARM::t2B);
5028 break;
5030 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5031 case ARM::tBcc: {
5032 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5033 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5034 Inst.setOpcode(ARM::t2Bcc);
5035 break;
5038 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5039 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5042 /// Parse an ARM memory expression, return false if successful else return true
5043 /// or an error. The first token must be a '[' when called.
5044 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5045 MCAsmParser &Parser = getParser();
5046 SMLoc S, E;
5047 if (Parser.getTok().isNot(AsmToken::LBrac))
5048 return TokError("Token is not a Left Bracket");
5049 S = Parser.getTok().getLoc();
5050 Parser.Lex(); // Eat left bracket token.
5052 const AsmToken &BaseRegTok = Parser.getTok();
5053 int BaseRegNum = tryParseRegister();
5054 if (BaseRegNum == -1)
5055 return Error(BaseRegTok.getLoc(), "register expected");
5057 // The next token must either be a comma, a colon or a closing bracket.
5058 const AsmToken &Tok = Parser.getTok();
5059 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5060 !Tok.is(AsmToken::RBrac))
5061 return Error(Tok.getLoc(), "malformed memory operand");
5063 if (Tok.is(AsmToken::RBrac)) {
5064 E = Tok.getEndLoc();
5065 Parser.Lex(); // Eat right bracket token.
5067 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5068 ARM_AM::no_shift, 0, 0, false,
5069 S, E));
5071 // If there's a pre-indexing writeback marker, '!', just add it as a token
5072 // operand. It's rather odd, but syntactically valid.
5073 if (Parser.getTok().is(AsmToken::Exclaim)) {
5074 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5075 Parser.Lex(); // Eat the '!'.
5078 return false;
5081 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5082 "Lost colon or comma in memory operand?!");
5083 if (Tok.is(AsmToken::Comma)) {
5084 Parser.Lex(); // Eat the comma.
5087 // If we have a ':', it's an alignment specifier.
5088 if (Parser.getTok().is(AsmToken::Colon)) {
5089 Parser.Lex(); // Eat the ':'.
5090 E = Parser.getTok().getLoc();
5091 SMLoc AlignmentLoc = Tok.getLoc();
5093 const MCExpr *Expr;
5094 if (getParser().parseExpression(Expr))
5095 return true;
5097 // The expression has to be a constant. Memory references with relocations
5098 // don't come through here, as they use the <label> forms of the relevant
5099 // instructions.
5100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5101 if (!CE)
5102 return Error (E, "constant expression expected");
5104 unsigned Align = 0;
5105 switch (CE->getValue()) {
5106 default:
5107 return Error(E,
5108 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5109 case 16: Align = 2; break;
5110 case 32: Align = 4; break;
5111 case 64: Align = 8; break;
5112 case 128: Align = 16; break;
5113 case 256: Align = 32; break;
5116 // Now we should have the closing ']'
5117 if (Parser.getTok().isNot(AsmToken::RBrac))
5118 return Error(Parser.getTok().getLoc(), "']' expected");
5119 E = Parser.getTok().getEndLoc();
5120 Parser.Lex(); // Eat right bracket token.
5122 // Don't worry about range checking the value here. That's handled by
5123 // the is*() predicates.
5124 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5125 ARM_AM::no_shift, 0, Align,
5126 false, S, E, AlignmentLoc));
5128 // If there's a pre-indexing writeback marker, '!', just add it as a token
5129 // operand.
5130 if (Parser.getTok().is(AsmToken::Exclaim)) {
5131 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5132 Parser.Lex(); // Eat the '!'.
5135 return false;
5138 // If we have a '#', it's an immediate offset, else assume it's a register
5139 // offset. Be friendly and also accept a plain integer (without a leading
5140 // hash) for gas compatibility.
5141 if (Parser.getTok().is(AsmToken::Hash) ||
5142 Parser.getTok().is(AsmToken::Dollar) ||
5143 Parser.getTok().is(AsmToken::Integer)) {
5144 if (Parser.getTok().isNot(AsmToken::Integer))
5145 Parser.Lex(); // Eat '#' or '$'.
5146 E = Parser.getTok().getLoc();
5148 bool isNegative = getParser().getTok().is(AsmToken::Minus);
5149 const MCExpr *Offset;
5150 if (getParser().parseExpression(Offset))
5151 return true;
5153 // The expression has to be a constant. Memory references with relocations
5154 // don't come through here, as they use the <label> forms of the relevant
5155 // instructions.
5156 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5157 if (!CE)
5158 return Error (E, "constant expression expected");
5160 // If the constant was #-0, represent it as
5161 // std::numeric_limits<int32_t>::min().
5162 int32_t Val = CE->getValue();
5163 if (isNegative && Val == 0)
5164 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5165 getContext());
5167 // Now we should have the closing ']'
5168 if (Parser.getTok().isNot(AsmToken::RBrac))
5169 return Error(Parser.getTok().getLoc(), "']' expected");
5170 E = Parser.getTok().getEndLoc();
5171 Parser.Lex(); // Eat right bracket token.
5173 // Don't worry about range checking the value here. That's handled by
5174 // the is*() predicates.
5175 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5176 ARM_AM::no_shift, 0, 0,
5177 false, S, E));
5179 // If there's a pre-indexing writeback marker, '!', just add it as a token
5180 // operand.
5181 if (Parser.getTok().is(AsmToken::Exclaim)) {
5182 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5183 Parser.Lex(); // Eat the '!'.
5186 return false;
5189 // The register offset is optionally preceded by a '+' or '-'
5190 bool isNegative = false;
5191 if (Parser.getTok().is(AsmToken::Minus)) {
5192 isNegative = true;
5193 Parser.Lex(); // Eat the '-'.
5194 } else if (Parser.getTok().is(AsmToken::Plus)) {
5195 // Nothing to do.
5196 Parser.Lex(); // Eat the '+'.
5199 E = Parser.getTok().getLoc();
5200 int OffsetRegNum = tryParseRegister();
5201 if (OffsetRegNum == -1)
5202 return Error(E, "register expected");
5204 // If there's a shift operator, handle it.
5205 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5206 unsigned ShiftImm = 0;
5207 if (Parser.getTok().is(AsmToken::Comma)) {
5208 Parser.Lex(); // Eat the ','.
5209 if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5210 return true;
5213 // Now we should have the closing ']'
5214 if (Parser.getTok().isNot(AsmToken::RBrac))
5215 return Error(Parser.getTok().getLoc(), "']' expected");
5216 E = Parser.getTok().getEndLoc();
5217 Parser.Lex(); // Eat right bracket token.
5219 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5220 ShiftType, ShiftImm, 0, isNegative,
5221 S, E));
5223 // If there's a pre-indexing writeback marker, '!', just add it as a token
5224 // operand.
5225 if (Parser.getTok().is(AsmToken::Exclaim)) {
5226 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5227 Parser.Lex(); // Eat the '!'.
5230 return false;
5233 /// parseMemRegOffsetShift - one of these two:
5234 /// ( lsl | lsr | asr | ror ) , # shift_amount
5235 /// rrx
5236 /// return true if it parses a shift otherwise it returns false.
5237 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5238 unsigned &Amount) {
5239 MCAsmParser &Parser = getParser();
5240 SMLoc Loc = Parser.getTok().getLoc();
5241 const AsmToken &Tok = Parser.getTok();
5242 if (Tok.isNot(AsmToken::Identifier))
5243 return Error(Loc, "illegal shift operator");
5244 StringRef ShiftName = Tok.getString();
5245 if (ShiftName == "lsl" || ShiftName == "LSL" ||
5246 ShiftName == "asl" || ShiftName == "ASL")
5247 St = ARM_AM::lsl;
5248 else if (ShiftName == "lsr" || ShiftName == "LSR")
5249 St = ARM_AM::lsr;
5250 else if (ShiftName == "asr" || ShiftName == "ASR")
5251 St = ARM_AM::asr;
5252 else if (ShiftName == "ror" || ShiftName == "ROR")
5253 St = ARM_AM::ror;
5254 else if (ShiftName == "rrx" || ShiftName == "RRX")
5255 St = ARM_AM::rrx;
5256 else
5257 return Error(Loc, "illegal shift operator");
5258 Parser.Lex(); // Eat shift type token.
5260 // rrx stands alone.
5261 Amount = 0;
5262 if (St != ARM_AM::rrx) {
5263 Loc = Parser.getTok().getLoc();
5264 // A '#' and a shift amount.
5265 const AsmToken &HashTok = Parser.getTok();
5266 if (HashTok.isNot(AsmToken::Hash) &&
5267 HashTok.isNot(AsmToken::Dollar))
5268 return Error(HashTok.getLoc(), "'#' expected");
5269 Parser.Lex(); // Eat hash token.
5271 const MCExpr *Expr;
5272 if (getParser().parseExpression(Expr))
5273 return true;
5274 // Range check the immediate.
5275 // lsl, ror: 0 <= imm <= 31
5276 // lsr, asr: 0 <= imm <= 32
5277 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5278 if (!CE)
5279 return Error(Loc, "shift amount must be an immediate");
5280 int64_t Imm = CE->getValue();
5281 if (Imm < 0 ||
5282 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5283 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5284 return Error(Loc, "immediate shift value out of range");
5285 // If <ShiftTy> #0, turn it into a no_shift.
5286 if (Imm == 0)
5287 St = ARM_AM::lsl;
5288 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5289 if (Imm == 32)
5290 Imm = 0;
5291 Amount = Imm;
5294 return false;
5297 /// parseFPImm - A floating point immediate expression operand.
5298 OperandMatchResultTy
5299 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5300 MCAsmParser &Parser = getParser();
5301 // Anything that can accept a floating point constant as an operand
5302 // needs to go through here, as the regular parseExpression is
5303 // integer only.
5305 // This routine still creates a generic Immediate operand, containing
5306 // a bitcast of the 64-bit floating point value. The various operands
5307 // that accept floats can check whether the value is valid for them
5308 // via the standard is*() predicates.
5310 SMLoc S = Parser.getTok().getLoc();
5312 if (Parser.getTok().isNot(AsmToken::Hash) &&
5313 Parser.getTok().isNot(AsmToken::Dollar))
5314 return MatchOperand_NoMatch;
5316 // Disambiguate the VMOV forms that can accept an FP immediate.
5317 // vmov.f32 <sreg>, #imm
5318 // vmov.f64 <dreg>, #imm
5319 // vmov.f32 <dreg>, #imm @ vector f32x2
5320 // vmov.f32 <qreg>, #imm @ vector f32x4
5322 // There are also the NEON VMOV instructions which expect an
5323 // integer constant. Make sure we don't try to parse an FPImm
5324 // for these:
5325 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5326 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5327 bool isVmovf = TyOp.isToken() &&
5328 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5329 TyOp.getToken() == ".f16");
5330 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5331 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5332 Mnemonic.getToken() == "fconsts");
5333 if (!(isVmovf || isFconst))
5334 return MatchOperand_NoMatch;
5336 Parser.Lex(); // Eat '#' or '$'.
5338 // Handle negation, as that still comes through as a separate token.
5339 bool isNegative = false;
5340 if (Parser.getTok().is(AsmToken::Minus)) {
5341 isNegative = true;
5342 Parser.Lex();
5344 const AsmToken &Tok = Parser.getTok();
5345 SMLoc Loc = Tok.getLoc();
5346 if (Tok.is(AsmToken::Real) && isVmovf) {
5347 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5348 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5349 // If we had a '-' in front, toggle the sign bit.
5350 IntVal ^= (uint64_t)isNegative << 31;
5351 Parser.Lex(); // Eat the token.
5352 Operands.push_back(ARMOperand::CreateImm(
5353 MCConstantExpr::create(IntVal, getContext()),
5354 S, Parser.getTok().getLoc()));
5355 return MatchOperand_Success;
5357 // Also handle plain integers. Instructions which allow floating point
5358 // immediates also allow a raw encoded 8-bit value.
5359 if (Tok.is(AsmToken::Integer) && isFconst) {
5360 int64_t Val = Tok.getIntVal();
5361 Parser.Lex(); // Eat the token.
5362 if (Val > 255 || Val < 0) {
5363 Error(Loc, "encoded floating point value out of range");
5364 return MatchOperand_ParseFail;
5366 float RealVal = ARM_AM::getFPImmFloat(Val);
5367 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5369 Operands.push_back(ARMOperand::CreateImm(
5370 MCConstantExpr::create(Val, getContext()), S,
5371 Parser.getTok().getLoc()));
5372 return MatchOperand_Success;
5375 Error(Loc, "invalid floating point immediate");
5376 return MatchOperand_ParseFail;
5379 /// Parse a arm instruction operand. For now this parses the operand regardless
5380 /// of the mnemonic.
5381 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5382 MCAsmParser &Parser = getParser();
5383 SMLoc S, E;
5385 // Check if the current operand has a custom associated parser, if so, try to
5386 // custom parse the operand, or fallback to the general approach.
5387 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5388 if (ResTy == MatchOperand_Success)
5389 return false;
5390 // If there wasn't a custom match, try the generic matcher below. Otherwise,
5391 // there was a match, but an error occurred, in which case, just return that
5392 // the operand parsing failed.
5393 if (ResTy == MatchOperand_ParseFail)
5394 return true;
5396 switch (getLexer().getKind()) {
5397 default:
5398 Error(Parser.getTok().getLoc(), "unexpected token in operand");
5399 return true;
5400 case AsmToken::Identifier: {
5401 // If we've seen a branch mnemonic, the next operand must be a label. This
5402 // is true even if the label is a register name. So "br r1" means branch to
5403 // label "r1".
5404 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5405 if (!ExpectLabel) {
5406 if (!tryParseRegisterWithWriteBack(Operands))
5407 return false;
5408 int Res = tryParseShiftRegister(Operands);
5409 if (Res == 0) // success
5410 return false;
5411 else if (Res == -1) // irrecoverable error
5412 return true;
5413 // If this is VMRS, check for the apsr_nzcv operand.
5414 if (Mnemonic == "vmrs" &&
5415 Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5416 S = Parser.getTok().getLoc();
5417 Parser.Lex();
5418 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5419 return false;
5423 // Fall though for the Identifier case that is not a register or a
5424 // special name.
5425 LLVM_FALLTHROUGH;
5427 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
5428 case AsmToken::Integer: // things like 1f and 2b as a branch targets
5429 case AsmToken::String: // quoted label names.
5430 case AsmToken::Dot: { // . as a branch target
5431 // This was not a register so parse other operands that start with an
5432 // identifier (like labels) as expressions and create them as immediates.
5433 const MCExpr *IdVal;
5434 S = Parser.getTok().getLoc();
5435 if (getParser().parseExpression(IdVal))
5436 return true;
5437 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5438 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5439 return false;
5441 case AsmToken::LBrac:
5442 return parseMemory(Operands);
5443 case AsmToken::LCurly:
5444 return parseRegisterList(Operands);
5445 case AsmToken::Dollar:
5446 case AsmToken::Hash:
5447 // #42 -> immediate.
5448 S = Parser.getTok().getLoc();
5449 Parser.Lex();
5451 if (Parser.getTok().isNot(AsmToken::Colon)) {
5452 bool isNegative = Parser.getTok().is(AsmToken::Minus);
5453 const MCExpr *ImmVal;
5454 if (getParser().parseExpression(ImmVal))
5455 return true;
5456 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5457 if (CE) {
5458 int32_t Val = CE->getValue();
5459 if (isNegative && Val == 0)
5460 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5461 getContext());
5463 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5464 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5466 // There can be a trailing '!' on operands that we want as a separate
5467 // '!' Token operand. Handle that here. For example, the compatibility
5468 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5469 if (Parser.getTok().is(AsmToken::Exclaim)) {
5470 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5471 Parser.getTok().getLoc()));
5472 Parser.Lex(); // Eat exclaim token
5474 return false;
5476 // w/ a ':' after the '#', it's just like a plain ':'.
5477 LLVM_FALLTHROUGH;
5479 case AsmToken::Colon: {
5480 S = Parser.getTok().getLoc();
5481 // ":lower16:" and ":upper16:" expression prefixes
5482 // FIXME: Check it's an expression prefix,
5483 // e.g. (FOO - :lower16:BAR) isn't legal.
5484 ARMMCExpr::VariantKind RefKind;
5485 if (parsePrefix(RefKind))
5486 return true;
5488 const MCExpr *SubExprVal;
5489 if (getParser().parseExpression(SubExprVal))
5490 return true;
5492 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
5493 getContext());
5494 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5495 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5496 return false;
5498 case AsmToken::Equal: {
5499 S = Parser.getTok().getLoc();
5500 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5501 return Error(S, "unexpected token in operand");
5502 Parser.Lex(); // Eat '='
5503 const MCExpr *SubExprVal;
5504 if (getParser().parseExpression(SubExprVal))
5505 return true;
5506 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5508 // execute-only: we assume that assembly programmers know what they are
5509 // doing and allow literal pool creation here
5510 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
5511 return false;
5516 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5517 // :lower16: and :upper16:.
5518 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5519 MCAsmParser &Parser = getParser();
5520 RefKind = ARMMCExpr::VK_ARM_None;
5522 // consume an optional '#' (GNU compatibility)
5523 if (getLexer().is(AsmToken::Hash))
5524 Parser.Lex();
5526 // :lower16: and :upper16: modifiers
5527 assert(getLexer().is(AsmToken::Colon) && "expected a :");
5528 Parser.Lex(); // Eat ':'
5530 if (getLexer().isNot(AsmToken::Identifier)) {
5531 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5532 return true;
5535 enum {
5536 COFF = (1 << MCObjectFileInfo::IsCOFF),
5537 ELF = (1 << MCObjectFileInfo::IsELF),
5538 MACHO = (1 << MCObjectFileInfo::IsMachO),
5539 WASM = (1 << MCObjectFileInfo::IsWasm),
5541 static const struct PrefixEntry {
5542 const char *Spelling;
5543 ARMMCExpr::VariantKind VariantKind;
5544 uint8_t SupportedFormats;
5545 } PrefixEntries[] = {
5546 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5547 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5550 StringRef IDVal = Parser.getTok().getIdentifier();
5552 const auto &Prefix =
5553 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5554 [&IDVal](const PrefixEntry &PE) {
5555 return PE.Spelling == IDVal;
5557 if (Prefix == std::end(PrefixEntries)) {
5558 Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5559 return true;
5562 uint8_t CurrentFormat;
5563 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5564 case MCObjectFileInfo::IsMachO:
5565 CurrentFormat = MACHO;
5566 break;
5567 case MCObjectFileInfo::IsELF:
5568 CurrentFormat = ELF;
5569 break;
5570 case MCObjectFileInfo::IsCOFF:
5571 CurrentFormat = COFF;
5572 break;
5573 case MCObjectFileInfo::IsWasm:
5574 CurrentFormat = WASM;
5575 break;
5578 if (~Prefix->SupportedFormats & CurrentFormat) {
5579 Error(Parser.getTok().getLoc(),
5580 "cannot represent relocation in the current file format");
5581 return true;
5584 RefKind = Prefix->VariantKind;
5585 Parser.Lex();
5587 if (getLexer().isNot(AsmToken::Colon)) {
5588 Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5589 return true;
5591 Parser.Lex(); // Eat the last ':'
5593 return false;
5596 /// Given a mnemonic, split out possible predication code and carry
5597 /// setting letters to form a canonical mnemonic and flags.
5599 // FIXME: Would be nice to autogen this.
5600 // FIXME: This is a bit of a maze of special cases.
5601 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5602 unsigned &PredicationCode,
5603 bool &CarrySetting,
5604 unsigned &ProcessorIMod,
5605 StringRef &ITMask) {
5606 PredicationCode = ARMCC::AL;
5607 CarrySetting = false;
5608 ProcessorIMod = 0;
5610 // Ignore some mnemonics we know aren't predicated forms.
5612 // FIXME: Would be nice to autogen this.
5613 if ((Mnemonic == "movs" && isThumb()) ||
5614 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
5615 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
5616 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
5617 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
5618 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
5619 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
5620 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
5621 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5622 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5623 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
5624 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5625 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5626 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
5627 Mnemonic == "bxns" || Mnemonic == "blxns" ||
5628 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5629 Mnemonic == "vcmla" || Mnemonic == "vcadd")
5630 return Mnemonic;
5632 // First, split out any predication code. Ignore mnemonics we know aren't
5633 // predicated but do have a carry-set and so weren't caught above.
5634 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5635 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5636 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5637 Mnemonic != "sbcs" && Mnemonic != "rscs") {
5638 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
5639 if (CC != ~0U) {
5640 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5641 PredicationCode = CC;
5645 // Next, determine if we have a carry setting bit. We explicitly ignore all
5646 // the instructions we know end in 's'.
5647 if (Mnemonic.endswith("s") &&
5648 !(Mnemonic == "cps" || Mnemonic == "mls" ||
5649 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5650 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5651 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5652 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5653 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5654 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5655 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5656 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5657 Mnemonic == "bxns" || Mnemonic == "blxns" ||
5658 (Mnemonic == "movs" && isThumb()))) {
5659 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5660 CarrySetting = true;
5663 // The "cps" instruction can have a interrupt mode operand which is glued into
5664 // the mnemonic. Check if this is the case, split it and parse the imod op
5665 if (Mnemonic.startswith("cps")) {
5666 // Split out any imod code.
5667 unsigned IMod =
5668 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5669 .Case("ie", ARM_PROC::IE)
5670 .Case("id", ARM_PROC::ID)
5671 .Default(~0U);
5672 if (IMod != ~0U) {
5673 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5674 ProcessorIMod = IMod;
5678 // The "it" instruction has the condition mask on the end of the mnemonic.
5679 if (Mnemonic.startswith("it")) {
5680 ITMask = Mnemonic.slice(2, Mnemonic.size());
5681 Mnemonic = Mnemonic.slice(0, 2);
5684 return Mnemonic;
5687 /// Given a canonical mnemonic, determine if the instruction ever allows
5688 /// inclusion of carry set or predication code operands.
5690 // FIXME: It would be nice to autogen this.
5691 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5692 bool &CanAcceptCarrySet,
5693 bool &CanAcceptPredicationCode) {
5694 CanAcceptCarrySet =
5695 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5696 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5697 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5698 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5699 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5700 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5701 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5702 (!isThumb() &&
5703 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5704 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5706 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5707 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5708 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5709 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5710 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5711 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5712 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5713 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5714 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
5715 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5716 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
5717 Mnemonic == "vmovx" || Mnemonic == "vins" ||
5718 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5719 Mnemonic == "vcmla" || Mnemonic == "vcadd") {
5720 // These mnemonics are never predicable
5721 CanAcceptPredicationCode = false;
5722 } else if (!isThumb()) {
5723 // Some instructions are only predicable in Thumb mode
5724 CanAcceptPredicationCode =
5725 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5726 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5727 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
5728 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
5729 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5730 Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5731 Mnemonic != "tsb" &&
5732 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5733 } else if (isThumbOne()) {
5734 if (hasV6MOps())
5735 CanAcceptPredicationCode = Mnemonic != "movs";
5736 else
5737 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5738 } else
5739 CanAcceptPredicationCode = true;
5742 // Some Thumb instructions have two operand forms that are not
5743 // available as three operand, convert to two operand form if possible.
5745 // FIXME: We would really like to be able to tablegen'erate this.
5746 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
5747 bool CarrySetting,
5748 OperandVector &Operands) {
5749 if (Operands.size() != 6)
5750 return;
5752 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5753 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5754 if (!Op3.isReg() || !Op4.isReg())
5755 return;
5757 auto Op3Reg = Op3.getReg();
5758 auto Op4Reg = Op4.getReg();
5760 // For most Thumb2 cases we just generate the 3 operand form and reduce
5761 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5762 // won't accept SP or PC so we do the transformation here taking care
5763 // with immediate range in the 'add sp, sp #imm' case.
5764 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5765 if (isThumbTwo()) {
5766 if (Mnemonic != "add")
5767 return;
5768 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
5769 (Op5.isReg() && Op5.getReg() == ARM::PC);
5770 if (!TryTransform) {
5771 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
5772 (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
5773 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
5774 Op5.isImm() && !Op5.isImm0_508s4());
5776 if (!TryTransform)
5777 return;
5778 } else if (!isThumbOne())
5779 return;
5781 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5782 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5783 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5784 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
5785 return;
5787 // If first 2 operands of a 3 operand instruction are the same
5788 // then transform to 2 operand version of the same instruction
5789 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5790 bool Transform = Op3Reg == Op4Reg;
5792 // For communtative operations, we might be able to transform if we swap
5793 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5794 // as tADDrsp.
5795 const ARMOperand *LastOp = &Op5;
5796 bool Swap = false;
5797 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
5798 ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
5799 Mnemonic == "and" || Mnemonic == "eor" ||
5800 Mnemonic == "adc" || Mnemonic == "orr")) {
5801 Swap = true;
5802 LastOp = &Op4;
5803 Transform = true;
5806 // If both registers are the same then remove one of them from
5807 // the operand list, with certain exceptions.
5808 if (Transform) {
5809 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5810 // 2 operand forms don't exist.
5811 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
5812 LastOp->isReg())
5813 Transform = false;
5815 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5816 // 3-bits because the ARMARM says not to.
5817 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
5818 Transform = false;
5821 if (Transform) {
5822 if (Swap)
5823 std::swap(Op4, Op5);
5824 Operands.erase(Operands.begin() + 3);
5828 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5829 OperandVector &Operands) {
5830 // FIXME: This is all horribly hacky. We really need a better way to deal
5831 // with optional operands like this in the matcher table.
5833 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5834 // another does not. Specifically, the MOVW instruction does not. So we
5835 // special case it here and remove the defaulted (non-setting) cc_out
5836 // operand if that's the instruction we're trying to match.
5838 // We do this as post-processing of the explicit operands rather than just
5839 // conditionally adding the cc_out in the first place because we need
5840 // to check the type of the parsed immediate operand.
5841 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5842 !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5843 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5844 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5845 return true;
5847 // Register-register 'add' for thumb does not have a cc_out operand
5848 // when there are only two register operands.
5849 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5850 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5851 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5852 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5853 return true;
5854 // Register-register 'add' for thumb does not have a cc_out operand
5855 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5856 // have to check the immediate range here since Thumb2 has a variant
5857 // that can handle a different range and has a cc_out operand.
5858 if (((isThumb() && Mnemonic == "add") ||
5859 (isThumbTwo() && Mnemonic == "sub")) &&
5860 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5861 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5862 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5863 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5864 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5865 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5866 return true;
5867 // For Thumb2, add/sub immediate does not have a cc_out operand for the
5868 // imm0_4095 variant. That's the least-preferred variant when
5869 // selecting via the generic "add" mnemonic, so to know that we
5870 // should remove the cc_out operand, we have to explicitly check that
5871 // it's not one of the other variants. Ugh.
5872 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5873 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5874 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5875 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5876 // Nest conditions rather than one big 'if' statement for readability.
5878 // If both registers are low, we're in an IT block, and the immediate is
5879 // in range, we should use encoding T1 instead, which has a cc_out.
5880 if (inITBlock() &&
5881 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5882 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5883 static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5884 return false;
5885 // Check against T3. If the second register is the PC, this is an
5886 // alternate form of ADR, which uses encoding T4, so check for that too.
5887 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5888 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5889 return false;
5891 // Otherwise, we use encoding T4, which does not have a cc_out
5892 // operand.
5893 return true;
5896 // The thumb2 multiply instruction doesn't have a CCOut register, so
5897 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5898 // use the 16-bit encoding or not.
5899 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5900 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5901 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5902 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5903 static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5904 // If the registers aren't low regs, the destination reg isn't the
5905 // same as one of the source regs, or the cc_out operand is zero
5906 // outside of an IT block, we have to use the 32-bit encoding, so
5907 // remove the cc_out operand.
5908 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5909 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5910 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5911 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5912 static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5913 static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5914 static_cast<ARMOperand &>(*Operands[4]).getReg())))
5915 return true;
5917 // Also check the 'mul' syntax variant that doesn't specify an explicit
5918 // destination register.
5919 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5920 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5921 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5922 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5923 // If the registers aren't low regs or the cc_out operand is zero
5924 // outside of an IT block, we have to use the 32-bit encoding, so
5925 // remove the cc_out operand.
5926 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5927 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5928 !inITBlock()))
5929 return true;
5931 // Register-register 'add/sub' for thumb does not have a cc_out operand
5932 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5933 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5934 // right, this will result in better diagnostics (which operand is off)
5935 // anyway.
5936 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5937 (Operands.size() == 5 || Operands.size() == 6) &&
5938 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5939 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5940 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5941 (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5942 (Operands.size() == 6 &&
5943 static_cast<ARMOperand &>(*Operands[5]).isImm())))
5944 return true;
5946 return false;
5949 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5950 OperandVector &Operands) {
5951 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5952 unsigned RegIdx = 3;
5953 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") &&
5954 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
5955 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
5956 if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5957 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
5958 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
5959 RegIdx = 4;
5961 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5962 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5963 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5964 ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5965 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5966 return true;
5968 return false;
5971 static bool isDataTypeToken(StringRef Tok) {
5972 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5973 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5974 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5975 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5976 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5977 Tok == ".f" || Tok == ".d";
5980 // FIXME: This bit should probably be handled via an explicit match class
5981 // in the .td files that matches the suffix instead of having it be
5982 // a literal string token the way it is now.
5983 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5984 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5987 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
5988 unsigned VariantID);
5990 // The GNU assembler has aliases of ldrd and strd with the second register
5991 // omitted. We don't have a way to do that in tablegen, so fix it up here.
5993 // We have to be careful to not emit an invalid Rt2 here, because the rest of
5994 // the assmebly parser could then generate confusing diagnostics refering to
5995 // it. If we do find anything that prevents us from doing the transformation we
5996 // bail out, and let the assembly parser report an error on the instruction as
5997 // it is written.
5998 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
5999 OperandVector &Operands) {
6000 if (Mnemonic != "ldrd" && Mnemonic != "strd")
6001 return;
6002 if (Operands.size() < 4)
6003 return;
6005 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6006 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6008 if (!Op2.isReg())
6009 return;
6010 if (!Op3.isMem())
6011 return;
6013 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6014 if (!GPR.contains(Op2.getReg()))
6015 return;
6017 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6018 if (!isThumb() && (RtEncoding & 1)) {
6019 // In ARM mode, the registers must be from an aligned pair, this
6020 // restriction does not apply in Thumb mode.
6021 return;
6023 if (Op2.getReg() == ARM::PC)
6024 return;
6025 unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6026 if (!PairedReg || PairedReg == ARM::PC ||
6027 (PairedReg == ARM::SP && !hasV8Ops()))
6028 return;
6030 Operands.insert(
6031 Operands.begin() + 3,
6032 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6035 /// Parse an arm instruction mnemonic followed by its operands.
6036 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6037 SMLoc NameLoc, OperandVector &Operands) {
6038 MCAsmParser &Parser = getParser();
6040 // Apply mnemonic aliases before doing anything else, as the destination
6041 // mnemonic may include suffices and we want to handle them normally.
6042 // The generic tblgen'erated code does this later, at the start of
6043 // MatchInstructionImpl(), but that's too late for aliases that include
6044 // any sort of suffix.
6045 uint64_t AvailableFeatures = getAvailableFeatures();
6046 unsigned AssemblerDialect = getParser().getAssemblerDialect();
6047 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6049 // First check for the ARM-specific .req directive.
6050 if (Parser.getTok().is(AsmToken::Identifier) &&
6051 Parser.getTok().getIdentifier() == ".req") {
6052 parseDirectiveReq(Name, NameLoc);
6053 // We always return 'error' for this, as we're done with this
6054 // statement and don't need to match the 'instruction."
6055 return true;
6058 // Create the leading tokens for the mnemonic, split by '.' characters.
6059 size_t Start = 0, Next = Name.find('.');
6060 StringRef Mnemonic = Name.slice(Start, Next);
6062 // Split out the predication code and carry setting flag from the mnemonic.
6063 unsigned PredicationCode;
6064 unsigned ProcessorIMod;
6065 bool CarrySetting;
6066 StringRef ITMask;
6067 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
6068 ProcessorIMod, ITMask);
6070 // In Thumb1, only the branch (B) instruction can be predicated.
6071 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6072 return Error(NameLoc, "conditional execution not supported in Thumb1");
6075 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6077 // Handle the IT instruction ITMask. Convert it to a bitmask. This
6078 // is the mask as it will be for the IT encoding if the conditional
6079 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6080 // where the conditional bit0 is zero, the instruction post-processing
6081 // will adjust the mask accordingly.
6082 if (Mnemonic == "it") {
6083 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
6084 if (ITMask.size() > 3) {
6085 return Error(Loc, "too many conditions on IT instruction");
6087 unsigned Mask = 8;
6088 for (unsigned i = ITMask.size(); i != 0; --i) {
6089 char pos = ITMask[i - 1];
6090 if (pos != 't' && pos != 'e') {
6091 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6093 Mask >>= 1;
6094 if (ITMask[i - 1] == 't')
6095 Mask |= 8;
6097 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6100 // FIXME: This is all a pretty gross hack. We should automatically handle
6101 // optional operands like this via tblgen.
6103 // Next, add the CCOut and ConditionCode operands, if needed.
6105 // For mnemonics which can ever incorporate a carry setting bit or predication
6106 // code, our matching model involves us always generating CCOut and
6107 // ConditionCode operands to match the mnemonic "as written" and then we let
6108 // the matcher deal with finding the right instruction or generating an
6109 // appropriate error.
6110 bool CanAcceptCarrySet, CanAcceptPredicationCode;
6111 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
6113 // If we had a carry-set on an instruction that can't do that, issue an
6114 // error.
6115 if (!CanAcceptCarrySet && CarrySetting) {
6116 return Error(NameLoc, "instruction '" + Mnemonic +
6117 "' can not set flags, but 's' suffix specified");
6119 // If we had a predication code on an instruction that can't do that, issue an
6120 // error.
6121 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6122 return Error(NameLoc, "instruction '" + Mnemonic +
6123 "' is not predicable, but condition code specified");
6126 // Add the carry setting operand, if necessary.
6127 if (CanAcceptCarrySet) {
6128 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6129 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6130 Loc));
6133 // Add the predication code operand, if necessary.
6134 if (CanAcceptPredicationCode) {
6135 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6136 CarrySetting);
6137 Operands.push_back(ARMOperand::CreateCondCode(
6138 ARMCC::CondCodes(PredicationCode), Loc));
6141 // Add the processor imod operand, if necessary.
6142 if (ProcessorIMod) {
6143 Operands.push_back(ARMOperand::CreateImm(
6144 MCConstantExpr::create(ProcessorIMod, getContext()),
6145 NameLoc, NameLoc));
6146 } else if (Mnemonic == "cps" && isMClass()) {
6147 return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6150 // Add the remaining tokens in the mnemonic.
6151 while (Next != StringRef::npos) {
6152 Start = Next;
6153 Next = Name.find('.', Start + 1);
6154 StringRef ExtraToken = Name.slice(Start, Next);
6156 // Some NEON instructions have an optional datatype suffix that is
6157 // completely ignored. Check for that.
6158 if (isDataTypeToken(ExtraToken) &&
6159 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6160 continue;
6162 // For for ARM mode generate an error if the .n qualifier is used.
6163 if (ExtraToken == ".n" && !isThumb()) {
6164 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6165 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6166 "arm mode");
6169 // The .n qualifier is always discarded as that is what the tables
6170 // and matcher expect. In ARM mode the .w qualifier has no effect,
6171 // so discard it to avoid errors that can be caused by the matcher.
6172 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6173 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6174 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6178 // Read the remaining operands.
6179 if (getLexer().isNot(AsmToken::EndOfStatement)) {
6180 // Read the first operand.
6181 if (parseOperand(Operands, Mnemonic)) {
6182 return true;
6185 while (parseOptionalToken(AsmToken::Comma)) {
6186 // Parse and remember the operand.
6187 if (parseOperand(Operands, Mnemonic)) {
6188 return true;
6193 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6194 return true;
6196 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6198 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6199 // do and don't have a cc_out optional-def operand. With some spot-checks
6200 // of the operand list, we can figure out which variant we're trying to
6201 // parse and adjust accordingly before actually matching. We shouldn't ever
6202 // try to remove a cc_out operand that was explicitly set on the
6203 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6204 // table driven matcher doesn't fit well with the ARM instruction set.
6205 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6206 Operands.erase(Operands.begin() + 1);
6208 // Some instructions have the same mnemonic, but don't always
6209 // have a predicate. Distinguish them here and delete the
6210 // predicate if needed.
6211 if (PredicationCode == ARMCC::AL &&
6212 shouldOmitPredicateOperand(Mnemonic, Operands))
6213 Operands.erase(Operands.begin() + 1);
6215 // ARM mode 'blx' need special handling, as the register operand version
6216 // is predicable, but the label operand version is not. So, we can't rely
6217 // on the Mnemonic based checking to correctly figure out when to put
6218 // a k_CondCode operand in the list. If we're trying to match the label
6219 // version, remove the k_CondCode operand here.
6220 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
6221 static_cast<ARMOperand &>(*Operands[2]).isImm())
6222 Operands.erase(Operands.begin() + 1);
6224 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6225 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6226 // a single GPRPair reg operand is used in the .td file to replace the two
6227 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6228 // expressed as a GPRPair, so we have to manually merge them.
6229 // FIXME: We would really like to be able to tablegen'erate this.
6230 if (!isThumb() && Operands.size() > 4 &&
6231 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
6232 Mnemonic == "stlexd")) {
6233 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
6234 unsigned Idx = isLoad ? 2 : 3;
6235 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
6236 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
6238 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
6239 // Adjust only if Op1 and Op2 are GPRs.
6240 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
6241 MRC.contains(Op2.getReg())) {
6242 unsigned Reg1 = Op1.getReg();
6243 unsigned Reg2 = Op2.getReg();
6244 unsigned Rt = MRI->getEncodingValue(Reg1);
6245 unsigned Rt2 = MRI->getEncodingValue(Reg2);
6247 // Rt2 must be Rt + 1 and Rt must be even.
6248 if (Rt + 1 != Rt2 || (Rt & 1)) {
6249 return Error(Op2.getStartLoc(),
6250 isLoad ? "destination operands must be sequential"
6251 : "source operands must be sequential");
6253 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
6254 &(MRI->getRegClass(ARM::GPRPairRegClassID)));
6255 Operands[Idx] =
6256 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
6257 Operands.erase(Operands.begin() + Idx + 1);
6261 // GNU Assembler extension (compatibility).
6262 fixupGNULDRDAlias(Mnemonic, Operands);
6264 // FIXME: As said above, this is all a pretty gross hack. This instruction
6265 // does not fit with other "subs" and tblgen.
6266 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6267 // so the Mnemonic is the original name "subs" and delete the predicate
6268 // operand so it will match the table entry.
6269 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
6270 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6271 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
6272 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6273 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
6274 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6275 Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
6276 Operands.erase(Operands.begin() + 1);
6278 return false;
6281 // Validate context-sensitive operand constraints.
6283 // return 'true' if register list contains non-low GPR registers,
6284 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6285 // 'containsReg' to true.
6286 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
6287 unsigned Reg, unsigned HiReg,
6288 bool &containsReg) {
6289 containsReg = false;
6290 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6291 unsigned OpReg = Inst.getOperand(i).getReg();
6292 if (OpReg == Reg)
6293 containsReg = true;
6294 // Anything other than a low register isn't legal here.
6295 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
6296 return true;
6298 return false;
6301 // Check if the specified regisgter is in the register list of the inst,
6302 // starting at the indicated operand number.
6303 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
6304 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
6305 unsigned OpReg = Inst.getOperand(i).getReg();
6306 if (OpReg == Reg)
6307 return true;
6309 return false;
6312 // Return true if instruction has the interesting property of being
6313 // allowed in IT blocks, but not being predicable.
6314 static bool instIsBreakpoint(const MCInst &Inst) {
6315 return Inst.getOpcode() == ARM::tBKPT ||
6316 Inst.getOpcode() == ARM::BKPT ||
6317 Inst.getOpcode() == ARM::tHLT ||
6318 Inst.getOpcode() == ARM::HLT;
6321 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
6322 const OperandVector &Operands,
6323 unsigned ListNo, bool IsARPop) {
6324 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6325 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6327 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6328 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6329 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6331 if (!IsARPop && ListContainsSP)
6332 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6333 "SP may not be in the register list");
6334 else if (ListContainsPC && ListContainsLR)
6335 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6336 "PC and LR may not be in the register list simultaneously");
6337 return false;
6340 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
6341 const OperandVector &Operands,
6342 unsigned ListNo) {
6343 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6344 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6346 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6347 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6349 if (ListContainsSP && ListContainsPC)
6350 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6351 "SP and PC may not be in the register list");
6352 else if (ListContainsSP)
6353 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6354 "SP may not be in the register list");
6355 else if (ListContainsPC)
6356 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6357 "PC may not be in the register list");
6358 return false;
6361 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
6362 const OperandVector &Operands,
6363 bool Load, bool ARMMode, bool Writeback) {
6364 unsigned RtIndex = Load || !Writeback ? 0 : 1;
6365 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
6366 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
6368 if (ARMMode) {
6369 // Rt can't be R14.
6370 if (Rt == 14)
6371 return Error(Operands[3]->getStartLoc(),
6372 "Rt can't be R14");
6374 // Rt must be even-numbered.
6375 if ((Rt & 1) == 1)
6376 return Error(Operands[3]->getStartLoc(),
6377 "Rt must be even-numbered");
6379 // Rt2 must be Rt + 1.
6380 if (Rt2 != Rt + 1) {
6381 if (Load)
6382 return Error(Operands[3]->getStartLoc(),
6383 "destination operands must be sequential");
6384 else
6385 return Error(Operands[3]->getStartLoc(),
6386 "source operands must be sequential");
6389 // FIXME: Diagnose m == 15
6390 // FIXME: Diagnose ldrd with m == t || m == t2.
6393 if (!ARMMode && Load) {
6394 if (Rt2 == Rt)
6395 return Error(Operands[3]->getStartLoc(),
6396 "destination operands can't be identical");
6399 if (Writeback) {
6400 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6402 if (Rn == Rt || Rn == Rt2) {
6403 if (Load)
6404 return Error(Operands[3]->getStartLoc(),
6405 "base register needs to be different from destination "
6406 "registers");
6407 else
6408 return Error(Operands[3]->getStartLoc(),
6409 "source register and base register can't be identical");
6412 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6413 // (Except the immediate form of ldrd?)
6416 return false;
6420 // FIXME: We would really like to be able to tablegen'erate this.
6421 bool ARMAsmParser::validateInstruction(MCInst &Inst,
6422 const OperandVector &Operands) {
6423 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6424 SMLoc Loc = Operands[0]->getStartLoc();
6426 // Check the IT block state first.
6427 // NOTE: BKPT and HLT instructions have the interesting property of being
6428 // allowed in IT blocks, but not being predicable. They just always execute.
6429 if (inITBlock() && !instIsBreakpoint(Inst)) {
6430 // The instruction must be predicable.
6431 if (!MCID.isPredicable())
6432 return Error(Loc, "instructions in IT block must be predicable");
6433 ARMCC::CondCodes Cond = ARMCC::CondCodes(
6434 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
6435 if (Cond != currentITCond()) {
6436 // Find the condition code Operand to get its SMLoc information.
6437 SMLoc CondLoc;
6438 for (unsigned I = 1; I < Operands.size(); ++I)
6439 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6440 CondLoc = Operands[I]->getStartLoc();
6441 return Error(CondLoc, "incorrect condition in IT block; got '" +
6442 StringRef(ARMCondCodeToString(Cond)) +
6443 "', but expected '" +
6444 ARMCondCodeToString(currentITCond()) + "'");
6446 // Check for non-'al' condition codes outside of the IT block.
6447 } else if (isThumbTwo() && MCID.isPredicable() &&
6448 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6449 ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6450 Inst.getOpcode() != ARM::t2Bcc) {
6451 return Error(Loc, "predicated instructions must be in IT block");
6452 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
6453 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6454 ARMCC::AL) {
6455 return Warning(Loc, "predicated instructions should be in IT block");
6458 // PC-setting instructions in an IT block, but not the last instruction of
6459 // the block, are UNPREDICTABLE.
6460 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
6461 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
6464 const unsigned Opcode = Inst.getOpcode();
6465 switch (Opcode) {
6466 case ARM::t2IT: {
6467 // Encoding is unpredictable if it ever results in a notional 'NV'
6468 // predicate. Since we don't parse 'NV' directly this means an 'AL'
6469 // predicate with an "else" mask bit.
6470 unsigned Cond = Inst.getOperand(0).getImm();
6471 unsigned Mask = Inst.getOperand(1).getImm();
6473 // Mask hasn't been modified to the IT instruction encoding yet so
6474 // conditions only allowing a 't' are a block of 1s starting at bit 3
6475 // followed by all 0s. Easiest way is to just list the 4 possibilities.
6476 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 &&
6477 Mask != 15)
6478 return Error(Loc, "unpredictable IT predicate sequence");
6479 break;
6481 case ARM::LDRD:
6482 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6483 /*Writeback*/false))
6484 return true;
6485 break;
6486 case ARM::LDRD_PRE:
6487 case ARM::LDRD_POST:
6488 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6489 /*Writeback*/true))
6490 return true;
6491 break;
6492 case ARM::t2LDRDi8:
6493 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6494 /*Writeback*/false))
6495 return true;
6496 break;
6497 case ARM::t2LDRD_PRE:
6498 case ARM::t2LDRD_POST:
6499 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6500 /*Writeback*/true))
6501 return true;
6502 break;
6503 case ARM::t2BXJ: {
6504 const unsigned RmReg = Inst.getOperand(0).getReg();
6505 // Rm = SP is no longer unpredictable in v8-A
6506 if (RmReg == ARM::SP && !hasV8Ops())
6507 return Error(Operands[2]->getStartLoc(),
6508 "r13 (SP) is an unpredictable operand to BXJ");
6509 return false;
6511 case ARM::STRD:
6512 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6513 /*Writeback*/false))
6514 return true;
6515 break;
6516 case ARM::STRD_PRE:
6517 case ARM::STRD_POST:
6518 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6519 /*Writeback*/true))
6520 return true;
6521 break;
6522 case ARM::t2STRD_PRE:
6523 case ARM::t2STRD_POST:
6524 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
6525 /*Writeback*/true))
6526 return true;
6527 break;
6528 case ARM::STR_PRE_IMM:
6529 case ARM::STR_PRE_REG:
6530 case ARM::t2STR_PRE:
6531 case ARM::STR_POST_IMM:
6532 case ARM::STR_POST_REG:
6533 case ARM::t2STR_POST:
6534 case ARM::STRH_PRE:
6535 case ARM::t2STRH_PRE:
6536 case ARM::STRH_POST:
6537 case ARM::t2STRH_POST:
6538 case ARM::STRB_PRE_IMM:
6539 case ARM::STRB_PRE_REG:
6540 case ARM::t2STRB_PRE:
6541 case ARM::STRB_POST_IMM:
6542 case ARM::STRB_POST_REG:
6543 case ARM::t2STRB_POST: {
6544 // Rt must be different from Rn.
6545 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6546 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6548 if (Rt == Rn)
6549 return Error(Operands[3]->getStartLoc(),
6550 "source register and base register can't be identical");
6551 return false;
6553 case ARM::LDR_PRE_IMM:
6554 case ARM::LDR_PRE_REG:
6555 case ARM::t2LDR_PRE:
6556 case ARM::LDR_POST_IMM:
6557 case ARM::LDR_POST_REG:
6558 case ARM::t2LDR_POST:
6559 case ARM::LDRH_PRE:
6560 case ARM::t2LDRH_PRE:
6561 case ARM::LDRH_POST:
6562 case ARM::t2LDRH_POST:
6563 case ARM::LDRSH_PRE:
6564 case ARM::t2LDRSH_PRE:
6565 case ARM::LDRSH_POST:
6566 case ARM::t2LDRSH_POST:
6567 case ARM::LDRB_PRE_IMM:
6568 case ARM::LDRB_PRE_REG:
6569 case ARM::t2LDRB_PRE:
6570 case ARM::LDRB_POST_IMM:
6571 case ARM::LDRB_POST_REG:
6572 case ARM::t2LDRB_POST:
6573 case ARM::LDRSB_PRE:
6574 case ARM::t2LDRSB_PRE:
6575 case ARM::LDRSB_POST:
6576 case ARM::t2LDRSB_POST: {
6577 // Rt must be different from Rn.
6578 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6579 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6581 if (Rt == Rn)
6582 return Error(Operands[3]->getStartLoc(),
6583 "destination register and base register can't be identical");
6584 return false;
6586 case ARM::SBFX:
6587 case ARM::t2SBFX:
6588 case ARM::UBFX:
6589 case ARM::t2UBFX: {
6590 // Width must be in range [1, 32-lsb].
6591 unsigned LSB = Inst.getOperand(2).getImm();
6592 unsigned Widthm1 = Inst.getOperand(3).getImm();
6593 if (Widthm1 >= 32 - LSB)
6594 return Error(Operands[5]->getStartLoc(),
6595 "bitfield width must be in range [1,32-lsb]");
6596 return false;
6598 // Notionally handles ARM::tLDMIA_UPD too.
6599 case ARM::tLDMIA: {
6600 // If we're parsing Thumb2, the .w variant is available and handles
6601 // most cases that are normally illegal for a Thumb1 LDM instruction.
6602 // We'll make the transformation in processInstruction() if necessary.
6604 // Thumb LDM instructions are writeback iff the base register is not
6605 // in the register list.
6606 unsigned Rn = Inst.getOperand(0).getReg();
6607 bool HasWritebackToken =
6608 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6609 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6610 bool ListContainsBase;
6611 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6612 return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6613 "registers must be in range r0-r7");
6614 // If we should have writeback, then there should be a '!' token.
6615 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6616 return Error(Operands[2]->getStartLoc(),
6617 "writeback operator '!' expected");
6618 // If we should not have writeback, there must not be a '!'. This is
6619 // true even for the 32-bit wide encodings.
6620 if (ListContainsBase && HasWritebackToken)
6621 return Error(Operands[3]->getStartLoc(),
6622 "writeback operator '!' not allowed when base register "
6623 "in register list");
6625 if (validatetLDMRegList(Inst, Operands, 3))
6626 return true;
6627 break;
6629 case ARM::LDMIA_UPD:
6630 case ARM::LDMDB_UPD:
6631 case ARM::LDMIB_UPD:
6632 case ARM::LDMDA_UPD:
6633 // ARM variants loading and updating the same register are only officially
6634 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6635 if (!hasV7Ops())
6636 break;
6637 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6638 return Error(Operands.back()->getStartLoc(),
6639 "writeback register not allowed in register list");
6640 break;
6641 case ARM::t2LDMIA:
6642 case ARM::t2LDMDB:
6643 if (validatetLDMRegList(Inst, Operands, 3))
6644 return true;
6645 break;
6646 case ARM::t2STMIA:
6647 case ARM::t2STMDB:
6648 if (validatetSTMRegList(Inst, Operands, 3))
6649 return true;
6650 break;
6651 case ARM::t2LDMIA_UPD:
6652 case ARM::t2LDMDB_UPD:
6653 case ARM::t2STMIA_UPD:
6654 case ARM::t2STMDB_UPD:
6655 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6656 return Error(Operands.back()->getStartLoc(),
6657 "writeback register not allowed in register list");
6659 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6660 if (validatetLDMRegList(Inst, Operands, 3))
6661 return true;
6662 } else {
6663 if (validatetSTMRegList(Inst, Operands, 3))
6664 return true;
6666 break;
6668 case ARM::sysLDMIA_UPD:
6669 case ARM::sysLDMDA_UPD:
6670 case ARM::sysLDMDB_UPD:
6671 case ARM::sysLDMIB_UPD:
6672 if (!listContainsReg(Inst, 3, ARM::PC))
6673 return Error(Operands[4]->getStartLoc(),
6674 "writeback register only allowed on system LDM "
6675 "if PC in register-list");
6676 break;
6677 case ARM::sysSTMIA_UPD:
6678 case ARM::sysSTMDA_UPD:
6679 case ARM::sysSTMDB_UPD:
6680 case ARM::sysSTMIB_UPD:
6681 return Error(Operands[2]->getStartLoc(),
6682 "system STM cannot have writeback register");
6683 case ARM::tMUL:
6684 // The second source operand must be the same register as the destination
6685 // operand.
6687 // In this case, we must directly check the parsed operands because the
6688 // cvtThumbMultiply() function is written in such a way that it guarantees
6689 // this first statement is always true for the new Inst. Essentially, the
6690 // destination is unconditionally copied into the second source operand
6691 // without checking to see if it matches what we actually parsed.
6692 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6693 ((ARMOperand &)*Operands[5]).getReg()) &&
6694 (((ARMOperand &)*Operands[3]).getReg() !=
6695 ((ARMOperand &)*Operands[4]).getReg())) {
6696 return Error(Operands[3]->getStartLoc(),
6697 "destination register must match source register");
6699 break;
6701 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6702 // so only issue a diagnostic for thumb1. The instructions will be
6703 // switched to the t2 encodings in processInstruction() if necessary.
6704 case ARM::tPOP: {
6705 bool ListContainsBase;
6706 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6707 !isThumbTwo())
6708 return Error(Operands[2]->getStartLoc(),
6709 "registers must be in range r0-r7 or pc");
6710 if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6711 return true;
6712 break;
6714 case ARM::tPUSH: {
6715 bool ListContainsBase;
6716 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6717 !isThumbTwo())
6718 return Error(Operands[2]->getStartLoc(),
6719 "registers must be in range r0-r7 or lr");
6720 if (validatetSTMRegList(Inst, Operands, 2))
6721 return true;
6722 break;
6724 case ARM::tSTMIA_UPD: {
6725 bool ListContainsBase, InvalidLowList;
6726 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6727 0, ListContainsBase);
6728 if (InvalidLowList && !isThumbTwo())
6729 return Error(Operands[4]->getStartLoc(),
6730 "registers must be in range r0-r7");
6732 // This would be converted to a 32-bit stm, but that's not valid if the
6733 // writeback register is in the list.
6734 if (InvalidLowList && ListContainsBase)
6735 return Error(Operands[4]->getStartLoc(),
6736 "writeback operator '!' not allowed when base register "
6737 "in register list");
6739 if (validatetSTMRegList(Inst, Operands, 4))
6740 return true;
6741 break;
6743 case ARM::tADDrSP:
6744 // If the non-SP source operand and the destination operand are not the
6745 // same, we need thumb2 (for the wide encoding), or we have an error.
6746 if (!isThumbTwo() &&
6747 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6748 return Error(Operands[4]->getStartLoc(),
6749 "source register must be the same as destination");
6751 break;
6753 // Final range checking for Thumb unconditional branch instructions.
6754 case ARM::tB:
6755 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6756 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6757 break;
6758 case ARM::t2B: {
6759 int op = (Operands[2]->isImm()) ? 2 : 3;
6760 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6761 return Error(Operands[op]->getStartLoc(), "branch target out of range");
6762 break;
6764 // Final range checking for Thumb conditional branch instructions.
6765 case ARM::tBcc:
6766 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6767 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6768 break;
6769 case ARM::t2Bcc: {
6770 int Op = (Operands[2]->isImm()) ? 2 : 3;
6771 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6772 return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6773 break;
6775 case ARM::tCBZ:
6776 case ARM::tCBNZ: {
6777 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
6778 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6779 break;
6781 case ARM::MOVi16:
6782 case ARM::MOVTi16:
6783 case ARM::t2MOVi16:
6784 case ARM::t2MOVTi16:
6786 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6787 // especially when we turn it into a movw and the expression <symbol> does
6788 // not have a :lower16: or :upper16 as part of the expression. We don't
6789 // want the behavior of silently truncating, which can be unexpected and
6790 // lead to bugs that are difficult to find since this is an easy mistake
6791 // to make.
6792 int i = (Operands[3]->isImm()) ? 3 : 4;
6793 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6795 if (CE) break;
6796 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6797 if (!E) break;
6798 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6799 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6800 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6801 return Error(
6802 Op.getStartLoc(),
6803 "immediate expression for mov requires :lower16: or :upper16");
6804 break;
6806 case ARM::HINT:
6807 case ARM::t2HINT: {
6808 unsigned Imm8 = Inst.getOperand(0).getImm();
6809 unsigned Pred = Inst.getOperand(1).getImm();
6810 // ESB is not predicable (pred must be AL). Without the RAS extension, this
6811 // behaves as any other unallocated hint.
6812 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
6813 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
6814 "predicable, but condition "
6815 "code specified");
6816 if (Imm8 == 0x14 && Pred != ARMCC::AL)
6817 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
6818 "predicable, but condition "
6819 "code specified");
6820 break;
6822 case ARM::VMOVRRS: {
6823 // Source registers must be sequential.
6824 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6825 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6826 if (Sm1 != Sm + 1)
6827 return Error(Operands[5]->getStartLoc(),
6828 "source operands must be sequential");
6829 break;
6831 case ARM::VMOVSRR: {
6832 // Destination registers must be sequential.
6833 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6834 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6835 if (Sm1 != Sm + 1)
6836 return Error(Operands[3]->getStartLoc(),
6837 "destination operands must be sequential");
6838 break;
6842 return false;
6845 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6846 switch(Opc) {
6847 default: llvm_unreachable("unexpected opcode!");
6848 // VST1LN
6849 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6850 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6851 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6852 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6853 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6854 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6855 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
6856 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6857 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6859 // VST2LN
6860 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6861 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6862 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6863 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6864 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6866 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6867 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6868 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6869 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6870 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6872 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
6873 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6874 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6875 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6876 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6878 // VST3LN
6879 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6880 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6881 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6882 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6883 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6884 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6885 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6886 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6887 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6888 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6889 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
6890 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6891 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6892 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6893 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6895 // VST3
6896 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6897 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6898 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6899 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6900 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6901 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6902 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6903 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6904 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6905 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6906 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6907 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6908 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
6909 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6910 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6911 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
6912 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6913 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6915 // VST4LN
6916 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6917 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6918 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6919 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6920 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6921 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6922 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6923 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6924 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6925 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6926 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
6927 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6928 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6929 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6930 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6932 // VST4
6933 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6934 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6935 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6936 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6937 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6938 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6939 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6940 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6941 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6942 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6943 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6944 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6945 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
6946 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
6947 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
6948 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
6949 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
6950 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
6954 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
6955 switch(Opc) {
6956 default: llvm_unreachable("unexpected opcode!");
6957 // VLD1LN
6958 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
6959 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6960 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6961 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
6962 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6963 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6964 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
6965 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
6966 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
6968 // VLD2LN
6969 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
6970 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
6971 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
6972 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
6973 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
6974 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
6975 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
6976 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
6977 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
6978 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
6979 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
6980 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
6981 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
6982 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
6983 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
6985 // VLD3DUP
6986 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
6987 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
6988 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
6989 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
6990 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
6991 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
6992 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
6993 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
6994 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
6995 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
6996 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
6997 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
6998 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
6999 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
7000 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
7001 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
7002 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
7003 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
7005 // VLD3LN
7006 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7007 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7008 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7009 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
7010 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7011 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7012 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7013 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7014 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
7015 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7016 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
7017 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
7018 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
7019 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
7020 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
7022 // VLD3
7023 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7024 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7025 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7026 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7027 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7028 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7029 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7030 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7031 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7032 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7033 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7034 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7035 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
7036 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
7037 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
7038 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
7039 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
7040 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
7042 // VLD4LN
7043 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7044 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7045 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7046 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7047 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7048 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7049 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7050 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7051 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7052 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7053 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
7054 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
7055 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
7056 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
7057 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
7059 // VLD4DUP
7060 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7061 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7062 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7063 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
7064 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
7065 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7066 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7067 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7068 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7069 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
7070 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
7071 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7072 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
7073 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
7074 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
7075 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
7076 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
7077 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
7079 // VLD4
7080 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7081 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7082 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7083 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7084 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7085 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7086 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7087 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7088 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7089 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7090 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7091 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7092 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
7093 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
7094 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
7095 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
7096 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
7097 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
7101 bool ARMAsmParser::processInstruction(MCInst &Inst,
7102 const OperandVector &Operands,
7103 MCStreamer &Out) {
7104 // Check if we have the wide qualifier, because if it's present we
7105 // must avoid selecting a 16-bit thumb instruction.
7106 bool HasWideQualifier = false;
7107 for (auto &Op : Operands) {
7108 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
7109 if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
7110 HasWideQualifier = true;
7111 break;
7115 switch (Inst.getOpcode()) {
7116 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7117 case ARM::LDRT_POST:
7118 case ARM::LDRBT_POST: {
7119 const unsigned Opcode =
7120 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
7121 : ARM::LDRBT_POST_IMM;
7122 MCInst TmpInst;
7123 TmpInst.setOpcode(Opcode);
7124 TmpInst.addOperand(Inst.getOperand(0));
7125 TmpInst.addOperand(Inst.getOperand(1));
7126 TmpInst.addOperand(Inst.getOperand(1));
7127 TmpInst.addOperand(MCOperand::createReg(0));
7128 TmpInst.addOperand(MCOperand::createImm(0));
7129 TmpInst.addOperand(Inst.getOperand(2));
7130 TmpInst.addOperand(Inst.getOperand(3));
7131 Inst = TmpInst;
7132 return true;
7134 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7135 case ARM::STRT_POST:
7136 case ARM::STRBT_POST: {
7137 const unsigned Opcode =
7138 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
7139 : ARM::STRBT_POST_IMM;
7140 MCInst TmpInst;
7141 TmpInst.setOpcode(Opcode);
7142 TmpInst.addOperand(Inst.getOperand(1));
7143 TmpInst.addOperand(Inst.getOperand(0));
7144 TmpInst.addOperand(Inst.getOperand(1));
7145 TmpInst.addOperand(MCOperand::createReg(0));
7146 TmpInst.addOperand(MCOperand::createImm(0));
7147 TmpInst.addOperand(Inst.getOperand(2));
7148 TmpInst.addOperand(Inst.getOperand(3));
7149 Inst = TmpInst;
7150 return true;
7152 // Alias for alternate form of 'ADR Rd, #imm' instruction.
7153 case ARM::ADDri: {
7154 if (Inst.getOperand(1).getReg() != ARM::PC ||
7155 Inst.getOperand(5).getReg() != 0 ||
7156 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
7157 return false;
7158 MCInst TmpInst;
7159 TmpInst.setOpcode(ARM::ADR);
7160 TmpInst.addOperand(Inst.getOperand(0));
7161 if (Inst.getOperand(2).isImm()) {
7162 // Immediate (mod_imm) will be in its encoded form, we must unencode it
7163 // before passing it to the ADR instruction.
7164 unsigned Enc = Inst.getOperand(2).getImm();
7165 TmpInst.addOperand(MCOperand::createImm(
7166 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
7167 } else {
7168 // Turn PC-relative expression into absolute expression.
7169 // Reading PC provides the start of the current instruction + 8 and
7170 // the transform to adr is biased by that.
7171 MCSymbol *Dot = getContext().createTempSymbol();
7172 Out.EmitLabel(Dot);
7173 const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
7174 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
7175 MCSymbolRefExpr::VK_None,
7176 getContext());
7177 const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
7178 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
7179 getContext());
7180 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
7181 getContext());
7182 TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
7184 TmpInst.addOperand(Inst.getOperand(3));
7185 TmpInst.addOperand(Inst.getOperand(4));
7186 Inst = TmpInst;
7187 return true;
7189 // Aliases for alternate PC+imm syntax of LDR instructions.
7190 case ARM::t2LDRpcrel:
7191 // Select the narrow version if the immediate will fit.
7192 if (Inst.getOperand(1).getImm() > 0 &&
7193 Inst.getOperand(1).getImm() <= 0xff &&
7194 !HasWideQualifier)
7195 Inst.setOpcode(ARM::tLDRpci);
7196 else
7197 Inst.setOpcode(ARM::t2LDRpci);
7198 return true;
7199 case ARM::t2LDRBpcrel:
7200 Inst.setOpcode(ARM::t2LDRBpci);
7201 return true;
7202 case ARM::t2LDRHpcrel:
7203 Inst.setOpcode(ARM::t2LDRHpci);
7204 return true;
7205 case ARM::t2LDRSBpcrel:
7206 Inst.setOpcode(ARM::t2LDRSBpci);
7207 return true;
7208 case ARM::t2LDRSHpcrel:
7209 Inst.setOpcode(ARM::t2LDRSHpci);
7210 return true;
7211 case ARM::LDRConstPool:
7212 case ARM::tLDRConstPool:
7213 case ARM::t2LDRConstPool: {
7214 // Pseudo instruction ldr rt, =immediate is converted to a
7215 // MOV rt, immediate if immediate is known and representable
7216 // otherwise we create a constant pool entry that we load from.
7217 MCInst TmpInst;
7218 if (Inst.getOpcode() == ARM::LDRConstPool)
7219 TmpInst.setOpcode(ARM::LDRi12);
7220 else if (Inst.getOpcode() == ARM::tLDRConstPool)
7221 TmpInst.setOpcode(ARM::tLDRpci);
7222 else if (Inst.getOpcode() == ARM::t2LDRConstPool)
7223 TmpInst.setOpcode(ARM::t2LDRpci);
7224 const ARMOperand &PoolOperand =
7225 (HasWideQualifier ?
7226 static_cast<ARMOperand &>(*Operands[4]) :
7227 static_cast<ARMOperand &>(*Operands[3]));
7228 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
7229 // If SubExprVal is a constant we may be able to use a MOV
7230 if (isa<MCConstantExpr>(SubExprVal) &&
7231 Inst.getOperand(0).getReg() != ARM::PC &&
7232 Inst.getOperand(0).getReg() != ARM::SP) {
7233 int64_t Value =
7234 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
7235 bool UseMov = true;
7236 bool MovHasS = true;
7237 if (Inst.getOpcode() == ARM::LDRConstPool) {
7238 // ARM Constant
7239 if (ARM_AM::getSOImmVal(Value) != -1) {
7240 Value = ARM_AM::getSOImmVal(Value);
7241 TmpInst.setOpcode(ARM::MOVi);
7243 else if (ARM_AM::getSOImmVal(~Value) != -1) {
7244 Value = ARM_AM::getSOImmVal(~Value);
7245 TmpInst.setOpcode(ARM::MVNi);
7247 else if (hasV6T2Ops() &&
7248 Value >=0 && Value < 65536) {
7249 TmpInst.setOpcode(ARM::MOVi16);
7250 MovHasS = false;
7252 else
7253 UseMov = false;
7255 else {
7256 // Thumb/Thumb2 Constant
7257 if (hasThumb2() &&
7258 ARM_AM::getT2SOImmVal(Value) != -1)
7259 TmpInst.setOpcode(ARM::t2MOVi);
7260 else if (hasThumb2() &&
7261 ARM_AM::getT2SOImmVal(~Value) != -1) {
7262 TmpInst.setOpcode(ARM::t2MVNi);
7263 Value = ~Value;
7265 else if (hasV8MBaseline() &&
7266 Value >=0 && Value < 65536) {
7267 TmpInst.setOpcode(ARM::t2MOVi16);
7268 MovHasS = false;
7270 else
7271 UseMov = false;
7273 if (UseMov) {
7274 TmpInst.addOperand(Inst.getOperand(0)); // Rt
7275 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
7276 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7277 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7278 if (MovHasS)
7279 TmpInst.addOperand(MCOperand::createReg(0)); // S
7280 Inst = TmpInst;
7281 return true;
7284 // No opportunity to use MOV/MVN create constant pool
7285 const MCExpr *CPLoc =
7286 getTargetStreamer().addConstantPoolEntry(SubExprVal,
7287 PoolOperand.getStartLoc());
7288 TmpInst.addOperand(Inst.getOperand(0)); // Rt
7289 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
7290 if (TmpInst.getOpcode() == ARM::LDRi12)
7291 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
7292 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7293 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7294 Inst = TmpInst;
7295 return true;
7297 // Handle NEON VST complex aliases.
7298 case ARM::VST1LNdWB_register_Asm_8:
7299 case ARM::VST1LNdWB_register_Asm_16:
7300 case ARM::VST1LNdWB_register_Asm_32: {
7301 MCInst TmpInst;
7302 // Shuffle the operands around so the lane index operand is in the
7303 // right place.
7304 unsigned Spacing;
7305 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7306 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7307 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7308 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7309 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7310 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7311 TmpInst.addOperand(Inst.getOperand(1)); // lane
7312 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7313 TmpInst.addOperand(Inst.getOperand(6));
7314 Inst = TmpInst;
7315 return true;
7318 case ARM::VST2LNdWB_register_Asm_8:
7319 case ARM::VST2LNdWB_register_Asm_16:
7320 case ARM::VST2LNdWB_register_Asm_32:
7321 case ARM::VST2LNqWB_register_Asm_16:
7322 case ARM::VST2LNqWB_register_Asm_32: {
7323 MCInst TmpInst;
7324 // Shuffle the operands around so the lane index operand is in the
7325 // right place.
7326 unsigned Spacing;
7327 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7328 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7329 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7330 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7331 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7332 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7334 Spacing));
7335 TmpInst.addOperand(Inst.getOperand(1)); // lane
7336 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7337 TmpInst.addOperand(Inst.getOperand(6));
7338 Inst = TmpInst;
7339 return true;
7342 case ARM::VST3LNdWB_register_Asm_8:
7343 case ARM::VST3LNdWB_register_Asm_16:
7344 case ARM::VST3LNdWB_register_Asm_32:
7345 case ARM::VST3LNqWB_register_Asm_16:
7346 case ARM::VST3LNqWB_register_Asm_32: {
7347 MCInst TmpInst;
7348 // Shuffle the operands around so the lane index operand is in the
7349 // right place.
7350 unsigned Spacing;
7351 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7352 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7353 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7354 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7355 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7356 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7358 Spacing));
7359 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7360 Spacing * 2));
7361 TmpInst.addOperand(Inst.getOperand(1)); // lane
7362 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7363 TmpInst.addOperand(Inst.getOperand(6));
7364 Inst = TmpInst;
7365 return true;
7368 case ARM::VST4LNdWB_register_Asm_8:
7369 case ARM::VST4LNdWB_register_Asm_16:
7370 case ARM::VST4LNdWB_register_Asm_32:
7371 case ARM::VST4LNqWB_register_Asm_16:
7372 case ARM::VST4LNqWB_register_Asm_32: {
7373 MCInst TmpInst;
7374 // Shuffle the operands around so the lane index operand is in the
7375 // right place.
7376 unsigned Spacing;
7377 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7378 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7379 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7380 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7381 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7382 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7383 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7384 Spacing));
7385 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7386 Spacing * 2));
7387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7388 Spacing * 3));
7389 TmpInst.addOperand(Inst.getOperand(1)); // lane
7390 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7391 TmpInst.addOperand(Inst.getOperand(6));
7392 Inst = TmpInst;
7393 return true;
7396 case ARM::VST1LNdWB_fixed_Asm_8:
7397 case ARM::VST1LNdWB_fixed_Asm_16:
7398 case ARM::VST1LNdWB_fixed_Asm_32: {
7399 MCInst TmpInst;
7400 // Shuffle the operands around so the lane index operand is in the
7401 // right place.
7402 unsigned Spacing;
7403 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7404 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7405 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7406 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7407 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7408 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7409 TmpInst.addOperand(Inst.getOperand(1)); // lane
7410 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7411 TmpInst.addOperand(Inst.getOperand(5));
7412 Inst = TmpInst;
7413 return true;
7416 case ARM::VST2LNdWB_fixed_Asm_8:
7417 case ARM::VST2LNdWB_fixed_Asm_16:
7418 case ARM::VST2LNdWB_fixed_Asm_32:
7419 case ARM::VST2LNqWB_fixed_Asm_16:
7420 case ARM::VST2LNqWB_fixed_Asm_32: {
7421 MCInst TmpInst;
7422 // Shuffle the operands around so the lane index operand is in the
7423 // right place.
7424 unsigned Spacing;
7425 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7426 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7427 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7428 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7429 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7430 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7431 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7432 Spacing));
7433 TmpInst.addOperand(Inst.getOperand(1)); // lane
7434 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7435 TmpInst.addOperand(Inst.getOperand(5));
7436 Inst = TmpInst;
7437 return true;
7440 case ARM::VST3LNdWB_fixed_Asm_8:
7441 case ARM::VST3LNdWB_fixed_Asm_16:
7442 case ARM::VST3LNdWB_fixed_Asm_32:
7443 case ARM::VST3LNqWB_fixed_Asm_16:
7444 case ARM::VST3LNqWB_fixed_Asm_32: {
7445 MCInst TmpInst;
7446 // Shuffle the operands around so the lane index operand is in the
7447 // right place.
7448 unsigned Spacing;
7449 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7450 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7451 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7452 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7453 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7454 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7455 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7456 Spacing));
7457 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7458 Spacing * 2));
7459 TmpInst.addOperand(Inst.getOperand(1)); // lane
7460 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7461 TmpInst.addOperand(Inst.getOperand(5));
7462 Inst = TmpInst;
7463 return true;
7466 case ARM::VST4LNdWB_fixed_Asm_8:
7467 case ARM::VST4LNdWB_fixed_Asm_16:
7468 case ARM::VST4LNdWB_fixed_Asm_32:
7469 case ARM::VST4LNqWB_fixed_Asm_16:
7470 case ARM::VST4LNqWB_fixed_Asm_32: {
7471 MCInst TmpInst;
7472 // Shuffle the operands around so the lane index operand is in the
7473 // right place.
7474 unsigned Spacing;
7475 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7476 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7477 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7478 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7479 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7480 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7482 Spacing));
7483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7484 Spacing * 2));
7485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7486 Spacing * 3));
7487 TmpInst.addOperand(Inst.getOperand(1)); // lane
7488 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7489 TmpInst.addOperand(Inst.getOperand(5));
7490 Inst = TmpInst;
7491 return true;
7494 case ARM::VST1LNdAsm_8:
7495 case ARM::VST1LNdAsm_16:
7496 case ARM::VST1LNdAsm_32: {
7497 MCInst TmpInst;
7498 // Shuffle the operands around so the lane index operand is in the
7499 // right place.
7500 unsigned Spacing;
7501 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7502 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7503 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7504 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7505 TmpInst.addOperand(Inst.getOperand(1)); // lane
7506 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7507 TmpInst.addOperand(Inst.getOperand(5));
7508 Inst = TmpInst;
7509 return true;
7512 case ARM::VST2LNdAsm_8:
7513 case ARM::VST2LNdAsm_16:
7514 case ARM::VST2LNdAsm_32:
7515 case ARM::VST2LNqAsm_16:
7516 case ARM::VST2LNqAsm_32: {
7517 MCInst TmpInst;
7518 // Shuffle the operands around so the lane index operand is in the
7519 // right place.
7520 unsigned Spacing;
7521 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7522 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7523 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7524 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7525 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7526 Spacing));
7527 TmpInst.addOperand(Inst.getOperand(1)); // lane
7528 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7529 TmpInst.addOperand(Inst.getOperand(5));
7530 Inst = TmpInst;
7531 return true;
7534 case ARM::VST3LNdAsm_8:
7535 case ARM::VST3LNdAsm_16:
7536 case ARM::VST3LNdAsm_32:
7537 case ARM::VST3LNqAsm_16:
7538 case ARM::VST3LNqAsm_32: {
7539 MCInst TmpInst;
7540 // Shuffle the operands around so the lane index operand is in the
7541 // right place.
7542 unsigned Spacing;
7543 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7544 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7545 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7546 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7547 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7548 Spacing));
7549 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7550 Spacing * 2));
7551 TmpInst.addOperand(Inst.getOperand(1)); // lane
7552 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7553 TmpInst.addOperand(Inst.getOperand(5));
7554 Inst = TmpInst;
7555 return true;
7558 case ARM::VST4LNdAsm_8:
7559 case ARM::VST4LNdAsm_16:
7560 case ARM::VST4LNdAsm_32:
7561 case ARM::VST4LNqAsm_16:
7562 case ARM::VST4LNqAsm_32: {
7563 MCInst TmpInst;
7564 // Shuffle the operands around so the lane index operand is in the
7565 // right place.
7566 unsigned Spacing;
7567 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7568 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7569 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7570 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7571 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7572 Spacing));
7573 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7574 Spacing * 2));
7575 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7576 Spacing * 3));
7577 TmpInst.addOperand(Inst.getOperand(1)); // lane
7578 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7579 TmpInst.addOperand(Inst.getOperand(5));
7580 Inst = TmpInst;
7581 return true;
7584 // Handle NEON VLD complex aliases.
7585 case ARM::VLD1LNdWB_register_Asm_8:
7586 case ARM::VLD1LNdWB_register_Asm_16:
7587 case ARM::VLD1LNdWB_register_Asm_32: {
7588 MCInst TmpInst;
7589 // Shuffle the operands around so the lane index operand is in the
7590 // right place.
7591 unsigned Spacing;
7592 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7593 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7594 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7595 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7596 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7597 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7598 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7599 TmpInst.addOperand(Inst.getOperand(1)); // lane
7600 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7601 TmpInst.addOperand(Inst.getOperand(6));
7602 Inst = TmpInst;
7603 return true;
7606 case ARM::VLD2LNdWB_register_Asm_8:
7607 case ARM::VLD2LNdWB_register_Asm_16:
7608 case ARM::VLD2LNdWB_register_Asm_32:
7609 case ARM::VLD2LNqWB_register_Asm_16:
7610 case ARM::VLD2LNqWB_register_Asm_32: {
7611 MCInst TmpInst;
7612 // Shuffle the operands around so the lane index operand is in the
7613 // right place.
7614 unsigned Spacing;
7615 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7616 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7618 Spacing));
7619 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7620 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7621 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7622 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7623 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7624 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7625 Spacing));
7626 TmpInst.addOperand(Inst.getOperand(1)); // lane
7627 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7628 TmpInst.addOperand(Inst.getOperand(6));
7629 Inst = TmpInst;
7630 return true;
7633 case ARM::VLD3LNdWB_register_Asm_8:
7634 case ARM::VLD3LNdWB_register_Asm_16:
7635 case ARM::VLD3LNdWB_register_Asm_32:
7636 case ARM::VLD3LNqWB_register_Asm_16:
7637 case ARM::VLD3LNqWB_register_Asm_32: {
7638 MCInst TmpInst;
7639 // Shuffle the operands around so the lane index operand is in the
7640 // right place.
7641 unsigned Spacing;
7642 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7643 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7644 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7645 Spacing));
7646 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7647 Spacing * 2));
7648 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7649 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7650 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7651 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7652 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7653 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7654 Spacing));
7655 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7656 Spacing * 2));
7657 TmpInst.addOperand(Inst.getOperand(1)); // lane
7658 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7659 TmpInst.addOperand(Inst.getOperand(6));
7660 Inst = TmpInst;
7661 return true;
7664 case ARM::VLD4LNdWB_register_Asm_8:
7665 case ARM::VLD4LNdWB_register_Asm_16:
7666 case ARM::VLD4LNdWB_register_Asm_32:
7667 case ARM::VLD4LNqWB_register_Asm_16:
7668 case ARM::VLD4LNqWB_register_Asm_32: {
7669 MCInst TmpInst;
7670 // Shuffle the operands around so the lane index operand is in the
7671 // right place.
7672 unsigned Spacing;
7673 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7674 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7675 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7676 Spacing));
7677 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7678 Spacing * 2));
7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7680 Spacing * 3));
7681 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7682 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7683 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7684 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7685 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7687 Spacing));
7688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7689 Spacing * 2));
7690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7691 Spacing * 3));
7692 TmpInst.addOperand(Inst.getOperand(1)); // lane
7693 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7694 TmpInst.addOperand(Inst.getOperand(6));
7695 Inst = TmpInst;
7696 return true;
7699 case ARM::VLD1LNdWB_fixed_Asm_8:
7700 case ARM::VLD1LNdWB_fixed_Asm_16:
7701 case ARM::VLD1LNdWB_fixed_Asm_32: {
7702 MCInst TmpInst;
7703 // Shuffle the operands around so the lane index operand is in the
7704 // right place.
7705 unsigned Spacing;
7706 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7707 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7708 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7709 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7710 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7711 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7712 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7713 TmpInst.addOperand(Inst.getOperand(1)); // lane
7714 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7715 TmpInst.addOperand(Inst.getOperand(5));
7716 Inst = TmpInst;
7717 return true;
7720 case ARM::VLD2LNdWB_fixed_Asm_8:
7721 case ARM::VLD2LNdWB_fixed_Asm_16:
7722 case ARM::VLD2LNdWB_fixed_Asm_32:
7723 case ARM::VLD2LNqWB_fixed_Asm_16:
7724 case ARM::VLD2LNqWB_fixed_Asm_32: {
7725 MCInst TmpInst;
7726 // Shuffle the operands around so the lane index operand is in the
7727 // right place.
7728 unsigned Spacing;
7729 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7730 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7731 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7732 Spacing));
7733 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7734 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7735 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7736 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7737 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7738 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7739 Spacing));
7740 TmpInst.addOperand(Inst.getOperand(1)); // lane
7741 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7742 TmpInst.addOperand(Inst.getOperand(5));
7743 Inst = TmpInst;
7744 return true;
7747 case ARM::VLD3LNdWB_fixed_Asm_8:
7748 case ARM::VLD3LNdWB_fixed_Asm_16:
7749 case ARM::VLD3LNdWB_fixed_Asm_32:
7750 case ARM::VLD3LNqWB_fixed_Asm_16:
7751 case ARM::VLD3LNqWB_fixed_Asm_32: {
7752 MCInst TmpInst;
7753 // Shuffle the operands around so the lane index operand is in the
7754 // right place.
7755 unsigned Spacing;
7756 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7757 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7758 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7759 Spacing));
7760 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7761 Spacing * 2));
7762 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7763 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7764 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7765 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7766 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7767 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7768 Spacing));
7769 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7770 Spacing * 2));
7771 TmpInst.addOperand(Inst.getOperand(1)); // lane
7772 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7773 TmpInst.addOperand(Inst.getOperand(5));
7774 Inst = TmpInst;
7775 return true;
7778 case ARM::VLD4LNdWB_fixed_Asm_8:
7779 case ARM::VLD4LNdWB_fixed_Asm_16:
7780 case ARM::VLD4LNdWB_fixed_Asm_32:
7781 case ARM::VLD4LNqWB_fixed_Asm_16:
7782 case ARM::VLD4LNqWB_fixed_Asm_32: {
7783 MCInst TmpInst;
7784 // Shuffle the operands around so the lane index operand is in the
7785 // right place.
7786 unsigned Spacing;
7787 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7788 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7789 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7790 Spacing));
7791 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7792 Spacing * 2));
7793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7794 Spacing * 3));
7795 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7796 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7797 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7798 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7799 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7800 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7801 Spacing));
7802 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7803 Spacing * 2));
7804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7805 Spacing * 3));
7806 TmpInst.addOperand(Inst.getOperand(1)); // lane
7807 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7808 TmpInst.addOperand(Inst.getOperand(5));
7809 Inst = TmpInst;
7810 return true;
7813 case ARM::VLD1LNdAsm_8:
7814 case ARM::VLD1LNdAsm_16:
7815 case ARM::VLD1LNdAsm_32: {
7816 MCInst TmpInst;
7817 // Shuffle the operands around so the lane index operand is in the
7818 // right place.
7819 unsigned Spacing;
7820 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7821 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7822 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7823 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7824 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7825 TmpInst.addOperand(Inst.getOperand(1)); // lane
7826 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7827 TmpInst.addOperand(Inst.getOperand(5));
7828 Inst = TmpInst;
7829 return true;
7832 case ARM::VLD2LNdAsm_8:
7833 case ARM::VLD2LNdAsm_16:
7834 case ARM::VLD2LNdAsm_32:
7835 case ARM::VLD2LNqAsm_16:
7836 case ARM::VLD2LNqAsm_32: {
7837 MCInst TmpInst;
7838 // Shuffle the operands around so the lane index operand is in the
7839 // right place.
7840 unsigned Spacing;
7841 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7842 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7843 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7844 Spacing));
7845 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7846 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7847 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7848 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7849 Spacing));
7850 TmpInst.addOperand(Inst.getOperand(1)); // lane
7851 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7852 TmpInst.addOperand(Inst.getOperand(5));
7853 Inst = TmpInst;
7854 return true;
7857 case ARM::VLD3LNdAsm_8:
7858 case ARM::VLD3LNdAsm_16:
7859 case ARM::VLD3LNdAsm_32:
7860 case ARM::VLD3LNqAsm_16:
7861 case ARM::VLD3LNqAsm_32: {
7862 MCInst TmpInst;
7863 // Shuffle the operands around so the lane index operand is in the
7864 // right place.
7865 unsigned Spacing;
7866 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7867 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7868 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7869 Spacing));
7870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7871 Spacing * 2));
7872 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7873 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7874 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7875 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7876 Spacing));
7877 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7878 Spacing * 2));
7879 TmpInst.addOperand(Inst.getOperand(1)); // lane
7880 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7881 TmpInst.addOperand(Inst.getOperand(5));
7882 Inst = TmpInst;
7883 return true;
7886 case ARM::VLD4LNdAsm_8:
7887 case ARM::VLD4LNdAsm_16:
7888 case ARM::VLD4LNdAsm_32:
7889 case ARM::VLD4LNqAsm_16:
7890 case ARM::VLD4LNqAsm_32: {
7891 MCInst TmpInst;
7892 // Shuffle the operands around so the lane index operand is in the
7893 // right place.
7894 unsigned Spacing;
7895 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7896 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7898 Spacing));
7899 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7900 Spacing * 2));
7901 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7902 Spacing * 3));
7903 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7904 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7905 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7906 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7907 Spacing));
7908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7909 Spacing * 2));
7910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7911 Spacing * 3));
7912 TmpInst.addOperand(Inst.getOperand(1)); // lane
7913 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7914 TmpInst.addOperand(Inst.getOperand(5));
7915 Inst = TmpInst;
7916 return true;
7919 // VLD3DUP single 3-element structure to all lanes instructions.
7920 case ARM::VLD3DUPdAsm_8:
7921 case ARM::VLD3DUPdAsm_16:
7922 case ARM::VLD3DUPdAsm_32:
7923 case ARM::VLD3DUPqAsm_8:
7924 case ARM::VLD3DUPqAsm_16:
7925 case ARM::VLD3DUPqAsm_32: {
7926 MCInst TmpInst;
7927 unsigned Spacing;
7928 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7929 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7930 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7931 Spacing));
7932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7933 Spacing * 2));
7934 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7935 TmpInst.addOperand(Inst.getOperand(2)); // alignment
7936 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7937 TmpInst.addOperand(Inst.getOperand(4));
7938 Inst = TmpInst;
7939 return true;
7942 case ARM::VLD3DUPdWB_fixed_Asm_8:
7943 case ARM::VLD3DUPdWB_fixed_Asm_16:
7944 case ARM::VLD3DUPdWB_fixed_Asm_32:
7945 case ARM::VLD3DUPqWB_fixed_Asm_8:
7946 case ARM::VLD3DUPqWB_fixed_Asm_16:
7947 case ARM::VLD3DUPqWB_fixed_Asm_32: {
7948 MCInst TmpInst;
7949 unsigned Spacing;
7950 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7951 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7952 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7953 Spacing));
7954 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7955 Spacing * 2));
7956 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7957 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7958 TmpInst.addOperand(Inst.getOperand(2)); // alignment
7959 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7960 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7961 TmpInst.addOperand(Inst.getOperand(4));
7962 Inst = TmpInst;
7963 return true;
7966 case ARM::VLD3DUPdWB_register_Asm_8:
7967 case ARM::VLD3DUPdWB_register_Asm_16:
7968 case ARM::VLD3DUPdWB_register_Asm_32:
7969 case ARM::VLD3DUPqWB_register_Asm_8:
7970 case ARM::VLD3DUPqWB_register_Asm_16:
7971 case ARM::VLD3DUPqWB_register_Asm_32: {
7972 MCInst TmpInst;
7973 unsigned Spacing;
7974 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7975 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7976 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7977 Spacing));
7978 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7979 Spacing * 2));
7980 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7981 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7982 TmpInst.addOperand(Inst.getOperand(2)); // alignment
7983 TmpInst.addOperand(Inst.getOperand(3)); // Rm
7984 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7985 TmpInst.addOperand(Inst.getOperand(5));
7986 Inst = TmpInst;
7987 return true;
7990 // VLD3 multiple 3-element structure instructions.
7991 case ARM::VLD3dAsm_8:
7992 case ARM::VLD3dAsm_16:
7993 case ARM::VLD3dAsm_32:
7994 case ARM::VLD3qAsm_8:
7995 case ARM::VLD3qAsm_16:
7996 case ARM::VLD3qAsm_32: {
7997 MCInst TmpInst;
7998 unsigned Spacing;
7999 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8000 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8001 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8002 Spacing));
8003 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8004 Spacing * 2));
8005 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8006 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8007 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8008 TmpInst.addOperand(Inst.getOperand(4));
8009 Inst = TmpInst;
8010 return true;
8013 case ARM::VLD3dWB_fixed_Asm_8:
8014 case ARM::VLD3dWB_fixed_Asm_16:
8015 case ARM::VLD3dWB_fixed_Asm_32:
8016 case ARM::VLD3qWB_fixed_Asm_8:
8017 case ARM::VLD3qWB_fixed_Asm_16:
8018 case ARM::VLD3qWB_fixed_Asm_32: {
8019 MCInst TmpInst;
8020 unsigned Spacing;
8021 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8022 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8023 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8024 Spacing));
8025 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8026 Spacing * 2));
8027 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8028 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8029 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8030 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8031 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8032 TmpInst.addOperand(Inst.getOperand(4));
8033 Inst = TmpInst;
8034 return true;
8037 case ARM::VLD3dWB_register_Asm_8:
8038 case ARM::VLD3dWB_register_Asm_16:
8039 case ARM::VLD3dWB_register_Asm_32:
8040 case ARM::VLD3qWB_register_Asm_8:
8041 case ARM::VLD3qWB_register_Asm_16:
8042 case ARM::VLD3qWB_register_Asm_32: {
8043 MCInst TmpInst;
8044 unsigned Spacing;
8045 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8046 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8048 Spacing));
8049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8050 Spacing * 2));
8051 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8052 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8053 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8054 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8055 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8056 TmpInst.addOperand(Inst.getOperand(5));
8057 Inst = TmpInst;
8058 return true;
8061 // VLD4DUP single 3-element structure to all lanes instructions.
8062 case ARM::VLD4DUPdAsm_8:
8063 case ARM::VLD4DUPdAsm_16:
8064 case ARM::VLD4DUPdAsm_32:
8065 case ARM::VLD4DUPqAsm_8:
8066 case ARM::VLD4DUPqAsm_16:
8067 case ARM::VLD4DUPqAsm_32: {
8068 MCInst TmpInst;
8069 unsigned Spacing;
8070 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8071 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8072 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8073 Spacing));
8074 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8075 Spacing * 2));
8076 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8077 Spacing * 3));
8078 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8079 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8080 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8081 TmpInst.addOperand(Inst.getOperand(4));
8082 Inst = TmpInst;
8083 return true;
8086 case ARM::VLD4DUPdWB_fixed_Asm_8:
8087 case ARM::VLD4DUPdWB_fixed_Asm_16:
8088 case ARM::VLD4DUPdWB_fixed_Asm_32:
8089 case ARM::VLD4DUPqWB_fixed_Asm_8:
8090 case ARM::VLD4DUPqWB_fixed_Asm_16:
8091 case ARM::VLD4DUPqWB_fixed_Asm_32: {
8092 MCInst TmpInst;
8093 unsigned Spacing;
8094 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8095 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8096 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8097 Spacing));
8098 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8099 Spacing * 2));
8100 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8101 Spacing * 3));
8102 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8103 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8104 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8105 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8106 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8107 TmpInst.addOperand(Inst.getOperand(4));
8108 Inst = TmpInst;
8109 return true;
8112 case ARM::VLD4DUPdWB_register_Asm_8:
8113 case ARM::VLD4DUPdWB_register_Asm_16:
8114 case ARM::VLD4DUPdWB_register_Asm_32:
8115 case ARM::VLD4DUPqWB_register_Asm_8:
8116 case ARM::VLD4DUPqWB_register_Asm_16:
8117 case ARM::VLD4DUPqWB_register_Asm_32: {
8118 MCInst TmpInst;
8119 unsigned Spacing;
8120 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8121 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8122 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8123 Spacing));
8124 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8125 Spacing * 2));
8126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8127 Spacing * 3));
8128 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8129 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8130 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8131 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8132 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8133 TmpInst.addOperand(Inst.getOperand(5));
8134 Inst = TmpInst;
8135 return true;
8138 // VLD4 multiple 4-element structure instructions.
8139 case ARM::VLD4dAsm_8:
8140 case ARM::VLD4dAsm_16:
8141 case ARM::VLD4dAsm_32:
8142 case ARM::VLD4qAsm_8:
8143 case ARM::VLD4qAsm_16:
8144 case ARM::VLD4qAsm_32: {
8145 MCInst TmpInst;
8146 unsigned Spacing;
8147 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8148 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8149 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8150 Spacing));
8151 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8152 Spacing * 2));
8153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8154 Spacing * 3));
8155 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8156 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8157 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8158 TmpInst.addOperand(Inst.getOperand(4));
8159 Inst = TmpInst;
8160 return true;
8163 case ARM::VLD4dWB_fixed_Asm_8:
8164 case ARM::VLD4dWB_fixed_Asm_16:
8165 case ARM::VLD4dWB_fixed_Asm_32:
8166 case ARM::VLD4qWB_fixed_Asm_8:
8167 case ARM::VLD4qWB_fixed_Asm_16:
8168 case ARM::VLD4qWB_fixed_Asm_32: {
8169 MCInst TmpInst;
8170 unsigned Spacing;
8171 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8172 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8173 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8174 Spacing));
8175 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8176 Spacing * 2));
8177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8178 Spacing * 3));
8179 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8180 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8181 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8182 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8183 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8184 TmpInst.addOperand(Inst.getOperand(4));
8185 Inst = TmpInst;
8186 return true;
8189 case ARM::VLD4dWB_register_Asm_8:
8190 case ARM::VLD4dWB_register_Asm_16:
8191 case ARM::VLD4dWB_register_Asm_32:
8192 case ARM::VLD4qWB_register_Asm_8:
8193 case ARM::VLD4qWB_register_Asm_16:
8194 case ARM::VLD4qWB_register_Asm_32: {
8195 MCInst TmpInst;
8196 unsigned Spacing;
8197 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8198 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8199 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8200 Spacing));
8201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8202 Spacing * 2));
8203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8204 Spacing * 3));
8205 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8206 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8207 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8208 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8209 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8210 TmpInst.addOperand(Inst.getOperand(5));
8211 Inst = TmpInst;
8212 return true;
8215 // VST3 multiple 3-element structure instructions.
8216 case ARM::VST3dAsm_8:
8217 case ARM::VST3dAsm_16:
8218 case ARM::VST3dAsm_32:
8219 case ARM::VST3qAsm_8:
8220 case ARM::VST3qAsm_16:
8221 case ARM::VST3qAsm_32: {
8222 MCInst TmpInst;
8223 unsigned Spacing;
8224 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8225 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8226 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8227 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8229 Spacing));
8230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8231 Spacing * 2));
8232 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8233 TmpInst.addOperand(Inst.getOperand(4));
8234 Inst = TmpInst;
8235 return true;
8238 case ARM::VST3dWB_fixed_Asm_8:
8239 case ARM::VST3dWB_fixed_Asm_16:
8240 case ARM::VST3dWB_fixed_Asm_32:
8241 case ARM::VST3qWB_fixed_Asm_8:
8242 case ARM::VST3qWB_fixed_Asm_16:
8243 case ARM::VST3qWB_fixed_Asm_32: {
8244 MCInst TmpInst;
8245 unsigned Spacing;
8246 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8247 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8248 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8249 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8250 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8251 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8253 Spacing));
8254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8255 Spacing * 2));
8256 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8257 TmpInst.addOperand(Inst.getOperand(4));
8258 Inst = TmpInst;
8259 return true;
8262 case ARM::VST3dWB_register_Asm_8:
8263 case ARM::VST3dWB_register_Asm_16:
8264 case ARM::VST3dWB_register_Asm_32:
8265 case ARM::VST3qWB_register_Asm_8:
8266 case ARM::VST3qWB_register_Asm_16:
8267 case ARM::VST3qWB_register_Asm_32: {
8268 MCInst TmpInst;
8269 unsigned Spacing;
8270 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8271 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8272 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8273 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8274 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8275 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8276 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8277 Spacing));
8278 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8279 Spacing * 2));
8280 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8281 TmpInst.addOperand(Inst.getOperand(5));
8282 Inst = TmpInst;
8283 return true;
8286 // VST4 multiple 3-element structure instructions.
8287 case ARM::VST4dAsm_8:
8288 case ARM::VST4dAsm_16:
8289 case ARM::VST4dAsm_32:
8290 case ARM::VST4qAsm_8:
8291 case ARM::VST4qAsm_16:
8292 case ARM::VST4qAsm_32: {
8293 MCInst TmpInst;
8294 unsigned Spacing;
8295 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8296 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8297 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8298 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8299 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8300 Spacing));
8301 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8302 Spacing * 2));
8303 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8304 Spacing * 3));
8305 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8306 TmpInst.addOperand(Inst.getOperand(4));
8307 Inst = TmpInst;
8308 return true;
8311 case ARM::VST4dWB_fixed_Asm_8:
8312 case ARM::VST4dWB_fixed_Asm_16:
8313 case ARM::VST4dWB_fixed_Asm_32:
8314 case ARM::VST4qWB_fixed_Asm_8:
8315 case ARM::VST4qWB_fixed_Asm_16:
8316 case ARM::VST4qWB_fixed_Asm_32: {
8317 MCInst TmpInst;
8318 unsigned Spacing;
8319 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8320 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8321 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8322 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8323 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8324 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8325 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8326 Spacing));
8327 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8328 Spacing * 2));
8329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8330 Spacing * 3));
8331 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8332 TmpInst.addOperand(Inst.getOperand(4));
8333 Inst = TmpInst;
8334 return true;
8337 case ARM::VST4dWB_register_Asm_8:
8338 case ARM::VST4dWB_register_Asm_16:
8339 case ARM::VST4dWB_register_Asm_32:
8340 case ARM::VST4qWB_register_Asm_8:
8341 case ARM::VST4qWB_register_Asm_16:
8342 case ARM::VST4qWB_register_Asm_32: {
8343 MCInst TmpInst;
8344 unsigned Spacing;
8345 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8346 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8347 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8348 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8349 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8350 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8351 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8352 Spacing));
8353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8354 Spacing * 2));
8355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8356 Spacing * 3));
8357 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8358 TmpInst.addOperand(Inst.getOperand(5));
8359 Inst = TmpInst;
8360 return true;
8363 // Handle encoding choice for the shift-immediate instructions.
8364 case ARM::t2LSLri:
8365 case ARM::t2LSRri:
8366 case ARM::t2ASRri:
8367 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8368 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8369 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8370 !HasWideQualifier) {
8371 unsigned NewOpc;
8372 switch (Inst.getOpcode()) {
8373 default: llvm_unreachable("unexpected opcode");
8374 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
8375 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
8376 case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
8378 // The Thumb1 operands aren't in the same order. Awesome, eh?
8379 MCInst TmpInst;
8380 TmpInst.setOpcode(NewOpc);
8381 TmpInst.addOperand(Inst.getOperand(0));
8382 TmpInst.addOperand(Inst.getOperand(5));
8383 TmpInst.addOperand(Inst.getOperand(1));
8384 TmpInst.addOperand(Inst.getOperand(2));
8385 TmpInst.addOperand(Inst.getOperand(3));
8386 TmpInst.addOperand(Inst.getOperand(4));
8387 Inst = TmpInst;
8388 return true;
8390 return false;
8392 // Handle the Thumb2 mode MOV complex aliases.
8393 case ARM::t2MOVsr:
8394 case ARM::t2MOVSsr: {
8395 // Which instruction to expand to depends on the CCOut operand and
8396 // whether we're in an IT block if the register operands are low
8397 // registers.
8398 bool isNarrow = false;
8399 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8400 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8401 isARMLowRegister(Inst.getOperand(2).getReg()) &&
8402 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8403 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
8404 !HasWideQualifier)
8405 isNarrow = true;
8406 MCInst TmpInst;
8407 unsigned newOpc;
8408 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
8409 default: llvm_unreachable("unexpected opcode!");
8410 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
8411 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
8412 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
8413 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
8415 TmpInst.setOpcode(newOpc);
8416 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8417 if (isNarrow)
8418 TmpInst.addOperand(MCOperand::createReg(
8419 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8420 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8421 TmpInst.addOperand(Inst.getOperand(2)); // Rm
8422 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8423 TmpInst.addOperand(Inst.getOperand(5));
8424 if (!isNarrow)
8425 TmpInst.addOperand(MCOperand::createReg(
8426 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8427 Inst = TmpInst;
8428 return true;
8430 case ARM::t2MOVsi:
8431 case ARM::t2MOVSsi: {
8432 // Which instruction to expand to depends on the CCOut operand and
8433 // whether we're in an IT block if the register operands are low
8434 // registers.
8435 bool isNarrow = false;
8436 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8437 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8438 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
8439 !HasWideQualifier)
8440 isNarrow = true;
8441 MCInst TmpInst;
8442 unsigned newOpc;
8443 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8444 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
8445 bool isMov = false;
8446 // MOV rd, rm, LSL #0 is actually a MOV instruction
8447 if (Shift == ARM_AM::lsl && Amount == 0) {
8448 isMov = true;
8449 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8450 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8451 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8452 // instead.
8453 if (inITBlock()) {
8454 isNarrow = false;
8456 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
8457 } else {
8458 switch(Shift) {
8459 default: llvm_unreachable("unexpected opcode!");
8460 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
8461 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
8462 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
8463 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
8464 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
8467 if (Amount == 32) Amount = 0;
8468 TmpInst.setOpcode(newOpc);
8469 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8470 if (isNarrow && !isMov)
8471 TmpInst.addOperand(MCOperand::createReg(
8472 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8473 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8474 if (newOpc != ARM::t2RRX && !isMov)
8475 TmpInst.addOperand(MCOperand::createImm(Amount));
8476 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8477 TmpInst.addOperand(Inst.getOperand(4));
8478 if (!isNarrow)
8479 TmpInst.addOperand(MCOperand::createReg(
8480 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8481 Inst = TmpInst;
8482 return true;
8484 // Handle the ARM mode MOV complex aliases.
8485 case ARM::ASRr:
8486 case ARM::LSRr:
8487 case ARM::LSLr:
8488 case ARM::RORr: {
8489 ARM_AM::ShiftOpc ShiftTy;
8490 switch(Inst.getOpcode()) {
8491 default: llvm_unreachable("unexpected opcode!");
8492 case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
8493 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
8494 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
8495 case ARM::RORr: ShiftTy = ARM_AM::ror; break;
8497 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
8498 MCInst TmpInst;
8499 TmpInst.setOpcode(ARM::MOVsr);
8500 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8501 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8502 TmpInst.addOperand(Inst.getOperand(2)); // Rm
8503 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8504 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8505 TmpInst.addOperand(Inst.getOperand(4));
8506 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8507 Inst = TmpInst;
8508 return true;
8510 case ARM::ASRi:
8511 case ARM::LSRi:
8512 case ARM::LSLi:
8513 case ARM::RORi: {
8514 ARM_AM::ShiftOpc ShiftTy;
8515 switch(Inst.getOpcode()) {
8516 default: llvm_unreachable("unexpected opcode!");
8517 case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8518 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8519 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8520 case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8522 // A shift by zero is a plain MOVr, not a MOVsi.
8523 unsigned Amt = Inst.getOperand(2).getImm();
8524 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8525 // A shift by 32 should be encoded as 0 when permitted
8526 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8527 Amt = 0;
8528 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8529 MCInst TmpInst;
8530 TmpInst.setOpcode(Opc);
8531 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8532 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8533 if (Opc == ARM::MOVsi)
8534 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8535 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8536 TmpInst.addOperand(Inst.getOperand(4));
8537 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8538 Inst = TmpInst;
8539 return true;
8541 case ARM::RRXi: {
8542 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8543 MCInst TmpInst;
8544 TmpInst.setOpcode(ARM::MOVsi);
8545 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8546 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8547 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8548 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8549 TmpInst.addOperand(Inst.getOperand(3));
8550 TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8551 Inst = TmpInst;
8552 return true;
8554 case ARM::t2LDMIA_UPD: {
8555 // If this is a load of a single register, then we should use
8556 // a post-indexed LDR instruction instead, per the ARM ARM.
8557 if (Inst.getNumOperands() != 5)
8558 return false;
8559 MCInst TmpInst;
8560 TmpInst.setOpcode(ARM::t2LDR_POST);
8561 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8562 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8563 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8564 TmpInst.addOperand(MCOperand::createImm(4));
8565 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8566 TmpInst.addOperand(Inst.getOperand(3));
8567 Inst = TmpInst;
8568 return true;
8570 case ARM::t2STMDB_UPD: {
8571 // If this is a store of a single register, then we should use
8572 // a pre-indexed STR instruction instead, per the ARM ARM.
8573 if (Inst.getNumOperands() != 5)
8574 return false;
8575 MCInst TmpInst;
8576 TmpInst.setOpcode(ARM::t2STR_PRE);
8577 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8578 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8579 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8580 TmpInst.addOperand(MCOperand::createImm(-4));
8581 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8582 TmpInst.addOperand(Inst.getOperand(3));
8583 Inst = TmpInst;
8584 return true;
8586 case ARM::LDMIA_UPD:
8587 // If this is a load of a single register via a 'pop', then we should use
8588 // a post-indexed LDR instruction instead, per the ARM ARM.
8589 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8590 Inst.getNumOperands() == 5) {
8591 MCInst TmpInst;
8592 TmpInst.setOpcode(ARM::LDR_POST_IMM);
8593 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8594 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8595 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8596 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
8597 TmpInst.addOperand(MCOperand::createImm(4));
8598 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8599 TmpInst.addOperand(Inst.getOperand(3));
8600 Inst = TmpInst;
8601 return true;
8603 break;
8604 case ARM::STMDB_UPD:
8605 // If this is a store of a single register via a 'push', then we should use
8606 // a pre-indexed STR instruction instead, per the ARM ARM.
8607 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8608 Inst.getNumOperands() == 5) {
8609 MCInst TmpInst;
8610 TmpInst.setOpcode(ARM::STR_PRE_IMM);
8611 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8612 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8613 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8614 TmpInst.addOperand(MCOperand::createImm(-4));
8615 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8616 TmpInst.addOperand(Inst.getOperand(3));
8617 Inst = TmpInst;
8619 break;
8620 case ARM::t2ADDri12:
8621 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8622 // mnemonic was used (not "addw"), encoding T3 is preferred.
8623 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8624 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8625 break;
8626 Inst.setOpcode(ARM::t2ADDri);
8627 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8628 break;
8629 case ARM::t2SUBri12:
8630 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8631 // mnemonic was used (not "subw"), encoding T3 is preferred.
8632 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8633 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8634 break;
8635 Inst.setOpcode(ARM::t2SUBri);
8636 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8637 break;
8638 case ARM::tADDi8:
8639 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8640 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8641 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8642 // to encoding T1 if <Rd> is omitted."
8643 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8644 Inst.setOpcode(ARM::tADDi3);
8645 return true;
8647 break;
8648 case ARM::tSUBi8:
8649 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8650 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8651 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8652 // to encoding T1 if <Rd> is omitted."
8653 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8654 Inst.setOpcode(ARM::tSUBi3);
8655 return true;
8657 break;
8658 case ARM::t2ADDri:
8659 case ARM::t2SUBri: {
8660 // If the destination and first source operand are the same, and
8661 // the flags are compatible with the current IT status, use encoding T2
8662 // instead of T3. For compatibility with the system 'as'. Make sure the
8663 // wide encoding wasn't explicit.
8664 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8665 !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8666 (Inst.getOperand(2).isImm() &&
8667 (unsigned)Inst.getOperand(2).getImm() > 255) ||
8668 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
8669 HasWideQualifier)
8670 break;
8671 MCInst TmpInst;
8672 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8673 ARM::tADDi8 : ARM::tSUBi8);
8674 TmpInst.addOperand(Inst.getOperand(0));
8675 TmpInst.addOperand(Inst.getOperand(5));
8676 TmpInst.addOperand(Inst.getOperand(0));
8677 TmpInst.addOperand(Inst.getOperand(2));
8678 TmpInst.addOperand(Inst.getOperand(3));
8679 TmpInst.addOperand(Inst.getOperand(4));
8680 Inst = TmpInst;
8681 return true;
8683 case ARM::t2ADDrr: {
8684 // If the destination and first source operand are the same, and
8685 // there's no setting of the flags, use encoding T2 instead of T3.
8686 // Note that this is only for ADD, not SUB. This mirrors the system
8687 // 'as' behaviour. Also take advantage of ADD being commutative.
8688 // Make sure the wide encoding wasn't explicit.
8689 bool Swap = false;
8690 auto DestReg = Inst.getOperand(0).getReg();
8691 bool Transform = DestReg == Inst.getOperand(1).getReg();
8692 if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
8693 Transform = true;
8694 Swap = true;
8696 if (!Transform ||
8697 Inst.getOperand(5).getReg() != 0 ||
8698 HasWideQualifier)
8699 break;
8700 MCInst TmpInst;
8701 TmpInst.setOpcode(ARM::tADDhirr);
8702 TmpInst.addOperand(Inst.getOperand(0));
8703 TmpInst.addOperand(Inst.getOperand(0));
8704 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
8705 TmpInst.addOperand(Inst.getOperand(3));
8706 TmpInst.addOperand(Inst.getOperand(4));
8707 Inst = TmpInst;
8708 return true;
8710 case ARM::tADDrSP:
8711 // If the non-SP source operand and the destination operand are not the
8712 // same, we need to use the 32-bit encoding if it's available.
8713 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8714 Inst.setOpcode(ARM::t2ADDrr);
8715 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8716 return true;
8718 break;
8719 case ARM::tB:
8720 // A Thumb conditional branch outside of an IT block is a tBcc.
8721 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8722 Inst.setOpcode(ARM::tBcc);
8723 return true;
8725 break;
8726 case ARM::t2B:
8727 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8728 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8729 Inst.setOpcode(ARM::t2Bcc);
8730 return true;
8732 break;
8733 case ARM::t2Bcc:
8734 // If the conditional is AL or we're in an IT block, we really want t2B.
8735 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8736 Inst.setOpcode(ARM::t2B);
8737 return true;
8739 break;
8740 case ARM::tBcc:
8741 // If the conditional is AL, we really want tB.
8742 if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8743 Inst.setOpcode(ARM::tB);
8744 return true;
8746 break;
8747 case ARM::tLDMIA: {
8748 // If the register list contains any high registers, or if the writeback
8749 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8750 // instead if we're in Thumb2. Otherwise, this should have generated
8751 // an error in validateInstruction().
8752 unsigned Rn = Inst.getOperand(0).getReg();
8753 bool hasWritebackToken =
8754 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8755 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8756 bool listContainsBase;
8757 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8758 (!listContainsBase && !hasWritebackToken) ||
8759 (listContainsBase && hasWritebackToken)) {
8760 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8761 assert(isThumbTwo());
8762 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8763 // If we're switching to the updating version, we need to insert
8764 // the writeback tied operand.
8765 if (hasWritebackToken)
8766 Inst.insert(Inst.begin(),
8767 MCOperand::createReg(Inst.getOperand(0).getReg()));
8768 return true;
8770 break;
8772 case ARM::tSTMIA_UPD: {
8773 // If the register list contains any high registers, we need to use
8774 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8775 // should have generated an error in validateInstruction().
8776 unsigned Rn = Inst.getOperand(0).getReg();
8777 bool listContainsBase;
8778 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8779 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8780 assert(isThumbTwo());
8781 Inst.setOpcode(ARM::t2STMIA_UPD);
8782 return true;
8784 break;
8786 case ARM::tPOP: {
8787 bool listContainsBase;
8788 // If the register list contains any high registers, we need to use
8789 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8790 // should have generated an error in validateInstruction().
8791 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8792 return false;
8793 assert(isThumbTwo());
8794 Inst.setOpcode(ARM::t2LDMIA_UPD);
8795 // Add the base register and writeback operands.
8796 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8797 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8798 return true;
8800 case ARM::tPUSH: {
8801 bool listContainsBase;
8802 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8803 return false;
8804 assert(isThumbTwo());
8805 Inst.setOpcode(ARM::t2STMDB_UPD);
8806 // Add the base register and writeback operands.
8807 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8808 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8809 return true;
8811 case ARM::t2MOVi:
8812 // If we can use the 16-bit encoding and the user didn't explicitly
8813 // request the 32-bit variant, transform it here.
8814 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8815 (Inst.getOperand(1).isImm() &&
8816 (unsigned)Inst.getOperand(1).getImm() <= 255) &&
8817 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8818 !HasWideQualifier) {
8819 // The operands aren't in the same order for tMOVi8...
8820 MCInst TmpInst;
8821 TmpInst.setOpcode(ARM::tMOVi8);
8822 TmpInst.addOperand(Inst.getOperand(0));
8823 TmpInst.addOperand(Inst.getOperand(4));
8824 TmpInst.addOperand(Inst.getOperand(1));
8825 TmpInst.addOperand(Inst.getOperand(2));
8826 TmpInst.addOperand(Inst.getOperand(3));
8827 Inst = TmpInst;
8828 return true;
8830 break;
8832 case ARM::t2MOVr:
8833 // If we can use the 16-bit encoding and the user didn't explicitly
8834 // request the 32-bit variant, transform it here.
8835 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8836 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8837 Inst.getOperand(2).getImm() == ARMCC::AL &&
8838 Inst.getOperand(4).getReg() == ARM::CPSR &&
8839 !HasWideQualifier) {
8840 // The operands aren't the same for tMOV[S]r... (no cc_out)
8841 MCInst TmpInst;
8842 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8843 TmpInst.addOperand(Inst.getOperand(0));
8844 TmpInst.addOperand(Inst.getOperand(1));
8845 TmpInst.addOperand(Inst.getOperand(2));
8846 TmpInst.addOperand(Inst.getOperand(3));
8847 Inst = TmpInst;
8848 return true;
8850 break;
8852 case ARM::t2SXTH:
8853 case ARM::t2SXTB:
8854 case ARM::t2UXTH:
8855 case ARM::t2UXTB:
8856 // If we can use the 16-bit encoding and the user didn't explicitly
8857 // request the 32-bit variant, transform it here.
8858 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8859 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8860 Inst.getOperand(2).getImm() == 0 &&
8861 !HasWideQualifier) {
8862 unsigned NewOpc;
8863 switch (Inst.getOpcode()) {
8864 default: llvm_unreachable("Illegal opcode!");
8865 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8866 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8867 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8868 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8870 // The operands aren't the same for thumb1 (no rotate operand).
8871 MCInst TmpInst;
8872 TmpInst.setOpcode(NewOpc);
8873 TmpInst.addOperand(Inst.getOperand(0));
8874 TmpInst.addOperand(Inst.getOperand(1));
8875 TmpInst.addOperand(Inst.getOperand(3));
8876 TmpInst.addOperand(Inst.getOperand(4));
8877 Inst = TmpInst;
8878 return true;
8880 break;
8882 case ARM::MOVsi: {
8883 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8884 // rrx shifts and asr/lsr of #32 is encoded as 0
8885 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
8886 return false;
8887 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8888 // Shifting by zero is accepted as a vanilla 'MOVr'
8889 MCInst TmpInst;
8890 TmpInst.setOpcode(ARM::MOVr);
8891 TmpInst.addOperand(Inst.getOperand(0));
8892 TmpInst.addOperand(Inst.getOperand(1));
8893 TmpInst.addOperand(Inst.getOperand(3));
8894 TmpInst.addOperand(Inst.getOperand(4));
8895 TmpInst.addOperand(Inst.getOperand(5));
8896 Inst = TmpInst;
8897 return true;
8899 return false;
8901 case ARM::ANDrsi:
8902 case ARM::ORRrsi:
8903 case ARM::EORrsi:
8904 case ARM::BICrsi:
8905 case ARM::SUBrsi:
8906 case ARM::ADDrsi: {
8907 unsigned newOpc;
8908 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
8909 if (SOpc == ARM_AM::rrx) return false;
8910 switch (Inst.getOpcode()) {
8911 default: llvm_unreachable("unexpected opcode!");
8912 case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8913 case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8914 case ARM::EORrsi: newOpc = ARM::EORrr; break;
8915 case ARM::BICrsi: newOpc = ARM::BICrr; break;
8916 case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8917 case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8919 // If the shift is by zero, use the non-shifted instruction definition.
8920 // The exception is for right shifts, where 0 == 32
8921 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8922 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8923 MCInst TmpInst;
8924 TmpInst.setOpcode(newOpc);
8925 TmpInst.addOperand(Inst.getOperand(0));
8926 TmpInst.addOperand(Inst.getOperand(1));
8927 TmpInst.addOperand(Inst.getOperand(2));
8928 TmpInst.addOperand(Inst.getOperand(4));
8929 TmpInst.addOperand(Inst.getOperand(5));
8930 TmpInst.addOperand(Inst.getOperand(6));
8931 Inst = TmpInst;
8932 return true;
8934 return false;
8936 case ARM::ITasm:
8937 case ARM::t2IT: {
8938 MCOperand &MO = Inst.getOperand(1);
8939 unsigned Mask = MO.getImm();
8940 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
8942 // Set up the IT block state according to the IT instruction we just
8943 // matched.
8944 assert(!inITBlock() && "nested IT blocks?!");
8945 startExplicitITBlock(Cond, Mask);
8946 MO.setImm(getITMaskEncoding());
8947 break;
8949 case ARM::t2LSLrr:
8950 case ARM::t2LSRrr:
8951 case ARM::t2ASRrr:
8952 case ARM::t2SBCrr:
8953 case ARM::t2RORrr:
8954 case ARM::t2BICrr:
8955 // Assemblers should use the narrow encodings of these instructions when permissible.
8956 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8957 isARMLowRegister(Inst.getOperand(2).getReg())) &&
8958 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8959 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8960 !HasWideQualifier) {
8961 unsigned NewOpc;
8962 switch (Inst.getOpcode()) {
8963 default: llvm_unreachable("unexpected opcode");
8964 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
8965 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
8966 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
8967 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
8968 case ARM::t2RORrr: NewOpc = ARM::tROR; break;
8969 case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
8971 MCInst TmpInst;
8972 TmpInst.setOpcode(NewOpc);
8973 TmpInst.addOperand(Inst.getOperand(0));
8974 TmpInst.addOperand(Inst.getOperand(5));
8975 TmpInst.addOperand(Inst.getOperand(1));
8976 TmpInst.addOperand(Inst.getOperand(2));
8977 TmpInst.addOperand(Inst.getOperand(3));
8978 TmpInst.addOperand(Inst.getOperand(4));
8979 Inst = TmpInst;
8980 return true;
8982 return false;
8984 case ARM::t2ANDrr:
8985 case ARM::t2EORrr:
8986 case ARM::t2ADCrr:
8987 case ARM::t2ORRrr:
8988 // Assemblers should use the narrow encodings of these instructions when permissible.
8989 // These instructions are special in that they are commutable, so shorter encodings
8990 // are available more often.
8991 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8992 isARMLowRegister(Inst.getOperand(2).getReg())) &&
8993 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
8994 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
8995 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8996 !HasWideQualifier) {
8997 unsigned NewOpc;
8998 switch (Inst.getOpcode()) {
8999 default: llvm_unreachable("unexpected opcode");
9000 case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
9001 case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
9002 case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
9003 case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
9005 MCInst TmpInst;
9006 TmpInst.setOpcode(NewOpc);
9007 TmpInst.addOperand(Inst.getOperand(0));
9008 TmpInst.addOperand(Inst.getOperand(5));
9009 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
9010 TmpInst.addOperand(Inst.getOperand(1));
9011 TmpInst.addOperand(Inst.getOperand(2));
9012 } else {
9013 TmpInst.addOperand(Inst.getOperand(2));
9014 TmpInst.addOperand(Inst.getOperand(1));
9016 TmpInst.addOperand(Inst.getOperand(3));
9017 TmpInst.addOperand(Inst.getOperand(4));
9018 Inst = TmpInst;
9019 return true;
9021 return false;
9023 return false;
9026 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
9027 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9028 // suffix depending on whether they're in an IT block or not.
9029 unsigned Opc = Inst.getOpcode();
9030 const MCInstrDesc &MCID = MII.get(Opc);
9031 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
9032 assert(MCID.hasOptionalDef() &&
9033 "optionally flag setting instruction missing optional def operand");
9034 assert(MCID.NumOperands == Inst.getNumOperands() &&
9035 "operand count mismatch!");
9036 // Find the optional-def operand (cc_out).
9037 unsigned OpNo;
9038 for (OpNo = 0;
9039 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
9040 ++OpNo)
9042 // If we're parsing Thumb1, reject it completely.
9043 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
9044 return Match_RequiresFlagSetting;
9045 // If we're parsing Thumb2, which form is legal depends on whether we're
9046 // in an IT block.
9047 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
9048 !inITBlock())
9049 return Match_RequiresITBlock;
9050 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
9051 inITBlock())
9052 return Match_RequiresNotITBlock;
9053 // LSL with zero immediate is not allowed in an IT block
9054 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
9055 return Match_RequiresNotITBlock;
9056 } else if (isThumbOne()) {
9057 // Some high-register supporting Thumb1 encodings only allow both registers
9058 // to be from r0-r7 when in Thumb2.
9059 if (Opc == ARM::tADDhirr && !hasV6MOps() &&
9060 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9061 isARMLowRegister(Inst.getOperand(2).getReg()))
9062 return Match_RequiresThumb2;
9063 // Others only require ARMv6 or later.
9064 else if (Opc == ARM::tMOVr && !hasV6Ops() &&
9065 isARMLowRegister(Inst.getOperand(0).getReg()) &&
9066 isARMLowRegister(Inst.getOperand(1).getReg()))
9067 return Match_RequiresV6;
9070 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9071 // than the loop below can handle, so it uses the GPRnopc register class and
9072 // we do SP handling here.
9073 if (Opc == ARM::t2MOVr && !hasV8Ops())
9075 // SP as both source and destination is not allowed
9076 if (Inst.getOperand(0).getReg() == ARM::SP &&
9077 Inst.getOperand(1).getReg() == ARM::SP)
9078 return Match_RequiresV8;
9079 // When flags-setting SP as either source or destination is not allowed
9080 if (Inst.getOperand(4).getReg() == ARM::CPSR &&
9081 (Inst.getOperand(0).getReg() == ARM::SP ||
9082 Inst.getOperand(1).getReg() == ARM::SP))
9083 return Match_RequiresV8;
9086 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9087 // ARMv8-A.
9088 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) &&
9089 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops()))
9090 return Match_InvalidOperand;
9092 for (unsigned I = 0; I < MCID.NumOperands; ++I)
9093 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
9094 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9095 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
9096 return Match_RequiresV8;
9097 else if (Inst.getOperand(I).getReg() == ARM::PC)
9098 return Match_InvalidOperand;
9101 return Match_Success;
9104 namespace llvm {
9106 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
9107 return true; // In an assembly source, no need to second-guess
9110 } // end namespace llvm
9112 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9113 // the last instruction in the block.
9114 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
9115 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9117 // All branch & call instructions terminate IT blocks with the exception of
9118 // SVC.
9119 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
9120 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
9121 return true;
9123 // Any arithmetic instruction which writes to the PC also terminates the IT
9124 // block.
9125 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) {
9126 MCOperand &Op = Inst.getOperand(OpIdx);
9127 if (Op.isReg() && Op.getReg() == ARM::PC)
9128 return true;
9131 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI))
9132 return true;
9134 // Instructions with variable operand lists, which write to the variable
9135 // operands. We only care about Thumb instructions here, as ARM instructions
9136 // obviously can't be in an IT block.
9137 switch (Inst.getOpcode()) {
9138 case ARM::tLDMIA:
9139 case ARM::t2LDMIA:
9140 case ARM::t2LDMIA_UPD:
9141 case ARM::t2LDMDB:
9142 case ARM::t2LDMDB_UPD:
9143 if (listContainsReg(Inst, 3, ARM::PC))
9144 return true;
9145 break;
9146 case ARM::tPOP:
9147 if (listContainsReg(Inst, 2, ARM::PC))
9148 return true;
9149 break;
9152 return false;
9155 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
9156 SmallVectorImpl<NearMissInfo> &NearMisses,
9157 bool MatchingInlineAsm,
9158 bool &EmitInITBlock,
9159 MCStreamer &Out) {
9160 // If we can't use an implicit IT block here, just match as normal.
9161 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9162 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9164 // Try to match the instruction in an extension of the current IT block (if
9165 // there is one).
9166 if (inImplicitITBlock()) {
9167 extendImplicitITBlock(ITState.Cond);
9168 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9169 Match_Success) {
9170 // The match succeded, but we still have to check that the instruction is
9171 // valid in this implicit IT block.
9172 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9173 if (MCID.isPredicable()) {
9174 ARMCC::CondCodes InstCond =
9175 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9176 .getImm();
9177 ARMCC::CondCodes ITCond = currentITCond();
9178 if (InstCond == ITCond) {
9179 EmitInITBlock = true;
9180 return Match_Success;
9181 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
9182 invertCurrentITCondition();
9183 EmitInITBlock = true;
9184 return Match_Success;
9188 rewindImplicitITPosition();
9191 // Finish the current IT block, and try to match outside any IT block.
9192 flushPendingInstructions(Out);
9193 unsigned PlainMatchResult =
9194 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9195 if (PlainMatchResult == Match_Success) {
9196 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9197 if (MCID.isPredicable()) {
9198 ARMCC::CondCodes InstCond =
9199 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9200 .getImm();
9201 // Some forms of the branch instruction have their own condition code
9202 // fields, so can be conditionally executed without an IT block.
9203 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
9204 EmitInITBlock = false;
9205 return Match_Success;
9207 if (InstCond == ARMCC::AL) {
9208 EmitInITBlock = false;
9209 return Match_Success;
9211 } else {
9212 EmitInITBlock = false;
9213 return Match_Success;
9217 // Try to match in a new IT block. The matcher doesn't check the actual
9218 // condition, so we create an IT block with a dummy condition, and fix it up
9219 // once we know the actual condition.
9220 startImplicitITBlock();
9221 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9222 Match_Success) {
9223 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9224 if (MCID.isPredicable()) {
9225 ITState.Cond =
9226 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9227 .getImm();
9228 EmitInITBlock = true;
9229 return Match_Success;
9232 discardImplicitITBlock();
9234 // If none of these succeed, return the error we got when trying to match
9235 // outside any IT blocks.
9236 EmitInITBlock = false;
9237 return PlainMatchResult;
9240 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS,
9241 unsigned VariantID = 0);
9243 static const char *getSubtargetFeatureName(uint64_t Val);
9244 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
9245 OperandVector &Operands,
9246 MCStreamer &Out, uint64_t &ErrorInfo,
9247 bool MatchingInlineAsm) {
9248 MCInst Inst;
9249 unsigned MatchResult;
9250 bool PendConditionalInstruction = false;
9252 SmallVector<NearMissInfo, 4> NearMisses;
9253 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
9254 PendConditionalInstruction, Out);
9256 switch (MatchResult) {
9257 case Match_Success:
9258 // Context sensitive operand constraints aren't handled by the matcher,
9259 // so check them here.
9260 if (validateInstruction(Inst, Operands)) {
9261 // Still progress the IT block, otherwise one wrong condition causes
9262 // nasty cascading errors.
9263 forwardITPosition();
9264 return true;
9267 { // processInstruction() updates inITBlock state, we need to save it away
9268 bool wasInITBlock = inITBlock();
9270 // Some instructions need post-processing to, for example, tweak which
9271 // encoding is selected. Loop on it while changes happen so the
9272 // individual transformations can chain off each other. E.g.,
9273 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9274 while (processInstruction(Inst, Operands, Out))
9277 // Only after the instruction is fully processed, we can validate it
9278 if (wasInITBlock && hasV8Ops() && isThumb() &&
9279 !isV8EligibleForIT(&Inst)) {
9280 Warning(IDLoc, "deprecated instruction in IT block");
9284 // Only move forward at the very end so that everything in validate
9285 // and process gets a consistent answer about whether we're in an IT
9286 // block.
9287 forwardITPosition();
9289 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9290 // doesn't actually encode.
9291 if (Inst.getOpcode() == ARM::ITasm)
9292 return false;
9294 Inst.setLoc(IDLoc);
9295 if (PendConditionalInstruction) {
9296 PendingConditionalInsts.push_back(Inst);
9297 if (isITBlockFull() || isITBlockTerminator(Inst))
9298 flushPendingInstructions(Out);
9299 } else {
9300 Out.EmitInstruction(Inst, getSTI());
9302 return false;
9303 case Match_NearMisses:
9304 ReportNearMisses(NearMisses, IDLoc, Operands);
9305 return true;
9306 case Match_MnemonicFail: {
9307 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
9308 std::string Suggestion = ARMMnemonicSpellCheck(
9309 ((ARMOperand &)*Operands[0]).getToken(), FBS);
9310 return Error(IDLoc, "invalid instruction" + Suggestion,
9311 ((ARMOperand &)*Operands[0]).getLocRange());
9315 llvm_unreachable("Implement any new match types added!");
9318 /// parseDirective parses the arm specific directives
9319 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
9320 const MCObjectFileInfo::Environment Format =
9321 getContext().getObjectFileInfo()->getObjectFileType();
9322 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9323 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
9325 StringRef IDVal = DirectiveID.getIdentifier();
9326 if (IDVal == ".word")
9327 parseLiteralValues(4, DirectiveID.getLoc());
9328 else if (IDVal == ".short" || IDVal == ".hword")
9329 parseLiteralValues(2, DirectiveID.getLoc());
9330 else if (IDVal == ".thumb")
9331 parseDirectiveThumb(DirectiveID.getLoc());
9332 else if (IDVal == ".arm")
9333 parseDirectiveARM(DirectiveID.getLoc());
9334 else if (IDVal == ".thumb_func")
9335 parseDirectiveThumbFunc(DirectiveID.getLoc());
9336 else if (IDVal == ".code")
9337 parseDirectiveCode(DirectiveID.getLoc());
9338 else if (IDVal == ".syntax")
9339 parseDirectiveSyntax(DirectiveID.getLoc());
9340 else if (IDVal == ".unreq")
9341 parseDirectiveUnreq(DirectiveID.getLoc());
9342 else if (IDVal == ".fnend")
9343 parseDirectiveFnEnd(DirectiveID.getLoc());
9344 else if (IDVal == ".cantunwind")
9345 parseDirectiveCantUnwind(DirectiveID.getLoc());
9346 else if (IDVal == ".personality")
9347 parseDirectivePersonality(DirectiveID.getLoc());
9348 else if (IDVal == ".handlerdata")
9349 parseDirectiveHandlerData(DirectiveID.getLoc());
9350 else if (IDVal == ".setfp")
9351 parseDirectiveSetFP(DirectiveID.getLoc());
9352 else if (IDVal == ".pad")
9353 parseDirectivePad(DirectiveID.getLoc());
9354 else if (IDVal == ".save")
9355 parseDirectiveRegSave(DirectiveID.getLoc(), false);
9356 else if (IDVal == ".vsave")
9357 parseDirectiveRegSave(DirectiveID.getLoc(), true);
9358 else if (IDVal == ".ltorg" || IDVal == ".pool")
9359 parseDirectiveLtorg(DirectiveID.getLoc());
9360 else if (IDVal == ".even")
9361 parseDirectiveEven(DirectiveID.getLoc());
9362 else if (IDVal == ".personalityindex")
9363 parseDirectivePersonalityIndex(DirectiveID.getLoc());
9364 else if (IDVal == ".unwind_raw")
9365 parseDirectiveUnwindRaw(DirectiveID.getLoc());
9366 else if (IDVal == ".movsp")
9367 parseDirectiveMovSP(DirectiveID.getLoc());
9368 else if (IDVal == ".arch_extension")
9369 parseDirectiveArchExtension(DirectiveID.getLoc());
9370 else if (IDVal == ".align")
9371 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
9372 else if (IDVal == ".thumb_set")
9373 parseDirectiveThumbSet(DirectiveID.getLoc());
9374 else if (IDVal == ".inst")
9375 parseDirectiveInst(DirectiveID.getLoc());
9376 else if (IDVal == ".inst.n")
9377 parseDirectiveInst(DirectiveID.getLoc(), 'n');
9378 else if (IDVal == ".inst.w")
9379 parseDirectiveInst(DirectiveID.getLoc(), 'w');
9380 else if (!IsMachO && !IsCOFF) {
9381 if (IDVal == ".arch")
9382 parseDirectiveArch(DirectiveID.getLoc());
9383 else if (IDVal == ".cpu")
9384 parseDirectiveCPU(DirectiveID.getLoc());
9385 else if (IDVal == ".eabi_attribute")
9386 parseDirectiveEabiAttr(DirectiveID.getLoc());
9387 else if (IDVal == ".fpu")
9388 parseDirectiveFPU(DirectiveID.getLoc());
9389 else if (IDVal == ".fnstart")
9390 parseDirectiveFnStart(DirectiveID.getLoc());
9391 else if (IDVal == ".object_arch")
9392 parseDirectiveObjectArch(DirectiveID.getLoc());
9393 else if (IDVal == ".tlsdescseq")
9394 parseDirectiveTLSDescSeq(DirectiveID.getLoc());
9395 else
9396 return true;
9397 } else
9398 return true;
9399 return false;
9402 /// parseLiteralValues
9403 /// ::= .hword expression [, expression]*
9404 /// ::= .short expression [, expression]*
9405 /// ::= .word expression [, expression]*
9406 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
9407 auto parseOne = [&]() -> bool {
9408 const MCExpr *Value;
9409 if (getParser().parseExpression(Value))
9410 return true;
9411 getParser().getStreamer().EmitValue(Value, Size, L);
9412 return false;
9414 return (parseMany(parseOne));
9417 /// parseDirectiveThumb
9418 /// ::= .thumb
9419 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
9420 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9421 check(!hasThumb(), L, "target does not support Thumb mode"))
9422 return true;
9424 if (!isThumb())
9425 SwitchMode();
9427 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9428 return false;
9431 /// parseDirectiveARM
9432 /// ::= .arm
9433 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
9434 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9435 check(!hasARM(), L, "target does not support ARM mode"))
9436 return true;
9438 if (isThumb())
9439 SwitchMode();
9440 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9441 return false;
9444 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
9445 // We need to flush the current implicit IT block on a label, because it is
9446 // not legal to branch into an IT block.
9447 flushPendingInstructions(getStreamer());
9448 if (NextSymbolIsThumb) {
9449 getParser().getStreamer().EmitThumbFunc(Symbol);
9450 NextSymbolIsThumb = false;
9454 /// parseDirectiveThumbFunc
9455 /// ::= .thumbfunc symbol_name
9456 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
9457 MCAsmParser &Parser = getParser();
9458 const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
9459 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9461 // Darwin asm has (optionally) function name after .thumb_func direction
9462 // ELF doesn't
9464 if (IsMachO) {
9465 if (Parser.getTok().is(AsmToken::Identifier) ||
9466 Parser.getTok().is(AsmToken::String)) {
9467 MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
9468 Parser.getTok().getIdentifier());
9469 getParser().getStreamer().EmitThumbFunc(Func);
9470 Parser.Lex();
9471 if (parseToken(AsmToken::EndOfStatement,
9472 "unexpected token in '.thumb_func' directive"))
9473 return true;
9474 return false;
9478 if (parseToken(AsmToken::EndOfStatement,
9479 "unexpected token in '.thumb_func' directive"))
9480 return true;
9482 NextSymbolIsThumb = true;
9483 return false;
9486 /// parseDirectiveSyntax
9487 /// ::= .syntax unified | divided
9488 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
9489 MCAsmParser &Parser = getParser();
9490 const AsmToken &Tok = Parser.getTok();
9491 if (Tok.isNot(AsmToken::Identifier)) {
9492 Error(L, "unexpected token in .syntax directive");
9493 return false;
9496 StringRef Mode = Tok.getString();
9497 Parser.Lex();
9498 if (check(Mode == "divided" || Mode == "DIVIDED", L,
9499 "'.syntax divided' arm assembly not supported") ||
9500 check(Mode != "unified" && Mode != "UNIFIED", L,
9501 "unrecognized syntax mode in .syntax directive") ||
9502 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9503 return true;
9505 // TODO tell the MC streamer the mode
9506 // getParser().getStreamer().Emit???();
9507 return false;
9510 /// parseDirectiveCode
9511 /// ::= .code 16 | 32
9512 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
9513 MCAsmParser &Parser = getParser();
9514 const AsmToken &Tok = Parser.getTok();
9515 if (Tok.isNot(AsmToken::Integer))
9516 return Error(L, "unexpected token in .code directive");
9517 int64_t Val = Parser.getTok().getIntVal();
9518 if (Val != 16 && Val != 32) {
9519 Error(L, "invalid operand to .code directive");
9520 return false;
9522 Parser.Lex();
9524 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9525 return true;
9527 if (Val == 16) {
9528 if (!hasThumb())
9529 return Error(L, "target does not support Thumb mode");
9531 if (!isThumb())
9532 SwitchMode();
9533 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9534 } else {
9535 if (!hasARM())
9536 return Error(L, "target does not support ARM mode");
9538 if (isThumb())
9539 SwitchMode();
9540 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9543 return false;
9546 /// parseDirectiveReq
9547 /// ::= name .req registername
9548 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
9549 MCAsmParser &Parser = getParser();
9550 Parser.Lex(); // Eat the '.req' token.
9551 unsigned Reg;
9552 SMLoc SRegLoc, ERegLoc;
9553 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
9554 "register name expected") ||
9555 parseToken(AsmToken::EndOfStatement,
9556 "unexpected input in .req directive."))
9557 return true;
9559 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
9560 return Error(SRegLoc,
9561 "redefinition of '" + Name + "' does not match original.");
9563 return false;
9566 /// parseDirectiveUneq
9567 /// ::= .unreq registername
9568 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9569 MCAsmParser &Parser = getParser();
9570 if (Parser.getTok().isNot(AsmToken::Identifier))
9571 return Error(L, "unexpected input in .unreq directive.");
9572 RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9573 Parser.Lex(); // Eat the identifier.
9574 if (parseToken(AsmToken::EndOfStatement,
9575 "unexpected input in '.unreq' directive"))
9576 return true;
9577 return false;
9580 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9581 // before, if supported by the new target, or emit mapping symbols for the mode
9582 // switch.
9583 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
9584 if (WasThumb != isThumb()) {
9585 if (WasThumb && hasThumb()) {
9586 // Stay in Thumb mode
9587 SwitchMode();
9588 } else if (!WasThumb && hasARM()) {
9589 // Stay in ARM mode
9590 SwitchMode();
9591 } else {
9592 // Mode switch forced, because the new arch doesn't support the old mode.
9593 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9594 : MCAF_Code32);
9595 // Warn about the implcit mode switch. GAS does not switch modes here,
9596 // but instead stays in the old mode, reporting an error on any following
9597 // instructions as the mode does not exist on the target.
9598 Warning(Loc, Twine("new target does not support ") +
9599 (WasThumb ? "thumb" : "arm") + " mode, switching to " +
9600 (!WasThumb ? "thumb" : "arm") + " mode");
9605 /// parseDirectiveArch
9606 /// ::= .arch token
9607 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9608 StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9609 ARM::ArchKind ID = ARM::parseArch(Arch);
9611 if (ID == ARM::ArchKind::INVALID)
9612 return Error(L, "Unknown arch name");
9614 bool WasThumb = isThumb();
9615 Triple T;
9616 MCSubtargetInfo &STI = copySTI();
9617 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
9618 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9619 FixModeAfterArchChange(WasThumb, L);
9621 getTargetStreamer().emitArch(ID);
9622 return false;
9625 /// parseDirectiveEabiAttr
9626 /// ::= .eabi_attribute int, int [, "str"]
9627 /// ::= .eabi_attribute Tag_name, int [, "str"]
9628 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9629 MCAsmParser &Parser = getParser();
9630 int64_t Tag;
9631 SMLoc TagLoc;
9632 TagLoc = Parser.getTok().getLoc();
9633 if (Parser.getTok().is(AsmToken::Identifier)) {
9634 StringRef Name = Parser.getTok().getIdentifier();
9635 Tag = ARMBuildAttrs::AttrTypeFromString(Name);
9636 if (Tag == -1) {
9637 Error(TagLoc, "attribute name not recognised: " + Name);
9638 return false;
9640 Parser.Lex();
9641 } else {
9642 const MCExpr *AttrExpr;
9644 TagLoc = Parser.getTok().getLoc();
9645 if (Parser.parseExpression(AttrExpr))
9646 return true;
9648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9649 if (check(!CE, TagLoc, "expected numeric constant"))
9650 return true;
9652 Tag = CE->getValue();
9655 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9656 return true;
9658 StringRef StringValue = "";
9659 bool IsStringValue = false;
9661 int64_t IntegerValue = 0;
9662 bool IsIntegerValue = false;
9664 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
9665 IsStringValue = true;
9666 else if (Tag == ARMBuildAttrs::compatibility) {
9667 IsStringValue = true;
9668 IsIntegerValue = true;
9669 } else if (Tag < 32 || Tag % 2 == 0)
9670 IsIntegerValue = true;
9671 else if (Tag % 2 == 1)
9672 IsStringValue = true;
9673 else
9674 llvm_unreachable("invalid tag type");
9676 if (IsIntegerValue) {
9677 const MCExpr *ValueExpr;
9678 SMLoc ValueExprLoc = Parser.getTok().getLoc();
9679 if (Parser.parseExpression(ValueExpr))
9680 return true;
9682 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9683 if (!CE)
9684 return Error(ValueExprLoc, "expected numeric constant");
9685 IntegerValue = CE->getValue();
9688 if (Tag == ARMBuildAttrs::compatibility) {
9689 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9690 return true;
9693 if (IsStringValue) {
9694 if (Parser.getTok().isNot(AsmToken::String))
9695 return Error(Parser.getTok().getLoc(), "bad string constant");
9697 StringValue = Parser.getTok().getStringContents();
9698 Parser.Lex();
9701 if (Parser.parseToken(AsmToken::EndOfStatement,
9702 "unexpected token in '.eabi_attribute' directive"))
9703 return true;
9705 if (IsIntegerValue && IsStringValue) {
9706 assert(Tag == ARMBuildAttrs::compatibility);
9707 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9708 } else if (IsIntegerValue)
9709 getTargetStreamer().emitAttribute(Tag, IntegerValue);
9710 else if (IsStringValue)
9711 getTargetStreamer().emitTextAttribute(Tag, StringValue);
9712 return false;
9715 /// parseDirectiveCPU
9716 /// ::= .cpu str
9717 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9718 StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9719 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9721 // FIXME: This is using table-gen data, but should be moved to
9722 // ARMTargetParser once that is table-gen'd.
9723 if (!getSTI().isCPUStringValid(CPU))
9724 return Error(L, "Unknown CPU name");
9726 bool WasThumb = isThumb();
9727 MCSubtargetInfo &STI = copySTI();
9728 STI.setDefaultFeatures(CPU, "");
9729 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9730 FixModeAfterArchChange(WasThumb, L);
9732 return false;
9735 /// parseDirectiveFPU
9736 /// ::= .fpu str
9737 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9738 SMLoc FPUNameLoc = getTok().getLoc();
9739 StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9741 unsigned ID = ARM::parseFPU(FPU);
9742 std::vector<StringRef> Features;
9743 if (!ARM::getFPUFeatures(ID, Features))
9744 return Error(FPUNameLoc, "Unknown FPU name");
9746 MCSubtargetInfo &STI = copySTI();
9747 for (auto Feature : Features)
9748 STI.ApplyFeatureFlag(Feature);
9749 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9751 getTargetStreamer().emitFPU(ID);
9752 return false;
9755 /// parseDirectiveFnStart
9756 /// ::= .fnstart
9757 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9758 if (parseToken(AsmToken::EndOfStatement,
9759 "unexpected token in '.fnstart' directive"))
9760 return true;
9762 if (UC.hasFnStart()) {
9763 Error(L, ".fnstart starts before the end of previous one");
9764 UC.emitFnStartLocNotes();
9765 return true;
9768 // Reset the unwind directives parser state
9769 UC.reset();
9771 getTargetStreamer().emitFnStart();
9773 UC.recordFnStart(L);
9774 return false;
9777 /// parseDirectiveFnEnd
9778 /// ::= .fnend
9779 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9780 if (parseToken(AsmToken::EndOfStatement,
9781 "unexpected token in '.fnend' directive"))
9782 return true;
9783 // Check the ordering of unwind directives
9784 if (!UC.hasFnStart())
9785 return Error(L, ".fnstart must precede .fnend directive");
9787 // Reset the unwind directives parser state
9788 getTargetStreamer().emitFnEnd();
9790 UC.reset();
9791 return false;
9794 /// parseDirectiveCantUnwind
9795 /// ::= .cantunwind
9796 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9797 if (parseToken(AsmToken::EndOfStatement,
9798 "unexpected token in '.cantunwind' directive"))
9799 return true;
9801 UC.recordCantUnwind(L);
9802 // Check the ordering of unwind directives
9803 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
9804 return true;
9806 if (UC.hasHandlerData()) {
9807 Error(L, ".cantunwind can't be used with .handlerdata directive");
9808 UC.emitHandlerDataLocNotes();
9809 return true;
9811 if (UC.hasPersonality()) {
9812 Error(L, ".cantunwind can't be used with .personality directive");
9813 UC.emitPersonalityLocNotes();
9814 return true;
9817 getTargetStreamer().emitCantUnwind();
9818 return false;
9821 /// parseDirectivePersonality
9822 /// ::= .personality name
9823 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9824 MCAsmParser &Parser = getParser();
9825 bool HasExistingPersonality = UC.hasPersonality();
9827 // Parse the name of the personality routine
9828 if (Parser.getTok().isNot(AsmToken::Identifier))
9829 return Error(L, "unexpected input in .personality directive.");
9830 StringRef Name(Parser.getTok().getIdentifier());
9831 Parser.Lex();
9833 if (parseToken(AsmToken::EndOfStatement,
9834 "unexpected token in '.personality' directive"))
9835 return true;
9837 UC.recordPersonality(L);
9839 // Check the ordering of unwind directives
9840 if (!UC.hasFnStart())
9841 return Error(L, ".fnstart must precede .personality directive");
9842 if (UC.cantUnwind()) {
9843 Error(L, ".personality can't be used with .cantunwind directive");
9844 UC.emitCantUnwindLocNotes();
9845 return true;
9847 if (UC.hasHandlerData()) {
9848 Error(L, ".personality must precede .handlerdata directive");
9849 UC.emitHandlerDataLocNotes();
9850 return true;
9852 if (HasExistingPersonality) {
9853 Error(L, "multiple personality directives");
9854 UC.emitPersonalityLocNotes();
9855 return true;
9858 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
9859 getTargetStreamer().emitPersonality(PR);
9860 return false;
9863 /// parseDirectiveHandlerData
9864 /// ::= .handlerdata
9865 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9866 if (parseToken(AsmToken::EndOfStatement,
9867 "unexpected token in '.handlerdata' directive"))
9868 return true;
9870 UC.recordHandlerData(L);
9871 // Check the ordering of unwind directives
9872 if (!UC.hasFnStart())
9873 return Error(L, ".fnstart must precede .personality directive");
9874 if (UC.cantUnwind()) {
9875 Error(L, ".handlerdata can't be used with .cantunwind directive");
9876 UC.emitCantUnwindLocNotes();
9877 return true;
9880 getTargetStreamer().emitHandlerData();
9881 return false;
9884 /// parseDirectiveSetFP
9885 /// ::= .setfp fpreg, spreg [, offset]
9886 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9887 MCAsmParser &Parser = getParser();
9888 // Check the ordering of unwind directives
9889 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
9890 check(UC.hasHandlerData(), L,
9891 ".setfp must precede .handlerdata directive"))
9892 return true;
9894 // Parse fpreg
9895 SMLoc FPRegLoc = Parser.getTok().getLoc();
9896 int FPReg = tryParseRegister();
9898 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
9899 Parser.parseToken(AsmToken::Comma, "comma expected"))
9900 return true;
9902 // Parse spreg
9903 SMLoc SPRegLoc = Parser.getTok().getLoc();
9904 int SPReg = tryParseRegister();
9905 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
9906 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
9907 "register should be either $sp or the latest fp register"))
9908 return true;
9910 // Update the frame pointer register
9911 UC.saveFPReg(FPReg);
9913 // Parse offset
9914 int64_t Offset = 0;
9915 if (Parser.parseOptionalToken(AsmToken::Comma)) {
9916 if (Parser.getTok().isNot(AsmToken::Hash) &&
9917 Parser.getTok().isNot(AsmToken::Dollar))
9918 return Error(Parser.getTok().getLoc(), "'#' expected");
9919 Parser.Lex(); // skip hash token.
9921 const MCExpr *OffsetExpr;
9922 SMLoc ExLoc = Parser.getTok().getLoc();
9923 SMLoc EndLoc;
9924 if (getParser().parseExpression(OffsetExpr, EndLoc))
9925 return Error(ExLoc, "malformed setfp offset");
9926 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9927 if (check(!CE, ExLoc, "setfp offset must be an immediate"))
9928 return true;
9929 Offset = CE->getValue();
9932 if (Parser.parseToken(AsmToken::EndOfStatement))
9933 return true;
9935 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9936 static_cast<unsigned>(SPReg), Offset);
9937 return false;
9940 /// parseDirective
9941 /// ::= .pad offset
9942 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9943 MCAsmParser &Parser = getParser();
9944 // Check the ordering of unwind directives
9945 if (!UC.hasFnStart())
9946 return Error(L, ".fnstart must precede .pad directive");
9947 if (UC.hasHandlerData())
9948 return Error(L, ".pad must precede .handlerdata directive");
9950 // Parse the offset
9951 if (Parser.getTok().isNot(AsmToken::Hash) &&
9952 Parser.getTok().isNot(AsmToken::Dollar))
9953 return Error(Parser.getTok().getLoc(), "'#' expected");
9954 Parser.Lex(); // skip hash token.
9956 const MCExpr *OffsetExpr;
9957 SMLoc ExLoc = Parser.getTok().getLoc();
9958 SMLoc EndLoc;
9959 if (getParser().parseExpression(OffsetExpr, EndLoc))
9960 return Error(ExLoc, "malformed pad offset");
9961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9962 if (!CE)
9963 return Error(ExLoc, "pad offset must be an immediate");
9965 if (parseToken(AsmToken::EndOfStatement,
9966 "unexpected token in '.pad' directive"))
9967 return true;
9969 getTargetStreamer().emitPad(CE->getValue());
9970 return false;
9973 /// parseDirectiveRegSave
9974 /// ::= .save { registers }
9975 /// ::= .vsave { registers }
9976 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
9977 // Check the ordering of unwind directives
9978 if (!UC.hasFnStart())
9979 return Error(L, ".fnstart must precede .save or .vsave directives");
9980 if (UC.hasHandlerData())
9981 return Error(L, ".save or .vsave must precede .handlerdata directive");
9983 // RAII object to make sure parsed operands are deleted.
9984 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
9986 // Parse the register list
9987 if (parseRegisterList(Operands) ||
9988 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9989 return true;
9990 ARMOperand &Op = (ARMOperand &)*Operands[0];
9991 if (!IsVector && !Op.isRegList())
9992 return Error(L, ".save expects GPR registers");
9993 if (IsVector && !Op.isDPRRegList())
9994 return Error(L, ".vsave expects DPR registers");
9996 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
9997 return false;
10000 /// parseDirectiveInst
10001 /// ::= .inst opcode [, ...]
10002 /// ::= .inst.n opcode [, ...]
10003 /// ::= .inst.w opcode [, ...]
10004 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
10005 int Width = 4;
10007 if (isThumb()) {
10008 switch (Suffix) {
10009 case 'n':
10010 Width = 2;
10011 break;
10012 case 'w':
10013 break;
10014 default:
10015 return Error(Loc, "cannot determine Thumb instruction size, "
10016 "use inst.n/inst.w instead");
10018 } else {
10019 if (Suffix)
10020 return Error(Loc, "width suffixes are invalid in ARM mode");
10023 auto parseOne = [&]() -> bool {
10024 const MCExpr *Expr;
10025 if (getParser().parseExpression(Expr))
10026 return true;
10027 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
10028 if (!Value) {
10029 return Error(Loc, "expected constant expression");
10032 switch (Width) {
10033 case 2:
10034 if (Value->getValue() > 0xffff)
10035 return Error(Loc, "inst.n operand is too big, use inst.w instead");
10036 break;
10037 case 4:
10038 if (Value->getValue() > 0xffffffff)
10039 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
10040 " operand is too big");
10041 break;
10042 default:
10043 llvm_unreachable("only supported widths are 2 and 4");
10046 getTargetStreamer().emitInst(Value->getValue(), Suffix);
10047 return false;
10050 if (parseOptionalToken(AsmToken::EndOfStatement))
10051 return Error(Loc, "expected expression following directive");
10052 if (parseMany(parseOne))
10053 return true;
10054 return false;
10057 /// parseDirectiveLtorg
10058 /// ::= .ltorg | .pool
10059 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
10060 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10061 return true;
10062 getTargetStreamer().emitCurrentConstantPool();
10063 return false;
10066 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
10067 const MCSection *Section = getStreamer().getCurrentSectionOnly();
10069 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10070 return true;
10072 if (!Section) {
10073 getStreamer().InitSections(false);
10074 Section = getStreamer().getCurrentSectionOnly();
10077 assert(Section && "must have section to emit alignment");
10078 if (Section->UseCodeAlign())
10079 getStreamer().EmitCodeAlignment(2);
10080 else
10081 getStreamer().EmitValueToAlignment(2);
10083 return false;
10086 /// parseDirectivePersonalityIndex
10087 /// ::= .personalityindex index
10088 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
10089 MCAsmParser &Parser = getParser();
10090 bool HasExistingPersonality = UC.hasPersonality();
10092 const MCExpr *IndexExpression;
10093 SMLoc IndexLoc = Parser.getTok().getLoc();
10094 if (Parser.parseExpression(IndexExpression) ||
10095 parseToken(AsmToken::EndOfStatement,
10096 "unexpected token in '.personalityindex' directive")) {
10097 return true;
10100 UC.recordPersonalityIndex(L);
10102 if (!UC.hasFnStart()) {
10103 return Error(L, ".fnstart must precede .personalityindex directive");
10105 if (UC.cantUnwind()) {
10106 Error(L, ".personalityindex cannot be used with .cantunwind");
10107 UC.emitCantUnwindLocNotes();
10108 return true;
10110 if (UC.hasHandlerData()) {
10111 Error(L, ".personalityindex must precede .handlerdata directive");
10112 UC.emitHandlerDataLocNotes();
10113 return true;
10115 if (HasExistingPersonality) {
10116 Error(L, "multiple personality directives");
10117 UC.emitPersonalityLocNotes();
10118 return true;
10121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
10122 if (!CE)
10123 return Error(IndexLoc, "index must be a constant number");
10124 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
10125 return Error(IndexLoc,
10126 "personality routine index should be in range [0-3]");
10128 getTargetStreamer().emitPersonalityIndex(CE->getValue());
10129 return false;
10132 /// parseDirectiveUnwindRaw
10133 /// ::= .unwind_raw offset, opcode [, opcode...]
10134 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
10135 MCAsmParser &Parser = getParser();
10136 int64_t StackOffset;
10137 const MCExpr *OffsetExpr;
10138 SMLoc OffsetLoc = getLexer().getLoc();
10140 if (!UC.hasFnStart())
10141 return Error(L, ".fnstart must precede .unwind_raw directives");
10142 if (getParser().parseExpression(OffsetExpr))
10143 return Error(OffsetLoc, "expected expression");
10145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10146 if (!CE)
10147 return Error(OffsetLoc, "offset must be a constant");
10149 StackOffset = CE->getValue();
10151 if (Parser.parseToken(AsmToken::Comma, "expected comma"))
10152 return true;
10154 SmallVector<uint8_t, 16> Opcodes;
10156 auto parseOne = [&]() -> bool {
10157 const MCExpr *OE;
10158 SMLoc OpcodeLoc = getLexer().getLoc();
10159 if (check(getLexer().is(AsmToken::EndOfStatement) ||
10160 Parser.parseExpression(OE),
10161 OpcodeLoc, "expected opcode expression"))
10162 return true;
10163 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
10164 if (!OC)
10165 return Error(OpcodeLoc, "opcode value must be a constant");
10166 const int64_t Opcode = OC->getValue();
10167 if (Opcode & ~0xff)
10168 return Error(OpcodeLoc, "invalid opcode");
10169 Opcodes.push_back(uint8_t(Opcode));
10170 return false;
10173 // Must have at least 1 element
10174 SMLoc OpcodeLoc = getLexer().getLoc();
10175 if (parseOptionalToken(AsmToken::EndOfStatement))
10176 return Error(OpcodeLoc, "expected opcode expression");
10177 if (parseMany(parseOne))
10178 return true;
10180 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
10181 return false;
10184 /// parseDirectiveTLSDescSeq
10185 /// ::= .tlsdescseq tls-variable
10186 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
10187 MCAsmParser &Parser = getParser();
10189 if (getLexer().isNot(AsmToken::Identifier))
10190 return TokError("expected variable after '.tlsdescseq' directive");
10192 const MCSymbolRefExpr *SRE =
10193 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
10194 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
10195 Lex();
10197 if (parseToken(AsmToken::EndOfStatement,
10198 "unexpected token in '.tlsdescseq' directive"))
10199 return true;
10201 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
10202 return false;
10205 /// parseDirectiveMovSP
10206 /// ::= .movsp reg [, #offset]
10207 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
10208 MCAsmParser &Parser = getParser();
10209 if (!UC.hasFnStart())
10210 return Error(L, ".fnstart must precede .movsp directives");
10211 if (UC.getFPReg() != ARM::SP)
10212 return Error(L, "unexpected .movsp directive");
10214 SMLoc SPRegLoc = Parser.getTok().getLoc();
10215 int SPReg = tryParseRegister();
10216 if (SPReg == -1)
10217 return Error(SPRegLoc, "register expected");
10218 if (SPReg == ARM::SP || SPReg == ARM::PC)
10219 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
10221 int64_t Offset = 0;
10222 if (Parser.parseOptionalToken(AsmToken::Comma)) {
10223 if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
10224 return true;
10226 const MCExpr *OffsetExpr;
10227 SMLoc OffsetLoc = Parser.getTok().getLoc();
10229 if (Parser.parseExpression(OffsetExpr))
10230 return Error(OffsetLoc, "malformed offset expression");
10232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10233 if (!CE)
10234 return Error(OffsetLoc, "offset must be an immediate constant");
10236 Offset = CE->getValue();
10239 if (parseToken(AsmToken::EndOfStatement,
10240 "unexpected token in '.movsp' directive"))
10241 return true;
10243 getTargetStreamer().emitMovSP(SPReg, Offset);
10244 UC.saveFPReg(SPReg);
10246 return false;
10249 /// parseDirectiveObjectArch
10250 /// ::= .object_arch name
10251 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
10252 MCAsmParser &Parser = getParser();
10253 if (getLexer().isNot(AsmToken::Identifier))
10254 return Error(getLexer().getLoc(), "unexpected token");
10256 StringRef Arch = Parser.getTok().getString();
10257 SMLoc ArchLoc = Parser.getTok().getLoc();
10258 Lex();
10260 ARM::ArchKind ID = ARM::parseArch(Arch);
10262 if (ID == ARM::ArchKind::INVALID)
10263 return Error(ArchLoc, "unknown architecture '" + Arch + "'");
10264 if (parseToken(AsmToken::EndOfStatement))
10265 return true;
10267 getTargetStreamer().emitObjectArch(ID);
10268 return false;
10271 /// parseDirectiveAlign
10272 /// ::= .align
10273 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
10274 // NOTE: if this is not the end of the statement, fall back to the target
10275 // agnostic handling for this directive which will correctly handle this.
10276 if (parseOptionalToken(AsmToken::EndOfStatement)) {
10277 // '.align' is target specifically handled to mean 2**2 byte alignment.
10278 const MCSection *Section = getStreamer().getCurrentSectionOnly();
10279 assert(Section && "must have section to emit alignment");
10280 if (Section->UseCodeAlign())
10281 getStreamer().EmitCodeAlignment(4, 0);
10282 else
10283 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10284 return false;
10286 return true;
10289 /// parseDirectiveThumbSet
10290 /// ::= .thumb_set name, value
10291 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
10292 MCAsmParser &Parser = getParser();
10294 StringRef Name;
10295 if (check(Parser.parseIdentifier(Name),
10296 "expected identifier after '.thumb_set'") ||
10297 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
10298 return true;
10300 MCSymbol *Sym;
10301 const MCExpr *Value;
10302 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
10303 Parser, Sym, Value))
10304 return true;
10306 getTargetStreamer().emitThumbSet(Sym, Value);
10307 return false;
10310 /// Force static initialization.
10311 extern "C" void LLVMInitializeARMAsmParser() {
10312 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
10313 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
10314 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
10315 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
10318 #define GET_REGISTER_MATCHER
10319 #define GET_SUBTARGET_FEATURE_NAME
10320 #define GET_MATCHER_IMPLEMENTATION
10321 #define GET_MNEMONIC_SPELL_CHECKER
10322 #include "ARMGenAsmMatcher.inc"
10324 // Some diagnostics need to vary with subtarget features, so they are handled
10325 // here. For example, the DPR class has either 16 or 32 registers, depending
10326 // on the FPU available.
10327 const char *
10328 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
10329 switch (MatchError) {
10330 // rGPR contains sp starting with ARMv8.
10331 case Match_rGPR:
10332 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10333 : "operand must be a register in range [r0, r12] or r14";
10334 // DPR contains 16 registers for some FPUs, and 32 for others.
10335 case Match_DPR:
10336 return hasD16() ? "operand must be a register in range [d0, d15]"
10337 : "operand must be a register in range [d0, d31]";
10338 case Match_DPR_RegList:
10339 return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10340 : "operand must be a list of registers in range [d0, d31]";
10342 // For all other diags, use the static string from tablegen.
10343 default:
10344 return getMatchKindDiag(MatchError);
10348 // Process the list of near-misses, throwing away ones we don't want to report
10349 // to the user, and converting the rest to a source location and string that
10350 // should be reported.
10351 void
10352 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
10353 SmallVectorImpl<NearMissMessage> &NearMissesOut,
10354 SMLoc IDLoc, OperandVector &Operands) {
10355 // TODO: If operand didn't match, sub in a dummy one and run target
10356 // predicate, so that we can avoid reporting near-misses that are invalid?
10357 // TODO: Many operand types dont have SuperClasses set, so we report
10358 // redundant ones.
10359 // TODO: Some operands are superclasses of registers (e.g.
10360 // MCK_RegShiftedImm), we don't have any way to represent that currently.
10361 // TODO: This is not all ARM-specific, can some of it be factored out?
10363 // Record some information about near-misses that we have already seen, so
10364 // that we can avoid reporting redundant ones. For example, if there are
10365 // variants of an instruction that take 8- and 16-bit immediates, we want
10366 // to only report the widest one.
10367 std::multimap<unsigned, unsigned> OperandMissesSeen;
10368 SmallSet<uint64_t, 4> FeatureMissesSeen;
10369 bool ReportedTooFewOperands = false;
10371 // Process the near-misses in reverse order, so that we see more general ones
10372 // first, and so can avoid emitting more specific ones.
10373 for (NearMissInfo &I : reverse(NearMissesIn)) {
10374 switch (I.getKind()) {
10375 case NearMissInfo::NearMissOperand: {
10376 SMLoc OperandLoc =
10377 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
10378 const char *OperandDiag =
10379 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
10381 // If we have already emitted a message for a superclass, don't also report
10382 // the sub-class. We consider all operand classes that we don't have a
10383 // specialised diagnostic for to be equal for the propose of this check,
10384 // so that we don't report the generic error multiple times on the same
10385 // operand.
10386 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
10387 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
10388 if (std::any_of(PrevReports.first, PrevReports.second,
10389 [DupCheckMatchClass](
10390 const std::pair<unsigned, unsigned> Pair) {
10391 if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
10392 return Pair.second == DupCheckMatchClass;
10393 else
10394 return isSubclass((MatchClassKind)DupCheckMatchClass,
10395 (MatchClassKind)Pair.second);
10397 break;
10398 OperandMissesSeen.insert(
10399 std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
10401 NearMissMessage Message;
10402 Message.Loc = OperandLoc;
10403 if (OperandDiag) {
10404 Message.Message = OperandDiag;
10405 } else if (I.getOperandClass() == InvalidMatchClass) {
10406 Message.Message = "too many operands for instruction";
10407 } else {
10408 Message.Message = "invalid operand for instruction";
10409 LLVM_DEBUG(
10410 dbgs() << "Missing diagnostic string for operand class "
10411 << getMatchClassName((MatchClassKind)I.getOperandClass())
10412 << I.getOperandClass() << ", error " << I.getOperandError()
10413 << ", opcode " << MII.getName(I.getOpcode()) << "\n");
10415 NearMissesOut.emplace_back(Message);
10416 break;
10418 case NearMissInfo::NearMissFeature: {
10419 uint64_t MissingFeatures = I.getFeatures();
10420 // Don't report the same set of features twice.
10421 if (FeatureMissesSeen.count(MissingFeatures))
10422 break;
10423 FeatureMissesSeen.insert(MissingFeatures);
10425 // Special case: don't report a feature set which includes arm-mode for
10426 // targets that don't have ARM mode.
10427 if ((MissingFeatures & Feature_IsARM) && !hasARM())
10428 break;
10429 // Don't report any near-misses that both require switching instruction
10430 // set, and adding other subtarget features.
10431 if (isThumb() && (MissingFeatures & Feature_IsARM) &&
10432 (MissingFeatures & ~Feature_IsARM))
10433 break;
10434 if (!isThumb() && (MissingFeatures & Feature_IsThumb) &&
10435 (MissingFeatures & ~Feature_IsThumb))
10436 break;
10437 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) &&
10438 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb)))
10439 break;
10440 if (isMClass() && (MissingFeatures & Feature_HasNEON))
10441 break;
10443 NearMissMessage Message;
10444 Message.Loc = IDLoc;
10445 raw_svector_ostream OS(Message.Message);
10447 OS << "instruction requires:";
10448 uint64_t Mask = 1;
10449 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1);
10450 ++MaskPos) {
10451 if (MissingFeatures & Mask) {
10452 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask);
10454 Mask <<= 1;
10456 NearMissesOut.emplace_back(Message);
10458 break;
10460 case NearMissInfo::NearMissPredicate: {
10461 NearMissMessage Message;
10462 Message.Loc = IDLoc;
10463 switch (I.getPredicateError()) {
10464 case Match_RequiresNotITBlock:
10465 Message.Message = "flag setting instruction only valid outside IT block";
10466 break;
10467 case Match_RequiresITBlock:
10468 Message.Message = "instruction only valid inside IT block";
10469 break;
10470 case Match_RequiresV6:
10471 Message.Message = "instruction variant requires ARMv6 or later";
10472 break;
10473 case Match_RequiresThumb2:
10474 Message.Message = "instruction variant requires Thumb2";
10475 break;
10476 case Match_RequiresV8:
10477 Message.Message = "instruction variant requires ARMv8 or later";
10478 break;
10479 case Match_RequiresFlagSetting:
10480 Message.Message = "no flag-preserving variant of this instruction available";
10481 break;
10482 case Match_InvalidOperand:
10483 Message.Message = "invalid operand for instruction";
10484 break;
10485 default:
10486 llvm_unreachable("Unhandled target predicate error");
10487 break;
10489 NearMissesOut.emplace_back(Message);
10490 break;
10492 case NearMissInfo::NearMissTooFewOperands: {
10493 if (!ReportedTooFewOperands) {
10494 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
10495 NearMissesOut.emplace_back(NearMissMessage{
10496 EndLoc, StringRef("too few operands for instruction")});
10497 ReportedTooFewOperands = true;
10499 break;
10501 case NearMissInfo::NoNearMiss:
10502 // This should never leave the matcher.
10503 llvm_unreachable("not a near-miss");
10504 break;
10509 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
10510 SMLoc IDLoc, OperandVector &Operands) {
10511 SmallVector<NearMissMessage, 4> Messages;
10512 FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
10514 if (Messages.size() == 0) {
10515 // No near-misses were found, so the best we can do is "invalid
10516 // instruction".
10517 Error(IDLoc, "invalid instruction");
10518 } else if (Messages.size() == 1) {
10519 // One near miss was found, report it as the sole error.
10520 Error(Messages[0].Loc, Messages[0].Message);
10521 } else {
10522 // More than one near miss, so report a generic "invalid instruction"
10523 // error, followed by notes for each of the near-misses.
10524 Error(IDLoc, "invalid instruction, any one of the following would fix this:");
10525 for (auto &M : Messages) {
10526 Note(M.Loc, M.Message);
10531 // FIXME: This structure should be moved inside ARMTargetParser
10532 // when we start to table-generate them, and we can use the ARM
10533 // flags below, that were generated by table-gen.
10534 static const struct {
10535 const unsigned Kind;
10536 const uint64_t ArchCheck;
10537 const FeatureBitset Features;
10538 } Extensions[] = {
10539 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
10540 { ARM::AEK_CRYPTO, Feature_HasV8,
10541 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10542 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
10543 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
10544 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
10545 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
10546 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10547 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
10548 // FIXME: Only available in A-class, isel not predicated
10549 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
10550 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
10551 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} },
10552 // FIXME: Unsupported extensions.
10553 { ARM::AEK_OS, Feature_None, {} },
10554 { ARM::AEK_IWMMXT, Feature_None, {} },
10555 { ARM::AEK_IWMMXT2, Feature_None, {} },
10556 { ARM::AEK_MAVERICK, Feature_None, {} },
10557 { ARM::AEK_XSCALE, Feature_None, {} },
10560 /// parseDirectiveArchExtension
10561 /// ::= .arch_extension [no]feature
10562 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10563 MCAsmParser &Parser = getParser();
10565 if (getLexer().isNot(AsmToken::Identifier))
10566 return Error(getLexer().getLoc(), "expected architecture extension name");
10568 StringRef Name = Parser.getTok().getString();
10569 SMLoc ExtLoc = Parser.getTok().getLoc();
10570 Lex();
10572 if (parseToken(AsmToken::EndOfStatement,
10573 "unexpected token in '.arch_extension' directive"))
10574 return true;
10576 bool EnableFeature = true;
10577 if (Name.startswith_lower("no")) {
10578 EnableFeature = false;
10579 Name = Name.substr(2);
10581 unsigned FeatureKind = ARM::parseArchExt(Name);
10582 if (FeatureKind == ARM::AEK_INVALID)
10583 return Error(ExtLoc, "unknown architectural extension: " + Name);
10585 for (const auto &Extension : Extensions) {
10586 if (Extension.Kind != FeatureKind)
10587 continue;
10589 if (Extension.Features.none())
10590 return Error(ExtLoc, "unsupported architectural extension: " + Name);
10592 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
10593 return Error(ExtLoc, "architectural extension '" + Name +
10594 "' is not "
10595 "allowed for the current base architecture");
10597 MCSubtargetInfo &STI = copySTI();
10598 FeatureBitset ToggleFeatures = EnableFeature
10599 ? (~STI.getFeatureBits() & Extension.Features)
10600 : ( STI.getFeatureBits() & Extension.Features);
10602 uint64_t Features =
10603 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10604 setAvailableFeatures(Features);
10605 return false;
10608 return Error(ExtLoc, "unknown architectural extension: " + Name);
10611 // Define this matcher function after the auto-generated include so we
10612 // have the match class enum definitions.
10613 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10614 unsigned Kind) {
10615 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10616 // If the kind is a token for a literal immediate, check if our asm
10617 // operand matches. This is for InstAliases which have a fixed-value
10618 // immediate in the syntax.
10619 switch (Kind) {
10620 default: break;
10621 case MCK__35_0:
10622 if (Op.isImm())
10623 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10624 if (CE->getValue() == 0)
10625 return Match_Success;
10626 break;
10627 case MCK_ModImm:
10628 if (Op.isImm()) {
10629 const MCExpr *SOExpr = Op.getImm();
10630 int64_t Value;
10631 if (!SOExpr->evaluateAsAbsolute(Value))
10632 return Match_Success;
10633 assert((Value >= std::numeric_limits<int32_t>::min() &&
10634 Value <= std::numeric_limits<uint32_t>::max()) &&
10635 "expression value must be representable in 32 bits");
10637 break;
10638 case MCK_rGPR:
10639 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
10640 return Match_Success;
10641 return Match_rGPR;
10642 case MCK_GPRPair:
10643 if (Op.isReg() &&
10644 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10645 return Match_Success;
10646 break;
10648 return Match_InvalidOperand;